WO2020070771A1 - 空気調和機、制御方法及び制御装置 - Google Patents

空気調和機、制御方法及び制御装置

Info

Publication number
WO2020070771A1
WO2020070771A1 PCT/JP2018/036693 JP2018036693W WO2020070771A1 WO 2020070771 A1 WO2020070771 A1 WO 2020070771A1 JP 2018036693 W JP2018036693 W JP 2018036693W WO 2020070771 A1 WO2020070771 A1 WO 2020070771A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
outlet
air conditioner
heat exchanger
air
Prior art date
Application number
PCT/JP2018/036693
Other languages
English (en)
French (fr)
Inventor
博史 森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/036693 priority Critical patent/WO2020070771A1/ja
Publication of WO2020070771A1 publication Critical patent/WO2020070771A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity

Definitions

  • the present invention relates to an air conditioner, a control method, and a control device.
  • an indoor unit having an upper outlet for cooling and a lower outlet for heating has been developed (for example, see Patent Document 1).
  • the upper fan provided between the heat exchanger and the upper outlet rotates to blow air for cooling from the upper outlet.
  • the occurrence of a so-called “cold pool” is suppressed.
  • the lower fan provided between the heat exchanger and the lower outlet rotates so that air for heating is blown out from the lower outlet. Thereby, the occurrence of a so-called “warm-up pool” is suppressed.
  • the present invention has been made to solve the above-described problems, and has an object to suppress the occurrence of reverse air inflow by these outlets in an indoor unit having an upper outlet and a lower outlet. I do.
  • the air conditioner of the present invention includes a heat exchanger, an outlet including an upper outlet provided above the heat exchanger and a lower outlet provided below the heat exchanger, a heat exchanger and an upper blower.
  • An upper fan provided between the outlets, a lower fan provided between the heat exchanger and the lower outlet, and one or more operation modes in which the air conditioner is a target for suppressing backflow of air by the outlet.
  • a control device that constantly rotates both the upper fan and the lower fan when operating in each of the above operation modes.
  • FIG. 2 is an explanatory diagram showing a state in which the indoor unit of the air conditioner according to Embodiment 1 is installed inside a building.
  • FIG. 2 is a cross-sectional view illustrating a main part of the indoor unit of the air conditioner according to Embodiment 1.
  • FIG. 3A is a block diagram illustrating a hardware configuration of a control device for an air conditioner according to Embodiment 1.
  • FIG. 3B is a block diagram showing another hardware configuration of the control device for the air conditioner according to Embodiment 1.
  • FIG. 3 is an explanatory diagram illustrating an example of air to be sucked in and air to be blown out in the indoor unit of the air conditioner according to Embodiment 1.
  • FIG. 1 is an explanatory diagram showing a state in which the indoor unit of the air conditioner according to Embodiment 1 is installed inside a building.
  • FIG. 2 is a cross-sectional view illustrating a main part of the indoor unit of the air conditioner according to Embodiment 1.
  • FIG. 4 is an explanatory diagram showing another example of the air to be sucked in and the air to be blown out in the indoor unit of the air conditioner according to Embodiment 1.
  • FIG. 4 is an explanatory diagram showing another example of the air to be sucked in and the air to be blown out in the indoor unit of the air conditioner according to Embodiment 1.
  • FIG. 1 is an explanatory diagram illustrating a state in which an indoor unit of an air conditioner according to Embodiment 1 is installed in a room of a building.
  • FIG. 2 is a cross-sectional view illustrating a main part of the indoor unit of the air conditioner according to Embodiment 1. With reference to FIG. 1 and FIG. 2, an air conditioner 100 according to Embodiment 1 will be described focusing on an indoor unit 200.
  • the air conditioner 100 has an outdoor unit that can be installed outside the building.
  • the air conditioner 100 has an indoor unit 200 that can be installed in the room of the building.
  • the indoor unit 200 is attached to the wall W of the building.
  • a back plate 2 is provided along the back portion of the housing 1 of the indoor unit 200, and the back plate 2 is in contact with the wall W.
  • the installation height of the indoor unit 200 is, for example, an intermediate height between the floor and the ceiling.
  • the indoor unit 200 has a vertically long outer shape.
  • the housing 1 has a substantially quadrangular prism shape.
  • the upper end of the housing 1 upper air outlet 3 1 is provided in, and the lower outlet 3 2 is provided at the lower end of the housing 1.
  • Each of the upper air outlet 3 1 and the lower outlet 3 2 the front direction of the indoor 200, and is open to at least one direction of left or right.
  • each of the upper air outlet 3 1 and the lower outlet 3 2 is open to the front direction of the indoor 200.
  • collectively upper outlet 3 1 and the lower outlet 3 2 may be referred to as "outlet”.
  • Inlet 4 is provided between the upper air outlet 3 1 and a lower outlet 3 2 of the housing 1.
  • the suction port 4 is open in at least one of the front, left, and right directions of the indoor unit 200. In the example shown in FIGS. 1 and 2, the suction port 4 is open in the front direction of the indoor unit 200.
  • a dust filter 5 is provided along the opening surface of the suction port 4.
  • a heat exchanger (hereinafter, sometimes referred to as an “indoor heat exchanger”) 6 is housed in the housing 1.
  • the indoor heat exchanger 6 is configured by a so-called “fin and tube type” heat exchanger. That is, the indoor heat exchanger 6 has a plurality of substantially plate-shaped fins 7 stacked at predetermined intervals.
  • the indoor heat exchanger 6 has at least one refrigerant pipe 8 thermally connected to these fins 7.
  • the outdoor unit has a heat exchanger similar to the indoor heat exchanger 6 (hereinafter, referred to as “outdoor heat exchanger”).
  • the refrigerant pipe 8 of the indoor heat exchanger 6 communicates with the refrigerant pipe of the outdoor heat exchanger through a refrigerant pipe 9.
  • the refrigerant pipe 9 penetrates through the rear part of the housing 1, the rear plate 2, and the wall W. These refrigerant tubes allow the refrigerant to flow through the tubes.
  • the outdoor unit has a compressor for the refrigerant, an expansion valve for the refrigerant, a fan for the outdoor heat exchanger (hereinafter, referred to as an “outdoor fan”), and the like.
  • the indoor heat exchanger 6 is provided such that the individual fins 7 extend along the longitudinal direction (that is, the vertical direction) of the indoor unit 200. More specifically, the indoor heat exchanger 6 is configured such that the plate surfaces of the individual fins 7 are parallel to the plate surface of the back plate 2 (that is, parallel to the wall surface of the wall W). Is provided.
  • a drain pan 10 is provided below the indoor heat exchanger 6 inside the housing 1. The concave portion of the drain pan 10 communicates with an outdoor space by a drain pipe 11. The drain pipe 11 penetrates through the rear part of the housing 1, the rear plate 2, and the wall W.
  • the upper air outlet 3 is disposed above the central portion of the indoor heat exchanger 6.
  • the upper air outlet 3 1 above the upper end portion of the indoor heat exchanger 6 is disposed.
  • Upper fan 13 1 is provided in the air flow path 12 in one.
  • the lower outlet 3 2 at least, are disposed below the central portion of the indoor heat exchanger 6.
  • the lower outlet 3 2 lower than the lower end portion of the indoor heat exchanger 6 is disposed.
  • Lower fan 13 2 is provided in the air flow path 12 in 2.
  • each of the upper fan 13 1 and the lower fan 13 2 is constituted by a propeller fan.
  • Upper fan 13 1, for example, and rotates by the upper fan 13 1 a motor is provided integrally (hereinafter referred to as "upper fan motor”.).
  • upper fan 13 1 and the lower fan 13 2 may be referred to as "indoor fan”.
  • the indoor unit 200 is provided with a control device (hereinafter sometimes referred to as “indoor control device”) 14, and the outdoor unit is provided with another control device (hereinafter referred to as “outdoor control device”). .
  • the indoor control device 14 controls the operation of the indoor fan 13 and the like.
  • the outdoor control device controls operations of a compressor, an expansion valve, an outdoor fan, and the like. That is, the operation of the air conditioner 100 is controlled by cooperation between the indoor control device 14 and the outdoor control device.
  • the indoor controller 14 is capable of controlling the amount of current supplied to the upper fan motor and the amount of current supplied to the lower fan motor independently of each other.
  • the indoor control unit 14 is freely control the rotational speed of the upper fan 13 1 rpm and the lower fan 13 2 independently of each other. A specific example of the control of the rotation speed of the indoor fan 13 by the indoor control device 14 will be described later with reference to FIGS.
  • the main part of the air conditioner 100 is thus configured.
  • a processor 22 and a memory 23 are mounted on a control board 21.
  • the memory 23 stores a program for realizing the function of the indoor control device 14.
  • the function of the indoor control device 14 is realized by the processor 22 reading and executing the program stored in the memory 23.
  • the processing circuit 24 is mounted on the control board 21.
  • the function of the indoor control device 14 is realized by the dedicated processing circuit 24.
  • the processor 22, the memory 23, and the processing circuit 24 are mounted on the control board 21 (not shown). In this case, some of the functions of the indoor control device 14 are realized by the processor 22 and the memory 23, and the remaining functions are realized by the dedicated processing circuit 24.
  • the processor 22 uses, for example, at least one of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the memory 23 uses, for example, at least one of a semiconductor memory and a magnetic disk. More specifically, the memory 23 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Read Only Memory, EEPROM, and an Electronic Memory Card). At least one of State @ Drive or HDD (Hard @ Disk @ Drive) is used.
  • the processing circuit 24 includes, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), and a SoC (Sig-Lag-Sig-Leg-Site-Ligger-Site-Legacy-Sig-Site-Legacy-Sig-Site-Legacy-Sig-System-Sig-Site-Legacy-Sig-Site-Legacy-Sig-System). At least one of them is used.
  • the hardware configuration of the main part of the outdoor control device is the same as the hardware configuration of the main part of the indoor control device 14. Therefore, illustration and description of the hardware configuration of the main part of the outdoor control device are omitted.
  • the air conditioner 100 has a plurality of operation modes, and an operation of the indoor control device 14 in each of the plurality of operation modes will be mainly described.
  • the compressor and the like include a compressor, an expansion valve, an outdoor fan, and the like.
  • FIG. 4 to FIG. 6 a plurality of arrows A1 indicated by broken lines indicate air sucked in by the suction port 4.
  • Arrow A2 of one by the solid line shows the air blown by the upper air outlet 3 1.
  • Arrow A3 of the other one by the solid line shows the air blown by the lower outlet 3 2.
  • the reference numerals of the respective units of the indoor unit 200 are omitted.
  • the air conditioner 100 has a cooling operation mode. Since the operation of the compressor and the like in the cooling operation mode is the same as that of the known operation, detailed description is omitted.
  • Indoor control unit 14 when the air conditioner 100 is operating with the cooling operation mode, always rotate both upper fans 13 1 and the lower fan 13 2. At this time, the indoor control unit 14 rotates at higher than the upper fan 13 1 under the fan 13 2 rpm. Thus, as shown in FIG. 4, with the majority of the air cooled by the indoor heat exchanger 6 is blown from the upper air outlet 3 1, the portion of the cooled air is lower outlet 3 It is blown out from 2 . Consequently, it is the well can be cooling the room, it is possible to suppress the generation of cold air reservoir, and it is possible to suppress the occurrence of air reverse flows by lower outlet 3 2.
  • the air conditioner 100 has a heating operation mode.
  • the operation of the compressor and the like in the heating operation mode is the same as that of the known operation, and thus a detailed description is omitted.
  • Indoor control unit 14 when the air conditioner 100 is operating with the heating operation mode, always rotate both upper fans 13 1 and the lower fan 13 2. At this time, the indoor control unit 14 rotates at a high rotational speed than the lower fan 13 2 upwardly fan 13 1. Thus, as shown in FIG. 6, with the majority of the air warmed by the indoor heat exchanger 6 is blown from the lower outlet 3 2, the portion of the heated air is upwardly outlet 3 Squirted from one . As a result, to a course can be heating indoor, it is possible to suppress the occurrence of hot air reservoir, and it is possible to suppress the occurrence of air reverse flows by upper air outlet 3 1.
  • the air conditioner 100 has a circulation operation mode.
  • the operation of the compressor and the like in the circulation operation mode may be the same as the operation of the compressor and the like in the cooling operation mode, or may be the same as the operation of the compressor and the like in the heating operation mode. .
  • the operation of the compressor or the like may be stopped.
  • Indoor control unit 14 when the air conditioner 100 is operating with circulation operation mode, always rotate both upper fans 13 1 and the lower fan 13 2. At this time, the indoor control unit 14, a state where the upper fan 13 1 is rotated at a high rotational speed than the lower fan 13 2 (hereinafter referred to as "first rotation state”.) And the upper fan 13 1 and the lower fan 13 state 2 rotates equivalent rotational speed at each other (hereinafter referred to as "second rotation state”.) and the state of rotating (hereinafter in lower fan 13 2 is higher than the upper fan 13 1 rpm " 3rd rotation state). Accordingly, it is possible to stir the indoor air, and also to suppress the occurrence of the reverse inflow of air by the outlet 3.
  • first rotation state a state where the upper fan 13 1 is rotated at a high rotational speed than the lower fan 13 2
  • second rotation state the upper fan 13 1 and the lower fan 13 state 2 rotates equivalent rotational speed at each other
  • the state of rotating hereinafter in lower fan 13 2 is higher than the upper fan 13 1
  • the indoor control device 14 switches the rotation state in the order of the first rotation state ⁇ the second rotation state ⁇ the third rotation state ⁇ the second rotation state ⁇ the first rotation state ⁇ .
  • the duration T1 of each first rotation state may be a constant value or a variable value.
  • the duration T2 of each second rotation state may be a constant value or a variable value.
  • the duration T3 of each third rotation state may be a constant value or a variable value.
  • T1 and T2 may be equivalent to each other, or may be different from each other.
  • T1 and T3 may be equivalent to each other, or may be different from each other.
  • T2 and T3 may be equivalent to each other, or may be different from each other.
  • the air conditioner 100 has a blowing operation mode.
  • the air conditioner 100 is operating in the blowing operation mode, the operation of the compressor and the like is stopped.
  • Indoor control unit 14 when the air conditioner 100 is operating with the air blowing operation mode, always rotate both upper fans 13 1 and the lower fan 13 2. At this time, the indoor control unit 14, for example, to rotate the upper fan 13 1 and the lower fan 13 2 equivalent rotational speed at each other. Thus, as shown in FIG. 5, the air is blown out at an equivalent air volume to each other from the upper outlet 3 1 and the lower outlet 3 2. As a result, not only can air be blown into the room, but also the occurrence of reverse air inflow by the outlet 3 can be suppressed.
  • the indoor control unit 14, when the air conditioner 100 is operating with the air blowing operation mode may be one that rotates at higher than the upper fan 13 1 under the fan 13 2 rpm .
  • the indoor control unit 14, when the air conditioner 100 is operating with the air blowing operation mode may be one that rotates at higher than the lower fan 13 2 upwardly fan 13 1 rpm . Even in these cases, air can be blown into the room and the occurrence of reverse air inflow by the outlet 3 can be suppressed.
  • the air conditioner 100 has a cooling operation mode that is weaker than the above-described cooling operation mode (hereinafter, sometimes referred to as “normal cooling operation mode”) (hereinafter, referred to as “weak cooling operation mode”). doing.
  • the air conditioner 100 has a heating operation mode that is weaker than the above-described heating operation mode (hereinafter, sometimes referred to as “normal heating operation mode”) (hereinafter, referred to as “weak heating operation mode”). I have.
  • the air conditioner 100 is, for example, when the operation mode is set to “cooling” and the air volume is set to “automatic”, and when the detected temperature approaches the set temperature due to a decrease in the indoor temperature, The mode is automatically switched from the normal cooling operation mode to the weak cooling operation mode. Thereby, the occurrence of so-called "super cooling” can be suppressed. This is the same, for example, when the operation mode is set to “automatic”.
  • the air conditioner 100 is, for example, when the operation mode is set to “heating” and the air volume is set to “automatic”, and when the detected temperature approaches the set temperature due to an increase in the indoor temperature, The mode is automatically switched from the normal heating operation mode to the weak heating operation mode. Thereby, the occurrence of so-called “overheating” can be suppressed. This is the same, for example, when the operation mode is set to “automatic”.
  • Indoor control unit 14 when the air conditioner 100 is operating with the weak cooling operation mode, always rotate both upper fans 13 1 and the lower fan 13 2. At this time, the indoor control unit 14, for example, to rotate the upper fan 13 1 and the lower fan 13 2 equivalent rotational speed at each other. Thus, as shown in FIG. 5, the air is blown out at an equivalent air volume to each other from the upper outlet 3 1 and the lower outlet 3 2.
  • the rotation speed of the indoor fan 13 in the weak cooling operation mode is set to a lower value than the rotational speed of the upper fan 13 1 in the normal cooling operation mode. As a result, it is possible to suppress not only the occurrence of the supercooling but also the occurrence of the reverse inflow of the air by the outlet 3.
  • Indoor control unit 14 when the air conditioner 100 is operating with a weak heating operation mode, always rotate both upper fans 13 1 and the lower fan 13 2. At this time, the indoor control unit 14, for example, to rotate the upper fan 13 1 and the lower fan 13 2 equivalent rotational speed at each other. Thus, as shown in FIG. 5, the air is blown out at an equivalent air volume to each other from the upper outlet 3 1 and the lower outlet 3 2.
  • the rotation speed of the indoor fan 13 in the weak heating operation mode is set to a lower value than the rotational speed of the lower fan 13 2 in the normal heating operation mode.
  • the indoor control unit 14 when the air conditioner 100 is operating with the weak cooling operation mode, even if the rotating at higher than the upper fan 13 1 under the fan 13 2 rpm good.
  • it may be one that is set to a lower value than the rotational speed of the lower fan 13 2 rpm for the lower fan 13 2 in the normal heating operation mode in the weak heating operation mode. Even in this case, the occurrence of overheating can be suppressed, and the occurrence of reverse air inflow by the outlet 3 can be suppressed.
  • the air blowing operation mode, the weak cooling operation mode, and the weak heating operation mode are intermediate between a temperature zone suitable for cooling (so-called “cooling temperature zone”) and a temperature zone suitable for heating (so-called “heating temperature zone”). It is also an operation mode suitable for the temperature zone (so-called “intermediate temperature zone”).
  • these operation modes may be collectively referred to as “operation mode for the intermediate temperature zone”.
  • the air conditioner 100 has a dehumidification operation mode. More specifically, the air conditioner 100 has at least one of a weak cooling dehumidification operation mode and a reheat dehumidification operation mode.
  • the operation of the compressor and the like in the weak cooling and dehumidifying operation mode is the same as that of the known operation, and thus the detailed description is omitted.
  • the operation of the compressor and the like in the reheat dehumidification operation mode is the same as that of the known operation, and therefore, detailed description is omitted.
  • Indoor control unit 14 when the air conditioner 100 is operating with the dehumidifying operation mode, always rotate both upper fans 13 1 and the lower fan 13 2. At this time, the indoor control unit 14, for example, to rotate the upper fan 13 1 and the lower fan 13 2 equivalent rotational speed at each other. Thus, as shown in FIG. 5, the air is blown out at an equivalent air volume to each other from the upper outlet 3 1 and the lower outlet 3 2. As a result, not only can the interior of the room be dehumidified, but also the occurrence of reverse air inflow by the outlet 3 can be suppressed.
  • the indoor control unit 14 when the air conditioner 100 is operating with a weak cooling and dehumidifying operation mode, there is intended to rotate at higher than the upper fan 13 1 under the fan 13 2 rpm Is also good. Even in this case, the interior of the room can be dehumidified, and the occurrence of reverse air inflow by the outlet 3 can be suppressed.
  • the second rotation state in the circulation operation mode may be a state where the upper fan 13 1 and the lower fan 13 2 is rotated at a substantially equal rotational speed to each other.
  • Indoor control unit 14, when the air conditioner 100 is operating with the dehumidifying operation mode may be one that rotates the upper fan 13 1 and the lower fan 13 2 at substantially the same rotational speed with each other.
  • the air conditioner 100 only needs to have a plurality of operation modes, and the plurality of operation modes are not limited to the above specific examples.
  • Indoor control unit 14, when the air conditioner 100 is operating with the operating modes of the remaining one of the plurality of operation mode means to stop the rotation of both the upper fan 13 1 and the lower fan 13 2 may even, or upper fan 13 may be one or either one of the lower fan 13 2 to rotate.
  • the air conditioner 100 has a plurality of operation modes
  • all the operation modes among the plurality of operation modes are set as targets for suppressing the reverse air inflow by the outlet 3.
  • a part of the plurality of operation modes may be set as a target for suppressing the reverse inflow of air by the outlet 3.
  • the air conditioner 100 has a cooling operation mode and a heating operation mode. Due height or installation environment installation of the indoor unit 200, although the amount of intrusion dust with air reverse flowed from the upper outlet 3 1 is small, there are many of intrusion dust with air reverse flowed from the lower outlet 3 2 And
  • the indoor control unit 14, together with constantly rotating both of the upper fan 13 1 and the lower fan 13 2 when the air conditioner 100 is operating with the cooling operation mode the air conditioner 100 is in the heating operation mode or it may be to stop the rotation of the upper fan 13 1 when operating Te.
  • the air conditioner 100 has a cooling operation mode and a heating operation mode. Due height or installation environment installation of the indoor unit 200, although the amount of intrusion dust with air reverse flowed from the lower outlet 3 2 is small, as the amount of intrusion dust with air reverse flowed from the upper outlet 3 1 often And
  • the indoor control unit 14 together with constantly rotating both of the upper fan 13 1 and the lower fan 13 2 when the air conditioner 100 is operating with the heating operation mode, the air conditioner 100 is in the cooling operation mode or it may be to stop the rotation of the lower fan 13 2 when operating Te.
  • the indoor control unit 14 together with constantly rotating both of the upper fan 13 1 and the lower fan 13 2 when the air conditioner 100 is operating with the heating operation mode, the air conditioner 100 is in the cooling operation mode or it may be to stop the rotation of the lower fan 13 2 when operating Te.
  • the indoor control unit 14 when the air conditioner 100 is operating, regardless of the operation mode of the air conditioner 100, and more suitably rotate both the upper fan 13 1 and the lower fan 13 2 always is there.
  • the outer shape of the indoor unit 200 is only required to be vertically long, and is not limited to a substantially quadrangular prism shape.
  • the outer shape of the indoor unit 200 may be substantially cylindrical.
  • each of the upper fan 13 1 and the lower fan 13 2 is not intended to be limited to the propeller fan, also not limited to the axial flow fan.
  • Each of the upper fan 13 1 and the lower fan 13 2, for example, Yaryu fans may be one using a mixed flow fan or cross-flow fan.
  • the air conditioner 100 includes a heat exchanger 6, is provided below with respect to the upper air outlet 3 1 and the heat exchanger 6 provided above with respect to the heat exchanger 6 below the outlet 3 comprising outlet 3 2, heat exchanger 6 and an upper air outlet 3 as the upper fan 13 1 provided between the 1, below provided between the heat exchanger 6 and a lower outlet 3 2 fan 13 2, when the air conditioner 100 is operating with the operating mode of the one or more operation mode in which a suppression target air backward inflow by blow-out port 3, the upper fan 13 1 and the lower fan 13 2
  • An indoor unit 200 having a control device 14 that constantly rotates both of them is provided.
  • the indoor unit 200 having an upper outlet 3 1 and the lower outlet 3 2, it is possible to suppress the generation of air backward inflow from these air outlet 3. Further, since the occurrence of the reverse inflow is suppressed by the rotation of the indoor fan 13, a special mechanism for suppressing the occurrence of the reverse inflow is not required. Thereby, it is possible to avoid an increase in the number of parts of the indoor unit 200 and to avoid complication of the structure of the indoor unit 200. As a result, an increase in the manufacturing cost of the indoor unit 200 can be avoided.
  • one or more operation modes including a heating operation mode the control unit 14, when the air conditioner 100 is operating with the heating operation mode, higher than the lower fan 13 2 upwardly fan 13 1 Rotate at the number of rotations.
  • a heating operation mode the control unit 14, when the air conditioner 100 is operating with the heating operation mode, higher than the lower fan 13 2 upwardly fan 13 1 Rotate at the number of rotations.
  • the controller 14 By rotating both the upper fan 13 1 and the lower fan 13 2 always in the blowing operation mode, a matter of course can be blown into the room, it is possible to suppress the generation of air backward inflow by the blow-out port 3 .
  • By rotating constantly both upper fans 13 1 and the lower fan 13 2 in the weak cooling operation mode of course it can be possible to suppress the occurrence of overcooling, suppress the generation of air backward inflow by the blow-out port 3 can do.
  • By rotating both the upper fan 13 1 and the lower fan 13 2 always in the weak heating operation mode of course it can be possible to suppress the occurrence of excessive heating, suppress the generation of air backward inflow by the blow-out port 3 can do.
  • the control method according to the first embodiment includes a heat exchanger 6, the lower outlet 3 2 provided below with respect to the upper air outlet 3 1 and the heat exchanger 6 provided above with respect to the heat exchanger 6 It has an air outlet 3, the upper fan 13 1 provided between the heat exchanger 6 and an upper air outlet 3 1, and the lower fan 13 2 provided between the heat exchanger 6 and a lower outlet 3 2, a containing A control method for the air conditioner 100 including the indoor unit 200, wherein the air conditioner 100 operates in each operation mode among one or more operation modes targeted for suppressing reverse air inflow through the outlet 3. when and is intended to rotate both the upper fan 13 1 and the lower fan 13 2 at all times. Thereby, as described above, the occurrence of reverse air inflow by the outlet 3 can be suppressed.
  • the control device according to the first embodiment 14, the heat exchanger 6, the upper air outlet is provided above with respect to the heat exchanger 6 3 1 and lower blow-out opening disposed downwardly against the heat exchanger 6 3 2 the outlet 3 comprising an upper fan 13 1 provided between the heat exchanger 6 and an upper air outlet 3 1, and the lower fan 13 2 provided between the heat exchanger 6 and a lower outlet 3 2, the
  • the control device 14 for the air conditioner 100 including the indoor unit 200 having the air conditioner 100 in one or more operation modes of one or more operation modes in which the reverse air inflow by the outlet 3 is suppressed. when operating, it is intended to rotate both the upper fan 13 1 and the lower fan 13 2 at all times. Thereby, as described above, the occurrence of reverse air inflow by the outlet 3 can be suppressed.
  • any constituent element of the embodiment can be modified or any constituent element of the embodiment can be omitted.
  • the air conditioner of the present invention can be used, for example, for home air conditioners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和機(100)は、熱交換器(6)と、熱交換器(6)に対する上方に設けられた上方吹出口(3)及び熱交換器(6)に対する下方に設けられた下方吹出口(3)を含む吹出口(3)と、熱交換器(6)と上方吹出口(3)間に設けられた上方ファン(13)と、熱交換器(6)と下方吹出口(3)間に設けられた下方ファン(13)と、空気調和機(100)が吹出口(3)による空気逆流入の抑制対象となる1個以上の運転モードのうちの各運転モードにて動作しているとき、上方ファン(13)及び下方ファン(13)の両方を常時回転させる制御装置(14)と、を有する室内機(200)を備える。

Description

空気調和機、制御方法及び制御装置
 本発明は、空気調和機、制御方法及び制御装置に関する。
 従来、空気調和機において、冷房用の上方吹出口及び暖房用の下方吹出口を有する室内機が開発されている(例えば、特許文献1参照。)。冷房時は、熱交換器と上方吹出口間に設けられた上方ファンが回転することにより、上方吹出口から冷房用の空気が吹き出される。これにより、いわゆる「冷気だまり」の発生が抑制される。また、暖房時は、熱交換器と下方吹出口間に設けられた下方ファンが回転することにより、下方吹出口から暖房用の空気が吹き出される。これにより、いわゆる「暖気だまり」の発生が抑制される。
特公昭62-2224号公報
 従来の空気調和機においては、冷房中に下方ファンの回転が停止しているとき、下方吹出口から室内機の内部に空気が逆流入する問題があった。また、暖房中に上方ファンの回転が停止しているとき、上方吹出口から室内機の内部に空気が逆流入する問題があった。当該逆流入した空気に含まれる塵埃により、空気調和機の運転効率が低下したり、又は空気調和機が故障したりする問題があった。
 本発明は、上記のような課題を解決するためになされたものであり、上方吹出口及び下方吹出口を有する室内機において、これらの吹出口による空気逆流入の発生を抑制することを目的とする。
 本発明の空気調和機は、熱交換器と、熱交換器に対する上方に設けられた上方吹出口及び熱交換器に対する下方に設けられた下方吹出口を含む吹出口と、熱交換器と上方吹出口間に設けられた上方ファンと、熱交換器と下方吹出口間に設けられた下方ファンと、当該空気調和機が吹出口による空気逆流入の抑制対象となる1個以上の運転モードのうちの各運転モードにて動作しているとき、上方ファン及び下方ファンの両方を常時回転させる制御装置と、を有する室内機を備えるものである。
 本発明によれば、上記のように構成したので、上方吹出口及び下方吹出口を有する室内機において、これらの吹出口による空気逆流入の発生を抑制することができる。
実施の形態1に係る空気調和機の室内機が建物の室内に設置されている状態を示す説明図である。 実施の形態1に係る空気調和機の室内機の要部を示す断面図である。 図3Aは、実施の形態1に係る空気調和機用の制御装置のハードウェア構成を示すブロック図である。図3Bは、実施の形態1に係る空気調和機用の制御装置の他のハードウェア構成を示すブロック図である。 実施の形態1に係る空気調和機の室内機における、吸い込まれる空気及び吹き出される空気の例を示す説明図である。 実施の形態1に係る空気調和機の室内機における、吸い込まれる空気及び吹き出される空気の他の例を示す説明図である。 実施の形態1に係る空気調和機の室内機における、吸い込まれる空気及び吹き出される空気の他の例を示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る空気調和機の室内機が建物の室内に設置されている状態を示す説明図である。図2は、実施の形態1に係る空気調和機の室内機の要部を示す断面図である。図1及び図2を参照して、実施の形態1に係る空気調和機100について、室内機200を中心に説明する。
 空気調和機100は、建物の室外に設置自在な室外機を有している。また、空気調和機100は、当該建物の室内に設置自在な室内機200を有している。室内機200は、当該建物の壁Wに取り付けられるものである。図1及び図2に示す例においては、室内機200の筐体1の背面部に沿うように背面板2が設けられており、この背面板2が壁Wに当接している。室内機200の設置高さは、例えば、床と天井との中間程度の高さである。
 室内機200は縦長な外形を有している。図1及び図2に示す例においては、筐体1が略四角柱状の外形を有している。筐体1の上端部に上方吹出口3が設けられており、かつ、筐体1の下端部に下方吹出口3が設けられている。上方吹出口3及び下方吹出口3の各々は、室内機200における正面方向、左方向又は右方向のうちの少なくとも1方向に対して開口している。図1及び図2に示す例においては、上方吹出口3及び下方吹出口3の各々が室内機200における正面方向に対して開口している。以下、上方吹出口3及び下方吹出口3を総称して「吹出口」ということがある。
 筐体1における上方吹出口3と下方吹出口3間に吸込口4が設けられている。吸込口4は、室内機200における正面方向、左方向又は右方向のうちの少なくとも1方向に対して開口している。図1及び図2に示す例においては、吸込口4が室内機200における正面方向に対して開口している。吸込口4の開口面に沿うようにして、塵埃用のフィルタ5が設けられている。
 筐体1内に熱交換器(以下「室内熱交換器」ということがある。)6が収容されている。室内熱交換器6は、いわゆる「フィンアンドチューブ型」の熱交換器により構成されている。すなわち、室内熱交換器6は、所定間隔に積層された複数枚の略板状のフィン7を有している。また、室内熱交換器6は、これらのフィン7に対して熱的に接続された少なくとも1本の冷媒管8を有している。
 室外機は、室内熱交換器6と同様の熱交換器(以下「室外熱交換器」という。)を有している。室内熱交換器6の冷媒管8は、冷媒管9により、室外熱交換器の冷媒管と連通している。冷媒管9は、筐体1の背面部、背面板2及び壁Wを貫通している。これらの冷媒管は、その管内を冷媒が流れるようになっている。また、室外機は、冷媒用の圧縮機、冷媒用の膨張弁及び室外熱交換器用のファン(以下「室外ファン」という。)などを有している。
 室内熱交換器6は、個々のフィン7が室内機200の長手方向(すなわち上下方向)に沿うように設けられている。より具体的には、室内熱交換器6は、個々のフィン7の板面が背面板2の板面に対して平行となるように(すなわち壁Wの壁面に対して平行となるように)設けられている。また、筐体1の内部において、室内熱交換器6に対する下方に排水パン10が設けられている。排水パン10の凹部は、排水管11により、室外の空間と連通している。排水管11は、筐体1の背面部、背面板2及び壁Wを貫通している。
 これにより、室内熱交換器6に水滴が付着したとき、これらの水滴が個々のフィン7の板面に沿うように下方に移動する。室内熱交換器6の下端部に到達した水滴は、排水パン10に落下する。排水パン10の凹部に溜まった水は、排水管11により室外の空間に排出される。
 ここで、上方吹出口3は、少なくとも、室内熱交換器6の中央部よりも上方に配置されている。図1及び図2に示す例においては、室内熱交換器6の上端部よりも上方に上方吹出口3が配置されている。これにより、筐体1の内部において、室内熱交換器6と上方吹出口3間の空気流路12が形成されている。この空気流路12内に上方ファン13が設けられている。
 同様に、下方吹出口3は、少なくとも、室内熱交換器6の中央部よりも下方に配置されている。図1及び図2に示す例においては、室内熱交換器6の下端部よりも下方に下方吹出口3が配置されている。これにより、筐体1の内部において、室内熱交換器6と下方吹出口3間の空気流路12が形成されている。この空気流路12内に下方ファン13が設けられている。
 図1及び図2に示す例においては、上方ファン13及び下方ファン13の各々がプロペラファンにより構成されている。上方ファン13は、例えば、上方ファン13と一体に設けられたモータ(以下「上方ファンモータ」という。)により回転するものである。下方ファン13は、例えば、下方ファン13と一体に設けられた他のモータ(以下「下方ファンモータ」という。)により回転するものである。以下、上方ファン13及び下方ファン13を総称して「室内ファン」ということがある。
 室内機200に制御装置(以下「室内制御装置」ということがある。)14が設けられており、かつ、室外機に他の制御装置(以下「室外制御装置」という。)が設けられている。室内制御装置14は、室内ファン13などの動作を制御するものである。室外制御装置は、圧縮機、膨張弁及び室外ファンなどの動作を制御するものである。すなわち、空気調和機100の動作は、室内制御装置14と室外制御装置とが連携することにより制御されるものである。
 ここで、室内制御装置14は、上方ファンモータに対する通電量と下方ファンモータに対する通電量とを互いに独立して制御自在なものである。これにより、室内制御装置14は、上方ファン13の回転数と下方ファン13の回転数とを互いに独立して制御自在なものである。室内制御装置14による室内ファン13の回転数の制御の具体例については、図4~図6を参照して後述する。
 このようにして、空気調和機100の要部が構成されている。
 次に、図3を参照して、室内制御装置14の要部のハードウェア構成について説明する。
 図3Aに示す如く、制御基板21にプロセッサ22及びメモリ23が実装されている。メモリ23には、室内制御装置14の機能を実現するためのプログラムが記憶されている。メモリ23に記憶されたプログラムをプロセッサ22が読み出して実行することにより、室内制御装置14の機能が実現される。
 または、図3Bに示す如く、制御基板21に処理回路24が実装されている。この場合、室内制御装置14の機能が専用の処理回路24により実現される。
 または、制御基板21にプロセッサ22、メモリ23及び処理回路24が実装されている(不図示)。この場合、室内制御装置14の機能のうちの一部の機能がプロセッサ22及びメモリ23により実現されて、残余の機能が専用の処理回路24により実現される。
 プロセッサ22は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)のうちの少なくとも一つを用いたものである。
 メモリ23は、例えば、半導体メモリ又は磁気ディスクのうちの少なくとも一方を用いたものである。より具体的には、メモリ23は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、SSD(Solid State Drive)又はHDD(Hard Disk Drive)のうちの少なくとも一つを用いたものである。
 処理回路24は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)又はシステムLSI(Large-Scale Integration)のうちの少なくとも一つを用いたものである。
 なお、室外制御装置の要部のハードウェア構成は室内制御装置14の要部のハードウェア構成と同様である。このため、室外制御装置の要部のハードウェア構成については図示及び説明を省略する。
 次に、図4~図6を参照して、空気調和機100の動作について、室内機200の動作を中心に説明する。より具体的には、空気調和機100は複数個の運転モードを有しており、当該複数個の運転モードの各々における室内制御装置14の動作を中心に説明する。以下、室内制御装置14及び室外制御装置による制御対象に含まれる物のうちの室内ファン13を除く物を総称して「圧縮機等」ということがある。すなわち、圧縮機等は、圧縮機、膨張弁及び室外ファンなどを含むものである。
 図4~図6の各々において、破線による複数本の矢印A1は、吸込口4により吸い込まれる空気を示している。実線による1本の矢印A2は、上方吹出口3により吹き出される空気を示している。実線による他の1本の矢印A3は、下方吹出口3により吹き出される空気を示している。なお、図4~図6において、室内機200の各部の符号は図示を省略している。
 第一に、空気調和機100は冷房運転モードを有している。冷房運転モードにおける圧縮機等の動作は公知のものと同様であるため、詳細な説明は省略する。
 室内制御装置14は、空気調和機100が冷房運転モードにて動作しているとき、上方ファン13及び下方ファン13の両方を常時回転させる。このとき、室内制御装置14は、上方ファン13を下方ファン13に比して高い回転数にて回転させる。これにより、図4に示す如く、室内熱交換器6により冷却された空気のうちの大部分が上方吹出口3から吹き出されるとともに、当該冷却された空気のうちの一部分が下方吹出口3から吹き出される。この結果、室内を冷房することができるのはもちろんのこと、冷気だまりの発生を抑制することができ、かつ、下方吹出口3による空気逆流入の発生を抑制することができる。
 第二に、空気調和機100は暖房運転モードを有している。暖房運転モードにおける圧縮機等の動作は公知のものと同様であるため、詳細な説明は省略する。
 室内制御装置14は、空気調和機100が暖房運転モードにて動作しているとき、上方ファン13及び下方ファン13の両方を常時回転させる。このとき、室内制御装置14は、下方ファン13を上方ファン13に比して高い回転数にて回転させる。これにより、図6に示す如く、室内熱交換器6により暖められた空気のうちの大部分が下方吹出口3から吹き出されるとともに、当該暖められた空気のうちの一部分が上方吹出口3から吹き出される。この結果、室内を暖房することができるのはもちろんのこと、暖気だまりの発生を抑制することができ、かつ、上方吹出口3による空気逆流入の発生を抑制することができる。
 第三に、空気調和機100はサーキュレーション運転モードを有している。サーキュレーション運転モードにおける圧縮機等の動作は、冷房運転モードにおける圧縮機等の動作と同様のものであっても良く、又は暖房運転モードにおける圧縮機等の動作と同様のものであっても良い。または、サーキュレーション運転モードにおいては、圧縮機等の動作が停止するものであっても良い。
 室内制御装置14は、空気調和機100がサーキュレーション運転モードにて動作しているとき、上方ファン13及び下方ファン13の両方を常時回転させる。このとき、室内制御装置14は、上方ファン13が下方ファン13に比して高い回転数にて回転する状態(以下「第1回転状態」という。)と、上方ファン13及び下方ファン13が互いに同等の回転数にて回転する状態(以下「第2回転状態」という。)と、下方ファン13が上方ファン13に比して高い回転数にて回転する状態(以下「第3回転状態」という。)とを時間的に交互に切り替える。これにより、室内の空気を攪拌することができるのはもちろんのこと、吹出口3による空気逆流入の発生を抑制することができる。
 具体的には、例えば、室内制御装置14は、第1回転状態→第2回転状態→第3回転状態→第2回転状態→第1回転状態→……の順に回転状態を切り替える。各回の第1回転状態の継続時間T1は、一定値であっても良く、又は可変値であっても良い。各回の第2回転状態の継続時間T2は、一定値であっても良く、又は可変値であっても良い。各回の第3回転状態の継続時間T3は、一定値であっても良く、又は可変値であっても良い。T1とT2は、互いに同等の値であっても良く、又は互いに異なる値であっても良い。T1とT3は、互いに同等の値であっても良く、又は互いに異なる値であっても良い。T2とT3は、互いに同等の値であっても良く、又は互いに異なる値であっても良い。
 第四に、空気調和機100は送風運転モードを有している。空気調和機100が送風運転モードにて動作しているとき、圧縮機等の動作は停止している。
 室内制御装置14は、空気調和機100が送風運転モードにて動作しているとき、上方ファン13及び下方ファン13の両方を常時回転させる。このとき、室内制御装置14は、例えば、上方ファン13及び下方ファン13を互いに同等の回転数にて回転させる。これにより、図5に示す如く、上方吹出口3及び下方吹出口3から互いに同等の風量にて空気が吹き出される。この結果、室内に送風することができるのはもちろんのこと、吹出口3による空気逆流入の発生を抑制することができる。
 なお、室内制御装置14は、空気調和機100が送風運転モードにて動作しているとき、上方ファン13を下方ファン13に比して高い回転数にて回転させるものであっても良い。または、室内制御装置14は、空気調和機100が送風運転モードにて動作しているとき、下方ファン13を上方ファン13に比して高い回転数にて回転させるものであっても良い。これらの場合であっても、室内に送風することができ、かつ、吹出口3による空気逆流入の発生を抑制することができる。
 第五に、空気調和機100は、上記冷房運転モード(以下「通常の冷房運転モード」ということがある。)に比して弱い冷房運転モード(以下「弱冷房運転モード」という。)を有している。また、空気調和機100は、上記暖房運転モード(以下「通常の暖房運転モード」ということがある。)に比して弱い暖房運転モード(以下「弱暖房運転モード」という。)を有している。
 空気調和機100は、例えば、運転モードが「冷房」に設定されており、かつ、風量が「自動」に設定されている場合において、室内温度の低下により検出温度が設定温度に近づいたとき、通常の冷房運転モードから弱冷房運転モードに自動的に切り替わるようになっている。これにより、いわゆる「過冷房」の発生を抑制することができる。これは、例えば、運転モードが「自動」に設定されている場合も同様である。
 空気調和機100は、例えば、運転モードが「暖房」に設定されており、かつ、風量が「自動」に設定されている場合において、室内温度の上昇により検出温度が設定温度に近づいたとき、通常の暖房運転モードから弱暖房運転モードに自動的に切り替わるようになっている。これにより、いわゆる「過暖房」の発生を抑制することができる。これは、例えば、運転モードが「自動」に設定されている場合も同様である。
 弱冷房運転モードにおける圧縮機等の動作は公知のものと同様であるため、詳細な説明は省略する。弱暖房運転モードにおける圧縮機等の動作は公知のものと同様であるため、詳細な説明は省略する。
 室内制御装置14は、空気調和機100が弱冷房運転モードにて動作しているとき、上方ファン13及び下方ファン13の両方を常時回転させる。このとき、室内制御装置14は、例えば、上方ファン13及び下方ファン13を互いに同等の回転数にて回転させる。これにより、図5に示す如く、上方吹出口3及び下方吹出口3から互いに同等の風量にて空気が吹き出される。ここで、弱冷房運転モードにおける室内ファン13の回転数は、通常の冷房運転モードにおける上方ファン13の回転数に比して低い値に設定されている。この結果、過冷房の発生を抑制することができるのはもちろんのこと、吹出口3による空気逆流入の発生を抑制することができる。
 室内制御装置14は、空気調和機100が弱暖房運転モードにて動作しているとき、上方ファン13及び下方ファン13の両方を常時回転させる。このとき、室内制御装置14は、例えば、上方ファン13及び下方ファン13を互いに同等の回転数にて回転させる。これにより、図5に示す如く、上方吹出口3及び下方吹出口3から互いに同等の風量にて空気が吹き出される。ここで、弱暖房運転モードにおける室内ファン13の回転数は、通常の暖房運転モードにおける下方ファン13の回転数に比して低い値に設定されている。この結果、過暖房の発生を抑制することができるのはもちろんのこと、吹出口3による空気逆流入の発生を抑制することができる。
 なお、室内制御装置14は、空気調和機100が弱冷房運転モードにて動作しているとき、上方ファン13を下方ファン13に比して高い回転数にて回転させるものであっても良い。この場合、弱冷房運転モードにおける上方ファン13の回転数が通常の冷房運転モードにおける上方ファン13の回転数に比して低い値に設定されているものであっても良い。この場合であっても、過冷房の発生を抑制することができ、かつ、吹出口3による空気逆流入の発生を抑制することができる。
 また、室内制御装置14は、空気調和機100が弱暖房運転モードにて動作しているとき、下方ファン13を上方ファン13に比して高い回転数にて回転させるものであっても良い。この場合、弱暖房運転モードにおける下方ファン13の回転数が通常の暖房運転モードにおける下方ファン13の回転数に比して低い値に設定されているものであっても良い。この場合であっても、過暖房の発生を抑制することができ、かつ、吹出口3による空気逆流入の発生を抑制することができる。
 ここで、送風運転モード、弱冷房運転モード及び弱暖房運転モードは、冷房に適した温度帯(いわゆる「冷房温度帯」)と暖房に適した温度帯(いわゆる「暖房温度帯」)との中間の温度帯(いわゆる「中間温度帯」)に適した運転モードでもある。以下、これらの運転モードを総称して「中間温度帯用の運転モード」ということがある。
 第六に、空気調和機100は除湿運転モードを有している。より具体的には、空気調和機100は弱冷房除湿運転モード又は再熱除湿運転モードのうちの少なくとも一方を有している。弱冷房除湿運転モードにおける圧縮機等の動作は公知のものと同様であるため、詳細な説明は省略する。再熱除湿運転モードにおける圧縮機等の動作は公知のものと同様であるため、詳細な説明は省略する。
 室内制御装置14は、空気調和機100が除湿運転モードにて動作しているとき、上方ファン13及び下方ファン13の両方を常時回転させる。このとき、室内制御装置14は、例えば、上方ファン13及び下方ファン13を互いに同等の回転数にて回転させる。これにより、図5に示す如く、上方吹出口3及び下方吹出口3から互いに同等の風量にて空気が吹き出される。この結果、室内を除湿することができるのはもちろんのこと、吹出口3による空気逆流入の発生を抑制することができる。
 なお、室内制御装置14は、空気調和機100が弱冷房除湿運転モードにて動作しているとき、上方ファン13を下方ファン13に比して高い回転数にて回転させるものであっても良い。この場合であっても、室内を除湿することができ、かつ、吹出口3による空気逆流入の発生を抑制することができる。
 また、室内制御装置14は、空気調和機100が再熱除湿運転モードにて動作しているとき、上方ファン13を下方ファン13に比して高い回転数にて回転させるものであっても良い。または、室内制御装置14は、空気調和機100が再熱除湿運転モードにて動作しているとき、下方ファン13を上方ファン13に比して高い回転数にて回転させるものであっても良い。これらの場合であっても、室内を除湿することができ、かつ、吹出口3による空気逆流入の発生を抑制することができる。
 なお、サーキュレーション運転モードにおける第2回転状態は、上方ファン13及び下方ファン13が互いに略同等の回転数にて回転する状態であっても良い。室内制御装置14は、空気調和機100が中間温度帯用の運転モードにて動作しているとき、上方ファン13及び下方ファン13を互いに略同等の回転数にて回転させるものであっても良い。室内制御装置14は、空気調和機100が除湿運転モードにて動作しているとき、上方ファン13及び下方ファン13を互いに略同等の回転数にて回転させるものであっても良い。
 すなわち、本願の請求の範囲に記載された「互いに同等の回転数」の用語の意義は、上方ファン13の回転数と下方ファン13の回転数とが互いに完全に同等な態様に限定されるものではない。当該用語の意義は、これらの回転数が互いに略同等な態様も包含するものである。
 また、空気調和機100は複数個の運転モードを有するものであれば良く、当該複数個の運転モードは上記の具体例に限定されるものではない。また、室内制御装置14は、空気調和機100が当該複数個の運転モードのうちの一部の運転モードにて動作しているとき、上方ファン13及び下方ファン13の両方を常時回転させるものであっても良い。室内制御装置14は、空気調和機100が当該複数個の運転モードのうちの残余の運転モードにて動作しているとき、上方ファン13及び下方ファン13の両方の回転を停止させるものであっても良く、又は上方ファン13若しくは下方ファン13のうちのいずれか一方を回転させるものであっても良い。
 すなわち、空気調和機100が複数個の運転モードを有するものであるところ、当該複数個の運転モードのうちの全ての運転モードが吹出口3による空気逆流入の抑制対象に設定されているものであっても良く、又は当該複数個の運転モードのうちの一部の運転モードが吹出口3による空気逆流入の抑制対象に設定されているものであっても良い。換言すれば、当該複数個の運転モードのうちの1個以上の運転モードが吹出口3による空気逆流入の抑制対象に設定されているものであれば良い。
 例えば、空気調和機100が冷房運転モード及び暖房運転モードを有しているものとする。室内機200の設置高さ又は設置環境などにより、上方吹出口3からの空気逆流入による塵埃の侵入量が少ないものの、下方吹出口3からの空気逆流入による塵埃の侵入量が多いものとする。この場合、室内制御装置14は、空気調和機100が冷房運転モードにて動作しているとき上方ファン13及び下方ファン13の両方を常時回転させるとともに、空気調和機100が暖房運転モードにて動作しているとき上方ファン13の回転を停止させるものであっても良い。これにより、下方吹出口3による空気逆流入の発生を抑制することができ、かつ、暖房時の消費電力を低減することができる。
 同様に、例えば、空気調和機100が冷房運転モード及び暖房運転モードを有しているものとする。室内機200の設置高さ又は設置環境などにより、下方吹出口3からの空気逆流入による塵埃の侵入量が少ないものの、上方吹出口3からの空気逆流入による塵埃の侵入量が多いものとする。この場合、室内制御装置14は、空気調和機100が暖房運転モードにて動作しているとき上方ファン13及び下方ファン13の両方を常時回転させるとともに、空気調和機100が冷房運転モードにて動作しているとき下方ファン13の回転を停止させるものであっても良い。これにより、上方吹出口3による空気逆流入の発生を抑制することができ、かつ、冷房時の消費電力を低減することができる。
 ただし、空気調和機100の動作中における吹出口3による空気逆流入の発生をより確実に防ぐ観点から、全ての運転モードが吹出口3による空気逆流入の抑制対象に設定されているのがより好適である。すなわち、室内制御装置14は、空気調和機100が動作しているとき、空気調和機100の運転モードにかかわらず、上方ファン13及び下方ファン13の両方を常時回転させるのがより好適である。
 また、室内機200の外形は縦長であれば良く、略四角柱状に限定されるものではない。例えば、室内機200の外形は略円柱状であっても良い。
 また、上方ファン13及び下方ファン13の各々はプロペラファンに限定されるものではなく、軸流ファンに限定されるものでもない。上方ファン13及び下方ファン13の各々は、例えば、輻流ファン、斜流ファン又は横断流ファンを用いたものであっても良い。
 以上のように、実施の形態1に係る空気調和機100は、熱交換器6と、熱交換器6に対する上方に設けられた上方吹出口3及び熱交換器6に対する下方に設けられた下方吹出口3を含む吹出口3と、熱交換器6と上方吹出口3間に設けられた上方ファン13と、熱交換器6と下方吹出口3間に設けられた下方ファン13と、空気調和機100が吹出口3による空気逆流入の抑制対象となる1個以上の運転モードのうちの各運転モードにて動作しているとき、上方ファン13及び下方ファン13の両方を常時回転させる制御装置14と、を有する室内機200を備える。これにより、上方吹出口3及び下方吹出口3を有する室内機200において、これらの吹出口3による空気逆流入の発生を抑制することができる。また、室内ファン13の回転により当該逆流入の発生を抑制するものであるため、当該逆流入の発生を抑制するための専用の機構などが不要である。これにより、室内機200の部品点数の増加を回避することができ、かつ、室内機200の構造の複雑化を回避することができる。この結果、室内機200の製造コストの増加を回避することができる。
 また、1個以上の運転モードは冷房運転モードを含み、制御装置14は、空気調和機100が冷房運転モードにて動作しているとき、上方ファン13を下方ファン13に比して高い回転数にて回転させる。これにより、室内を冷房することができるのはもちろんのこと、冷気だまりの発生を抑制することができ、かつ、下方ファン13による空気逆流入の発生を抑制することができる。
 また、1個以上の運転モードは暖房運転モードを含み、制御装置14は、空気調和機100が暖房運転モードにて動作しているとき、下方ファン13を上方ファン13に比して高い回転数にて回転させる。これにより、室内を暖房することができるのはもちろんのこと、暖気だまりの発生を抑制することができ、かつ、上方ファン13による空気逆流入の発生を抑制することができる。
 また、1個以上の運転モードは中間温度帯用の運転モードを含み、制御装置14は、空気調和機100が中間温度帯用の運転モードにて動作しているとき、上方ファン13及び下方ファン13を互いに同等の回転数にて回転させる。送風運転モードにおいて上方ファン13及び下方ファン13の両方を常時回転させることにより、室内に送風することができるのはもちろんのこと、吹出口3による空気逆流入の発生を抑制することができる。弱冷房運転モードにおいて上方ファン13及び下方ファン13の両方を常時回転させることにより、過冷房の発生を抑制することができるのはもちろんのこと、吹出口3による空気逆流入の発生を抑制することができる。弱暖房運転モードにおいて上方ファン13及び下方ファン13の両方を常時回転させることにより、過暖房の発生を抑制することができるのはもちろんのこと、吹出口3による空気逆流入の発生を抑制することができる。
 また、1個以上の運転モードはサーキュレーション運転モードを含み、制御装置14は、空気調和機100がサーキュレーション運転モードにて動作しているとき、上方ファン13が下方ファン13に比して高い回転数にて回転する第1回転状態と、上方ファン13及び下方ファン13が互いに同等の回転数にて回転する第2回転状態と、下方ファン13が上方ファン13に比して高い回転数にて回転する第3回転状態とを時間的に交互に切り替える。これにより、室内の空気を攪拌することができるのはもちろんのこと、吹出口3による空気逆流入の発生を抑制することができる。
 また、実施の形態1に係る制御方法は、熱交換器6と、熱交換器6に対する上方に設けられた上方吹出口3及び熱交換器6に対する下方に設けられた下方吹出口3を含む吹出口3と、熱交換器6と上方吹出口3間に設けられた上方ファン13と、熱交換器6と下方吹出口3間に設けられた下方ファン13と、を有する室内機200を備える空気調和機100用の制御方法であって、空気調和機100が吹出口3による空気逆流入の抑制対象となる1個以上の運転モードのうちの各運転モードにて動作しているとき、上方ファン13及び下方ファン13の両方を常時回転させるものである。これにより、上記のとおり、吹出口3による空気逆流入の発生を抑制することができる。
 また、実施の形態1に係る制御装置14は、熱交換器6と、熱交換器6に対する上方に設けられた上方吹出口3及び熱交換器6に対する下方に設けられた下方吹出口3を含む吹出口3と、熱交換器6と上方吹出口3間に設けられた上方ファン13と、熱交換器6と下方吹出口3間に設けられた下方ファン13と、を有する室内機200を備える空気調和機100用の制御装置14であって、空気調和機100が吹出口3による空気逆流入の抑制対象となる1個以上の運転モードのうちの各運転モードにて動作しているとき、上方ファン13及び下方ファン13の両方を常時回転させるものである。これにより、上記のとおり、吹出口3による空気逆流入の発生を抑制することができる。
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
 本発明の空気調和機は、例えば、家庭用の空気調和機に用いることができる。
 1 筐体、2 背面板、3 上方吹出口、3 下方吹出口、4 吸込口、5 フィルタ、6 熱交換器(室内熱交換器)、7 フィン、8 冷媒管、9 冷媒管、10 排水パン、11 排水管、12 空気流路、12 空気流路、13 上方ファン、13 下方ファン、14 制御装置(室内制御装置)、21 制御基板、22 プロセッサ、23 メモリ、24 処理回路、100 空気調和機、200 室内機。

Claims (7)

  1.  熱交換器と、
     前記熱交換器に対する上方に設けられた上方吹出口及び前記熱交換器に対する下方に設けられた下方吹出口を含む吹出口と、
     前記熱交換器と前記上方吹出口間に設けられた上方ファンと、
     前記熱交換器と前記下方吹出口間に設けられた下方ファンと、
     当該空気調和機が前記吹出口による空気逆流入の抑制対象となる1個以上の運転モードのうちの各運転モードにて動作しているとき、前記上方ファン及び前記下方ファンの両方を常時回転させる制御装置と、
     を有する室内機を備える空気調和機。
  2.  前記1個以上の運転モードは冷房運転モードを含み、
     前記制御装置は、当該空気調和機が前記冷房運転モードにて動作しているとき、前記上方ファンを前記下方ファンに比して高い回転数にて回転させる
     ことを特徴とする請求項1記載の空気調和機。
  3.  前記1個以上の運転モードは暖房運転モードを含み、
     前記制御装置は、当該空気調和機が前記暖房運転モードにて動作しているとき、前記下方ファンを前記上方ファンに比して高い回転数にて回転させる
     ことを特徴とする請求項1記載の空気調和機。
  4.  前記1個以上の運転モードは中間温度帯用の運転モードを含み、
     前記制御装置は、当該空気調和機が前記中間温度帯用の運転モードにて動作しているとき、前記上方ファン及び前記下方ファンを互いに同等の回転数にて回転させる
     ことを特徴とする請求項1記載の空気調和機。
  5.  前記1個以上の運転モードはサーキュレーション運転モードを含み、
     前記制御装置は、当該空気調和機が前記サーキュレーション運転モードにて動作しているとき、前記上方ファンが前記下方ファンに比して高い回転数にて回転する第1回転状態と、前記上方ファン及び前記下方ファンが互いに同等の回転数にて回転する第2回転状態と、前記下方ファンが前記上方ファンに比して高い回転数にて回転する第3回転状態とを時間的に交互に切り替える
     ことを特徴とする請求項1記載の空気調和機。
  6.  熱交換器と、前記熱交換器に対する上方に設けられた上方吹出口及び前記熱交換器に対する下方に設けられた下方吹出口を含む吹出口と、前記熱交換器と前記上方吹出口間に設けられた上方ファンと、前記熱交換器と前記下方吹出口間に設けられた下方ファンと、を有する室内機を備える空気調和機用の制御方法であって、
     前記空気調和機が前記吹出口による空気逆流入の抑制対象となる1個以上の運転モードのうちの各運転モードにて動作しているとき、前記上方ファン及び前記下方ファンの両方を常時回転させる
     ことを特徴とする制御方法。
  7.  熱交換器と、前記熱交換器に対する上方に設けられた上方吹出口及び前記熱交換器に対する下方に設けられた下方吹出口を含む吹出口と、前記熱交換器と前記上方吹出口間に設けられた上方ファンと、前記熱交換器と前記下方吹出口間に設けられた下方ファンと、を有する室内機を備える空気調和機用の制御装置であって、
     前記空気調和機が前記吹出口による空気逆流入の抑制対象となる1個以上の運転モードのうちの各運転モードにて動作しているとき、前記上方ファン及び前記下方ファンの両方を常時回転させる
     ことを特徴とする制御装置。
PCT/JP2018/036693 2018-10-01 2018-10-01 空気調和機、制御方法及び制御装置 WO2020070771A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036693 WO2020070771A1 (ja) 2018-10-01 2018-10-01 空気調和機、制御方法及び制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036693 WO2020070771A1 (ja) 2018-10-01 2018-10-01 空気調和機、制御方法及び制御装置

Publications (1)

Publication Number Publication Date
WO2020070771A1 true WO2020070771A1 (ja) 2020-04-09

Family

ID=70055118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036693 WO2020070771A1 (ja) 2018-10-01 2018-10-01 空気調和機、制御方法及び制御装置

Country Status (1)

Country Link
WO (1) WO2020070771A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112949A (en) * 1979-02-26 1980-09-01 Matsushita Electric Ind Co Ltd Air flow controlling device of air conditioner
JPS55174551U (ja) * 1979-06-01 1980-12-15
JPS6490942A (en) * 1987-10-02 1989-04-10 Mitsubishi Electric Corp Air conditioner indoor unit
JPH01189449A (ja) * 1988-01-25 1989-07-28 Matsushita Seiko Co Ltd 空気調和機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112949A (en) * 1979-02-26 1980-09-01 Matsushita Electric Ind Co Ltd Air flow controlling device of air conditioner
JPS55174551U (ja) * 1979-06-01 1980-12-15
JPS6490942A (en) * 1987-10-02 1989-04-10 Mitsubishi Electric Corp Air conditioner indoor unit
JPH01189449A (ja) * 1988-01-25 1989-07-28 Matsushita Seiko Co Ltd 空気調和機

Similar Documents

Publication Publication Date Title
JP6185251B2 (ja) 空気調和機
US20170067655A1 (en) Air conditioner units having improved apparatus for providing make-up air
JP2007333356A (ja) 天井埋込型室内機ユニットの吹出構造
KR102135622B1 (ko) 공기 조화기의 실내기
JP6429022B2 (ja) 空気調和機
WO2020070771A1 (ja) 空気調和機、制御方法及び制御装置
WO2020070772A1 (ja) 空気調和機、制御方法及び制御装置
JP4619983B2 (ja) 空気調和機
JP5950897B2 (ja) 空気調和機
WO2018134888A1 (ja) 空気調和機
JP2008039333A (ja) 空気調和装置
KR102020552B1 (ko) 공기조화기의 기울기 조절이 가능한 히트파이프 폐열회수 열교환시스템
KR102436120B1 (ko) 토출공기의 온도를 저감시킬 수 있는 제습기
KR100760128B1 (ko) 천장형 공기조화기
JP2021195914A (ja) 空気調和機
JP2005195199A (ja) 空気調和機
JPH0639973B2 (ja) 天井設置形空気調和機
JP2007322088A (ja) 空気調和装置
JPH0972599A (ja) 空気調和機
US20070079628A1 (en) Air conditioner
JP6609722B1 (ja) 空気調和機の室内機
JP5195135B2 (ja) 空気調和機
KR100611494B1 (ko) 천장형 공기조화기
JP3480869B2 (ja) 空気調和機
JP6851353B2 (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP