WO2020071195A1 - 発光装置の製造方法及び発光装置 - Google Patents

発光装置の製造方法及び発光装置

Info

Publication number
WO2020071195A1
WO2020071195A1 PCT/JP2019/037499 JP2019037499W WO2020071195A1 WO 2020071195 A1 WO2020071195 A1 WO 2020071195A1 JP 2019037499 W JP2019037499 W JP 2019037499W WO 2020071195 A1 WO2020071195 A1 WO 2020071195A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitting device
light emitting
substrate
manufacturing
Prior art date
Application number
PCT/JP2019/037499
Other languages
English (en)
French (fr)
Inventor
雄 稲田
佑生 寺尾
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2020550324A priority Critical patent/JP7113085B2/ja
Publication of WO2020071195A1 publication Critical patent/WO2020071195A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to a method for manufacturing a light emitting device and a light emitting device.
  • the light emitting device includes an anode, a cathode, and an organic layer.
  • the organic layer can emit light by organic electroluminescence (EL) due to the voltage between the anode and the cathode.
  • EL organic electroluminescence
  • Patent Document 1 describes an example of a light emitting device including an OLED.
  • the light emitting device includes an anode, an optical adjustment layer, an organic layer, and a cathode in this order.
  • Patent Document 1 describes that the viewing angle of a light emitting device is improved by disposing an optical adjustment layer between an anode and an organic layer.
  • Patent Document 2 describes an example of a light emitting device including an OLED.
  • the light emitting device includes an anode, an aluminum phthalocyanine (Al-Pc) layer, an organic layer, and a cathode.
  • Al-Pc aluminum phthalocyanine
  • the Al-Pc layer covers the anode, and the organic layer and the cathode are sequentially located on the Al-Pc layer.
  • the Al-Pc layer is evaporated by the laser beam irradiated from the anode side, and expands to push up the organic layer and the cathode.
  • the expansion of the Al-Pc layer separates the organic layer and the cathode from the anode, thereby preventing leakage between the anode and the cathode.
  • Patent Document 3 describes an example of a method for heating amorphous silicon.
  • the amorphous silicon is heated by a laser beam.
  • Patent Document 3 describes that the amount of laser light injected into amorphous silicon can be adjusted by the interference effect according to the thickness of amorphous silicon and the wavelength of laser light.
  • JP 2012-227111 A JP 2000-331782 A JP-A-59-193022
  • a specific layer on a substrate may be heated by irradiation of electromagnetic waves.
  • the substrate may be damaged due to heating of the substrate by irradiation of the electromagnetic wave.
  • the invention described in claim 1 is A method for manufacturing a light emitting device, Providing a substrate having a first surface, a first layer located on the first surface of the substrate, and a second layer located on the first layer and containing an organic material; Heating the second layer by irradiating electromagnetic waves from the opposite side of the first layer with the second layer interposed therebetween; Including The method for manufacturing a light emitting device, wherein an area occupied by the first layer is larger than an area occupied by the second layer when viewed from a direction perpendicular to the first surface.
  • the invention according to claim 13 is: A substrate having a first surface; A first layer located on the first surface of the substrate and capable of functioning as an electromagnetic wave filter; A second layer comprising an organic material, the second layer being located on the first layer; Including The light emitting device according to claim 1, wherein an area occupied by the first layer is larger than an area occupied by the second layer when viewed from a direction perpendicular to the first surface.
  • the invention according to claim 15 is A light emitting device, A substrate having a first surface; A first layer located on the first surface of the substrate; A second layer comprising an organic material, the second layer being located on the first layer; Including The first layer has a transmittance of more than 50% to a peak wavelength of light emitted from the light emitting device, and a transmittance of 50% or less to at least one wavelength of 400 nm to 600 nm.
  • a light emitting device having:
  • FIG. 2 is a plan view of the light emitting device according to the embodiment. It is AA sectional drawing of FIG.
  • FIG. 3 is a diagram for explaining an example of a method for manufacturing the light emitting device shown in FIGS. 1 and 2.
  • FIG. 3 is a diagram for explaining an example of a method for manufacturing the light emitting device shown in FIGS. 1 and 2.
  • FIG. 3 is a diagram for explaining an example of a method for manufacturing the light emitting device shown in FIGS. 1 and 2.
  • FIG. 3 is a diagram for explaining an example of a method for manufacturing the light emitting device shown in FIGS. 1 and 2. It is a figure for explaining an example of the reason for heating the 2nd layer. It is a figure for explaining an example of the reason for heating the 2nd layer.
  • FIG. 4 is a diagram showing a first modification of FIG. 2.
  • FIG. 6 is a diagram illustrating a second modification of FIG. 2.
  • the expression “A is located on B” means, for example, that A is directly located on B without other elements (eg, layers) located between A and B. Or may mean that other elements (eg, layers) are located between A and B. Furthermore, the expression “A is located on B” means a spatial relative position, which means not only that A is located above B, but also that A is located above B ( (For example, below B).
  • FIG. 1 is a plan view of a light emitting device 10 according to the embodiment.
  • FIG. 2 is a sectional view taken along line AA of FIG.
  • the light emitting device 10 includes a substrate 100, a first layer 210, and a second layer 220. As shown in FIG. 2, the substrate 100 has a first surface 102. The first layer 210 is located on the first surface 102 of the substrate 100. The first layer 210 can function as an electromagnetic wave filter. The second layer 220 is located on the first layer 210. The second layer 220 contains an organic material. The area occupied by the first layer 210 is larger than the area occupied by the second layer 220 when viewed from a direction perpendicular to the first surface 102 of the substrate 100 (the viewpoint in FIG. 1).
  • the structure described above can be formed by a novel process described later. As described later, according to the novel process, damage to the substrate 100 due to irradiation of an electromagnetic wave for heating the second layer 220 can be suppressed.
  • the light emitting device 10 includes the substrate 100, the first electrode 110, the organic layer 120 (including the second layer 220), the second electrode 130, and the first layer 210.
  • the substrate 100 has a rectangular shape.
  • the substrate 100 may have a shape other than a rectangular shape (for example, a circular shape or a polygonal shape other than a rectangle).
  • the first layer 210 is located over the entire first surface 102 of the substrate 100. In other words, the entire first surface 102 of the substrate 100 is covered by the first layer 210. In another example, the first layer 210 may be located on only a part of the first surface 102 of the substrate 100.
  • the first electrode 110 extends in one direction
  • the second electrode 130 extends in a direction orthogonal to the one direction and intersects with the first electrode 110.
  • the organic layer 120 is located on a part of the first surface 102 of the substrate 100, and is located from the overlapping region of the first electrode 110 and the second electrode 130 to the outside of the overlapping region.
  • the area occupied by the first layer 210 is occupied by the second layer 220 (the organic layer 120) when viewed from a direction perpendicular to the first surface 102 of the substrate 100 (the viewpoint in FIG. 1). It is larger than the area.
  • the first layer 210 is located from a region overlapping the second layer 220 (organic layer 120) to the outside of the region.
  • the first layer 210 may be located over the entire first surface 102 of the substrate 100, as shown in FIG. 1, or, unlike the example shown in FIG. May be located only in a part of.
  • the area occupied by the first layer 210 is greater than the area occupied by the second layer 220 (organic layer 120) when viewed from a direction perpendicular to the first surface 102 of the substrate 100 (viewpoint of FIG. 1). It may be smaller.
  • the light emitting device 10 includes the light emitting unit 140.
  • the light emitting unit 140 is defined by an overlapping region of the first electrode 110 and the second electrode 130.
  • the light emitting device 10 may have a plane layout different from the plane layout shown in FIG.
  • the light emitting device 10 may have a plane layout different from the plane layout shown in FIG.
  • the substrate 100 has a first surface 102 and a second surface 104.
  • the first electrode 110, the organic layer 120, the second electrode 130, and the first layer 210 are located on the first surface 102 side of the substrate 100.
  • the second surface 104 is on the opposite side of the first surface 102.
  • the light emitting device 10 is a bottom emission.
  • Light emitted from the organic layer 120 passes through the first electrode 110 and the substrate 100 and is emitted from the second surface 104 of the substrate 100 (in FIG. 2, light is indicated by white arrows).
  • the substrate 100 has translucency. Therefore, light emitted from the organic layer 120 can pass through the substrate 100.
  • the substrate 100 may or may not have flexibility.
  • the substrate 100 may include glass or may be a glass substrate.
  • the substrate 100 may include an organic material (eg, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide), or may be a resin substrate. Good.
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PET polyethylene terephthalate
  • polyimide polyimide
  • the substrate 100 is a resin substrate
  • at least one of the first surface 102 and the second surface 104 of the substrate 100 may have an inorganic barrier layer (for example, SiN or SiON).
  • the first layer 210 is located on the first surface 102 of the substrate 100. As described with reference to FIG. 1, the first layer 210 may be located over the entire first surface 102 of the substrate 100, or may be located only on a part of the first surface 102 of the substrate 100. May be.
  • the first electrode 110 is located on the first layer 210.
  • the first electrode 110 may function as an anode.
  • the first electrode 110 has translucency. Therefore, light emitted from the organic layer 120 can pass through the first electrode 110.
  • the first electrode 110 may include a transparent conductive material.
  • the transparent conductive material is, for example, a metal oxide (eg, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide), or IGZO (Indium Zinc Oxide)). It is a carbon nanotube or a conductive polymer.
  • the first electrode 110 may include a metal thin film (for example, Ag) or an alloy thin film (for example, AgMg).
  • the organic layer 120 covers the first electrode 110.
  • the organic layer 120 includes a second layer 220 and an organic layer 122.
  • the second layer 220 contains an organic material.
  • the second layer 220 is the lowermost layer of the organic layer 120 and may include a hole injection layer (HIL).
  • the organic layer 122 is located on the second layer 220.
  • the organic layer 122 includes a light emitting layer (EML), and further appropriately includes a hole injection layer (HIL), a hole transport layer (HTL), an electron transport layer (HTL), and an electron injection layer (HIL). Is also good.
  • the organic layer 122 may not include HIL.
  • the second layer 220 may be a layer other than the lowermost layer of the organic layer 120. Also in this example, damage to the substrate 100 due to irradiation of electromagnetic waves for heating the second layer 220 can be suppressed.
  • the second electrode 130 is located on the organic layer 120.
  • the second electrode 130 may function as a cathode.
  • the second electrode 130 has a light-shielding property (for example, a light-reflecting property).
  • the second electrode 130 may include a light-blocking conductive material.
  • the light-blocking conductive material is a metal or an alloy, and more specifically, at least one metal selected from the group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In or An alloy of a metal selected from this group.
  • the light emitting device 10 includes the light emitting unit 140.
  • the light emitting unit 140 is defined by an overlapping region of the first electrode 110 and the second electrode 130.
  • FIGS. 3 to 6 are views for explaining an example of a method of manufacturing the light emitting device 10 shown in FIGS. 1 and 2.
  • FIG. 3 to 6 show cross sections taken along the line AA shown in FIG.
  • the light emitting device 10 is manufactured as follows.
  • the substrate 100 and the first layer 210 are prepared.
  • the first layer 210 is located on the first surface 102 of the substrate 100.
  • the first layer 210 may be located over the entire first surface 102 of the substrate 100.
  • the first electrode 110 is formed on the first layer 210.
  • a second layer 220 is formed on the first layer 210, and the first electrode 110 is covered with the second layer 220.
  • the substrate 100, the first layer 210, and the second layer 220 are prepared.
  • the second layer 220 is heated by irradiating an electromagnetic wave from the opposite side of the first layer 210 with the second layer 220 interposed therebetween (in FIG. 6, the electromagnetic waves are indicated by arrows). ).
  • the first layer 210 can function as an electromagnetic wave filter. Specifically, the first layer 210 can selectively transmit light emitted from the light emitting device 10 (ie, the organic layer 120), and can emit light emitted from the light emitting device 10 (ie, the organic layer 120). An electromagnetic wave having a peak wavelength different from the peak wavelength, specifically, an electromagnetic wave for heating the second layer 220 can be selectively shielded.
  • the first layer 210 has a transmittance of more than 50%, preferably 80% or more, with respect to the peak wavelength of the light emitted from the light emitting device 10, and heats the second layer 220. Has a transmittance of 50% or less, preferably 20% or less with respect to the peak wavelength of the electromagnetic wave.
  • the first layer 210 can shield an electromagnetic wave for heating the second layer 220. Accordingly, damage to the substrate 100 due to irradiation of electromagnetic waves for heating the second layer 220 can be suppressed.
  • the first layer 210 can transmit light emitted from the light emitting device 10 (that is, the organic layer 120). Therefore, it is possible to suppress a decrease in the light emission intensity of the light emitting device 10 due to the first layer 210.
  • the first layer 210 may include a dielectric mirror.
  • the dielectric mirror may include alternating high and low index regions.
  • the dielectric mirror can selectively transmit electromagnetic waves in one wavelength band (that is, light emitted from the light emitting device 10 (that is, light emitted from the organic layer 120)), and can transmit electromagnetic waves in another wavelength band (that is, the second electromagnetic wave). (Electromagnetic waves for heating the layer 220) can be selectively shielded.
  • the first layer 210 may selectively reflect electromagnetic waves for heating the second layer 220.
  • the first layer 210 may have a reflectance of 50% or more, preferably 80% or more, with respect to the peak wavelength of the electromagnetic wave for heating the second layer 220.
  • the first layer 210 can irradiate the second layer 220 with the electromagnetic wave by the reflection of the electromagnetic wave by the first layer 210.
  • the first layer 210 may selectively absorb an electromagnetic wave for heating the second layer 220.
  • the first layer 210 may have an absorptance of 50% or more, preferably 80% or more with respect to an electromagnetic wave for heating the electromagnetic wave.
  • the substrate 100 can be protected from the electromagnetic wave by the absorption of the electromagnetic wave by the first layer 210.
  • the electromagnetic wave for heating the second layer 220 may be light having a peak wavelength of 400 nm or more and 600 nm or less, for example, light emitted from a xenon flash lamp.
  • the first layer 210 may selectively block light of at least one wavelength of 400 nm or more and 600 nm or less, for example, for light of at least one wavelength of 400 nm or more and 600 nm or less. It may have a transmittance of 50% or less, preferably 20% or less.
  • the light emitted from the light emitting device 10 may be light having a peak wavelength of more than 600 nm and 800 nm or less, for example, red light.
  • the difference between the peak wavelength of the light emitted from the light emitting device 10 and the peak wavelength of the electromagnetic wave for heating the second layer 220 may be 50 nm or more, preferably 100 nm or more. As the magnitude of the difference is larger, the overlap between the spectrum of light emitted from the light emitting device 10 and the spectrum of an electromagnetic wave for heating the second layer 220 can be reduced. Therefore, the first layer 210 can selectively transmit light emitted from the light emitting device 10 (that is, the organic layer 120) with high reliability, and can select an electromagnetic wave for heating the second layer 220. Can be shielded.
  • the area occupied by the first layer 210 may be larger than the area occupied by the second layer 220 when viewed from a direction perpendicular to the first surface 102 of the substrate 100 (the viewpoint shown in FIG. 1).
  • the substrate 100 can be protected from electromagnetic waves by disposing the first layer 210 around the region overlapping with the second layer 220 and the region.
  • the substrate 100 can be more reliably protected from electromagnetic waves.
  • the substrate 100 may include an organic material, or may be a resin substrate.
  • the resin substrate is easily damaged by the heating of the electromagnetic wave. Therefore, providing the first layer 210 is significant when the substrate 100 includes an organic material.
  • FIGS. 7 and 8 are diagrams for explaining an example of the reason for heating the second layer 220.
  • FIG. FIG. 7 is an enlarged view of a part of the first electrode 110 and the second layer 220 in the step shown in FIG. 5, and
  • FIG. 8 is a view of the first electrode 110 and the second layer 220 after the step shown in FIG. It is a partially enlarged view.
  • the foreign matter P is attached to the surface of the first electrode 110.
  • the movement of the substrate 100 (for example, FIG. 4) from the chamber for forming the first electrode 110 to the chamber for forming the second layer 220 is performed. Therefore, the substrate 100 (for example, FIG. 4) is exposed to the air.
  • foreign matter in the atmosphere (the foreign matter P in the example shown in FIG. 7) may adhere to the surface of the first electrode 110.
  • the second layer 220 is an evaporation layer, and is formed by evaporation.
  • a layer formed by vapor deposition has a lower step coverage than a layer formed by other deposition (for example, ALD (Atomic Layer Deposition)). Therefore, the second layer 220 may be interrupted around the foreign matter P. If an element (for example, the second electrode 130 shown in FIG. 2) on the second layer 220 is formed while the second layer 220 is interrupted, the first electrode 110 and the second electrode 130 (for example, FIG. 2) Short circuits can occur between them.
  • the heating of the second layer 220 is performed to bury the foreign matter P by the second layer 220.
  • the second layer 220 is heated to a certain temperature (for example, a temperature higher than the glass transition point of the organic material of the second layer 220), so that the second layer 220 exhibits fluidity.
  • the second layer 220 can be deformed so as to embed the foreign matter P by heating. Embedding of the foreign matter P by the second layer 220 can prevent a short circuit between the first electrode 110 and the second electrode 130 (for example, FIG. 2).
  • the second layer 220 may be heated to crosslink the crosslinkable monomer contained in the second layer 220.
  • preparing the second layer 220 includes forming a layer containing a crosslinkable monomer on the first layer 210.
  • the crosslinkable monomer is crosslinked by heating the second layer 220.
  • the electromagnetic wave for heating the second layer 220 is, for example, light emitted from an ultraviolet (UV) lamp and may have a peak wavelength of 365 nm or less.
  • the second layer 220 may be heated to remove the solvent on the substrate 100.
  • the method for manufacturing the light emitting device 10 may include a step of applying a solvent on the first surface 102 or the first layer 210 of the substrate 100 before preparing the second layer 220.
  • the solvent may be used to form a layer on the first side 102 of the substrate 100 or on the first layer 210 by a coating process.
  • FIG. 9 is a diagram showing a first modification of FIG.
  • the first layer 210 may cover the first electrode 110.
  • the first layer 210 may include HIL or may not include HIL.
  • the organic layer 122 is located on the first layer 210.
  • the organic layer 122 includes EML, and may appropriately include HIL, HTL, ETL, and EIL.
  • the organic layer 122 includes the second layer 220.
  • the organic layer 122 may include only the second layer 220, or may include a layer other than the second layer 220.
  • damage to the substrate 100 due to irradiation of electromagnetic waves for heating the second layer 220 can be suppressed by the first layer 210.
  • FIG. 10 is a diagram showing a second modification of FIG.
  • the light emitting device 10 may be a top emission. Light emitted from the organic layer 120 passes through the second electrode 130 and is emitted from the opposite side of the second surface 104 of the substrate 100 (in FIG. 10, light is indicated by white arrows).
  • the first electrode 110 may have a light-shielding property
  • the second electrode 130 has a light-transmitting property.
  • the first layer 210 may not be able to selectively transmit light emitted from the light emitting device 10 (that is, the organic layer 120).
  • the light emitted from the organic layer 120 does not need to pass through the first layer 210. Therefore, in the example illustrated in FIG. 10, the first layer 210 may not be able to selectively transmit light emitted from the light emitting device 10 (that is, the organic layer 120).
  • the first layer 210 may be capable of selectively transmitting light emitted from the light emitting device 10 (ie, the organic layer 120).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

基板(100)及び第1層(210)を準備する。第1層(210)は、基板(100)の第1面(102)上に位置している。次いで、第1層(210)上に第1電極(110)を形成する。次いで、第1層(210)上に第2層(220)を形成して、第1電極(110)を第2層(220)で覆う。次いで、第2層(220)を挟んで第1層(210)の反対側から電磁波を照射して第2層(220)を加熱する。基板(100)の第1面(102)に垂直な方向から見て、第1層(210)によって占められる面積は、第2層(220)によって占められる面積より大きくなっている。

Description

発光装置の製造方法及び発光装置
 本発明は、発光装置の製造方法及び発光装置に関する。
 近年、有機発光ダイオード(OLED)を含む発光装置が開発されている。発光装置は、陽極、陰極及び有機層を含んでいる。有機層は、陽極及び陰極の間の電圧による有機エレクトロルミネッセンス(EL)によって光を発することができる。
 特許文献1には、OLEDを含む発光装置の一例について記載されている。発光装置は、陽極、光学調節層、有機層及び陰極を順に含んでいる。特許文献1には、陽極と有機層の間に光学調節層を配置することで、発光装置の視野角が改善されると記載されている。
 特許文献2には、OLEDを含む発光装置の一例について記載されている。発光装置は、陽極、アルミニウムフタロシアニン(Al-Pc)層、有機層及び陰極を含んでいる。Al-Pc層は、陽極を覆っており、有機層及び陰極は、Al-Pc層上に順に位置している。Al-Pc層は、陽極側から照射されたレーザ光によって蒸発され、有機層及び陰極を押し上げるように膨張する。Al-Pc層の膨張によって有機層及び陰極が陽極から離されて、陽極と陰極の間のリークを防ぐことができる。
 特許文献3には、非晶質シリコンを加熱するための方法の一例について記載されている。この例では、非晶質シリコンをレーザ光によって加熱している。特許文献3には、非晶質シリコンに注入されるレーザ光の量は、干渉効果によって、非晶質シリコンの厚さ及びレーザ光の波長に応じて調節可能であると記載されている。
特開2012-227111号公報 特開2000-331782号公報 特開昭59-193022号公報
 OLEDを含む発光装置の製造プロセスでは、電磁波の照射によって基板上の特定の層を加熱させることがある。このプロセスでは、電磁波の照射によって基板が加熱されて、基板が損傷を受けるおそれがある。
 本発明が解決しようとする課題としては、電磁波の照射による基板の損傷を抑えることが一例として挙げられる。
 請求項1に記載の発明は、
 発光装置の製造方法であって、
 第1面を有する基板と、前記基板の前記第1面上に位置する第1層と、前記第1層上に位置し、有機材料を含む第2層と、を準備する工程と、
 前記第2層を挟んで前記第1層の反対側から電磁波を照射して前記第2層を加熱する工程と、
を含み、
 前記第1面に垂直な方向から見て、前記第1層によって占められる面積は、前記第2層によって占められる面積より大きい、発光装置の製造方法である。
 請求項13に記載の発明は、
 第1面を有する基板と、
 前記基板の前記第1面上に位置し、電磁波フィルタとして機能可能な第1層と、
 前記第1層上に位置し、有機材料を含む第2層と、
を含み、
 前記第1面に垂直な方向から見て、前記第1層によって占められる面積は、前記第2層によって占められる面積より大きい、発光装置である。
 請求項15に記載の発明は、
 発光装置であって、
 第1面を有する基板と、
 前記基板の前記第1面上に位置する第1層と、
 前記第1層上に位置し、有機材料を含む第2層と、
を含み、
 前記第1層は、前記発光装置から発せられる光のピーク波長に対して50%超の透過率を有し、400nm以上600nm以下のうちの少なくとも一波長の光に対して50%以下の透過率を有する、発光装置である。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施形態に係る発光装置の平面図である。 図1のA-A断面図である。 図1及び図2に示した発光装置の製造方法の一例を説明するための図である。 図1及び図2に示した発光装置の製造方法の一例を説明するための図である。 図1及び図2に示した発光装置の製造方法の一例を説明するための図である。 図1及び図2に示した発光装置の製造方法の一例を説明するための図である。 第2層を加熱する理由の一例を説明するための図である。 第2層を加熱する理由の一例を説明するための図である。 図2の第1の変形例を示す図である。 図2の第2の変形例を示す図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 以下において、「AがB上に位置する」という表現は、例えば、AとBの間に他の要素(例えば、層)が位置せずにAがB上に直接位置することを意味してもよいし、又はAとBの間に他の要素(例えば、層)が位置することを意味してもよい。さらに、「AがB上に位置する」という表現は、空間的な相対位置を意味するのであって、AがBの上方に位置することを意味するだけでなく、AがBの上方以外(例えば、Bの下方)に位置することを意味することもある。
 図1は、実施形態に係る発光装置10の平面図である。図2は、図1のA-A断面図である。
 図1及び図2を用いて、発光装置10の概要を説明する。発光装置10は、基板100、第1層210及び第2層220を含んでいる。図2に示すように、基板100は、第1面102を有している。第1層210は、基板100の第1面102上に位置している。第1層210は、電磁波フィルタとして機能可能である。第2層220は、第1層210上に位置している。第2層220は、有機材料を含んでいる。基板100の第1面102に垂直な方向(図1の視点)から見て、第1層210によって占められる面積は、第2層220によって占められる面積より大きくなっている。
 上述した構造は、後述する新規なプロセスによって形成されることができる。後述するように、当該新規なプロセスによれば、第2層220を加熱させるための電磁波の照射による基板100の損傷を抑えることができる。
 図1を用いて、発光装置10の平面レイアウトの詳細を説明する。
 発光装置10は、基板100、第1電極110、有機層120(第2層220を含む。)、第2電極130及び第1層210を含んでいる。
 基板100は、矩形形状を有している。他の例において、基板100は、矩形形状以外の形状(例えば、円形状又は矩形以外の多角形形状)を有していてもよい。
 第1層210は、基板100の第1面102の全体に亘って位置している。言い換えると、基板100の第1面102の全体は、第1層210によって覆われている。他の例において、第1層210は、基板100の第1面102の一部分のみに位置していてもよい。
 第1電極110は、一方向に延伸しており、第2電極130は、当該一方向に直交する方向に延伸して第1電極110と交差している。
 有機層120は、基板100の第1面102の一部分に位置しており、第1電極110及び第2電極130の重なり合い領域から当該重なり合い領域の外側にかけて位置している。
 図1に示す例において、基板100の第1面102に垂直な方向(図1の視点)から見て、第1層210によって占められる面積は、第2層220(有機層120)によって占められる面積より大きくなっている。第1層210は、第2層220(有機層120)と重なる領域から当該領域の外側にかけて位置している。第1層210は、図1に示すように、基板100の第1面102の全体に亘って位置していてもよいし、又は図1に示す例とは異なり、基板100の第1面102の一部分のみに位置していてもよい。他の例において、基板100の第1面102に垂直な方向(図1の視点)から見て、第1層210によって占められる面積は、第2層220(有機層120)によって占められる面積より小さくなっていてもよい。
 発光装置10は、発光部140を含んでいる。発光部140は、第1電極110及び第2電極130の重なり合い領域によって画定されている。
 他の例において、発光装置10は、図1に示す平面レイアウトと異なる平面レイアウトを有していてもよい。実施形態の説明から明らかなように、発光装置10が図1に示す平面レイアウトを有する場合だけでなく、発光装置10が図1に示す平面レイアウトと異なる平面レイアウトを有する場合にも、第2層220を加熱させるための電磁波の照射による基板100の損傷を抑えることができる。
 図2を用いて、発光装置10の断面の詳細を説明する。
 基板100は、第1面102及び第2面104を有している。第1電極110、有機層120、第2電極130及び第1層210は、基板100の第1面102側に位置している。第2面104は、第1面102の反対側にある。
 図2に示す例において、発光装置10は、ボトムエミッションである。有機層120から発せられた光は、第1電極110及び基板100を透過して基板100の第2面104から出射される(図2において、光は、白矢印で示されている。)。
 基板100は、透光性を有している。したがって、有機層120から発せられた光は、基板100を透過することができる。
 基板100は、可撓性を有していてもよいし、又は有していなくてもよい。
 一例において、基板100は、ガラスを含んでいてもよく、ガラス基板にしてもよい。他の例において、基板100は、有機材料(例えば、PEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)又はポリイミド)を含んでいてもよく、樹脂基板にしてもよい。基板100が樹脂基板である場合、基板100の第1面102及び第2面104の少なくとも一方は、無機バリア層(例えば、SiN又はSiON)を有していてもよい。
 第1層210は、基板100の第1面102上に位置している。図1を用いて説明したように、第1層210は、基板100の第1面102の全体に亘って位置していてもよいし、又は基板100の第1面102の一部分のみに位置していてもよい。
 第1電極110は、第1層210上に位置している。第1電極110は、アノードとして機能してもよい。
 第1電極110は、透光性を有している。したがって、有機層120から発せられた光は、第1電極110を透過することができる。第1電極110は、透明導電材料を含んでいてもよい。透明導電材料は、例えば、金属酸化物(例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)、ZnO(Zinc Oxide))又はIGZO(Indium Galium Zinc Oxide)、カーボンナノチューブ又は導電性高分子である。他の例において、第1電極110は、金属薄膜(例えば、Ag)又は合金薄膜(例えば、AgMg)を含んでいてもよい。
 有機層120は、第1電極110を覆っている。有機層120は、第2層220及び有機層122を含んでいる。第2層220は、有機材料を含んでいる。
 図2に示す例において、第2層220は、有機層120のうちの最下層であり、正孔注入層(HIL)を含んでいてもよい。有機層122は、第2層220上に位置している。有機層122は、発光層(EML)を含んでおり、正孔注入層(HIL)、正孔輸送層(HTL)、電子輸送層(HTL)及び電子注入層(HIL)をさらに適宜含んでいてもよい。第2層220がHILを含む場合、有機層122は、HILを含まなくてもよい。
 他の例において、第2層220は、有機層120のうちの最下層以外の層であってもよい。この例においても、第2層220を加熱させるための電磁波の照射による基板100の損傷を抑えることができる。
 第2電極130は、有機層120上に位置している。第2電極130は、カソードとして機能してもよい。
 第2電極130は、遮光性(例えば、光反射性)を有している。第2電極130は、遮光性導電材料を含んでいてもよい。一例において、遮光性導電材料は、金属又は合金であり、より具体的には、Al、Au、Ag、Pt、Mg、Sn、Zn及びInからなる群の中から選択される少なくとも1つの金属又はこの群から選択される金属の合金である。
 発光装置10は、発光部140を含んでいる。発光部140は、第1電極110及び第2電極130の重なり合い領域によって画定されている。
 図3から図6は、図1及び図2に示した発光装置10の製造方法の一例を説明するための図である。図3から図6は、図2に示したA-A断面における断面を示している。
 発光装置10は、以下のようにして製造される。
 まず、図3に示すように、基板100及び第1層210を準備する。第1層210は、基板100の第1面102上に位置している。第1層210は、基板100の第1面102の全体に亘って位置していてもよい。
 次いで、図4に示すように、第1層210上に第1電極110を形成する。
 次いで、図5に示すように、第1層210上に第2層220を形成して、第1電極110を第2層220で覆う。
 図3から図5に示す工程において、基板100、第1層210及び第2層220を準備している。
 次いで、図6に示すように、第2層220を挟んで第1層210の反対側から電磁波を照射して第2層220を加熱する(図6において、電磁波は矢印で示されている。)。
 第1層210は、電磁波フィルタとして機能可能である。具体的には、第1層210は、発光装置10(すなわち、有機層120)から発せられる光を選択的に透過させることができるとともに、発光装置10(すなわち、有機層120)から発せられる光のピーク波長と異なるピーク波長を有する電磁波、具体的には、第2層220を加熱させるための電磁波を選択的に遮蔽することができる。一例において、第1層210は、発光装置10から発せられる光のピーク波長に対して、50%超の透過率、好ましくは80%以上の透過率を有し、第2層220を加熱させるための電磁波のピーク波長に対して、50%以下の透過率、好ましくは20%以下の透過率を有している。
 上述した構成によれば、第2層220を加熱させるための電磁波の照射による基板100の損傷を抑えることができる。具体的には、上述した構成においては、第1層210は、第2層220を加熱させるための電磁波を遮蔽することができる。したがって、第2層220を加熱させるための電磁波の照射による基板100の損傷を抑えることができる。
 上述した構成によれば、第1層210による発光装置10の発光強度の低下を抑えることができる。具体的には、上述した構成においては、第1層210は、発光装置10(すなわち、有機層120)から発せられる光を透過させることができる。したがって、第1層210による発光装置10の発光強度の低下を抑えることができる。
 第1層210は、誘電体ミラーを含んでいてもよい。一例において、誘電体ミラーは、交互に並ぶ高屈折率領域及び低屈折率領域を含んでいてもよい。誘電体ミラーは、一の波長帯域の電磁波(つまり、発光装置10(すなわち、有機層120)から発せられる光)を選択的に透過することができ、他の波長帯域の電磁波(つまり、第2層220を加熱させるための電磁波)を選択的に遮蔽することができる。
 一例において、第1層210は、第2層220を加熱させるための電磁波を選択的に反射してもよい。この例において、第1層210は、第2層220を加熱させるための電磁波のピーク波長に対して、50%以上の反射率、好ましくは80%以上の反射率を有していてもよい。この例によれば、第1層210による電磁波の反射によって、第1層210から第2層220に電磁波を照射することができる。
 他の例において、第1層210は、第2層220を加熱させるための電磁波を選択的に吸収してもよい。この例において、第1層210は、電磁波を加熱させるための電磁波に対して、50%以上の吸収率、好ましくは80%以上の吸収率を有していてもよい。この例によれば、第1層210による電磁波の吸収によって、電磁波から基板100を保護することができる。
 一例において、第2層220を加熱させるための電磁波は、400nm以上600nm以下にピーク波長を有する光、例えば、キセノンフラッシュランプから発せられる光であってもよい。この例において、第1層210は、400nm以上600nm以下のうちの少なくとも一波長の光を選択的に遮蔽してもよく、例えば、400nm以上600nm以下のうちの少なくとも一波長の光に対して、50%以下の透過率、好ましくは20%以下の透過率を有していてもよい。
 一例において、発光装置10から発せられる光は、600nm超800nm以下にピーク波長を有する光、例えば、赤色光であってもよい。
 一例において、発光装置10から発せられる光のピーク波長及び第2層220を加熱させるための電磁波のピーク波長の差の大きさは、50nm以上、好ましくは100nm以上であってもよい。この差の大きさが大きいほど、発光装置10から発せられる光のスペクトル及び第2層220を加熱させるための電磁波のスペクトルの重なり合いを小さくすることができる。したがって、第1層210は、高い信頼性をもって、発光装置10(すなわち、有機層120)から発せられる光を選択的に透過させることができるとともに、第2層220を加熱させるための電磁波を選択的に遮蔽することができる。
 基板100の第1面102に垂直な方向(図1に示した視点)から見て、第1層210によって占められる面積は、第2層220によって占められる面積より大きくてもよい。このようにして、第2層220と重なる領域及びその領域の周囲に第1層210を配置させて、電磁波から基板100を保護することができる。特に、第1層210が基板100の第1面102の全体に亘って位置する場合、電磁波から基板100をより確実に保護することができる。
 基板100は、有機材料を含んでいてもよく、樹脂基板であってもよい。樹脂基板は、電磁波の加熱による損傷を受けやすい。したがって、第1層210を設けることは、基板100が有機材料を含む場合に有意義となる。
 図7及び図8は、第2層220を加熱する理由の一例を説明するための図である。図7は、図5に示した工程における第1電極110及び第2層220の一部分の拡大図であり、図8は、図6に示した工程後における第1電極110及び第2層220の一部分の拡大図である。
 図7に示す例では、第1電極110の表面に異物Pが付着している。図7に示す例では、第1電極110を形成した後、第1電極110を形成するためのチャンバから第2層220を形成するためのチャンバへの基板100(例えば、図4)の移動のため、基板100(例えば、図4)を大気に曝している。基板100の移動の間に、大気中の異物(図7に示す例では、異物P)が第1電極110の表面に付着することがある。
 図7に示す例において、第2層220は、蒸着層であり、蒸着によって形成されている。蒸着によって形成された層は、他の堆積(例えば、ALD(Atomic Layer Deposition))によって形成された層よりも、段差被覆性に劣っている。したがって、第2層220は、異物Pの周辺において途切れることがある。仮に、第2層220が途切れたまま第2層220上の要素(例えば、図2に示した第2電極130)を形成すると、第1電極110及び第2電極130(例えば、図2)の間で短絡が生じ得る。
 図8に示すように、第2層220の加熱(図6)は、異物Pを第2層220によって埋め込むために行われる。第2層220は、一定の温度(例えば、第2層220の有機材料のガラス転移点超の温度)に加熱されて、流動性を呈するようになる。図8に示すように、加熱によって、第2層220は、異物Pを埋め込むように変形することができる。第2層220による異物Pの埋込によって、第1電極110及び第2電極130(例えば、図2)の間で短絡を防止することができる。
 図7及び図8を用いて説明した理由とは異なる他の理由として、第2層220は、第2層220に含まれる架橋性モノマーを架橋させるために加熱されてもよい。この例においては、第2層220を準備する工程は、架橋性モノマーを含む層を第1層210上に形成する工程を含む。架橋性モノマーは、第2層220の加熱によって架橋される。この例において、第2層220を加熱させるための電磁波は、例えば、紫外線(UV)ランプから発せられる光であって、365nm以下にピーク波長をもつものであってもよい。
 図7及び図8を用いて説明した理由とは異なるさらに他の理由として、第2層220は、基板100上の溶媒を除去するために加熱されてもよい。この例においては、発光装置10の製造方法は、第2層220を準備する前に、基板100の第1面102上又は第1層210上に溶媒を塗布する工程を含んでいてもよい。溶媒は、塗布プロセスによって基板100の第1面102上又は第1層210上に層を形成するために用いられ得る。
 図9は、図2の第1の変形例を示す図である。
 第1層210は、第1電極110を覆っていてもよい。第1層210は、HILを含んでいてもよいし、又はHILを含んでいなくてもよい。有機層122は、第1層210上に位置している。有機層122は、EMLを含んでおり、HIL、HTL、ETL及びEILを適宜含んでいてもよい。有機層122は、第2層220を含んでいる。有機層122は、第2層220のみを含んでいてもよいし、又は第2層220以外の層を含んでいてもよい。
 図9に示す例においても、第2層220を加熱させるための電磁波の照射による基板100の損傷を第1層210によって抑えることができる。
 図10は、図2の第2の変形例を示す図である。
 発光装置10は、トップエミッションであってもよい。有機層120から発せられた光は、第2電極130を透過して基板100の第2面104の反対側から出射される(図10において、光は、白矢印で示されている。)。図10に示す例において、第1電極110は、遮光性を有していてもよく、第2電極130は、透光性を有している。
 図10に示す例において、第1層210は、発光装置10(すなわち、有機層120)から発せられる光を選択的に透過させることができなくてもよい。図10に示す例において、有機層120から発せられた光は、第1層210を透過する必要がない。したがって、図10に示す例において、第1層210は、発光装置10(すなわち、有機層120)から発せられる光を選択的に透過させることができなくてもよい。他の例において、第1層210は、発光装置10(すなわち、有機層120)から発せられる光を選択的に透過させることができてもよい。
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 この出願は、2018年10月2日に出願された日本出願特願2018-187474号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (15)

  1.  発光装置の製造方法であって、
     第1面を有する基板と、前記基板の前記第1面上に位置する第1層と、前記第1層上に位置し、有機材料を含む第2層と、を準備する工程と、
     前記第2層を挟んで前記第1層の反対側から電磁波を照射して前記第2層を加熱する工程と、
    を含み、
     前記第1面に垂直な方向から見て、前記第1層によって占められる面積は、前記第2層によって占められる面積より大きい、発光装置の製造方法。
  2.  請求項1に記載の発光装置の製造方法において、
     前記第1層は、前記基板の前記第1面の全体に亘って位置している、発光装置の製造方法。
  3.  請求項1又は2に記載の発光装置の製造方法において、
     前記第1層は、誘電体ミラーを含む、発光装置の製造方法。
  4.  請求項1から3までのいずれか一項に記載の発光装置の製造方法において、
     前記第2層は、正孔注入層を含む、発光装置の製造方法。
  5.  請求項1から4までのいずれか一項に記載の発光装置の製造方法において、
     前記基板は、有機材料を含む、発光装置の製造方法。
  6.  請求項1から5までのいずれか一項に記載の発光装置の製造方法において、
     前記基板及び前記第2層を準備する工程は、前記基板を大気に曝す工程と、前記基板を大気に曝した後、前記第2層を前記基板上に形成する工程と、を含む、発光装置の製造方法。
  7.  請求項1から6までのいずれか一項に記載の発光装置の製造方法において、
     前記第2層を準備する工程は、前記第2層を蒸着によって形成する工程を含む、発光装置の製造方法。
  8.  請求項1から7までのいずれか一項に記載の発光装置の製造方法において、
     前記第2層を準備する工程は、架橋性モノマーを含む層を前記第1層上に形成する工程を含み、
     前記第2層を加熱する工程は、前記架橋性モノマーを架橋させる工程を含む、発光装置の製造方法。
  9.  請求項1から8までのいずれか一項に記載に発光装置の製造方法において、
     前記第2層を準備する前に、前記基板の前記第1面上又は前記第1層上に溶媒を塗布する工程をさらに含み、
     前記第2層を加熱する工程は、前記溶媒を除去する工程を含む、発光装置の製造方法。
  10.  請求項1から9までのいずれか一項に記載の発光装置の製造方法において、
     前記第1層は、前記発光装置から発せられる光のピーク波長に対して50%超の透過率を有し、前記電磁波のピーク波長に対して50%以下の透過率を有する、発光装置の製造方法。
  11.  請求項1から10までのいずれか一項に記載の発光装置の製造方法において、
     前記電磁波のピーク波長は、400nm以上600nm以下にある、発光装置の製造方法。
  12.  請求項1から11までのいずれか一項に記載の発光装置の製造方法において、
     前記発光装置から発せられる光のピーク波長は、600nm超800nm以下にある、発光装置の製造方法。
  13.  第1面を有する基板と、
     前記基板の前記第1面上に位置し、電磁波フィルタとして機能可能な第1層と、
     前記第1層上に位置し、有機材料を含む第2層と、
    を含み、
     前記第1面に垂直な方向から見て、前記第1層によって占められる面積は、前記第2層によって占められる面積より大きい、発光装置。
  14.  請求項13に記載の発光装置において、
     前記第1層は、前記基板の前記第1面の全体に亘って位置している、発光装置。
  15.  発光装置であって、
     第1面を有する基板と、
     前記基板の前記第1面上に位置する第1層と、
     前記第1層上に位置し、有機材料を含む第2層と、
    を含み、
     前記第1層は、前記発光装置から発せられる光のピーク波長に対して50%超の透過率を有し、400nm以上600nm以下のうちの少なくとも一波長の光に対して50%以下の透過率を有する、発光装置。
PCT/JP2019/037499 2018-10-02 2019-09-25 発光装置の製造方法及び発光装置 WO2020071195A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020550324A JP7113085B2 (ja) 2018-10-02 2019-09-25 発光装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-187474 2018-10-02
JP2018187474 2018-10-02

Publications (1)

Publication Number Publication Date
WO2020071195A1 true WO2020071195A1 (ja) 2020-04-09

Family

ID=70055223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037499 WO2020071195A1 (ja) 2018-10-02 2019-09-25 発光装置の製造方法及び発光装置

Country Status (2)

Country Link
JP (1) JP7113085B2 (ja)
WO (1) WO2020071195A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033004A (ja) * 2007-07-30 2009-02-12 Fujifilm Corp 薄膜素子とその製造方法、半導体装置
KR20090128237A (ko) * 2008-06-10 2009-12-15 삼성모바일디스플레이주식회사 유기 발광 디스플레이 장치
JP2010073590A (ja) * 2008-09-20 2010-04-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子
CN203589031U (zh) * 2013-10-15 2014-05-07 昆山工研院新型平板显示技术中心有限公司 一种用于amoled聚合物衬底的抗激光损伤薄膜结构
US20150380439A1 (en) * 2013-09-25 2015-12-31 Boe Technology Group Co., Ltd. Flexible display substrate and manufacturing method thereof, and flexible display device
US20170170329A1 (en) * 2015-12-10 2017-06-15 Industrial Technology Research Institute Flexible device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007004993A (ja) * 2005-06-21 2007-01-11 Seiko Epson Corp 有機el装置、及びその製造方法、電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033004A (ja) * 2007-07-30 2009-02-12 Fujifilm Corp 薄膜素子とその製造方法、半導体装置
KR20090128237A (ko) * 2008-06-10 2009-12-15 삼성모바일디스플레이주식회사 유기 발광 디스플레이 장치
JP2010073590A (ja) * 2008-09-20 2010-04-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子
US20150380439A1 (en) * 2013-09-25 2015-12-31 Boe Technology Group Co., Ltd. Flexible display substrate and manufacturing method thereof, and flexible display device
CN203589031U (zh) * 2013-10-15 2014-05-07 昆山工研院新型平板显示技术中心有限公司 一种用于amoled聚合物衬底的抗激光损伤薄膜结构
US20170170329A1 (en) * 2015-12-10 2017-06-15 Industrial Technology Research Institute Flexible device

Also Published As

Publication number Publication date
JPWO2020071195A1 (ja) 2021-09-02
JP7113085B2 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
JP7264488B2 (ja) パターン化コーティングにわたって伝導性コーティングを選択的に堆積させるための方法および伝導性コーティングを含むデバイス
US11980064B2 (en) Display apparatus and method of manufacturing the same
KR102313362B1 (ko) 유기발광 디스플레이 장치 및 그 제조방법
KR102098745B1 (ko) 유기발광 디스플레이 장치 및 그 제조방법
KR102207914B1 (ko) 유기 발광 표시 장치
KR101097307B1 (ko) 실링 장치
US9362531B2 (en) Organic light emitting display device and manufacturing method thereof
US9450039B2 (en) Organic light emitting display apparatus and method of manufacturing the same
US9331304B2 (en) Organic light-emitting display device and method of manufacturing the same
US20080164810A1 (en) Organic el display device and manufacturing method of the same
KR20160045998A (ko) 유기 발광 표시 장치 및 그 제조 방법
US8070546B2 (en) Laser irradiation apparatus for bonding and method of manufacturing display device using the same
KR100730220B1 (ko) 유기 발광 디스플레이 장치
KR102017086B1 (ko) 도너 기판 및 도너 기판을 이용한 유기 발광 표시 장치의 제조 방법
JP2011146323A (ja) 有機el発光装置
CN108550606A (zh) 一种显示屏的制作方法、显示屏及移动终端
JP2010129334A (ja) 有機el装置、有機el装置の製造方法
KR20150092792A (ko) 유기 발광 표시 장치 및 그 제조 방법
WO2020071195A1 (ja) 発光装置の製造方法及び発光装置
WO2012140736A1 (ja) 有機エレクトロルミネッセンスデバイス
JP2011090840A (ja) 有機el装置、有機el装置の製造方法、及び、有機el装置の製造装置
US10971572B2 (en) Flexible OLED panel for lighting device and method of manufacturing same
US20150200382A1 (en) Organic light-emitting diode and manufacturing method thereof
US8455792B2 (en) Laser irradiation apparatus and method of manufacturing display device using the same
KR20150145835A (ko) 디스플레이 장치의 열처리 장치 및 이를 이용한 열처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550324

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869762

Country of ref document: EP

Kind code of ref document: A1