WO2020065738A1 - 作業機の外形形状測定システム,作業機の外形形状表示システム,作業機の制御システム及び作業機械 - Google Patents

作業機の外形形状測定システム,作業機の外形形状表示システム,作業機の制御システム及び作業機械 Download PDF

Info

Publication number
WO2020065738A1
WO2020065738A1 PCT/JP2018/035525 JP2018035525W WO2020065738A1 WO 2020065738 A1 WO2020065738 A1 WO 2020065738A1 JP 2018035525 W JP2018035525 W JP 2018035525W WO 2020065738 A1 WO2020065738 A1 WO 2020065738A1
Authority
WO
WIPO (PCT)
Prior art keywords
work machine
coordinate system
machine
work
image
Prior art date
Application number
PCT/JP2018/035525
Other languages
English (en)
French (fr)
Inventor
直樹 早川
航平 廣松
大斗 坂井
枝穂 泉
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to PCT/JP2018/035525 priority Critical patent/WO2020065738A1/ja
Priority to KR1020207004801A priority patent/KR102231510B1/ko
Priority to US16/644,229 priority patent/US11434623B2/en
Priority to JP2020509531A priority patent/JP6826233B2/ja
Priority to CN201880055028.1A priority patent/CN111226009B/zh
Priority to EP18931280.4A priority patent/EP3859090A4/en
Publication of WO2020065738A1 publication Critical patent/WO2020065738A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/64Analysis of geometric attributes of convexity or concavity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39393Camera detects projected image, compare with reference image, position end effector
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Definitions

  • the present invention relates to a work machine outer shape measurement system including a measurement controller for measuring the shape of a work machine mounted on the work machine.
  • work machines including hydraulic excavators have (1) detected the position and orientation of work machines (front work machines) such as booms, arms, and buckets, and their sensor information.
  • work machines front work machines
  • MG Machine guidance
  • Some machines have a machine control (MC) function for controlling a work machine according to the above conditions.
  • MC machine control
  • a hydraulic shovel equipped with such a function displays an image of a side view of the bucket together with the target surface on a monitor in the cab in order to inform an operator of the relative positional relationship between the actual bucket and the target surface. Is done.
  • Patent Document 1 discloses the following technology from the viewpoint of reducing operator discomfort when displaying images of a plurality of types of buckets on a monitor. That is, the cited document 1 is a display system of a work machine having a work machine with a bucket attached thereto, and is drawing information for drawing an image of the bucket as viewed from the side using information on the shape and dimensions of the bucket. And a display for displaying an image of the bucket viewed from the side and an image showing a cross section of the terrain based on the drawing information generated by the generator, and the shape and size of the bucket.
  • the information of (1) includes, in a side view of the bucket, a distance between a cutting edge of the bucket and a bucket pin for attaching the bucket to the work machine, a straight line connecting the cutting edge and the bucket pin, and a straight line indicating the bottom surface of the bucket.
  • the angle, the position of the cutting edge, the position of the bucket pin, and the distance from the portion connecting the bucket to the work implement to the cutting edge that comprises at least one location outside of the bucket, discloses a display system of a work machine.
  • a work machine including a bucket is manufactured by a manual operation such as welding by an operator, so that a deformation or a positional shift occurs in the process, and the work machine is finished in a shape different from the design data. Therefore, the outline information of the working machine is generally obtained by performing measurement with a measure or measurement using a total station for each working machine. In these methods, it is necessary to limit the posture of the working machine and to use a large measuring device in order to obtain sufficient measurement accuracy. In addition, in order to accurately display the shape of the working machine on the monitor in accordance with the actual shape, it is necessary to measure as many points as possible in advance, which is a very laborious operation.
  • An object of the present invention is to provide a measurement system capable of easily measuring the outer shape information of a work machine, a display system and a control system that assist an operator in accurately forming a target surface by using the measurement system, and a display system and a control system therefor. To provide a working machine equipped with the same.
  • the present application includes a plurality of means for solving the above-mentioned problems.
  • the work machine outer shape measurement system including a measurement controller for measuring the shape of the work machine mounted on the work machine, A photographing device for photographing the side surface of the work machine, wherein the measurement controller sets a three-dimensional image set in the photographing device based on an image of the work device photographed by the photographing device and internal parameters of the photographing device.
  • a position of a plane representing a side surface of the work machine is calculated in a photographing device coordinate system which is a coordinate system, and based on position information in the image of an arbitrary pixel constituting the work machine and the position of the plane on the image.
  • the outer shape information of the working machine can be easily measured.
  • FIG. 1 is a configuration diagram of a hydraulic shovel and a photographing device according to a first embodiment of the present invention.
  • FIG. 1 is a configuration diagram of a system according to a first embodiment of the present invention. The figure showing the coordinate system in a hydraulic shovel.
  • FIG. 1 is a functional block diagram of an external shape measurement system for a working machine according to a first embodiment of the present invention. The figure which shows the example of the known point marker attached on the working machine side surface. The figure which shows the positional relationship of the imaging device in the imaging device coordinate system, and the known point marker on the side of a working machine.
  • FIG. 4 is a diagram illustrating a positional relationship between images in an image sensor coordinate system. The figure which shows the relationship between an imaging device coordinate system and a working machine coordinate system.
  • FIG. 1 is a functional block diagram of a hydraulic shovel system according to a first embodiment of the present invention.
  • FIG. 3 is a diagram showing a target plane in a vehicle body coordinate system. The figure which shows the example of the relationship between a working machine and a target surface.
  • FIG. 4 is a view showing an example of a screen displayed on a display monitor 18.
  • the block diagram of the hydraulic shovel which concerns on 2nd Embodiment of this invention.
  • FIG. 7 is a functional block diagram of a system according to a second embodiment of the present invention.
  • a hydraulic shovel having a bucket 4 as an attachment at the tip of a working machine (a front working machine) is illustrated.
  • the present invention is applied to a hydraulic shovel having an attachment other than the bucket. It does not matter.
  • the present invention is applicable to work machines other than hydraulic excavators as long as the work machine has a work machine such as a wheel loader.
  • the shape of the measurement controller 20 (at any point on the work machine 1A).
  • One or more front members for which measurement of the work machine coordinate system Co3 (position in the later-described) is desired may be referred to as a work machine.
  • a photographing device for example, a camera
  • working machine for photographing a working machine 1A mounted on a hydraulic excavator (working machine) 1 and an image of the side of the working machine 1A photographed by the photographing device 19 (hereinafter, “working machine”) (May be referred to as “machine side image”)
  • a measurement controller 20 that measures information about the shape of the work machine 1A
  • a shape controller that is mounted on the excavator 1 and that is calculated by the measurement controller 20.
  • a system including a work machine controller 50 for inputting information and executed by the excavator 1 for use in, for example, MG or MC will be described.
  • FIG. 1 is a configuration diagram of the excavator 1, the photographing device 19, and the measurement controller 20 according to the embodiment of the present invention.
  • FIG. 2 is a configuration diagram of the system of the present embodiment. As shown in FIG. 2, the system according to the present embodiment includes a hydraulic shovel 1 on which a work machine controller 50 is mounted, an imaging device 19 and a measurement controller 20 installed at a position away from the hydraulic shovel 1.
  • the photographing device 19 is a camera that photographs a photograph (image) of the side surface of the work machine 1A.
  • the measurement controller 20 calculates the position of the plane representing the side surface of the work machine 1A, and based on the position of the plane and the image captured by the imaging device 19, the work machine coordinate system of an arbitrary point on the side surface of the work machine 1A.
  • the coordinate value in Co3 and the drawing image of the work machine 1A are generated.
  • the work machine controller 50 mounted on the hydraulic excavator 1 provides a machine guidance (MG) function and a machine control (MC) function.
  • the work machine controller 50 includes a measurement controller as shape information and drawing information of the work machine 1A for the MG / MC.
  • the coordinate values in the work machine coordinate system Co3 of an arbitrary point on the side surface of the work machine 1A output by 20 and the drawn image of the work machine 1A are used.
  • the measurement controller 20 and the work machine controller 50 are control devices each having a processing device (for example, a CPU) and a storage device (for example, a semiconductor memory such as a ROM or a RAM) in which a program executed by the processing device is stored.
  • the controllers 20 and 50 of the present embodiment include an external device (for example, the photographing device 19, a target plane data input device 37 (see FIG. 9), various sensors 12, 13, 14, 16, 17 and operation levers 10, 11). ), And performs various calculations necessary for generating the coordinate values of the work implement 1A and the drawn image, and displays the information on a display monitor (display device) 18 installed in the cab of the excavator 1.
  • Various calculations relating to the operation of the hydraulic excavator 1 are performed. The specific contents of the calculations executed by the measurement controller 20 and the work machine controller 50 will be described later with reference to the functional block diagrams of FIGS.
  • a hydraulic shovel 1 is a multi-joint type working machine (a front working machine) configured by connecting a plurality of front members (a boom 2, an arm 3, and a bucket 4) which respectively rotate in a vertical direction. 1) and a vehicle body 1B composed of an upper revolving unit 1BA and a lower traveling unit 1BB, and the base end of the boom 2 located on the base end side of the work implement 1A is vertically turned to the front of the upper revolving unit 1BA. It is movably supported.
  • the upper revolving unit 1BA is rotatably mounted on the upper part of the lower traveling unit 1BB.
  • a measurement controller 20 On the side of the work machine 1A, there are provided internal parameters (for example, focal length (f), image sensor size (h, w)), number of pixels (h, H) for taking a photograph of the side of the work machine 1A. W), a unit cell size, image center coordinates, etc.) are clearly provided, and a measurement controller 20 is provided.
  • focal length f
  • image sensor size h, w
  • number of pixels for taking a photograph of the side of the work machine 1A.
  • W a unit cell size, image center coordinates, etc.
  • the imaging device 19 is a monocular camera provided with an imaging element (image sensor) such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • image sensor image sensor
  • the photographing device 19 outputs photographed image data to the measurement controller 20.
  • the photographing device 19 measures depth of arrival (distance information to the subject) using parallax, such as a stereo camera, or emits laser light or the like and measures the arrival time of the reflected light.
  • parallax such as a stereo camera, or emits laser light or the like and measures the arrival time of the reflected light.
  • a camera that can acquire depth information may be used instead.
  • the measurement controller 20 may be built in the photographing device 19.
  • the boom 2, the arm 3, the bucket 4, the upper swing body 1BA, and the lower traveling body 1BB are respectively composed of a boom cylinder 5, an arm cylinder 6, a bucket cylinder 7, a swing hydraulic motor 8, and left and right traveling hydraulic motors 9a, 9b (hydraulic actuators). )
  • a driven member To form a driven member.
  • the operation of the plurality of driven members is performed by a traveling right lever 10a, a traveling left lever 10b, an operating right lever 11a, and an operating left lever 11b installed in the cab on the upper swing body 1BA (these are referred to as the operating levers 10, 11). Is controlled by a pilot pressure generated by being operated by an operator.
  • the pilot pressures for driving the plurality of driven members include not only those output by operating the operation levers 10 and 11, but also the plurality of proportional solenoid valves 39 (see FIG. 9) mounted on the excavator 1.
  • a part (pressure increasing valve) operates and outputs independently of the operation of the operating levers 10 and 11, or a part (pressure reducing valve) of a plurality of proportional solenoid valves 39 operates and operates the operating levers 10 and 11.
  • the pilot pressure outputted by the above is reduced.
  • the pilot pressure output from the plurality of proportional solenoid valves 39 (the pressure increasing valve and the pressure reducing valve) activates the MC that operates the boom cylinder 5, the arm cylinder 6, and the bucket cylinder 7 in accordance with predetermined conditions.
  • the work machine 1A is provided with a boom angle sensor 12 on the boom pin and an arm angle sensor 13 on the arm pin so that the rotation angles ⁇ , ⁇ , and ⁇ (see FIG. 3) of the boom 2, the arm 3, and the bucket 4 can be measured.
  • the bucket angle sensor 14 is attached to the bucket link 15.
  • the upper revolving unit 1BA includes a vehicle body front-rear tilt angle sensor 16a that detects a front-rear direction tilt angle ⁇ (see FIG. 3) of the upper revolving unit 1BA (the vehicle body 1B) with respect to a reference plane (for example, a horizontal plane).
  • a vehicle body left / right tilt angle sensor 16b for detecting a left / right tilt angle ⁇ (not shown) of the vehicle body 1B) is attached.
  • the X-axis and the Z-axis shown in FIG. 3 are originated from a point on the axis of the boom pin (for example, the center point), the Z-axis is the upward direction of the vehicle, the X-axis is the forward direction of the vehicle, and the rightward direction of the vehicle.
  • first GNSS antenna 17a and a second GNSS antenna 17b are arranged on the upper swing body 1BA.
  • the first GNSS antenna 17a and the second GNSS antenna 17b are antennas for RTK-GNSS (Real Time Kinetics-Global Navigation Satellite Systems) and receive radio waves (navigation signals) transmitted from a plurality of GNSS satellites.
  • the work machine controller 50 determines the latitude, longitude and height (ellipsoid height) of each antenna position based on the time required for radio waves transmitted from a plurality of GNSS satellites to reach the first and second GNSS antennas 17a and 17b. ) Can be measured.
  • the position and the direction of the excavator 1 (the upper swing body 1BA) in the geographic coordinate system (world coordinate system) Co5 which is a three-dimensional coordinate system can be calculated.
  • a configuration may be adopted in which the positions and heights of the first and second GNSS antennas 17a and 17b are calculated by a dedicated receiver, and the calculation results are output to the work machine controller 50.
  • the posture information of the work implement 1A calculated from the outputs of the various posture sensors 12, 13, 14, 16 and the calculation based on the reception signals of the GNSS antennas 17a, 17b are calculated.
  • An image of the work implement 1A as viewed from the side and a cross-sectional shape of the target plane are displayed based on the position information and the like of the upper swing body 1BA thus obtained.
  • An image of the work machine 1A as viewed from the side is generated by the measurement controller 20 based on the work machine side image taken by the photographing device 19.
  • the measurement controller 20 generates a coordinate value and a drawn image of the work machine 1A on the work machine coordinate system Co3 based on the work machine side image of the imaging device 19 will be described with reference to the drawings.
  • FIG. 4 is a functional block diagram of the measurement controller 20 according to the embodiment of the present invention. As shown in this figure, the measurement controller 20 calculates the coordinate value of the work implement 1A in the work implement coordinate system Co3, and draws the work implement 1A in the work implement coordinate system Co3. A work machine coordinate system drawing image generation unit 22 for generating an image is provided, and receives a side photograph of the work machine 1 ⁇ / b> A photographed by the photographing device 19.
  • the work machine coordinate system coordinate calculator 21 calculates a photographing position calculator 23 that calculates the position of a plane representing the side surface of the work machine 1A in the photographing apparatus coordinate system Co1, which is a three-dimensional coordinate system set in the photographing apparatus 19;
  • the photographing device coordinate system coordinate conversion unit 24 calculates the coordinate value of the photographing device coordinate system Co1 in the photographing device coordinate system Co1.
  • a work machine coordinate system coordinate conversion unit 25 that converts the coordinate value into a coordinate value in the machine coordinate system Co3.
  • the work machine coordinate system coordinate calculation unit 21 receives a side image (work machine side image) of the work machine 1A photographed by the photographing device 19 as an input, and sets a work machine of a work machine constituent pixel designated on the work machine side image.
  • the coordinate value of the corresponding point in the working machine coordinate system Co3 is output.
  • the measurement controller 20 may execute a process of performing distortion correction on the work machine side image based on the internal parameters of the photographing device 19.
  • the coordinates of the working machine corresponding points of all pixels on the contour line, which is the boundary line between the working machine side surface and the other part (background), in the working machine coordinate system Co3 ( The case of outputting the working machine coordinate system coordinates) will be described.
  • the working machine corresponding points of all the pixels on the working machine side surface on the working machine side image that is, all the pixels within the outline of the working machine side surface
  • a method may be adopted.
  • the photographing position calculating unit 23 uses a three-dimensional coordinate system set in the photographing device 19 based on an image (side image of the working machine) obtained by photographing the side surface of the work machine 1A by the photographing device 19 and internal parameters of the photographing device 19.
  • the position of a plane S1 (see FIG. 8 described later) representing the side surface of the work machine 1A in a certain imaging device coordinate system Co1 is calculated.
  • the position of the plane S1 in the imaging device coordinate system Co1 is specified by the equation of the plane S1 in the imaging device coordinate system Co1.
  • the photographing position calculation unit 23 when calculating the equation of the plane S1 representing the work machine 1A by the photographing position calculation unit 23, markers whose distances are known on the side surface of the work machine 1A photographed by the photographing device 19 (known point markers). As shown in FIG. 5, a method is adopted in which three 40s are installed at positions forming a triangle. In the present embodiment, the positions (coordinates) of the three known point markers 40 in the photographing device coordinate system Co1 are calculated from the pixel positions of the three markers 40 in the working machine side image, and the plane S1 is calculated from the three points. The equation is being calculated.
  • the plane S1 is the operation plane of the work machine 1A (for example, It is preferable to arrange three markers on a plane parallel to the operation plane so as to be parallel to the plane perpendicular to the operation plane, but to place three markers on a plane intersecting the operation plane (that is, a plane not parallel to the operation plane). You may place two markers. Since it is sufficient that a plane can be defined by the known point markers 40, four or more known point markers 40 may be attached to the side surface of the work machine 1A to obtain the equation of the plane S1 where all the markers 40 are located.
  • the marker 40 is an object having characteristics such as a predetermined size, color, pattern, shape, and property.
  • a marker that reflects light of a specific wavelength a marker that reflects light in a specific direction
  • an AR Augmented Reality
  • An AR marker used in the technology or a marker including a two-dimensional code such as a QR code (registered trademark) may be used.
  • FIG. 5 shows a specific example of the known point marker 40 in the present embodiment.
  • three known point markers 40 are installed on the side surface of the bucket 4 so as not to be located on the same straight line, and the plane is calculated by obtaining the coordinate values of the three known point markers 40.
  • three straight lines may be drawn on the side surface of the work machine, and the three markers 40 may be arranged at three intersections where the three straight lines intersect.
  • FIG. 6 is a diagram showing a positional relationship between the photographing device of the photographing device 19 and the known point markers 40 (P1, P2, P3) on the side surface of the work machine in the photographing device coordinate system Co1.
  • the photographing device coordinate system Co1 is a coordinate system in which the origin O is at the lens center of the photographing device 19, the Z axis is the direction of the optical axis, the Y axis is above the photographing device 19, and the X axis is to the right.
  • the unit of the coordinate value in the imaging device coordinate system Co1 is a unit of length, such as millimeters.
  • Points P1 to P3 are the positions of the known point markers 40, and any point on the side of the working machine similar to the points P1 to P3 is Q.
  • Lij is a known value.
  • FIG. 7 shows images of the points P1 to P3 and the point Q reflected on the image sensor 35 of the photographing device 19, and points P1 'to P3' and Q 'are the positions of the images of the points P1 to P3 and Q, respectively.
  • a two-dimensional coordinate system having the optical axis center at the origin O ', the right direction of the sensor as the U axis, and the upward direction as the V axis is defined as an image sensor coordinate system Co2.
  • the photographing device coordinate system coordinate conversion unit 24 determines the arbitrary work mechanism based on the position information of the arbitrary work machine constituent pixel on the work machine side image and the equation calculated by the photographing position calculation unit 23.
  • the coordinate value of the work pixel corresponding point of the formed pixel in the imaging device coordinate system Co1 is calculated.
  • the photographing device coordinate system coordinate conversion unit 24 extracts the outline of the working machine 1A from the side view image of the working machine taken by the photographing device 19 by image processing, and an arbitrary position located on the extracted outline.
  • the coordinate value of the working machine corresponding point in the imaging device coordinate system Co1 is obtained based on the pixel position information and the equation relating to the point Q (the equation of the plane S1).
  • the method for obtaining the coordinates in is as follows.
  • a point (working machine constituent pixel) at which an arbitrary point Q (working machine corresponding point) on the plane S1 on the side of the working machine is formed on the image sensor is defined as a point Q '.
  • the point Q' can be expressed by the following equation (7) in the same manner as in the above equation (1).
  • the straight line OQ can be expressed as in the following equation (8) using the above equation (7).
  • the position (coordinate) of the point Q (working machine corresponding point) in the photographing device coordinate system Co1 is determined by the equation of the plane S1 representing the side surface of the working machine 1A (the above equation (6)) and the point Q ′ on the image sensor. And the equation of a straight line passing through the origin O (formula (8)).
  • the work machine coordinate system coordinate conversion unit 25 converts the coordinate value (the position of the point Q) of the work machine corresponding point in the photographing apparatus coordinate system Co1 into a coordinate value in the work machine coordinate system Co3, and the converted coordinate value (hereinafter, referred to as the coordinate value). (Which may be referred to as “work implement coordinate system coordinate value”) to the work machine controller 50 and the work implement coordinate system drawing image generation unit 22.
  • the work machine coordinate system Co3 is a two-dimensional coordinate system defined on a plane S1 representing a side surface of the work machine 1A whose equation has been obtained by the photographing position calculation unit 23, and is a coordinate value in the work machine coordinate system Co3. Is a unit of length, such as millimeters.
  • the work machine coordinate system Co3 has the origin as the center of rotation of the work machine 1A, the x-axis in the work machine tip direction, and the y-axis in a direction orthogonal to the x-axis.
  • FIG. 8 shows a relationship diagram of the plane S1 representing the side surface of the work machine 1A, the work machine coordinate system Co3, and the photographing device coordinate system Co1 in the present embodiment.
  • the bucket 4 is targeted among the plurality of front members 2, 3, 4 constituting the multi-joint type working machine 1 ⁇ / b> A, and the rotation center of the bucket 4 is set as the origin of the working machine coordinate system Co 3.
  • the y-axis of the working machine coordinate system Co3 is set in a direction orthogonal to the x-axis.
  • the center of rotation on the base end side is used as the origin, and the center of rotation of the arm 3 or the bucket 4 (the front member of each front member) is set.
  • the x-axis may be set toward the tip.
  • the work machine coordinate system coordinate calculation unit 21 calculates work machine coordinate system coordinates for work machine corresponding points of all pixels on the contour line of the work machine 1A, and the work machine coordinate system drawing image generation unit 22 Is described as an example, but the coordinates of the working machine coordinate system Co3 may be calculated and output for the working machine corresponding points of some pixels on the contour line.
  • the pixels on the contour and one or more pixels included in the contour, the pixels on the contour and all the pixels included in the contour, and all the working mechanisms by the user using some input interface are calculated and output.
  • the accuracy of the control of the work machine 1A in the MC and the accuracy of the distance between the work machine 1A and the target surface in the MG can be ensured only by the coordinate values calculated by the work machine coordinate system coordinate calculator 21.
  • the work machine coordinate system drawing image generation unit 22 can be omitted.
  • the work machine coordinate system drawing image generation unit 22 generates the work machine 1A in the work machine coordinate system Co3 based on the coordinate values of the work machine corresponding points in the work machine coordinate system Co3 converted by the work machine coordinate system coordinate conversion unit 24.
  • a drawing image (hereinafter, sometimes referred to as a “working machine coordinate system drawing image”, which includes, for example, an image of the bucket 4 as viewed from the side) is generated, and the drawing image is output to the work machine controller 50.
  • a specific generation method of the drawn image of the work machine 1A for example, a region surrounded by a point on the contour of the work machine 1A in the work machine coordinate system Co3 output by the work machine coordinate system coordinate calculation unit 21 is described.
  • a method of executing a process of painting with a predetermined color as the color of the work machine 1A is used in addition to the method of filling the internal area of the outline of the work machine 1A with a specific color. May be.
  • the drawing image is created in this manner, the same image as the image shown on the side surface image of the working machine (that is, the real image) can be displayed on the display monitor 18, so that the occurrence of discomfort by the operator can be extremely easily suppressed.
  • a method of deforming an image or the like prepared in advance according to the contour may be used.
  • the measurement controller 20 (imaging device coordinate system coordinate conversion unit 24) of the present embodiment extracts the outline of the work machine 1A in the work machine side image by image processing, and extracts the contour in the work machine side image. Based on the position information of an arbitrary pixel on the line (for example, all the pixels on the contour line) and the equation of the plane S1, the coordinate value of the arbitrary pixel in the imaging device coordinate system Co1 of the work machine corresponding point of the arbitrary pixel is calculated. Thus, the measurement controller 20 can automatically acquire the position information of the outer shape (outline) when the work machine 1A is viewed from the side.
  • the measurement controller 20 (working machine coordinate system drawing image generating unit 22) of the present embodiment converts the coordinate values of the working machine corresponding point in the working machine coordinate system Co3 converted by the working machine coordinate system coordinate conversion unit 25. , A drawing image of the work machine 1A in the work machine coordinate system Co3 can be generated. Thereby, since the outer shape of the drawn image of the work implement 1A displayed on the display monitor 18 approaches the real one, it is possible to prevent the image of the work implement 1A from being different from the real one and giving an uncomfortable feeling to the operator.
  • the measurement controller 20 calculates the coordinate values in the photographing device coordinate system Co1 for the work machine corresponding points of all the pixels constituting the work machine 1A on the work machine side image (photographing device coordinate system coordinate conversion).
  • Unit 24 by arranging (mapping) the same pixels as the pixels corresponding to the respective coordinate values, to generate a drawn image of the working machine 1A (working machine coordinate system drawn image generating unit 22), the display monitor 18
  • the appearance of the displayed drawn image of the work machine 1A can be made closer to the real thing.
  • the position of the plane S1 in the photographing device coordinate system Co1 is specified based on the side image of the work machine 1A to which the three known point markers 40 are attached. Not limited to this. For example, (1) three or more markers 40 are projected onto the side surface of the working machine 1A from a projection device such as a projector whose positional relationship with the photographing device 19 is known, and the markers 40 are used to photograph the working machine side images by the photographing device 19.
  • a distance measuring device for example, a laser type, an LED type, and the like capable of measuring the distance between an arbitrary point on the side surface of the work machine 1A and the image capturing device 19 when the positional relationship with the capturing device 19 is known.
  • Ultrasonic distance The sensor, may be used a method of calculating a plane equation S1 is to acquire the distance information over any three points on the side of the working machine 1A.
  • the specification of the plane S1 is not limited to the method of specifying from three or more positions on the plane S1 as described above. For example, if the inclination (for example, the normal vector) of the plane S1 is known, the plane S1 can be specified only by the position of one point on the plane S1.
  • FIG. 9 is a system configuration diagram of the excavator 1 of FIG.
  • the hydraulic excavator 1 according to the present embodiment includes an engine 47, a hydraulic pump 46 and a pilot pump (not shown) mechanically connected to an output shaft of the engine 47 and driven by the engine 47, and a pressure discharged from the pilot pump.
  • the operating levers 10 and 11 output the oil pressure reduced according to the operation amount to the control valve 45 via the proportional solenoid valve 39 as a control signal for each hydraulic actuator 5-9, and the hydraulic pump 46
  • a plurality of control valves 45 for controlling the flow rate and direction of the hydraulic oil introduced into the control valve 9 based on control signals (pilot pressure) output from the operation levers 10 and 11 or the proportional solenoid valve 39;
  • Pressure sensors 48 for detecting the pressure value of the pilot pressure acting on the
  • a work machine controller 50 that calculates a corrected target pilot pressure based on the vehicle information and outputs a command voltage capable of generating the corrected target pilot pressure to the proportional solenoid valve 27, and a target surface formed by the work machine 1A.
  • a target plane data input device 37 for inputting information to the work machine controller 50 is provided.
  • the torque and flow rate of the hydraulic pump 46 are mechanically controlled so that the vehicle body operates according to the target output of each hydraulic actuator 5-8.
  • control valves 45 There are the same number of control valves 45 as the number of hydraulic actuators 5-8 to be controlled, but FIG. 9 shows them as one.
  • Each control valve is acted upon by two pilot pressures that move the internal spool in one or the other axial direction. For example, a boom raising pilot pressure and a boom lowering pilot pressure act on the control valve 45 for the boom cylinder 5.
  • the pressure sensors 48 detect the pilot pressure acting on each control valve 45, and may have twice as many control valves.
  • the pressure sensor 48 is provided immediately below the control valve 45, and detects a pilot pressure actually acting on the control valve 45.
  • proportional solenoid valves 39 Although there are a plurality of proportional solenoid valves 39, they are collectively shown in one block in FIG. There are two types of proportional solenoid valves 39. One is a pressure reducing valve that reduces the pilot pressure input from the operating levers 10 and 11 to a desired corrected target pilot pressure specified as an output or a command voltage, and the other is a pressure reducing valve. This is a pressure increasing valve that reduces the pilot pressure input from the pilot pump to a desired corrected target pilot pressure specified by the command voltage and outputs the pilot pressure when a pilot pressure higher than the pilot pressure output by the controller 11 is required.
  • the pilot pressure is generated via the pressure increasing valve and output from the operation levers 10 and 11.
  • the pilot pressure is generated via a pressure reducing valve.
  • the pilot pressure is not output from the operating levers 10 and 11, the pilot pressure is generated via a pressure increasing valve.
  • the pressure reducing valve and the pressure increasing valve allow the pilot pressure having a pressure value different from the pilot pressure (the pilot pressure based on the operator's operation) input from the operating levers 10 and 11 to act on the control valve 45.
  • the desired operation can be performed by the hydraulic actuator to be controlled.
  • ⁇ ⁇ ⁇ There can be a maximum of two pressure reducing valves and two pressure increasing valves for one control valve 45.
  • two pressure reducing valves and two pressure increasing valves are provided for the control valve 45 of the boom cylinder 5.
  • a first pressure reducing valve provided in a first conduit for guiding the boom raising pilot pressure from the operation lever 11 to the control valve 45, and the boom raising pilot pressure bypassing the operation lever 11 from the pilot pump.
  • the hydraulic excavator 1 includes a second pressure increasing valve provided in a fourth conduit for guiding the pilot pressure from the pilot pump to the control valve 45 by bypassing the operation lever 11.
  • the work machine controller 50 includes a position and orientation detection unit 26, an information processing unit 30, a display control unit 33, and a work machine control unit 35.
  • the position / posture detecting unit 26 includes a working machine posture detecting unit 27, a vehicle body position detecting unit 28, and a vehicle body angle detecting unit 29, and receives various kinds of sensor information as input, and acquires posture information, vehicle body position information, and vehicle body information of the working machine 1A. Outputs angle information.
  • the work implement attitude detection unit 27 detects the attitude of the work implement 1A in the vehicle body coordinate system Co4 based on the outputs of the attitude sensors 12, 13, and 14 attached to the work implement 1A. More specifically, operations such as rotation angles ⁇ , ⁇ , and ⁇ (see FIG. 3) of the boom 2, the arm 3, and the bucket 4 based on information from the boom angle sensor 12, the arm angle sensor 13, and the bucket angle sensor 14. The attitude information of the machine 1A is detected.
  • the vehicle body position detector 28 detects vehicle body position information based on information obtained by the first GNSS antenna 17a.
  • the vehicle body angle detecting unit 29 determines the inclination angle ⁇ (see FIG. 3) by the vehicle body front-rear inclination sensor 16a, the left-right inclination angle ⁇ (not shown) by the vehicle body left-right inclination sensor 16b, and outputs the signal to the first GNSS antenna 17a.
  • the azimuth angle of the vehicle body is detected from the position information of the 2GNSS antenna 17b to obtain vehicle body angle information.
  • the vehicle body position information is obtained based on the information of the first GNSS antenna 17a.
  • the position information of the second GNSS antenna 17b may be used, or a three-dimensional surveying instrument such as a total station may be used. May be.
  • the azimuth information of the vehicle body is detected from the position information of the first GNSS antenna 17a and the second GNSS antenna 17b.
  • a method using an electronic compass or a method using a turning angle sensor may be used.
  • the information processing unit 30 includes a vehicle body coordinate conversion unit 31 and a target plane calculation unit 32.
  • the input data of the information processing unit 30 include a work machine coordinate system coordinate value and a work machine coordinate system drawing image output from the measurement controller 20, target plane data input by the target plane data input device 37, and position and orientation detection.
  • the output data of the information processing unit 30 includes, in addition to the posture information, the vehicle body position information, and the vehicle body angle information of the work machine 1A input from the position and posture detection unit 26, the work machine 1A
  • the vehicle body coordinate conversion unit 31 outputs the coordinate values (vehicle body coordinates) of the work equipment corresponding points in the work equipment coordinate system Co3 output from the measurement controller 20 (work equipment coordinate system coordinate conversion unit 25 and work equipment coordinate system drawing image generation unit 22).
  • the system coordinate value information) and the drawn image of the work machine 1A are converted into coordinate values in a vehicle body coordinate system Co4, which is a two-dimensional coordinate system set for the excavator 1.
  • the working machine coordinate system coordinate values and the working machine coordinate system drawing image output from the measurement controller 20 are detected by the working machine posture detecting unit 27 of the position and posture detecting unit 26 as shown in FIG.
  • the amount of translation and rotation for converting the work machine coordinate system coordinate value and the work machine coordinate system drawing image into the coordinate value of the vehicle body coordinate system Co4 are determined by the rotation angle ⁇ of the boom 2, arm 3, and bucket 4.
  • ⁇ and ⁇ are known, they can be obtained by comparing the coordinate value of the work machine coordinate system Co3 with the coordinate value of the vehicle body coordinate system Co4 measured by a measuring device such as a total station for any two different points. Good.
  • the target plane calculation unit 32 calculates a line segment where the target plane data (three-dimensional data) 51 input by the target plane data input device 37 and the XZ plane of the vehicle body coordinate system Co4 intersect.
  • the line segment is set as the target plane 55.
  • the XZ plane of the vehicle body coordinate system Co4 is obtained based on the vehicle body position information output by the position and orientation detection unit 26 and the vehicle body angle information output by the vehicle body angle detection unit 29.
  • the target plane data 51 input by the target plane data input device 37 is assumed to be three-dimensional data, but may be two-dimensional data, that is, line segment data indicating the target plane. When the target plane data is two-dimensional data, it is not necessary to use the vehicle body position information of the vehicle body position detector 28 and the vehicle azimuth angle information of the vehicle body angle detector 29.
  • the display control unit 33 displays the drawn image of the work implement 1A in the work machine coordinate system Co4 converted by the body coordinate conversion unit 31 and the work machine corresponding point converted in the body coordinate system Co4 by the body coordinate conversion unit 31. Based on the coordinate values and the posture of the work implement 1A in the vehicle body coordinate system Co4 obtained by the posture sensors 12, 13, and 14, the drawn image of the work implement 1A is adjusted to the posture of the work implement 1A in the vehicle body coordinate system Co4. It is displayed on the display monitor 18.
  • the display control unit 33 includes a target plane information calculation unit 34.
  • the posture information, the vehicle body position information and the vehicle body angle information of the work machine 1A output from the information processing unit 30, and the work machine 1A includes vehicle body coordinate system coordinate value information, vehicle body coordinate system drawing image information, and target plane information on the vehicle body coordinate system XZ plane.
  • the output data includes work machine-target plane vector information in addition to the input information.
  • the output information is input to the display monitor 18 and presented to the user.
  • the target plane information calculation unit 34 will be described with reference to FIG. 12 showing an example of the positional relationship between the work implement 1A and the target plane 55.
  • the target plane information calculation unit 34 determines, for an arbitrary point (point P in FIG. 12) on the outline of the work machine 1A, a plurality of planes (hereinafter, referred to as “target plane:”) constituting the target plane 55. ), The nearest points (points P1 and P2) on planes (target plane 1 and target plane 2 in FIG. 12) existing within a certain distance from the working machine 1A. Is obtained from the point (point P) to the nearest point (point P1 and point P2) on the target plane.
  • the target plane vector (vector PP1 and vector PP2) is obtained.
  • the output information is obtained from a point on the work machine 1A to the target plane 55.
  • Plane Although the vector information up to the nearest point in the above is used, distance information may be output, or a vertical distance from a point on the work implement 1A to the target plane 55 may be output.
  • the calculation is performed for all points on the contour line of the work machine 1A, the calculation may be performed only for specific points such as a point at the tip of the work machine 1A and a point on the back of the work machine 1A.
  • FIG. 13 shows an example of a screen displayed on the display monitor 18.
  • a vehicle body image IM1 drawn based on vehicle body coordinate system drawing image information
  • a target plane image IM2 drawn based on target plane data on the XZ plane of the vehicle body coordinate system Co4
  • a work The machine-work plane drawn based on the target plane vector information-the target plane vector image IM3 is displayed.
  • the work implement-target plane vector image IM3 is obtained by drawing the work implement-target plane vector information output from the target plane information calculation unit 34 that has the smallest vector size for each target plane. is there. It is assumed that the magnitude of the vector when the point on the contour of the working machine is sunk into the target plane 55 has a negative value.
  • the guidance screen IM may display information output from the target surface information calculation unit 34 and information obtained by processing the information, in addition to the example described in the present embodiment. Further, in the present embodiment, only the guidance screen IM displayed on the display monitor 18 as the machine guidance function has been described, but information may be presented by sound or vibration in addition to such visual information.
  • the work machine control unit 35 determines the position information of the predetermined target plane 55 input from the information processing unit 30 and the coordinate values in the vehicle body coordinate system Co4 of the work machine corresponding points subjected to the coordinate transformation by the vehicle body coordinate transformation unit 31. Based on the posture of the work implement 1A in the vehicle body coordinate system Co4 obtained by the posture sensors 12, 13, and 14, the control point of the work implement 1A corresponding to the work implement corresponding point is held above the target plane 55. Work machine 1A (hydraulic cylinders 5, 6, 7) is controlled as described above.
  • the work machine control unit 35 includes a target operation calculation unit 36.
  • the input data of the work machine control unit 35 include the output of the display control unit 33, the posture information of the work machine 1A of the position and posture detection unit 26, the operation levers 10, 11, and 11.
  • An operation input to the operation input device consisting of the following is made, and as the output data, there is a control signal of the proportional solenoid valve 39.
  • the target operation calculating unit 36 predicts the moving direction and speed of the work machine 1A based on the input information (the posture information of the work machine 1A and the operation input information of the operation levers 10 and 11). At this time, for example, when it is predicted that the work implement 1A is sunk into the target surface 55, a control signal for decreasing or increasing the pilot pressure is transmitted to the electromagnetic proportional valve 39 so that the work implement 1A does not move into the target surface 55. Output to The pilot pressure corrected by the electromagnetic proportional valve 39 drives the control valve 45, and the hydraulic cylinders 5, 6, 7 are appropriately driven based on the operation to prevent the work machine 1 ⁇ / b> A from sinking into the target surface 55. You. In the present embodiment, the solenoid proportional valve 39 controls the pilot pressure, but the solenoid proportional valve may directly control the operating oil pressure of the actuator.
  • the shape of the actual work machine 1A calculated by the measurement controller 20 based on the side image of the work machine 1A is used.
  • MG and MC are performed using the coordinate information and the drawn image that match well.
  • the accuracy of the guidance information for example, the work implement-target plane vector image IM3 and the distance information from the work implement 1A to the target plane 55
  • the work machine control unit 35 can perform accurate MC even when the work machine 1A has a shape that requires many control points such as a curved portion and a protrusion.
  • the photographing device 19 and the measurement controller 20 are mounted on the excavator 1 and measure the outer shape information of the working machine 1A (the body coordinate system coordinate value information and the body coordinate system drawing image information of the working machine 1A).
  • the feature is that the machine guidance and machine control functions are provided while performing in real time.
  • the same parts as those in the previous embodiment are denoted by the same reference numerals, and the description may be appropriately omitted.
  • the imaging device 19 of the present embodiment is attached to the front of the upper revolving unit 1BA via a support device (articulated arm) 60.
  • the support device 60 in FIG. 14 is a horizontal articulated arm formed by connecting a plurality of horizontal arms, and drives an actuator (for example, a motor) 19b embedded in each joint to drive the imaging device 19 in the vehicle body coordinate system Co4. The direction and position can be changed.
  • each joint of the support device 60 is provided with an angle sensor (photographing device sensor) 19a for detecting the rotation angle of each horizontal arm, and the detection value of the angle sensor 19a is transmitted to the measurement controller 20 as shown in FIG. Has been output.
  • the support device 60 is a horizontal articulated arm. However, an arm that can move in the vertical direction can be used, and another support device can be used.
  • FIG. 15 is a system configuration diagram of the excavator 1 according to the present embodiment.
  • the hydraulic shovel 1 of the present embodiment includes an imaging device 19, a measurement controller 20, and a work machine controller 50.
  • the photographing device 19 photographs the work machine side images at predetermined intervals, and the measurement controller 20 uses the work machine 1A coordinate values and the body coordinate system of the work machine 1A in real time based on the work machine side images.
  • the drawing image is calculated and output to the work machine controller 50.
  • the measurement controller 20 of the first embodiment outputs the coordinate values and the drawn image in the working machine coordinate system Co3
  • the photographing device 19 is attached to the vehicle body (the upper swing body 1BA) of the excavator 1. Therefore, the coordinate value and the drawn image in the vehicle body coordinate system Co4 can be directly calculated.
  • the work machine controller 50 of the present embodiment provides a user with machine guidance and a machine control function based on information output from the measurement controller 20 in real time.
  • the measurement controller 20 includes a vehicle body coordinate system coordinate calculation unit 21b and a vehicle body coordinate system drawing image generation unit 22b.
  • the position information and the orientation information of the photographing device 19 in the vehicle body coordinate system are input to the measurement controller 20 from the side image of the work machine 1A photographed by the photographing device 19 and the angle sensor 19a.
  • the vehicle body coordinate system coordinate calculator 21b includes a photographing position calculator 23, a photographing device coordinate system coordinate converter 24, and a vehicle body coordinate system coordinate converter 25b.
  • a side image is input, a body coordinate system coordinate value is output for a designated point on the side image of the work machine 1A, and a body coordinate system drawing that matches the shape and dimensions of the work machine 1A in the body coordinate system Co4.
  • the body coordinate system coordinate values of the working machine corresponding points of all the pixels on the contour of the working machine in the working machine side image are output.
  • other methods For example, it is needless to say that only the coordinate values of the working machine corresponding points of some pixels on the contour line may be used.
  • the shooting position calculation unit 23 and the shooting device coordinate system coordinate conversion unit 24 perform the same calculation as in the first embodiment.
  • the body coordinate system coordinate conversion unit 25b translates and rotates the coordinate values in the photographing device coordinate system Co1 based on the position information and orientation information in the vehicle body coordinate system Co4 of the photographing device 19 input from the angle sensor 19a.
  • the coordinate is converted into a coordinate value in the vehicle body coordinate system Co4.
  • the vehicle body coordinate system drawing image generation unit 22b generates a drawing image after the coordinate conversion to the vehicle body coordinate system Co4.
  • the information (the vehicle body coordinate system coordinate value and the vehicle body coordinate system drawing image of the work machine 1A) input from the measurement controller 20 to the work machine controller 50 is already information in the vehicle body coordinate system Co4.
  • the information processing unit 30 of the work machine controller 50 of the present embodiment does not include the vehicle body coordinate conversion unit 31 of the first embodiment, but the other parts have the same configuration and the same processing.
  • the work machine posture detection unit 27 in the position and posture detection unit 26 is unnecessary because the measurement controller 20 can detect the posture of the work machine 1A.
  • the processing contents of the display control unit 33 and the work implement control unit 35 are the same as in the first embodiment.
  • the measurement controller 20 measures the position and the shape information of the work machine 1A in real time. Therefore, the user does not need to measure the shape and the like of the work machine 1A in advance as in the first embodiment, and can easily obtain work machine shape information. Further, since the position and shape of the work machine 1A are acquired in real time, even when the work machine 1A is worn or deformed, the work machine shape can be accurately measured. Can be presented in a way that is easy for the user to understand. In the work implement control unit 35, accurate control can be performed according to the actual state of the work implement.
  • the present invention is not limited to the above embodiment, and includes various modifications without departing from the gist of the present invention.
  • the present invention is not limited to one having all the configurations described in the above embodiment, but also includes one in which a part of the configuration is deleted. Further, a part of the configuration according to one embodiment can be added to or replaced by the configuration according to another embodiment.
  • the components related to the controllers 20 and 50 and the functions and execution processes of the components are partially or wholly implemented by hardware (for example, a logic that executes each function is designed by an integrated circuit). May be realized.
  • the configuration of the controllers 20 and 50 may be a program (software) that realizes each function of the configuration of the controllers 20 and 50 by being read and executed by an arithmetic processing unit (for example, a CPU).
  • Information relating to the program can be stored in, for example, a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disk, etc.), and the like.
  • SYMBOLS 1 Hydraulic excavator (work machine), 1A ... Work machine (front work machine), 1B ... Body, 1BA ... Upper revolving body, 1BB ... Lower traveling body, 2 ... Boom, 3 ... Arm, 4 ... Bucket, 5 ... Boom Cylinder, 6: Arm cylinder, 7: Bucket cylinder, 10, 11: Operation lever, 12: Boom angle sensor (posture sensor), 13: Arm angle sensor (posture sensor), 14: Bucket angle sensor (posture sensor), 18 ... Display monitor (display device), 19 ... Imaging device, 20 ... Measurement controller, 21 ... Work machine coordinate system coordinate calculation unit, 22 ... Work machine coordinate system drawing image generation unit, 23 ... Shooting position calculation unit, 24 ... Shooting device Coordinate system coordinate converter, 25: work machine coordinate system coordinate converter, 39: proportional solenoid valve, 40: known point marker, 50: work machine controller

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Geometry (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

測定コントローラ(20)は,撮影装置(19)により作業機(1A)の側面を撮影した画像と撮影装置の内部パラメータとに基づいて,撮影装置座標系(Co1)において作業機の側面を表す平面(S1)の位置を算出し,撮影画像上で作業機を構成する任意の画素の撮影画像における位置情報と平面(S1)の位置とに基づいてその任意の画素に対応する作業機上の点の撮影装置座標系(Co1)における座標値を算出し,その任意の画素に対応する作業機上の点の撮影装置座標系における座標値を作業機座標系(Co3)における座標値に変換して油圧ショベル(1)の作業機械コントローラ(50)に出力する。

Description

作業機の外形形状測定システム,作業機の外形形状表示システム,作業機の制御システム及び作業機械
 本発明は作業機械に搭載された作業機の形状を計測する測定コントローラを備える作業機の外形形状測定システムに関する。
 近年,情報化施工への対応に伴い,油圧ショベルを含む作業機械には,(1)ブーム,アーム,バケットなどの作業機(フロント作業機)の位置や姿勢をセンサで検出し,そのセンサ情報に即した位置と姿勢のバケットの画像をモニタに表示してオペレータに提供するマシンガイダンス(MG)や,(2)MGと同様に作業機の位置や姿勢のセンサ情報を利用して,予め定めた条件に従って作業機を制御するマシンコントロール(MC)の機能を有するものがある。通常,このような機能を搭載した油圧ショベルでは,実際のバケットと目標面の相対的な位置関係をオペレータに報せるために,バケットを側面視した画像を目標面とともに運転室内のモニタに表示することが行われる。
 この種の技術に関連して,特許文献1には,複数種類のバケットの画像をモニタに表示させるにあたってオペレータの違和感を低減する観点から次のような技術が開示されている。すなわち,引用文献1は,バケットが取り付けられた作業機を有する作業機械の表示システムであって,前記バケットの形状及び寸法の情報を用いて前記バケットを側面視した画像を描画するための描画情報を生成する生成部と,前記生成部によって生成された前記描画情報に基づいて前記バケットを側面視した画像及び地形の断面を示す画像を表示する表示部と,を含み,前記バケットの形状及び寸法の情報は,前記バケットの側面視において,前記バケットの刃先と前記バケットを前記作業機に取り付けるバケットピンとの距離,前記刃先及び前記バケットピンを結ぶ直線と,前記バケットの底面を示す直線とのなす角度,前記刃先の位置,前記バケットピンの位置,及び前記バケットを前記作業機に連結する部分から前記刃先までにおける前記バケットの外側の少なくとも1つの位置を含む,作業機械の表示システムを開示している。
国際公開第2016/56674号パンフレット
 ところで,上記のMGやMCの正確度を向上する観点からは,バケットをはじめとする作業機の正確な外形情報が必要となる。
 通常,バケットを含む作業機は,作業員による溶接等の手作業で製造されるため,その過程で変形や位置ズレ等が生じて設計データと異なる形状に仕上がる。そのため,作業機の外形情報は,一般にはメジャーでの測定やトータルステーションを使用した測定などを作業機械ごとに行うことで取得されている。これらの手法では,十分な測定精度を得るために作業機の姿勢の制限や,大がかりな測定装置を使用する必要がある。その上,作業機の形状を実際の形状に即して正確にモニタに表示するためには,事前にできるだけ多くの点を測定しておく必要があり,非常に手間がかかる作業となる。
 そのため,外形情報が実物に即して正確に登録されている作業機はほとんどなく,作業機の外形上の代表的な1点(例えばバケット爪先)や数点の位置のみが登録されている場合がほとんどであり,このような実情は正確なMGやMCの実現の妨げとなっている。すなわち,MCでは,作業機の外形上で位置が登録されていない点が目標面と接触して目標面が意図せず変形・損傷したり,MGでは,目標面と事実上の最短距離にある外形上の点が未登録の場合には誤った距離がモニタに提示されたりするおそれがある。
 本発明の目的は,作業機の外形情報を簡単に測定することができる測定システムや,それを用いてオペレータが目標面を精度よく成形することを支援する表示システム及び制御システム,さらにはこれらを備えた作業機械を提供することである。
 本願は上記課題を解決する手段を複数含んでいるが,その一例を挙げるならば,作業機械に搭載された作業機の形状を計測する測定コントローラを備える作業機の外形形状測定システムにおいて,前記作業機の側面を撮影する撮影装置を備え,前記測定コントローラは,前記撮影装置により前記作業機の側面を撮影した画像と前記撮影装置の内部パラメータとに基づいて,前記撮影装置に設定された3次元座標系である撮影装置座標系において前記作業機の側面を表す平面の位置を算出し,前記画像上で前記作業機を構成する任意の画素の前記画像における位置情報と前記平面の位置とに基づいて前記画素に対応する前記作業機上の点の前記撮影装置座標系における座標値を算出し,前記画素に対応する前記作業機上の点の前記撮影装置座標系における座標値を前記作業機に設定された2次元座標系である作業機座標系における座標値に変換して前記作業機械の作業機械コントローラに出力するものとする。
 本発明によれば作業機の外形情報を簡単に測定することができる。
本発明の実施形態1に係る油圧ショベルと撮影装置の構成図。 本発明の実施形態1に係るシステムの構成図。 油圧ショベルにおける座標系を表す図。 本発明の実施形態1に係る作業機の外形形状測定システムの機能ブロック図。 作業機側面上に取り付けられた既知点マーカーの例を示す図。 撮影装置座標系における撮影装置と作業機側面上の既知点マーカーの位置関係を示す図。 イメージセンサ座標系における像の位置関係を示す図。 撮影装置座標系と作業機座標系の関係を示す図。 本発明の実施形態1に係る油圧ショベルのシステムの機能ブロック図。 作業機座標系から車体座標系への変換を表す図。 車体座標系における目標面を示す図。 作業機と目標面の関係の例を示す図。 表示モニタ18に表示される画面の例を示す図。 本発明の第2実施形態に係る油圧ショベルの構成図。 本発明の第2実施形態に係るシステムの機能ブロック図。
 以下,本発明の実施の形態について図面を用いて説明する。なお,以下では本発明が適用される作業機械として,作業機(フロント作業機)の先端のアタッチメントとしてバケット4を備える油圧ショベルを例示するが,バケット以外のアタッチメントを備える油圧ショベルで本発明を適用しても構わない。また,油圧ショベル以外の作業機械であっても,例えばホイールローダのように作業機を有する作業機械であれば本発明は適用可能である。さらに,以下の説明では,作業機1Aに含まれる複数のフロント部材(具体的には,ブーム2,アーム3及びバケット4)のうち,測定コントローラ20による形状(作業機1A上の任意の点の作業機座標系Co3(後述)における位置)の計測を希望する1以上のフロント部材を作業機と呼ぶことがある。
 <第1実施形態>
 第1実施形態では,油圧ショベル(作業機械)1に搭載された作業機1Aを撮影する撮影装置(例えばカメラ)19と,撮像装置19により作業機1Aの側面を撮影した画像(以下では「作業機側面画像」と称することがある)を利用して,作業機1Aの形状に関する情報を計測する測定コントローラ20と,油圧ショベル1に搭載され,測定コントローラ20で演算された作業機1Aの形状に関する情報を入力して油圧ショベル1で実行される例えばMGやMCに利用する作業機械コントローラ50とを備えるシステムについて説明する。
 図1は本発明の実施形態に係る油圧ショベル1と撮影装置19及び測定コントローラ20の構成図である。また図2は本実施形態のシステムの構成図である。本実施形態のシステムは,図2に示すように,作業機械コントローラ50を搭載した油圧ショベル1と,油圧ショベル1から離れた位置に設置されている撮影装置19及び測定コントローラ20とからなる。撮影装置19は作業機1Aの側面の写真(画像)を撮影するカメラである。測定コントローラ20は,作業機1Aの側面を表す平面の位置を算出し,その平面の位置と撮像装置19が撮影した画像とに基づいて作業機1Aの側面上の任意の点の作業機座標系Co3における座標値と作業機1Aの描画画像を生成する。油圧ショベル1に搭載された作業機械コントローラ50はマシンガイダンス(MG)機能やマシンコントロール(MC)機能を提供するが,そのMG・MCのための作業機1Aの形状情報や描画情報として,測定コントローラ20が出力する作業機1Aの側面上の任意の点の作業機座標系Co3における座標値と作業機1Aの描画画像を利用する。
 測定コントローラ20及び作業機械コントローラ50は,それぞれ,処理装置(例えばCPU)と,その処理装置が実行するプログラムが格納された記憶装置(例えばROM,RAM等の半導体メモリ)を有する制御装置である。本実施形態のコントローラ20,50は,それぞれ,外部装置(例えば,撮影装置19,目標面データ入力装置37(図9参照),各種センサ12,13,14,16,17,操作レバー10,11)からの情報や信号を受信して,作業機1Aの座標値と描画画像の生成に必要な各種演算や,油圧ショベル1の運転室内に設置された表示モニタ(表示装置)18への表示や油圧ショベル1の動作に関する各種演算を行っている。この測定コントローラ20及び作業機械コントローラ50が実行する演算の具体的内容については図4,図9の機能ブロック図を利用して後述する。
 図1に示すように,油圧ショベル1は,垂直方向にそれぞれ回動する複数のフロント部材(ブーム2,アーム3及びバケット4)を連結して構成された多関節型の作業機(フロント作業機)1Aと,上部旋回体1BA及び下部走行体1BBからなる車体1Bとで構成され,作業機1Aの基端側に位置するブーム2の基端は上部旋回体1BAの前部に上下方向に回動可能に支持されている。上部旋回体1BAは下部走行体1BBの上部に旋回可能に取り付けられている。また作業機1Aの側方には,作業機1A側面の写真を撮影するための内部パラメータ(例えば,焦点距離(f),イメージセンサーサイズ(縦h,横w),画素数(縦H,横W),ユニットセルサイズ,画像中心座標等)が明らかな撮影装置19と,測定コントローラ20とが設置されている。
 撮影装置19は,CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子(イメージセンサ)を備えた単眼カメラである。撮影装置19は撮影した画像データを測定コントローラ20に出力する。また撮影装置19は画像情報の他に,ステレオカメラのような視差を利用した深度情報(被写体までの距離情報)や,レーザー光等を発射してその反射光を到達時間を計測する等して深度情報が取得可能なカメラに代替してもよい。なお,測定コントローラ20は撮影装置19に内蔵されていてもよい。
 ブーム2,アーム3,バケット4,上部旋回体1BA及び下部走行体1BBは,それぞれ,ブームシリンダ5,アームシリンダ6,バケットシリンダ7,旋回油圧モータ8及び左右の走行油圧モータ9a,9b(油圧アクチュエータ)により駆動される被駆動部材を構成する。それら複数の被駆動部材の動作は,上部旋回体1BA上の運転室内に設置された走行右レバー10a,走行左レバー10b,操作右レバー11a及び操作左レバー11b(これらを操作レバー10,11と総称することがある)がオペレータにより操作されることにより発生するパイロット圧によって制御される。上記の複数の被駆動部材を駆動するパイロット圧には,操作レバー10,11の操作によって出力されるものだけでなく,油圧ショベル1に搭載された複数の比例電磁弁39(図9参照)の一部(増圧弁)が操作レバー10,11の操作とは無関係に動作して出力するものや,複数の比例電磁弁39の一部(減圧弁)が動作して操作レバー10,11の操作によって出力されたパイロット圧を減圧したものが含まれる。このように複数の比例電磁弁39(増圧弁及び減圧弁)から出力されたパイロット圧は,予め定められた条件に従ってブームシリンダ5,アームシリンダ6及びバケットシリンダ7を動作させるMCを発動させる。
 作業機1Aには,ブーム2,アーム3,バケット4の回動角度α,β,γ(図3参照)を測定可能なように,ブームピンにブーム角度センサ12が,アームピンにアーム角度センサ13が,バケットリンク15にバケット角度センサ14が取付けられている。上部旋回体1BAには,基準面(例えば水平面)に対する上部旋回体1BA(車体1B)の前後方向の傾斜角θ(図3参照)を検出する車体前後傾斜角センサ16aと,上部旋回体1BA(車体1B)の左右方向の傾斜角φ(図示せず)を検出する車体左右傾斜角センサ16bとが取付けられている。なお,図3中に記されているX軸及びZ軸は,ブームピンの軸心上の点(例えば中央点)を原点とし,車体上方方向をZ軸,車体前方方向をX軸,車体右方向をY軸とする車体座標系Co4を表したものである。
 上部旋回体1BAには第1GNSSアンテナ17aと第2GNSSアンテナ17bが配置されている。第1GNSSアンテナ17a及び第2GNSSアンテナ17bはRTK-GNSS(Real Time Kinematic - Global Navigation Satellite Systems)用のアンテナであり,複数のGNSS衛星から発信された電波(航法信号)を受信する。作業機械コントローラ50は,複数のGNSS衛星から発信された電波が第1及び第2GNSSアンテナ17a,17bに到達するまでに要した時間に基づいてそれぞれのアンテナ位置の緯度,経度及び高さ(楕円体高)を測定可能である。これにより3次元座標系である地理座標系(世界座標系)Co5における油圧ショベル1(上部旋回体1BA)の位置と向きを演算することができる。なお,第1及び第2GNSSアンテナ17a,17bの位置及び高さを専用の受信機で演算し,演算結果を作業機械コントローラ50に出力する構成を採用しても良い。
 油圧ショベル1の運転室内の表示モニタ18の画面上には,各種姿勢センサ12,13,14,16の出力から演算された作業機1Aの姿勢情報や,GNSSアンテナ17a,17bの受信信号から演算された上部旋回体1BAの位置情報等を基に作業機1Aを側面視した画像及び目標面の断面形状が表示される。作業機1Aを側面視した画像は撮影装置19が撮影した作業機側面画像に基づいて測定コントローラ20で生成される。次に測定コントローラ20が撮像装置19の作業機側面画像をもとに作業機1Aの作業機座標系Co3上の座標値と描画画像を生成する処理について図面を用いて説明する。
 (測定コントローラの構成)
 図4は本発明の実施形態に係る測定コントローラ20の機能ブロック図である。この図に示すように,測定コントローラ20は,作業機座標系Co3での作業機1Aの座標値を演算する作業機座標系座標演算部21と,作業機座標系Co3での作業機1Aの描画画像を生成する作業機座標系描画画像生成部22とを備えており,撮影装置19で撮影された作業機1Aの側面写真の入力を受けている。
 作業機座標系座標演算部21は,撮影装置19に設定された3次元座標系である撮影装置座標系Co1において作業機1Aの側面を表す平面の位置を算出する撮影位置演算部23と,撮影装置19が撮影した作業機側面画像上で作業機1Aを構成する画素(以下では「作業機構成画素」と称することがある)に含まれる任意の画素に対応する作業機1A上の点(以下では「作業機対応点」と称することがある)の撮影装置座標系Co1における座標値を算出する撮影装置座標系座標変換部24と,撮影装置座標系Co1における作業機対応点の座標値を作業機座標系Co3における座標値に変換する作業機座標系座標変換部25とを備えている。作業機座標系座標演算部21は,撮影装置19により撮影された作業機1Aの側面画像(作業機側面画像)を入力とし,その作業機側面画像上で指定された作業機構成画素の作業機対応点の作業機座標系Co3における座標値を出力する。
 なお,撮影装置19で撮影した作業機側面画像の入力に際して,その作業機側面画像に対して撮影装置19の内部パラメータをもとに歪み補正を施す処理を測定コントローラ20で実行してもよい。また,本実施形態では,作業機側面画像において,作業機側面部とその他の部分(背景)の境界線である輪郭線上のすべての画素の作業機対応点について作業機座標系Co3における座標値(作業機座標系座標値)を出力する場合について記述するが,作業機側面画像上の作業機側面部の全ての画素(すなわち作業機側面部の輪郭線内の全ての画素)の作業機対応点の作業機座標系座標値を出力したり,ユーザーが何らかの入力インターフェースを介して指定した作業機側面部上の画素の作業機対応点の作業機座標系座標値を出力したりする等,任意の方法を採用しても良い。
 撮影位置演算部23は,撮影装置19により作業機1Aの側面を撮影した画像(作業機側面画像)と撮影装置19の内部パラメータとに基づいて,撮影装置19に設定された3次元座標系である撮影装置座標系Co1における作業機1Aの側面を表す平面S1(後述図8参照)の位置を算出する。本実施形態では撮影装置座標系Co1における平面S1の位置を撮影装置座標系Co1における平面S1の方程式で特定している。
 本実施形態では,撮影位置演算部23による作業機1Aを表す平面S1の方程式の算出に際して,撮影装置19で撮影される作業機1Aの側面上に互いの距離が既知なマーカー(既知点マーカー)40を,図5に示すように三角形をなすような位置に3つ設置する方法を採用している。本実施形態では,この3つのマーカー40の作業機側面画像における画素位置から当該3つの既知点マーカー40の撮影装置座標系Co1における位置(座標)を演算し,その3点の位置から平面S1の方程式を演算している。なお,油圧ショベルを含む作業機械の分野では,表示モニタ18に表示される作業機1Aの画像は側面画像となることが一般的であるため,平面S1が作業機1Aの動作平面(例えばブームピンに直交する面)と平行になるように,当該動作平面と平行な面上に3つのマーカーを配置することが好ましいが,動作平面と交差する面(即ち動作平面と平行でない面)の上に3つのマーカーを配置しても構わない。既知点マーカー40で平面が定義できれば良いので,既知点マーカー40を4つ以上作業機1Aの側面に取り付けて全てのマーカー40が位置する平面S1の方程式を求めても良い。
 マーカー40は,所定の大きさ,色,模様,形状,性質などの特徴を有する物体であり,例えば特定の波長の光を反射するマーカーや特定の方向に光を反射するマーカー,AR(Augmented Reality)技術で用いられるARマーカーや,QRコード(登録商標)のような二次元コードを含むマーカーを利用してもよい。
 図5に本実施形態における既知点マーカー40の具体的な例を示す。本実施形態においてはバケット4の側面上に3つの既知点マーカー40が同一直線上に位置しないように設置されおり,3つの既知点マーカー40の座標値を求めて平面を算出している。なお,3つのマーカー40の配置位置に関して,作業機側面上に3本の直線を描き,その3本の直線が交差する3つの交点に3つのマーカー40を配置するようにしても良い。
 図6は,撮影装置座標系Co1において撮影装置19の撮影装置と作業機側面上の既知点マーカー40(P1,P2,P3)の位置関係を表した図である。撮影装置座標系Co1は,撮影装置19のレンズ中心を原点Oとし,光軸の方向をZ軸,撮影装置19の上方をY軸,右方をX軸とする座標系である。また,撮影装置座標系Co1における座標値の単位は,例えばミリメートルのような,長さの単位である。点P1~P3は既知点マーカー40の位置であり,点P1~P3と同様の作業機側面上の任意の点をQとする。Lij(i,j=1~3,i≠j)は点Piと点Pj間の距離(2つの既知点マーカー40の距離)である。ここで,Lijは既知な値である。また,撮影装置19のイメージセンサ35は,撮影装置19の焦点距離がfのとき,Z=-fの平面上に存在する。
 図7は撮影装置19のイメージセンサ35上に映った点P1~3および点Qの像を表しており,点P1’~P3’,Q’はそれぞれ点P1~P3,Qの像の位置である。ここで,光軸中心を原点O’,センサの右方向をU軸,上方向をV軸とする2次元座標系をイメージセンサ座標系Co2とする。点P1’~P3’が画素(Uk,Vk)(k=1~3,Uk,Vkの単位はピクセル)に映っていたとき,イメージセンサのサイズが縦h,横wで画素数が縦Hピクセル,横Wピクセルならば,点P1’~P3’の撮影装置座標系Co1における座標は下記式(1)のように表せる。
Figure JPOXMLDOC01-appb-M000001
 このとき,撮影装置19のレンズ中心である点Oと点Pk,Pk’(k=1~3)は図6に示すように同一直線状に位置していることから下記式(2)のように表せる。
Figure JPOXMLDOC01-appb-M000002
  なお,r(k=1~3)は比例定数であり,この段階では未知数である。このrを用いて点Pk(k=1~3)の撮影装置座標系Co1における座標を表すと下記式(3)となる。
Figure JPOXMLDOC01-appb-M000003
  このとき既知点マーカー40間の距離Lij(i,j=1~3,i≠j)は下記式(4)のように表せる。
Figure JPOXMLDOC01-appb-M000004
 3つの既知点マーカー40間の距離Lij(i,j=1~3,i≠j)は既知であるから,L12,L23,L31の値から3つの連立方程式が導出できる。この連立方程式を解くことでr(k=1~3)を求めることができ,上記式(3)から撮影装置座標系Co1における点Pk(k=1~3)の座標(すなわち3つの既知点マーカー40の座標)が求まる。
 i,j,kを1~3のそれぞれ異なる数とし,cを0以外の定数とすると,作業機1Aの側面を表す平面S1(図8参照)の法線ベクトルn(図8参照)は下記式(5)のように表せる。
Figure JPOXMLDOC01-appb-M000005
  そして,点Pk(k=1~3)の撮影装置座標系Co1における座標から,下記のように作業機1Aの側面を表す平面S1上の任意の点Qに関する方程式が求まる。
Figure JPOXMLDOC01-appb-M000006
 次に,撮影装置座標系座標変換部24は,作業機側面画像上での任意の作業機構成画素の位置情報と,撮影位置演算部23で算出した方程式とに基づいて,当該任意の作業機構成画素の作業機対応点の撮影装置座標系Co1における座標値を算出する。具体的には,撮影装置座標系座標変換部24は,撮影装置19により撮影された作業機側面画像から作業機1Aの輪郭線を画像処理により抽出し,その抽出した輪郭線上に位置する任意の画素(作業機構成画素)について,画素位置情報と点Qに関する方程式(平面S1の方程式)とに基づいて作業機対応点の撮影装置座標系Co1における座標値を求める。
 ここで,作業機側面上の点が画素位置(U,V)に結像した点(すなわち作業機構成画素)に対応する作業機1A上の点(作業機対応点)の撮影装置座標系Co1における座標を求める方法は以下のとおりである。ここで,作業機側面の平面S1上の任意の点Q(作業機対応点)がイメージセンサ上に結像した点(作業機構成画素)を点Q’とする。点Q’の画素位置が(U,V)のとき上記式(1)と同様にして,点Q’は以下の式(7)のように表せる。
Figure JPOXMLDOC01-appb-M000007
 点Q’,原点O及び点Qは同一直線上にあるため,直線OQは上記式(7)を用いて下記式(8)のように表せる。
Figure JPOXMLDOC01-appb-M000008
 よって,撮影装置座標系Co1における点Q(作業機対応点)の位置(座標)は,作業機1Aの側面を表す平面S1の方程式(上記式(6))と,イメージセンサ上の点Q’と原点Oを通る直線の方程式(上記式(8))との交点より求まる。
 作業機座標系座標変換部25は,撮影装置座標系Co1における作業機対応点の座標値(点Qの位置)を作業機座標系Co3における座標値に変換し,変換後の座標値(以下において「作業機座標系座標値」と称することがある)を作業機械コントローラ50と作業機座標系描画画像生成部22に出力する。ここで,作業機座標系Co3は,撮影位置演算部23で方程式を求めた作業機1Aの側面を表す平面S1上に定められた2次元の座標系であり,作業機座標系Co3における座標値の単位は,例えばミリメートルのような,長さの単位である。作業機座標系Co3は,作業機1Aの回動中心を原点とし,作業機先端方向をx軸,x軸と直交する方向にy軸とする。
 図8に本実施形態における作業機1Aの側面を表す平面S1と,作業機座標系Co3と,撮影装置座標系Co1の関係図を示す。図8では,多関節型の作業機1Aを構成する複数のフロント部材2,3,4のうちバケット4を対象としており,バケット4の回動中心を作業機座標系Co3の原点とし,その原点からバケット爪先に向かう直線を作業機座標系Co3のx軸とし,そのx軸に直交する方向に作業機座標系Co3のy軸を設定している。なお,ブーム2やアーム3上の点に作業機座標系Co3を設定する場合には,それぞれの基端側の回動中心を原点とし,アーム3やバケット4の回動中心(各フロント部材の先端部)に向かってx軸を設定すれば良い。
 なお,作業機座標系Co3の設定(原点の位置やx軸,y軸の方向)が作業機械コントローラ50側で未登録の場合には,座標値だけでなく作業機座標系Co3の設定も作業機械コントローラ50に出力するものとする。
 次に,作業機座標系描画画像生成部22で行われる処理について説明する。本実施形態においては,作業機座標系座標演算部21が作業機1Aの輪郭線上のすべての画素の作業機対応点について作業機座標系座標を演算して,作業機座標系描画画像生成部22に出力する場合を例示して記述するが,輪郭線上の一部の画素の作業機対応点について作業機座標系Co3の座標を演算・出力しても良い。また,輪郭線上の画素と当該輪郭線内に含まれる1以上の画素や,輪郭線上の画素と当該輪郭線内に含まれる全ての画素や,ユーザーが何らかの入力インターフェースを使用して全ての作業機構成画素の中から任意に指定した1以上の画素の作業機対応点の座標値を演算・出力する場合も同様である。ただし,MCでの作業機1Aの制御の正確性やMGでの作業機1Aと目標面との距離の正確性は,作業機座標系座標演算部21で演算された座標値のみで担保できるため,例えば表示モニタ18に表示される作業機1Aの形状に正確性を求めない場合には作業機座標系描画画像生成部22の省略は可能である。
 作業機座標系描画画像生成部22は,作業機座標系座標変換部24で変換された作業機座標系Co3における作業機対応点の座標値をもとに作業機座標系Co3における作業機1Aの描画画像(以下において「作業機座標系描画画像」と称することがある。これには例えばバケット4を側面視した画像が含まれる)を生成し,その描画画像を作業機械コントローラ50に出力する。作業機1Aの描画画像の具体的な生成方法としては,例えば,作業機座標系座標演算部21で出力された作業機座標系Co3における作業機1Aの輪郭線上の点によって囲まれた領域を,作業機1Aの色として予め定められた色で塗りつぶす処理を実行する方法がある。また,作業機1Aの描画画像の生成に関し,作業機1Aの輪郭線の内部領域を特定の色で塗りつぶす方法の他に,作業機側面画像上で対応する画素をコピー・ペーストする方法を利用しても良い。このように描画画像を作成すると作業機側面画像上に写った画像(すなわち実物の画像)と同じ画像を表示モニタ18上に表示させることができるので,オペレータによる違和感の発生を至極容易に抑制できる。また,あらかじめ用意した画像等を輪郭に合わせて変形させる方法などを利用してもよい。
 (作業機の外形形状測定システムの作用と効果)
 (1)以上のような撮影装置19及び測定コントローラ20で構成された測定システムによれば,作業機1A(例えばバケット4)の外形情報を取得するに際して,ユーザーは作業機1Aの側面に3つ以上の既知点マーカー40を取り付け,その画像(作業機側面画像)を撮影装置19で撮影する操作のみを行えば良い。作業機側面画像の撮影後は,測定コントローラ20が,複数の既知点マーカー40によって定義される平面S1の方程式を作業機側面画像と撮像装置18の内部パラメータに基づいて演算し(撮影位置演算部23による処理),作業機側面画像上で作業機1Aの輪郭線上に位置する全ての画素(作業機構成画素)の位置情報と平面S1の方程式とに基づいて当該全ての画素の作業機対応点の撮影装置座標系Co1における座標値を算出し(撮影装置座標系座標変換部24による処理),その座標値を作業機座標系Co3の座標値に変換して作業機械コントローラ50に出力する(作業機座標系座標変換部25による処理)。これにより作業機側面画像における作業機1Aの輪郭線上に位置する全ての画素の作業機対応点の位置情報を容易に取得することができるので,作業機械1Aの正確な外形情報を従来に比して簡単に測定できる。その結果,作業機1Aの実際の形状に即したMCやMGが実行されることになり,その正確度が向上するので作業効率の向上が見込める。
 (2)また,本実施形態の測定コントローラ20(撮影装置座標系座標変換部24)は,作業機側面画像における作業機1Aの輪郭線を画像処理により抽出し,その作業機側面画像における当該輪郭線上の任意の画素(例えば輪郭線上の全ての画素)の位置情報と平面S1の方程式とに基づいて当該任意の画素の作業機対応点の撮影装置座標系Co1における座標値を算出している。これにより作業機1Aを側面視したときの外形(輪郭)の位置情報を測定コントローラ20にて自動的に取得できる。
 (3)また,本実施形態の測定コントローラ20(作業機座標系描画画像生成部22)は,作業機座標系座標変換部25で変換された作業機座標系Co3における作業機対応点の座標値をもとに作業機座標系Co3における作業機1Aの描画画像を生成することができる。これにより表示モニタ18に表示される作業機1Aの描画画像の外形が実物に近づくため,作業機1Aの画像が実物と異なってオペレータに違和感を与えることを防止できる。
 (4)また,測定コントローラ20にて,作業機側面画像上で作業機1Aを構成するすべての画素の作業機対応点について撮影装置座標系Co1における座標値を算出し(撮影装置座標系座標変換部24),その各座標値に対応する画素と同じ画素を配置する(マッピングする)ことで作業機1Aの描画画像を生成すれば(作業機座標系描画画像生成部22),表示モニタ18に表示される作業機1Aの描画画像の見た目をさらに実物に近づけることができる。
 なお,上記の実施形態では,3つの既知点マーカー40が取り付けられた作業機1Aの側面画像を基に撮影装置座標系Co1における平面S1の位置を特定したが,平面S1の位置特定の手法はこれに限られない。例えば,(1)撮影装置19との位置関係が既知のプロジェクターなどの投影装置から作業機1Aの側面に3つ以上のマーカー40を投影してそのマーカー40を撮影装置19で作業機側面画像を撮影し,その作業機側面画像上におけるマーカー40の画素位置から平面S1の方程式を算出する方法や,(2)互いの位置関係が既知の複数の撮影装置(例えばステレオカメラ)で作業機1Aの側面をそれぞれ撮影し,その複数の撮影装置間の距離をもとに2枚の作業機側面画像上の任意の3点の距離(位置)を算出することで平面S1の方程式を算出する方法や,(3)撮影装置19との位置関係が既知であって,作業機1Aの側面上の任意の点と撮影装置19との距離を計測可能な測距装置(例えば,レーザー式,LED式,超音波式の距離センサ)によって,作業機1Aの側面上の任意の3点以上の距離情報を取得することで平面S1の方程式を算出する方法などを用いてもよい。なお,平面S1の特定は,上記のように平面S1上の3点以上の位置から特定する方法に限らない。例えば,平面S1の傾き(例えば法線ベクトル)が分かれば平面S1上の1点の位置だけで平面S1を特定できる。
 (油圧ショベルのシステム構成)
 次に測定コントローラ20から出力された作業機1Aの座標値と描画画像の作業機械コントローラ50での利用について説明する。
 図9は図1の油圧ショベル1のシステム構成図である。本実施形態の油圧ショベル1は,エンジン47と,エンジン47の出力軸に機械的に連結されエンジン47によって駆動される油圧ポンプ46及びパイロットポンプ(図示せず)と,パイロットポンプから吐出される圧油を操作量に応じて減圧したものを,各油圧アクチュエータ5-9の制御信号として比例電磁弁39を介してコントロールバルブ45に出力する操作レバー10,11と,油圧ポンプ46から各油圧アクチュエータ5-9に導入される作動油の流量及び方向を,操作レバー10,11又は比例電磁弁39から出力される制御信号(パイロット圧)に基づいて制御する複数のコントロールバルブ45と,各コントロールバルブ45に作用するパイロット圧の圧力値を検出する複数の圧力センサ48と,作業機1Aの位置・姿勢及びその他の車体情報に基づいて補正目標パイロット圧を算出し,その補正目標パイロット圧が発生可能な指令電圧を比例電磁弁27に出力する作業機械コントローラ50と,作業機1Aで形成する目標面の情報を作業機械コントローラ50に入力するための目標面データ入力装置37を備えている。
 油圧ポンプ46は,各油圧アクチュエータ5-8の目標出力の通りに車体が動作するよう,機械的にトルク・流量が制御されている。
 コントロールバルブ45は,制御対象の油圧アクチュエータ5-8と同数存在するが,図9ではそれらをまとめて1つで示している。各コントロールバルブには,その内部のスプールを軸方向の一方又は他方に移動させる2つのパイロット圧が作用している。例えば,ブームシリンダ5用のコントロールバルブ45には,ブーム上げのパイロット圧と,ブーム下げのパイロット圧が作用する。
 圧力センサ48は,各コントロールバルブ45に作用するパイロット圧を検出するもので,コントロールバルブの2倍の数が存在し得る。圧力センサ48は,コントロールバルブ45の直下に設けられており,実際にコントロールバルブ45に作用するパイロット圧を検出している。
 比例電磁弁39は複数存在するが,図9中ではまとめて1つのブロックで示している。比例電磁弁39は2種類ある。1つは,操作レバー10,11から入力されるパイロット圧をそのまま出力又は指令電圧で指定される所望の補正目標パイロット圧まで減圧して出力する減圧弁で,もう1つは,操作レバー10,11の出力するパイロット圧より大きなパイロット圧が必要な場合にパイロットポンプから入力されるパイロット圧を指令電圧で指定される所望の補正目標パイロット圧まで減圧して出力する増圧弁である。或るコントロールバルブ45に対するパイロット圧に関して,操作レバー10,11から出力されているパイロット圧より大きなパイロット圧が必要な場合には増圧弁を介してパイロット圧を生成し,操作レバー10,11から出力されているパイロット圧より小さなパイロット圧が必要な場合には減圧弁を介してパイロット圧を生成し,操作レバー10,11からパイロット圧が出力されていない場合には増圧弁を介してパイロット圧を生成する。つまり,減圧弁と増圧弁により,操作レバー10,11から入力されるパイロット圧(オペレータ操作に基づくパイロット圧)と異なる圧力値のパイロット圧をコントロールバルブ45に作用させることができ,そのコントロールバルブ45の制御対象の油圧アクチュエータに所望の動作をさせることができる。
 1つのコントロールバルブ45につき,減圧弁と増圧弁はそれぞれ最大で2つ存在し得る。例えば本実施形態では,ブームシリンダ5のコントロールバルブ45用に2つの減圧弁と2つの増圧弁が設けられている。具体的には,ブーム上げのパイロット圧を操作レバー11からコントロールバルブ45に導く第1管路に設けられた第1減圧弁と,ブーム上げのパイロット圧をパイロットポンプから操作レバー11を迂回してコントロールバルブ45に導く第2管路に設けられた第1増圧弁と,ブーム下げのパイロット圧を操作レバー11からコントロールバルブ45に導く第3管路に設けられた第2減圧弁と,ブーム下げのパイロット圧をパイロットポンプから操作レバー11を迂回してコントロールバルブ45に導く第4管路に設けられた第2増圧弁を油圧ショベル1は備えている。
 本実施形態では,走行油圧モータ9a,9bと旋回油圧モータ8のコントロールバルブ45用の比例電磁39は存在しない。したがって,走行油圧モータ9a,9bと旋回油圧モータ8は,操作レバー10,11から出力されるパイロット圧に基づいて駆動される。
 (作業機械コントローラの構成)
 作業機械コントローラ50は,位置姿勢検出部26と,情報処理部30と,表示制御部33と,作業機制御部35を備えている。
 位置姿勢検出部26は,作業機姿勢検出部27と,車体位置検出部28と,車体角度検出部29とを備え,各種センサ情報を入力とし,作業機1Aの姿勢情報,車体位置情報,車体角度情報を出力する。
 作業機姿勢検出部27は,作業機1Aに取り付けられた姿勢センサ12,13,14の出力に基づいて車体座標系Co4における作業機1Aの姿勢を検出する。より具体的には,ブーム角度センサ12,アーム角度センサ13,バケット角度センサ14による情報をもとにブーム2,アーム3,バケット4の回動角度α,β,γ(図3参照)といった作業機1Aの姿勢情報を検出する。
 車体位置検出部28は,第1GNSSアンテナ17aにより得られる情報をもとに車体位置情報を検出する。
 車体角度検出部29は,車体前後傾斜角センサ16aにより傾斜角θ(図3参照)を,車体左右傾斜角センサ16bにより左右方向の傾斜角φ(図示せず)を,第1GNSSアンテナ17aと第2GNSSアンテナ17bの位置情報から車体の方位角を検出し車体角度情報を得る。なお,本実施形態においては第1GNSSアンテナ17aの情報をもとに車体位置情報を得ることとしたが,第2GNSSアンテナ17bの位置情報を用いてもよいし,トータルステーション等の3次元測量機を使用してもよい。また,本実施形態においては第1GNSSアンテナ17aと第2GNSSアンテナ17bの位置情報から車体の方位角情報を検出することとしたが,電子コンパスを用いる方法や旋回角度センサを用いる方法でもよい。
 情報処理部30は,車体座標変換部31と,目標面演算部32とを備える。情報処理部30の入力データとしては,測定コントローラ20より出力される作業機座標系座標値及び作業機座標系描画画像と,目標面データ入力装置37により入力される目標面データと,位置姿勢検出部26により出力される作業機の姿勢情報,車体位置情報,及び車体角度情報とがある。また,情報処理部30の出力データとしては,位置姿勢検出部26から入力される作業機1Aの姿勢情報,車体位置情報および車体角度情報に加え,車体座標変換部31により求められる作業機1Aの車体座標系座標値情報及び車体座標系描画画像情報と,目標面演算部32により求められる車体座標系Co4での目標面情報とがある。
 車体座標変換部31は,測定コントローラ20(作業機座標系座標変換部25および作業機座標系描画画像生成部22)から出力される作業機座標系Co3における作業機対応点の座標値(車体座標系座標値情報)と作業機1Aの描画画像(車体座標系描画画像情報)を油圧ショベル1に設定された2次元座標系である車体座標系Co4における座標値に変換する。具体的には,測定コントローラ20より出力される作業機座標系座標値と作業機座標系描画画像を,図10に示すように,位置姿勢検出部26の作業機姿勢検出部27より検出された作業機1Aの姿勢情報に基づいて実際の作業機1Aの位置や姿勢と一致するよう平行移動や回転を施し,車体座標系Co4のXZ平面に投影することで車体座標系Co4の座標値に変換する。なお,作業機座標系座標値と作業機座標系描画画像を車体座標系Co4の座標値に変換するための平行移動や回転の量は,ブーム2,アーム3,バケット4の回動角度α,β,γが既知な時に,任意の異なる2点について作業機座標系Co3の座標値と,例えばトータルステーション等の計測装置により測定された車体座標系Co4の座標値とを比較することで求めてもよい。
 目標面演算部32は,図11に示すように,目標面データ入力装置37により入力される目標面データ(3次元データ)51と車体座標系Co4のXZ平面の交わる線分を演算し,その線分を目標面55として設定する。車体座標系Co4のXZ平面は,位置姿勢検出部26により出力される車体位置情報と,車体角度検出部29により出力される車体角度情報とをもとに求められる。本実施形態においては,目標面データ入力装置37で入力される目標面データ51は3次元データを想定しているが2次元データ,すなわち目標面を示す線分データでもよい。また,目標面データが2次元データの場合は,車体位置検出部28の車体位置情報や,車体角度検出部29の車体方位角情報を使用する必要はない。
 表示制御部33は,車体座標変換部31で座標変換された作業機座標系Co4における作業機1Aの描画画像と,車体座標変換部31で座標変換された作業機対応点の車体座標系Co4における座標値と,姿勢センサ12,13,14によって得られた車体座標系Co4における作業機1Aの姿勢とに基づいて,車体座標系Co4における作業機1Aの姿勢に合わせて作業機1Aの描画画像を表示モニタ18に表示する。表示制御部33は目標面情報演算部34を備え,表示制御部33の入力データとしては,情報処理部30より出力される作業機1Aの姿勢情報,車体位置情報および車体角度情報と,作業機1Aの車体座標系座標値情報及び車体座標系描画画像情報と,車体座標系XZ平面上の目標面情報とがある。また出力データとしては,これらの入力される情報に加え,作業機-目標面ベクトル情報を含む。出力情報は表示モニタ18に入力され,ユーザーに提示される。
 目標面情報演算部34について,作業機1Aと目標面55の位置関係の例を示した図12を用いて説明する。まず,目標面情報演算部34は,作業機1Aの輪郭線上の任意の点(図12中の点P)について,目標面55を構成する複数の平面(以下では「目標平面:と称することがある)のうち作業機1Aから一定距離内に存在する平面(図12中の目標平面1及び目標平面2)における最近傍点(点P1及び点P2)を求める。次に,作業機輪郭線上の任意の点(点P)から目標平面上の最近傍点(点P1及び点P2)への作業機-目標面ベクトル(ベクトルPP1及びベクトルPP2)を求める。これらの演算を測定コントローラ20から入力された作業機輪郭線上のすべての点(即ちすべての作業機座標系座標値)について行って表示モニタ18への出力情報とする。本実施形態においては,出力情報を作業機1A上の点から目標面55の平面における最近傍点までのベクトル情報としたが,距離情報を出力してもよいし,作業機1A上の点から目標面55までの鉛直方向の距離などを出力してもよい。また,本実施形態では作業機1Aの輪郭線上のすべての点について演算を行うこととしたが,作業機1Aの先端の点や作業機1Aの背面の点,といった特定の点についてのみ演算を行ってもよい。
 表示モニタ18に表示される画面の例を図13に示す。ガイダンス画面IMには,車体座標系描画画像情報をもとに描画される車体画像IM1と,車体座標系Co4のXZ平面上の目標面データをもとに描画される目標面画像IM2と,作業機-目標面ベクトル情報をもとに描画される作業機-目標面ベクトル画像IM3とが表示されている。ここで,作業機-目標面ベクトル画像IM3は,目標面情報演算部34で出力される作業機-目標面ベクトル情報のうち,各目標平面に対するベクトルの大きさが最小のものを描画したものである。なお,目標面55に対して作業機輪郭線上の点が潜り込んでいる場合のベクトルの大きさは負の値をとるものとする。なお,ガイダンス画面IMには本実施形態において例を挙げたもののほかに,目標面情報演算部34から出力される情報及びそれを加工した情報を表示してもよい。また,本実施形態ではマシンガイダンス機能として表示モニタ18に表示されるガイダンス画面IMについてのみ説明したが,このような視覚情報の他に音や振動等によって情報を提示してもよい。
 作業機制御部35は,情報処理部30から入力される予め定められた目標面55の位置情報と,車体座標変換部31で座標変換された作業機対応点の車体座標系Co4における座標値と,姿勢センサ12,13,14によって得られた車体座標系Co4における作業機1Aの姿勢とに基づいて,作業機対応点に対応する作業機1Aのコントロールポイントが目標面55の上方に保持されるように作業機1A(油圧シリンダ5,6,7)を制御する。作業機制御部35は目標動作演算部36を備え,作業機制御部35の入力データとしては,表示制御部33の出力,位置姿勢検出部26の作業機1Aの姿勢情報,操作レバー10,11からなる操作入力装置への操作入力があり,出力データとしては,比例電磁弁39の制御信号がある。
 目標動作演算部36は,上記の入力情報(作業機1Aの姿勢情報,操作レバー10,11の操作入力情報)をもとに作業機1Aの動く方向や速度を予測する。その際,例えば作業機1Aが目標面55に対して潜り込むことが予測された場合,作業機1Aが目標面55に潜り込まない動きとなるようパイロット圧を減圧または増圧する制御信号を電磁比例弁39に出力する。電磁比例弁39によって補正されたパイロット圧はコントロールバルブ45を駆動し,その動作に基づいて油圧シリンダ5,6,7が適宜駆動することで作業機1Aの目標面55への潜りこみが防止される。なお,本実施形態では,電磁比例弁39はパイロット圧を制御するが,電磁比例弁が直接アクチュエータの作動油圧を制御してもよい。
 本実施形態における作業機械コントローラ50(主に表示制御部33と作業機制御部35)では,測定コントローラ20において作業機1Aの側面画像をもとに演算された,実際の作業機1Aの形状によく一致する座標情報及び描画画像を用いてMGとMCが行われる。これにより,表示制御部33によって表示モニタ18に表示されるガイダンス情報(例えば,作業機-目標面ベクトル画像IM3や,作業機1Aから目標面55までの距離情報等)の正確度が向上し,また,表示モニタ18に表示される作業機1Aの描画画像にオペレータが違和感を持つことが抑制できる。さらに,作業機制御部35は,作業機1Aが曲線部や突起部等の多くのコントロールポイントを必要とする形状であっても正確なMCを行うことができる。
 <第2実施形態>
 第2実施形態では,撮影装置19と測定コントローラ20を油圧ショベル1に搭載しており,作業機1Aの外形情報(作業機1Aの車体座標系座標値情報及び車体座標系描画画像情報)の計測をリアルタイムに行いながらマシンガイダンスやマシンコントロール機能を提供している点に特徴がある。なお,先の実施形態と同じ部分には同じ符号を付して説明を適宜省略することがある。
 図14に示すように本実施形態の撮影装置19は,支持装置(多関節アーム)60を介して上部旋回体1BAの前方に取り付けられている。図14の支持装置60は,複数の水平アームを連結してなる水平多関節アームであり,各関節に埋め込まれたアクチュエータ(例えばモータ)19bを駆動することで車体座標系Co4における撮影装置19の向きや位置が変更可能になっている。また,支持装置60の各関節には各水平アームの回転角を検知する角度センサ(撮影装置センサ)19aが設けられており,角度センサ19aの検出値は図15に示すように測定コントローラ20に出力されている。なお,本実施形態では支持装置60を水平多関節アームとしたが,垂直方向の移動が可能なアームの利用も可能であり,他の支持装置の利用も可能である。
 図15は本実施形態に係る油圧ショベル1のシステム構成図である。この図に示すように本実施形態の油圧ショベル1は,撮影装置19と,測定コントローラ20と,作業機械コントローラ50を備えている。
 本実施形態では,撮影装置19は所定の間隔で作業機側面画像を撮影しており,測定コントローラ20はその作業機側面画像に基づいてリアルタイムに作業機1Aの車体座標系座標値及び車体座標系描画画像を演算して作業機械コントローラ50に出力している。ただし,第1実施形態の測定コントローラ20は作業機座標系Co3における座標値と描画画像を出力していたが,本実施形態では撮影装置19が油圧ショベル1の車体(上部旋回体1BA)に取り付けられているため車体座標系Co4における座標値と描画画像を直接的に算出できる。また,本実施形態の作業機械コントローラ50は,測定コントローラ20からリアルタイムに出力される情報をもとにマシンガイダンス及びマシンコントロール機能をユーザーに提供する。
 測定コントローラ20は,車体座標系座標演算部21bと,車体座標系描画画像生成部22bとを備えている。測定コントローラ20には,撮影装置19により撮影された作業機1Aの側面画像及び角度センサ19aから撮影装置19の車体座標系における位置情報及び向き情報が入力される。
 車体座標系座標演算部21bは,撮影位置演算部23と,撮影装置座標系座標変換部24と,車体座標系座標変換部25bとを備えており,撮影装置19により撮影された作業機1Aの側面画像を入力とし,作業機1Aの側面画像上の指定された点について車体座標系座標値を出力するとともに,車体座標系Co4における作業機1Aの形状及び寸法と一致するような車体座標系描画画像を出力する。また,本実施形態でも作業機側面画像における作業機の輪郭線上における全ての画素の作業機対応点の車体座標系座標値を出力することとするが,第1実施形態と同様に他の方法(例えば輪郭線上の一部の画素の作業機対応点の座標値のみを出力する)を採用しても良いことはいうまでもない。
 測定コントローラ20は,車体座標系座標演算部21bにおいて,撮影位置演算部23と撮影装置座標系座標変換部24は第1実施形態と同様の演算を行う。車体座標系座標変換部25bでは,撮影装置座標系Co1における座標値を,角度センサ19aから入力される撮影装置19の車体座標系Co4における位置情報及び向き情報に基づいて平行移動や回転を行い,車体座標系Co4における座標値に座標変換する。また,車体座標系描画画像生成部22bにおいても同様に車体座標系Co4への座標変換後の描画画像を生成する。
 本実施形態では,測定コントローラ20から作業機械コントローラ50に入力される情報(作業機1Aの車体座標系座標値及び車体座標系描画画像)はすでに車体座標系Co4における情報になっている。そのため本実施形態の作業機械コントローラ50の情報処理部30には第1実施形態の車体座標変換部31が存在しないが,その他の部分の構成及び処理内容は同じである。また,位置姿勢検出部26における作業機姿勢検出部27は,測定コントローラ20でも作業機1Aの姿勢が検出できるため不要である。表示制御部33及び作業機制御部35における処理内容は第1実施形態と同様である。
 以上のように構成した本実施形態の油圧ショベル1では,測定コントローラ20はリアルタイムに作業機1Aの位置や形状情報を計測する。そのためユーザーは第1実施形態のように事前に作業機1Aの形状等を測定する必要がなく,簡単に作業機形状情報を取得することができる。また,リアルタイムに作業機1Aの位置や形状を取得しているため,作業機1Aの摩耗や変形などが生じた場合においても正確な作業機形状を計測でき,表示制御部33によるマシンガイダンス機能においてはユーザーにとってわかりやすく提示することができる。また作業機制御部35においては実際の作業機の状態に応じて正確な制御を行うことができる。
 なお,本発明は,上記の実施の形態に限定されるものではなく,その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば,本発明は,上記の実施の形態で説明した全ての構成を備えるものに限定されず,その構成の一部を削除したものも含まれる。また,ある実施の形態に係る構成の一部を,他の実施の形態に係る構成に追加又は置換することが可能である。
 また,上記のコントローラ20,50に係る各構成や当該各構成の機能及び実行処理等は,それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また,上記のコントローラ20,50に係る構成は,演算処理装置(例えばCPU)によって読み出し・実行されることで当該コントローラ20,50の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は,例えば,半導体メモリ(フラッシュメモリ,SSD等),磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク,光ディスク等)等に記憶することができる。
 1…油圧ショベル(作業機械),1A…作業機(フロント作業機),1B…車体,1BA…上部旋回体,1BB…下部走行体,2…ブーム,3…アーム,4…バケット,5…ブームシリンダ,6…アームシリンダ,7…バケットシリンダ,10,11…操作レバー,12…ブーム角度センサ(姿勢センサ),13…アーム角度センサ(姿勢センサ),14…バケット角度センサ(姿勢センサ),18…表示モニタ(表示装置),19…撮影装置,20…測定コントローラ,21…作業機座標系座標演算部,22…作業機座標系描画画像生成部,23…撮影位置演算部,24…撮影装置座標系座標変換部,25…作業機座標系座標変換部,39…比例電磁弁,40…既知点マーカー,50…作業機械コントローラ

Claims (13)

  1.  作業機械に備えられた作業機の外形形状を測定する測定コントローラを備える作業機の外形形状測定システムにおいて,
     前記作業機の側面を撮影する撮影装置を備え,
     前記測定コントローラは,
      前記撮影装置により前記作業機の側面を撮影した画像と前記撮影装置の内部パラメータとに基づいて,前記撮影装置に設定された3次元座標系である撮影装置座標系において前記作業機の側面を表す平面の位置を算出し,
      前記画像上で前記作業機を構成する任意の画素の前記画像における位置情報と前記平面の位置とに基づいて前記画素に対応する前記作業機上の点の前記撮影装置座標系における座標値を算出し,
      前記画素に対応する前記作業機上の点の前記撮影装置座標系における座標値を前記作業機に設定された2次元座標系である作業機座標系における座標値に変換して前記作業機械の作業機械コントローラに出力することを特徴とする作業機の外形形状測定システム。
  2.  請求項1の作業機の外形形状測定システムにおいて,
     前記測定コントローラは,前記画像における前記作業機の輪郭線を抽出し,前記画像における前記輪郭線上の任意の画素の位置情報と前記平面の位置とに基づいて,前記画素に対応する前記作業機上の点の前記撮影装置座標系における座標値を算出することを特徴とする作業機の外形形状測定システム。
  3.  請求項1の作業機の外形形状測定システムにおいて,
     前記測定コントローラは,前記画像における前記作業機の輪郭線を抽出し,前記画像における前記輪郭線上のすべての画素の位置情報と前記平面の位置とに基づいて,前記すべての画素に対応する前記作業機上の点の前記撮影装置座標系における座標値を算出することを特徴とする作業機械の作業機の外形形状測定システム。
  4.  請求項1の作業機の外形形状測定システムにおいて,
     前記画素に対応する前記作業機上の点の前記撮影装置座標系における座標値は,前記画像上で前記作業機を構成するすべての画素に対応する前記作業機上の複数の点について演算されることを特徴とする作業機械の作業機の外形形状測定システム。
  5.  請求項1の作業機の外形形状測定システムにおいて,
     前記測定コントローラは,前記作業機の側面に取り付けられ互いの距離が既知の3つ以上のマーカーの前記画像における画素位置に基づいて前記平面の位置を算出することを特徴とする作業機の外形形状測定システム。
  6.  請求項1の作業機の外形形状測定システムにおいて,
     前記撮影装置との位置関係が既知な投影装置をさらに備え,
     前記画像には,前記投影装置から前記作業機の側面に投影されたマーカーが撮影されており,
     前記測定コントローラは,前記画像における前記マーカーの画素位置に基づいて前記平面の位置を算出することを特徴とする作業機の外形形状測定システム。
  7.  請求項4の作業機の外形形状測定システムにおいて,
     前記撮影装置は,互いの位置関係が既知な複数の撮影装置であり,
     前記測定コントローラは,前記複数の撮影装置間の距離をもとに前記平面の位置を算出することを特徴とする作業機の外形形状測定システム。
  8.  請求項4の作業機の外形形状測定システムにおいて,
     前記撮影装置と前記作業機の側面上の任意の点との距離を測る測距装置をさらに備え,
     前記測定コントローラは,前記測距装置により測定された前記作業機の側面上の3点以上の距離情報をもとに前記平面の位置を算出することを特徴とする作業機械の作業機の外形形状測定システム。
  9.  請求項1の作業機の外形形状測定システムにおいて,
     前記測定コントローラは,前記画素に対応する前記作業機上の点の前記作業機座標系における座標値をもとに前記作業機座標系における前記作業機の描画画像を生成することを特徴とする作業機の外形形状測定システム。
  10.  請求項1の作業機の外形形状測定システムと,前記作業機械コントローラと,前記作業機械に搭載された表示装置とを備えた作業機の外形形状表示システムにおいて,
     前記測定コントローラは,前記画素に対応する前記作業機上の点の前記作業機座標系における座標値をもとに前記作業機座標系における前記作業機の描画画像を生成し,
     前記作業機械コントローラは,
      前記測定コントローラから出力される前記画素に対応する前記作業機上の点の前記作業機座標系における座標値を前記作業機械に設定された2次元座標系である車体座標系における座標値に変換し,
      前記作業機に取り付けられた姿勢センサの出力に基づいて前記車体座標系における前記作業機の姿勢を検出し,
      前記作業機座標系における前記作業機の描画画像と,前記画素に対応する前記作業機上の点の前記車体座標系における座標値と,前記車体座標系における前記作業機の姿勢とに基づいて,前記車体座標系における前記作業機の姿勢に合わせて前記作業機の描画画像を前記表示装置に表示することを特徴とする作業機の外形形状表示システム。
  11.  請求項1の作業機の外形形状測定システムと,前記作業機械コントローラとを備えた作業機の制御システムにおいて,
     前記作業機械コントローラは,
      前記測定コントローラから出力される前記画素に対応する前記作業機上の点の前記作業機座標系における座標値を前記作業機械に設定された2次元座標系である車体座標系における座標値に変換し,
      前記作業機に取り付けられた姿勢センサの出力に基づいて前記車体座標系における前記作業機の姿勢を検出し,
      予め定められた目標面の位置情報と,前記画素に対応する前記作業機上の点の前記車体座標系における座標値と,前記車体座標系における前記作業機の姿勢とに基づいて,前記画素に対応する前記作業機のコントロールポイントが前記目標面の上方に保持されるように前記作業機を制御することを特徴とする作業機の制御システム。
  12.  作業機と,表示装置と,予め定められた目標面と前記作業機の位置関係を前記表示装置に表示させる作業機械コントローラとを備えた作業機械において,
     前記作業機の側面を撮影する撮影装置と,
     前記撮影装置により前記作業機の側面を撮影した画像と前記撮影装置の内部パラメータとに基づいて,前記撮影装置に設定された3次元座標系である撮影装置座標系において前記作業機の側面を表す平面の位置を算出し,前記画像上で前記作業機を構成する任意の画素の前記画像における位置情報と前記平面の位置とに基づいて前記画素に対応する前記作業機上の点の前記撮影装置座標系における座標値を算出し,前記画素に対応する前記作業機上の点の前記撮影装置座標系における座標値を前記作業機械の車体に設定された2次元座標系である車体座標系における座標値に変換して前記作業機械コントローラに出力し,前記画素に対応する前記作業機上の点の前記車体座標系における座標値をもとに前記車体座標系における前記作業機の描画画像を生成して前記作業機械コントローラに出力する測定コントローラとを備え,
     前記作業機械コントローラは,
      前記作業機に取り付けられた姿勢センサの出力に基づいて前記車体座標系における前記作業機の姿勢を検出し,
      前記車体座標系における前記作業機の描画画像と,前記画素に対応する前記作業機上の点の前記車体座標系における座標値と,前記車体座標系における前記作業機の姿勢とに基づいて,前記車体座標系における前記作業機の姿勢に合わせて前記作業機の描画画像を前記表示装置に表示する
     ことを特徴とする作業機械。
  13.  請求項12の作業機械において,
     前記作業機械コントローラは,予め定められた目標面の位置情報と,前記画素に対応する前記作業機上の点の前記車体座標系における座標値と,前記車体座標系における前記作業機の姿勢とに基づいて,前記画素に対応する前記作業機上の点に対応する前記作業機のコントロールポイントが前記目標面の上方に保持されるように前記作業機を制御する
     ことを特徴とする作業機械。
PCT/JP2018/035525 2018-09-25 2018-09-25 作業機の外形形状測定システム,作業機の外形形状表示システム,作業機の制御システム及び作業機械 WO2020065738A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2018/035525 WO2020065738A1 (ja) 2018-09-25 2018-09-25 作業機の外形形状測定システム,作業機の外形形状表示システム,作業機の制御システム及び作業機械
KR1020207004801A KR102231510B1 (ko) 2018-09-25 2018-09-25 작업기의 외형 형상 측정 시스템, 작업기의 외형 형상 표시 시스템, 작업기의 제어 시스템 및 작업 기계
US16/644,229 US11434623B2 (en) 2018-09-25 2018-09-25 Work-implement external-shape measurement system, work-implement external-shape display system, work-implement control system and work machine
JP2020509531A JP6826233B2 (ja) 2018-09-25 2018-09-25 作業機の外形形状測定システム,作業機の外形形状表示システム,作業機の制御システム及び作業機械
CN201880055028.1A CN111226009B (zh) 2018-09-25 2018-09-25 作业机的外形形状测定系统、作业机的外形形状显示系统、作业机的控制系统以及作业机械
EP18931280.4A EP3859090A4 (en) 2018-09-25 2018-09-25 OUTER PROFILE MEASUREMENT SYSTEM FOR EARTHWORKING MACHINE, OUTER PROFILE DISPLAY SYSTEM FOR EARTHWORKING MACHINE, CONTROL SYSTEM FOR EARTHWORKING MACHINE, AND EARTHWORKING MACHINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035525 WO2020065738A1 (ja) 2018-09-25 2018-09-25 作業機の外形形状測定システム,作業機の外形形状表示システム,作業機の制御システム及び作業機械

Publications (1)

Publication Number Publication Date
WO2020065738A1 true WO2020065738A1 (ja) 2020-04-02

Family

ID=69952994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035525 WO2020065738A1 (ja) 2018-09-25 2018-09-25 作業機の外形形状測定システム,作業機の外形形状表示システム,作業機の制御システム及び作業機械

Country Status (6)

Country Link
US (1) US11434623B2 (ja)
EP (1) EP3859090A4 (ja)
JP (1) JP6826233B2 (ja)
KR (1) KR102231510B1 (ja)
CN (1) CN111226009B (ja)
WO (1) WO2020065738A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155516B2 (ja) * 2017-12-20 2022-10-19 コベルコ建機株式会社 建設機械
CN112218988B (zh) * 2018-07-31 2023-06-09 住友建机株式会社 挖土机
JP7166108B2 (ja) * 2018-08-31 2022-11-07 株式会社小松製作所 画像処理システム、表示装置、画像処理方法、学習済みモデルの生成方法、および学習用データセット
JP7301514B2 (ja) * 2018-09-21 2023-07-03 日立建機株式会社 座標変換システム及び作業機械
CN109782767B (zh) * 2019-01-25 2022-06-07 北京百度网讯科技有限公司 用于输出信息的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114235A (ja) * 2003-10-07 2005-04-28 Hitachi Constr Mach Co Ltd 移動式作業機の埋設物処理支援装置
WO2016056674A1 (ja) 2015-10-23 2016-04-14 株式会社小松製作所 作業機械の表示システム、作業機械及び表示方法
JP2016089388A (ja) * 2014-10-30 2016-05-23 日立建機株式会社 作業支援画像生成装置、及びそれを備えた作業機械の遠隔操縦システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476450B1 (ja) * 2012-11-19 2014-04-23 株式会社小松製作所 掘削機械の表示システム及び掘削機械
US20150168136A1 (en) * 2013-12-12 2015-06-18 The Regents Of The University Of Michigan Estimating three-dimensional position and orientation of articulated machine using one or more image-capturing devices and one or more markers
EP3222042B1 (en) * 2014-11-17 2022-07-27 Yanmar Power Technology Co., Ltd. Display system for remote control of working machine
WO2016196292A1 (en) * 2015-05-29 2016-12-08 Hexagon Metrology, Inc. Coordinate measuring machine with object location logic
JP6322612B2 (ja) * 2015-10-05 2018-05-09 株式会社小松製作所 施工管理システム及び形状計測方法
JP6925775B2 (ja) * 2015-10-05 2021-08-25 株式会社小松製作所 施工管理システム
JP6546558B2 (ja) * 2016-03-31 2019-07-17 日立建機株式会社 建設機械及び建設機械の較正方法
JP6674846B2 (ja) * 2016-05-31 2020-04-01 株式会社小松製作所 形状計測システム、作業機械及び形状計測方法
CA3029812C (en) * 2016-08-31 2020-07-14 Komatsu Ltd. Image display system of work machine, remote operation system of work machine, work machine, and method for displaying image of work machine
JP6867132B2 (ja) * 2016-09-30 2021-04-28 株式会社小松製作所 作業機械の検出処理装置及び作業機械の検出処理方法
JP6496338B2 (ja) * 2017-03-14 2019-04-03 ファナック株式会社 工作機械の制御システム
JP6445070B2 (ja) * 2017-03-27 2018-12-26 ファナック株式会社 工作機械の制御システム
GB2563262B (en) * 2017-06-08 2020-06-10 Caterpillar Sarl Improvements in the stability of work machines
US10262411B2 (en) * 2017-09-01 2019-04-16 Deere & Company Site scanning using a work machine with a camera
JP6927821B2 (ja) * 2017-09-15 2021-09-01 株式会社小松製作所 表示システム、及び表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114235A (ja) * 2003-10-07 2005-04-28 Hitachi Constr Mach Co Ltd 移動式作業機の埋設物処理支援装置
JP2016089388A (ja) * 2014-10-30 2016-05-23 日立建機株式会社 作業支援画像生成装置、及びそれを備えた作業機械の遠隔操縦システム
WO2016056674A1 (ja) 2015-10-23 2016-04-14 株式会社小松製作所 作業機械の表示システム、作業機械及び表示方法

Also Published As

Publication number Publication date
EP3859090A4 (en) 2022-05-18
US20210156121A1 (en) 2021-05-27
US11434623B2 (en) 2022-09-06
KR20200037285A (ko) 2020-04-08
CN111226009B (zh) 2022-03-04
JPWO2020065738A1 (ja) 2021-01-07
JP6826233B2 (ja) 2021-02-03
KR102231510B1 (ko) 2021-03-24
EP3859090A1 (en) 2021-08-04
CN111226009A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2020065738A1 (ja) 作業機の外形形状測定システム,作業機の外形形状表示システム,作業機の制御システム及び作業機械
JP7263127B2 (ja) マップ生成システム及びマップ生成方法
JP7301514B2 (ja) 座標変換システム及び作業機械
US11427988B2 (en) Display control device and display control method
CN106029994B (zh) 校正系统、作业机械和校正方法
JP2018035645A (ja) 作業機械の画像表示システム
JP2016160741A (ja) 作業機械の画像表示システム、作業機械の遠隔操作システム及び作業機械
JP6966218B2 (ja) 撮像装置の校正装置、作業機械および校正方法
JP7080750B2 (ja) 表示制御システム、遠隔操作システム、表示制御装置、および表示制御方法
JPWO2016047807A1 (ja) 校正システム、作業機械及び校正方法
JPWO2018043299A1 (ja) 作業機械の画像表示システム、作業機械の遠隔操作システム、作業機械及び作業機械の画像表示方法
JP2024028464A (ja) 表示制御システムおよび表示制御方法
JP2024052764A (ja) 表示制御装置及び表示方法
JP2017193958A (ja) 校正システム、作業機械及び校正方法
JP7536580B2 (ja) 表示制御装置及び表示方法
JP7128497B2 (ja) 作業機械の画像表示システム
JP7333551B2 (ja) 作業機械の画像表示システム
US11908076B2 (en) Display system and display method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020509531

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207004801

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018931280

Country of ref document: EP

Effective date: 20210426