WO2020065240A1 - Matrice alimentaire alvéolée à variation de volume - Google Patents

Matrice alimentaire alvéolée à variation de volume Download PDF

Info

Publication number
WO2020065240A1
WO2020065240A1 PCT/FR2019/052294 FR2019052294W WO2020065240A1 WO 2020065240 A1 WO2020065240 A1 WO 2020065240A1 FR 2019052294 W FR2019052294 W FR 2019052294W WO 2020065240 A1 WO2020065240 A1 WO 2020065240A1
Authority
WO
WIPO (PCT)
Prior art keywords
food matrix
gas
container
food
matrix
Prior art date
Application number
PCT/FR2019/052294
Other languages
English (en)
Inventor
Yves Diascorn
David Grenier
Tiphaine Lucas
François MARIETTE
Original Assignee
Institut National De Recherche En Sciences Et Technologies Pour L'environnement Et L'agriculture - Irstea -
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National De Recherche En Sciences Et Technologies Pour L'environnement Et L'agriculture - Irstea - filed Critical Institut National De Recherche En Sciences Et Technologies Pour L'environnement Et L'agriculture - Irstea -
Publication of WO2020065240A1 publication Critical patent/WO2020065240A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D8/00Methods for preparing or baking dough
    • A21D8/02Methods for preparing dough; Treating dough prior to baking
    • A21D8/025Treating dough with gases
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C19/00Cheese; Cheese preparations; Making thereof
    • A23C19/14Treating cheese after having reached its definite form, e.g. ripening, smoking
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C2210/00Physical treatment of dairy products
    • A23C2210/30Whipping, foaming, frothing or aerating dairy products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C2240/00Use or particular additives or ingredients
    • A23C2240/20Inert gas treatment, using, e.g. noble gases or CO2, including CO2 liberated by chemical reaction; Carbonation of milk products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C2250/00Particular aspects related to cheese
    • A23C2250/10Cheese characterised by a specific form

Definitions

  • the present invention relates to a process for preparing a food matrix saturated with gas at a pressure higher than atmospheric pressure, to a process for preparing a honeycombed food matrix, as well as to the products capable of being obtained by the implementation of these processes.
  • the aim sought by the manufacturer is the simple protection of the food by the packaging, and in particular of its shape, so that the shape of the food taken out of its packaging has been preserved with respect the shape of the food before packaging.
  • the present invention specifically aims to meet these needs by providing in particular a process for preparing a honeycombed food matrix contained in a package, the volume of which varies visibly when the package is opened by the consumer.
  • a first object of the invention relates to a process for the preparation of a honeycombed food matrix saturated with gas at a pressure greater than atmospheric pressure comprising the following steps:
  • “Deformable food matrix” is understood to mean, within the meaning of the present invention, any physical structure having the nutritional qualities of a given food, but the shape and / or volume of which can vary over time.
  • the shape and / or volume of the food matrix can vary between the moment when it is about to be placed in the container, the moment when it is enclosed in the container, and the moment when the container comes to be open by the consumer.
  • the deformable food matrix can be of flexible consistency, that is to say having a certain elasticity, semi-solid, such as a foam for example, or solid, such as a pressed cheese for example.
  • the food matrix can for example be unique, that is to say composed of a single type of food and in one piece.
  • the food matrix can in particular be of viscosity greater than 1 Pa.s, fermentable, and / or contain a leavening agent.
  • the food matrix can make it possible to obtain any food product meeting the above criteria, and can in particular be chosen from bakery products, biscuit products, pastry products, cheese products and preparations in the form of foams.
  • the food matrix may in some cases contain cells as soon as the food matrix is introduced into the container.
  • the deformable food matrix contains a gas phase, which can in particular consist of dissolved gas and gas in gaseous form within the food matrix.
  • the gas phase can either be initially present in the food matrix during its introduction into the container or be produced after closure of the container.
  • the gas phase can be produced by any means known to a person skilled in the art, for example by fermentation by means of at least one fermentation organism, or by production of gas by means of at least one element producing gas, such as the baking powder for example, present in said food matrix.
  • baking powder is meant an element which produces gas by chemical reaction with another element contained in the food, such as water for example, without the intervention of living organisms.
  • the at least one fermentation organism can be chosen from all known fermentation organisms and used in the food industry for this purpose, and can for example be chosen from biological yeasts of the saccharomyces cerevisiae type or the propionic bacteria.
  • the gas phase can come from a starter device within said food matrix, on which the gas phase is formed; as such, it may be cumin seeds, hollow grass blades or any other object introduced or brought into contact with and in the food matrix.
  • the gas phase can consist of any gas produced as explained above, and mention may be made, for example, of carbon dioxide.
  • the formation of the gas phase may have only been induced before the introduction of the deformable food matrix into the container.
  • the gas phase will fully develop in the hermetically sealed container.
  • the deformable food matrix can be introduced into the container at a time when the gas phase is already partially developed; in this case, the gas phase will continue to develop during the confinement of the deformable food matrix in the container.
  • the deformable food matrix is a cheese product
  • it can be introduced into the container after having undergone ripening for a time suitable for allowing microorganisms of the bacteria, yeast and mold types, to develop in the food matrix.
  • ripening can be carried out for a time between 1 and 30 days, for example for 5 days, or for 10 days, or for 15 days, or for 20 days.
  • the ripening can be carried out under conventional conditions depending on the type of cheese product produced, for example at a temperature between 10 ° C. and 25 ° C.
  • the gas rises in pressure around the deformable food matrix, under the effect of its own gas production, during the confinement of the matrix in the airtight container which is substantially non-deformable during step c).
  • This increase in pressure has the effect of an increased solubilization of the gas in the deformable food matrix, corresponding to an increase in the supersaturation of the matrix, and is accompanied by compression of the gas cavities present or formed in the deformable food matrix.
  • the development of the gas phase may, in one embodiment, take place throughout the confinement of the deformable food matrix in the container, or, in another embodiment, stop before, or even be very slowed down before opening the container, for example during a cold passage such as in a refrigerator. In this embodiment, there will still be swelling insofar as the medium remains under significant pressure before the container is opened.
  • the introduction of the deformable food matrix into the container during step a) can take place at a temperature between 3 and 25 ° C, and at normal atmospheric pressure.
  • the introduction of the deformable food matrix into the container can be carried out at a temperature between 18 and 25 ° C, and at a pressure of 1 atmosphere.
  • the substantially non-deformable and hermetic container provided with an opening and closing system can be any container known to those skilled in the art, and in particular a container hermetic to the gas produced by the deformable food matrix during step c) of the production process.
  • the invention in particular carbon dioxide, or even any other material, be it solid, liquid or gaseous.
  • “Substantially non-deformable” is understood to mean, within the meaning of the present invention, a container which does not undergo any deformation, in particular under pressures below 200 kPa above atmospheric pressure, or which can undergo a deformation of less than 5% of its interior volume, measured by laser volumetry.
  • the container may for example be a glass canning jar with lid and rubber seal closing the lid, a metal can or a plastic container.
  • the coating of the container can advantageously make it possible either to favor the initiation of bubbles, or to avoid it depending on the destination of the product.
  • the coating may advantageously comprise at least one protuberance having the function of penetrating into the food matrix. These growths advantageously make it possible to generate bubbles inside the food matrix.
  • These protuberances can be of any type suitable for obtaining this effect, and can for example be of the rod, tube of any cross section or porous material type.
  • the container can have a shape and a volume adapted to the portion of food matrix that is to be introduced into the container.
  • the shape of the container can therefore be round, oval, square, rectangular, have the shape of a bucket, a rhombus, a faceted jar.
  • the volume of the container can be between 8 cm 3 and 1500 cm 3 and be elongated or compact.
  • step c) In order to allow formation of the gas phase in the deformable food matrix, this must be kept in the hermetically sealed container for a time which corresponds to sufficient supersaturation of the matrix by the gas to produce, on the one hand, alveoli. and on the other hand a swelling effect during the opening of said container (step c)).
  • the time required depends on the gas phase and its mode of production, and on the nature of the deformable food matrix considered. Those skilled in the art can easily determine these parameters, in particular as a function of the desired swelling. In the case of a pressed cheese, the supersaturation can be approached by knowing the Henry's constant and the pressure measurement in control vessels.
  • the amount of total gas produced is advantageously between 1, 2 times and 2 times the amount of gas necessary to saturate the medium at atmospheric pressure.
  • the production of the gas phase must not allow the saturation of the food matrix to be reached at more than three times at atmospheric pressure.
  • gas may be injected under pressure into the packaging to complete gas development or reduce supersaturation times.
  • the container can be kept at room temperature, that is to say between 18 and 25 ° C, or at a temperature between 0 ° C and 10 ° C corresponding to a conservation of the container in a refrigerator.
  • the pressure at which the container is kept is normal atmospheric pressure, therefore 1 atmosphere.
  • step c the gas-supersaturated food matrix is obtained.
  • gas saturated food matrix is understood, within the meaning of the present invention, the deformable food matrix obtained at the end of step c), the gas phase of which is in the liquid-gas equilibrium at the pressure in the container. before opening and which is higher than atmospheric pressure.
  • Supersaturated is understood to mean, in the sense of the present invention, gas supersaturation of the matrix when it returns to atmospheric pressure, for example when the consumer closes the airtight container.
  • a second object of the invention relates to a process for preparing a honeycombed food matrix, comprising the following steps:
  • This process makes it possible to modify the gas pressure around the deformable food matrix to modify the gas equilibrium (solubilized phase) sometimes in favor of solubilization (increase in pressure during step c)) of the method of the invention, sometimes in favor of the gaseous form (reduction of the pressure by a rapid return to atmospheric pressure) during step 2) of the process.
  • the volume of the cells is increased, this allowing the total volume of the food matrix saturated with gas to be increased.
  • the honeycombed food matrix can swell beyond the limit of the opening of the container once opened.
  • the variation in volume of the food matrix can be visible to the naked eye.
  • the change in volume can be considered as rapid, for example taking place in a time between 0 and 5 minutes, for example in 5 seconds, or 30 seconds, or 1 minute, or 2 minutes, or about 3 minutes .
  • the change in volume may be slower, and take place in a time of, for example, between 0 and 5 hours, for example in 30 minutes, or 1 hour, or 2 hours, or approximately 3 hours.
  • the variation in volume can for example be an increase in volume of the food matrix of between 5 and 50%, for example at least 10%, or at least 20%, or at least 30%, or d '' at least about 40%.
  • the variation in volume can be expressed mainly in the direction normal to the face released at the opening.
  • the pressure before step 2) of opening can be greater than atmospheric pressure, in particular between +50 kPa and + 200 kPa relative to the initial pressure.
  • Step 2) of opening can advantageously correspond to a total and rapid opening of the container, as when opening a can or a jar of jam. This allows the food matrix to swell evenly.
  • Another subject of the invention relates to a food matrix saturated with gas at a pressure higher than atmospheric pressure capable of being obtained by the process for preparing a food matrix saturated with gas at a pressure higher than atmospheric pressure as defined above.
  • Another subject of the invention relates to a honeycomb matrix capable of being obtained by the process for preparing a honeycomb matrix as defined above.
  • Another object of the invention relates to an assembly comprising a deformable food matrix as defined above, or a honeycombed food matrix saturated with gas at a pressure higher than atmospheric pressure as defined above, and a container substantially undeformable and hermetic provided with an opening / closing system.
  • FIG. 1 shows: A) a side view of the portion of pressed cheese with holes from the volume variation process implemented in Example 1, and B) a close-up of the upper part of the portion of pressed cheese with holes shown in A).
  • - Figure 2 shows a sectional view of the portion of pressed cheese with holes from the volume variation process implemented in Example 1.
  • Example 1 Preparation of a pressed cheese with dimpled holes with variation in volume
  • a portion of pressed cheese with holes of 50g is ripened at room temperature (25 ° C) for 10 days.
  • This portion of pressed cheese with holes is then placed, at room temperature, in a suitable glass jar provided with a metal cover provided with a rubber washer impermeable to carbon dioxide to seal the jar once this one closed.
  • the jar is closed immediately after its introduction into the jar, and stored for 10 days at room temperature.
  • the jar is then opened by lifting its lid.
  • the cells contained in the cheese with holes then grow rapidly under the effect of the return to atmospheric pressure, the law of perfect gases in the bubbles and the gas balance, and thus causes the swelling of the pressed cheese with holes (see Figure 1 and Figure 2).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Dairy Products (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)

Abstract

La présente invention se rapporte à un procédé de préparation d'une matrice alimentaire saturée en gaz à une pression supérieure à la pression atmosphérique comprenant les étapes suivantes : (a) introduire une matrice alimentaire déformable contenant une phase gazeuse, au début ou au cours de la formation de ladite phase gazeuse dans ladite matrice alimentaire, dans un récipient substantiellement indéformable et hermétique pourvu d'un système d'ouverture/fermeture, (b) fermer de manière hermétique ledit récipient, et (c) laisser la formation de ladite phase gazeuse se produire dans ladite matrice alimentaire au sein dudit récipient hermétiquement fermé pour saturer ladite matrice alimentaire à une pression supérieure à la pression atmosphérique. La présente invention se rapporte également à un procédé de préparation d'une matrice alimentaire alvéolée, comprenant les étapes suivantes : (a) préparer une matrice alimentaire saturée en gaz à une pression supérieure à la pression atmosphérique selon le procédé défini précédemment, (b) ouvrir ledit récipient, ceci provoquant la formation d'alvéoles dans la matrice alimentaire et la variation de volume de ladite matrice alimentaire.

Description

MATRICE ALIMENTAIRE ALVÉOLÉE À VARIATION DE VOLUME
DESCRIPTION
Domaine technique
La présente invention se rapporte à un procédé de préparation d’une matrice alimentaire saturée en gaz à une pression supérieure à la pression atmosphérique, à un procédé de préparation d’une matrice alimentaire alvéolée, ainsi qu’aux produits susceptibles d’être obtenus par la mise en œuvre de ces procédés.
État de la technique
De nombreux aliments consommés quotidiennement se présentent sous forme préemballée. On connaît à ce titre les emballages en aluminium laqué utilisé pour le conditionnement des fromages fondus, les emballages en plastique pour portion de fromage frais ou fondu, la cire ou encore les papiers d’emballages sous forme solide pour conditionner les fromages traditionnels.
Dans tous ces cas, le but recherché par le fabricant est la simple protection de l’aliment par l’emballage, et notamment de sa forme, de manière à ce que la forme de l’aliment sorti de son emballage ait été préservée par rapport à la forme de l’aliment avant son emballage.
Or, les consommateurs, notamment les plus jeunes, recherchent constamment des aliments présentant un côté plus ludique et attractif que les produits préemballés classiques.
Il existe donc un réel besoin de fournir des solutions permettant d’obtenir des produits alimentaires préemballés qui soient attractifs pour le consommateur, tout en garantissant une bonne protection du produit emballé. Description de l’invention
La présente invention a précisément pour but de répondre à ces besoins en fournissant notamment un procédé de préparation d’une matrice alimentaire alvéolée contenue dans un emballage, dont le volume varie à vue d’œil lors de l’ouverture de l’emballage par le consommateur.
Ainsi, un premier objet de l’invention se rapporte à un procédé de préparation d’une matrice alimentaire alvéolée saturée en gaz à une pression supérieure à la pression atmosphérique comprenant les étapes suivantes :
(a) introduire une matrice alimentaire déformable contenant une phase gazeuse, au début ou au cours de la formation de ladite phase gazeuse dans ladite matrice alimentaire, dans un récipient substantiellement indéformable et hermétique pourvu d’un système d’ouverture/fermeture,
(b) fermer de manière hermétique ledit récipient, et
(c) laisser la formation de ladite phase gazeuse se produire dans ladite matrice alimentaire au sein dudit récipient hermétiquement fermé, pour saturer ladite matrice alimentaire à une pression supérieure à la pression atmosphérique.
On entend par « matrice alimentaire déformable », au sens de la présente invention, toute structure physique possédant les qualités nutritionnelles d’un aliment donné, mais dont la forme et/ou le volume peut varier dans le temps. En particulier, la forme et/ou le volume de la matrice alimentaire peut varier entre le moment où elle est sur le point d’être placée dans le récipient, le moment où elle est enfermée dans le récipient, et le moment où le récipient vient d’être ouvert par le consommateur. La matrice alimentaire déformable peut être de consistance souple, c’est-à- dire présentant une certaine élasticité, semi-solide, comme une mousse par exemple, ou solide, comme un fromage à pâte pressée par exemple. Avantageusement, la matrice alimentaire peut par exemple être unique, c’est-à-dire composée d’un seul type d’aliment et d’un seul tenant. La matrice alimentaire peut notamment être de viscosité supérieure à 1 Pa.s, fermentescible, et/ou contenir un agent levant. La matrice alimentaire peut permettre l’obtention de tout produit alimentaire répondant aux critères ci- dessus, et peut en particulier être choisi parmi les produits de boulangerie, les produits de biscuiterie, les produits de pâtisserie, les produits fromagers et les préparations sous forme de mousses.
La matrice alimentaire peut dans certains cas contenir des alvéoles dès l’introduction de la matrice alimentaire dans le récipient.
La matrice alimentaire déformable contient une phase gazeuse, qui peut être notamment constituée de gaz solubilisé et de gaz sous forme gazeuse au sein de la matrice alimentaire. La phase gazeuse peut être soit initialement présente dans la matrice alimentaire lors de son introduction dans le récipient ou être produite après fermeture du récipient. La phase gazeuse peut être produite par tout moyen connu de l’homme du métier, par exemple par fermentation au moyen d’au moins un organisme fermentaire, ou par production de gaz au moyen d’au moins un élément produisant du gaz, comme de la poudre à lever par exemple, présent dans ladite matrice alimentaire. Par poudre à lever il est entendu un élément qui produit du gaz par réaction chimique avec un autre élément contenue dans l’aliment, comme l’eau par exemple, sans l’intervention d’organismes vivants. L’au moins un organisme fermentaire peut être choisi parmi tous les organismes fermentaires connus et utilisés dans l’industrie agroalimentaire à cette fin, et peut par exemple être choisi parmi les levures biologiques de type saccharomyces cerevisiae ou les bactéries propioniques. Par exemple, la phase gazeuse peut être issue d’un dispositif d’amorce au sein de ladite matrice alimentaire, sur lequel se forme la phase gazeuse ; il peut s’agir à ce titre de graines de cumin, de brins d’herbe creux ou tout autre objet introduit ou mis en contact avec et dans la matrice alimentaire. La phase gazeuse peut être constituée de tout gaz produit comme expliqué ci-avant, et l’on peut citer à titre d’exemple le dioxyde de carbone.
Avantageusement, la formation de la phase gazeuse peut avoir seulement été induite avant l’introduction de la matrice alimentaire déformable dans le récipient. Dans ce cas, la phase gazeuse va totalement se développer dans le récipient fermé hermétiquement. Alternativement, la matrice alimentaire déformable peut être introduite dans le récipient à un moment où la phase gazeuse est déjà en partie développée ; dans ce cas, la phase gazeuse va continuer à se développer durant l’enfermement de la matrice alimentaire déformable dans le récipient.
Par exemple, dans le cas où la matrice alimentaire déformable est un produit fromager, elle peut être introduite dans le récipient après avoir fait l’objet d’un affinage pendant un temps adapté pour permettre à des microorganismes de types bactéries, levures et moisissures, de se développer dans la matrice alimentaire. L’homme du métier peut trouver sans difficulté la quantité initiale de microorganismes à inclure dans la matrice en fonction du type de matrice, de l’espèce de microorganisme et de la température d’affinage. Par exemple, l’affinage peut être réalisé pendant un temps compris entre 1 et 30 jours, par exemple pendant 5 jours, ou pendant 10 jours, ou pendant 15 jours, ou pendant 20 jours. L’affinage peut être réalisé dans des conditions classiques en fonction du type de produit fromagé réalisé, par exemple à une température comprise entre 10°C et 25°C.
Dans tous les cas, une fois le récipient fermé de manière hermétique lors de l’étape b) du procédé, le gaz monte en pression autour de la matrice alimentaire déformable, sous l’effet de sa propre production gazeuse, lors de l’enfermement de la matrice dans le récipient hermétique substantiellement indéformable pendant l’étape c). Cette montée en pression a pour effet une solubilisation accrue du gaz dans la matrice alimentaire déformable, correspondant à une augmentation de la sursaturation de la matrice, et s’accompagne d’une compression des cavités gazeuses présentes ou formées dans la matrice alimentaire déformable.
Le développement de la phase gazeuse peut, dans un mode de réalisation, se dérouler tout au long de l’enfermement de la matrice alimentaire déformable dans le récipient, ou, dans un autre mode de réalisation, s’arrêter avant, ou encore être très ralenti avant l’ouverture du récipient, par exemple lors d’un passage au froid comme dans un réfrigérateur. Dans ce mode de réalisation, il y aura gonflement quand même dans la mesure où le milieu reste sous pression significative avant l’ouverture du récipient.
L’introduction de la matrice alimentaire déformable dans le récipient lors de l’étape a) peut avoir lieu à une température comprise entre 3 et 25°C, et à la pression atmosphérique normale. Par exemple, l’introduction de la matrice alimentaire déformable dans le récipient peut être réalisée à une température comprise entre 18 et 25°C, et à une pression de 1 atmosphère.
Le récipient substantiellement indéformable et hermétique pourvu d’un système d’ouverture et fermeture peut être tout récipient connu de l’homme du métier, et notamment un récipient hermétique au gaz produit par la matrice alimentaire déformable pendant l’étape c) du procédé de l’invention, notamment le dioxyde de carbone, ou même à toute autre matière qu’elle soit solide, liquide ou gazeuse. On entend par « substantiellement indéformable », au sens de la présente invention, un récipient qui ne subit aucune déformation, notamment sous des pressions inférieures à 200 kPa au-dessus de la pression atmosphérique, ou qui peut subir une déformation inférieure à 5% de son volume intérieur, mesuré par volumétrie laser. Le récipient peut par exemple être un bocal de conserve en verre avec couvercle et joint en caoutchouc fermant le couvercle, une boîte de conserve métallique ou un récipient à base de plastique. Le revêtement du récipient peut avantageusement permettre soit de favoriser l’amorce de bulles, soit de l’éviter en fonction de la destination du produit. Dans le cas où l’on souhaite favoriser l’amorce des bulles, le revêtement peut avantageusement comporter au moins une excroissance ayant pour fonction de pénétrer dans la matrice alimentaire. Ces excroissances permettent avantageusement de générer des bulles à l’intérieur de la matrice alimentaire. Ces excroissances peuvent être de tout type adapté à l’obtention de cet effet, et peuvent être par exemple de type tige, tubes de section quelconque ou matériau poreux. Le récipient peut avoir une forme et un volume adapté à la portion de matrice alimentaire que l’on veut introduire dans le récipient. La forme du récipient peut à ce titre être ronde, ovale, carrée, rectangulaire, avoir la forme d’un godet, d’un losange, d’un bocal à facettes. Le volume du récipient peut être compris entre 8 cm3 et 1500 cm3 et être de forme allongée ou compacte.
Afin de permettre une formation de la phase gazeuse dans la matrice alimentaire déformable, celle-ci doit être conservée au sein du récipient hermétiquement fermé pendant un temps qui correspond à une sursaturation suffisante de la matrice par le gaz pour produire d’une part des alvéoles et d’autre part un effet de gonflement lors de l’ouverture dudit récipient (étape c)). Le temps nécessaire est fonction de la phase gazeuse et de son mode de production, et de la nature de la matrice alimentaire déformable considérée. L’homme du métier peut sans difficulté déterminer ces paramètres, notamment en fonction du gonflement souhaité. Dans le cas d’un fromage à pâte pressé, la sursaturation pourra être approchée par la connaissance de la constante de Henry et de la mesure de pression dans des récipients témoins. Quelle que soit la matrice alimentaire considérée, la quantité de gaz totale produite est comprise avantageusement entre 1 ,2 fois et 2 fois la quantité de gaz nécessaire pour saturer le milieu à la pression atmosphérique. La production de la phase gazeuse ne doit pas permettre d’atteindre plus de trois fois la saturation de la matrice alimentaire à la pression atmosphérique. Dans certains cas, du gaz pourra être injecté sous pression dans l’emballage pour compléter le développement gazeux ou réduire les temps de sursaturation.
Durant l’étape c), le récipient peut être maintenu à température ambiante, c’est-à-dire comprise entre 18 et 25°C, ou à une température comprise entre 0°C et 10°C correspondant à une conservation du récipient dans un réfrigérateur. Durant cette même étape, la pression à laquelle le récipient est conservé est une pression atmosphérique normale, donc de 1 atmosphère.
Au terme de l’étape c), la matrice alimentaire sursaturée en gaz est obtenue.
On entend par « matrice alimentaire saturée en gaz », au sens de la présente invention, la matrice alimentaire déformable obtenue au terme de l’étape c), dont la phase gazeuse est à l’équilibre liquide-gaz à la pression dans le récipient avant ouverture et qui est supérieure à la pression atmosphérique. On entend par « sursaturé », au sens de la présente invention, une sursaturation en gaz de la matrice lors du retour à la pression atmosphérique, par exemple lors de l’ouverture du récipient hermétique par le consommateur.
Au terme de cette phase de saturation dans la matrice alimentaire déformable, lorsque le consommateur ouvre le récipient, les cavités gazeuses contenues dans la matrice alimentaire grossissent alors rapidement sous l’effet du retour à la pression atmosphérique selon i) l’effet sur la loi des gaz parfaits dans les bulles, et ii) l’effet sur l’équilibre gazeux, sans toutefois vouloir être lié par un mécanisme d’action particulier. Ceci entraîne un gonflement rapide de la matrice alimentaire déformable, qui devient alors ce qu’on peut qualifier de matrice alimentaire alvéolée à variation de volume car présentant des cavités dans la matrice. Avantageusement, ce gonflement à l’ouverture du récipient présente alors un aspect ludique qui peut être valorisé dans l’industrie agroalimentaire. Ainsi, un deuxième objet de l’invention se rapporte à un procédé de préparation d’une matrice alimentaire alvéolée, comprenant les étapes suivantes :
(1 ) préparer une matrice alimentaire saturée en gaz à une pression supérieure à la pression atmosphérique selon le procédé tel que défini précédemment,
(2) ouvrir ledit récipient, ceci provoquant la formation d’alvéoles et/ou la variation du volume des d’alvéoles initialement présents dans la matrice alimentaire saturée.
Ce procédé permet de modifier la pression gazeuse autour de la matrice alimentaire déformable pour modifier l’équilibre gazeux (phase solubilisée) tantôt en faveur d’une solubilisation (augmentation de la pression pendant l’étape c)) du procédé de l’invention, tantôt en faveur de la forme gazeuse (réduction de la pression par un retour rapide à la pression atmosphérique) lors de l’étape 2) du procédé. Avantageusement, le volume des alvéoles est augmenté, ceci permettant l’augmentation du volume total de la matrice alimentaire saturée en gaz. A ce titre, la matrice alimentaire alvéolée peut gonfler au-delà de la limite de l’ouverture du récipient une fois ouvert. Avantageusement, la variation de volume de la matrice alimentaire peut être visible à l’œil nu. Dans ce cas, la variation de volume peut être considérée comme rapide, par exemple se dérouler en un temps compris entre 0 et 5 minutes, par exemple en 5 secondes, ou 30 secondes, ou 1 minutes, ou 2 minutes, ou 3 minutes environ. Alternativement, la variation de volume peut être plus lente, et se dérouler en un temps compris par exemple entre 0 et 5 heures, par exemple en 30 minutes, ou 1 heure, ou 2 heures, ou 3 heures environ. La variation de volume peut être par exemple une augmentation de volume de la matrice alimentaire comprise entre 5 et 50%, par exemple d’au moins 10%, ou d’au moins 20%, ou d’au moins 30%, ou d’au moins 40% environ. Avantageusement, la variation de volume peut s’exprimer principalement dans la direction normale à la face dégagée à l’ouverture. Avantageusement, la pression avant l’étape 2) d’ouverture peut être supérieure à la pression atmosphérique, notamment comprise entre +50 kPa et + 200 kPa par rapport à la pression initiale.
L’étape 2) d’ouverture peut avantageusement correspondre à une ouverture totale et rapide du récipient, comme lors de l’ouverture d’une boîte de conserve ou d’un bocal de confiture. Cela permet à la matrice alimentaire de gonfler de manière homogène.
Un autre objet de l’invention se rapporte à une matrice alimentaire saturée en gaz à une pression supérieure à la pression atmosphérique susceptible d’être obtenue par le procédé de préparation d’une matrice alimentaire saturée en gaz à une pression supérieure à la pression atmosphérique tel que définie ci-avant.
Un autre objet de l’invention se rapporte à une matrice alvéolée susceptible d’être obtenue par le procédé de préparation d’une matrice alvéolée tel que défini ci-avant.
Un autre objet de l’invention se rapporte à un ensemble comprenant une matrice alimentaire déformable telle que définie ci-avant, ou une matrice alimentaire alvéolée saturée en gaz à une pression supérieure à la pression atmosphérique telle que définie ci-avant, et un récipient substantiellement indéformable et hermétique pourvu d’un système d’ouverture/fermeture.
D’autres avantages pourront encore apparaître à l’homme du métier à la lecture des exemples ci-dessous, illustrés par les figures annexées, donnés à titre illustratif.
Brève description des figures
- La figure 1 représente : A) une vue de profil de la portion de fromage à pâte pressée à trous issue du procédé de variation du volume mis en œuvre à l’Exemple 1 , et B) un gros-plan de la partie supérieure de la portion de fromage à pâte pressée à trous visualisée en A). - La figure 2 représente une vue en coupe de la portion de fromage à pâte pressée à trous issue du procédé de variation du volume mis en œuvre à l’Exemple 1. EXEMPLES
Exemple 1 : Préparation d’un fromage à pâte pressée à trous alvéolé à variation de volume
Une portion de fromage à pâte pressée à trous de 50g est affinée à température ambiante (25°C) pendant 10 jours.
Cette portion de fromage à pâte pressée à trous est ensuite placée, à température ambiante, dans un bocal en verre adapté muni d’un couvercle métallique doté d’une rondelle en caoutchouc imperméable au dioxyde de carbone pour assurer l’étanchéité du bocal une fois celui-ci refermé. Le bocal est refermé immédiatement après son introduction dans le bocal, et stocké pendant 10 jours à température ambiante.
Durant cette phase de stockage durant laquelle le fromage à pâte pressée à trous est enfermé dans le bocal, le gaz présent dans la phase gazeuse du fromage à trous monte en pression. Ceci a pour effet une solubilisation accrue du gaz dans la phase grasse du fromage à pâte pressée à trous et une restriction de la croissance des cavités gazeuses contenues dans le fromage, qui sont comprimées.
Le bocal est ensuite ouvert par soulèvement de son couvercle. Les alvéoles contenues dans le fromage à trous grossissent alors rapidement sous l’effet du retour à la pression atmosphérique, de la loi des gaz parfaits dans les bulles et de l’équilibre gazeux, et provoque ainsi le gonflement du fromage à pâte pressée à trous (voir Figure 1 et Figure 2).

Claims

REVENDICATIONS
1. Procédé de préparation d’une matrice alimentaire alvéolée saturée en gaz à une pression supérieure à la pression atmosphérique comprenant les étapes suivantes :
(a) introduire une matrice alimentaire déformable contenant une phase gazeuse, au début ou au cours de la formation de ladite phase gazeuse dans ladite matrice alimentaire, dans un récipient substantiellement indéformable et hermétique pourvu d’un système d’ouverture/fermeture,
(b) fermer de manière hermétique ledit récipient, et
(c) laisser la formation de ladite phase gazeuse se produire dans ladite matrice alimentaire au sein dudit récipient hermétiquement fermé, pour saturer ladite matrice alimentaire à une pression supérieure à la pression atmosphérique.
2. Procédé selon la revendication 1 , dans lequel ladite matrice alimentaire déformable est un produit alimentaire choisi parmi les produits de boulangerie, les produits de biscuiterie, les produits de pâtisserie, les produits fromagers et les préparations sous forme de mousses.
3. Procédé selon l’une quelconque des revendications 1 ou 2, dans lequel ladite matrice alimentaire contient du gaz solubilisé et du gaz sous forme gazeuse.
4. Procédé selon l’une quelconque des revendications précédentes, dans lequel ladite phase gazeuse est produite par fermentation au moyen d’au moins un organisme fermentaire, ou par production de gaz au moyen d’au moins un élément produisant du gaz, présent dans ladite matrice alimentaire.
5. Procédé selon l’une quelconque des revendications précédentes, dans lequel ladite phase gazeuse est soit initialement présente dans la matrice alimentaire lors de son introduction dans le récipient soit issue d’un dispositif d’amorce au sein de ladite matrice alimentaire, sur lequel se forme la phase gazeuse.
6. Procédé selon l’une quelconque des revendications précédentes, dans lequel le récipient comprend un revêtement permettant de favoriser l’amorce de bulles ou d’éviter l’amorce de bulles.
7. Procédé selon la revendication 6, dans lequel ledit revêtement permet de favoriser l’amorce de bulles et comporte au moins une excroissance pénétrant dans la matrice alimentaire.
8. Procédé selon la revendication 7, dans lequel ladite au moins une excroissance est sélectionnée parmi une tige, un tube de section quelconque ou un matériau poreux.
9. Procédé de préparation d’une matrice alimentaire alvéolée, comprenant les étapes suivantes :
(a) préparer une matrice alimentaire alvéolée saturée en gaz à une pression supérieure à la pression atmosphérique selon le procédé tel que défini dans l’une quelconque des revendications 1 à 8,
(b) ouvrir ledit récipient, ceci provoquant la formation d’alvéoles et/ou la variation du volume des d’alvéoles initialement présents dans la matrice alimentaire saturée.
10. Procédé selon la revendication 9, dans lequel ladite variation de volume est une augmentation du volume de ladite matrice alimentaire alvéolée.
11. Matrice alimentaire alvéolée saturée en gaz susceptible d’être obtenue par le procédé défini dans l’une quelconque des revendications 1 à 8.
12. Matrice alimentaire alvéolée susceptible d’être obtenue par le procédé défini dans l’une quelconque des revendications 9 ou 10.
13. Ensemble comprenant une matrice alimentaire déformable, ou une matrice alimentaire alvéolée saturée en gaz à une pression supérieure à la pression atmosphérique telles que définies dans l’une quelconque des revendications 1 à 8, et un récipient substantiellement indéformable et hermétique pourvu d’un système d’ouverture/fermeture.
PCT/FR2019/052294 2018-09-28 2019-09-27 Matrice alimentaire alvéolée à variation de volume WO2020065240A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1858945A FR3086506B1 (fr) 2018-09-28 2018-09-28 Matrice alimentaire alveolee a variation de volume
FR1858945 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020065240A1 true WO2020065240A1 (fr) 2020-04-02

Family

ID=65685524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052294 WO2020065240A1 (fr) 2018-09-28 2019-09-27 Matrice alimentaire alvéolée à variation de volume

Country Status (2)

Country Link
FR (1) FR3086506B1 (fr)
WO (1) WO2020065240A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013618A2 (fr) * 2000-08-11 2002-02-21 Compagnie Gervais Danone Procede de fabrication d'un produit alimentaire aere et produit ainsi obtenu
WO2011069979A1 (fr) * 2009-12-11 2011-06-16 Nestec S.A. Produit alimentaire gélifié
CA3004382A1 (fr) * 2015-11-12 2017-05-18 Eidgenossische Technische Hochschule Zurich Mousse de produit alimentaire a base de pate ainsi que dispositif et procede de production de celui-ci et utilisation du dispositif

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013618A2 (fr) * 2000-08-11 2002-02-21 Compagnie Gervais Danone Procede de fabrication d'un produit alimentaire aere et produit ainsi obtenu
WO2011069979A1 (fr) * 2009-12-11 2011-06-16 Nestec S.A. Produit alimentaire gélifié
CA3004382A1 (fr) * 2015-11-12 2017-05-18 Eidgenossische Technische Hochschule Zurich Mousse de produit alimentaire a base de pate ainsi que dispositif et procede de production de celui-ci et utilisation du dispositif

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Comment conserver le levain entre deux panifications - Ni Cru Ni Cuit", 26 July 2014 (2014-07-26), XP055578918, Retrieved from the Internet <URL:https://nicrunicuit.com/faire/comment-conserver-le-levain-si-on-ne-sen-sert-pas-souvent-ou-pendant-les-vacances/> [retrieved on 20190409] *
ANONYMOUS: "DIY : bocal de dés de fromage Dégustation aromatisé", 2 August 2018 (2018-08-02), XP055578897, Retrieved from the Internet <URL:https://www.entremont.com/fr/les-actualites/diy-une-touche-doriginalite-pour-vos-salades-dete> [retrieved on 20190409] *
DATABASE GNPD [online] MINTEL; 28 June 2018 (2018-06-28), ANONYMOUS: "Chocolate Mousse with Hazelnuts", XP055578932, retrieved from www.gnpd.com Database accession no. 5784873 *
GUGGISBERG DOMINIK ET AL: "Mechanism and control of the eye formation in cheese", INTERNATIONAL DAIRY JOURNAL, ELSEVIER APPLIED SCIENCE, BARKING, GB, vol. 47, 20 March 2015 (2015-03-20), pages 118 - 127, XP029156728, ISSN: 0958-6946, DOI: 10.1016/J.IDAIRYJ.2015.03.001 *
THÈSE / UNIVERSITÉ ET AL: "ANNÉE 2014 Ecole doctorale SDLM présentée par", 26 March 2015 (2015-03-26), XP055578903, Retrieved from the Internet <URL:https://tel.archives-ouvertes.fr/tel-01135895/document> [retrieved on 20190409] *

Also Published As

Publication number Publication date
FR3086506A1 (fr) 2020-04-03
FR3086506B1 (fr) 2022-04-15

Similar Documents

Publication Publication Date Title
JP3017654B2 (ja) 生地を含むアセンブリーおよびその製造法
FR2622541A1 (fr)
FR2554792A1 (fr) Recipient d&#39;aerosol et procede pour sa fabrication
FR2549081A1 (fr) Methode et appareil pour la vinification par complete maceration au gaz carbonique
WO2007003864A2 (fr) Boîte d&#39;emballage pour le conditionnement, la conservation, la cuisson vapeur au four à micro-ondes et la consommation d&#39;aliments
EP0494004B1 (fr) Dispositif pour distribuer sous pression un produit, en particulier un produit moussant, et procédés de remplissage d&#39;un récipient pour un tel dispositif
WO2020065240A1 (fr) Matrice alimentaire alvéolée à variation de volume
FR2791328A1 (fr) Ensemble de conditionnement et de distribution pressurisee, de type a piston et procede de montage d&#39;un tel ensemble
EP2938558B1 (fr) Dispositif de transfert contrôlé de gaz ou de molécules gazeuses volatiles dans un récipient destiné à contenir un produit alimentaire liquide ou semi-liquide
FR2595583A1 (fr) Procede pour la realisation d&#39;un melange gazeux contenant au moins de l&#39;oxygene et de l&#39;azote, et application au conditionnement de denrees perissables sous atmosphere modifiee
WO1998001038A1 (fr) Procede de traitement de blanc d&#39;oeuf liquide
CA2692625C (fr) Nouvel emballage pour produits liquides
EP2791316B1 (fr) Matériau et conditionnement pour la conservation des levures
EP1263290B1 (fr) Combinaison d&#39;une pate et d&#39;un emballage et son procede de preparation
WO2020174201A1 (fr) Boite de conserve
BE1027916B1 (fr) Procede de preparation d’une composition a base de fruits
FR2602399A1 (fr) Procede de cuisson au four et de conservation d&#39;un produit alimentaire a base de cereales, notamment de pain
CA2934236A1 (fr) Procede et systeme de conditionnement sous vide profond d&#39;un produit alimentaire sans liquide de couverture
FR3033125A1 (fr) Article alimentaire comprenant au moins une portion decoupee et emballee d&#39;un fromage a pate molle et a croute lavee, et son procede de conservation.
FR2866638A1 (fr) Emballage de produits alimentaires, notamment de fromages, procede de fabrication d&#39;un fromage emballe et utilisation d&#39;un tel emballage
FR2578395A1 (fr) Procede de traitement en vue de leur conservation de denrees perissables presentant des vides ou des pores tels que les champignons
FR2788664A1 (fr) Procede de fabrication d&#39;une patisserie et pates de patisserie adaptees a un tel procede
FR2927318A1 (fr) Boite d&#39;emballage pour le conditionnement, la conversation, la cuisson vapeur au four a micro-ondes et la consommation d&#39;aliments
EP3520619A1 (fr) Levain et son procede de conditionnement
FR2996416A1 (fr) Conditionnement de patisserie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19801938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19801938

Country of ref document: EP

Kind code of ref document: A1