WO2020066144A1 - Low-dielectric substrate material - Google Patents

Low-dielectric substrate material Download PDF

Info

Publication number
WO2020066144A1
WO2020066144A1 PCT/JP2019/023074 JP2019023074W WO2020066144A1 WO 2020066144 A1 WO2020066144 A1 WO 2020066144A1 JP 2019023074 W JP2019023074 W JP 2019023074W WO 2020066144 A1 WO2020066144 A1 WO 2020066144A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate material
dielectric substrate
porous resin
resin layer
low dielectric
Prior art date
Application number
PCT/JP2019/023074
Other languages
French (fr)
Japanese (ja)
Inventor
将義 中村
亮人 松富
慧 三島
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2020066144A1 publication Critical patent/WO2020066144A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a low dielectric substrate material, and more particularly, to a low dielectric substrate material suitably used for manufacturing a high-frequency antenna and a high-speed transmission substrate.
  • Wireless communication of the "fifth generation (5G)” standard can transmit a large amount of data. Moreover, in the wireless communication of the "fifth generation (5G)” standard, the above data can be transmitted at a high speed. In recent years, the use of the "fifth generation (5G)” standard has been increasingly desired. It is rare.
  • a substrate made of a porous material is being studied. Since the porous body has air having the lowest dielectric constant 1 in the pores, the porous body has a relatively low dielectric constant.
  • a metal foil laminate obtained by forming a resin porous layer as an insulating material on a first copper foil and further pressing the second copper foil via an adhesive layer has been proposed. (For example, see Patent Document 1 below).
  • the conventional porous body including Patent Literature 1 is a substrate material of an FPC that transmits data at a conventional speed or wireless communication conforming to “third generation (3G)” or “fourth generation (4G)” standards. Can be used as When the second copper foil is pressed into the porous resin layer, the porous resin layer is largely distorted in the thickness direction, and if the distortion remains, the second copper foil cannot be accurately patterned. There is a defect.
  • the object of the present invention is to provide a low-dielectric substrate material that can be easily mass-produced industrially and that can accurately pattern a metal layer.
  • the present inventors have conducted intensive studies in order to achieve the above-mentioned object. As a result, the present inventors have succeeded in using a porous resin layer having a remarkably high porosity, can be easily mass-produced industrially, and accurately pattern a metal layer. We have invented a low dielectric substrate material that can be used.
  • the present invention (1) is a low dielectric substrate material provided with a porous resin layer and a metal layer in the thickness direction in order.
  • a low dielectric substrate material having a% strain pressure P of 4.5 MPa or more at 180 ° C. is included.
  • the residual strain S measuring the initial thickness T0 of the porous resin layer, subsequently applying a pressure P to the low dielectric substrate material in the thickness direction for 30 minutes, and then releasing the pressure P, After the release of the porous resin layer, the thickness T1 is measured. Then, the residual strain S is obtained by substituting the initial thickness T0 and the post-release thickness T1 into the following equation (1).
  • Residual strain S (%) ([T0 ⁇ T1] / T0) ⁇ 100
  • the present invention (2) includes the low dielectric substrate material according to (1), wherein the porosity of the porous resin layer is 60% or more.
  • the present invention (3) includes the low dielectric substrate material according to (1) or (2), wherein the porous resin layer has closed cells.
  • the low dielectric substrate material has a metal layer, it can be patterned as an antenna corresponding to the fifth generation (5G) standard or a wiring of a high-speed FPC substrate. Specifically, even if the metal layer is patterned under etching conditions that can be mass-produced industrially, an antenna or wiring of a high-speed FPC board that can conform to the fifth generation (5G) can be formed with excellent accuracy.
  • the porous resin layer has a closed cell structure in a high ratio, it is possible to suppress a decrease in pattern accuracy due to penetration of an etching solution used for patterning. That is, since the etchant penetrates into the porous resin layer, it is possible to prevent the portion of the metal layer protected by the resist from being removed by the etchant.
  • the plating liquid immersion is suppressed, A metal layer having a uniform thickness can be formed on the surface of the hole.
  • the plating solution immersion is a phenomenon in which the plating solution enters from the porous resin layer exposed by the drilling.
  • the metal layer is laminated on the porous resin layer at a general pressure of about 3 MPa. In this case, only a small residual strain S of at most 10% (within 10%) is given to the porous resin layer. As a result, since the pores of the porous resin layer are hardly destroyed by the pressurization, the metal layer can be accurately patterned on the wiring.
  • FIG. 1 shows a cross-sectional view of one embodiment of the low dielectric substrate material of the present invention.
  • FIG. 2 shows a cross-sectional view of a pattern laminate obtained from the low dielectric substrate material shown in FIG. 3A and 3B are diagrams for explaining the measurement for obtaining the residual strain.
  • FIG. 3A shows a mode for obtaining the initial thickness of the low dielectric substrate material
  • FIG. 3B shows a mode for compressing the low dielectric substrate material.
  • 3C shows an embodiment in which the low dielectric substrate material is released from compression and has residual strain.
  • FIG. 4 shows the relationship between pressure and residual strain when obtaining a residual strain of 10%.
  • FIG. 5 is a cross-sectional view of a modified example (an embodiment including a porous resin layer, an adhesive layer, and a second metal layer) of the low dielectric substrate material shown in FIG.
  • FIG. 6 is a cross-sectional view of a modified example (an embodiment including a first metal layer, a porous resin layer, and a second metal layer) of the low dielectric substrate material shown in FIG.
  • FIG. 7 is a sectional view of a modified example (an embodiment including a porous resin layer and a second metal layer) of the low dielectric substrate material shown in FIG.
  • FIG. 8 is a cross-sectional view of a modification (an embodiment including a first metal layer and a porous resin layer) of the low dielectric substrate material shown in FIG. 1.
  • FIG. 9 is an image processing diagram obtained by observing a cross section of the low dielectric substrate material of Example 1 with an optical microscope.
  • the low dielectric substrate material 1 has one surface and the other surface facing each other in the thickness direction, and has a shape extending in a surface direction orthogonal to the thickness direction.
  • the low dielectric substrate material 1 is disposed on a first metal layer 3, a porous resin layer 4 disposed on one surface in the thickness direction of the first metal layer 3, and disposed on one surface in a thickness direction of the porous resin layer 4.
  • the semiconductor device includes an adhesive layer 5 and a second metal layer 6 as an example of a metal layer disposed on one surface in the thickness direction of the adhesive layer 5. That is, the low dielectric substrate material 1 includes the first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6 in order from the other side in the thickness direction to one side.
  • low dielectric substrate material 1 includes only first metal layer 3, porous resin layer 4, adhesive layer 5, and second metal layer 6.
  • the first metal layer 3 has one surface and the other surface facing each other in the thickness direction, and has a sheet (plate) shape extending in the surface direction.
  • the first metal layer 3 forms the other surface in the thickness direction of the low dielectric substrate material 1.
  • the material of the first metal layer 3 is not particularly limited, and examples thereof include copper, iron, silver, gold, aluminum, nickel, and alloys thereof (stainless steel, bronze). Preferably, copper is used.
  • the thickness of the first metal layer 3 is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and is, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the porous resin layer 4 has one surface and the other surface opposed in the thickness direction, and has a substantially plate (sheet) shape extending in the surface direction.
  • the other surface of the porous resin layer 4 is in contact (close contact) with one surface of the first metal layer 3.
  • One surface of the porous resin layer 4 is adhered to the second metal layer 6 via the adhesive layer 5.
  • the porous resin layer 4 has many fine pores (pores) 10.
  • the porous resin layer 4 has, for example, one of a closed cell structure and an open cell structure, and preferably mainly has a closed cell structure.
  • the fact that the porous resin layer 4 has a closed cell structure can be confirmed using a penetrant such as that used in a penetrant inspection test (JIS Z 2343-1 etc.) specified in JIS.
  • a permeate having a contact angle to the polymer surface of 25 ° or less and a viscosity of 2.4 mm 2 / s ( 37.8 ° C.) is used.
  • the liquid immersion length of the porous resin layer 4 in the low dielectric substrate material 1 is desirably 500 ⁇ m or less, and more desirably 300 ⁇ m or less.
  • the proportion of closed cells is, for example, more than 50%, preferably 80% or more, more preferably 90% or more, and for example, less than 100%.
  • the 10% strain pressure P for giving the residual strain S10% is set. Can be higher. In other words, the residual strain S at the time of pressing can be reduced.
  • the porosity of the porous resin layer 4 is, for example, 60% or more, more preferably 70% or more, further preferably 80% or more, and particularly preferably 85% or more.
  • the porosity of the porous resin layer 4 is, for example, less than 100%, and further, 99% or less.
  • the porosity is determined, for example, by image analysis of a cross-sectional SEM photograph of the porous resin layer 4. Alternatively, the porosity is determined by calculation based on the following equation.
  • Porosity (%) (1 ⁇ specific gravity of non-porous resin layer / specific gravity of porous resin layer) ⁇ 100
  • the non-porous resin layer is made of the material of the porous resin layer 4, but is not porous but a dense film.
  • the porous resin layer 4 can have a low dielectric constant that can sufficiently cope with the fifth generation (5G) standard and high-speed FPC.
  • the low dielectric substrate material 1 is useful as a substrate material that can sufficiently comply with the fifth generation (5G) standard and high-speed FPC.
  • the porosity is equal to or more than the above lower limit, the 10% strain pressure P when the residual strain S is 10% tends to be low, as described later. In other words, the residual strain S during pressing tends to increase.
  • the above tendency can be suppressed because the porous resin layer 4 is configured so that the 10% strain pressure P when the residual strain S is 10% is reduced. As a result, even after pressing, the first metal layer 3 and the second metal layer 6 can be accurately patterned.
  • the average diameter of the pores 10 in the porous resin layer 4 (that is, the average pore diameter) is, for example, 10 ⁇ m or less, and is, for example, 0.1 ⁇ m or more.
  • the average pore diameter is determined by image analysis of a cross-sectional SEM photograph of the porous resin layer 4. In the image analysis, binarization is performed on the SEM image, the holes 10 are identified, the hole diameter is calculated, and a histogram is formed. In the image analysis, ImageJ is used as analysis software.
  • the dielectric constant of the porous resin layer 4 at a frequency of 60 GHz is appropriately adjusted depending on the porosity and the type of the resin described below, and specifically, is, for example, 2.5 or less, preferably 2.0 or less, Also, for example, it is more than 1.0.
  • the dielectric constant of the porous resin layer 4 is actually measured by a resonator method using a frequency of 60 GHz.
  • the low dielectric substrate material 1 has a low dielectric constant, and is useful as a fifth generation (5G) standard or a high-speed FPC substrate material. Can be used.
  • 5G fifth generation
  • FPC substrate material Can be used.
  • the material of the porous resin layer 4 is not particularly limited, and examples thereof include resins such as a thermosetting resin and a thermoplastic resin.
  • thermosetting resin for example, polycarbonate resin, thermosetting polyimide resin, thermosetting fluorinated polyimide resin, epoxy resin, phenol resin, urea resin, melamine resin, diallyl phthalate resin, silicone resin, thermosetting urethane resin , A fluororesin (a polymer of a fluorine-containing olefin (specifically, polytetrafluoroethylene (PTFE) or the like)), a liquid crystal polymer (LCP), or the like. These can be used alone or in combination of two or more.
  • PTFE polytetrafluoroethylene
  • LCP liquid crystal polymer
  • thermoplastic resin examples include olefin resin, acrylic resin, polystyrene resin, polyester resin, polyacrylonitrile resin, maleimide resin, polyvinyl acetate resin, ethylene-vinyl acetate copolymer, polyvinyl alcohol resin, polyamide resin, and polyvinyl chloride.
  • Resin polyacetal resin, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ketone resin, polyallyl sulfone resin, thermoplastic polyimide resin, thermoplastic fluorinated polyimide resin, thermoplastic urethane resin, poly Examples include ether imide resin, polymethylpentene resin, cellulose resin, liquid crystal polymer, and ionomer. These can be used alone or in combination of two or more.
  • polyimide resin including thermosetting polyimide resin and thermoplastic polyimide resin
  • fluorinated polyimide resin thermosetting fluorinated polyimide resin and thermoplastic fluorinated polyimide resin
  • polycarbonate resins preferably, polycarbonate resins and polyetherimide resins.
  • the porous resin layer 4 can have a skin layer (not shown) formed on one surface and the other surface in the thickness direction.
  • the thickness of the porous resin layer 4 is, for example, 2 ⁇ m or more, preferably 5 ⁇ m or more, and for example, 1,000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the ratio of the thickness of the porous resin layer 4 to the thickness of the low dielectric substrate material 1 is, for example, 0.05 or more, preferably 0.10 or more, more preferably 0.2 or more, and further preferably, It is more than 0.5, particularly preferably 0.6 or more, and for example, 0.95 or less, preferably 0.9 or less, more preferably 0.85 or less.
  • the thickness of the porous resin layer 4 depends on the total thickness of the low dielectric substrate material 1 and the thickness of the layers other than the porous resin layer 4 (specifically, the first metal layer 3, the adhesive layer 5, and the second metal layer 6). It is calculated as a value obtained by subtracting the thickness.
  • the layers other than the porous resin layer 4, specifically, the first metal layer 3, the adhesive layer 5 (described later), and the second metal layer 6 (described later) are all On the other hand, for example, it is non-porous, that is, it is dense without substantially having fine pores.
  • the adhesive layer 5 has a sheet shape along the surface direction on one surface in the thickness direction of the porous resin layer 4.
  • the material of the adhesive layer 5 is not particularly limited, and includes various types of adhesives such as a hot melt type adhesive and a thermosetting type adhesive. Specifically, an acrylic type adhesive, an epoxy type adhesive And silicone-based adhesives. Preferably, an acrylic adhesive is used.
  • the thickness of the adhesive layer 5 is, for example, 2 ⁇ m or more, preferably 5 ⁇ m or more, and is, for example, 50 ⁇ m or less, preferably 25 ⁇ m or less.
  • the second metal layer 6 has one surface and the other surface facing each other in the thickness direction, and has a sheet (plate) shape extending in the surface direction.
  • the second metal layer 6 forms one surface in the thickness direction of the low dielectric substrate material 1.
  • the other surface of the second metal layer 6 is adhered to one surface of the porous resin layer 4 via the adhesive layer 5.
  • the material and thickness of the second metal layer 6 are the same as those of the first metal layer 3.
  • the thickness of the low dielectric substrate material 1 is the total thickness of the first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, Also, for example, it is 5,000 ⁇ m or less, preferably 2,000 ⁇ m or less.
  • each member is stacked (formed) while being conveyed by a roll-to-roll method.
  • the first metal layer 3 is prepared.
  • a foil (metal foil) made of the above-described material is prepared as the first metal layer 3.
  • the porous resin layer 4 is formed on one surface of the first metal layer 3.
  • the porous resin layer 4 is formed (built) on one surface of the first metal layer 3.
  • a varnish containing the above-described resin precursor, a porogen, a nucleating agent, and a solvent is prepared, and then, the varnish is applied to one surface of the first metal layer 3 to be applied.
  • the varnish is applied to one surface of the first metal layer 3 to be applied.
  • the types, blending ratios, and the like of the porosity, nucleating agent, and solvent in the varnish are described in, for example, JP-A-2018-021171, JP-A-2018-021172, and the like.
  • the number of parts by mass (mixing ratio) of the porogen is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, and preferably 300 parts by mass with respect to 100 parts by mass of the precursor. Or less, more preferably 250 parts by mass or less.
  • the nucleating agent is a foaming nucleating agent (cell regulator) that becomes a nucleus when the precursor is foamed (porous).
  • a foaming nucleating agent cell regulator
  • a fluororesin polymer of fluorinated olefin
  • poly (chlorotrifluoroethylene) such as poly (chlorotrifluoroethylene)
  • meth monomer unit
  • Copolymers containing acrylic acid esters and the above-mentioned fluorine-containing olefins are also included.
  • the nucleating agent may be in a solid state, a liquid state, or a semi-solid state at room temperature (23 ° C.), and is preferably in a solid state. If the nucleating agent is solid at room temperature, examples of the shape of the nucleating agent include a substantially spherical shape, a substantially plate shape, a substantially needle shape, and an indefinite shape (including a lump shape). No.
  • the average value of the maximum length of the nucleating agent is, for example, less than 5,000 nm, preferably 2,000 nm or less. Preferably, it is less than 1,000 nm, for example, 1 nm or more.
  • the nucleating agent may be prepared in advance as a slurry dispersed in a solvent (PTFE).
  • the porogen is extracted from the precursor (pulled out or removed) by, for example, a supercritical extraction method using supercritical carbon dioxide as a solvent.
  • the precursor is cured by heating to form a resin having porosity, specifically, the porous resin layer 4.
  • the adhesive layer 5 is disposed on one surface of the porous resin layer 4.
  • an adhesive is applied to one surface of the porous resin layer 4, or an adhesive layer 5 previously formed into a sheet from the adhesive is attached to one surface of the porous resin layer 4.
  • the second metal layer 6 is disposed on one surface of the adhesive layer 5.
  • a foil (metal foil) made of the above-described material is attached to one surface of the adhesive layer 5.
  • the low dielectric substrate material 1 is manufactured.
  • the low dielectric substrate material 1 is used for various applications, for example, and is preferably used for manufacturing a high-frequency antenna or a high-speed transmission board (such as a high-speed transmission FPC) conforming to the fifth generation (5G) standard. Specifically, the low dielectric substrate material 1 is used as a substrate material for a high-frequency antenna or a high-speed FPC.
  • the second metal layer 6 is patterned by photolithography (for example, a subtractive method) as shown in FIG.
  • One-sided wiring 17 such as (differential wiring) and antenna wiring is formed.
  • the first metal layer 3 is patterned by photolithography to form the other-side wiring 18 such as a ground wiring, for example.
  • a pattern laminated material 13 having the other side wiring 18, the porous resin layer 4, the adhesive layer 5, and the one side wiring 17 sequentially in the thickness direction is manufactured.
  • 5G high-frequency antennas and high-speed transmission boards conforming to (5G) standards.
  • this low dielectric substrate material 1 has a porous resin layer 4, and the porous resin layer 4 is 60% or more, more preferably 70% or more, further preferably 80% or more, and particularly preferably, When it has a high porosity of 85% or more, it can have a sufficiently low low dielectric constant.
  • the low dielectric constant is, for example, 2.5 or less, preferably 2.0 or less. Accordingly, the low dielectric substrate material 1 can have a low dielectric constant that can be used for an antenna substrate for wireless communication of the fifth generation (5G) standard or high-speed FPC.
  • the low dielectric substrate material 1 includes the first metal layer 3 and the second metal layer 6, it can be patterned as an antenna corresponding to the fifth generation (5G) standard or a wiring of a high-speed FPC board. Specifically, even if the first metal layer 3 and the second metal layer 6 are patterned under industrial etching conditions, the wiring of the antenna or the high-speed FPC board that can be adapted to the fifth generation (5G) is excellent. It can be formed with high precision.
  • the porous resin layer 4 has a closed cell structure, and the ratio of the closed cells is more than 50%, further, 80% or more, and further, as high as 90% or more, patterning is performed. It is possible to suppress a decrease in pattern accuracy due to the penetration of the used etching solution. Therefore, in the low dielectric substrate material 1, the other-side wiring 18 and the one-side wiring 17 can be accurately formed from the first metal layer 3 and the second metal layer 6.
  • the thickness and the like of the low-dielectric substrate material 1 are exaggerated in order to visually recognize the residual strain S. Including.
  • the 10% strain pressure P is 4.5 MPa or more at 180 ° C.
  • Residual strain S As shown in FIGS. 1 and 3A, first, the initial thickness T0 of the porous resin layer 4 in the low dielectric substrate material 1 is measured, and then, as shown in FIG. The substrate material 1 is applied in the thickness direction for 30 minutes, and thereafter, as shown in FIG. 3C, the pressure P is released, and the post-release thickness T1 of the porous resin layer 4 in the low dielectric substrate material 1 is measured. After that, the residual strain S is obtained by substituting the initial thickness T0 and the post-release thickness T1 of the porous resin layer 4 into the following equation.
  • Residual strain S (%) ([T0 ⁇ T1] / T0) ⁇ 100 The above pressure application and release are performed at 180 ° C.
  • the application of the 10% strain pressure P to the low dielectric substrate material 1 is performed by, for example, a press 2 having two flat plates as shown in FIG. 3B. At this time, among the layers in the low dielectric substrate material 1, mainly the thickness of the porous resin layer 4 is significantly reduced. On the other hand, since the layers other than the porous resin layer 4, specifically, the first metal layer 3, the adhesive layer 5, and the second metal layer 6 are hard at room temperature (23 ° C.), a 10% strain pressure P After application to the low dielectric substrate material 1, does not substantially change (do not become thin) (become substantially the same thickness) from before the application.
  • the pressure is increased by a pressure P2 higher than the previous pressure P1. Release and test (retest) to 10%. Further, as shown in FIG. 4, when the retest at the pressure P2 exceeds 10% (flow of the arrow), the pressure P1 of less than 10% (the pressure at the time of the first test) P1 and the corresponding strain ( An approximation line (calibration curve) L passing through the pressure exceeding 10% (pressure at the second test) P2 and the corresponding distortion (open point) is obtained, and the residual distortion is obtained from this. A 10% strain pressure P that becomes S10% is estimated.
  • the 10% strain pressure P at which 10% residual strain S is applied to the low dielectric substrate material 1 is 4.5 MPa or more at 180 ° C., it is selected as the low dielectric substrate material of the present invention. Conversely, if it is less than 4.5 MPa, it is excluded from the low dielectric substrate material of the present invention.
  • the low dielectric substrate material 1 is usually subjected to the process (specifically, the second metal layer 6 Since the pressure (assumed pressure) applied during the laminating process is about 4.5 MPa, if the low dielectric substrate material 1 of the comparative example is loaded at a pressure exceeding the assumed pressure P, a low dielectric The residual strain S applied to the substrate material 1 exceeds 10%. That is, a large residual strain S is given to the low dielectric substrate material 1. Therefore, the following problem occurs.
  • the porous resin layer 4 has a residual strain S exceeding 10%, the first metal layer 3 and the second metal layer 6 arranged on both sides in the thickness direction of the porous resin layer 4 are precisely patterned. Can not.
  • the numerical value of 10% of the residual strain S is accurately transferred from the first metal layer 3 and the second metal layer 6 disposed on both sides in the thickness direction of the porous resin layer 4 to the other wiring 18 and the one wiring 17. It means the limit value that can be formed (patterned).
  • the 10% strain pressure P giving 10% residual strain S is as low as less than 4.5 MPa
  • the second metal layer 6 is pressed against the porous resin layer 4 at a low pressure
  • the porous resin layer 4 has an extremely large residual strain S (at least 10% residual strain S). Therefore, patterning from the first metal layer 3 and the second metal layer 6 to the other wiring 18 and the one wiring 17 cannot be accurately performed.
  • the low dielectric substrate material 1 provided with such a porous resin layer 4 is not suitable as a substrate material that can sufficiently and reliably cope with the fifth generation (5G) wireless communication and high-speed FPC.
  • pressure is applied at a low pressure, the adhesive force between the first metal layer 3 and the porous resin layer 4 and the adhesive force between the porous resin layer 4 and the second metal layer 6 are reduced. Not suitable.
  • the 10% strain pressure P giving 10% residual strain S is as high as 180 ° C. and 4.5 MPa or more
  • the second metal layer 6 is generally applied to the porous resin layer 4.
  • a moderate pressure about 3 MPa
  • only 10% (within 10%) of residual strain S is applied to the porous resin layer 4 at most, so that pores in the porous resin layer are almost destroyed by the pressurization.
  • it is useful as a low-dielectric substrate material that can sufficiently and reliably cope with wireless communication of the fifth generation (5G) standard and high-speed FPC.
  • the low dielectric substrate material 1 has a high 10% strain pressure P that gives a residual strain S of 10% of 4.5 MPa, the second metal layer 6 is pressed against the porous resin layer 4 at a high pressure, for example.
  • the low dielectric substrate material 1 in which the second metal layer 6 adheres to the porous resin layer 4 can be easily manufactured. As a result, the low dielectric substrate material 1 can be easily and industrially mass-produced.
  • the low dielectric substrate material 1 is applied in the thickness direction at a temperature of 180 ° C., preferably at a strain pressure P of 10% of more than 4.5 MPa, more preferably 4.6 MPa or more, and even more preferably 4.7 MPa or more. When pressed, the residual strain S becomes 10%.
  • the configuration (method) for forming the low dielectric substrate material 1 in which the 10% strain pressure P for giving the residual strain S of 10% is 4.5 MPa or more is not particularly limited, and any method commonly used by those skilled in the art is adopted. Is done.
  • the porous resin layer 4 has the pores 10 having a closed cell structure, and the ratio of the closed cells is, for example, more than 50%, preferably 80% or more, more preferably , 90% or more.
  • the material of the porous resin layer 4 can be selected from, for example, a polyimide resin, a fluorinated polyimide resin, a polycarbonate resin, and a polyetherimide resin. It is more preferable from the viewpoint of the properties and mechanical strength.
  • the polyimide resin is a material most suitable for lamination (press bonding) by pressure included in the manufacturing process of the low dielectric substrate material 1 including the porous resin layer 4 having a closed cell structure.
  • a 10% strain pressure P for giving a residual strain S of 10% is 10.0 MPa or less.
  • the low dielectric substrate material 1 is manufactured by roll-to-roll.
  • the present invention is not limited to this.
  • the low dielectric substrate material 1 can be manufactured by a batch method (single wafer type).
  • the low dielectric substrate material 1 includes the first metal layer 3, but for example, as illustrated in FIG. 5, the low dielectric substrate material 1 may not include the first metal layer 3.
  • the low dielectric substrate material 1 includes a porous resin layer 4, an adhesive layer 5, and a second metal layer 6 in this order in the thickness direction.
  • the porous resin layer 4 shown in FIG. 5 forms the other surface in the thickness direction of the low dielectric substrate material 1.
  • the other surface in the thickness direction of the porous resin layer 4 is exposed toward the other side in the thickness direction.
  • Both the initial thickness T0 and the released thickness T1 measured when obtaining the residual strain S in the low dielectric substrate material 1 shown in FIG. 5 are the thicknesses of the porous resin layer 4.
  • the low dielectric substrate material 1 does not have to include the adhesive layer 5.
  • the low-dielectric substrate material 1 includes the first metal layer 3, the porous resin layer 4, and the second metal layer 6 in order from one side in the thickness direction to one side in the thickness direction.
  • One side in the thickness direction of the porous resin layer 4 shown in FIG. 6 is in direct contact (close contact) with the other side in the thickness direction of the second metal layer 6.
  • Both the initial thickness T0 and the post-release thickness T1 measured when obtaining the residual strain S in the low dielectric substrate material 1 shown in FIG. 6 are the thicknesses of the porous resin layer 4.
  • the low dielectric substrate material 1 does not include the first metal layer 3 and the adhesive layer 5, but includes the porous resin layer 4 and the second metal layer 6 in order toward one side in the thickness direction. be able to.
  • Both the initial thickness T0 and the post-release thickness T1 measured when obtaining the residual strain S in the low dielectric substrate material 1 shown in FIG. 7 are the thicknesses of the porous resin layer 4.
  • the second metal layer 6 is given as an example of the metal layer.
  • the first metal layer 3 is used as an example of the metal layer instead of the second metal layer 6. Can also be mentioned.
  • the low dielectric substrate material 1 includes the first metal layer 3 and the porous resin layer 4 in order from one side in the thickness direction to one side in the thickness direction.
  • One surface in the thickness direction of the porous resin layer 4 shown in FIG. 8 forms one surface in the thickness direction of the low dielectric substrate material 1.
  • One surface in the thickness direction of the porous resin layer 4 is exposed on one side in the thickness direction.
  • Both the initial thickness T0 and the post-release thickness T1 measured when obtaining the residual strain S in the low dielectric substrate material 1 shown in FIG. 8 are the thicknesses of the porous resin layer 4.
  • the method for obtaining the low dielectric substrate material 1 shown in FIG. 8 is not limited to the method of forming the first metal layer 3 on one surface in the thickness direction as exemplified in one embodiment.
  • the first metal layer 3 and the porous resin The layers 4 may be stuck together.
  • the 10% strain pressure P at which the residual strain S becomes 10% is as high as 4.5 MPa or more at 180 ° C.
  • the first metal layer 3 and the porous resin layer 4 are subjected to high pressure.
  • the remaining strain S of the porous resin layer 4 can be reduced even after the bonding by the press of the first step, and thereafter, the other-side wiring 18 (see FIG.
  • Example 1 First, a first metal layer 3 made of copper and having a thickness of 12 ⁇ m was prepared.
  • a varnish is prepared by blending 200 parts by weight of a porogen comprising MM400, weight average molecular weight 400), 3 parts by weight of a nucleating agent comprising PTFE having an average particle diameter of 1,000 nm or less, and NMP (N-methylpyrrolidone). did.
  • the nucleating agent was prepared in advance as a slurry dispersed in NMP and blended with the polyimide precursor. The total number of NMP in the varnish was adjusted so as to be 150 parts by mass with respect to 100 parts by mass of the polyimide precursor, including those contained in the slurry.
  • This varnish is applied to one surface of the first metal layer 3 and dried by heating at 100 ° C. for 15 minutes, then at 120 ° C. for 15 minutes to remove NMP, and then by supercritical extraction. Then, the porous agent was removed, followed by heating at 380 ° C. for 2 hours under vacuum to imidize the polyimide resin, thereby forming a porous resin layer 4 made of polyimide on one surface of the first metal layer 3.
  • the thickness of the porous resin layer 4 was 120 ⁇ m.
  • the porosity of the porous resin layer 4 was 80%, and the average pore diameter was 7 ⁇ m.
  • the dielectric constant of the porous resin layer 4 at a frequency of 60 GHz was 1.5.
  • an adhesive layer 5 made of an acrylic adhesive and having a thickness of 5 ⁇ m was formed on one surface of the porous resin layer 4.
  • a second metal layer 6 made of copper and having a thickness of 12 ⁇ m was bonded to one surface of the adhesive layer 5 in the thickness direction.
  • the low dielectric substrate material 1 including the first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6 in this order on one side in the thickness direction is manufactured. did.
  • the thickness of the low dielectric substrate material 1 was 149 ⁇ m as the total thickness of the first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6.
  • the thickness T0 of the porous resin layer 4 is 120 ⁇ m, which is a value obtained by subtracting the total thickness of the first metal layer 3, the adhesive layer 5, and the second metal layer 6 from the thickness of the low dielectric substrate material 1 described above. did.
  • Example 2 As shown in FIG. 8, a low dielectric substrate material 1 was manufactured in the same manner as in Example 1 except that the adhesive layer 5 and the second metal layer 6 were not provided on the printed circuit board 1. That is, the printed circuit board 1 includes the first metal layer 3 having a thickness of 12 ⁇ m and the porous resin layer 4 having a thickness of 120 ⁇ m in this order.
  • the thickness of the low dielectric substrate material 1 was 132 ⁇ m.
  • the thickness T0 of the porous resin layer 4 was 120 ⁇ m as a value obtained by subtracting the thickness of the first metal layer 3 from the thickness of the low dielectric substrate material 1.
  • Comparative Example 1 A low-dielectric substrate material 1 was produced in the same manner as in Example 2, except that polypropylene glycol (grade: D400, weight average molecular weight 400, manufactured by NOF Corporation) was changed from polyoxyethylene dimethyl ether as a porosifying agent. .
  • polypropylene glycol grade: D400, weight average molecular weight 400, manufactured by NOF Corporation
  • the low-dielectric substrate material is preferably used for manufacturing a high-frequency antenna or a high-speed transmission substrate conforming to the fifth generation (5G) standard.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

This low-dielectric substrate material is provided with a porous resin layer and a metal layer in sequence in the thickness direction. If the pressure to impart 10% residual strain S, described hereinafter, is the 10% strain pressure P, this 10% strain pressure P is at least 4.5 MPa at 180°C. Residual strain S: the initial thickness T0 of the porous resin layer is measured, then the pressure P is applied to the low-dielectric substrate material for 30 minutes in the thickness direction, then the pressure P is released, and the post-release thickness T1 of the porous resin layer is measured. The initial thickness T0 and the post-release thickness T1 are substituted into the following formula (1) to obtain the residual strain S. Residual strain S (%) = ([T0 – T1] / T0) × 100

Description

低誘電基板材Low dielectric substrate material
 本発明は、低誘電基板材、詳しくは、高周波アンテナや高速伝送基板の製造に好適に用いられる低誘電基板材に関する。 The present invention relates to a low dielectric substrate material, and more particularly, to a low dielectric substrate material suitably used for manufacturing a high-frequency antenna and a high-speed transmission substrate.
 従来、いわゆる「第三世代(3G)」や「第四世代(4G)」の規格の無線通信が広く利用されている。しかしながら、近年、画像データ等の通信容量がより一層増加する傾向(大容量化の傾向)にあり、上記した規格の無線通信では、大容量のデータを、実用レベルの速度で伝送できない。 Conventionally, so-called “third generation (3G)” and “fourth generation (4G)” wireless communication standards have been widely used. However, in recent years, the communication capacity of image data and the like has tended to further increase (increase in capacity), and large-capacity data cannot be transmitted at a practical level in wireless communication of the above-described standard.
 そこで、いわゆる「第五世代(5G)」の規格の無線通信の開発が進められている。「第五世代(5G)」の規格の無線通信であれば、大容量のデータを伝送できる。しかも、この「第五世代(5G)」の規格の無線通信では、上記のデータを、高速で伝送することもでき、近年、ますます、「第五世代(5G)」の規格の利用が望まれている。 Therefore, the development of so-called "fifth generation (5G)" wireless communication is being promoted. Wireless communication of the "fifth generation (5G)" standard can transmit a large amount of data. Moreover, in the wireless communication of the "fifth generation (5G)" standard, the above data can be transmitted at a high speed. In recent years, the use of the "fifth generation (5G)" standard has been increasingly desired. It is rare.
 また、材料が多孔質体である基板も検討されている。多孔質体は、最も低い誘電率1である空気を孔内に有することから、多孔質体は誘電率が比較的低くなる。例えば、第1の銅箔の上に、絶縁材である樹脂多孔質層を形成し、さらに、第2の銅箔を接着層を介してプレスして得られる金属箔積層板が提案されている(例えば、下記特許文献1参照。)。 基板 Also, a substrate made of a porous material is being studied. Since the porous body has air having the lowest dielectric constant 1 in the pores, the porous body has a relatively low dielectric constant. For example, a metal foil laminate obtained by forming a resin porous layer as an insulating material on a first copper foil and further pressing the second copper foil via an adhesive layer has been proposed. (For example, see Patent Document 1 below).
特開2004-82372号公報JP-A-2004-82372
 しかし、特許文献1を含む従来の多孔質体は、「第三世代(3G)」や「第四世代(4G)」の規格の無線通信や、従来の速度でデータを伝送するFPCの基板材として利用できるが、
第2の銅箔を樹脂多孔質層にプレスするときに、樹脂多孔質層が厚み方向に大きく歪み、しかも、その歪みが残存する場合には、第2の銅箔を精度よくパターンニングできないという不具合がある。
However, the conventional porous body including Patent Literature 1 is a substrate material of an FPC that transmits data at a conventional speed or wireless communication conforming to “third generation (3G)” or “fourth generation (4G)” standards. Can be used as
When the second copper foil is pressed into the porous resin layer, the porous resin layer is largely distorted in the thickness direction, and if the distortion remains, the second copper foil cannot be accurately patterned. There is a defect.
 しかし、多孔質体を備える金属箔積層板を、簡便、かつ、工業的に製造する方法は、これまでのところ、まだ確立されていない。 However, a method for easily and industrially producing a metal foil laminate having a porous body has not yet been established so far.
 本発明は、簡便に、工業的に量産でき、金属層を精度よくパターンニングできる低誘電基板材を提供することにある。 The object of the present invention is to provide a low-dielectric substrate material that can be easily mass-produced industrially and that can accurately pattern a metal layer.
 そこで、本発明者らは、上記目的を達成すべく、鋭意検討した結果、空孔率が顕著に高い多孔質樹脂層を使いこなして、簡便、工業的に量産でき、金属層を精度よくパターンニングできる低誘電基板材を発明するに至った。 Thus, the present inventors have conducted intensive studies in order to achieve the above-mentioned object. As a result, the present inventors have succeeded in using a porous resin layer having a remarkably high porosity, can be easily mass-produced industrially, and accurately pattern a metal layer. We have invented a low dielectric substrate material that can be used.
 本発明(1)は、多孔質樹脂層および金属層を厚み方向に順に備える低誘電基板材であり、10%の下記残存歪みSを与える圧力を10%歪み圧力Pとしたときに、その10%歪み圧力Pが180℃で4.5MPa以上である、低誘電基板材を含む。 The present invention (1) is a low dielectric substrate material provided with a porous resin layer and a metal layer in the thickness direction in order. A low dielectric substrate material having a% strain pressure P of 4.5 MPa or more at 180 ° C. is included.
 前記残存歪みS:前記多孔質樹脂層の初期厚みT0を測定し、続いて、圧力Pを前記低誘電基板材に対して30分間、前記厚み方向にかけ、その後、圧力Pを解放し、前記多孔質樹脂層の解放後厚みT1を測定する。その後、初期厚みT0および解放後厚みT1を下記式(1)に代入して、前記残存歪みSが得られる。 The residual strain S: measuring the initial thickness T0 of the porous resin layer, subsequently applying a pressure P to the low dielectric substrate material in the thickness direction for 30 minutes, and then releasing the pressure P, After the release of the porous resin layer, the thickness T1 is measured. Then, the residual strain S is obtained by substituting the initial thickness T0 and the post-release thickness T1 into the following equation (1).
 残存歪みS(%)=([T0-T1]/T0)×100
 本発明(2)は、前記多孔質樹脂層の空孔率が、60%以上である、(1)に記載の低誘電基板材を含む。
Residual strain S (%) = ([T0−T1] / T0) × 100
The present invention (2) includes the low dielectric substrate material according to (1), wherein the porosity of the porous resin layer is 60% or more.
 本発明(3)は、前記多孔質樹脂層は、独立気泡を有する、(1)または(2)に記載の低誘電基板材を含む。 The present invention (3) includes the low dielectric substrate material according to (1) or (2), wherein the porous resin layer has closed cells.
 低誘電基板材は、金属層を備えるので、第五世代(5G)の規格に対応するアンテナや高速FPCの基板の配線としてパターンニングすることができる。具体的には、工業的に量産できるエッチング条件で、金属層をパターンニングしても、第五世代(5G)に適合できるアンテナや高速FPCの基板の配線を、優れた精度で形成できる。 (5) Since the low dielectric substrate material has a metal layer, it can be patterned as an antenna corresponding to the fifth generation (5G) standard or a wiring of a high-speed FPC substrate. Specifically, even if the metal layer is patterned under etching conditions that can be mass-produced industrially, an antenna or wiring of a high-speed FPC board that can conform to the fifth generation (5G) can be formed with excellent accuracy.
 また、多孔質樹脂層が独立気泡構造を高い割合で有する場合には、パターンニングで用いられるエッチング液の染み込みに起因するパターン精度の低下を抑制することができる。
すなわち、エッチング液が多孔質樹脂層に染み込むことで、金属層においてレジストで保護されている部分までもがエッチング液により除去されることを、抑制することができる。
さらに、低誘電基板材からアンテナ回路基板などを作製するため、本発明の低誘電基板材にドリルやレーザーなどで穴あけをした上でめっき処理をするときに、めっき液浸が抑制されるため、厚みが均一な金属層を穴の表面に形成することができる。ここでめっき液浸とは、前記穴あけにより露出した多孔質樹脂層からめっき液が侵入する現象である。
In addition, when the porous resin layer has a closed cell structure in a high ratio, it is possible to suppress a decrease in pattern accuracy due to penetration of an etching solution used for patterning.
That is, since the etchant penetrates into the porous resin layer, it is possible to prevent the portion of the metal layer protected by the resist from being removed by the etchant.
Furthermore, in order to manufacture an antenna circuit board or the like from a low-dielectric substrate material, when the low-dielectric substrate material of the present invention is plated with a drill or a laser and then plated, the plating liquid immersion is suppressed, A metal layer having a uniform thickness can be formed on the surface of the hole. Here, the plating solution immersion is a phenomenon in which the plating solution enters from the porous resin layer exposed by the drilling.
 そこで、低誘電基板材の作製工程において、加圧により、接着層を介して金属層を多孔質樹脂層に接着する際に、多孔質樹脂層の空孔が潰れない程度の圧力をかける必要がある。しかしながら、加圧する圧力が低すぎると、金属層と多孔質樹脂層とが充分に接着されない。そこで、発明者は、多孔質樹脂層の空孔の維持と、金属層および多孔質樹脂層の接着とを両立できる圧力を見出した。 Therefore, in the process of manufacturing the low dielectric substrate material, when the metal layer is bonded to the porous resin layer via the adhesive layer by pressing, it is necessary to apply pressure such that the pores of the porous resin layer are not crushed. is there. However, if the applied pressure is too low, the metal layer and the porous resin layer are not sufficiently bonded. Then, the inventor has found a pressure at which the maintenance of the pores of the porous resin layer and the adhesion of the metal layer and the porous resin layer can both be achieved.
 しかるに、10%の残存歪みSを与える圧力Pが180℃で4.5MPa未満と低い場合には、金属層を多孔質樹脂層に対して低圧で加圧したときでも、比較的大きな残存歪みS(少なくとも10%超過の残存歪みS)を多孔質樹脂層に与える。その場合、第五世代(5G)の規格の無線通信や、高速FPCに十分かつ確実に対応できる基板材として不適である。 However, when the pressure P at which the residual strain S of 10% is given is as low as less than 4.5 MPa at 180 ° C., even when the metal layer is pressed against the porous resin layer at a low pressure, the relatively large residual strain S is obtained. (Residual strain S exceeding at least 10%) is applied to the porous resin layer. In that case, it is not suitable as a substrate material that can sufficiently and surely cope with the fifth generation (5G) wireless communication and high-speed FPC.
 一方、この低誘電基板材では、10%の残存歪みSを与える圧力Pが180℃で4.5MPa以上と高いので、3MPa程度の一般的な圧力で金属層を多孔質樹脂層に対して積層する場合には、残存歪みSが多くても10%(10%以内)の小さな残存歪みSのみを多孔質樹脂層に与える。結果として、加圧によって多孔質樹脂層の空孔がほとんど破壊されないため、金属層を精度よく配線にパターンニングすることができる。 On the other hand, in this low dielectric substrate material, since the pressure P at which a residual strain S of 10% is applied is as high as 4.5 MPa or more at 180 ° C., the metal layer is laminated on the porous resin layer at a general pressure of about 3 MPa. In this case, only a small residual strain S of at most 10% (within 10%) is given to the porous resin layer. As a result, since the pores of the porous resin layer are hardly destroyed by the pressurization, the metal layer can be accurately patterned on the wiring.
図1は、本発明の低誘電基板材の一実施形態の断面図を示す。FIG. 1 shows a cross-sectional view of one embodiment of the low dielectric substrate material of the present invention. 図2は、図1に示す低誘電基板材から得られるパターン積層材の断面図を示す。FIG. 2 shows a cross-sectional view of a pattern laminate obtained from the low dielectric substrate material shown in FIG. 図3A~図3Bは、残存歪みを求めるための測定を説明する図面であり、図3Aが、低誘電基板材の初期厚みを求める態様、図3Bが、低誘電基板材を圧縮する態様、図3Cが、低誘電基板材を圧縮から解放し、残存歪みを有する態様を示す。3A and 3B are diagrams for explaining the measurement for obtaining the residual strain. FIG. 3A shows a mode for obtaining the initial thickness of the low dielectric substrate material, and FIG. 3B shows a mode for compressing the low dielectric substrate material. 3C shows an embodiment in which the low dielectric substrate material is released from compression and has residual strain. 図4は、残存歪み10%を求めるときの、圧力と残存歪みとの関係を示す。FIG. 4 shows the relationship between pressure and residual strain when obtaining a residual strain of 10%. 図5は、図1に示す低誘電基板材の変形例(多孔質樹脂層、接着層および第2金属層を備える態様)の断面図を示す。FIG. 5 is a cross-sectional view of a modified example (an embodiment including a porous resin layer, an adhesive layer, and a second metal layer) of the low dielectric substrate material shown in FIG. 図6は、図1に示す低誘電基板材の変形例(第1金属層、多孔質樹脂層および第2金属層を備える態様)の断面図を示す。FIG. 6 is a cross-sectional view of a modified example (an embodiment including a first metal layer, a porous resin layer, and a second metal layer) of the low dielectric substrate material shown in FIG. 図7は、図1に示す低誘電基板材の変形例(多孔質樹脂層および第2金属層を備える態様)の断面図を示す。FIG. 7 is a sectional view of a modified example (an embodiment including a porous resin layer and a second metal layer) of the low dielectric substrate material shown in FIG. 図8は、図1に示す低誘電基板材の変形例(第1金属層および多孔質樹脂層を備える態様)の断面図を示す。FIG. 8 is a cross-sectional view of a modification (an embodiment including a first metal layer and a porous resin layer) of the low dielectric substrate material shown in FIG. 1. 図9は、実施例1の低誘電基板材の断面を光学顕微鏡で観察した画像処理図を示す。FIG. 9 is an image processing diagram obtained by observing a cross section of the low dielectric substrate material of Example 1 with an optical microscope.
  <一実施形態>
 本発明の多孔質樹脂層の一実施形態を備える低誘電基板材を、図1~図2を参照して説明する。
<One embodiment>
A low dielectric substrate material provided with one embodiment of the porous resin layer of the present invention will be described with reference to FIGS.
  [基本態様]
 まず、この低誘電基板材1の基本態様である層構成、製造方法および使用方法等を順に説明する。
[Basic aspect]
First, a layer configuration, a manufacturing method, a usage method, and the like, which are basic aspects of the low dielectric substrate material 1, will be described in order.
  〔低誘電基板材およびその層構成〕
 図1に示すように、低誘電基板材1は、厚み方向に対向する一方面および他方面を有しており、厚み方向に直交する面方向に延びる形状を有する。
(Low dielectric substrate material and its layer structure)
As shown in FIG. 1, the low dielectric substrate material 1 has one surface and the other surface facing each other in the thickness direction, and has a shape extending in a surface direction orthogonal to the thickness direction.
 この低誘電基板材1は、第1金属層3と、第1金属層3の厚み方向一方面に配置される多孔質樹脂層4と、多孔質樹脂層4の厚み方向一方面に配置される接着層5と、接着層5の厚み方向一方面に配置される金属層の一例としての第2金属層6とを備える。つまり、低誘電基板材1は、第1金属層3と、多孔質樹脂層4と、接着層5と、第2金属層6とを厚み方向他方側から一方側に向かって順に備える。好ましくは、低誘電基板材1は、第1金属層3と、多孔質樹脂層4と、接着層5と、第2金属層6とのみを備える。 The low dielectric substrate material 1 is disposed on a first metal layer 3, a porous resin layer 4 disposed on one surface in the thickness direction of the first metal layer 3, and disposed on one surface in a thickness direction of the porous resin layer 4. The semiconductor device includes an adhesive layer 5 and a second metal layer 6 as an example of a metal layer disposed on one surface in the thickness direction of the adhesive layer 5. That is, the low dielectric substrate material 1 includes the first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6 in order from the other side in the thickness direction to one side. Preferably, low dielectric substrate material 1 includes only first metal layer 3, porous resin layer 4, adhesive layer 5, and second metal layer 6.
 〔第1金属層〕
 第1金属層3は、厚み方向に対向する一方面および他方面を有しており、面方向に延びるシート(板)形状を有する。第1金属層3は、低誘電基板材1の厚み方向他方面を形成する。第1金属層3の材料は、特に限定されず、例えば、銅、鉄、銀、金、アルミニウム、ニッケル、それらの合金(ステンレス、青銅)などが挙げられる。好ましくは、銅が挙げられる。第1金属層3の厚みは、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、100μm以下、好ましくは、50μm以下である。
[First metal layer]
The first metal layer 3 has one surface and the other surface facing each other in the thickness direction, and has a sheet (plate) shape extending in the surface direction. The first metal layer 3 forms the other surface in the thickness direction of the low dielectric substrate material 1. The material of the first metal layer 3 is not particularly limited, and examples thereof include copper, iron, silver, gold, aluminum, nickel, and alloys thereof (stainless steel, bronze). Preferably, copper is used. The thickness of the first metal layer 3 is, for example, 0.1 μm or more, preferably 1 μm or more, and is, for example, 100 μm or less, preferably 50 μm or less.
 〔多孔質樹脂層〕
 多孔質樹脂層4は、厚み方向に対向する一方面および他方面を有しており、面方向に延びる略板(シート)形状を有する。多孔質樹脂層4の他方面は、第1金属層3の一方面に接触(密着)している。多孔質樹脂層4の一方面は、接着層5を介して第2金属層6に接着している。
(Porous resin layer)
The porous resin layer 4 has one surface and the other surface opposed in the thickness direction, and has a substantially plate (sheet) shape extending in the surface direction. The other surface of the porous resin layer 4 is in contact (close contact) with one surface of the first metal layer 3. One surface of the porous resin layer 4 is adhered to the second metal layer 6 via the adhesive layer 5.
 多孔質樹脂層4は、微細な空孔(気孔)10を多数有している。多孔質樹脂層4は、例えば、独立気泡構造および連続気泡構造のいずれかを有し、好ましくは、独立気泡構造を主として有している。多孔質樹脂層4が独立気泡構造を有することは、JISに規定されている浸透探傷試験(JIS Z 2343-1等)で用いられるような浸透液を使用して、確認することができる。好ましくは、ポリマー表面に対する接触角が25°以下、粘度が2.4mm/s(37.8℃)である浸透液を使用する。すなわち、多孔質樹脂層4を表面に対してほぼ垂直に切断して断面を露出させ、この断面を赤色浸透液などの浸透液に5分間浸漬後、液浸長(断面から浸透液が浸透した距離)を測定する。低誘電基板材1における多孔質樹脂層4は、この液浸長が500μm以下であるのが望ましく、300μm以下であるのがさらに望ましい。この場合の独立気泡の割合は、例えば、50%超過、好ましくは、80%以上、より好ましくは、90%以上であり、また、例えば、100%未満である。液浸長が上記した上限を以下であれば、多孔質樹脂層4の厚み方向一方側に配置される第2金属層6の不均一になることを防止し、また、第2金属層6が不連続になることを防止することができる。 The porous resin layer 4 has many fine pores (pores) 10. The porous resin layer 4 has, for example, one of a closed cell structure and an open cell structure, and preferably mainly has a closed cell structure. The fact that the porous resin layer 4 has a closed cell structure can be confirmed using a penetrant such as that used in a penetrant inspection test (JIS Z 2343-1 etc.) specified in JIS. Preferably, a permeate having a contact angle to the polymer surface of 25 ° or less and a viscosity of 2.4 mm 2 / s ( 37.8 ° C.) is used. That is, the porous resin layer 4 is cut almost perpendicularly to the surface to expose a cross section, the cross section is immersed in a penetrant such as a red penetrant for 5 minutes, and then the liquid immersion length (permeate penetrates from the cross section). Distance). The liquid immersion length of the porous resin layer 4 in the low dielectric substrate material 1 is desirably 500 μm or less, and more desirably 300 μm or less. In this case, the proportion of closed cells is, for example, more than 50%, preferably 80% or more, more preferably 90% or more, and for example, less than 100%. When the liquid immersion length is equal to or less than the above upper limit, it is possible to prevent the second metal layer 6 disposed on one side in the thickness direction of the porous resin layer 4 from becoming nonuniform. Discontinuity can be prevented.
 独立気泡の割合が上記した下限を上回れば、第1金属層3および第2金属層6のパターンニングで用いられるエッチング液の多孔質樹脂層4への染み込みに起因するパターン精度の低下を抑制することができる。 When the ratio of the closed cells exceeds the above lower limit, a decrease in pattern accuracy due to the penetration of the etching solution used for patterning the first metal layer 3 and the second metal layer 6 into the porous resin layer 4 is suppressed. be able to.
 さらに、独立気泡の割合が上記した下限を上回れば、第1金属層3を多孔質樹脂層4に対してプレスして積層する場合に、残存歪みS10%を与えるときの10%歪み圧力Pを高くすることができる。換言すれば、プレス時における残存歪みSを低減することができる。 Further, when the ratio of the closed cells exceeds the lower limit described above, when the first metal layer 3 is pressed against the porous resin layer 4 and laminated, the 10% strain pressure P for giving the residual strain S10% is set. Can be higher. In other words, the residual strain S at the time of pressing can be reduced.
 多孔質樹脂層4における空孔率は、例えば、60%以上、より好ましくは、70%以上、さらに好ましくは、80%以上、とりわけ好ましくは、85%以上である。なお、多孔質樹脂層4の空孔率は、例えば、100%未満、さらには、99%以下である。空孔率は、例えば、多孔質樹脂層4の断面SEM写真の画像解析により求められる。あるいは、空孔率は、下記式に基づく計算により求められる。 空 The porosity of the porous resin layer 4 is, for example, 60% or more, more preferably 70% or more, further preferably 80% or more, and particularly preferably 85% or more. In addition, the porosity of the porous resin layer 4 is, for example, less than 100%, and further, 99% or less. The porosity is determined, for example, by image analysis of a cross-sectional SEM photograph of the porous resin layer 4. Alternatively, the porosity is determined by calculation based on the following equation.
 空孔率(%)=(1-無孔樹脂層の比重/多孔質樹脂層の比重)×100
 なお、式中、無孔樹脂層は、多孔質樹脂層4の材料からなるが、多孔質ではなく、緻密質を有するフィルムである。
Porosity (%) = (1−specific gravity of non-porous resin layer / specific gravity of porous resin layer) × 100
In the formula, the non-porous resin layer is made of the material of the porous resin layer 4, but is not porous but a dense film.
 多孔質樹脂層4の空孔率が上記した下限以上であれば、多孔質樹脂層4が、第五世代(5G)の規格や高速FPCに十分に対応できる低い誘電率を有することができる。具体的には、低誘電基板材1が、上記したように、第五世代(5G)の規格や高速FPCに十分に対応できる基板材として有用となる。 (4) When the porosity of the porous resin layer 4 is equal to or more than the lower limit described above, the porous resin layer 4 can have a low dielectric constant that can sufficiently cope with the fifth generation (5G) standard and high-speed FPC. Specifically, as described above, the low dielectric substrate material 1 is useful as a substrate material that can sufficiently comply with the fifth generation (5G) standard and high-speed FPC.
 一方で、空孔率が上記した下限以上であれば、後述するが、残存歪みS10%を与えるときの10%歪み圧力Pが低くなる傾向にある。換言すれば、プレス時における残存歪みSが増大する傾向にある。しかし、この低誘電基板材1では、多孔質樹脂層4を、残存歪みS10%を与えるときの10%歪み圧力Pが低くなるように構成しているので、上記傾向を抑制することができる。その結果、プレス後においても、第1金属層3および第2金属層6を精度よくパターンニングすることができる。 On the other hand, if the porosity is equal to or more than the above lower limit, the 10% strain pressure P when the residual strain S is 10% tends to be low, as described later. In other words, the residual strain S during pressing tends to increase. However, in the low dielectric substrate material 1, the above tendency can be suppressed because the porous resin layer 4 is configured so that the 10% strain pressure P when the residual strain S is 10% is reduced. As a result, even after pressing, the first metal layer 3 and the second metal layer 6 can be accurately patterned.
 多孔質樹脂層4における空孔10の平均径(つまり、平均孔径)は、例えば、10μm以下であり、また、例えば、0.1μm以上である。平均孔径は、多孔質樹脂層4の断面SEM写真の画像解析により求められる。画像解析は、SEM像に2値化を施し、空孔10を識別後、孔径を算出し、ヒストグラム化される。画像解析では、解析ソフトとして、ImageJが用いられる。 平均 The average diameter of the pores 10 in the porous resin layer 4 (that is, the average pore diameter) is, for example, 10 μm or less, and is, for example, 0.1 μm or more. The average pore diameter is determined by image analysis of a cross-sectional SEM photograph of the porous resin layer 4. In the image analysis, binarization is performed on the SEM image, the holes 10 are identified, the hole diameter is calculated, and a histogram is formed. In the image analysis, ImageJ is used as analysis software.
 多孔質樹脂層4の周波数60GHzにおける誘電率は、空孔率および次に述べる樹脂の種類によって適宜調整され、具体的には、例えば、2.5以下、好ましくは、2.0以下であり、また、例えば、1.0超過である。多孔質樹脂層4の誘電率は、周波数の60GHzを用いる共振器法により、実測される。 The dielectric constant of the porous resin layer 4 at a frequency of 60 GHz is appropriately adjusted depending on the porosity and the type of the resin described below, and specifically, is, for example, 2.5 or less, preferably 2.0 or less, Also, for example, it is more than 1.0. The dielectric constant of the porous resin layer 4 is actually measured by a resonator method using a frequency of 60 GHz.
 多孔質樹脂層4の誘電率が上記した上限以下であれば、低誘電基板材1が低誘電率を有することとなるので、第五世代(5G)の規格や高速FPCの基板材として有用に用いることができる。 If the dielectric constant of the porous resin layer 4 is equal to or less than the above upper limit, the low dielectric substrate material 1 has a low dielectric constant, and is useful as a fifth generation (5G) standard or a high-speed FPC substrate material. Can be used.
 多孔質樹脂層4の材料としては、特に限定されず、例えば、熱硬化性樹脂、熱可塑性樹脂などの樹脂が挙げられる。 材料 The material of the porous resin layer 4 is not particularly limited, and examples thereof include resins such as a thermosetting resin and a thermoplastic resin.
 熱硬化性樹脂としては、例えば、ポリカーボネート樹脂、熱硬化性ポリイミド樹脂、熱硬化性フッ化ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、熱硬化性ウレタン樹脂、フッ素樹脂(含フッ素オレフィンの重合体(具体的には、ポリテトラフルオロエチレン(PTFE)など))、液晶ポリマー(LCP)などが挙げられる。これらは、単独使用または2種以上併用することができる。 As the thermosetting resin, for example, polycarbonate resin, thermosetting polyimide resin, thermosetting fluorinated polyimide resin, epoxy resin, phenol resin, urea resin, melamine resin, diallyl phthalate resin, silicone resin, thermosetting urethane resin , A fluororesin (a polymer of a fluorine-containing olefin (specifically, polytetrafluoroethylene (PTFE) or the like)), a liquid crystal polymer (LCP), or the like. These can be used alone or in combination of two or more.
 熱可塑性樹脂としては、例えば、オレフィン樹脂、アクリル樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリアクリロニトリル樹脂、マレイミド樹脂、ポリ酢酸ビニル樹脂、エチレン-酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポリアセタール樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリルスルホン樹脂、熱可塑性ポリイミド樹脂、熱可塑性フッ化ポリイミド樹脂、熱可塑性ウレタン樹脂、ポリエーテルイミド樹脂、ポリメチルペンテン樹脂、セルロース樹脂、液晶ポリマー、アイオノマーなどが挙げられる。これらは、単独使用または2種以上併用することができる。 Examples of the thermoplastic resin include olefin resin, acrylic resin, polystyrene resin, polyester resin, polyacrylonitrile resin, maleimide resin, polyvinyl acetate resin, ethylene-vinyl acetate copolymer, polyvinyl alcohol resin, polyamide resin, and polyvinyl chloride. Resin, polyacetal resin, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ether ketone resin, polyallyl sulfone resin, thermoplastic polyimide resin, thermoplastic fluorinated polyimide resin, thermoplastic urethane resin, poly Examples include ether imide resin, polymethylpentene resin, cellulose resin, liquid crystal polymer, and ionomer. These can be used alone or in combination of two or more.
 上記した樹脂のうち、機械強度の観点から、好ましくは、ポリイミド樹脂(熱硬化性ポリイミド樹脂および熱可塑性ポリイミド樹脂を含む)、フッ化ポリイミド樹脂(熱硬化性フッ化ポリイミド樹脂および熱可塑性フッ化ポリイミド樹脂)、ポリカーボネート樹脂、ポリエーテルイミド樹脂が挙げられる。なお、上記した好適な樹脂の物性および製造方法等の詳細は、例えば、特開2018-021171号公報、特開2018-021172号公報などに記載されている。 Among the above resins, from the viewpoint of mechanical strength, preferably, polyimide resin (including thermosetting polyimide resin and thermoplastic polyimide resin), fluorinated polyimide resin (thermosetting fluorinated polyimide resin and thermoplastic fluorinated polyimide resin) Resins), polycarbonate resins and polyetherimide resins. The details of the above-mentioned preferable physical properties of the resin and the manufacturing method thereof are described in, for example, JP-A-2018-021171, JP-A-2018-021172, and the like.
 多孔質樹脂層4は、その厚み方向一方面および他方面に形成されるスキン層(図示せず)を有することができる。 The porous resin layer 4 can have a skin layer (not shown) formed on one surface and the other surface in the thickness direction.
 多孔質樹脂層4の厚みは、例えば、2μm以上、好ましくは、5μm以上であり、また、例えば、1,000μm以下、好ましくは、500μm以下である。 厚 み The thickness of the porous resin layer 4 is, for example, 2 μm or more, preferably 5 μm or more, and for example, 1,000 μm or less, preferably 500 μm or less.
 また、多孔質樹脂層4の厚みの、低誘電基板材1の厚みに対する割合は、例えば、0.05以上、好ましくは、0.10以上、より好ましくは、0.2以上、さらに好ましくは、0.5超過、とりわけ好ましくは、0.6以上であり、また、例えば、0.95以下、好ましくは、0.9以下、より好ましくは、0.85以下である。 The ratio of the thickness of the porous resin layer 4 to the thickness of the low dielectric substrate material 1 is, for example, 0.05 or more, preferably 0.10 or more, more preferably 0.2 or more, and further preferably, It is more than 0.5, particularly preferably 0.6 or more, and for example, 0.95 or less, preferably 0.9 or less, more preferably 0.85 or less.
 多孔質樹脂層4の厚みは、低誘電基板材1の総厚みから、多孔質樹脂層4以外の層(具体的には、第1金属層3、接着層5、第2金属層6)の厚みを差し引いた値として算出される。 The thickness of the porous resin layer 4 depends on the total thickness of the low dielectric substrate material 1 and the thickness of the layers other than the porous resin layer 4 (specifically, the first metal layer 3, the adhesive layer 5, and the second metal layer 6). It is calculated as a value obtained by subtracting the thickness.
 なお、多孔質樹脂層4以外の層、具体的には、第1金属層3、接着層5(後述)、および、第2金属層6(後述)は、いずれも、多孔質樹脂層4と異なり、例えば、無孔であり、つまり、微細な空孔を実質的に有さず、緻密である。 The layers other than the porous resin layer 4, specifically, the first metal layer 3, the adhesive layer 5 (described later), and the second metal layer 6 (described later) are all On the other hand, for example, it is non-porous, that is, it is dense without substantially having fine pores.
 [接着層]
 接着層5は、多孔質樹脂層4の厚み方向一方面において、面方向に沿うシート形状を有する。
[Adhesive layer]
The adhesive layer 5 has a sheet shape along the surface direction on one surface in the thickness direction of the porous resin layer 4.
 接着層5の材料としては、特に限定されず、ホットメルト型接着剤、熱硬化型接着剤など、種々の型の接着剤が挙げられ、具体的には、アクリル系接着剤、エポキシ系接着剤、シリコーン系接着剤などが挙げられる。好ましくは、アクリル系接着剤が挙げられる。接着層5の厚みは、例えば、2μm以上、好ましくは、5μm以上であり、また、例えば、50μm以下、好ましくは、25μm以下である。 The material of the adhesive layer 5 is not particularly limited, and includes various types of adhesives such as a hot melt type adhesive and a thermosetting type adhesive. Specifically, an acrylic type adhesive, an epoxy type adhesive And silicone-based adhesives. Preferably, an acrylic adhesive is used. The thickness of the adhesive layer 5 is, for example, 2 μm or more, preferably 5 μm or more, and is, for example, 50 μm or less, preferably 25 μm or less.
 〔第2金属層〕
 第2金属層6は、厚み方向に対向する一方面および他方面を有しており、面方向に延びるシート(板)形状を有する。第2金属層6は、低誘電基板材1の厚み方向一方面を形成している。第2金属層6の他方面は、接着層5を介して、多孔質樹脂層4の一方面に接着している。第2金属層6の材料および厚みは、第1金属層3のそれらと同様である。
[Second metal layer]
The second metal layer 6 has one surface and the other surface facing each other in the thickness direction, and has a sheet (plate) shape extending in the surface direction. The second metal layer 6 forms one surface in the thickness direction of the low dielectric substrate material 1. The other surface of the second metal layer 6 is adhered to one surface of the porous resin layer 4 via the adhesive layer 5. The material and thickness of the second metal layer 6 are the same as those of the first metal layer 3.
 低誘電基板材1の厚みは、第1金属層3、多孔質樹脂層4、接着層5および第2金属層6の総厚みであって、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、5,000μm以下、好ましくは、2,000μm以下である。 The thickness of the low dielectric substrate material 1 is the total thickness of the first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6, for example, 10 μm or more, preferably 20 μm or more, Also, for example, it is 5,000 μm or less, preferably 2,000 μm or less.
 〔低誘電基板材の製造方法〕
 次に、低誘電基板材1の製造方法を説明する。
(Production method of low dielectric substrate material)
Next, a method of manufacturing the low dielectric substrate material 1 will be described.
 なお、一実施形態における低誘電基板材1の製造では、例えば、ロールトゥロール法によって、各部材を、搬送しながら積層(形成)する。 In the manufacture of the low dielectric substrate material 1 according to one embodiment, for example, each member is stacked (formed) while being conveyed by a roll-to-roll method.
 具体的には、まず、第1金属層3を準備する。例えば、上記した材料から成る箔(金属箔)を第1金属層3として準備する。 Specifically, first, the first metal layer 3 is prepared. For example, a foil (metal foil) made of the above-described material is prepared as the first metal layer 3.
 次いで、多孔質樹脂層4を第1金属層3の一方面に形成する。例えば、多孔質樹脂層4を、第1金属層3の一方面で作製する(作り込む)。 Next, the porous resin layer 4 is formed on one surface of the first metal layer 3. For example, the porous resin layer 4 is formed (built) on one surface of the first metal layer 3.
 具体的には、まず、上記した樹脂の前駆体と、多孔化剤と、核剤と、溶媒とを含むワニスを調製し、次いで、ワニスを第1金属層3の一方面に塗布して塗膜を形成する。ワニスにおける多孔化剤、核剤および溶媒の、種類および配合割合等は、例えば、特開2018-021171号公報、特開2018-021172号公報などに記載されている。 Specifically, first, a varnish containing the above-described resin precursor, a porogen, a nucleating agent, and a solvent is prepared, and then, the varnish is applied to one surface of the first metal layer 3 to be applied. Form a film. The types, blending ratios, and the like of the porosity, nucleating agent, and solvent in the varnish are described in, for example, JP-A-2018-021171, JP-A-2018-021172, and the like.
 とりわけ、多孔化剤の質量部数(配合割合)は、前駆体100質量部に対して、好ましくは、20質量部以上、より好ましくは、50質量部以上であり、また、好ましくは、300質量部以下、より好ましくは、250質量部以下である。 In particular, the number of parts by mass (mixing ratio) of the porogen is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, and preferably 300 parts by mass with respect to 100 parts by mass of the precursor. Or less, more preferably 250 parts by mass or less.
 核剤は、前駆体を発泡(多孔化)させるときに核となる発泡核剤(気泡調整剤)である。また、核剤として、上記公報に記載の核剤(PTFEなど)の他に、ポリ(クロロトリフルオロエチレン)などのフッ素樹脂(含フッ素オレフィンの重合体)、さらには、モノマー単位として、(メタ)アクリル酸エステルおよび上記した含フッ素オレフィンを含有する共重合体なども挙げられる。 The nucleating agent is a foaming nucleating agent (cell regulator) that becomes a nucleus when the precursor is foamed (porous). As the nucleating agent, in addition to the nucleating agent (PTFE and the like) described in the above publication, a fluororesin (polymer of fluorinated olefin) such as poly (chlorotrifluoroethylene), and further, as a monomer unit, (meth) ) Copolymers containing acrylic acid esters and the above-mentioned fluorine-containing olefins are also included.
 核剤は、常温(23℃)で、例えば、固体状、液体状、半固体状のいずれであってよく、好ましくは、固体状である。核剤が常温で固体状であれば、核剤の形状としては、例えば、略球形状、略板形状、略針形状、不定形状(塊状を含む)が挙げられ、好ましくは、略球形状が挙げられる。 (4) The nucleating agent may be in a solid state, a liquid state, or a semi-solid state at room temperature (23 ° C.), and is preferably in a solid state. If the nucleating agent is solid at room temperature, examples of the shape of the nucleating agent include a substantially spherical shape, a substantially plate shape, a substantially needle shape, and an indefinite shape (including a lump shape). No.
 核剤が常温で固体状であれば、核剤の最大長さの平均値(略球形状であれば、平均粒子径)は、例えば、5,000nm未満、好ましくは、2,000nm以下、より好ましくは、1,000nm未満であり、また、例えば、1nm以上である。 If the nucleating agent is solid at normal temperature, the average value of the maximum length of the nucleating agent (or the average particle diameter if it is substantially spherical) is, for example, less than 5,000 nm, preferably 2,000 nm or less. Preferably, it is less than 1,000 nm, for example, 1 nm or more.
 また、核剤は、予め溶媒(PTFE)に分散したスラリーとして調製されていてもよい。 核 The nucleating agent may be prepared in advance as a slurry dispersed in a solvent (PTFE).
 その後、塗膜を加熱により乾燥することにより、溶媒の除去が進行しつつ、核剤を核とした、前駆体と多孔化剤との相分離構造が形成される。 (4) Thereafter, by drying the coating film by heating, a phase separation structure of a precursor and a porogen with a nucleating agent as a nucleus is formed while the removal of the solvent proceeds.
 その後、例えば、超臨界二酸化炭素を溶媒として用いる超臨界抽出法により、多孔化剤を前駆体から抽出する(引き抜く、あるいは、除去する)。 (4) Then, the porogen is extracted from the precursor (pulled out or removed) by, for example, a supercritical extraction method using supercritical carbon dioxide as a solvent.
 その後、前駆体を加熱により硬化させて、多孔を有する樹脂、具体的には、多孔質樹脂層4を形成する。 (4) Thereafter, the precursor is cured by heating to form a resin having porosity, specifically, the porous resin layer 4.
 その後、接着層5を、多孔質樹脂層4の一方面に配置する。例えば、接着剤を多孔質樹脂層4の一方面に塗布したり、あるいは、接着剤から予めシート状に形成した接着層5を多孔質樹脂層4の一方面に貼る。 Then, the adhesive layer 5 is disposed on one surface of the porous resin layer 4. For example, an adhesive is applied to one surface of the porous resin layer 4, or an adhesive layer 5 previously formed into a sheet from the adhesive is attached to one surface of the porous resin layer 4.
 続いて、第2金属層6を、接着層5の一方面に配置する。例えば、上記した材料から成る箔(金属箔)を接着層5の一方面に貼り付ける。 Next, the second metal layer 6 is disposed on one surface of the adhesive layer 5. For example, a foil (metal foil) made of the above-described material is attached to one surface of the adhesive layer 5.
 これにより、低誘電基板材1を製造する。 に よ り Thereby, the low dielectric substrate material 1 is manufactured.
 この低誘電基板材1の用途は、例えば、各種用途に用いられ、好ましくは、第五世代(5G)の規格に適合する高周波アンテナや高速伝送基板(高速伝送FPCなど)の製造に用いられる。具体的には、低誘電基板材1は、高周波アンテナや高速FPCの基板材として用いられる。 The low dielectric substrate material 1 is used for various applications, for example, and is preferably used for manufacturing a high-frequency antenna or a high-speed transmission board (such as a high-speed transmission FPC) conforming to the fifth generation (5G) standard. Specifically, the low dielectric substrate material 1 is used as a substrate material for a high-frequency antenna or a high-speed FPC.
 低誘電基板材1を上記の用途で使用する場合には、第2金属層6を、フォトリソグラフィ(例えば、サブトラクティブ法)によって、図2に示すように、パターンニングして、例えば、信号配線(差動配線など)やアンテナ配線などの一方側配線17を形成する。 When the low dielectric substrate material 1 is used for the above purpose, the second metal layer 6 is patterned by photolithography (for example, a subtractive method) as shown in FIG. One-sided wiring 17 such as (differential wiring) and antenna wiring is formed.
 続いて、第1金属層3を、フォトリソグラフィによって、パターンニングして、例えば、グランド配線などの他方側配線18を形成する。 Next, the first metal layer 3 is patterned by photolithography to form the other-side wiring 18 such as a ground wiring, for example.
 これにより、他方側配線18、多孔質樹脂層4、接着層5および一方側配線17を厚み方向一方側に向かって順に備えるパターン積層材13を製造し、このパターン積層材13を、第五世代(5G)の規格に適合する高周波アンテナや高速伝送基板に備える。 As a result, a pattern laminated material 13 having the other side wiring 18, the porous resin layer 4, the adhesive layer 5, and the one side wiring 17 sequentially in the thickness direction is manufactured. Provided on high-frequency antennas and high-speed transmission boards conforming to (5G) standards.
 そして、この低誘電基板材1は、多孔質樹脂層4を有し、多孔質樹脂層4が、60%以上、より好ましくは、70%以上、さらに好ましくは、80%以上、とりわけ好ましくは、85%以上の高い空孔率を有する場合には、十分に低い低誘電率を有することができる。具体的には、低誘電率が、例えば、2.5以下、好ましくは、2.0以下である。従って、低誘電基板材1が、第五世代(5G)の規格の無線通信のアンテナ基板や、高速FPCに対応できる低い誘電率を有することができる。 And this low dielectric substrate material 1 has a porous resin layer 4, and the porous resin layer 4 is 60% or more, more preferably 70% or more, further preferably 80% or more, and particularly preferably, When it has a high porosity of 85% or more, it can have a sufficiently low low dielectric constant. Specifically, the low dielectric constant is, for example, 2.5 or less, preferably 2.0 or less. Accordingly, the low dielectric substrate material 1 can have a low dielectric constant that can be used for an antenna substrate for wireless communication of the fifth generation (5G) standard or high-speed FPC.
 また、低誘電基板材1は、第1金属層3および第2金属層6を備えるので、第五世代(5G)の規格に対応するアンテナや高速FPCの基板の配線としてパターンニングすることができる。具体的には、工業的なエッチング条件で、第1金属層3および第2金属層6をパターンニングしても、第五世代(5G)に適合できるアンテナや高速FPCの基板の配線を、優れた精度で形成できる。 Further, since the low dielectric substrate material 1 includes the first metal layer 3 and the second metal layer 6, it can be patterned as an antenna corresponding to the fifth generation (5G) standard or a wiring of a high-speed FPC board. . Specifically, even if the first metal layer 3 and the second metal layer 6 are patterned under industrial etching conditions, the wiring of the antenna or the high-speed FPC board that can be adapted to the fifth generation (5G) is excellent. It can be formed with high precision.
 また、多孔質樹脂層4が独立気泡構造を有する場合であって、独立気泡の割合が、50%超過、さらには、80%以上、さらには、90%以上と高い場合には、パターンニングで用いられるエッチング液の染み込みに起因するパターン精度の低下を抑制することができる。そのため、低誘電基板材1は、第1金属層3および第2金属層6から他方側配線18および一方側配線17を精度よく形成することができる。 In the case where the porous resin layer 4 has a closed cell structure, and the ratio of the closed cells is more than 50%, further, 80% or more, and further, as high as 90% or more, patterning is performed. It is possible to suppress a decrease in pattern accuracy due to the penetration of the used etching solution. Therefore, in the low dielectric substrate material 1, the other-side wiring 18 and the one-side wiring 17 can be accurately formed from the first metal layer 3 and the second metal layer 6.
 <顕著な特徴点>
 次いで、この低誘電基板材1における多孔質樹脂層4の顕著な特徴点を、図3A~図4を参照して説明する。
<Outstanding features>
Next, salient features of the porous resin layer 4 in the low dielectric substrate material 1 will be described with reference to FIGS. 3A to 4.
 なお、図3A~図3C中、低誘電基板材1の厚み等は、残存歪みSを視覚的に認識するために、その寸法は、誇張して描画されており、実寸に則さない態様を含む。 3A to 3C, the thickness and the like of the low-dielectric substrate material 1 are exaggerated in order to visually recognize the residual strain S. Including.
 低誘電基板材1では、10%の下記残存歪みSを与える圧力を10%歪み圧力Pとしたときに、その10%歪み圧力Pが180℃で4.5MPa以上である。 で は In the low dielectric substrate material 1, when the pressure giving the following residual strain S of 10% is 10% strain pressure P, the 10% strain pressure P is 4.5 MPa or more at 180 ° C.
 残存歪みS:図1および図3Aに示すように、まず、低誘電基板材1における多孔質樹脂層4の初期厚みT0を測定し、続いて、図3Bに示すように、圧力Pを低誘電基板材1に対して30分間、厚み方向にかけ、図3Cに示すように、その後、圧力Pを解放し、その低誘電基板材1における多孔質樹脂層4の解放後厚みT1を測定する。その後、多孔質樹脂層4の初期厚みT0および解放後厚みT1を下記式に代入して、残存歪みSが得られる。 Residual strain S: As shown in FIGS. 1 and 3A, first, the initial thickness T0 of the porous resin layer 4 in the low dielectric substrate material 1 is measured, and then, as shown in FIG. The substrate material 1 is applied in the thickness direction for 30 minutes, and thereafter, as shown in FIG. 3C, the pressure P is released, and the post-release thickness T1 of the porous resin layer 4 in the low dielectric substrate material 1 is measured. After that, the residual strain S is obtained by substituting the initial thickness T0 and the post-release thickness T1 of the porous resin layer 4 into the following equation.
 残存歪みS(%)=([T0-T1]/T0)×100
 上記した圧力の付与および解放は、180℃で実施される。
Residual strain S (%) = ([T0−T1] / T0) × 100
The above pressure application and release are performed at 180 ° C.
 10%歪み圧力Pの低誘電基板材1への付与は、図3Bに示すように、例えば、2枚の平板を備えるプレス2によって実施される。このとき、低誘電基板材1における各層のうち、主として、多孔質樹脂層4の厚みが著しく薄くなる。一方、多孔質樹脂層4以外の層、具体的には、第1金属層3、接着層5および第2金属層6は、常温(23℃)で硬質であることから、10%歪み圧力Pの低誘電基板材1への付与後も、付与前から、実質的に変動しない(薄くならない)(略同一厚みとなる)。 The application of the 10% strain pressure P to the low dielectric substrate material 1 is performed by, for example, a press 2 having two flat plates as shown in FIG. 3B. At this time, among the layers in the low dielectric substrate material 1, mainly the thickness of the porous resin layer 4 is significantly reduced. On the other hand, since the layers other than the porous resin layer 4, specifically, the first metal layer 3, the adhesive layer 5, and the second metal layer 6 are hard at room temperature (23 ° C.), a 10% strain pressure P After application to the low dielectric substrate material 1, does not substantially change (do not become thin) (become substantially the same thickness) from before the application.
 具体的には、圧力解放後の低誘電基板材1の残存歪みSが10%とならず、例えば、10%未満となる場合には、その後、前回の圧力P1より高い圧力P2で加圧および解放を実施し、10%となるように試験(再試験)する。また、図4に示すように、圧力P2での再試験が10%超過となる場合(矢印の流れ)には、10%未満の圧力(1回目試験時の圧力)P1およびそれに対応する歪み(黒丸の点)と、10%超過の圧力(2回目試験時の圧力)P2およびそれに対応する歪み(白抜きの点)とを通過する近似線(検量線)Lを取得し、これから、残存歪みS10%となる10%歪み圧力Pを推算する。 Specifically, when the residual strain S of the low dielectric substrate material 1 after the pressure release does not become 10% and becomes, for example, less than 10%, then the pressure is increased by a pressure P2 higher than the previous pressure P1. Release and test (retest) to 10%. Further, as shown in FIG. 4, when the retest at the pressure P2 exceeds 10% (flow of the arrow), the pressure P1 of less than 10% (the pressure at the time of the first test) P1 and the corresponding strain ( An approximation line (calibration curve) L passing through the pressure exceeding 10% (pressure at the second test) P2 and the corresponding distortion (open point) is obtained, and the residual distortion is obtained from this. A 10% strain pressure P that becomes S10% is estimated.
 逆に、圧力解放後の低誘電基板材1の残存歪みSが10%を超過する場合には、その後、前回の圧力P2より低い圧力P1で加圧および解放を実施し、10%となるように試験(再試験)する。また、圧力P1での再試験が10%未満となる場合(破線矢印の流れ)には、10%超過となる圧力(1回目試験時の圧力)P2およびそれに対応する歪み(白抜きの点)と、10%未満となる圧力(2回目試験時の圧力)P1およびそれに対応する歪み(黒丸の点)とを通過する近似線(検量線)Lを取得し、これから、残存歪みS10%となる10%歪み圧力Pを推算する。 Conversely, if the residual strain S of the low dielectric substrate material 1 after the pressure release exceeds 10%, then pressurization and release are performed at a pressure P1 lower than the previous pressure P2 so as to be 10%. Test (retest). When the retest at the pressure P1 is less than 10% (flow indicated by a broken arrow), the pressure (pressure at the first test) P2 exceeding 10% and the corresponding distortion (open dots). And an approximate line (calibration curve) L passing through the pressure (pressure at the time of the second test) P1 which is less than 10% and the distortion (dotted black dot) corresponding thereto P1, and the residual distortion S10% is obtained from this. Estimate the 10% strain pressure P.
 そして、低誘電基板材1に10%の残存歪みSを与えるときの10%歪み圧力Pが、180℃で4.5MPa以上であれば、本発明の低誘電基板材として選択される。逆に、4.5MPa未満であれば、本発明の低誘電基板材から除外される。 If the 10% strain pressure P at which 10% residual strain S is applied to the low dielectric substrate material 1 is 4.5 MPa or more at 180 ° C., it is selected as the low dielectric substrate material of the present invention. Conversely, if it is less than 4.5 MPa, it is excluded from the low dielectric substrate material of the present invention.
 低誘電基板材1に10%の残存歪みSを与える10%歪み圧力Pが4.5MPa未満であれば、通常、低誘電基板材1がその工程(具体的には、第2金属層6をラミネート加工により積層する工程)中に負荷される圧力(想定圧力)が4.5MPa程度であることから、比較例の低誘電基板材1を上記想定圧力Pを超える圧力で負荷すれば、低誘電基板材1に与える残存歪みSが10%を超過してしまう。つまり、大きな残存歪みSを低誘電基板材1に与えてしまう。そのため、下記の課題を生じる。 If the 10% strain pressure P that gives 10% residual strain S to the low dielectric substrate material 1 is less than 4.5 MPa, the low dielectric substrate material 1 is usually subjected to the process (specifically, the second metal layer 6 Since the pressure (assumed pressure) applied during the laminating process is about 4.5 MPa, if the low dielectric substrate material 1 of the comparative example is loaded at a pressure exceeding the assumed pressure P, a low dielectric The residual strain S applied to the substrate material 1 exceeds 10%. That is, a large residual strain S is given to the low dielectric substrate material 1. Therefore, the following problem occurs.
 つまり、10%を超える残存歪みSを多孔質樹脂層4が有する場合には、多孔質樹脂層4の厚み方向両側に配置される第1金属層3および第2金属層6を精度よくパターンニングできない。 That is, when the porous resin layer 4 has a residual strain S exceeding 10%, the first metal layer 3 and the second metal layer 6 arranged on both sides in the thickness direction of the porous resin layer 4 are precisely patterned. Can not.
 ここで、残存歪みSの10%という数値は、多孔質樹脂層4の厚み方向両側に配置される第1金属層3および第2金属層6から他方側配線18および一方側配線17に精度よく形成(パターンニング)できる限界値を意味する。 Here, the numerical value of 10% of the residual strain S is accurately transferred from the first metal layer 3 and the second metal layer 6 disposed on both sides in the thickness direction of the porous resin layer 4 to the other wiring 18 and the one wiring 17. It means the limit value that can be formed (patterned).
 詳しくは、10%の残存歪みSを与える10%歪み圧力Pが4.5MPa未満と低い場合には、第2金属層6を多孔質樹脂層4に対して低圧で加圧したときに、比較的大きな残存歪みS(少なくとも10%の残存歪みS)を多孔質樹脂層4が有する。そのため、第1金属層3および第2金属層6から他方側配線18および一方側配線17に精度よくパターンニングできない。かかる多孔質樹脂層4を備える低誘電基板材1は、第五世代(5G)の規格の無線通信や、高速FPCに十分かつ確実に対応できる基板材として不適である。
一方、低圧で加圧すれば、第1金属層3および多孔質樹脂層4間の接着力や、多孔質樹脂層4および第2金属層6間の接着力が低減し、やはり、基板材として不適である。
Specifically, when the 10% strain pressure P giving 10% residual strain S is as low as less than 4.5 MPa, when the second metal layer 6 is pressed against the porous resin layer 4 at a low pressure, a comparison is made. The porous resin layer 4 has an extremely large residual strain S (at least 10% residual strain S). Therefore, patterning from the first metal layer 3 and the second metal layer 6 to the other wiring 18 and the one wiring 17 cannot be accurately performed. The low dielectric substrate material 1 provided with such a porous resin layer 4 is not suitable as a substrate material that can sufficiently and reliably cope with the fifth generation (5G) wireless communication and high-speed FPC.
On the other hand, when pressure is applied at a low pressure, the adhesive force between the first metal layer 3 and the porous resin layer 4 and the adhesive force between the porous resin layer 4 and the second metal layer 6 are reduced. Not suitable.
 しかし、この低誘電基板材1では、10%の残存歪みSを与える10%歪み圧力Pが180℃4.5MPa以上と高いので、第2金属層6を多孔質樹脂層4に対して一般的な圧力(3MPa程度)で加圧した場合、多くて10%(10%以内)の残存歪みSのみを多孔質樹脂層4に与えるため、加圧によって多孔質樹脂層の空孔がほとんど破壊されず低誘電性が維持され、結果として、第五世代(5G)の規格の無線通信や、高速FPCに十分かつ確実に対応できる低誘電の基板材として有用である。 However, in the low dielectric substrate material 1, since the 10% strain pressure P giving 10% residual strain S is as high as 180 ° C. and 4.5 MPa or more, the second metal layer 6 is generally applied to the porous resin layer 4. When pressurization is performed at a moderate pressure (about 3 MPa), only 10% (within 10%) of residual strain S is applied to the porous resin layer 4 at most, so that pores in the porous resin layer are almost destroyed by the pressurization. As a result, it is useful as a low-dielectric substrate material that can sufficiently and reliably cope with wireless communication of the fifth generation (5G) standard and high-speed FPC.
 また、低誘電基板材1は、残存歪みS10%を与える10%歪み圧力Pが4.5MPaと高いので、第2金属層6を多孔質樹脂層4に対して高圧で、例えば、プレスして形成して、第2金属層6が多孔質樹脂層4に密着する低誘電基板材1を簡便に製造することができる。その結果、低誘電基板材1を簡便に工業的に量産することができる。 In addition, since the low dielectric substrate material 1 has a high 10% strain pressure P that gives a residual strain S of 10% of 4.5 MPa, the second metal layer 6 is pressed against the porous resin layer 4 at a high pressure, for example. By forming, the low dielectric substrate material 1 in which the second metal layer 6 adheres to the porous resin layer 4 can be easily manufactured. As a result, the low dielectric substrate material 1 can be easily and industrially mass-produced.
 また、この低誘電基板材1は、180℃で、好ましくは、4.5MPa超過、より好ましくは、4.6MPa以上、さらに好ましくは、4.7MPa以上の10%歪み圧力Pで厚み方向に加圧されたときに、残存歪みSが10%となる。 The low dielectric substrate material 1 is applied in the thickness direction at a temperature of 180 ° C., preferably at a strain pressure P of 10% of more than 4.5 MPa, more preferably 4.6 MPa or more, and even more preferably 4.7 MPa or more. When pressed, the residual strain S becomes 10%.
 このような残存歪みS10%を与える10%歪み圧力Pが4.5MPa以上である低誘電基板材1とするための構成(方法)は、特に限定されず、当業者において通常用いるあらゆる手法が採用される。一例を挙げれば、上記したように、多孔質樹脂層4が独立気泡構造である空孔10を有し、独立気泡の割合を、例えば、50%超過、好ましくは、80%以上、より好ましくは、90%以上に設定する。上記に加え、または、上記に代えて、多孔質樹脂層4の材料として、例えば、ポリイミド樹脂、フッ化ポリイミド樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂から選択することができ、特にポリイミド樹脂が高い耐熱性、機械強度を有する観点からより好ましい。ポリイミド樹脂は、独立気泡構造を有する多孔質樹脂層4を含む低誘電基板材1の作製工程に含まれる、加圧よる積層(圧着)に最も適した材料である。 The configuration (method) for forming the low dielectric substrate material 1 in which the 10% strain pressure P for giving the residual strain S of 10% is 4.5 MPa or more is not particularly limited, and any method commonly used by those skilled in the art is adopted. Is done. As an example, as described above, the porous resin layer 4 has the pores 10 having a closed cell structure, and the ratio of the closed cells is, for example, more than 50%, preferably 80% or more, more preferably , 90% or more. In addition to or instead of the above, the material of the porous resin layer 4 can be selected from, for example, a polyimide resin, a fluorinated polyimide resin, a polycarbonate resin, and a polyetherimide resin. It is more preferable from the viewpoint of the properties and mechanical strength. The polyimide resin is a material most suitable for lamination (press bonding) by pressure included in the manufacturing process of the low dielectric substrate material 1 including the porous resin layer 4 having a closed cell structure.
 なお、この低誘電基板材1では、例えば、10%の残存歪みSを与える10%歪み圧力Pが10.0MPa以下である。 In the low dielectric substrate material 1, for example, a 10% strain pressure P for giving a residual strain S of 10% is 10.0 MPa or less.
  <変形例>
 次に、一実施形態の変形例を説明する。以下の各変形例において、上記した一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、一実施形態および各変形例を適宜組み合わせることができる。さらに、各変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。
<Modification>
Next, a modified example of the embodiment will be described. In the following modified examples, the same members and steps as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. Further, one embodiment and each modified example can be appropriately combined. Further, each modified example can exhibit the same operational effects as those of the embodiment, except where otherwise noted.
 上記した説明では、低誘電基板材1をロールトゥロールで製造したが、これに限定されず、例えば、バッチ法(枚葉式)で低誘電基板材1を製造することもできる。 In the above description, the low dielectric substrate material 1 is manufactured by roll-to-roll. However, the present invention is not limited to this. For example, the low dielectric substrate material 1 can be manufactured by a batch method (single wafer type).
 また、一実施形態では、図1に示すように、低誘電基板材1が第1金属層3を備えるが、例えば、図5に示すように、第1金属層3を備えなくてもよい。具体的には、低誘電基板材1は、多孔質樹脂層4、接着層5および第2金属層6を厚み方向一方側に向かって順に備える。 Also, in one embodiment, as shown in FIG. 1, the low dielectric substrate material 1 includes the first metal layer 3, but for example, as illustrated in FIG. 5, the low dielectric substrate material 1 may not include the first metal layer 3. Specifically, the low dielectric substrate material 1 includes a porous resin layer 4, an adhesive layer 5, and a second metal layer 6 in this order in the thickness direction.
 図5に示す多孔質樹脂層4は、低誘電基板材1の厚み方向他方面を形成する。多孔質樹脂層4の厚み方向他方面は、厚み方向他方側に向かって露出する。 (5) The porous resin layer 4 shown in FIG. 5 forms the other surface in the thickness direction of the low dielectric substrate material 1. The other surface in the thickness direction of the porous resin layer 4 is exposed toward the other side in the thickness direction.
 図5に示す低誘電基板材1において残存歪みSを求めるときに測定される初期厚みT0および解放後厚みT1は、いずれも、多孔質樹脂層4の厚みである。 初期 Both the initial thickness T0 and the released thickness T1 measured when obtaining the residual strain S in the low dielectric substrate material 1 shown in FIG. 5 are the thicknesses of the porous resin layer 4.
 また、図6に示すように、低誘電基板材1は、接着層5を備えなくてもよい。 (6) Also, as shown in FIG. 6, the low dielectric substrate material 1 does not have to include the adhesive layer 5.
 図6に示すように、低誘電基板材1は、第1金属層3、多孔質樹脂層4および第2金属層6を厚み方向一方側を厚み方向一方側に向かって順に備える。 As shown in FIG. 6, the low-dielectric substrate material 1 includes the first metal layer 3, the porous resin layer 4, and the second metal layer 6 in order from one side in the thickness direction to one side in the thickness direction.
 図6に示す多孔質樹脂層4の厚み方向一方面は、第2金属層6の厚み方向他方側と直接接触(密着)している。 一方 One side in the thickness direction of the porous resin layer 4 shown in FIG. 6 is in direct contact (close contact) with the other side in the thickness direction of the second metal layer 6.
 図6に示す低誘電基板材1において残存歪みSを求めるときに測定される初期厚みT0および解放後厚みT1は、いずれも、多孔質樹脂層4の厚みである。 初期 Both the initial thickness T0 and the post-release thickness T1 measured when obtaining the residual strain S in the low dielectric substrate material 1 shown in FIG. 6 are the thicknesses of the porous resin layer 4.
 さらに、図7に示すように、低誘電基板材1は、第1金属層3および接着層5を備えず、多孔質樹脂層4および第2金属層6を厚み方向一方側に向かって順に備えることができる。 Further, as shown in FIG. 7, the low dielectric substrate material 1 does not include the first metal layer 3 and the adhesive layer 5, but includes the porous resin layer 4 and the second metal layer 6 in order toward one side in the thickness direction. be able to.
 図7に示す低誘電基板材1において残存歪みSを求めるときに測定される初期厚みT0および解放後厚みT1は、いずれも、多孔質樹脂層4の厚みである。 初期 Both the initial thickness T0 and the post-release thickness T1 measured when obtaining the residual strain S in the low dielectric substrate material 1 shown in FIG. 7 are the thicknesses of the porous resin layer 4.
 図1の一実施形態では、金属層の一例として第2金属層6を挙げているが、図8に示すように、第2金属層6に代えて、金属層の一例として第1金属層3を挙げることもできる。 In the embodiment of FIG. 1, the second metal layer 6 is given as an example of the metal layer. However, as shown in FIG. 8, the first metal layer 3 is used as an example of the metal layer instead of the second metal layer 6. Can also be mentioned.
 図8の変形例では、低誘電基板材1は、第1金属層3および多孔質樹脂層4を厚み方向一方側を厚み方向一方側に向かって順に備える。 In the modification of FIG. 8, the low dielectric substrate material 1 includes the first metal layer 3 and the porous resin layer 4 in order from one side in the thickness direction to one side in the thickness direction.
 図8に示す多孔質樹脂層4の厚み方向一方面は、低誘電基板材1の厚み方向一方面を形成する。多孔質樹脂層4の厚み方向一方面は、厚み方向一方側に露出する。 一方 One surface in the thickness direction of the porous resin layer 4 shown in FIG. 8 forms one surface in the thickness direction of the low dielectric substrate material 1. One surface in the thickness direction of the porous resin layer 4 is exposed on one side in the thickness direction.
 図8に示す低誘電基板材1において残存歪みSを求めるときに測定される初期厚みT0および解放後厚みT1は、いずれも、多孔質樹脂層4の厚みである。 初期 Both the initial thickness T0 and the post-release thickness T1 measured when obtaining the residual strain S in the low dielectric substrate material 1 shown in FIG. 8 are the thicknesses of the porous resin layer 4.
 図8に示す低誘電基板材1を得る方法として、一実施形態で例示した、第1金属層3の厚み方向一方面における作り込みに限定されず、例えば、第1金属層3および多孔質樹脂層4を互いに貼り合わせてもよい。この場合には、多孔質樹脂層4は、残存歪みSが10%となる10%歪み圧力Pが180℃で4.5MPa以上と高いので、第1金属層3および多孔質樹脂層4を高圧のプレスで貼り合わせても、多孔質樹脂層4の残存歪みSを低くでき、その後、第1金属層3から他方側配線18(図2参照)を精度よくパターンニングでき、第五世代(5G)の規格の無線通信や、高速FPCに十分かつ確実に対応できる低誘電の基板材として有用である。そのため、このような低誘電基板材1を、簡便に工業的に量産することができる。 The method for obtaining the low dielectric substrate material 1 shown in FIG. 8 is not limited to the method of forming the first metal layer 3 on one surface in the thickness direction as exemplified in one embodiment. For example, the first metal layer 3 and the porous resin The layers 4 may be stuck together. In this case, the 10% strain pressure P at which the residual strain S becomes 10% is as high as 4.5 MPa or more at 180 ° C. In this case, the first metal layer 3 and the porous resin layer 4 are subjected to high pressure. The remaining strain S of the porous resin layer 4 can be reduced even after the bonding by the press of the first step, and thereafter, the other-side wiring 18 (see FIG. 2) can be accurately patterned from the first metal layer 3, and the fifth generation (5G) This is useful as a low-dielectric substrate material that can sufficiently and reliably cope with wireless communication of the standard of (1) and high-speed FPC. Therefore, such a low dielectric substrate material 1 can be easily and industrially mass-produced.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。 実 施 Examples and comparative examples are shown below to further illustrate the present invention. In addition, this invention is not limited to an Example and a comparative example at all. Specific numerical values such as the mixing ratio (content ratio), physical property values, and parameters used in the following description are the mixing ratios (corresponding to them) described in the above-mentioned “Embodiments of the Invention”. The upper limit (values defined as “less than” or “less than”) or the lower limit (values defined as “over” or “exceeding”), such as the content ratio, physical property values, and parameters, may be substituted. it can.
  実施例1
 まず、銅からなる厚み12μmの第1金属層3を準備した。
Example 1
First, a first metal layer 3 made of copper and having a thickness of 12 μm was prepared.
 次いで、特開2018-021172号公報の参考例に記載のポリイミド前駆体溶液100質量部に、イミド化触媒(2-メチルイミダゾール)4.2質量部、ポリオキシエチレンジメチルエーテル(日油社製 グレード:MM400、重量平均分子量400)からなる多孔化剤200質量部、PTFEからなる平均粒子径1,000nm以下の核剤3質量部、および、NMP(N-メチルピロリドン)を配合して、ワニスを調製した。核剤は、予めNMPに分散されたスラリーとして調製したものを、ポリイミド前駆体に対して配合した。なお、ワニスにおけるNMPの総配合部数は、上記したスラリー中に含まれるものを併せて、ポリイミド前駆体100質量部に対して、150質量部となるように、調整した。 Next, 4.2 parts by mass of an imidation catalyst (2-methylimidazole) and polyoxyethylene dimethyl ether (Nippon Oil Co., Ltd. grade: 100 parts by mass) in 100 parts by mass of the polyimide precursor solution described in Reference Example of JP-A-2018-021172: A varnish is prepared by blending 200 parts by weight of a porogen comprising MM400, weight average molecular weight 400), 3 parts by weight of a nucleating agent comprising PTFE having an average particle diameter of 1,000 nm or less, and NMP (N-methylpyrrolidone). did. The nucleating agent was prepared in advance as a slurry dispersed in NMP and blended with the polyimide precursor. The total number of NMP in the varnish was adjusted so as to be 150 parts by mass with respect to 100 parts by mass of the polyimide precursor, including those contained in the slurry.
 このワニスを、第1金属層3の一方面に塗布し、100℃で15分間、続いて、120℃で15分間、加熱により乾燥して、NMPを除去し、続いて、超臨界抽出法により、多孔化剤を除去し、その後、真空下、380℃で2時間加熱して、イミド化させて、ポリイミドからなる多孔質樹脂層4を、第1金属層3の一方面で作り込んだ。 This varnish is applied to one surface of the first metal layer 3 and dried by heating at 100 ° C. for 15 minutes, then at 120 ° C. for 15 minutes to remove NMP, and then by supercritical extraction. Then, the porous agent was removed, followed by heating at 380 ° C. for 2 hours under vacuum to imidize the polyimide resin, thereby forming a porous resin layer 4 made of polyimide on one surface of the first metal layer 3.
 多孔質樹脂層4の厚みが、120μmであった。多孔質樹脂層4における空孔率が、80%、平均孔径が、7μmであった。また、多孔質樹脂層4の周波数60GHzにおける誘電率が、1.5であった。 The thickness of the porous resin layer 4 was 120 μm. The porosity of the porous resin layer 4 was 80%, and the average pore diameter was 7 μm. The dielectric constant of the porous resin layer 4 at a frequency of 60 GHz was 1.5.
 次いで、アクリル系接着剤からなり、厚み5μmの接着層5を、多孔質樹脂層4の一方面に形成した。 Next, an adhesive layer 5 made of an acrylic adhesive and having a thickness of 5 μm was formed on one surface of the porous resin layer 4.
 次いで、銅からなる厚み12μmの第2金属層6を、接着層5の厚み方向一方面に接着した。 Next, a second metal layer 6 made of copper and having a thickness of 12 μm was bonded to one surface of the adhesive layer 5 in the thickness direction.
 これにより、図1に示すように、第1金属層3と、多孔質樹脂層4と、接着層5と、第2金属層6とを厚み方向一方側に順に備える低誘電基板材1を製造した。 Thereby, as shown in FIG. 1, the low dielectric substrate material 1 including the first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6 in this order on one side in the thickness direction is manufactured. did.
 低誘電基板材1の厚みは、第1金属層3、多孔質樹脂層4、接着層5および第2金属層6の総厚みとして、149μmであった。 厚 み The thickness of the low dielectric substrate material 1 was 149 μm as the total thickness of the first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6.
 一方、多孔質樹脂層4の厚みT0は、上記した低誘電基板材1の厚みから、第1金属層3、接着層5および第2金属層6の総厚みから差し引いた値として、120μmを取得した。 On the other hand, the thickness T0 of the porous resin layer 4 is 120 μm, which is a value obtained by subtracting the total thickness of the first metal layer 3, the adhesive layer 5, and the second metal layer 6 from the thickness of the low dielectric substrate material 1 described above. did.
  実施例2
 図8に示すように、接着層5と、第2金属層6とを配線回路基板1に設けなかった以外は、実施例1と同様に処理して、低誘電基板材1を製造した。つまり、この配線回路基板1は、厚み12μmの第1金属層3と、厚み120μmの多孔質樹脂層4とを順に備える。
Example 2
As shown in FIG. 8, a low dielectric substrate material 1 was manufactured in the same manner as in Example 1 except that the adhesive layer 5 and the second metal layer 6 were not provided on the printed circuit board 1. That is, the printed circuit board 1 includes the first metal layer 3 having a thickness of 12 μm and the porous resin layer 4 having a thickness of 120 μm in this order.
 低誘電基板材1の厚みは、132μmであった。 厚 み The thickness of the low dielectric substrate material 1 was 132 μm.
 一方、多孔質樹脂層4の厚みT0は、低誘電基板材1の厚みから、第1金属層3の厚みを差し引いた値として、120μmを取得した。 On the other hand, the thickness T0 of the porous resin layer 4 was 120 μm as a value obtained by subtracting the thickness of the first metal layer 3 from the thickness of the low dielectric substrate material 1.
  比較例1
  多孔化剤として、ポリオキシエチレンジメチルエーテルからポリプロピレングリコール(日油社製 グレード:D400、重量平均分子量400)を変更した以外は、実施例2と同様に処理して、低誘電基板材1を製造した。
Comparative Example 1
A low-dielectric substrate material 1 was produced in the same manner as in Example 2, except that polypropylene glycol (grade: D400, weight average molecular weight 400, manufactured by NOF Corporation) was changed from polyoxyethylene dimethyl ether as a porosifying agent. .
  評価
 <10%歪み圧力P>
 低誘電基板材1に残存歪み10%を与えるときの10%歪み圧力Pを求めた。10%歪み圧力Pは、一実施形態において図4を用いて説明した方法に基づいて、求めた。その結果を表1に示す。
<液侵長の測定>
 (液浸性の評価)
 多孔質樹脂層4の断面を剃刀にて切断して、露出させた。赤色浸透液(太洋物産(株)製NRC-ALII)に5分間浸漬後、表面に付着した浸透液をふき取った。多孔質樹脂層4をさらに露出断面に対し垂直に切断し、液浸長を光学顕微鏡により測定した。その結果を表1に示す。また、図9に、実施例1の低誘電基板材の断面を光学顕微鏡で観察した画像処理図を示す
Evaluation <10% strain pressure P>
A 10% strain pressure P when a residual strain of 10% was applied to the low dielectric substrate material 1 was determined. The 10% strain pressure P was determined based on the method described with reference to FIG. 4 in one embodiment. Table 1 shows the results.
<Measurement of liquid penetration>
(Evaluation of liquid immersion)
The cross section of the porous resin layer 4 was cut with a razor and exposed. After being immersed in a red penetration liquid (NRC-ALII manufactured by Taiyo Bussan Co., Ltd.) for 5 minutes, the penetration liquid adhering to the surface was wiped off. The porous resin layer 4 was further cut perpendicular to the exposed cross section, and the liquid immersion length was measured with an optical microscope. Table 1 shows the results. FIG. 9 shows an image processing diagram obtained by observing a cross section of the low dielectric substrate material of Example 1 with an optical microscope.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 The above invention is provided as an exemplary embodiment of the present invention, but this is merely an example and should not be construed as limiting. Modifications of the invention apparent to those skilled in the art are included in the following claims.
 低誘電基板材は、好ましくは、第五世代(5G)の規格に適合する高周波アンテナや高速伝送基板)の製造に用いられる。 (5) The low-dielectric substrate material is preferably used for manufacturing a high-frequency antenna or a high-speed transmission substrate conforming to the fifth generation (5G) standard.
1 低誘電基板材
3 第1金属層
4 多孔質樹脂層
6 第2金属層
S 残存歪み
T1 解放後厚み(多孔質樹脂層)
T0 初期厚み(多孔質樹脂層)
P 10%歪み圧力
REFERENCE SIGNS LIST 1 Low dielectric substrate material 3 First metal layer 4 Porous resin layer 6 Second metal layer S Residual strain T1 Thickness after release (porous resin layer)
T0 Initial thickness (porous resin layer)
P 10% strain pressure

Claims (3)

  1.  多孔質樹脂層および金属層を厚み方向に順に備える低誘電基板材であり、
     10%の下記残存歪みSを与える圧力を10%歪み圧力Pとしたときに、その10%歪み圧力Pが180℃で4.5MPa以上であることを特徴とする、低誘電基板材。
     前記残存歪みS:前記多孔質樹脂層の初期厚みT0を測定し、続いて、圧力Pを前記低誘電基板材に対して30分間、前記厚み方向にかけ、その後、圧力Pを解放し、前記多孔質樹脂層の解放後厚みT1を測定する。その後、初期厚みT0および解放後厚みT1を下記式(1)に代入して、前記残存歪みSが得られる。
     残存歪みS(%)=([T0-T1]/T0)×100
    A low dielectric substrate material comprising a porous resin layer and a metal layer in the thickness direction,
    A low dielectric substrate material characterized in that the 10% strain pressure P is 4.5 MPa or more at 180 ° C. when the pressure giving the following residual strain S of 10% is 10% strain pressure P.
    The residual strain S: measuring the initial thickness T0 of the porous resin layer, subsequently applying a pressure P to the low dielectric substrate material in the thickness direction for 30 minutes, and then releasing the pressure P, After the release of the porous resin layer, the thickness T1 is measured. Then, the residual strain S is obtained by substituting the initial thickness T0 and the post-release thickness T1 into the following equation (1).
    Residual strain S (%) = ([T0−T1] / T0) × 100
  2.  前記多孔質樹脂層の空孔率が、60%以上であることを特徴とする、請求項1に記載の低誘電基板材。 The low dielectric substrate material according to claim 1, wherein the porosity of the porous resin layer is 60% or more.
  3.  前記多孔質樹脂層は、独立気泡を有することを特徴とする、請求項1に記載の低誘電基板材。 The low dielectric substrate material according to claim 1, wherein the porous resin layer has closed cells.
PCT/JP2019/023074 2018-09-28 2019-06-11 Low-dielectric substrate material WO2020066144A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-184586 2018-09-28
JP2018184586A JP2020049905A (en) 2018-09-28 2018-09-28 Low dielectric substrate material

Publications (1)

Publication Number Publication Date
WO2020066144A1 true WO2020066144A1 (en) 2020-04-02

Family

ID=69949762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023074 WO2020066144A1 (en) 2018-09-28 2019-06-11 Low-dielectric substrate material

Country Status (3)

Country Link
JP (1) JP2020049905A (en)
TW (1) TW202012159A (en)
WO (1) WO2020066144A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021172A (en) * 2016-07-25 2018-02-08 日東電工株式会社 Film for millimeter-wave antenna
JP2018021171A (en) * 2016-07-25 2018-02-08 日東電工株式会社 Film for millimeter-wave antenna
WO2018186486A1 (en) * 2017-04-06 2018-10-11 日東電工株式会社 Film for millimeter-wave antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021172A (en) * 2016-07-25 2018-02-08 日東電工株式会社 Film for millimeter-wave antenna
JP2018021171A (en) * 2016-07-25 2018-02-08 日東電工株式会社 Film for millimeter-wave antenna
WO2018186486A1 (en) * 2017-04-06 2018-10-11 日東電工株式会社 Film for millimeter-wave antenna
JP2019123851A (en) * 2017-04-06 2019-07-25 日東電工株式会社 Film for millimetric wave antenna

Also Published As

Publication number Publication date
TW202012159A (en) 2020-04-01
JP2020049905A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
TWI775830B (en) Films for mmWave Antennas
CN107211525B (en) High speed interconnect for printed circuit boards
WO2020066145A1 (en) Low dielectric substrate material
KR101366906B1 (en) Process for producing wiring board covered with thermoplastic liquid crystal polymer film
WO2012161162A1 (en) High-frequency circuit substrate
WO2020066146A1 (en) Low dielectric substrate
CN106800733B (en) A kind of composite microwave medium material, substrate for printed circuit board and its manufacturing method with its production
TW201900742A (en) Fluororesin film and laminate, and method for producing hot laminate
KR20220158872A (en) Film for millimeter-wave antenna
TWI765306B (en) Flexible printed circuits having high electromagnetic shielding property and preparing methods thereof
CN104704027A (en) Soft metal laminate and method for manufacturing same
KR100628504B1 (en) Flexible metal stacked body
WO2020066147A1 (en) Roll body
WO2020066144A1 (en) Low-dielectric substrate material
KR20230010621A (en) Method for producing a laminate having a layer containing a thermally meltable tetrafluoroethylene-based polymer
JP3153511B2 (en) Printed wiring board and method of manufacturing the same
CN115503316A (en) Dielectric material and flexible copper clad laminate with same
WO2022260085A1 (en) Porous resin sheet, porous resin sheet with metal layer, electronic circuit board, method for producing porous resin sheet, method for producing porous resin sheet with metal layer, and method for producing electronic circuit board
JP2002185093A (en) Laminate for both sided wiring board and both-sided wiring board
JP7288546B2 (en) roll body
JP2023000377A (en) Laminate, and copper-clad laminate
JP2024128384A (en) Porous liquid crystal polymer sheet and method for producing the same
TW201930062A (en) A composite material for a flexible printed circuit board and preparing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866702

Country of ref document: EP

Kind code of ref document: A1