WO2020066146A1 - Low dielectric substrate - Google Patents

Low dielectric substrate Download PDF

Info

Publication number
WO2020066146A1
WO2020066146A1 PCT/JP2019/023076 JP2019023076W WO2020066146A1 WO 2020066146 A1 WO2020066146 A1 WO 2020066146A1 JP 2019023076 W JP2019023076 W JP 2019023076W WO 2020066146 A1 WO2020066146 A1 WO 2020066146A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous resin
low dielectric
resin layer
dielectric substrate
metal layer
Prior art date
Application number
PCT/JP2019/023076
Other languages
French (fr)
Japanese (ja)
Inventor
将義 中村
亮人 松富
慧 三島
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2020066146A1 publication Critical patent/WO2020066146A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a low dielectric substrate material, and more particularly, to a low dielectric substrate material suitably used for manufacturing a high-frequency antenna and a high-speed transmission substrate.
  • Wireless communication of the "fifth generation (5G)” standard can transmit a large amount of data. Moreover, in the wireless communication of the "fifth generation (5G)” standard, the above data can be transmitted at a high speed. In recent years, the use of the "fifth generation (5G)” standard has been increasingly desired. It is rare.
  • a high frequency including a millimeter wave is used. This millimeter wave is easily attenuated by moisture in the atmosphere, and a substrate material having a low dielectric constant is required as a substrate material of a high-frequency antenna that emits a millimeter wave.
  • a substrate material having a low dielectric constant is required as a substrate material of a high-frequency antenna that emits a millimeter wave.
  • millimeter wave radio waves can be efficiently emitted.
  • the communication distance can be extended, the area of the antenna member can be reduced, and power consumption can be reduced.
  • a low dielectric substrate having a low dielectric constant is being developed.
  • Substrates using a low-dielectric resin material such as such have been developed.
  • a substrate made of a porous material is also being studied. Since the porous body has air having the lowest dielectric constant 1 in the pores, the porous body has a relatively low dielectric constant.
  • a metal foil laminate having such a porous body for example, a metal foil laminate having a resin porous layer as an insulating material and a metal foil disposed on the surface thereof has been proposed (for example, the following). See Patent Document 1.).
  • the metal foil needs to be formed into a metal pattern with high precision in a later step.
  • an object of the present invention is to provide a low-dielectric substrate material that can be formed on a metal pattern with high precision and that can be mass-produced industrially at low cost.
  • the present invention [1] includes a porous resin layer and a metal layer in the thickness direction, and further includes a protective material disposed on one surface of the porous resin layer and the metal layer.
  • the Shore D hardness H1 of 23 ° C. and the Shore D hardness H2 of 23 ° C. of the laminate including the porous resin layer and the metal layer satisfy the following expression (1), or the thickness T1 of the protective material.
  • the thickness T0 of the laminated material includes a low dielectric substrate material satisfying the following expression (2).
  • the present invention [2] includes the low-dielectric substrate material according to [1], wherein both of the expressions (1) and (2) are satisfied.
  • the present invention [3] includes the low dielectric substrate material according to [1] or [2], wherein the porosity of the porous resin layer is 60% or more.
  • this low dielectric substrate material is extremely useful as a substrate material that can conform to the fifth generation (5G) standards and high-speed FPC.
  • the low dielectric substrate material has a metal layer, it can be patterned as an antenna corresponding to the fifth generation (5G) standard or a wiring of a high-speed FPC substrate. Specifically, even if the metal layer is patterned under etching conditions that can be mass-produced industrially, an antenna or wiring of a high-speed FPC board that can conform to the fifth generation (5G) can be formed with excellent accuracy.
  • the porous resin layer has a high ratio of closed cell structures, it is possible to suppress a decrease in pattern accuracy due to penetration of an etching solution used for patterning. Therefore, the low dielectric substrate material is useful as a substrate material that can sufficiently and surely cope with fifth-generation (5G) wireless communication and high-speed FPC.
  • 5G fifth-generation
  • the low dielectric substrate material includes a protective material disposed in the thickness direction with respect to the porous resin layer, even when the low dielectric substrate material is manufactured by being stacked in the thickness direction as an industrial manufacturing condition, In addition, the protective material suppresses a decrease in the porosity caused by the porous resin layer being pressed in the thickness direction, and therefore, it is possible to sufficiently ensure a low dielectric constant of the porous resin layer. . As a result, the low dielectric substrate material is mass-produced at low cost.
  • FIG. 1 shows a cross-sectional view of one embodiment of the low dielectric substrate material of the present invention.
  • FIG. 2 shows a cross-sectional view of a pattern laminate obtained from the low dielectric substrate material shown in FIG.
  • FIG. 3 is a cross-sectional view of a modified example of the low dielectric substrate material (an embodiment without the first protective material).
  • FIG. 4 shows a cross-sectional view of a modified example of the low dielectric substrate material (an embodiment having no adhesive layer).
  • FIG. 5 is a cross-sectional view of a modified example of the low dielectric substrate material (an aspect in which the first protective material is not provided, but the second protective material and the laminated material are provided).
  • FIG. 6 is a cross-sectional view of a modified example of the low dielectric substrate material (an aspect in which the second protective material is not provided, but the first protective material and the laminated material are provided).
  • the low dielectric substrate material 1 has one surface and the other surface facing each other in the thickness direction, and has a shape extending in a surface direction orthogonal to the thickness direction.
  • the low dielectric substrate material 1 is disposed on a first metal layer 3, a porous resin layer 4 disposed on one surface in the thickness direction of the first metal layer 3, and disposed on one surface in a thickness direction of the porous resin layer 4.
  • the protective device includes a protective material 2 and a second protective material 7 as an example of a protective material disposed on one surface in the thickness direction of the second metal layer 6. That is, the low dielectric substrate material 1 includes the first protective material 2, the first metal layer 3, the porous resin layer 4, the adhesive layer 5, the second metal layer 6, and the second protective material 7 having a thickness.
  • the direction is provided in order from the other side to one side.
  • the low dielectric substrate material 1 includes only the first protective material 2, the first metal layer 3, the porous resin layer 4, the adhesive layer 5, the second metal layer 6, and the second protective material 7. I
  • the first metal layer 3 has one surface and the other surface facing each other in the thickness direction, and has a sheet (plate) shape extending in the surface direction.
  • the material of the first metal layer 3 is not particularly limited, and examples thereof include copper, iron, silver, gold, aluminum, nickel, and alloys thereof (stainless steel, bronze). Preferably, copper is used.
  • the thickness of the first metal layer 3 is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and is, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the porous resin layer 4 has one surface and the other surface opposed in the thickness direction, and has a substantially plate (sheet) shape extending in the surface direction. The other surface of the porous resin layer 4 is in contact (close contact) with one surface of the first metal layer 3.
  • the porous resin layer 4 has many fine pores (pores) 10.
  • the porous resin layer 4 has, for example, one of a closed cell structure and an open cell structure. Preferably, it mainly has a closed cell structure.
  • the ratio of the closed cells is, for example, more than 50%, preferably 80% or more, more preferably 90% or more, and for example, 100%. %. When the ratio of the closed cells exceeds the above lower limit, a decrease in pattern accuracy due to the penetration of the etching solution used for patterning the first metal layer 3 and the second metal layer 6 into the porous resin layer 4 is suppressed. be able to.
  • the porosity of the porous resin layer 4 is, for example, 60% or more, more preferably 70% or more, further preferably 80% or more, and particularly preferably 85% or more.
  • the porosity of the porous resin layer 4 is, for example, less than 100%, and further, 99% or less.
  • the porosity is determined, for example, by image analysis of a cross-sectional SEM photograph of the porous resin layer 4. Alternatively, the porosity is determined by calculation based on the following equation.
  • Porosity (%) (1 ⁇ specific gravity of non-porous resin layer / specific gravity of porous resin layer) ⁇ 100
  • the non-porous resin layer is made of the material of the porous resin layer 4, but is not porous but a dense film.
  • the porous resin layer 4 can have a low dielectric constant that can sufficiently cope with the fifth generation (5G) standard and high-speed FPC.
  • the low dielectric substrate material 1 is useful as a substrate material that can sufficiently comply with the fifth generation (5G) standard and high-speed FPC.
  • the average diameter of the pores 10 in the porous resin layer 4 (that is, the average pore diameter) is, for example, 10 ⁇ m or less, and is, for example, 0.1 ⁇ m or more.
  • the average pore diameter is determined by image analysis of a cross-sectional SEM photograph of the porous resin layer 4. In the image analysis, binarization is performed on the SEM image, the holes 10 are identified, the hole diameter is calculated, and a histogram is formed. In the image analysis, ImageJ is used as analysis software.
  • the dielectric constant of the porous resin layer 4 at a frequency of 60 GHz is appropriately adjusted depending on the porosity and the type of the resin described below, and specifically, is, for example, 2.5 or less, preferably 2.0 or less, Also, for example, it is more than 1.0.
  • the dielectric constant of the porous resin layer 4 is actually measured by a resonator method using a frequency of 60 GHz.
  • the low dielectric substrate material 1 has a low dielectric constant, and is useful as a fifth generation (5G) standard or a high-speed FPC substrate material. Can be used.
  • 5G fifth generation
  • FPC substrate material Can be used.
  • the material of the porous resin layer 4 is not particularly limited, and examples thereof include resins such as a thermosetting resin and a thermoplastic resin.
  • thermosetting resin for example, polycarbonate resin, thermosetting polyimide resin, thermosetting fluorinated polyimide resin, epoxy resin, phenol resin, urea resin, melamine resin, diallyl phthalate resin, silicone resin, thermosetting urethane resin , A fluororesin (a polymer of a fluorine-containing olefin (specifically, polytetrafluoroethylene (PTFE) or the like)), a liquid crystal polymer (LCP), or the like. These can be used alone or in combination of two or more.
  • PTFE polytetrafluoroethylene
  • LCP liquid crystal polymer
  • thermoplastic resin examples include olefin resin, acrylic resin, polystyrene resin, polyester resin, polyacrylonitrile resin, maleimide resin, polyvinyl acetate resin, ethylene-vinyl acetate copolymer, polyvinyl alcohol resin, polyamide resin, and polyvinyl chloride.
  • Resin polyacetal resin, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ketone resin, polyallyl sulfone resin, thermoplastic polyimide resin, thermoplastic fluorinated polyimide resin, thermoplastic urethane resin, poly Examples include ether imide resin, polymethylpentene resin, cellulose resin, liquid crystal polymer, and ionomer. These can be used alone or in combination of two or more.
  • polyimide resin including thermosetting polyimide resin and thermoplastic polyimide resin
  • fluorinated polyimide resin thermosetting fluorinated polyimide resin and thermoplastic fluorinated polyimide resin
  • polycarbonate resins preferably, polyetherimide resins.
  • a polyimide resin is used.
  • the polyimide resin is included in the manufacturing process of the low dielectric substrate material 1 including the porous resin layer 4 having a closed cell structure, and is a material most suitable for lamination by pressing (pressing). The details of the above-mentioned preferable physical properties of the resin and the manufacturing method thereof are described in, for example, JP-A-2018-021171, JP-A-2018-021172, and the like.
  • the porous resin layer 4 can have a skin layer (not shown) formed on one surface and the other surface in the thickness direction.
  • the thickness of the porous resin layer 4 is, for example, 2 ⁇ m or more, preferably 5 ⁇ m or more, and for example, 1,000 ⁇ m or less, preferably 500 ⁇ m or less.
  • Each of the materials 7 (described later) is different from the porous resin layer 4 and is, for example, non-porous, that is, has substantially no fine pores and is dense.
  • the adhesive layer 5 has a sheet shape along the surface direction on one surface in the thickness direction of the porous resin layer 4.
  • the material of the adhesive layer 5 is not particularly limited, and includes various types of adhesives such as a hot melt type adhesive and a thermosetting type adhesive. Specifically, an acrylic type adhesive, an epoxy type adhesive And silicone-based adhesives.
  • the thickness of the adhesive layer 5 is, for example, 2 ⁇ m or more, preferably 5 ⁇ m or more, and for example, 50 ⁇ m or less, preferably 25 ⁇ m or less, more preferably from the viewpoint of reducing the dielectric constant of the low dielectric substrate material 1. , 10 ⁇ m or less.
  • the second metal layer 6 has one surface and the other surface facing each other in the thickness direction, and has a sheet (plate) shape extending in the surface direction.
  • the other surface of the second metal layer 6 is adhered to one surface of the porous resin layer 4 via the adhesive layer 5.
  • the material and thickness of the second metal layer 6 are the same as those of the first metal layer 3.
  • the first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6 constitute a laminated material 14.
  • the laminate 14 includes the first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6 in this order in the thickness direction.
  • the thickness T0 of the laminated material 14 is set so as to satisfy a desired ratio with the thickness T1 of the second protective material 7 described later.
  • the thickness T0 of the laminated material 14 is, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, and is, for example, 10 ⁇ m or less, preferably 500 ⁇ m or less.
  • the first protective material 2 forms the other surface in the thickness direction of the low dielectric substrate material 1.
  • the first protective member 2 has one surface and the other surface facing each other in the thickness direction, and has a sheet shape extending in a surface direction orthogonal to the thickness direction.
  • One surface of the first protective material 2 is in releasable contact (close contact) with the other surface of the first metal layer 3.
  • the first protective material 2 protects the first metal layer 3. Specifically, the first protective material 2 covers the first metal layer 3 before patterning the first metal layer 3, while the first protective material 2 covers the first metal layer 3 when patterning the first metal layer 3. 3 is a release sheet (first release sheet) to be peeled off. Note that, as shown in FIG. 2, the first protective material 2 is not disposed on the other-side wiring 18 (described later) formed by patterning the first metal layer 3.
  • the first protective material 2 is a protective sheet provided on the low dielectric substrate material 1 in order to industrially mass-produce the low dielectric substrate material 1 having the porous resin layer 4 having a high porosity.
  • the material of the first protection member 2 is not particularly limited, and examples thereof include a polymer and a metal.
  • the polymer include polyolefins such as polyethylene (PE) and polypropylene, and polyesters such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the metal include aluminum, iron, and alloys (such as stainless steel).
  • the material of the first protective material 2 is a polymer.
  • the thickness of the first protective material 2 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and is, for example, 2,000 ⁇ m or less, preferably 1,000 ⁇ m or less.
  • the second protective material 7 forms one surface in the thickness direction of the low dielectric substrate material 1.
  • the second protection member 7 has one surface and the other surface facing each other in the thickness direction, and has a sheet shape extending in a surface direction orthogonal to the thickness direction.
  • the other surface of the second protection member 7 is in releasable contact (close contact) with one surface of the second metal layer 6.
  • the second protection member 7 protects the second metal layer 6. Specifically, the second protective material 7 covers the second metal layer 6 before patterning the second metal layer 6, while the second protective material 7 covers the second metal layer 6 when patterning the second metal layer 6. As shown by the line, a release sheet (second release sheet) that is released from the second metal layer 6. As shown in FIG. 2, the second metal layer 6 is not disposed on the one-side wiring 17 (described later) formed by patterning the second metal layer 6.
  • the second protective material 7 is a protective sheet provided on the low dielectric substrate material 1 together with the first protective material 2 in order to industrially mass-produce the low dielectric substrate material 1 including the porous resin layer 4 having a high porosity. It is.
  • the shape, material, thickness, etc. of the second protection member 7 are the same as those of the first protection member 2.
  • the thickness of the low dielectric substrate material 1 depends on the total thickness of the first protective material 2, the first metal layer 3, the porous resin layer 4, the adhesive layer 5, the second metal layer 6, and the second protective material 7 (that is, the laminated material). 14, the total thickness of the first protective material 2 and the second protective material 7), for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 200 ⁇ m or more, and for example, 5,000 ⁇ m or less, Preferably, it is 2,000 ⁇ m or less.
  • each member is stacked (formed) while being conveyed by a roll-to-roll method.
  • the first metal layer 3 is prepared.
  • a foil (metal foil) made of the above-described material is prepared as the first metal layer 3.
  • the porous resin layer 4 is formed on one surface of the first metal layer 3.
  • the porous resin layer 4 is formed (built) on one surface of the first metal layer 3.
  • a varnish containing the above-described resin precursor, a porogen, a nucleating agent, and a solvent is prepared, and then, the varnish is applied to one surface of the first metal layer 3 to be applied.
  • the varnish is applied to one surface of the first metal layer 3 to be applied.
  • the types, blending ratios, and the like of the porosity, nucleating agent, and solvent in the varnish are described in, for example, JP-A-2018-021171, JP-A-2018-021172, and the like.
  • the number of parts by mass (mixing ratio) of the porogen is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, and preferably 300 parts by mass with respect to 100 parts by mass of the precursor. Or less, more preferably 250 parts by mass or less.
  • the nucleating agent is a foaming nucleating agent (cell regulator) that becomes a nucleus when the precursor is foamed (porous).
  • a foaming nucleating agent cell regulator
  • a fluororesin polymer of fluorinated olefin
  • poly (chlorotrifluoroethylene) such as poly (chlorotrifluoroethylene)
  • meth monomer unit
  • Copolymers containing acrylic acid esters and the above-mentioned fluorine-containing olefins are also included.
  • the nucleating agent may be in a solid state, a liquid state, or a semi-solid state at room temperature (23 ° C.), and is preferably in a solid state. If the nucleating agent is solid at room temperature, examples of the shape of the nucleating agent include a substantially spherical shape, a substantially plate shape, a substantially needle shape, and an indefinite shape (including a lump shape). No.
  • the average value of the maximum length of the nucleating agent (if it is substantially spherical, the average particle diameter) is, for example, 2,000 nm or less, preferably 1,000 nm or less. And, for example, 1 nm or more.
  • the nucleating agent may be prepared in advance as a slurry dispersed in a solvent (PTFE).
  • the porogen is extracted from the precursor (pulled out or removed) by, for example, a supercritical extraction method using supercritical carbon dioxide as a solvent.
  • the precursor is cured to form a resin and a resin having porosity, specifically, the porous resin layer 4.
  • the adhesive layer 5 is disposed on one surface of the porous resin layer 4.
  • an adhesive is applied to one surface of the porous resin layer 4, or an adhesive layer 5 previously formed into a sheet from the adhesive is attached to one surface of the porous resin layer 4.
  • the second metal layer 6 is disposed on one surface of the adhesive layer 5.
  • a foil (metal foil) made of the above-described material is attached to one surface of the adhesive layer 5.
  • the first protection member 2 is disposed on the other surface of the first metal layer 3, and the second protection member 7 is disposed on one surface of the second metal layer 6.
  • the second metal layer 6 on which the second protective material 7 is arranged in advance can be attached to the adhesive layer 5.
  • the low dielectric substrate material 1 is manufactured.
  • the application of the low dielectric substrate material 1 includes, for example, various applications.
  • the low dielectric substrate material 1 is used for manufacturing a high-frequency antenna or a high-speed transmission substrate (such as a high-speed transmission FPC) conforming to the fifth generation (5G) standard.
  • the low dielectric substrate material 1 is used as a substrate material for a high-frequency antenna or a high-speed FPC.
  • the second protective material 7 is peeled off from the second metal layer 6 as shown by the imaginary line in FIG. One surface of the two metal layers 6 is exposed. Before the second protective material 7 is peeled off from the second metal layer 6, the second protective material 7 is previously placed between the second protective material 7 and the second metal layer 6 at the end of the low dielectric substrate material 1. A cut (gap) serving as a trigger for peeling is provided, and an end of the second protection member 7 is gripped. Then, the second protection member 7 is peeled off from the second metal layer 6 while holding the end of the second protection member 7 and pulling the end to one side in the thickness direction.
  • the second metal layer 6 is patterned by photolithography (for example, a subtractive method) as shown in FIG. 2 so that, for example, one side of signal wiring (differential wiring or the like) or antenna wiring or the like is formed.
  • the wiring 17 is formed.
  • the first protective material 2 is peeled off from the first metal layer 3 to expose the other surface of the first metal layer 3, and then the first metal layer 3 is patterned by photolithography.
  • the other-side wiring 18 such as a ground wiring is formed.
  • a pattern laminated material 13 having the other side wiring 18, the porous resin layer 4, the adhesive layer 5, and the one side wiring 17 sequentially in the thickness direction is manufactured.
  • 5G high-frequency antennas and high-speed transmission boards conforming to (5G) standards.
  • this low dielectric substrate material 1 has a porous resin layer 4, and the porous resin layer 4 is 60% or more, more preferably 70% or more, further preferably 80% or more, and particularly preferably, When it has a high porosity of 85% or more, it can have a sufficiently low low dielectric constant.
  • the low dielectric constant is, for example, 2.5 or less, preferably 2.0 or less. Accordingly, the low dielectric substrate material 1 can have a low dielectric constant that can be used for an antenna substrate for wireless communication of the fifth generation (5G) standard or high-speed FPC.
  • the low dielectric substrate material 1 includes the first metal layer 3 and the second metal layer 6, it can be patterned as an antenna corresponding to the fifth generation (5G) standard or a wiring of a high-speed FPC board. Specifically, even if the first metal layer 3 and the second metal layer 6 are patterned under industrial etching conditions, the wiring of the antenna or the high-speed FPC board that can be adapted to the fifth generation (5G) is excellent. It can be formed with high precision.
  • the porous resin layer 4 has a closed cell structure, and the ratio of the closed cells is more than 50%, further, 80% or more, and further, as high as 90% or more, patterning is performed. It is possible to suppress a decrease in pattern accuracy due to the penetration of the used etching solution. Therefore, the low dielectric substrate material 1 is useful as a substrate material that can sufficiently and surely cope with fifth-generation (5G) wireless communication and high-speed FPC.
  • 5G fifth-generation
  • the low dielectric substrate material 1 includes the first protective material 2 and the second protective material 7 disposed on both sides in the thickness direction with respect to the porous resin layer 4, the low dielectric substrate material is used as an industrial manufacturing condition. Also when the first protective material 2 and the second protective material 7 are manufactured by being stacked in the thickness direction, the porosity of the first protective material 2 and the second protective material 7 increases due to the porous resin layer 4 being pressed in the thickness direction. Therefore, a low dielectric constant of the porous resin layer 4 can be sufficiently ensured. As a result, the low dielectric substrate material 1 is useful as a substrate material having a low dielectric constant enough to cope with the fifth generation (5G) standard and high-speed FPC while being mass-produced at low cost.
  • 5G fifth generation
  • the porous resin layer 4 can secure sufficient mechanical strength.
  • the Shore D hardness H1 at 23 ° C. of the second protective material 7 and the Shore D hardness H2 at 23 ° C. of the porous resin layer 4 satisfy the following expression (1), or the thickness T1 of the second protective material 7 And the thickness T0 of the laminated material 14 satisfies the following expression (2).
  • the second protective material 7 is moved in the thickness direction. By being sufficiently crushed, it is possible to suppress the porous resin layer 4 from being crushed in the thickness direction. As a result, an increase in the dielectric constant of the porous resin layer 4 can be suppressed. Therefore, this low dielectric substrate material 1 is extremely useful as a substrate material that can conform to the fifth generation (5G) standards and high-speed FPC.
  • the Shore D hardness of each of the first metal layer 3, the adhesive layer 5, and the second metal layer 6 does not significantly contribute to the Shore D hardness of the laminated material 14 including them. Therefore, the Shore D hardness of the laminated material 14 and the Shore D hardness H2 of the porous resin layer 4 are substantially the same.
  • the laminated material 14 (substantially, before the second protective material 7 is crushed). As a result, the porous resin layer 4) is crushed, and as a result, the porosity decreases, and the dielectric constant of the porous resin layer 4 increases.
  • the substrate material is not sufficient as a substrate material that can conform to the fifth generation (5G) standard or high-speed FPC.
  • the second protective material 7 and the porous resin layer 4 are similarly crushed. After all, the increase in the dielectric constant of the porous resin layer 4 cannot be suppressed. In that case, there is a case where the substrate material is not sufficient as a substrate material that can conform to the fifth generation (5G) standard and the high-speed FPC.
  • 5G fifth generation
  • the Shore D hardness H1 of the second protective material 7 is higher than the Shore D hardness H2 of the porous resin layer 4, or when the Shore D hardness H1 of the second protective material 7 and the porous resin Even when the Shore D hardness H2 of the layer 4 is the same (that is, even when the above-mentioned formula (1) is not satisfied), if the following formula (2) regarding the thickness is satisfied, the second step in the manufacturing process Even when the second protective material 7 is wound, the amount by which the second protective material 7 is crushed can be ensured, and the crushing of the porous resin layer 4 can be suppressed. Therefore, the second metal layer 6 and the first metal layer 3 in the second protection member 7 can be formed in the metal pattern (the one-side wiring 17 and the other-side wiring 18 in FIG. 2) with high precision.
  • the crushing of the porous resin layer 4 is suppressed, a decrease in porosity can be suppressed.
  • an increase in the dielectric constant of the porous resin layer 4 in the laminated material 14 can be suppressed, and the low dielectric substrate material 1 is extremely useful as a substrate material that can conform to the fifth generation (5G) standard and high-speed FPC. be able to.
  • the Shore D hardness H1 of the second protective material 7 and the Shore D hardness H2 of the porous resin layer 4 preferably satisfy the following expression (1-1), and preferably satisfy the following expression (1-2). ) Is satisfied, preferably the following expression (1-3) is satisfied, and for example, the following expression (1-4) is satisfied.
  • H1 ⁇ 0.9 ⁇ H2 (1-1) H1 ⁇ 0.7 ⁇ H2 (1-2)
  • the laminated material 14 may be crushed after the second protective material 7 is substantially completely crushed.
  • this low dielectric substrate material 1 when at least the thickness T1 of the second protective material 7 and the thickness T0 of the laminated material 14 satisfy Expression (2), the thickness T1 of the second protective material 7 is Since it is thicker than the half value of the thickness T0 of the member 14, the amount (room) that the second protective member 7 is crushed can be sufficiently secured. Therefore, before the laminated material 14 is crushed, the second protective material 7 is sufficiently crushed. Therefore, an increase in the dielectric constant of the porous resin layer 4 in the laminated material 14 can be suppressed, and this low dielectric substrate material 1 is extremely useful as a substrate material that can conform to the fifth generation (5G) standards and high-speed FPC.
  • 5G fifth generation
  • the thickness T1 of the second protective material 7 and the thickness T0 of the laminated material 14 more preferably satisfy the following expression (2-1), and more preferably the following expression (2-1). It satisfies (2-2), particularly preferably satisfies the following formula (2-3), satisfies the following formula (2-4), and further satisfies the following formula (2-5).
  • 5G fifth generation
  • both the expressions (1) and (2) are satisfied. If both the formulas (1) and (2) are satisfied, the second protective member 7 is crushed even more sufficiently. Therefore, an increase in the dielectric constant of the porous resin layer 4 in the laminated material 14 can be further suppressed.
  • the low dielectric substrate material 1 is manufactured by roll-to-roll.
  • the present invention is not limited to this.
  • the low dielectric substrate material 1 can be manufactured by a batch method (single wafer type).
  • the first protection member 2 is separated from the first metal layer 3 and then the second protection member 7 is separated from the second metal layer 6, but the order may be reversed. Also, they may be simultaneous.
  • One surface and / or the other surface of the second protective material 7 may be subjected to a peeling treatment or an adhesive treatment. Note that the thickness of the release layer or the adhesive layer is set to such an extent that the Shore D hardness H1 of the second protective material 7 does not substantially vary.
  • the adhesive layer 5 is interposed between the porous resin layer 4 and the second metal layer 6, but is not limited thereto. 1 It may be interposed between the metal layer 3 and the porous resin layer 4.
  • the second protective material 7 is illustrated as an example of the protective material of the present invention, and the Shore D hardness H1 or the thickness T1 of the second protective material 7 satisfies the above formula (1) or formula (2).
  • the first protection member 2 can be further exemplified as an example of the protection member.
  • the Shore D hardness H3 of the first protective material 2 and the Shore D hardness H2 of the porous resin layer 4 satisfy the following expression (3), or the thickness T1 of the first protective material 2
  • the thickness T1 of the laminated material 14 satisfies the following expression (2).
  • the thickness T1 of the first protection member 2 is the same as the thickness T1 of the second protection member 7.
  • the Shore D hardness H3 of the first protective material 2 and the Shore D behavior H2 of the porous resin layer 4 preferably, the following formula (3-1) is satisfied, and more preferably, the following formula (3-2) Is satisfied, more preferably the following formula (3-3) is satisfied, and particularly preferably the following formula (3-4) is satisfied.
  • H3 ⁇ 0.9 ⁇ H2 (3-1) H3 ⁇ 0.7 ⁇ H2 (3-2)
  • the Shore D hardness H3 of the first protection member 2 may be the same as the Shore D hardness H1 of the second protection member 7.
  • both the expressions (3) and (2) are satisfied.
  • one surface and / or the other surface of the first protective material 2 may be subjected to a peeling treatment or an adhesive treatment.
  • the thickness of the release layer or the pressure-sensitive adhesive layer is set to a value that does not substantially change the Shore D hardness H3 of the first protective material 2.
  • the low dielectric substrate material 1 includes the first protective material 2, but may include the second protective material 7 without the first protective material 2 as illustrated in FIG. 3.
  • This low dielectric substrate material 1 includes a laminated material 14 and a second protective material 7. Specifically, the first metal layer 3, the porous resin layer 4, the adhesive layer 5, the second metal layer 6, and the second protective material 7 are sequentially provided toward one side in the thickness direction.
  • the first metal layer 3 is exposed toward the other side in the thickness direction.
  • the other surface in the thickness direction of the first metal layer 3 is in contact with one surface in the thickness direction of the second protective material 7 when a plurality of low dielectric substrate materials 1 are stacked (laminated) in the thickness direction. It is protected by the second protection member 7.
  • the low-dielectric substrate material 1 includes the adhesive layer 5, but may not include the adhesive layer 5, as illustrated in FIG.
  • the laminated material 14 includes the first metal layer 3, the porous resin layer 4, and the second metal layer 6 in this order in the thickness direction.
  • the low dielectric substrate material 1 includes the first protective material 2, the first metal layer 3, the porous resin layer 4, and the second metal layer 6 in this order in the thickness direction.
  • the low dielectric substrate material 1 does not need to include the first protective material 2 and the first metal layer 3.
  • a laminated material 14 having a porous resin layer 4 and a second metal layer 6 and a second protective material 7 are sequentially arranged toward one side in the thickness direction.
  • the low dielectric substrate material 1 includes a porous resin layer 4, a second metal layer 6, and a second protective material 7 in order toward one side in the thickness direction.
  • the porous resin layer 4 forms the other surface in the thickness direction of the low dielectric substrate material 1 and is exposed toward the other side in the thickness direction.
  • the porous resin layer 4 is in contact with one surface in the thickness direction of the second protection material 7, that is, protected by the second protection material 7. Is done.
  • the laminated material 14 and the second protective material 7 are arranged in order toward one side in the thickness direction, but in the modified example shown in FIG. 6, the first protective material as an example of the protective material is provided. 2 and the laminated material 14 are sequentially arranged toward one side in the thickness direction.
  • the low dielectric substrate material 1 includes a first protective material 2, a porous resin layer 4, and a second metal layer 6 in this order in the thickness direction.
  • the second metal layer 6 forms one surface in the thickness direction of the low dielectric substrate material 1 and is exposed toward one side in the thickness direction.
  • the second metal layer 6 is in contact with the other surface in the thickness direction of the first protective material 2 when the low dielectric substrate materials 1 are stacked (laminated) in the thickness direction, that is, protected by the first protective material 2. Is done.
  • the porous resin layer 4 may be composed of a plurality of layers, such as two or three or more layers.
  • Example 1 First, a 12.5 ⁇ m-thick first metal foil 3 made of copper was prepared.
  • a varnish is prepared by blending 200 parts by weight of a porogen comprising MM400, weight average molecular weight 400), 3 parts by weight of a nucleating agent comprising PTFE having an average particle diameter of 1,000 nm or less, and NMP (N-methylpyrrolidone). did.
  • the nucleating agent was prepared in advance as a slurry dispersed in NMP and blended with the polyimide precursor. The total number of NMP in the varnish was adjusted so as to be 150 parts by mass with respect to 100 parts by mass of the polyimide precursor, including those contained in the slurry.
  • This varnish is applied to one surface of the first metal foil 3 and dried at 120 ° C. for 30 minutes to remove NMP. Subsequently, the porosity is removed by supercritical extraction, and then the vacuum is applied. The resultant was heated at 380 ° C. for 2 hours to be imidized, and a porous resin layer 4 made of polyimide was formed on one surface of the first metal foil 3.
  • the thickness of the porous resin layer 4 was 120 ⁇ m.
  • the porosity of the porous resin layer 4 was 80%, and the average pore diameter was 7 ⁇ m.
  • the dielectric constant of the porous resin layer 4 at a frequency of 60 GHz was 1.5. Further, the Shore D hardness H2 of the porous resin layer 4 was 47.
  • an adhesive layer 5 made of an acrylic adhesive and having a thickness of 5 ⁇ m was formed on one surface of the porous resin layer 4.
  • a laminated material 14 including the first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6 was produced.
  • the thickness T0 of the laminated material 14 was 150 ⁇ m.
  • each second protection member 7 is made of polyethylene (PE) and has a thickness of 50 ⁇ m.
  • the total thickness of the two second protection members 7 is 100 ⁇ m.
  • the other surface of the second protective material 7 on the other side had been subjected to an adhesive treatment with an acrylic adhesive.
  • the Shore D hardness H1 of the second protective material 7 was smaller than the Shore D hardness H2 (47) of the porous resin layer 4, specifically, 40.
  • the first metal foil 3, the porous resin layer 4, the adhesive layer 5, the second metal layer 6, and the second protective material 7 are sequentially lowered toward one side in the thickness direction.
  • the dielectric substrate material 1 was manufactured.
  • Example 2 A low dielectric substrate material 1 was manufactured in the same manner as in Example 1 except that the thickness T1 of the second protective material 7 was changed to 50 ⁇ m. Specifically, the number of the second protective members 7 is one.
  • Example 3 Processing was performed in the same manner as in Example 1 except that the material of the second protective material 7 was changed from polyethylene to polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the Shore D hardness H1 of the second protective material 7 was larger than the Shore D hardness H2 of the porous resin layer 4, specifically, 78.
  • Comparative Example 1 The processing was performed in the same manner as in Example 2 except that the material of the second protective material 7 was changed from polyethylene (PE) to polyethylene terephthalate (PET).
  • PE polyethylene
  • PET polyethylene terephthalate
  • Example 4 The layer structure of the low dielectric substrate material 1 is the layer structure of FIG. 3, that is, the low dielectric substrate material 1 having the first protective material 2, the porous resin layer 4, and the second metal layer 6 in this order in the thickness direction. Except having changed to, it carried out similarly to Example 1.
  • Example 5 The layer structure of the low dielectric substrate material 1 is the layer structure of FIG. 3, that is, the low dielectric substrate material 1 having the first protective material 2, the porous resin layer 4, and the second metal layer 6 in this order in the thickness direction. Except having changed to, it carried out similarly to Example 2.
  • Example 6 The layer structure of the low dielectric substrate material 1 is the layer structure of FIG. 3, that is, the low dielectric substrate material 1 having the first protective material 2, the porous resin layer 4, and the second metal layer 6 in this order in the thickness direction. Except having changed to, it carried out similarly to Example 3.
  • the layer structure of the low dielectric substrate material 1 is the layer structure of FIG. 3, that is, the low dielectric substrate material 1 having the first protective material 2, the porous resin layer 4, and the second metal layer 6 in this order in the thickness direction. Except having changed to, it processed similarly to the comparative example 1.
  • the Shore D hardness H1 of the second protective material 7, the Shore D hardness H3 of the first protective material 2, and the Shore D hardness H2 of the porous resin layer 4 are each a Shore D hardness meter (manufactured by Kamishima Seisakusho). Was calculated.
  • the porous resin layer 4 was taken out of the low dielectric substrate material 1. Specifically, the second metal layer 6, the adhesive layer 5, the first metal layer 3, and the like were peeled off from the laminated material 14 to obtain the porous resin layer 4. A plurality of the porous resin layers 4 are stacked in the thickness direction until a thickness of 3000 ⁇ m is formed to form a laminate. D hardness H2.
  • This low dielectric substrate material 1 is preferably used for manufacturing a high-frequency antenna or a high-speed transmission substrate conforming to the fifth generation (5G) standard.

Abstract

This low dielectric substrate comprises, in order in the direction of thickness, a porous resin layer and a metal layer, and further comprises a protective material disposed on one surface of either the porous resin layer or the metal layer. The Shore D hardness H1 at 23°C of the protective material and the Shore D hardness H2 at 23°C of the porous resin layer satisfy formula (1), or thickness T1 of the protective material and thickness T0 of the laminated material comprising the porous resin layer and metal layer satisfy formula (2). Formula (1): H1 < H2 Formula (2): T1 > 0.5 x T0

Description

低誘電基板材Low dielectric substrate material
 本発明は、低誘電基板材、詳しくは、高周波アンテナや高速伝送基板の製造に好適に用いられる低誘電基板材に関する。 The present invention relates to a low dielectric substrate material, and more particularly, to a low dielectric substrate material suitably used for manufacturing a high-frequency antenna and a high-speed transmission substrate.
 従来、いわゆる「第三世代(3G)」や「第四世代(4G)」の規格の無線通信が広く利用されている。しかしながら、近年、画像データ等の通信容量がより一層増加する傾向(大容量化の傾向)にあり、上記した規格の無線通信では、大容量のデータを、実用レベルの速度で伝送できない。 Conventionally, so-called “third generation (3G)” and “fourth generation (4G)” wireless communication standards have been widely used. However, in recent years, the communication capacity of image data and the like has tended to further increase (increase in capacity), and large-capacity data cannot be transmitted at a practical level in wireless communication of the above-described standard.
 そこで、いわゆる「第五世代(5G)」の規格の無線通信の開発が進められている。「第五世代(5G)」の規格の無線通信であれば、大容量のデータを伝送できる。しかも、この「第五世代(5G)」の規格の無線通信では、上記のデータを、高速で伝送することもでき、近年、ますます、「第五世代(5G)」の規格の利用が望まれている。 Therefore, the development of so-called "fifth generation (5G)" wireless communication is being promoted. Wireless communication of the "fifth generation (5G)" standard can transmit a large amount of data. Moreover, in the wireless communication of the "fifth generation (5G)" standard, the above data can be transmitted at a high speed. In recent years, the use of the "fifth generation (5G)" standard has been increasingly desired. It is rare.
 具体的には、「第五世代(5G)」の規格の無線通信では、ミリ波を含む高周波が用いられる。このミリ波は、大気中の水分で減衰し易く、ミリ波を放出する高周波アンテナの基板材として、誘電率が低い基板材が求められている。低誘電の基板材をアンテナに用いると、ミリ波の電波を効率よく放出することができる。また、低誘電のアンテナ用基板材を用いると、通信距離が延び、しかも、アンテナ部材の小面積化を図ることができ、さらに、低消費電力にもつながる。 Specifically, in the wireless communication of the “fifth generation (5G)” standard, a high frequency including a millimeter wave is used. This millimeter wave is easily attenuated by moisture in the atmosphere, and a substrate material having a low dielectric constant is required as a substrate material of a high-frequency antenna that emits a millimeter wave. When a low dielectric substrate material is used for the antenna, millimeter wave radio waves can be efficiently emitted. In addition, when a low dielectric antenna substrate material is used, the communication distance can be extended, the area of the antenna member can be reduced, and power consumption can be reduced.
 また、近年、FPC(フレキシブルプリント回路基板)として、データを高速で伝送する高速FPCが求められており、この高速FPCの基板材としても、低誘電の基板材が求められる。 In recent years, a high-speed FPC for transmitting data at a high speed has been required as an FPC (flexible printed circuit board), and a low-dielectric substrate material is also required as a substrate material for the high-speed FPC.
 上記した要求に応えるために、つまり、大容量のデータ無線通信のアンテナや高速FPCに備えられる基板材として、誘電率の低い低誘電基板の開発が進められており、ポリイミド系樹脂やフッ素系樹脂などの低誘電樹脂材料を用いた基板が開発されている。 In order to meet the above-mentioned requirements, that is, as a substrate material for a large-capacity data wireless communication antenna or a high-speed FPC, a low dielectric substrate having a low dielectric constant is being developed. Substrates using a low-dielectric resin material such as such have been developed.
 一方で、材料が多孔質体である基板も検討されている。多孔質体は、最も低い誘電率1である空気を孔内に有することから、多孔質体は誘電率が比較的低くなる。このような多孔質体を備える金属箔積層板として、例えば、絶縁材である樹脂多孔質層と、その表面に配置される金属箔とを備える金属箔積層板が提案されている(例えば、下記特許文献1参照。)。 On the other hand, a substrate made of a porous material is also being studied. Since the porous body has air having the lowest dielectric constant 1 in the pores, the porous body has a relatively low dielectric constant. As a metal foil laminate having such a porous body, for example, a metal foil laminate having a resin porous layer as an insulating material and a metal foil disposed on the surface thereof has been proposed (for example, the following). See Patent Document 1.).
特開2004-82372号公報JP-A-2004-82372
 しかるに、金属箔は、後の工程で高精度で金属パターンに形成される必要がある。 However, the metal foil needs to be formed into a metal pattern with high precision in a later step.
 また、低誘電率の多孔質体を工業的に製造する方法は、これまでのところ、まだ確立されていない。また、多孔質体を低コストで量産する方法も併せて求められる。 方法 Further, a method for industrially producing a porous body having a low dielectric constant has not yet been established so far. In addition, a method for mass-producing the porous body at low cost is also required.
 従って、本発明は、高精度で金属パターンに形成することができ、工業的に、低コストで量産される低誘電基板材を提供することにある。 Accordingly, an object of the present invention is to provide a low-dielectric substrate material that can be formed on a metal pattern with high precision and that can be mass-produced industrially at low cost.
 本発明[1]は、多孔質樹脂層および金属層を厚み方向に順に備え、前記多孔質樹脂層および前記金属層のいずれか一方の表面に配置される保護材をさらに備え、前記保護材の23℃のショアD硬度H1と、前記多孔質樹脂層および前記金属層を備える積層材の23℃のショアD硬度H2とが、下記式(1)を満足し、または、前記保護材の厚みT1と、前記積層材の厚みT0とが、下記式(2)を満足する、低誘電基板材を含む。
H1<H2 (1)
T1>0.5×T0 (2)
 本発明[2]は、前記式(1)および前記式(2)がいずれも満足される、[1]に記載の低誘電基板材を含む。
The present invention [1] includes a porous resin layer and a metal layer in the thickness direction, and further includes a protective material disposed on one surface of the porous resin layer and the metal layer. The Shore D hardness H1 of 23 ° C. and the Shore D hardness H2 of 23 ° C. of the laminate including the porous resin layer and the metal layer satisfy the following expression (1), or the thickness T1 of the protective material. And the thickness T0 of the laminated material includes a low dielectric substrate material satisfying the following expression (2).
H1 <H2 (1)
T1> 0.5 × T0 (2)
The present invention [2] includes the low-dielectric substrate material according to [1], wherein both of the expressions (1) and (2) are satisfied.
 本発明[3]は、前記多孔質樹脂層の空孔率が、60%以上である、[1]または[2]に記載の低誘電基板材を含む。 The present invention [3] includes the low dielectric substrate material according to [1] or [2], wherein the porosity of the porous resin layer is 60% or more.
 この低誘電基板材では、保護材のショアD硬度H1が、多孔質樹脂層のショアD硬度H2より低いか、または、保護材の厚みT1が、積層材の厚みT0の半値より厚いので、低誘電基板材を巻回したときに、保護材が十分に押し潰されることにより、多孔質樹脂層が押し潰されることを抑制することができる。そのため、金属層を高精度で金属パターンに形成することができる。 In this low dielectric substrate material, since the Shore D hardness H1 of the protective material is lower than the Shore D hardness H2 of the porous resin layer or the thickness T1 of the protective material is larger than half the thickness T0 of the laminated material, When the dielectric material is wound, the protective material is sufficiently crushed, so that the porous resin layer can be prevented from being crushed. Therefore, a metal layer can be formed in a metal pattern with high precision.
 また、多孔質樹脂層が押し潰されることが抑制されるので、空孔率の低減を抑制できる。そのため、多孔質樹脂層の誘電率が増大することを抑制することができる。その結果、この低誘電基板材は、第五世代(5G)の規格や高速FPCに適合できる基板材として極めて有用である。 Further, since the crushing of the porous resin layer is suppressed, a decrease in the porosity can be suppressed. Therefore, an increase in the dielectric constant of the porous resin layer can be suppressed. As a result, this low dielectric substrate material is extremely useful as a substrate material that can conform to the fifth generation (5G) standards and high-speed FPC.
 この低誘電基板材は、金属層を備えるので、第五世代(5G)の規格に対応するアンテナや高速FPCの基板の配線としてパターンニングすることができる。具体的には、工業的に量産できるエッチング条件で、金属層をパターンニングしても、第五世代(5G)に適合できるアンテナや高速FPCの基板の配線を、優れた精度で形成できる。 低 Since the low dielectric substrate material has a metal layer, it can be patterned as an antenna corresponding to the fifth generation (5G) standard or a wiring of a high-speed FPC substrate. Specifically, even if the metal layer is patterned under etching conditions that can be mass-produced industrially, an antenna or wiring of a high-speed FPC board that can conform to the fifth generation (5G) can be formed with excellent accuracy.
 また、多孔質樹脂層が独立気泡構造を高い割合で有する場合には、パターンニングで用いられるエッチング液の染み込みに起因するパターン精度の低下を抑制することができる。そのため、低誘電基板材は、第五世代(5G)の規格の無線通信や、高速FPCに十分かつ確実に対応できる基板材として有用である。 In addition, when the porous resin layer has a high ratio of closed cell structures, it is possible to suppress a decrease in pattern accuracy due to penetration of an etching solution used for patterning. Therefore, the low dielectric substrate material is useful as a substrate material that can sufficiently and surely cope with fifth-generation (5G) wireless communication and high-speed FPC.
 さらに、低誘電基板材は、多孔質樹脂層に対して厚み方向に配置される保護材を備えるので、工業的な製造条件として、低誘電基板材が厚み方向に重ねて製造される場合にも、保護材が、多孔質樹脂層が厚み方向に押圧されることに起因して空孔率が低減することを抑制し、そのため、多孔質樹脂層の低誘電率を十分に確保することができる。その結果、低誘電基板材は、低コストで量産化される。 Furthermore, since the low dielectric substrate material includes a protective material disposed in the thickness direction with respect to the porous resin layer, even when the low dielectric substrate material is manufactured by being stacked in the thickness direction as an industrial manufacturing condition, In addition, the protective material suppresses a decrease in the porosity caused by the porous resin layer being pressed in the thickness direction, and therefore, it is possible to sufficiently ensure a low dielectric constant of the porous resin layer. . As a result, the low dielectric substrate material is mass-produced at low cost.
図1は、本発明の低誘電基板材の一実施形態の断面図を示す。FIG. 1 shows a cross-sectional view of one embodiment of the low dielectric substrate material of the present invention. 図2は、図1に示す低誘電基板材から得られるパターン積層材の断面図を示す。FIG. 2 shows a cross-sectional view of a pattern laminate obtained from the low dielectric substrate material shown in FIG. 図3は、低誘電基板材の変形例(第1保護材を備えない態様)の断面図を示す。FIG. 3 is a cross-sectional view of a modified example of the low dielectric substrate material (an embodiment without the first protective material). 図4は、低誘電基板材の変形例(接着層を備えない態様)の断面図を示す。FIG. 4 shows a cross-sectional view of a modified example of the low dielectric substrate material (an embodiment having no adhesive layer). 図5は、低誘電基板材の変形例(第1保護材を備えず、第2保護材および積層材を備える態様)の断面図を示す。FIG. 5 is a cross-sectional view of a modified example of the low dielectric substrate material (an aspect in which the first protective material is not provided, but the second protective material and the laminated material are provided). 図6は、低誘電基板材の変形例(第2保護材を備えず、第1保護材および積層材を備える態様)の断面図を示す。FIG. 6 is a cross-sectional view of a modified example of the low dielectric substrate material (an aspect in which the second protective material is not provided, but the first protective material and the laminated material are provided).
  <一実施形態>
 本発明の低誘電基板材の一実施形態を、図1および図2を参照して説明する。
<One embodiment>
One embodiment of the low dielectric substrate material of the present invention will be described with reference to FIGS.
  [基本態様]
 まず、この低誘電基板材1の基本態様である層構成、製造方法および使用方法等を順に説明する。
[Basic aspect]
First, a layer configuration, a manufacturing method, a usage method, and the like, which are basic aspects of the low dielectric substrate material 1, will be described in order.
  〔低誘電基板材およびその層構成〕
 図1に示すように、低誘電基板材1は、厚み方向に対向する一方面および他方面を有しており、厚み方向に直交する面方向に延びる形状を有する。
(Low dielectric substrate material and its layer structure)
As shown in FIG. 1, the low dielectric substrate material 1 has one surface and the other surface facing each other in the thickness direction, and has a shape extending in a surface direction orthogonal to the thickness direction.
 この低誘電基板材1は、第1金属層3と、第1金属層3の厚み方向一方面に配置される多孔質樹脂層4と、多孔質樹脂層4の厚み方向一方面に配置される接着層5と、接着層5の厚み方向一方面に配置される金属層の一例としての第2金属層6とを備え、さらに、第1金属層3の厚み方向他方面に配置される第1保護材2と、第2金属層6の厚み方向一方面に配置される保護材の一例としての第2保護材7とを備える。つまり、低誘電基板材1は、第1保護材2と、第1金属層3と、多孔質樹脂層4と、接着層5と、第2金属層6と、第2保護材7とを厚み方向他方側から一方側に向かって順に備える。好ましくは、低誘電基板材1は、第1保護材2と、第1金属層3と、多孔質樹脂層4と、接着層5と、第2金属層6と、第2保護材7とのみを備える。 The low dielectric substrate material 1 is disposed on a first metal layer 3, a porous resin layer 4 disposed on one surface in the thickness direction of the first metal layer 3, and disposed on one surface in a thickness direction of the porous resin layer 4. A first metal layer that is provided on one surface in the thickness direction of the adhesive layer; and a second metal layer that is an example of a metal layer disposed on one surface of the first metal layer in the thickness direction. The protective device includes a protective material 2 and a second protective material 7 as an example of a protective material disposed on one surface in the thickness direction of the second metal layer 6. That is, the low dielectric substrate material 1 includes the first protective material 2, the first metal layer 3, the porous resin layer 4, the adhesive layer 5, the second metal layer 6, and the second protective material 7 having a thickness. The direction is provided in order from the other side to one side. Preferably, the low dielectric substrate material 1 includes only the first protective material 2, the first metal layer 3, the porous resin layer 4, the adhesive layer 5, the second metal layer 6, and the second protective material 7. Is provided.
  〔第1金属層〕
 第1金属層3は、厚み方向に対向する一方面および他方面を有しており、面方向に延びるシート(板)形状を有する。第1金属層3の材料は、特に限定されず、例えば、銅、鉄、銀、金、アルミニウム、ニッケル、それらの合金(ステンレス、青銅)などが挙げられる。好ましくは、銅が挙げられる。第1金属層3の厚みは、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、100μm以下、好ましくは、50μm以下である。
[First metal layer]
The first metal layer 3 has one surface and the other surface facing each other in the thickness direction, and has a sheet (plate) shape extending in the surface direction. The material of the first metal layer 3 is not particularly limited, and examples thereof include copper, iron, silver, gold, aluminum, nickel, and alloys thereof (stainless steel, bronze). Preferably, copper is used. The thickness of the first metal layer 3 is, for example, 0.1 μm or more, preferably 1 μm or more, and is, for example, 100 μm or less, preferably 50 μm or less.
  〔多孔質樹脂層〕
 多孔質樹脂層4は、厚み方向に対向する一方面および他方面を有しており、面方向に延びる略板(シート)形状を有する。多孔質樹脂層4の他方面は、第1金属層3の一方面に接触(密着)している。
(Porous resin layer)
The porous resin layer 4 has one surface and the other surface opposed in the thickness direction, and has a substantially plate (sheet) shape extending in the surface direction. The other surface of the porous resin layer 4 is in contact (close contact) with one surface of the first metal layer 3.
 多孔質樹脂層4は、微細な空孔(気孔)10を多数有している。多孔質樹脂層4は、例えば、独立気泡構造および連続気泡構造のいずれかを有する。好ましくは、独立気泡構造を主として有しており、この場合の独立気泡の割合は、例えば、50%超過、好ましくは、80%以上、より好ましくは、90%以上であり、また、例えば、100%未満である。独立気泡の割合が上記した下限を上回れば、第1金属層3および第2金属層6のパターンニングで用いられるエッチング液の多孔質樹脂層4への染み込みに起因するパターン精度の低下を抑制することができる。 The porous resin layer 4 has many fine pores (pores) 10. The porous resin layer 4 has, for example, one of a closed cell structure and an open cell structure. Preferably, it mainly has a closed cell structure. In this case, the ratio of the closed cells is, for example, more than 50%, preferably 80% or more, more preferably 90% or more, and for example, 100%. %. When the ratio of the closed cells exceeds the above lower limit, a decrease in pattern accuracy due to the penetration of the etching solution used for patterning the first metal layer 3 and the second metal layer 6 into the porous resin layer 4 is suppressed. be able to.
 多孔質樹脂層4における空孔率は、例えば、60%以上、より好ましくは、70%以上、さらに好ましくは、80%以上、とりわけ好ましくは、85%以上である。なお、多孔質樹脂層4の空孔率は、例えば、100%未満、さらには、99%以下である。空孔率は、例えば、多孔質樹脂層4の断面SEM写真の画像解析により求められる。あるいは、空孔率は、下記式に基づく計算により求められる。 空 The porosity of the porous resin layer 4 is, for example, 60% or more, more preferably 70% or more, further preferably 80% or more, and particularly preferably 85% or more. In addition, the porosity of the porous resin layer 4 is, for example, less than 100%, and further, 99% or less. The porosity is determined, for example, by image analysis of a cross-sectional SEM photograph of the porous resin layer 4. Alternatively, the porosity is determined by calculation based on the following equation.
 空孔率(%)=(1-無孔樹脂層の比重/多孔質樹脂層の比重)×100
 なお、式中、無孔樹脂層は、多孔質樹脂層4の材料からなるが、多孔質ではなく、緻密質を有するフィルムである。
Porosity (%) = (1−specific gravity of non-porous resin layer / specific gravity of porous resin layer) × 100
In the formula, the non-porous resin layer is made of the material of the porous resin layer 4, but is not porous but a dense film.
 多孔質樹脂層4の空孔率が上記した下限以上であれば、多孔質樹脂層4が、第五世代(5G)の規格や高速FPCに十分に対応できる低い誘電率を有することができる。具体的には、低誘電基板材1が、上記したように、第五世代(5G)の規格や高速FPCに十分に対応できる基板材として有用となる。 (4) When the porosity of the porous resin layer 4 is equal to or more than the lower limit described above, the porous resin layer 4 can have a low dielectric constant that can sufficiently cope with the fifth generation (5G) standard and high-speed FPC. Specifically, as described above, the low dielectric substrate material 1 is useful as a substrate material that can sufficiently comply with the fifth generation (5G) standard and high-speed FPC.
 多孔質樹脂層4における空孔10の平均径(つまり、平均孔径)は、例えば、10μm以下であり、また、例えば、0.1μm以上である。平均孔径は、多孔質樹脂層4の断面SEM写真の画像解析により求められる。画像解析は、SEM像に2値化を施し、空孔10を識別後、孔径を算出し、ヒストグラム化される。画像解析では、解析ソフトとして、ImageJが用いられる。 平均 The average diameter of the pores 10 in the porous resin layer 4 (that is, the average pore diameter) is, for example, 10 μm or less, and is, for example, 0.1 μm or more. The average pore diameter is determined by image analysis of a cross-sectional SEM photograph of the porous resin layer 4. In the image analysis, binarization is performed on the SEM image, the holes 10 are identified, the hole diameter is calculated, and a histogram is formed. In the image analysis, ImageJ is used as analysis software.
 多孔質樹脂層4の周波数60GHzにおける誘電率は、空孔率および次に述べる樹脂の種類によって適宜調整され、具体的には、例えば、2.5以下、好ましくは、2.0以下であり、また、例えば、1.0超過である。多孔質樹脂層4の誘電率は、周波数の60GHzを用いる共振器法により、実測される。 The dielectric constant of the porous resin layer 4 at a frequency of 60 GHz is appropriately adjusted depending on the porosity and the type of the resin described below, and specifically, is, for example, 2.5 or less, preferably 2.0 or less, Also, for example, it is more than 1.0. The dielectric constant of the porous resin layer 4 is actually measured by a resonator method using a frequency of 60 GHz.
 多孔質樹脂層4の誘電率が上記した上限以下であれば、低誘電基板材1が低誘電率を有することとなるので、第五世代(5G)の規格や高速FPCの基板材として有用に用いることができる。 If the dielectric constant of the porous resin layer 4 is equal to or less than the above upper limit, the low dielectric substrate material 1 has a low dielectric constant, and is useful as a fifth generation (5G) standard or a high-speed FPC substrate material. Can be used.
 多孔質樹脂層4の材料としては、特に限定されず、例えば、熱硬化性樹脂、熱可塑性樹脂などの樹脂が挙げられる。 材料 The material of the porous resin layer 4 is not particularly limited, and examples thereof include resins such as a thermosetting resin and a thermoplastic resin.
 熱硬化性樹脂としては、例えば、ポリカーボネート樹脂、熱硬化性ポリイミド樹脂、熱硬化性フッ化ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、熱硬化性ウレタン樹脂、フッ素樹脂(含フッ素オレフィンの重合体(具体的には、ポリテトラフルオロエチレン(PTFE)など))、液晶ポリマー(LCP)などが挙げられる。これらは、単独使用または2種以上併用することができる。 As the thermosetting resin, for example, polycarbonate resin, thermosetting polyimide resin, thermosetting fluorinated polyimide resin, epoxy resin, phenol resin, urea resin, melamine resin, diallyl phthalate resin, silicone resin, thermosetting urethane resin , A fluororesin (a polymer of a fluorine-containing olefin (specifically, polytetrafluoroethylene (PTFE) or the like)), a liquid crystal polymer (LCP), or the like. These can be used alone or in combination of two or more.
 熱可塑性樹脂としては、例えば、オレフィン樹脂、アクリル樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリアクリロニトリル樹脂、マレイミド樹脂、ポリ酢酸ビニル樹脂、エチレン-酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポリアセタール樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリルスルホン樹脂、熱可塑性ポリイミド樹脂、熱可塑性フッ化ポリイミド樹脂、熱可塑性ウレタン樹脂、ポリエーテルイミド樹脂、ポリメチルペンテン樹脂、セルロース樹脂、液晶ポリマー、アイオノマーなどが挙げられる。これらは、単独使用または2種以上併用することができる。 Examples of the thermoplastic resin include olefin resin, acrylic resin, polystyrene resin, polyester resin, polyacrylonitrile resin, maleimide resin, polyvinyl acetate resin, ethylene-vinyl acetate copolymer, polyvinyl alcohol resin, polyamide resin, and polyvinyl chloride. Resin, polyacetal resin, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ether ketone resin, polyallyl sulfone resin, thermoplastic polyimide resin, thermoplastic fluorinated polyimide resin, thermoplastic urethane resin, poly Examples include ether imide resin, polymethylpentene resin, cellulose resin, liquid crystal polymer, and ionomer. These can be used alone or in combination of two or more.
 上記した樹脂のうち、機械強度の観点から、好ましくは、ポリイミド樹脂(熱硬化性ポリイミド樹脂および熱可塑性ポリイミド樹脂を含む)、フッ化ポリイミド樹脂(熱硬化性フッ化ポリイミド樹脂および熱可塑性フッ化ポリイミド樹脂)、ポリカーボネート樹脂、ポリエーテルイミド樹脂が挙げられる。好ましくは、ポリイミド樹脂が挙げられる。ポリイミド樹脂は、独立気泡構造を有する多孔質樹脂層4を含む低誘電基板材1の作製工程に含まれており、加圧(プレス)よる積層に最も適した材料である。なお、上記した好適な樹脂の物性および製造方法等の詳細は、例えば、特開2018-021171号公報、特開2018-021172号公報などに記載されている。 Among the above resins, from the viewpoint of mechanical strength, preferably, polyimide resin (including thermosetting polyimide resin and thermoplastic polyimide resin), fluorinated polyimide resin (thermosetting fluorinated polyimide resin and thermoplastic fluorinated polyimide resin) Resins), polycarbonate resins and polyetherimide resins. Preferably, a polyimide resin is used. The polyimide resin is included in the manufacturing process of the low dielectric substrate material 1 including the porous resin layer 4 having a closed cell structure, and is a material most suitable for lamination by pressing (pressing). The details of the above-mentioned preferable physical properties of the resin and the manufacturing method thereof are described in, for example, JP-A-2018-021171, JP-A-2018-021172, and the like.
 多孔質樹脂層4は、その厚み方向一方面および他方面に形成されるスキン層(図示せず)を有することができる。 The porous resin layer 4 can have a skin layer (not shown) formed on one surface and the other surface in the thickness direction.
 多孔質樹脂層4の厚みは、例えば、2μm以上、好ましくは、5μm以上であり、また、例えば、1,000μm以下、好ましくは、500μm以下である。 厚 み The thickness of the porous resin layer 4 is, for example, 2 μm or more, preferably 5 μm or more, and for example, 1,000 μm or less, preferably 500 μm or less.
 なお、多孔質樹脂層4以外の層、具体的には、第1金属層3、接着層5(後述)、第2金属層6(後述)、第1保護材2(後述)および第2保護材7(後述)は、いずれも、多孔質樹脂層4と異なり、例えば、無孔であり、つまり、微細な空孔を実質的に有さず、緻密である。 The layers other than the porous resin layer 4, specifically, the first metal layer 3, the adhesive layer 5 (described later), the second metal layer 6 (described later), the first protective material 2 (described later), and the second protective layer Each of the materials 7 (described later) is different from the porous resin layer 4 and is, for example, non-porous, that is, has substantially no fine pores and is dense.
  〔接着層〕
 接着層5は、多孔質樹脂層4の厚み方向一方面において、面方向に沿うシート形状を有する。
(Adhesive layer)
The adhesive layer 5 has a sheet shape along the surface direction on one surface in the thickness direction of the porous resin layer 4.
 接着層5の材料としては、特に限定されず、ホットメルト型接着剤、熱硬化型接着剤など、種々の型の接着剤が挙げられ、具体的には、アクリル系接着剤、エポキシ系接着剤、シリコーン系接着剤などが挙げられる。接着層5の厚みは、例えば、2μm以上、好ましくは、5μm以上であり、また、例えば、50μm以下、好ましくは、25μm以下、より好ましくは、低誘電基板材1の誘電率を低減する観点から、10μm以下である。 The material of the adhesive layer 5 is not particularly limited, and includes various types of adhesives such as a hot melt type adhesive and a thermosetting type adhesive. Specifically, an acrylic type adhesive, an epoxy type adhesive And silicone-based adhesives. The thickness of the adhesive layer 5 is, for example, 2 μm or more, preferably 5 μm or more, and for example, 50 μm or less, preferably 25 μm or less, more preferably from the viewpoint of reducing the dielectric constant of the low dielectric substrate material 1. , 10 μm or less.
  〔第2金属層〕
 第2金属層6は、厚み方向に対向する一方面および他方面を有しており、面方向に延びるシート(板)形状を有する。第2金属層6の他方面は、接着層5を介して、多孔質樹脂層4の一方面に接着している。第2金属層6の材料および厚みは、第1金属層3のそれらと同様である。
[Second metal layer]
The second metal layer 6 has one surface and the other surface facing each other in the thickness direction, and has a sheet (plate) shape extending in the surface direction. The other surface of the second metal layer 6 is adhered to one surface of the porous resin layer 4 via the adhesive layer 5. The material and thickness of the second metal layer 6 are the same as those of the first metal layer 3.
  〔積層材〕
 第1金属層3、多孔質樹脂層4、接着層5および第2金属層6は、積層材14を構成する。換言すれば、積層材14は、第1金属層3、多孔質樹脂層4、接着層5および第2金属層6を厚み方向一方側に向かって順に備える。
(Laminated material)
The first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6 constitute a laminated material 14. In other words, the laminate 14 includes the first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6 in this order in the thickness direction.
 積層材14の厚みT0は、後述する第2保護材7の厚みT1との所望の比を満足するように、設定される。具体的には、積層材14の厚みT0は、例えば、1μm以上、好ましくは、5μm以上であり、また、例えば、10μm以下、好ましくは、500μm以下である。 厚 み The thickness T0 of the laminated material 14 is set so as to satisfy a desired ratio with the thickness T1 of the second protective material 7 described later. Specifically, the thickness T0 of the laminated material 14 is, for example, 1 μm or more, preferably 5 μm or more, and is, for example, 10 μm or less, preferably 500 μm or less.
  〔第1保護材〕
 第1保護材2は、低誘電基板材1の厚み方向他方面を形成する。第1保護材2は、厚み方向に対向する一方面および他方面を有しており、厚み方向に直交する面方向に延びるシート形状を有する。第1保護材2の一方面は、第1金属層3の他方面に剥離可能に接触(密着)している。
[First protective material]
The first protective material 2 forms the other surface in the thickness direction of the low dielectric substrate material 1. The first protective member 2 has one surface and the other surface facing each other in the thickness direction, and has a sheet shape extending in a surface direction orthogonal to the thickness direction. One surface of the first protective material 2 is in releasable contact (close contact) with the other surface of the first metal layer 3.
 また、第1保護材2は、第1金属層3を保護している。具体的には、第1保護材2は、第1金属層3をパターンニングする前には、第1金属層3を被覆する一方、第1金属層3をパターンニングするときには、第1金属層3から剥離される剥離シート(第1剥離シート)である。なお、図2に示すように、第1金属層3をパターンニングして形成された他方側配線18(後述)には、第1保護材2が配置されていない。 (4) The first protective material 2 protects the first metal layer 3. Specifically, the first protective material 2 covers the first metal layer 3 before patterning the first metal layer 3, while the first protective material 2 covers the first metal layer 3 when patterning the first metal layer 3. 3 is a release sheet (first release sheet) to be peeled off. Note that, as shown in FIG. 2, the first protective material 2 is not disposed on the other-side wiring 18 (described later) formed by patterning the first metal layer 3.
 第1保護材2は、高い空孔率を有する多孔質樹脂層4を備える低誘電基板材1を工業的に量産するために、低誘電基板材1に備えられる保護シートである。 The first protective material 2 is a protective sheet provided on the low dielectric substrate material 1 in order to industrially mass-produce the low dielectric substrate material 1 having the porous resin layer 4 having a high porosity.
 第1保護材2の材料は、特に限定されず、例えば、ポリマー、金属などが挙げられる。ポリマーとしては、例えば、ポリエチレン(PE)、ポリプロピレンなどのポリオレフィン、例えば、ポリエチレンテレフタレート(PET)などのポリエステルなどが挙げられる。金属としては、例えば、アルミニウム、鉄、合金(ステンレスなど)が挙げられる。
第1保護材2の材料として、好ましくは、ポリマーが挙げられる。第1保護材2の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、2,000μm以下、好ましくは、1,000μm以下である。
The material of the first protection member 2 is not particularly limited, and examples thereof include a polymer and a metal. Examples of the polymer include polyolefins such as polyethylene (PE) and polypropylene, and polyesters such as polyethylene terephthalate (PET). Examples of the metal include aluminum, iron, and alloys (such as stainless steel).
Preferably, the material of the first protective material 2 is a polymer. The thickness of the first protective material 2 is, for example, 1 μm or more, preferably 10 μm or more, and is, for example, 2,000 μm or less, preferably 1,000 μm or less.
  〔第2保護材〕
 第2保護材7は、低誘電基板材1の厚み方向一方面を形成する。第2保護材7は、厚み方向に対向する一方面および他方面を有しており、厚み方向に直交する面方向に延びるシート形状を有する。第2保護材7の他方面は、第2金属層6の一方面と剥離可能に接触(密着)している。
[Second protective material]
The second protective material 7 forms one surface in the thickness direction of the low dielectric substrate material 1. The second protection member 7 has one surface and the other surface facing each other in the thickness direction, and has a sheet shape extending in a surface direction orthogonal to the thickness direction. The other surface of the second protection member 7 is in releasable contact (close contact) with one surface of the second metal layer 6.
 また、第2保護材7は、第2金属層6を保護している。具体的には、第2保護材7は、第2金属層6をパターンニングする前には、第2金属層6を被覆する一方、第2金属層6をパターンニングするときには、図1の仮想線で示すように、第2金属層6から剥離される剥離シート(第2剥離シート)である。なお、図2に示すように、第2金属層6をパターンニングして形成された一方側配線17(後述)には、第2金属層6が配置されていない。 (4) The second protection member 7 protects the second metal layer 6. Specifically, the second protective material 7 covers the second metal layer 6 before patterning the second metal layer 6, while the second protective material 7 covers the second metal layer 6 when patterning the second metal layer 6. As shown by the line, a release sheet (second release sheet) that is released from the second metal layer 6. As shown in FIG. 2, the second metal layer 6 is not disposed on the one-side wiring 17 (described later) formed by patterning the second metal layer 6.
 第2保護材7は、高い空孔率を有する多孔質樹脂層4を備える低誘電基板材1を工業的に量産するために、低誘電基板材1に第1保護材2とともに備えられる保護シートである。 The second protective material 7 is a protective sheet provided on the low dielectric substrate material 1 together with the first protective material 2 in order to industrially mass-produce the low dielectric substrate material 1 including the porous resin layer 4 having a high porosity. It is.
 第2保護材7の形状、材料および厚み等は、第1保護材2のそれらと同様である。 形状 The shape, material, thickness, etc. of the second protection member 7 are the same as those of the first protection member 2.
 低誘電基板材1の厚みは、第1保護材2、第1金属層3、多孔質樹脂層4、接着層5、第2金属層6および第2保護材7の総厚み(つまり、積層材14、第1保護材2および第2保護材7の総厚み)であって、例えば、10μm以上、好ましくは、20μm以上、より好ましくは、200μm以上であり、また、例えば、5,000μm以下、好ましくは、2,000μm以下である。 The thickness of the low dielectric substrate material 1 depends on the total thickness of the first protective material 2, the first metal layer 3, the porous resin layer 4, the adhesive layer 5, the second metal layer 6, and the second protective material 7 (that is, the laminated material). 14, the total thickness of the first protective material 2 and the second protective material 7), for example, 10 μm or more, preferably 20 μm or more, more preferably 200 μm or more, and for example, 5,000 μm or less, Preferably, it is 2,000 μm or less.
  〔低誘電基板材の製造方法〕
 次に、低誘電基板材1の製造方法を説明する。
(Production method of low dielectric substrate material)
Next, a method of manufacturing the low dielectric substrate material 1 will be described.
 なお、一実施形態における低誘電基板材1の製造では、例えば、ロールトゥロール法によって、各部材を、搬送しながら積層(形成)する。 In the manufacture of the low dielectric substrate material 1 according to one embodiment, for example, each member is stacked (formed) while being conveyed by a roll-to-roll method.
 具体的には、まず、第1金属層3を準備する。例えば、上記した材料から成る箔(金属箔)を第1金属層3として準備する。 Specifically, first, the first metal layer 3 is prepared. For example, a foil (metal foil) made of the above-described material is prepared as the first metal layer 3.
 次いで、多孔質樹脂層4を第1金属層3の一方面に形成する。例えば、多孔質樹脂層4を、第1金属層3の一方面で作製する(作り込む)。 Next, the porous resin layer 4 is formed on one surface of the first metal layer 3. For example, the porous resin layer 4 is formed (built) on one surface of the first metal layer 3.
 具体的には、まず、上記した樹脂の前駆体と、多孔化剤と、核剤と、溶媒とを含むワニスを調製し、次いで、ワニスを第1金属層3の一方面に塗布して塗膜を形成する。ワニスにおける多孔化剤、核剤および溶媒の、種類および配合割合等は、例えば、特開2018-021171号公報、特開2018-021172号公報などに記載されている。 Specifically, first, a varnish containing the above-described resin precursor, a porogen, a nucleating agent, and a solvent is prepared, and then, the varnish is applied to one surface of the first metal layer 3 to be applied. Form a film. The types, blending ratios, and the like of the porosity, nucleating agent, and solvent in the varnish are described in, for example, JP-A-2018-021171, JP-A-2018-021172, and the like.
 とりわけ、多孔化剤の質量部数(配合割合)は、前駆体100質量部に対して、好ましくは、20質量部以上、より好ましくは、50質量部以上であり、また、好ましくは、300質量部以下、より好ましくは、250質量部以下である。 In particular, the number of parts by mass (mixing ratio) of the porogen is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, and preferably 300 parts by mass with respect to 100 parts by mass of the precursor. Or less, more preferably 250 parts by mass or less.
 核剤は、前駆体を発泡(多孔化)させるときに核となる発泡核剤(気泡調整剤)である。また、核剤として、上記公報に記載の核剤(PTFEなど)の他に、ポリ(クロロトリフルオロエチレン)などのフッ素樹脂(含フッ素オレフィンの重合体)、さらには、モノマー単位として、(メタ)アクリル酸エステルおよび上記した含フッ素オレフィンを含有する共重合体なども挙げられる。 The nucleating agent is a foaming nucleating agent (cell regulator) that becomes a nucleus when the precursor is foamed (porous). As the nucleating agent, in addition to the nucleating agent (PTFE and the like) described in the above publication, a fluororesin (polymer of fluorinated olefin) such as poly (chlorotrifluoroethylene), and further, as a monomer unit, (meth) ) Copolymers containing acrylic acid esters and the above-mentioned fluorine-containing olefins are also included.
 核剤は、常温(23℃)で、例えば、固体状、液体状、半固体状のいずれであってよく、好ましくは、固体状である。核剤が常温で固体状であれば、核剤の形状としては、例えば、略球形状、略板形状、略針形状、不定形状(塊状を含む)が挙げられ、好ましくは、略球形状が挙げられる。 (4) The nucleating agent may be in a solid state, a liquid state, or a semi-solid state at room temperature (23 ° C.), and is preferably in a solid state. If the nucleating agent is solid at room temperature, examples of the shape of the nucleating agent include a substantially spherical shape, a substantially plate shape, a substantially needle shape, and an indefinite shape (including a lump shape). No.
 核剤が常温で固体状であれば、核剤の最大長さの平均値(略球形状であれば、平均粒子径)は、例えば、2,000nm以下、好ましくは、1,000nm以下であり、また、例えば、1nm以上である。 If the nucleating agent is solid at room temperature, the average value of the maximum length of the nucleating agent (if it is substantially spherical, the average particle diameter) is, for example, 2,000 nm or less, preferably 1,000 nm or less. And, for example, 1 nm or more.
 また、核剤は、予め溶媒(PTFE)に分散したスラリーとして調製されていてもよい。 核 The nucleating agent may be prepared in advance as a slurry dispersed in a solvent (PTFE).
 その後、塗膜を加熱により乾燥することにより、溶媒の除去が進行しつつ、核剤を核とした、前駆体と多孔化剤との相分離構造が形成される。 (4) Thereafter, by drying the coating film by heating, a phase separation structure of a precursor and a porogen with a nucleating agent as a nucleus is formed while the removal of the solvent proceeds.
 その後、例えば、超臨界二酸化炭素を溶媒として用いる超臨界抽出法により、多孔化剤を前駆体から抽出する(引き抜く、あるいは、除去する)。 (4) Then, the porogen is extracted from the precursor (pulled out or removed) by, for example, a supercritical extraction method using supercritical carbon dioxide as a solvent.
 その後、前駆体を硬化させて、樹脂および多孔を有する樹脂、具体的には、多孔質樹脂層4を形成する。 Then, the precursor is cured to form a resin and a resin having porosity, specifically, the porous resin layer 4.
 その後、接着層5を、多孔質樹脂層4の一方面に配置する。例えば、接着剤を多孔質樹脂層4の一方面に塗布したり、あるいは、接着剤から予めシート状に形成した接着層5を多孔質樹脂層4の一方面に貼る。 Then, the adhesive layer 5 is disposed on one surface of the porous resin layer 4. For example, an adhesive is applied to one surface of the porous resin layer 4, or an adhesive layer 5 previously formed into a sheet from the adhesive is attached to one surface of the porous resin layer 4.
 続いて、第2金属層6を、接着層5の一方面に配置する。例えば、上記した材料から成る箔(金属箔)を接着層5の一方面に貼り付ける。 Next, the second metal layer 6 is disposed on one surface of the adhesive layer 5. For example, a foil (metal foil) made of the above-described material is attached to one surface of the adhesive layer 5.
 その後、第1保護材2を、第1金属層3の他方面に配置するとともに、第2保護材7を、第2金属層6の一方面に配置する。なお、予め第2保護材7が配置された第2金属層6を、接着層5に貼り合わせることもできる。 Then, the first protection member 2 is disposed on the other surface of the first metal layer 3, and the second protection member 7 is disposed on one surface of the second metal layer 6. In addition, the second metal layer 6 on which the second protective material 7 is arranged in advance can be attached to the adhesive layer 5.
 これにより、低誘電基板材1を製造する。 に よ り Thereby, the low dielectric substrate material 1 is manufactured.
 この低誘電基板材1の用途は、例えば、各種用途が挙げられ、好ましくは、第五世代(5G)の規格に適合する高周波アンテナや高速伝送基板(高速伝送FPCなど)の製造に用いられる。具体的には、低誘電基板材1は、高周波アンテナや高速FPCの基板材として用いられる。 The application of the low dielectric substrate material 1 includes, for example, various applications. Preferably, the low dielectric substrate material 1 is used for manufacturing a high-frequency antenna or a high-speed transmission substrate (such as a high-speed transmission FPC) conforming to the fifth generation (5G) standard. Specifically, the low dielectric substrate material 1 is used as a substrate material for a high-frequency antenna or a high-speed FPC.
 低誘電基板材1を上記の用途で使用する場合には、図1の仮想線およびその矢印で示すように、例えば、まず、第2保護材7を第2金属層6から剥離して、第2金属層6の一方面を露出させる。なお、第2保護材7を第2金属層6から剥離する前に、予め、低誘電基板材1の端部における第2保護材7および第2金属層6間に、第2保護材7の剥離のきっかけとなる切れ目(隙間)を設けるとともに、第2保護材7の端部を把持する。そして、第2保護材7の端部を把持し、これを厚み方向一方側に引き上げながら、第2保護材7を第2金属層6から剥離する。 When the low dielectric substrate material 1 is used for the above purpose, for example, first, the second protective material 7 is peeled off from the second metal layer 6 as shown by the imaginary line in FIG. One surface of the two metal layers 6 is exposed. Before the second protective material 7 is peeled off from the second metal layer 6, the second protective material 7 is previously placed between the second protective material 7 and the second metal layer 6 at the end of the low dielectric substrate material 1. A cut (gap) serving as a trigger for peeling is provided, and an end of the second protection member 7 is gripped. Then, the second protection member 7 is peeled off from the second metal layer 6 while holding the end of the second protection member 7 and pulling the end to one side in the thickness direction.
 続いて、第2金属層6を、フォトリソグラフィ(例えば、サブトラクティブ法)によって、図2に示すように、パターンニングして、例えば、信号配線(差動配線など)やアンテナ配線などの一方側配線17を形成する。 Subsequently, the second metal layer 6 is patterned by photolithography (for example, a subtractive method) as shown in FIG. 2 so that, for example, one side of signal wiring (differential wiring or the like) or antenna wiring or the like is formed. The wiring 17 is formed.
 その後、第1保護材2を第1金属層3から剥離して、第1金属層3の他方面を露出させて、続いて、第1金属層3を、フォトリソグラフィによって、パターンニングして、例えば、グランド配線などの他方側配線18を形成する。 After that, the first protective material 2 is peeled off from the first metal layer 3 to expose the other surface of the first metal layer 3, and then the first metal layer 3 is patterned by photolithography. For example, the other-side wiring 18 such as a ground wiring is formed.
 これにより、他方側配線18、多孔質樹脂層4、接着層5および一方側配線17を厚み方向一方側に向かって順に備えるパターン積層材13を製造し、このパターン積層材13を、第五世代(5G)の規格に適合する高周波アンテナや高速伝送基板に備える。 As a result, a pattern laminated material 13 having the other side wiring 18, the porous resin layer 4, the adhesive layer 5, and the one side wiring 17 sequentially in the thickness direction is manufactured. Provided on high-frequency antennas and high-speed transmission boards conforming to (5G) standards.
 そして、この低誘電基板材1は、多孔質樹脂層4を有し、多孔質樹脂層4が、60%以上、より好ましくは、70%以上、さらに好ましくは、80%以上、とりわけ好ましくは、85%以上の高い空孔率を有する場合には、十分に低い低誘電率を有することができる。具体的には、低誘電率が、例えば、2.5以下、好ましくは、2.0以下である。従って、低誘電基板材1が、第五世代(5G)の規格の無線通信のアンテナ基板や、高速FPCに対応できる低い誘電率を有することができる。 And this low dielectric substrate material 1 has a porous resin layer 4, and the porous resin layer 4 is 60% or more, more preferably 70% or more, further preferably 80% or more, and particularly preferably, When it has a high porosity of 85% or more, it can have a sufficiently low low dielectric constant. Specifically, the low dielectric constant is, for example, 2.5 or less, preferably 2.0 or less. Accordingly, the low dielectric substrate material 1 can have a low dielectric constant that can be used for an antenna substrate for wireless communication of the fifth generation (5G) standard or high-speed FPC.
 また、低誘電基板材1は、第1金属層3および第2金属層6を備えるので、第五世代(5G)の規格に対応するアンテナや高速FPCの基板の配線としてパターンニングすることができる。具体的には、工業的なエッチング条件で、第1金属層3および第2金属層6をパターンニングしても、第五世代(5G)に適合できるアンテナや高速FPCの基板の配線を、優れた精度で形成できる。 Further, since the low dielectric substrate material 1 includes the first metal layer 3 and the second metal layer 6, it can be patterned as an antenna corresponding to the fifth generation (5G) standard or a wiring of a high-speed FPC board. . Specifically, even if the first metal layer 3 and the second metal layer 6 are patterned under industrial etching conditions, the wiring of the antenna or the high-speed FPC board that can be adapted to the fifth generation (5G) is excellent. It can be formed with high precision.
 また、多孔質樹脂層4が独立気泡構造を有する場合であって、独立気泡の割合が、50%超過、さらには、80%以上、さらには、90%以上と高い場合には、パターンニングで用いられるエッチング液の染み込みに起因するパターン精度の低下を抑制することができる。そのため、低誘電基板材1は、第五世代(5G)の規格の無線通信や、高速FPCに十分かつ確実に対応できる基板材として有用である。 In the case where the porous resin layer 4 has a closed cell structure, and the ratio of the closed cells is more than 50%, further, 80% or more, and further, as high as 90% or more, patterning is performed. It is possible to suppress a decrease in pattern accuracy due to the penetration of the used etching solution. Therefore, the low dielectric substrate material 1 is useful as a substrate material that can sufficiently and surely cope with fifth-generation (5G) wireless communication and high-speed FPC.
 さらに、低誘電基板材1は、多孔質樹脂層4に対して厚み方向両側に配置される第1保護材2および第2保護材7を備えるので、工業的な製造条件として、低誘電基板材1が厚み方向に重ねて製造される場合にも、第1保護材2および第2保護材7が、多孔質樹脂層4が厚み方向に押圧されることに起因して空孔率が増大することを抑制し、そのため、多孔質樹脂層4の低誘電率を十分に確保することができる。その結果、低誘電基板材1は、低コストで量産化されながら、第五世代(5G)の規格や高速FPCに十分に対応できる低い誘電率を有する基板材として有用である。 Further, since the low dielectric substrate material 1 includes the first protective material 2 and the second protective material 7 disposed on both sides in the thickness direction with respect to the porous resin layer 4, the low dielectric substrate material is used as an industrial manufacturing condition. Also when the first protective material 2 and the second protective material 7 are manufactured by being stacked in the thickness direction, the porosity of the first protective material 2 and the second protective material 7 increases due to the porous resin layer 4 being pressed in the thickness direction. Therefore, a low dielectric constant of the porous resin layer 4 can be sufficiently ensured. As a result, the low dielectric substrate material 1 is useful as a substrate material having a low dielectric constant enough to cope with the fifth generation (5G) standard and high-speed FPC while being mass-produced at low cost.
 なお、多孔質樹脂層4の空孔率が上記した上限以下であれば、多孔質樹脂層4が十分な機械強度を確保することができる。 If the porosity of the porous resin layer 4 is equal to or less than the above upper limit, the porous resin layer 4 can secure sufficient mechanical strength.
  <顕著な特徴点>
 次に、この低誘電基板材1における顕著な特徴点を、図1を参照して詳説する。なお、図1中、符号の括弧書きにおいて、Hから始まるものは、23℃における該層のショアD硬度を意味する。
<Outstanding features>
Next, salient features of the low dielectric substrate material 1 will be described in detail with reference to FIG. In FIG. 1, in the parentheses of the reference numerals, those starting from H mean the Shore D hardness of the layer at 23 ° C.
 第2保護材7の23℃のショアD硬度H1と、多孔質樹脂層4の23℃のショアD硬度H2とが、下記式(1)を満足し、または、第2保護材7の厚みT1と、積層材14の厚みT0とが、下記式(2)を満足する。
H1<H2 (1)
T1>0.5×T0 (2)
 少なくとも、第2保護材7の23℃のショアD硬度H1と、多孔質樹脂層4の23℃のショアD硬度H2とが式(1)を満足するときには、第2保護材7が厚み方向に十分に押し潰されることにより、多孔質樹脂層4が厚み方向に押し潰されることを抑制することができる。その結果、多孔質樹脂層4の誘電率が増大することを抑制することができる。従って、この低誘電基板材1は、第五世代(5G)の規格や高速FPCに適合できる基板材として極めて有用である。
The Shore D hardness H1 at 23 ° C. of the second protective material 7 and the Shore D hardness H2 at 23 ° C. of the porous resin layer 4 satisfy the following expression (1), or the thickness T1 of the second protective material 7 And the thickness T0 of the laminated material 14 satisfies the following expression (2).
H1 <H2 (1)
T1> 0.5 × T0 (2)
When at least the Shore D hardness H1 at 23 ° C. of the second protective material 7 and the Shore D hardness H2 at 23 ° C. of the porous resin layer 4 satisfy the expression (1), the second protective material 7 is moved in the thickness direction. By being sufficiently crushed, it is possible to suppress the porous resin layer 4 from being crushed in the thickness direction. As a result, an increase in the dielectric constant of the porous resin layer 4 can be suppressed. Therefore, this low dielectric substrate material 1 is extremely useful as a substrate material that can conform to the fifth generation (5G) standards and high-speed FPC.
 なお、第1金属層3、接着層5および第2金属層6のそれぞれのショアD硬度は、それらを含む積層材14のショアD硬度に対して大きな寄与を示さない。そのため、積層材14のショアD硬度と、多孔質樹脂層4のショアD硬度H2とは、実質的に同一である。 The Shore D hardness of each of the first metal layer 3, the adhesive layer 5, and the second metal layer 6 does not significantly contribute to the Shore D hardness of the laminated material 14 including them. Therefore, the Shore D hardness of the laminated material 14 and the Shore D hardness H2 of the porous resin layer 4 are substantially the same.
 第2保護材7のショアD硬度H1が、多孔質樹脂層4のショアD硬度H2より高い場合には、第2保護材7が押し潰されるよりも前に、積層材14(実質的には、多孔質樹脂層4)が押し潰され、その結果、空孔率の低下し、多孔質樹脂層4の誘電率が増大する。そうすると、第五世代(5G)の規格や高速FPCに適合できる基板材として十分でない場合がある。 When the Shore D hardness H1 of the second protective material 7 is higher than the Shore D hardness H2 of the porous resin layer 4, the laminated material 14 (substantially, before the second protective material 7 is crushed). As a result, the porous resin layer 4) is crushed, and as a result, the porosity decreases, and the dielectric constant of the porous resin layer 4 increases. In this case, there is a case where the substrate material is not sufficient as a substrate material that can conform to the fifth generation (5G) standard or high-speed FPC.
 また、第2保護材7のショアD硬度H1と、多孔質樹脂層4のショアD硬度H2とが同一である場合には、第2保護材7および多孔質樹脂層4が同様に押し潰され、結局、多孔質樹脂層4の誘電率の増大を抑制できない。そうすると、やはり、第五世代(5G)の規格や高速FPCに適合できる基板材として十分でない場合がある。 When the Shore D hardness H1 of the second protective material 7 is the same as the Shore D hardness H2 of the porous resin layer 4, the second protective material 7 and the porous resin layer 4 are similarly crushed. After all, the increase in the dielectric constant of the porous resin layer 4 cannot be suppressed. In that case, there is a case where the substrate material is not sufficient as a substrate material that can conform to the fifth generation (5G) standard and the high-speed FPC.
 但し、上記したように、第2保護材7のショアD硬度H1が、多孔質樹脂層4のショアD硬度H2より高い場合、または、第2保護材7のショアD硬度H1と、多孔質樹脂層4のショアD硬度H2とが同一である場合であっても(つまり、上記式(1)が満足されない場合でも)、厚みに関する後述の式(2)を満足すれば、製造工程において、第2保護材7を巻回しても、第2保護材7が押し潰される量を確保して、多孔質樹脂層4が押し潰されることを抑制することができる。そのため、第2保護材7における第2金属層6および第1金属層3を高精度で金属パターン(図2における一方側配線17および他方側配線18)に形成することができる。 However, as described above, when the Shore D hardness H1 of the second protective material 7 is higher than the Shore D hardness H2 of the porous resin layer 4, or when the Shore D hardness H1 of the second protective material 7 and the porous resin Even when the Shore D hardness H2 of the layer 4 is the same (that is, even when the above-mentioned formula (1) is not satisfied), if the following formula (2) regarding the thickness is satisfied, the second step in the manufacturing process Even when the second protective material 7 is wound, the amount by which the second protective material 7 is crushed can be ensured, and the crushing of the porous resin layer 4 can be suppressed. Therefore, the second metal layer 6 and the first metal layer 3 in the second protection member 7 can be formed in the metal pattern (the one-side wiring 17 and the other-side wiring 18 in FIG. 2) with high precision.
 また、多孔質樹脂層4が押し潰されることが抑制されるので、空孔率の低減を抑制することができる。それによって、積層材14における多孔質樹脂層4の誘電率の増加を抑制でき、この低誘電基板材1は、第五世代(5G)の規格や高速FPCに適合できる基板材として極めて有用となることができる。 Also, since the crushing of the porous resin layer 4 is suppressed, a decrease in porosity can be suppressed. Thereby, an increase in the dielectric constant of the porous resin layer 4 in the laminated material 14 can be suppressed, and the low dielectric substrate material 1 is extremely useful as a substrate material that can conform to the fifth generation (5G) standard and high-speed FPC. be able to.
 また、第2保護材7のショアD硬度H1と、多孔質樹脂層4のショアD硬度H2とは、好ましくは、下記式(1-1)を満足し、好ましくは、下記式(1-2)を満足、好ましくは、下記式(1-3)を満足し、また、例えば、下記式(1-4)を満足する。
H1<0.9×H2 (1-1)
H1<0.7×H2 (1-2)
H1<0.5×H2 (1-3)
0.001×H2<H1 (1-4)
 また、式(2)に関し、第2保護材7の厚みT1が比較的薄い場合には、たとえ、先に、第2保護材7が、押し潰されても、その押し潰される量(余地)が十分でなく、そのため、第2保護材7が実質的に完全に押し潰された後に、積層材14が押し潰される場合がある。
Further, the Shore D hardness H1 of the second protective material 7 and the Shore D hardness H2 of the porous resin layer 4 preferably satisfy the following expression (1-1), and preferably satisfy the following expression (1-2). ) Is satisfied, preferably the following expression (1-3) is satisfied, and for example, the following expression (1-4) is satisfied.
H1 <0.9 × H2 (1-1)
H1 <0.7 × H2 (1-2)
H1 <0.5 × H2 (1-3)
0.001 × H2 <H1 (1-4)
Further, regarding the formula (2), when the thickness T1 of the second protective material 7 is relatively thin, even if the second protective material 7 is crushed first, the crushed amount (room) Therefore, the laminated material 14 may be crushed after the second protective material 7 is substantially completely crushed.
 しかし、この低誘電基板材1において、少なくとも、第2保護材7の厚みT1と、積層材14の厚みT0とが式(2)を満足するときには、第2保護材7の厚みT1が、積層材14の厚みT0の半値より厚いので、第2保護材7が押し潰される量(余地)を十分に確保することができる。そのため、積層材14が押し潰される前に、第2保護材7が十分に押し潰される。そのため、積層材14における多孔質樹脂層4の誘電率の増加を抑制でき、この低誘電基板材1は、第五世代(5G)の規格や高速FPCに適合できる基板材として極めて有用である。 However, in this low dielectric substrate material 1, when at least the thickness T1 of the second protective material 7 and the thickness T0 of the laminated material 14 satisfy Expression (2), the thickness T1 of the second protective material 7 is Since it is thicker than the half value of the thickness T0 of the member 14, the amount (room) that the second protective member 7 is crushed can be sufficiently secured. Therefore, before the laminated material 14 is crushed, the second protective material 7 is sufficiently crushed. Therefore, an increase in the dielectric constant of the porous resin layer 4 in the laminated material 14 can be suppressed, and this low dielectric substrate material 1 is extremely useful as a substrate material that can conform to the fifth generation (5G) standards and high-speed FPC.
 また、この低誘電基板材1では、第2保護材7の厚みT1と、積層材14の厚みT0とが、より好ましくは、下記式(2-1)を満足し、さらに好ましくは、下記式(2-2)を満足し、とりわけ好ましくは、下記式(2-3)を満足し、また、下記式(2-4)を、さらには、下記式(2-5)を満足する。
T1>0.75×T0 (2-1)
T1>0.9×T0 (2-2)
T1>T0 (2-4)
1.25×T0<T1<10×T0 (2-5)
 第2保護材7および積層材14が上記式を満足すれば、積層材14における多孔質樹脂層4の誘電率の増加をより一層抑制でき、この低誘電基板材1は、第五世代(5G)の規格や高速FPCに適合できる基板材として極めて有用である。
Further, in the low dielectric substrate material 1, the thickness T1 of the second protective material 7 and the thickness T0 of the laminated material 14 more preferably satisfy the following expression (2-1), and more preferably the following expression (2-1). It satisfies (2-2), particularly preferably satisfies the following formula (2-3), satisfies the following formula (2-4), and further satisfies the following formula (2-5).
T1> 0.75 × T0 (2-1)
T1> 0.9 × T0 (2-2)
T1> T0 (2-4)
1.25 × T0 <T1 <10 × T0 (2-5)
If the second protective material 7 and the laminated material 14 satisfy the above expression, an increase in the dielectric constant of the porous resin layer 4 in the laminated material 14 can be further suppressed, and the low dielectric substrate material 1 is a fifth generation (5G) ) Is extremely useful as a substrate material that can conform to the standards and high-speed FPC.
 また、より好ましくは、式(1)および式(2)がいずれも満足される。式(1)および式(2)がいずれも満足されれば、第2保護材7がより一層十分に押し潰される。そのため、積層材14における多孔質樹脂層4の誘電率の増加をより一層抑制できる。 Also, more preferably, both the expressions (1) and (2) are satisfied. If both the formulas (1) and (2) are satisfied, the second protective member 7 is crushed even more sufficiently. Therefore, an increase in the dielectric constant of the porous resin layer 4 in the laminated material 14 can be further suppressed.
  <変形例>
 次に、一実施形態の変形例を説明する。以下の各変形例において、上記した一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、一実施形態および各変形例を適宜組み合わせることができる。さらに、各変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。
<Modification>
Next, a modified example of the embodiment will be described. In the following modified examples, the same members and steps as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. Further, one embodiment and each modified example can be appropriately combined. Further, each modified example can exhibit the same operational effects as those of the embodiment, except where otherwise noted.
 上記した説明では、低誘電基板材1をロールトゥロールで製造したが、これに限定されず、例えば、バッチ法(枚葉式)で低誘電基板材1を製造することもできる。 In the above description, the low dielectric substrate material 1 is manufactured by roll-to-roll. However, the present invention is not limited to this. For example, the low dielectric substrate material 1 can be manufactured by a batch method (single wafer type).
 一実施形態では、まず、第1保護材2を第1金属層3から剥離し、その後、第2保護材7を第2金属層6から剥離しているが、その順序は、逆でもよく、また、同時であってもよい。 In one embodiment, first, the first protection member 2 is separated from the first metal layer 3 and then the second protection member 7 is separated from the second metal layer 6, but the order may be reversed. Also, they may be simultaneous.
 第2保護材7の一方面および/または他方面が、剥離処理または粘着処理がなされていてもよい。なお、剥離層または粘着層の厚みは、第2保護材7のショアD硬度H1に実質的な変動を及ぼさない程度に設定されている。 一方 One surface and / or the other surface of the second protective material 7 may be subjected to a peeling treatment or an adhesive treatment. Note that the thickness of the release layer or the adhesive layer is set to such an extent that the Shore D hardness H1 of the second protective material 7 does not substantially vary.
 一実施形態では、図1に示すように、接着層5が、多孔質樹脂層4および第2金属層6の間に介在しているが、これに限定されず、例えば、図示しないが、第1金属層3および多孔質樹脂層4の間に介在することもできる。 In one embodiment, as shown in FIG. 1, the adhesive layer 5 is interposed between the porous resin layer 4 and the second metal layer 6, but is not limited thereto. 1 It may be interposed between the metal layer 3 and the porous resin layer 4.
 一実施形態では、本発明の保護材の一例として第2保護材7を例示し、第2保護材7のショアD硬度H1または厚みT1が、上記した式(1)または式(2)を満足しているが、例えば、保護材の一例として、第2保護材7の他に、さらに、第1保護材2を例示することができる。この場合には、第1保護材2のショアD硬度H3と、多孔質樹脂層4のショアD硬度H2が、下記式(3)を満足し、または、第1保護材2の厚みT1と、積層材14の厚みT1とが、下記式(2)を満足する。
H3<H2 (3)
T1>0.5×T0 (2)
 第1保護材2の厚みT1は、第2保護材7の厚みT1と同様である。
In one embodiment, the second protective material 7 is illustrated as an example of the protective material of the present invention, and the Shore D hardness H1 or the thickness T1 of the second protective material 7 satisfies the above formula (1) or formula (2). However, for example, in addition to the second protection member 7, the first protection member 2 can be further exemplified as an example of the protection member. In this case, the Shore D hardness H3 of the first protective material 2 and the Shore D hardness H2 of the porous resin layer 4 satisfy the following expression (3), or the thickness T1 of the first protective material 2 The thickness T1 of the laminated material 14 satisfies the following expression (2).
H3 <H2 (3)
T1> 0.5 × T0 (2)
The thickness T1 of the first protection member 2 is the same as the thickness T1 of the second protection member 7.
 第1保護材2のショアD硬度H3、および、多孔質樹脂層4のショアD行動H2に関し、好ましくは、下記式(3-1)を満足し、より好ましくは、下記式(3-2)を満足し、さらに好ましくは、下記式(3-3)を満足し、とりわけ好ましくは、下記式(3-4)を満足する。
H3<0.9×H2 (3-1)
H3<0.7×H2 (3-2)
H3<0.5×H2 (3-3)
0.001×H2<H3 (3-4)
 第1保護材2のショアD硬度H3は、第2保護材7のショアD硬度H1と同一であってもよい。
Regarding the Shore D hardness H3 of the first protective material 2 and the Shore D behavior H2 of the porous resin layer 4, preferably, the following formula (3-1) is satisfied, and more preferably, the following formula (3-2) Is satisfied, more preferably the following formula (3-3) is satisfied, and particularly preferably the following formula (3-4) is satisfied.
H3 <0.9 × H2 (3-1)
H3 <0.7 × H2 (3-2)
H3 <0.5 × H2 (3-3)
0.001 × H2 <H3 (3-4)
The Shore D hardness H3 of the first protection member 2 may be the same as the Shore D hardness H1 of the second protection member 7.
 より好ましくは、式(3)および式(2)がいずれも満足される。 More preferably, both the expressions (3) and (2) are satisfied.
 なお、第1保護材2の一方面および/または他方面が、剥離処理または粘着処理がなされていてもよい。なお、剥離層または粘着層の厚みは、第1保護材2のショアD硬度H3に実質的な変動を及ぼさない程度に設定されている。 Note that one surface and / or the other surface of the first protective material 2 may be subjected to a peeling treatment or an adhesive treatment. The thickness of the release layer or the pressure-sensitive adhesive layer is set to a value that does not substantially change the Shore D hardness H3 of the first protective material 2.
 あるいは、一実施形態では、低誘電基板材1が、第1保護材2を備えるが、図3に示すように、第1保護材2を備えず、第2保護材7を備えてもよい。 Alternatively, in one embodiment, the low dielectric substrate material 1 includes the first protective material 2, but may include the second protective material 7 without the first protective material 2 as illustrated in FIG. 3.
 この低誘電基板材1は、積層材14と、第2保護材7とを備える。具体的には、第1金属層3、多孔質樹脂層4、接着層5、第2金属層6および第2保護材7を厚み方向一方側に向かって順に備える。 低 This low dielectric substrate material 1 includes a laminated material 14 and a second protective material 7. Specifically, the first metal layer 3, the porous resin layer 4, the adhesive layer 5, the second metal layer 6, and the second protective material 7 are sequentially provided toward one side in the thickness direction.
 第1金属層3は、厚み方向他方側に向かって露出される。なお、第1金属層3の厚み方向他方面は、低誘電基板材1が厚み方向に複数積み重ねられる(積層される)ときに、第2保護材7の厚み方向一方面に接触し、つまり、第2保護材7に保護される。 The first metal layer 3 is exposed toward the other side in the thickness direction. The other surface in the thickness direction of the first metal layer 3 is in contact with one surface in the thickness direction of the second protective material 7 when a plurality of low dielectric substrate materials 1 are stacked (laminated) in the thickness direction. It is protected by the second protection member 7.
 また、一実施形態では、図1に示すように、低誘電基板材1が、接着層5を備えるが、図4に示すように、接着層5を備えなくてもよい。 Also, in one embodiment, as shown in FIG. 1, the low-dielectric substrate material 1 includes the adhesive layer 5, but may not include the adhesive layer 5, as illustrated in FIG.
 この低誘電基板材1では、積層材14は、第1金属層3、多孔質樹脂層4および第2金属層6を厚み方向一方側に向かって順に備える。換言すれば、低誘電基板材1は、第1保護材2、第1金属層3、多孔質樹脂層4および第2金属層6を厚み方向一方側に向かって順に備える。 で は In the low dielectric substrate material 1, the laminated material 14 includes the first metal layer 3, the porous resin layer 4, and the second metal layer 6 in this order in the thickness direction. In other words, the low dielectric substrate material 1 includes the first protective material 2, the first metal layer 3, the porous resin layer 4, and the second metal layer 6 in this order in the thickness direction.
 さらに、低誘電基板材1は、図5に示すように、第1保護材2および第1金属層3を備えなくてもよい。この低誘電基板材1では、多孔質樹脂層4および第2金属層6を有する積層材14と、第2保護材7とが、厚み方向一方側に向かって順に配置されている。具体的には、低誘電基板材1は、多孔質樹脂層4、第2金属層6および第2保護材7を厚み方向一方側に向かって順に備える。 Furthermore, as shown in FIG. 5, the low dielectric substrate material 1 does not need to include the first protective material 2 and the first metal layer 3. In this low dielectric substrate material 1, a laminated material 14 having a porous resin layer 4 and a second metal layer 6 and a second protective material 7 are sequentially arranged toward one side in the thickness direction. Specifically, the low dielectric substrate material 1 includes a porous resin layer 4, a second metal layer 6, and a second protective material 7 in order toward one side in the thickness direction.
 多孔質樹脂層4は、低誘電基板材1の厚み方向他方面を形成しており、厚み方向他方側に向かって露出している。多孔質樹脂層4は、低誘電基板材1が厚み方向に複数積み重ねられる(積層される)ときに、第2保護材7の厚み方向一方面に接触し、つまり、第2保護材7に保護される。 The porous resin layer 4 forms the other surface in the thickness direction of the low dielectric substrate material 1 and is exposed toward the other side in the thickness direction. When a plurality of low dielectric substrate materials 1 are stacked (laminated) in the thickness direction, the porous resin layer 4 is in contact with one surface in the thickness direction of the second protection material 7, that is, protected by the second protection material 7. Is done.
 図5に示す変形例では、積層材14および第2保護材7が厚み方向一方側に向かって順に配置されているが、図6に示す変形例では、保護材の一例としての第1保護材2および積層材14が厚み方向一方側に向かって順に配置されている。 In the modified example shown in FIG. 5, the laminated material 14 and the second protective material 7 are arranged in order toward one side in the thickness direction, but in the modified example shown in FIG. 6, the first protective material as an example of the protective material is provided. 2 and the laminated material 14 are sequentially arranged toward one side in the thickness direction.
 図6に示すように、低誘電基板材1は、第1保護材2、多孔質樹脂層4および第2金属層6を厚み方向一方側に向かって順に備える。 (6) As shown in FIG. 6, the low dielectric substrate material 1 includes a first protective material 2, a porous resin layer 4, and a second metal layer 6 in this order in the thickness direction.
 図6に示す変形例では、第2金属層6は、低誘電基板材1の厚み方向一方面を形成しており、厚み方向一方側に向かって露出している。第2金属層6は、低誘電基板材1が厚み方向に複数積み重ねられる(積層される)ときに、第1保護材2の厚み方向他方面に接触し、つまり、第1保護材2に保護される。 In the modification shown in FIG. 6, the second metal layer 6 forms one surface in the thickness direction of the low dielectric substrate material 1 and is exposed toward one side in the thickness direction. The second metal layer 6 is in contact with the other surface in the thickness direction of the first protective material 2 when the low dielectric substrate materials 1 are stacked (laminated) in the thickness direction, that is, protected by the first protective material 2. Is done.
 また、多孔質樹脂層4は、2層あるいは3層以上の、複数層からなっていてもよい。 Moreover, the porous resin layer 4 may be composed of a plurality of layers, such as two or three or more layers.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。 実 施 Examples and comparative examples are shown below to further illustrate the present invention. In addition, this invention is not limited to an Example and a comparative example at all. Specific numerical values such as the mixing ratio (content ratio), physical property values, and parameters used in the following description are the mixing ratios (corresponding to them) described in the above-mentioned “Embodiments of the Invention”. The upper limit (values defined as “less than” or “less than”) or the lower limit (values defined as “over” or “exceeding”), such as the content ratio, physical property values, and parameters, may be substituted. it can.
  <図3に対応する低誘電基板材の製造>
  実施例1
 まず、銅からなる厚み12.5μmの第1金属箔3を準備した。
<Manufacture of low dielectric substrate material corresponding to FIG. 3>
Example 1
First, a 12.5 μm-thick first metal foil 3 made of copper was prepared.
 次いで、特開2018-021172号公報の参考例に記載のポリイミド前駆体溶液100質量部に、イミド化触媒(2-メチルイミダゾール)4.2質量部、ポリオキシエチレンジメチルエーテル(日油社製 グレード:MM400、重量平均分子量400)からなる多孔化剤200質量部、PTFEからなる平均粒子径1,000nm以下の核剤3質量部、および、NMP(N-メチルピロリドン)を配合して、ワニスを調製した。核剤は、予めNMPに分散されたスラリーとして調製したものを、ポリイミド前駆体に対して配合した。なお、ワニスにおけるNMPの総配合部数は、上記したスラリー中に含まれるものを併せて、ポリイミド前駆体100質量部に対して、150質量部となるように、調整した。 Next, 4.2 parts by mass of an imidation catalyst (2-methylimidazole) and polyoxyethylene dimethyl ether (Nippon Oil Co., Ltd. grade: 100 parts by mass) in 100 parts by mass of the polyimide precursor solution described in Reference Example of JP-A-2018-021172: A varnish is prepared by blending 200 parts by weight of a porogen comprising MM400, weight average molecular weight 400), 3 parts by weight of a nucleating agent comprising PTFE having an average particle diameter of 1,000 nm or less, and NMP (N-methylpyrrolidone). did. The nucleating agent was prepared in advance as a slurry dispersed in NMP and blended with the polyimide precursor. The total number of NMP in the varnish was adjusted so as to be 150 parts by mass with respect to 100 parts by mass of the polyimide precursor, including those contained in the slurry.
 このワニスを、第1金属箔3の一方面に塗布し、120℃で30分間、乾燥して、NMPを除去し、続いて、超臨界抽出法により、多孔化剤を除去し、その後、真空下、380℃で2時間加熱して、イミド化させて、ポリイミドからなる多孔質樹脂層4を、第1金属箔3の一方面で作り込んだ。 This varnish is applied to one surface of the first metal foil 3 and dried at 120 ° C. for 30 minutes to remove NMP. Subsequently, the porosity is removed by supercritical extraction, and then the vacuum is applied. The resultant was heated at 380 ° C. for 2 hours to be imidized, and a porous resin layer 4 made of polyimide was formed on one surface of the first metal foil 3.
 多孔質樹脂層4の厚みが、120μmであった。多孔質樹脂層4における空孔率が、80%、平均孔径が、7μmであった。また、多孔質樹脂層4の周波数60GHzにおける誘電率が、1.5であった。さらに、多孔質樹脂層4のショアD硬度H2は、47であった。 The thickness of the porous resin layer 4 was 120 μm. The porosity of the porous resin layer 4 was 80%, and the average pore diameter was 7 μm. The dielectric constant of the porous resin layer 4 at a frequency of 60 GHz was 1.5. Further, the Shore D hardness H2 of the porous resin layer 4 was 47.
 次いで、アクリル系接着剤からなり、厚み5μmの接着層5を、多孔質樹脂層4の一方面に形成した。 Next, an adhesive layer 5 made of an acrylic adhesive and having a thickness of 5 μm was formed on one surface of the porous resin layer 4.
 次いで、銅からなる厚み12.5μmの第2金属層6を、接着層5の厚み方向一方面に接着した。 Next, a 12.5 μm-thick second metal layer 6 made of copper was adhered to one surface of the adhesive layer 5 in the thickness direction.
 これにより、第1金属層3、多孔質樹脂層4、接着層5および第2金属層6を備える積層材14を作製した。積層材14の厚みT0は、150μmであった。 Thus, a laminated material 14 including the first metal layer 3, the porous resin layer 4, the adhesive layer 5, and the second metal layer 6 was produced. The thickness T0 of the laminated material 14 was 150 μm.
 別途、2つの第2保護材7を準備した。具体的には、各第2保護材7は、ポリエチレン(PE)からなり、厚みが50μmである。2つの第2保護材7の総厚みは、100μmである。なお、他方側の第2保護材7の他方面は、アクリル系粘着剤により粘着処理がされていた。第2保護材7のショアD硬度H1は、多孔質樹脂層4のショアD硬度H2(47)より小さく、具体的には、40であった。 Separately, two second protection members 7 were prepared. Specifically, each second protection member 7 is made of polyethylene (PE) and has a thickness of 50 μm. The total thickness of the two second protection members 7 is 100 μm. The other surface of the second protective material 7 on the other side had been subjected to an adhesive treatment with an acrylic adhesive. The Shore D hardness H1 of the second protective material 7 was smaller than the Shore D hardness H2 (47) of the porous resin layer 4, specifically, 40.
 その後、2つの第2保護材7を第2金属層6の厚み方向一方面に配置した。 {Circle around (2)} Then, two second protective members 7 were arranged on one surface in the thickness direction of the second metal layer 6.
 これにより、図6に示すように、第1金属箔3と、多孔質樹脂層4と、接着層5と、第2金属層6と、第2保護材7とを厚み方向一方側に順に低誘電基板材1を製造した。 Thereby, as shown in FIG. 6, the first metal foil 3, the porous resin layer 4, the adhesive layer 5, the second metal layer 6, and the second protective material 7 are sequentially lowered toward one side in the thickness direction. The dielectric substrate material 1 was manufactured.
  実施例2
 第2保護材7の厚みT1を50μmに変更した以外は、実施例1と同様にして、低誘電基板材1を製造した。具体的には、第2保護材7を1つにした。
Example 2
A low dielectric substrate material 1 was manufactured in the same manner as in Example 1 except that the thickness T1 of the second protective material 7 was changed to 50 μm. Specifically, the number of the second protective members 7 is one.
  実施例3
 第2保護材7の材料をポリエチレンからポリエチレンテレフタレート(PET)に変更した以外は、実施例1と同様に処理した。
Example 3
Processing was performed in the same manner as in Example 1 except that the material of the second protective material 7 was changed from polyethylene to polyethylene terephthalate (PET).
 なお、第2保護材7のショアD硬度H1は、多孔質樹脂層4のショアD硬度H2より大きく、具体的には、78であった。 In addition, the Shore D hardness H1 of the second protective material 7 was larger than the Shore D hardness H2 of the porous resin layer 4, specifically, 78.
  比較例1
 第2保護材7の材料をポリエチレン(PE)からポリエチレンテレフタレート(PET)に変更した以外は、実施例2と同様に処理した。
Comparative Example 1
The processing was performed in the same manner as in Example 2 except that the material of the second protective material 7 was changed from polyethylene (PE) to polyethylene terephthalate (PET).
  <図6に対応する低誘電基板材の製造>
  実施例4
 低誘電基板材1の層構成を、図3の層構成、つまり、第1保護材2、多孔質樹脂層4および第2金属層6を厚み方向一方側に向かって順に備える低誘電基板材1に変更した以外は、実施例1と同様に処理した。
<Manufacture of low dielectric substrate material corresponding to FIG. 6>
Example 4
The layer structure of the low dielectric substrate material 1 is the layer structure of FIG. 3, that is, the low dielectric substrate material 1 having the first protective material 2, the porous resin layer 4, and the second metal layer 6 in this order in the thickness direction. Except having changed to, it carried out similarly to Example 1.
  実施例5
 低誘電基板材1の層構成を、図3の層構成、つまり、第1保護材2、多孔質樹脂層4および第2金属層6を厚み方向一方側に向かって順に備える低誘電基板材1に変更した以外は、実施例2と同様に処理した。
Example 5
The layer structure of the low dielectric substrate material 1 is the layer structure of FIG. 3, that is, the low dielectric substrate material 1 having the first protective material 2, the porous resin layer 4, and the second metal layer 6 in this order in the thickness direction. Except having changed to, it carried out similarly to Example 2.
  実施例6
 低誘電基板材1の層構成を、図3の層構成、つまり、第1保護材2、多孔質樹脂層4および第2金属層6を厚み方向一方側に向かって順に備える低誘電基板材1に変更した以外は、実施例3と同様に処理した。
Example 6
The layer structure of the low dielectric substrate material 1 is the layer structure of FIG. 3, that is, the low dielectric substrate material 1 having the first protective material 2, the porous resin layer 4, and the second metal layer 6 in this order in the thickness direction. Except having changed to, it carried out similarly to Example 3.
  比較例2
 低誘電基板材1の層構成を、図3の層構成、つまり、第1保護材2、多孔質樹脂層4および第2金属層6を厚み方向一方側に向かって順に備える低誘電基板材1に変更した以外は、比較例1と同様に処理した。
Comparative Example 2
The layer structure of the low dielectric substrate material 1 is the layer structure of FIG. 3, that is, the low dielectric substrate material 1 having the first protective material 2, the porous resin layer 4, and the second metal layer 6 in this order in the thickness direction. Except having changed to, it processed similarly to the comparative example 1.
  評価
 下記の事項を評価した。その結果を表1~表2に示す。
Evaluation The following items were evaluated. The results are shown in Tables 1 and 2.
  <硬度>
 第2保護材7のショアD硬度H1、第1保護材2のショアD硬度H3、および、多孔質樹脂層4のショアD硬度H2のそれぞれは、ショアD硬度計((株)上島製作所製)を用いて算出した。
<Hardness>
The Shore D hardness H1 of the second protective material 7, the Shore D hardness H3 of the first protective material 2, and the Shore D hardness H2 of the porous resin layer 4 are each a Shore D hardness meter (manufactured by Kamishima Seisakusho). Was calculated.
 第2保護材7のショアD硬度H1を測定するときには、第2保護材7を、厚み3000μmとなるまで、厚み方向に複数枚重ねて積層体を作製し、この積層体において、幅方向に4等分する3点を測定し、その平均値をショアD硬度H1とした。 When measuring the Shore D hardness H1 of the second protective material 7, a plurality of the second protective materials 7 are stacked in the thickness direction until a thickness of 3000 μm is obtained, and a laminate is formed. Three equally divided points were measured, and the average value was defined as Shore D hardness H1.
 第1保護材2のショアD硬度H3を測定するときには、第1保護材2を、厚み3000μmとなるまで、厚み方向に複数枚重ねて積層体を作製し、この積層体において、幅方向に4等分する3点を測定し、その平均値をショアD硬度H1とした。 When measuring the Shore D hardness H3 of the first protective material 2, a plurality of first protective materials 2 are stacked in the thickness direction until a thickness of 3000 μm is obtained, and a laminate is formed. Three equally divided points were measured, and the average value was defined as Shore D hardness H1.
 多孔質樹脂層4のショアD硬度H2の測定では、まず、低誘電基板材1から、多孔質樹脂層4のみを取り出した。具体的には、積層材14から第2金属層6、接着層5、第1金属層3などを剥離して、多孔質樹脂層4を得た。この多孔質樹脂層4を、厚み3000μmとなるまで、厚み方向に複数枚重ねて積層体を作製し、この積層体において、幅方向に4等分する3点を測定し、その平均値をショアD硬度H2とした。 In the measurement of the Shore D hardness H2 of the porous resin layer 4, first, only the porous resin layer 4 was taken out of the low dielectric substrate material 1. Specifically, the second metal layer 6, the adhesive layer 5, the first metal layer 3, and the like were peeled off from the laminated material 14 to obtain the porous resin layer 4. A plurality of the porous resin layers 4 are stacked in the thickness direction until a thickness of 3000 μm is formed to form a laminate. D hardness H2.
  <表面保護性>
 低誘電基板材1の厚み方向一方面に、クーラントブルーフマイクロメータ((株)ミツトヨ製 MDC-25M)を用いて、10、15、20、30、40、50μmのひずみを与えた。解放後に一方面上の打痕の有無を目視にて確認、判断した。上記した複数の打痕のうち、小さい打痕から順に実施し、打痕がある(残る)ことを確認すれば、それを超える打痕での評価を実施しなかった。
<Surface protection>
Strain of 10, 15, 20, 30, 40, and 50 μm was applied to one surface in the thickness direction of the low dielectric substrate material 1 using a coolant Bruch micrometer (MDC-25M manufactured by Mitutoyo Corporation). After release, the presence or absence of a dent on one surface was visually confirmed and judged. Out of the plurality of dents described above, the evaluation was performed in order from the smallest dent, and if it was confirmed that dents were present (remaining), evaluation was not performed for dents exceeding that.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 The above invention is provided as an exemplary embodiment of the present invention, but this is merely an example and should not be construed as limiting. Modifications of the invention apparent to those skilled in the art are included in the following claims.
この低誘電基板材1は、好ましくは、第五世代(5G)の規格に適合する高周波アンテナや高速伝送基板の製造に用いられる。 This low dielectric substrate material 1 is preferably used for manufacturing a high-frequency antenna or a high-speed transmission substrate conforming to the fifth generation (5G) standard.
1 低誘電基板材
2 第1保護材
4 多孔質樹脂シート
6 第2金属箔
7 第2保護材
14 積層材
H1 第2保護材のショアD硬度
H2 多孔質樹脂層のショアD硬度
H3 第1保護材のショアD硬度
T0 積層材の厚み
T1 第2保護材の厚み
REFERENCE SIGNS LIST 1 Low dielectric substrate material 2 First protective material 4 Porous resin sheet 6 Second metal foil 7 Second protective material 14 Laminated material H1 Shore D hardness H2 of second protective material Shore D hardness H3 of porous resin layer First protection Shore D hardness of material T0 Thickness of laminated material T1 Thickness of second protective material

Claims (3)

  1.  多孔質樹脂層および金属層を厚み方向に順に備え、
     前記多孔質樹脂層および前記金属層のいずれか一方の表面に配置される保護材をさらに備え、
     前記保護材の23℃のショアD硬度H1と、前記多孔質樹脂層の23℃のショアD硬度H2とが、下記式(1)を満足し、または、
     前記保護材の厚みT1と、前記多孔質樹脂層および前記金属層を備える積層材の厚みT0とが、下記式(2)を満足する
    ことを特徴とする、低誘電基板材。
    H1<H2 (1)
    T1>0.5×T0 (2)
    Comprising a porous resin layer and a metal layer in order in the thickness direction,
    Further comprising a protective material disposed on one of the surface of the porous resin layer and the metal layer,
    The Shore D hardness H1 at 23 ° C. of the protective material and the Shore D hardness H2 at 23 ° C. of the porous resin layer satisfy the following expression (1), or
    A low-dielectric substrate material, wherein a thickness T1 of the protective material and a thickness T0 of a laminate including the porous resin layer and the metal layer satisfy the following expression (2).
    H1 <H2 (1)
    T1> 0.5 × T0 (2)
  2.  前記式(1)および前記式(2)がいずれも満足されることを特徴とする、請求項1に記載の低誘電基板材。 低 The low dielectric substrate material according to claim 1, wherein both the formulas (1) and (2) are satisfied.
  3.  前記多孔質樹脂層の空孔率が、60%以上であることを特徴とする、請求項1に記載の低誘電基板材。 The low dielectric substrate material according to claim 1, wherein the porosity of the porous resin layer is 60% or more.
PCT/JP2019/023076 2018-09-28 2019-06-11 Low dielectric substrate WO2020066146A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-184581 2018-09-28
JP2018184581A JP7082932B2 (en) 2018-09-28 2018-09-28 Low dielectric substrate material

Publications (1)

Publication Number Publication Date
WO2020066146A1 true WO2020066146A1 (en) 2020-04-02

Family

ID=69949767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023076 WO2020066146A1 (en) 2018-09-28 2019-06-11 Low dielectric substrate

Country Status (3)

Country Link
JP (1) JP7082932B2 (en)
TW (1) TW202026142A (en)
WO (1) WO2020066146A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224899A1 (en) * 2021-04-19 2022-10-27 日東電工株式会社 Low-dielectric substrate material
CN116583005A (en) * 2023-07-11 2023-08-11 荣耀终端有限公司 Copper-clad plate, flexible circuit board and electronic equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI729965B (en) * 2020-12-04 2021-06-01 財團法人金屬工業研究發展中心 Composite laminate plate, housing and mobile communication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149037A1 (en) * 2010-05-27 2011-12-01 日東電工株式会社 Adhesive sheet for adsorption of electromagnetic wave
JP2018021171A (en) * 2016-07-25 2018-02-08 日東電工株式会社 Film for millimeter-wave antenna
JP2018021172A (en) * 2016-07-25 2018-02-08 日東電工株式会社 Film for millimeter-wave antenna
WO2018186486A1 (en) * 2017-04-06 2018-10-11 日東電工株式会社 Film for millimeter-wave antenna

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214058A (en) 1999-11-26 2001-08-07 Nitto Denko Corp Photosensitive resin composition, porous resin, circuit substrate and suspension substrate with circuit
JP2002361661A (en) 2001-06-05 2002-12-18 Nitto Denko Corp Method for manufacturing porous film for wiring substrate
JP2003201362A (en) 2002-01-09 2003-07-18 Hitachi Ltd Porous polyimide film and porous polyimide film circuit board
JP2011132390A (en) 2009-12-25 2011-07-07 Sumitomo Electric Ind Ltd Resin composition for forming porous polyimide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149037A1 (en) * 2010-05-27 2011-12-01 日東電工株式会社 Adhesive sheet for adsorption of electromagnetic wave
JP2018021171A (en) * 2016-07-25 2018-02-08 日東電工株式会社 Film for millimeter-wave antenna
JP2018021172A (en) * 2016-07-25 2018-02-08 日東電工株式会社 Film for millimeter-wave antenna
WO2018186486A1 (en) * 2017-04-06 2018-10-11 日東電工株式会社 Film for millimeter-wave antenna
JP2019123851A (en) * 2017-04-06 2019-07-25 日東電工株式会社 Film for millimetric wave antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224899A1 (en) * 2021-04-19 2022-10-27 日東電工株式会社 Low-dielectric substrate material
CN116583005A (en) * 2023-07-11 2023-08-11 荣耀终端有限公司 Copper-clad plate, flexible circuit board and electronic equipment

Also Published As

Publication number Publication date
JP7082932B2 (en) 2022-06-09
JP2020049904A (en) 2020-04-02
TW202026142A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2020066146A1 (en) Low dielectric substrate
TWI775830B (en) Films for mmWave Antennas
TWI738008B (en) High-frequency copper clad laminate and methods thereof
CN103958188B (en) Flexible metal laminate containing fluorinated polymer
WO2012161162A1 (en) High-frequency circuit substrate
WO2020066147A1 (en) Roll body
TWI765306B (en) Flexible printed circuits having high electromagnetic shielding property and preparing methods thereof
WO2020066145A1 (en) Low dielectric substrate material
CN110769594A (en) LCP high-frequency substrate with high Dk and low Df characteristics and preparation method thereof
CN104704027A (en) Soft metal laminate and method for manufacturing same
CN105684560A (en) Ductile metal laminate and method of manufacturing same
JP2007129039A (en) Fluorine resin printed circuit board and manufacturing method thereof
TWI684516B (en) High-frequency composite circuit substrate and method for preparing the same
JP5734623B2 (en) Manufacturing method of laminate
KR20220080069A (en) plate-shaped composite material
JP2003201363A (en) Porous polyimide film, wiring board using the same, its manufacturing method and its use
JP7288546B2 (en) roll body
WO2020066144A1 (en) Low-dielectric substrate material
JP2012244056A (en) Method for manufacturing fluororesin substrate
JP6748338B1 (en) Flat antenna board
JP2023141133A (en) Nanofiber sheet and laminate
JP2022039457A (en) Circuit board and manufacturing method thereof
JP2005051219A (en) Prepreg for printed-circuit board, printed-circuit board using the same, its manufacturing method and multilayer printed circuit board, and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866218

Country of ref document: EP

Kind code of ref document: A1