WO2020066185A1 - Heat dissipation structure - Google Patents

Heat dissipation structure Download PDF

Info

Publication number
WO2020066185A1
WO2020066185A1 PCT/JP2019/025585 JP2019025585W WO2020066185A1 WO 2020066185 A1 WO2020066185 A1 WO 2020066185A1 JP 2019025585 W JP2019025585 W JP 2019025585W WO 2020066185 A1 WO2020066185 A1 WO 2020066185A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
housing
fin
heat dissipation
dissipation structure
Prior art date
Application number
PCT/JP2019/025585
Other languages
French (fr)
Japanese (ja)
Inventor
一馬 杉山
尚宏 木本
擁祐 黒木
Original Assignee
Necプラットフォームズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necプラットフォームズ株式会社 filed Critical Necプラットフォームズ株式会社
Publication of WO2020066185A1 publication Critical patent/WO2020066185A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat dissipation structure.
  • Patent Literature 1 discloses a heat radiating structure in which a heat generating portion arranged inside a housing, an air passage arranged outside the housing to allow air to flow by a motor fan, and a heat connecting the heat generating portion and the air passage. And a fin in a portion of the heat member located in the air passage.
  • the configuration diagram of the heat dissipation structure in Patent Document 1 shows a configuration in which the fin has a long side and a short side and a motor fan is arranged so that air flows in a direction along the long side of the fin.
  • a motor fan is arranged so that air flows in a direction along the long side of the fin.
  • An object of the present disclosure is to provide a heat dissipation structure capable of efficiently dissipating heat from a heat generating portion inside a housing of an electronic device or the like in view of the above-described problem.
  • a heat radiating structure includes: a heat generating portion provided inside a housing; an internal heat radiating portion provided inside the housing and receiving heat from the heat generating portion; An external heat dissipating part provided outside the fin and having a plurality of fins having a main surface composed of a long side and a short side arranged side by side, a heat pipe for transmitting heat from the internal heat dissipating part to the external heat dissipating part, And a blower for blowing air to the fin in a direction along the short side of the fin.
  • FIG. 2 is a schematic diagram illustrating a structure of a heat dissipation structure according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a structure of a heat dissipation structure according to the first embodiment.
  • FIG. 4 is a perspective view showing a positional relationship of a heat pipe with respect to an internal heat radiating portion and an external heat radiating portion in the heat radiating structure according to the first exemplary embodiment;
  • FIG. 4 is a perspective view showing a positional relationship of a heat pipe with respect to an internal heat radiating portion and an external heat radiating portion in the heat radiating structure according to the first exemplary embodiment;
  • FIG. 4 is a perspective view showing a positional relationship of a heat pipe with respect to an internal heat radiating portion and an external heat radiating portion in the heat radiating structure according to the first exemplary embodiment;
  • FIG. 3 is a schematic diagram illustrating a mounting portion of a fixing member in a housing of the heat dissipation structure according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating a configuration of a housing of the heat dissipation structure according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating a configuration of an external heat radiating portion of the heat radiating structure according to the first embodiment.
  • FIG. 4 is a schematic diagram showing an ideal shape of a heat radiation fin group in forced air cooling obtained by simulation.
  • FIG. 9 is a schematic diagram showing a hatched area A in FIG. 8. It is a schematic diagram explaining the method of manufacturing a fin by a curling method in an external heat radiation part.
  • FIG. 11 is a schematic diagram illustrating a configuration of a housing heat radiation surface according to a second modification.
  • the present invention relates to a heat dissipation structure used for a housing of an electronic device or the like.
  • FIG. 1 is a diagram illustrating an outline of the present invention.
  • the heat radiation structure 1 includes a heat generating part 2, an internal heat radiation part 3, an external heat radiation part 4, a heat pipe 5, and a blower 6.
  • the heat generating unit 2 is provided inside the housing 8.
  • the internal heat radiating section 3 is provided inside the housing 8 and receives heat from the heat generating section 2.
  • the external heat radiating portion 4 is provided outside the housing, and a plurality of fins 7a having a main surface including a long side and a short side are arranged side by side.
  • the heat pipe 5 transmits heat from the internal heat radiating section 3 to the external heat radiating section 4.
  • the blower 6 blows air to the fin 7a in a direction along the short side of the fin 7a. By doing so, the heat generating portion 2 inside the housing 8 can be efficiently dissipated.
  • the heat dissipating structure according to the first embodiment is used for, for example, an electronic device installed outdoors, for example, a wireless communication device such as an antenna.
  • FIGS. 2 and 3 are schematic diagrams illustrating the structure of the heat radiation structure 101 according to the first embodiment.
  • the heat radiation structure 101 includes a heat generating part 102, an internal heat radiation part 103, an external heat radiation part 107, a heat pipe 105, and a blower 106.
  • the heat generating unit 102 is provided inside the housing 108.
  • the heating unit 102 is, for example, an electronic board.
  • the internal heat radiating section 103 is provided inside the housing 108 and receives heat from the heat generating section 102.
  • the external heat radiating section 107 is provided outside the housing and has fins 107a.
  • the heat pipe 105 transmits heat from the internal heat radiating section 103 to the external heat radiating section 107.
  • the heat pipe 105 generally transports heat by a phase change (evaporation / condensation) of the working liquid sealed in a small amount in a pipe-shaped container.
  • General heat pipes have very high thermal conductivity (5000-30000 W / mK), do not require external power to operate, have high heat responsiveness, and have no moving parts. There are features.
  • the blower 106 blows air to the fins 107a.
  • the external radiator 107 and the blower 106 are covered with a cover 109.
  • FIGS. 4 and 5 are perspective views showing the positional relationship of the heat pipe 105 with respect to the internal heat radiating section 103 and the external heat radiating section 107 in the heat radiating structure 101.
  • FIG. As shown in FIGS. 4 and 5, a plurality of heat pipes 105 are arranged side by side at predetermined intervals in a direction along the main surface 103 a of the internal heat radiating section 103.
  • the internal heat dissipating section 103 and the heat pipe 105 are fixed by soldering, caulking, brazing, or the like.
  • the heat pipe 105 is connected to the external heat radiating section 107 at an end opposite to the end connected to the internal heat radiating section 103.
  • a fixing member 110 for fixing the heat radiation structure 101 to the housing 108 is provided between the internal heat radiation part 103 and the external heat radiation part 107 in the heat pipe 105.
  • the fixing member 110 has a through hole 110a for penetrating the heat pipe 105 and a through hole 110b for screwing.
  • the fixing of the fixing member 110 and the heat pipe 105 is performed by soldering, caulking, brazing, or the like.
  • the housing 108 is used for a wireless communication device such as an antenna, the housing 108 is installed outdoors exposed to rain and wind, so that waterproofness is required.
  • the gap between the through hole 110a and the heat pipe 105 is filled with a waterproof member such as silicone.
  • FIG. 6 is a schematic diagram showing a portion of the housing 108 where the fixing member 110 is attached.
  • the heat dissipation structure 101 is fixed to the housing 108 by inserting the heat dissipation structure 101 into the opening 112 formed in the housing 108 and fastening the housing 108 and the fixing member 110 with screws. can do.
  • a packing portion 111 is provided at a peripheral portion of the opening 112 in the housing 108. As a result, the housing 108 and the fixing member 110 come into contact with each other via the packing 111. In this way, waterproofness and weather resistance can be ensured.
  • FIG. 7 is a schematic diagram showing the configuration of the housing 108.
  • the housing 108 includes a cover 108a, a cover 108b, and a case 108c.
  • the case portion 108c has a configuration in which a cavity is provided at the center.
  • An arbitrary number of heat generating portions 102 that can be accommodated in the central cavity of the case portion 108c can be fixed to two surfaces of the internal heat radiating portion 103 where the cover portion 108a and the cover portion 108b face each other. After fixing the heat generating part 102 to the internal heat radiation part 103, the cover part 108a and the cover part 108b are fixed to the case part 108c.
  • the case portion 108c and the heat dissipation structure 101 can be integrally processed.
  • the heat pipe 105 is formed by being cast into the case portion 108c, or a method in which a through hole through which the heat pipe 105 passes is formed in the case portion 108c, and the gap is filled with a member such as silicone.
  • FIG. 8 is a schematic diagram showing the configuration of the external heat radiation unit 107.
  • the external heat radiating unit 107 includes a plurality of fins 107a having a main surface 107b including a long side 107bA and a short side 107bB, which are arranged in the X direction.
  • the wind F1 from the blower 6 flows in the direction along the short side 7bB of the fin 107a (that is, the Y direction).
  • the heat pipes 105 are arranged in the fin 107a at a predetermined interval L1 in the center of the short side 107bB of the main surface 107b of the fin and in the direction along the long side 107bA of the main surface 107b of the fin 107a.
  • the predetermined interval L1 is set so that half the length of the predetermined interval L1 is shorter than the length L2 of the short side 107bB of the main surface 107b of the fin 107a (L1 / 2 ⁇ L2).
  • the length L2 of the short side 107bB of the main surface 107b of the fin 107a is set shorter than the length L3 between the fins located at one end and the other end in the direction in which the fins 107a are arranged.
  • the number of heat pipes 105 increases the heat transport amount and improves the heat radiation performance. However, if the number is excessively increased, the flow of the air in the gap between the adjacent fins 107a is obstructed, and conversely the heat radiation performance decreases. Therefore, the number of heat pipes 105 is determined in consideration of the heat transport amount of the heat pipes 105 and the flow of wind between the fins 107a.
  • Aluminum is generally selected as the material of the fin 107a, but copper may be selected.
  • the fin 107a and the heat pipe 105 are fixed by soldering, caulking, brazing, or the like.
  • FIG. 9 is a schematic diagram showing the ideal shape of the heat radiation fin group 907 in forced air cooling, obtained by simulation.
  • the length Lx of the side 907bA of the main surface 907b which is perpendicular to the air blowing direction, and the air blowing direction F
  • the shorter the length Ly of the side 907bB along the line the better the heat radiation efficiency (Lx> Ly, Lx> Lz).
  • the shorter the length Lz of the side 907bA perpendicular to the air blowing direction than the length Ly of the side 907bB along the air blowing direction the better the heat radiation efficiency (Ly> Lz).
  • the heat radiation fin group 907 has such a shape, heat radiation efficiency is good, but the number of fins 907a needs to be increased, and the length in the X direction becomes long.
  • the length of the cover 109 covering the external heat radiating section 107 and the blower 106 also needs to be increased in the X direction.
  • the size of the device increases accordingly. Therefore, when the present invention is applied to a wireless communication device having a limited device size, the length of the external radiator 107 in the X direction needs to be as short as possible.
  • the dimensions of the cover 109 in the Z direction and the Y direction match the housing 108.
  • the dimensions of the external heat radiating portion 107 in the Z and Y directions need to be smaller than the dimensions of the cover 109 in the Z and Y directions.
  • the length in the Z direction of the housing 108 is longer than the length in the Y direction. That is, in the external heat radiating portion 107, the length in the Z direction can be made somewhat longer than the length in the X direction and the Y direction.
  • FIG. 10 is a schematic diagram showing a hatched area A in FIG.
  • the area A can be said to be an area allocated to radiate heat transmitted from a half portion of one heat pipe 105.
  • the length L3 between the fins located at one end and the other end in the direction in which the fins 107a are arranged in the external heat radiating unit 107 shown in FIG. 8 is equal to one end of the radiating fin group 907 shown in FIG. It can be shorter than the length Lx between the fins located at the other end. This is because in the external heat radiating unit 107 shown in FIG. 8, a plurality of heat pipes 105 are arranged at predetermined intervals in the Z direction, and the length of the fin 107a in the Z direction is set to the fin of the heat radiating fin group 907 shown in FIG. 907a is longer than the length in the Z direction.
  • the interval between the adjacent fins 107a is preferably set to about 0.5 mm or more.
  • the fin 107a is generally manufactured by a method such as cutting, casting, or extrusion, but a gap of several mm is left in these methods. Therefore, when the distance between adjacent fins is reduced to about 0.5 mm, the fins may be formed by a curling method.
  • FIG. 11 is a schematic diagram for explaining a method of manufacturing the fins 107a by the curling method in the external heat radiating section 107.
  • the fins 107a provided with the bent portions 107d on at least one of the short sides 107bB are fitted one by one into the heat pipe 105 in the through holes 107c.
  • the height h of the bent portion 107d in the direction in which the fins 107a are arranged is set to a desired fin interval (for example, 0.5 mm).
  • the tip of the bent portion 107d of the fin 107a abuts on the adjacent fin 107a, and the fin interval does not approach the height h. Is regulated.
  • the interval between the adjacent fins 107a can be set to a desired fin interval.
  • the bent portion 107d is formed by being bent substantially perpendicularly to the main surface 107b, but is not limited thereto.
  • the bent portion 107d may be bent at a predetermined curvature with respect to the main surface 107b. May be formed.
  • the spacers when fitting the fins 107a one by one into the heat pipe 105 in the through holes 107c, the spacers may be inserted into the gaps between the adjacent fins 107a.
  • the height of the spacer in the direction in which the fins 107a are arranged is set to a desired fin interval.
  • the spacer is regulated by the spacer so that the fin interval does not approach the height h.
  • FIG. 12 is a schematic diagram illustrating the structure of the heat dissipation structure 201 according to the second embodiment.
  • the difference from the heat dissipation structure 101 according to the first embodiment (see FIG. 3) is that a heat dissipation portion is provided in a part of the housing.
  • the heat dissipation structure 201 further includes a housing heat dissipation surface 208d provided at a predetermined portion of a wall surface forming the housing 208.
  • the housing heat radiating surface 208d faces the heat generating portion 202. There is no obstacle between the housing heat radiation surface 208d and the heat generating part 202. By doing so, the heat radiation performance can be further improved.
  • FIG. 13 is a schematic diagram illustrating a configuration of a modification of the heat dissipation surface of the housing.
  • the heat pipe 305 may be connected to the heat radiation surface 308 d of the housing provided at a predetermined portion of the wall surface forming the housing 308.
  • the heat pipe 305 generally transports heat by a phase change of evaporation and condensation of the working liquid sealed in a small amount in a pipe-shaped container.
  • FIG. 14 is a schematic diagram illustrating the arrangement of the heat pipe 305 on the housing heat radiation surface 308d. As shown in FIG. 14, a part of the heat pipe 305 may be embedded in the housing heat dissipation surface 308d. By doing so, the heat radiation performance can be further improved.
  • FIG. 15 is a schematic diagram illustrating a configuration of another modified example of the heat dissipation surface of the housing.
  • the cover of the case 408 may be a case heat dissipation surface 408d. By doing so, the heat radiation performance can be further improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Provided is a heat dissipation structure (1) capable of efficiently dissipating heat from a heat generation part inside a housing of an electronic apparatus or the like. This heat dissipation structure (1) is provided with: a heat generation part (2) provided inside a housing (8); an internal heat dissipation part (3) which is provided inside the housing (8) and receives heat from the heat generation part (2); an external heat dissipation part (7) which is provided outside the housing (8) and in which a plurality of fins (7a), each having a main surface comprising a long side and a short side, are arranged side by side; a heat pipe (5) which transmits the heat from the internal heat dissipation part (3) to the external heat dissipation part (7); and a blower (6) which blows air to the fins (7a) in a direction along the short sides of the fins (7a).

Description

放熱構造体Heat dissipation structure
 本発明は、放熱構造体に関する。 The present invention relates to a heat dissipation structure.
 電子機器等の筐体の内部にある発熱部を放熱させる放熱構造体が知られている。特許文献1には、放熱構造体において、筐体の内部に配置された発熱部と、筐体の外に配置されモータファンにより空気を流す空気通路と、発熱部と空気通路とを接続する熱部材と、を備え、熱部材の空気通路に位置する部分にフィンを有する構成が開示されている。 (4) A heat dissipation structure for dissipating heat from a heat generating portion inside a housing of an electronic device or the like is known. Patent Literature 1 discloses a heat radiating structure in which a heat generating portion arranged inside a housing, an air passage arranged outside the housing to allow air to flow by a motor fan, and a heat connecting the heat generating portion and the air passage. And a fin in a portion of the heat member located in the air passage.
特開2008-165699号公報JP 2008-165699 A
 特許文献1における放熱構造体の構成図において、フィンは長辺と短辺を有する形状で、フィンの長辺に沿う方向に空気が流れるようにモータファンを配置した構成が示されている。しかしながら、このような構成では、筐体の内部に配置された発熱部を効率良く放熱させることができない場合があった。 構成 The configuration diagram of the heat dissipation structure in Patent Document 1 shows a configuration in which the fin has a long side and a short side and a motor fan is arranged so that air flows in a direction along the long side of the fin. However, in such a configuration, there is a case where the heat generating portion disposed inside the housing cannot be efficiently dissipated.
 本開示の目的は、上述した課題を鑑み、電子機器等の筐体の内部にある発熱部を効率良く放熱させることができる放熱構造体を提供することにある。 目的 An object of the present disclosure is to provide a heat dissipation structure capable of efficiently dissipating heat from a heat generating portion inside a housing of an electronic device or the like in view of the above-described problem.
 本発明の第1の態様にかかる放熱構造体は、筐体の内部に設けられた発熱部と、前記筐体の内部に設けられ、前記発熱部からの熱を受ける内部放熱部と、筐体の外部に設けられ、長辺と短辺からなる主面を有するフィンが複数枚並んで配置された外部放熱部と、前記内部放熱部からの熱を前記外部放熱部に伝えるヒートパイプと、前記フィンに対し前記フィンの短辺に沿う方向に送風する送風機と、を備えるものである。 A heat radiating structure according to a first aspect of the present invention includes: a heat generating portion provided inside a housing; an internal heat radiating portion provided inside the housing and receiving heat from the heat generating portion; An external heat dissipating part provided outside the fin and having a plurality of fins having a main surface composed of a long side and a short side arranged side by side, a heat pipe for transmitting heat from the internal heat dissipating part to the external heat dissipating part, And a blower for blowing air to the fin in a direction along the short side of the fin.
 本発明により、電子機器等の筐体の内部にある発熱部を効率良く放熱させることができる。 According to the present invention, it is possible to efficiently dissipate heat from a heat generating portion inside a housing of an electronic device or the like.
本発明の概要について説明する図である。It is a figure explaining the outline of the present invention. 実施の形態1にかかる放熱構造体の構造について説明する模式図である。FIG. 2 is a schematic diagram illustrating a structure of a heat dissipation structure according to the first embodiment. 実施の形態1にかかる放熱構造体の構造について説明する模式図である。FIG. 2 is a schematic diagram illustrating a structure of a heat dissipation structure according to the first embodiment. 実施の形態1にかかる放熱構造体における、内部放熱部及び外部放熱部に対する、ヒートパイプの位置関係を示す斜視図である。FIG. 4 is a perspective view showing a positional relationship of a heat pipe with respect to an internal heat radiating portion and an external heat radiating portion in the heat radiating structure according to the first exemplary embodiment; 実施の形態1にかかる放熱構造体における、内部放熱部及び外部放熱部に対する、ヒートパイプの位置関係を示す斜視図である。FIG. 4 is a perspective view showing a positional relationship of a heat pipe with respect to an internal heat radiating portion and an external heat radiating portion in the heat radiating structure according to the first exemplary embodiment; 実施の形態1にかかる放熱構造体の筐体における、固定部材の取り付け部分について示す模式図である。FIG. 3 is a schematic diagram illustrating a mounting portion of a fixing member in a housing of the heat dissipation structure according to the first embodiment. 実施の形態1にかかる放熱構造体の筐体の構成を示す模式図である。FIG. 3 is a schematic diagram illustrating a configuration of a housing of the heat dissipation structure according to the first embodiment. 実施の形態1にかかる放熱構造体の外部放熱部の構成を示す模式図である。FIG. 3 is a schematic diagram illustrating a configuration of an external heat radiating portion of the heat radiating structure according to the first embodiment. シミュレーションにより求めた、強制空冷における理想的な放熱フィン群の形状を示す模式図である。FIG. 4 is a schematic diagram showing an ideal shape of a heat radiation fin group in forced air cooling obtained by simulation. 図8における斜線を付した領域Aを示す模式図である。FIG. 9 is a schematic diagram showing a hatched area A in FIG. 8. 外部放熱部において、フィンをカーリング工法で製造する方法について説明する模式図である。It is a schematic diagram explaining the method of manufacturing a fin by a curling method in an external heat radiation part. 実施の形態2にかかる放熱構造体の構造について説明する模式図である。It is a schematic diagram explaining the structure of the heat dissipation structure according to the second embodiment. 変形例1の筐体放熱面の構成を示す模式図である。It is a schematic diagram which shows the structure of the housing heat dissipation surface of the modification 1. 変形例1の筐体放熱面におけるヒートパイプの配置について説明する模式図である。It is a schematic diagram explaining arrangement | positioning of the heat pipe in the housing | casing heat radiation surface of the modification 1. 変形例2の筐体放熱面の構成を示す模式図である。FIG. 11 is a schematic diagram illustrating a configuration of a housing heat radiation surface according to a second modification.
 以下、図面を参照して本発明の実施の形態について説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。なお、図に示した右手系XYZ座標は、構成要素の位置関係を説明するための便宜的なものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description and drawings are appropriately omitted and simplified for clarity of explanation. In each of the drawings, the same elements are denoted by the same reference numerals, and repeated description will be omitted as necessary. Note that the right-handed XYZ coordinates shown in the figure are for convenience in describing the positional relationship of the components.
[本発明の特徴]
 本発明の実施の形態の説明に先立って、本発明の特徴についてその概要をまず説明する。本発明は、電子機器等の筐体に用いられる放熱構造体に関するものである。
[Features of the present invention]
Prior to the description of the embodiments of the present invention, the features of the present invention will be outlined first. The present invention relates to a heat dissipation structure used for a housing of an electronic device or the like.
 図1は、本発明の概要について説明する図である。図1に示すように、放熱構造体1は、発熱部2と、内部放熱部3と、外部放熱部4と、ヒートパイプ5と、送風機6と、を備えている。 FIG. 1 is a diagram illustrating an outline of the present invention. As shown in FIG. 1, the heat radiation structure 1 includes a heat generating part 2, an internal heat radiation part 3, an external heat radiation part 4, a heat pipe 5, and a blower 6.
 発熱部2は、筐体8の内部に設けられている。内部放熱部3は、筐体8の内部に設けられ、発熱部2からの熱を受ける。外部放熱部4は、筐体の外部に設けられ、長辺と短辺からなる主面を有するフィン7aが複数枚並んで配置されている。ヒートパイプ5は、内部放熱部3からの熱を外部放熱部4に伝える。送風機6は、フィン7aに対しフィン7aの短辺に沿う方向に送風する。このようにすることで、筐体8の内部にある発熱部2を効率良く放熱させることができる。 (4) The heat generating unit 2 is provided inside the housing 8. The internal heat radiating section 3 is provided inside the housing 8 and receives heat from the heat generating section 2. The external heat radiating portion 4 is provided outside the housing, and a plurality of fins 7a having a main surface including a long side and a short side are arranged side by side. The heat pipe 5 transmits heat from the internal heat radiating section 3 to the external heat radiating section 4. The blower 6 blows air to the fin 7a in a direction along the short side of the fin 7a. By doing so, the heat generating portion 2 inside the housing 8 can be efficiently dissipated.
[実施の形態1] [Embodiment 1]
 以下、実施の形態1について説明する。
 実施の形態1にかかる放熱構造体は、例えば、屋外に設置する電子機器、例えば、アンテナなどの無線通信装置に用いられるものである。
Hereinafter, Embodiment 1 will be described.
The heat dissipating structure according to the first embodiment is used for, for example, an electronic device installed outdoors, for example, a wireless communication device such as an antenna.
 図2及び図3は、実施の形態1にかかる放熱構造体101の構造について説明する模式図である。図2及び図3に示すように、放熱構造体101は、発熱部102と、内部放熱部103と、外部放熱部107と、ヒートパイプ105と、送風機106と、を備えている。 FIGS. 2 and 3 are schematic diagrams illustrating the structure of the heat radiation structure 101 according to the first embodiment. As shown in FIGS. 2 and 3, the heat radiation structure 101 includes a heat generating part 102, an internal heat radiation part 103, an external heat radiation part 107, a heat pipe 105, and a blower 106.
 発熱部102は、筐体108の内部に設けられている。発熱部102は、例えば電子基板である。内部放熱部103は、筐体108の内部に設けられ、発熱部102からの熱を受ける。外部放熱部107は、筐体の外部に設けられ、フィン107aを有している。ヒートパイプ105は、内部放熱部103からの熱を外部放熱部107に伝える。ヒートパイプ105は、パイプ状の容器の中に少量封入された作動液体の相変化(蒸発・凝縮)により熱を輸送する一般的なものである。一般的なヒートパイプには、熱伝導率が非常に高い(5000~30000W/m・K)、作動させるために外部動力を必要としない、熱の応答性が高い、可動部を持たない、といった特徴がある。送風機106は、フィン107aに対し送風するものである。外部放熱部107及び送風機106は、カバー109で覆われている。 (4) The heat generating unit 102 is provided inside the housing 108. The heating unit 102 is, for example, an electronic board. The internal heat radiating section 103 is provided inside the housing 108 and receives heat from the heat generating section 102. The external heat radiating section 107 is provided outside the housing and has fins 107a. The heat pipe 105 transmits heat from the internal heat radiating section 103 to the external heat radiating section 107. The heat pipe 105 generally transports heat by a phase change (evaporation / condensation) of the working liquid sealed in a small amount in a pipe-shaped container. General heat pipes have very high thermal conductivity (5000-30000 W / mK), do not require external power to operate, have high heat responsiveness, and have no moving parts. There are features. The blower 106 blows air to the fins 107a. The external radiator 107 and the blower 106 are covered with a cover 109.
 図4及び図5は、放熱構造体101における、内部放熱部103及び外部放熱部107に対する、ヒートパイプ105の位置関係を示す斜視図である。図4及び図5に示すように、ヒートパイプ105は、内部放熱部103の主面103aに沿う方向に複数所定の間隔で並んで設置されている。内部放熱部103とヒートパイプ105の固定は、はんだ、かしめ、ロウ付けなどで行う。ヒートパイプ105は、内部放熱部103に接続された端部とは反対側の端部において外部放熱部107と接続されている。ヒートパイプ105における、内部放熱部103と外部放熱部107との間には、放熱構造体101を筐体108に固定するための固定部材110が設置されている。固定部材110には、ヒートパイプ105を貫通させるための貫通穴110aと、ネジ止め用の貫通穴110bが形成されている。固定部材110とヒートパイプ105の固定は、はんだ、かしめ、ロウ付けなどで行う。筐体108がアンテナなどの無線通信装置用である場合、筐体108は雨風に晒される屋外に設置するので防水性が求められる。貫通穴110aとヒートパイプ105との隙間はシリコーンなどの防水性部材で補填する。 FIGS. 4 and 5 are perspective views showing the positional relationship of the heat pipe 105 with respect to the internal heat radiating section 103 and the external heat radiating section 107 in the heat radiating structure 101. FIG. As shown in FIGS. 4 and 5, a plurality of heat pipes 105 are arranged side by side at predetermined intervals in a direction along the main surface 103 a of the internal heat radiating section 103. The internal heat dissipating section 103 and the heat pipe 105 are fixed by soldering, caulking, brazing, or the like. The heat pipe 105 is connected to the external heat radiating section 107 at an end opposite to the end connected to the internal heat radiating section 103. A fixing member 110 for fixing the heat radiation structure 101 to the housing 108 is provided between the internal heat radiation part 103 and the external heat radiation part 107 in the heat pipe 105. The fixing member 110 has a through hole 110a for penetrating the heat pipe 105 and a through hole 110b for screwing. The fixing of the fixing member 110 and the heat pipe 105 is performed by soldering, caulking, brazing, or the like. When the housing 108 is used for a wireless communication device such as an antenna, the housing 108 is installed outdoors exposed to rain and wind, so that waterproofness is required. The gap between the through hole 110a and the heat pipe 105 is filled with a waterproof member such as silicone.
 図6は、筐体108における、固定部材110の取り付け部分について示す模式図である。図6に示すよう、放熱構造体101を筐体108の形成された開口112に挿入し、筐体108と固定部材110とをネジにより締結することで、筐体108に放熱構造体101を固定することができる。筐体108における、開口112の周縁部分にはパッキン部111が設けられている。これにより、筐体108と固定部材110とはパッキン部111を介して接触する。このようにすることで防水性や対候性を確保することができる。 FIG. 6 is a schematic diagram showing a portion of the housing 108 where the fixing member 110 is attached. As shown in FIG. 6, the heat dissipation structure 101 is fixed to the housing 108 by inserting the heat dissipation structure 101 into the opening 112 formed in the housing 108 and fastening the housing 108 and the fixing member 110 with screws. can do. A packing portion 111 is provided at a peripheral portion of the opening 112 in the housing 108. As a result, the housing 108 and the fixing member 110 come into contact with each other via the packing 111. In this way, waterproofness and weather resistance can be ensured.
 図7は、筐体108の構成を示す模式図である。図7に示すように、筐体108は、カバー部108aと、カバー部108bと、ケース部108cから構成される。ケース部108cは、中央に空洞がある構成である。内部放熱部103における、カバー部108aとカバー部108bが対向する2面には、ケース部108cの中央の空洞に収容可能な任意の数の発熱部102を固定することが可能である。発熱部102を内部放熱部103に固定した後、カバー部108aとカバー部108bをケース部108cに固定する。カバー部108a、カバー部108b、ケース部108cのそれぞれの接触部分において、防水性ガスケットを設けることで防水性も確保することができる。ケース部108cと放熱構造体101は一体で加工することも可能である。具体例としては、ケース部108cに鋳込む形でヒートパイプ105を形成する方法や、ケース部108cにヒートパイプ105が通る貫通穴を形成し、隙間をシリコーンなどの部材で埋める方法がある。 FIG. 7 is a schematic diagram showing the configuration of the housing 108. As shown in FIG. 7, the housing 108 includes a cover 108a, a cover 108b, and a case 108c. The case portion 108c has a configuration in which a cavity is provided at the center. An arbitrary number of heat generating portions 102 that can be accommodated in the central cavity of the case portion 108c can be fixed to two surfaces of the internal heat radiating portion 103 where the cover portion 108a and the cover portion 108b face each other. After fixing the heat generating part 102 to the internal heat radiation part 103, the cover part 108a and the cover part 108b are fixed to the case part 108c. By providing a waterproof gasket at each of the contact portions of the cover portion 108a, the cover portion 108b, and the case portion 108c, waterproofness can be ensured. The case portion 108c and the heat dissipation structure 101 can be integrally processed. As a specific example, there is a method in which the heat pipe 105 is formed by being cast into the case portion 108c, or a method in which a through hole through which the heat pipe 105 passes is formed in the case portion 108c, and the gap is filled with a member such as silicone.
 次に、外部放熱部107の構成の詳細について説明する。本発明者らは、外部放熱部107のような、フィンを有する強制空冷方式の放熱器に対して、フィンの主面における短辺に沿う方向に風を流すと放熱効率が良くなることをシミュレーションにより見いだした。図8は、外部放熱部107の構成を示す模式図である。図8に示すように、外部放熱部107は、長辺107bAと短辺107bBからなる主面107bを有するフィン107aがX方向に複数枚並んで配置されている。送風機6(図3参照)からの風F1は、フィン107aの短辺7bBに沿う方向(すなわちY方向)に流れる。 Next, details of the configuration of the external heat radiating unit 107 will be described. The present inventors have simulated that, for a forced air cooling type radiator having fins such as the external radiator 107, the flow of air in a direction along the short side of the main surface of the fins improves the heat radiation efficiency. Found by FIG. 8 is a schematic diagram showing the configuration of the external heat radiation unit 107. As shown in FIG. 8, the external heat radiating unit 107 includes a plurality of fins 107a having a main surface 107b including a long side 107bA and a short side 107bB, which are arranged in the X direction. The wind F1 from the blower 6 (see FIG. 3) flows in the direction along the short side 7bB of the fin 107a (that is, the Y direction).
 また、ヒートパイプ105は、フィン107aにおいて、フィンの主面107bの短辺107bBの中央で、かつ、フィン107aの主面107bの長辺107bAに沿う方向に所定の間隔L1で並んで配置される。所定の間隔L1は、所定の間隔L1の半分の長さが、フィン107aの主面107bの短辺107bBの長さL2よりも短く設定される(L1/2<L2)。また、フィン107aの主面107bの短辺107bBの長さL2は、フィン107aが並ぶ方向の一端と他端に位置するフィンの間の長さL3よりも短く設定される。 The heat pipes 105 are arranged in the fin 107a at a predetermined interval L1 in the center of the short side 107bB of the main surface 107b of the fin and in the direction along the long side 107bA of the main surface 107b of the fin 107a. . The predetermined interval L1 is set so that half the length of the predetermined interval L1 is shorter than the length L2 of the short side 107bB of the main surface 107b of the fin 107a (L1 / 2 <L2). Further, the length L2 of the short side 107bB of the main surface 107b of the fin 107a is set shorter than the length L3 between the fins located at one end and the other end in the direction in which the fins 107a are arranged.
 ヒートパイプ105の本数を増やすと、熱輸送量が向上し放熱性能が上がるが、本数を増やしすぎると、隣り合うフィン107aの隙間における風の流れを阻害するので逆に放熱性能が低下する。よって、ヒートパイプ105の本数は、ヒートパイプ105の熱輸送量とフィン107a間の風の流れを考慮して決定する。フィン107aの材質は、一般的にアルミニウムを選定するが、銅を選定してもよい。フィン107aとヒートパイプ105の固定は、はんだ、かしめ、ロウ付けなどで行う。 (4) Increasing the number of the heat pipes 105 increases the heat transport amount and improves the heat radiation performance. However, if the number is excessively increased, the flow of the air in the gap between the adjacent fins 107a is obstructed, and conversely the heat radiation performance decreases. Therefore, the number of heat pipes 105 is determined in consideration of the heat transport amount of the heat pipes 105 and the flow of wind between the fins 107a. Aluminum is generally selected as the material of the fin 107a, but copper may be selected. The fin 107a and the heat pipe 105 are fixed by soldering, caulking, brazing, or the like.
 図9は、シミュレーションにより求めた、強制空冷における理想的な放熱フィン群907の形状を示す模式図である。図9に示すように、フィン907aが並ぶ方向の一端と他端に位置するフィンの間の長さLxに対し、主面907bにおける、送風方向に垂直な辺907bAの長さLz及び送風方向Fに沿う辺907bBの長さLyを短くした方が、放熱効率が良いことが分かった(Lx>Ly、Lx>Lz)。また、送風方向に垂直な辺907bAの長さLzが、送風方向に沿う辺907bBの長さLyよりも短い方が、放熱効率が良いことが分かった(Ly>Lz)。しかしながら、放熱フィン群907をこのような形状とすると、放熱効率は良いものの、フィン907aの枚数を増やす必要があり、X方向の長さが長くなってしまう。 FIG. 9 is a schematic diagram showing the ideal shape of the heat radiation fin group 907 in forced air cooling, obtained by simulation. As shown in FIG. 9, the length Lx of the side 907bA of the main surface 907b, which is perpendicular to the air blowing direction, and the air blowing direction F It was found that the shorter the length Ly of the side 907bB along the line, the better the heat radiation efficiency (Lx> Ly, Lx> Lz). In addition, it was found that the shorter the length Lz of the side 907bA perpendicular to the air blowing direction than the length Ly of the side 907bB along the air blowing direction, the better the heat radiation efficiency (Ly> Lz). However, when the heat radiation fin group 907 has such a shape, heat radiation efficiency is good, but the number of fins 907a needs to be increased, and the length in the X direction becomes long.
 図2及び図3に示すように、外部放熱部107のX方向の長さが長くなると、外部放熱部107及び送風機106を覆うカバー109のX方向の長さも長くする必要がある。カバー109のX方向の長さが長くなると、それだけ装置サイズが大きくなってしまう。このため装置サイズに制約がある無線通信装置に適用する場合、外部放熱器107のX方向の長さはできるだけ短くする必要がある。これに対し、カバー109のZ方向及びY方向の寸法は、筐体108と一致させている。よって、外部放熱部107のZ方向及びY方向の寸法は、カバー109のZ方向及びY方向の寸法より小さくする必要がある。図2及び図3に示す無線通信装置の例では、筐体108における、Z方向の長さがY方向の長さよりも長い。つまり、外部放熱部107において、X方向及びY方向の長さに対し、Z方向の長さはある程度長くすることができる。 As shown in FIGS. 2 and 3, when the length of the external heat radiating section 107 in the X direction increases, the length of the cover 109 covering the external heat radiating section 107 and the blower 106 also needs to be increased in the X direction. As the length of the cover 109 in the X direction increases, the size of the device increases accordingly. Therefore, when the present invention is applied to a wireless communication device having a limited device size, the length of the external radiator 107 in the X direction needs to be as short as possible. On the other hand, the dimensions of the cover 109 in the Z direction and the Y direction match the housing 108. Therefore, the dimensions of the external heat radiating portion 107 in the Z and Y directions need to be smaller than the dimensions of the cover 109 in the Z and Y directions. In the example of the wireless communication device illustrated in FIGS. 2 and 3, the length in the Z direction of the housing 108 is longer than the length in the Y direction. That is, in the external heat radiating portion 107, the length in the Z direction can be made somewhat longer than the length in the X direction and the Y direction.
 図10は、図8における斜線を付した領域Aを示す模式図である。図10に示すように、領域Aは、1本のヒートパイプ105の半分の部分から伝えられる熱を放熱するために割り当てられる領域といえる。フィン107aの領域Aにおける形状は、図9に示す、フィン907aの形状と等価である。つまり、領域Aでは、フィン107aの主面107aにおける、Z方向の長さL4(=L1/2)がY方向(すなわち、送風方向F1)の長さL2よりも短い。 FIG. 10 is a schematic diagram showing a hatched area A in FIG. As shown in FIG. 10, the area A can be said to be an area allocated to radiate heat transmitted from a half portion of one heat pipe 105. The shape of the fin 107a in the region A is equivalent to the shape of the fin 907a shown in FIG. That is, in the region A, the length L4 (= L1 / 2) in the Z direction of the main surface 107a of the fin 107a is shorter than the length L2 in the Y direction (that is, the blowing direction F1).
 図8に示す外部放熱部107における、フィン107aが並ぶ方向の一端と他端に位置するフィンの間の長さL3は、図9に示す放熱フィン群907における、フィン907aが並ぶ方向の一端と他端に位置するフィンの間の長さLxよりも短くできる。これは、図8に示す外部放熱部107では、ヒートパイプ105をZ方向に所定の間隔で並んで複数配置させ、フィン107aのZ方向の長さを、図9に示す放熱フィン群907のフィン907aのZ方向の長さよりも長くしているためである。このようにすることで、放熱性能を、強制空冷における理想的な放熱フィン群907と同等に維持しつつ、スペース的な制約の厳しいx方向の長さの増大を抑えることができる。これにより、本実施の形態にかかる放熱構造体101を無線通信装置に適用する場合、装置サイズの増大を抑制することができる。 The length L3 between the fins located at one end and the other end in the direction in which the fins 107a are arranged in the external heat radiating unit 107 shown in FIG. 8 is equal to one end of the radiating fin group 907 shown in FIG. It can be shorter than the length Lx between the fins located at the other end. This is because in the external heat radiating unit 107 shown in FIG. 8, a plurality of heat pipes 105 are arranged at predetermined intervals in the Z direction, and the length of the fin 107a in the Z direction is set to the fin of the heat radiating fin group 907 shown in FIG. 907a is longer than the length in the Z direction. By doing so, it is possible to suppress the increase in the length in the x direction, which is strictly limited in space, while maintaining the heat radiation performance equal to that of the ideal heat radiation fin group 907 in forced air cooling. Thus, when the heat dissipation structure 101 according to the present embodiment is applied to a wireless communication device, an increase in device size can be suppressed.
 また、強制空冷方式の放熱器においては、隣り合うフィンの間隔を短くすればするほど、表面積が増え、放熱性能が向上する傾向にあるが、フィンの間隔を極端に狭くすると逆に風の流れを阻害する。このため、図8に示す外部放熱部107では、隣り合うフィン107aの間隔は、おおよそ0.5mm以上にするのが好ましい。フィン107aは、一般的に切削や鋳物、押し出しといった工法で作製するが、これらの工法では数mmの隙間が空いてしまう。このため、隣り合うフィンの間隔を0.5mm程度に狭くする場合にはカーリング工法により形成してもよい。 In the forced air cooling type radiator, the shorter the distance between adjacent fins, the larger the surface area and the better the heat radiation performance.However, when the distance between the fins is extremely narrow, the flow of wind Inhibits. For this reason, in the external heat radiating portion 107 shown in FIG. 8, the interval between the adjacent fins 107a is preferably set to about 0.5 mm or more. The fin 107a is generally manufactured by a method such as cutting, casting, or extrusion, but a gap of several mm is left in these methods. Therefore, when the distance between adjacent fins is reduced to about 0.5 mm, the fins may be formed by a curling method.
 図11は、外部放熱部107において、フィン107aをカーリング工法で製造する方法について説明する模式図である。図11に示すように、カーリング工法では、短辺107bBの少なくとも一方に屈曲部107dが設けられたフィン107aを、1枚ずつ、貫通穴107cにおいてヒートパイプ105に嵌め合わせる。屈曲部107dの、フィン107aが並ぶ方向における高さhは、所望のフィン間隔に設定する(例えば、0.5mm)。このようにすると、フィン107aを、貫通穴107cにおいてヒートパイプ105に嵌め込んだときに、フィン107aの屈曲部107dの先端が隣のフィン107aに当接し、フィン間隔が高さhより近づかないように規制される。これにより、外部放熱部107において、隣り合うフィン107aの間隔を所望のフィン間隔とすることができる。なお、図11に示すフィン107aにおいて、屈曲部107dは、主面107bに対し略垂直に折り曲げられて形成されているが、これに限らず、例えば、主面107bに対し所定の曲率で折り曲げられて形成されてもよい。 FIG. 11 is a schematic diagram for explaining a method of manufacturing the fins 107a by the curling method in the external heat radiating section 107. As shown in FIG. 11, in the curling method, the fins 107a provided with the bent portions 107d on at least one of the short sides 107bB are fitted one by one into the heat pipe 105 in the through holes 107c. The height h of the bent portion 107d in the direction in which the fins 107a are arranged is set to a desired fin interval (for example, 0.5 mm). With this configuration, when the fin 107a is fitted into the heat pipe 105 in the through hole 107c, the tip of the bent portion 107d of the fin 107a abuts on the adjacent fin 107a, and the fin interval does not approach the height h. Is regulated. Thereby, in the external heat radiating portion 107, the interval between the adjacent fins 107a can be set to a desired fin interval. In the fin 107a shown in FIG. 11, the bent portion 107d is formed by being bent substantially perpendicularly to the main surface 107b, but is not limited thereto. For example, the bent portion 107d may be bent at a predetermined curvature with respect to the main surface 107b. May be formed.
 上述したカーリング工法のようにする代わりに、フィン107aを、1枚ずつ、貫通穴107cにおいてヒートパイプ105に嵌め込む際に、隣り合うフィン107aの隙間にそれぞれスペーサを挿入するようにしてもよい。スペーサの、フィン107aが並ぶ方向における高さは所望のフィン間隔に設定する。このようにすると、カーリング工法の場合と同様に、フィン間隔が高さhより近づかないようにスペーサにより規制される。 Instead of the curling method described above, when fitting the fins 107a one by one into the heat pipe 105 in the through holes 107c, the spacers may be inserted into the gaps between the adjacent fins 107a. The height of the spacer in the direction in which the fins 107a are arranged is set to a desired fin interval. In this manner, similarly to the case of the curling method, the spacer is regulated by the spacer so that the fin interval does not approach the height h.
[実施の形態2]
 以下、実施の形態2について説明する。
 図12は、実施の形態2にかかる放熱構造体201の構造について説明する模式図である。実施の形態1にかかる放熱構造体101(図3参照)との相違点は、筐体の一部に放熱部を有することである。図12に示すように、放熱構造体201は、筐体208を構成する壁面の所定の部位に設けられた筐体放熱面208dをさらに備える。筐体放熱面208dは、発熱部202と対向する。筐体放熱面208dと発熱部202との間には障害物が存在しない。このようにすることで、放熱性能をより向上させることができる。
[Embodiment 2]
Hereinafter, Embodiment 2 will be described.
FIG. 12 is a schematic diagram illustrating the structure of the heat dissipation structure 201 according to the second embodiment. The difference from the heat dissipation structure 101 according to the first embodiment (see FIG. 3) is that a heat dissipation portion is provided in a part of the housing. As shown in FIG. 12, the heat dissipation structure 201 further includes a housing heat dissipation surface 208d provided at a predetermined portion of a wall surface forming the housing 208. The housing heat radiating surface 208d faces the heat generating portion 202. There is no obstacle between the housing heat radiation surface 208d and the heat generating part 202. By doing so, the heat radiation performance can be further improved.
[変形例1]
 図13は、筐体放熱面の変形例の構成を示す模式図である。図13に示すように、放熱構造体301において、筐体308を構成する壁面の所定の部位に設けられた筐体放熱面308dとヒートパイプ305とは接続されていてもよい。ヒートパイプ305は、パイプ状の容器の中に少量封入された作動液体の蒸発・凝縮の相変化で熱を輸送する一般的なものである。図14は、筐体放熱面308dにおけるヒートパイプ305の配置について説明する模式図である。図14に示すように、ヒートパイプ305の一部が筐体放熱面308dの内部に埋め込まれていてもよい。このようにすることで、放熱性能をより向上させることができる。
[Modification 1]
FIG. 13 is a schematic diagram illustrating a configuration of a modification of the heat dissipation surface of the housing. As shown in FIG. 13, in the heat radiation structure 301, the heat pipe 305 may be connected to the heat radiation surface 308 d of the housing provided at a predetermined portion of the wall surface forming the housing 308. The heat pipe 305 generally transports heat by a phase change of evaporation and condensation of the working liquid sealed in a small amount in a pipe-shaped container. FIG. 14 is a schematic diagram illustrating the arrangement of the heat pipe 305 on the housing heat radiation surface 308d. As shown in FIG. 14, a part of the heat pipe 305 may be embedded in the housing heat dissipation surface 308d. By doing so, the heat radiation performance can be further improved.
[変形例2]
 図15は、筐体放熱面の別の変形例の構成を示す模式図である。図15に示すように、放熱構造体401において、筐体408が筒状の形状である場合、筐体408の蓋を筐体放熱面408dとしてもよい。このようにすることで、放熱性能をより向上させることができる。
[Modification 2]
FIG. 15 is a schematic diagram illustrating a configuration of another modified example of the heat dissipation surface of the housing. As shown in FIG. 15, in the heat dissipation structure 401, when the case 408 has a cylindrical shape, the cover of the case 408 may be a case heat dissipation surface 408d. By doing so, the heat radiation performance can be further improved.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。また、以上で説明した複数の例は、適宜組み合わせて実施されることもできる。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately modified without departing from the gist. Further, the plurality of examples described above can be implemented in combination as appropriate.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the exemplary embodiments, the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2018年9月27日に出願された日本出願特願2018-181997を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-181997 filed on Sep. 27, 2018, the entire disclosure of which is incorporated herein.
1、101、201、301、401 放熱構造体
2、102、202 発熱部
3、103 内部放熱部
5、105、305 ヒートパイプ
6、106 送風機
7、107 外部放熱部
7a、107a フィン
8、108、208、308、408 筐体
208d、308d、408d 筐体放熱面
1, 101, 201, 301, 401 Heat radiating structure 2, 102, 202 Heat generating part 3, 103 Internal heat radiating part 5, 105, 305 Heat pipe 6, 106 Blower 7, 107 External heat radiating part 7a, 107a Fin 8, 108, 208, 308, 408 Case 208d, 308d, 408d Case heat radiation surface

Claims (6)

  1.  筐体の内部に設けられた発熱手段と、
     前記筐体の内部に設けられ、前記発熱手段からの熱を受ける内部放熱手段と、
     筐体の外部に設けられ、長辺と短辺からなる主面を有するフィンが複数枚並んで配置された外部放熱手段と、
     前記内部放熱手段からの熱を前記外部放熱手段に伝えるヒートパイプと、
     前記フィンに対し前記フィンの短辺に沿う方向に送風する送風機と、を備える、放熱構造体。
    A heating means provided inside the housing;
    An internal heat radiating means provided inside the housing and receiving heat from the heat generating means;
    External heat dissipating means provided outside the housing and having a plurality of fins having a main surface composed of a long side and a short side arranged side by side,
    A heat pipe for transmitting heat from the internal heat radiating means to the external heat radiating means,
    And a blower for blowing air to the fin in a direction along a short side of the fin.
  2.  前記ヒートパイプを複数備え、前記ヒートパイプは、前記フィンにおいて、前記フィンの主面の短辺の中央で、かつ、前記フィンの主面の長辺に沿う方向に所定の間隔で並んで配置される、請求項1に記載の放熱構造体。 A plurality of the heat pipes are provided, and the heat pipes are arranged at predetermined centers in the fin at a center of a short side of the main surface of the fin and in a direction along a long side of the main surface of the fin. The heat dissipation structure according to claim 1, wherein
  3.  前記所定の間隔は、前記所定の間隔の半分の長さが、前記フィンの主面の短辺の長さよりも短く設定され、
     前記フィンの主面の短辺の長さは、前記フィンが並ぶ方向の一端と他端に位置するフィンの間の長さよりも短く設定される、請求項2に記載の放熱構造体。
    The predetermined interval is set so that half the length of the predetermined interval is shorter than the length of the short side of the main surface of the fin,
    The heat dissipation structure according to claim 2, wherein a length of a short side of the main surface of the fin is set shorter than a length between fins located at one end and the other end in the direction in which the fins are arranged.
  4.  筐体を構成する壁面の所定の部位に設けられた筐体放熱面をさらに備え、前記筐体放熱面は、前記発熱手段と対向し、かつ、前記筐体放熱面と前記発熱手段との間には障害物が存在しない、請求項1から3のいずれか一項に記載の放熱構造体。 The device further includes a housing heat radiation surface provided at a predetermined portion of a wall surface forming the housing, wherein the housing heat radiation surface faces the heat generating means, and is located between the housing heat radiation surface and the heat generating means. The heat dissipation structure according to any one of claims 1 to 3, wherein no obstacle is present in the heat dissipation structure.
  5.  前記ヒートパイプの一部が前記筐体放熱面の内部に埋め込まれている、請求項4に記載の放熱構造体。 The heat dissipation structure according to claim 4, wherein a part of the heat pipe is embedded in the heat dissipation surface of the housing.
  6.  前記筐体は、屋外に設置する無線通信装置用の筐体である、請求項1から5のいずれか一項に記載の放熱構造体。 6. The heat dissipation structure according to claim 1, wherein the housing is a housing for a wireless communication device installed outdoors. 7.
PCT/JP2019/025585 2018-09-27 2019-06-27 Heat dissipation structure WO2020066185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018181997A JP2020053570A (en) 2018-09-27 2018-09-27 Heat dissipation structure
JP2018-181997 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020066185A1 true WO2020066185A1 (en) 2020-04-02

Family

ID=69953104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025585 WO2020066185A1 (en) 2018-09-27 2019-06-27 Heat dissipation structure

Country Status (2)

Country Link
JP (1) JP2020053570A (en)
WO (1) WO2020066185A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022196065A1 (en) * 2021-03-18 2022-09-22

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227550A (en) * 1975-08-27 1977-03-01 Hitachi Ltd Cooling device of encased electronic apparatus
JPH07288388A (en) * 1994-04-18 1995-10-31 Mitsubishi Cable Ind Ltd Airtight housing
JP2003069269A (en) * 2001-08-23 2003-03-07 Furukawa Electric Co Ltd:The Closed cooling apparatus
JP2005214503A (en) * 2004-01-29 2005-08-11 Fujitsu Ltd Casing having heat radiating function and heat radiation member
JP2005322757A (en) * 2004-05-07 2005-11-17 Sony Corp Cooling device and electronic equipment
JP3153018U (en) * 2009-06-10 2009-08-20 奇▲こう▼科技股▲ふん▼有限公司 Heat dissipation device for communication device housing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227550A (en) * 1975-08-27 1977-03-01 Hitachi Ltd Cooling device of encased electronic apparatus
JPH07288388A (en) * 1994-04-18 1995-10-31 Mitsubishi Cable Ind Ltd Airtight housing
JP2003069269A (en) * 2001-08-23 2003-03-07 Furukawa Electric Co Ltd:The Closed cooling apparatus
JP2005214503A (en) * 2004-01-29 2005-08-11 Fujitsu Ltd Casing having heat radiating function and heat radiation member
JP2005322757A (en) * 2004-05-07 2005-11-17 Sony Corp Cooling device and electronic equipment
JP3153018U (en) * 2009-06-10 2009-08-20 奇▲こう▼科技股▲ふん▼有限公司 Heat dissipation device for communication device housing

Also Published As

Publication number Publication date
JP2020053570A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP4408224B2 (en) Housing with heat dissipation function
JP4936019B2 (en) Motor control device
JP4936020B2 (en) Motor control device
US20130162958A1 (en) Thermal Management of Very Small Form Factor Projectors With Synthetic Jets
KR102329245B1 (en) A cooling apparatus for electronic elements
JP2007288061A (en) Electronic equipment
CN114423135A (en) Radiation source
WO2020066185A1 (en) Heat dissipation structure
JP2007124805A (en) Motor cooling structure and motor
CN213152665U (en) Heat dissipation device and electronic equipment
JP2000164773A (en) Radiator
CN113038781A (en) Servo driver with independent air duct structure
JP2020161840A (en) Heat dissipation structure
JPH0210800A (en) Radiator
KR102290438B1 (en) Junction having heat-exchange unit
WO2018061814A1 (en) Power supply device
WO2017187898A1 (en) Heat sink and housing
JP2003115685A (en) Heat sink
JP2012004493A (en) Electronic equipment device
JP4496491B2 (en) Electronics
JP2005143265A (en) Electric connection box
CN216566044U (en) Automatically controlled box heat abstractor and high temperature hot water unit
JP2009076623A (en) Electronic equipment
JP2005310892A (en) Light emitting device
JP2007281371A (en) Heat dissipating structure for electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867213

Country of ref document: EP

Kind code of ref document: A1