WO2020063717A1 - 一种信息处理方法、服务器和智能移动机器人 - Google Patents

一种信息处理方法、服务器和智能移动机器人 Download PDF

Info

Publication number
WO2020063717A1
WO2020063717A1 PCT/CN2019/108045 CN2019108045W WO2020063717A1 WO 2020063717 A1 WO2020063717 A1 WO 2020063717A1 CN 2019108045 W CN2019108045 W CN 2019108045W WO 2020063717 A1 WO2020063717 A1 WO 2020063717A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking space
mobile robot
intelligent mobile
server
safe
Prior art date
Application number
PCT/CN2019/108045
Other languages
English (en)
French (fr)
Inventor
刘祖齐
艾超
吴治国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020063717A1 publication Critical patent/WO2020063717A1/zh
Priority to US17/210,980 priority Critical patent/US11541880B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/006Controls for manipulators by means of a wireless system for controlling one or several manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0016Planning or execution of driving tasks specially adapted for safety of the vehicle or its occupants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0021Planning or execution of driving tasks specially adapted for travel time
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • G08G1/145Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas
    • G08G1/146Traffic control systems for road vehicles indicating individual free spaces in parking areas where the indication depends on the parking areas where the parking area is a limited parking space, e.g. parking garage, restricted space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • the present invention relates to the field of communications, and in particular, to an information processing method, a server, and an intelligent mobile robot.
  • Intelligent mobile robots are robots with built-in artificial intelligence and mobile capabilities.
  • the built-in artificial intelligence of intelligent mobile robots can be realized through intelligent systems composed of sensors, processors, remote operators and automatic controlled mobile carriers.
  • intelligent mobile robots can have multiple functions such as environmental perception, dynamic decision-making and planning, behavior control and execution. Because the intelligent mobile robot has a mobile function, it has greater mobility than ordinary robots in working in dangerous, harsh (such as radiation, toxic, etc.) environments and in environmental operations that are out of reach (such as space, underwater, etc.). ,flexibility.
  • intelligent mobile robots can be divided into wheeled mobile robots (such as autonomous vehicles), walking mobile robots (single-legged, double-legged, and multi-legged), crawler-type mobile robots, Crawling robots, peristaltic robots, flying robots (such as automatic flying drones), and swimming robots.
  • wheeled mobile robots such as autonomous vehicles
  • walking mobile robots single-legged, double-legged, and multi-legged
  • crawler-type mobile robots Crawling robots
  • peristaltic robots peristaltic robots
  • flying robots such as automatic flying drones
  • swimming robots Taking the self-driving car as an example, the self-driving car can automatically plan the driving route of the vehicle, sense the road environment through the on-board sensing system, and control the steering and speed of the vehicle based on the obtained road, vehicle position, and obstacle information, so Enable vehicles to travel safely and reliably on the road to their intended destination.
  • autonomous vehicles Since the introduction of autonomous vehicles on the road, more and more researches have been made on autonomous driving, such as from the perspective of artificial intelligence. At the same time, traditional car manufacturers and Internet companies have set up mobile service companies to explore passenger-carrying services for autonomous vehicles and provide competitive mobile travel services. At present, autonomous vehicles can not only drive automatically, but also automatically find parking spaces, automatically find charging piles, or automatically pick up people. However, when encountering situations such as fire that may cause damage to autonomous vehicles, autonomous vehicles do not have a corresponding response mechanism.
  • An embodiment of the present invention provides an information processing method, a server, and an intelligent mobile robot, which are used to achieve the purpose of the intelligent mobile robot escaping from the scene to a safe place by exchanging information with the server when the intelligent mobile robot encounters danger.
  • the first aspect of the present application provides an information processing method, including:
  • the danger alarm is used to instruct the intelligent mobile robot to detect a dangerous event and determine a safe position for the intelligent mobile robot.
  • the safe position is a position where the dangerous event does not currently occur, and then sends
  • the intelligent mobile robot sends an escape instruction, and the escape instruction includes the safe position, so the intelligent mobile robot can drive to a safe position according to the escape instruction, thereby staying away from dangerous events and reducing the risk of injury.
  • a danger alert can be sent to the server.
  • the server can first find a safe location where no dangerous event has occurred, such as another parking lot, determine the available parking space in the parking lot as a safe location, and return to the autonomous vehicle including the safe location Escape instructions. Then the autonomous vehicle can determine the driving route to the safe position through the navigation function, and follow the driving route to the safe position.
  • the server before the server receives the danger alert sent by the intelligent mobile robot, the server further includes:
  • the server receives the current position of the intelligent mobile robot sent by the intelligent mobile robot, and the escape instruction further includes an escape route.
  • the escape route is used to indicate to the intelligent mobile robot a driving route from the current position to the safe position.
  • the driving route of the smart mobile robot can follow the driving route to a safe location to escape danger.
  • the current position of the smart mobile robot may change with time. If the smart mobile robot periodically sends information about its current position to the server, the server The latest current position of the intelligent mobile robot can be obtained periodically. If the period is 1 second or 0.1 second, it can be considered that the server obtains the latest current position of the intelligent mobile robot at any time.
  • the method of the present application is applicable to a wide range, and the intelligent mobile robot includes an autonomous vehicle and an automatic flying drone.
  • Self-driving cars also known as driverless cars, computer-driven cars, or wheeled mobile robots, are artificial intelligence-enabled, self-driving smart cars that can be automated without any human intervention. Drive safely.
  • Autonomous drones are a type of drones. Automated drones can be remotely controlled or driven automatically. As long as the drone has the function of autonomous driving, it can be called an autonomous drone.
  • the server may determine the safe position for the intelligent mobile robot according to a parking space information database, where the parking space information database includes at least one parking space and the at least one parking space.
  • the safe location may be a suburban area or a parking space in a parking lot, which is not limited herein.
  • the server may determine from the parking space information database that the use situation of the parking lot without a dangerous event is an unused parking space as a safe location. Specifically, since the parking space information database includes the usage of at least one parking space and each parking space in the at least one parking space, and the usage situation is unused or used, the server may first obtain unused parking spaces according to the usage situation in the parking space database. The parking space set is used.
  • the server determines a parking space from the unused parking space set as a safe place. In some feasible embodiments, if there are less than one parking space in the unused parking space set, you can wait for a preset time until there are not less than one parking space in the unused parking space set, or determine a safe location by other means, here No restrictions.
  • the server determines that the use situation is an unused parking space according to the parking space database, and obtains an unused parking space set. If there is not less than one parking space in the unused parking space set, the server determines from the unused parking space set. One parking space as this safe location.
  • the server separately calculates the distance from the current position to each parking space in the unused parking space set, and the server determines the unused parking space set
  • the parking space with the shortest distance from the current position, as the safe position, can be effectively determined because of the distance between the current position and the parking space.
  • the distance is a straight-line distance or a driving distance
  • the straight-line distance is the length of a line segment with two positions as endpoints
  • the driving distance is a driving route of the intelligent mobile robot between the two positions. The distance.
  • the server obtains the current traffic situation, and the server calculates driving from the current location to the unused parking space set according to the current traffic situation.
  • the length of time used by each parking space The server determines that the parking space with the shortest length of time from the current location is the safe location. Since it is based on the driving time between the current location and the parking space, it can be effectively determined. Safe location.
  • the method further includes: the server modifies the use situation of the safe location in the parking space information database to be used, so that the parking space information can be updated in time
  • the library makes the information of the parking space database more prepared and the use experience better.
  • the method further includes: if the current position is a parking space in the parking space information database, the server uses the current position to update The parking space information database, so that the updated parking space information database indicates that the use situation of the parking space corresponding to the current position is used, so that the parking space information database can be updated in time, so that the parking space information database is more prepared and the use experience is more it is good.
  • the secure location is a parking space in a parking lot, and / or the current location is a parking space in a parking lot.
  • the dangerous events include fire events, flood events, and earthquake events.
  • a second aspect of the present application provides an information processing method, including:
  • the intelligent mobile robot monitors the surrounding environment to determine whether a dangerous event has occurred. When it is determined that the dangerous event occurs, the intelligent mobile robot sends a dangerous alarm to the server, and the dangerous alarm is used to instruct the intelligent mobile robot to detect the dangerous event.
  • the safe position is a position where the dangerous event does not currently occur
  • the intelligent mobile robot receives an escape instruction sent by the server, and the escape instruction includes the safe position, so the intelligent mobile robot You can drive to a safe location according to the escape instructions to stay away from dangerous events and reduce the risk of injury.
  • the intelligent mobile robot after the intelligent mobile robot receives the escape instruction sent by the server, the intelligent mobile robot further includes: the intelligent mobile robot travels to the safe position according to the escape instruction, thereby avoiding dangerous events and reducing the risk of injury.
  • the method further includes: the intelligent mobile robot sends the current position of the intelligent mobile robot to the server, and the escape instruction further includes an escape route, and the escape route is used for The intelligent mobile robot is instructed to drive a route from the current position to the safe position. Through the clear driving route, the intelligent mobile robot can follow the driving route to a safe position to escape danger.
  • the intelligent mobile robot includes an autonomous vehicle and an automatic flying drone. If the intelligent mobile robot is the autonomous vehicle, the safe position is a parking space in a parking lot, and / or, the current The location is a parking space in a parking lot.
  • the hazardous events include fire, flood and earthquake events.
  • the smart mobile robot monitoring the surrounding environment to determine whether a dangerous event occurs includes: the smart mobile robot monitors the surrounding environment through an infrared sensor and / or a smoke sensor to determine whether the fire event occurs ; And / or, the smart mobile robot monitors the surrounding environment through a surface contact sensor to determine whether the flood event occurs; and / or, the smart mobile robot monitors the surrounding environment through an angle sensor to determine whether the earthquake event occurs, In this way, methods for monitoring different dangerous events are determined.
  • the intelligent mobile robot monitors the surrounding environment through a surface contact sensor to determine whether a flood event has occurred.
  • the vehicle may have a built-in water surface contact sensor, which can be used to shut off the engine or other devices when the vehicle enters the water to prevent further damage.
  • a water surface contact sensor may be built in the smart mobile robot. When the smart mobile robot senses water inflow through the water surface sensor and the water inflow reaches a certain level, it can be determined that a flood has occurred. It should be noted that floods can be caused by storms, floods, and breakwaters, and are not described here.
  • the intelligent mobile robot monitors the surrounding environment through an angle sensor to determine whether an earthquake event occurs.
  • an angle sensor such as a gyroscope
  • the intelligent mobile robot may also receive a disaster warning through a wireless network, and when a disaster warning is received, it is determined that a dangerous event occurs, and then a danger alarm is sent to the server.
  • a disaster warning may also be received, and when a disaster warning is received, it is determined that a dangerous event occurs, and then a danger alarm is sent to the server.
  • a third aspect of the present application provides a server, including:
  • the transceiver module is configured to receive a danger alarm sent by the intelligent mobile robot, and the danger alarm is used to instruct the intelligent mobile robot to detect a dangerous event.
  • the processing module is configured to determine a safe position for the intelligent mobile robot, and the safe position is a position where the dangerous event does not currently occur.
  • the transceiver module is further configured to send an escape instruction to the intelligent mobile robot, where the escape instruction includes the safe position. Because the intelligent mobile robot can travel to a safe location according to the escape instructions, it can stay away from dangerous events and reduce the risk of injury.
  • the transceiver module is further configured to receive the current position of the intelligent mobile robot sent by the intelligent mobile robot.
  • the escape instruction also includes an escape route, which is used to indicate to the intelligent mobile robot a driving route from the current position to the safe location. Due to the clear driving route, the intelligent mobile robot can follow the driving route to a safe location To escape danger.
  • the processing module is specifically configured to:
  • the safe position is determined for the intelligent mobile robot according to a parking space information database, which includes at least one parking space and usage of each parking space in the at least one parking space, and the usage condition is unused Or used, the safe position is an unused parking space in the parking space information base. Due to the management of the acquired parking space information base and the management of the parking space information base, the safety position is determined, so that the intelligent mobile robot can Drive to a safe location when in danger.
  • the processing module performs at least the following steps:
  • the use situation is determined as an unused parking space, and an unused parking space set is obtained. If there is not less than one parking space in the unused parking space set, a parking space is determined from the unused parking space set as the safe place.
  • the processing module performs at least the following steps:
  • the distance from the current position to each parking space in the unused parking space set is calculated separately.
  • the parking space with the shortest distance from the current position in the unused parking space set is determined, and as the safe position, the safe position can be effectively determined because the distance between the current position and the parking space is used as a basis.
  • the processing module performs at least the following steps:
  • the current traffic situation is obtained.
  • the time taken to drive from the current location to each of the unused parking spaces in the set is calculated. It is determined that the parking space with the shortest length of time used for driving from the current position is the safe position. Since the driving time between the current position and the parking space is used as a basis, the safe position can be effectively determined.
  • the processing module is further configured to modify the use situation of the safe location in the parking space information base to be used, so that the parking space information base can be updated in time, and the parking space information base is more prepared. , The use experience is better.
  • the processing module is further configured to update the parking space information database using the current position if the current location is a parking space in the parking space information database, so that the updated parking space information database indicates The use situation of the parking space corresponding to the current position is used, so that the parking space information database can be updated in time, so that the information of the parking space database is more prepared and the use experience is better.
  • a fourth aspect of the present application provides an intelligent mobile robot, including:
  • a monitoring module is used to monitor the surrounding environment to determine whether a dangerous event occurs.
  • the transceiver module is configured to send a dangerous alarm to the server when the dangerous event is determined to occur, and the dangerous alarm is used to instruct the monitoring module to detect the dangerous event, so that the server determines a safe position for the intelligent mobile robot, the safe position The location where the dangerous event has not occurred.
  • the transceiver module is further configured to receive an escape instruction sent by the server, and the escape instruction includes the safe location, so the intelligent mobile robot can travel to the safe location according to the escape instruction, thereby avoiding dangerous events and reducing the risk of injury.
  • the intelligent mobile robot further includes:
  • An automatic driving module is configured to drive to the safe position according to the escape instruction, thereby avoiding dangerous events and reducing the risk of injury.
  • the transceiver module is further configured to send the current position of the intelligent mobile robot to the server.
  • the escape instruction also includes an escape route, which is used to indicate to the intelligent mobile robot a driving route from the current position to the safe location. Through the clear driving route, the intelligent mobile robot can follow the driving route to a safe location. To escape danger.
  • the monitoring module is specifically configured to:
  • the surrounding environment is monitored by infrared sensors and / or smoke sensors to determine if a fire event has occurred.
  • the surrounding environment is monitored by an angle sensor to determine whether a seismic event has occurred.
  • the smart mobile robot monitoring the surrounding environment to determine whether a dangerous event occurs includes: the smart mobile robot monitors the surrounding environment through an infrared sensor and / or a smoke sensor to determine whether the fire event occurs ; And / or, the smart mobile robot monitors the surrounding environment through a surface contact sensor to determine whether the flood event occurs; and / or, the smart mobile robot monitors the surrounding environment through an angle sensor to determine whether the earthquake event occurs, In this way, methods for monitoring different dangerous events are determined.
  • the intelligent mobile robot monitors the surrounding environment through a surface contact sensor to determine whether a flood event has occurred.
  • the vehicle may have a built-in water surface contact sensor, which can be used to shut off the engine or other devices when the vehicle enters the water to prevent further damage.
  • a water surface contact sensor may be built in the smart mobile robot. When the smart mobile robot senses water inflow through the water surface sensor and the water inflow reaches a certain level, it can be determined that a flood has occurred. It should be noted that floods can be caused by storms, floods, and breakwaters, and are not described here.
  • the intelligent mobile robot monitors the surrounding environment through an angle sensor to determine whether an earthquake event occurs.
  • an angle sensor such as a gyroscope
  • the intelligent mobile robot may also receive a disaster warning through a wireless network, and when a disaster warning is received, it is determined that a dangerous event occurs, and then a danger alarm is sent to the server.
  • a disaster warning may also be received, and when a disaster warning is received, it is determined that a dangerous event occurs, and then a danger alarm is sent to the server.
  • a fifth aspect of the present application provides a server including a transceiver, a processor, and a memory.
  • the transceiver is configured to receive a danger alarm sent by the intelligent mobile robot, and the danger alarm is used to instruct the intelligent mobile robot to detect a dangerous event.
  • the memory is used to store a program; the processor calls the program stored in the memory to determine a safe position for the intelligent mobile robot, and the safe position is a position where the dangerous event does not currently occur.
  • the transceiver is further configured to send an escape instruction to the intelligent mobile robot, where the escape instruction includes the safe position.
  • a sixth aspect of the present application provides an intelligent mobile robot, including a transceiver, a processor, and a memory.
  • the memory is used to store a program, and the processor calls the program stored in the memory to monitor a surrounding environment to determine whether a dangerous event occurs, and when it is determined that the dangerous event occurs.
  • the transceiver is used to send a danger alert to the server, and the danger alert is used to instruct the intelligent mobile robot to detect the dangerous event, so that the server determines a safe position for the intelligent mobile robot, which is that the danger does not currently occur.
  • the location of the event receiving an escape instruction sent by the server, the escape instruction including the safe location.
  • a seventh aspect of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the first aspect or any of the first aspects described above
  • the information processing method described in the possible implementation manner may be implemented.
  • An eighth aspect of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the second aspect or any one of the second aspect described above
  • the information processing method described in the possible implementation manner may be implemented.
  • a ninth aspect of the embodiments of the present application provides a chip system, and the chip system includes a processor, and is configured to support a server to implement the functions involved in the first aspect or any possible implementation manner of the first aspect.
  • the chip system further includes a memory, which is used to store program instructions and data necessary for executing the function network element.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a tenth aspect of the embodiments of the present application provides a chip system, and the chip system includes a processor for supporting an intelligent mobile robot to implement the functions involved in the second aspect or any possible implementation manner of the second aspect.
  • the chip system further includes a memory, which is used to store program instructions and data necessary for controlling the function network element.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the intelligent mobile robot can send a danger alert to the server. Since the server can determine the safe location for the intelligent mobile robot that does not currently have a dangerous event, and send an escape instruction including the safe location to the intelligent mobile robot, the intelligent mobile robot You can drive to a safe location according to the escape instructions to stay away from dangerous events and reduce the risk of injury.
  • FIG. 1 is a schematic diagram of an embodiment of an information interaction system
  • FIG. 2 is a schematic diagram of an embodiment of an information processing method
  • FIG. 3-1 is a schematic diagram of another embodiment of an information processing method
  • 3-2 is a schematic diagram of an embodiment of a driving route
  • FIG. 4 is a schematic diagram of an embodiment of a server
  • FIG. 5 is a schematic diagram of an embodiment of an intelligent mobile robot
  • FIG. 6 is a schematic diagram of an embodiment of a server
  • FIG. 7 is a schematic diagram of an embodiment of an intelligent mobile robot.
  • An embodiment of the present invention provides an information processing method, a server, and an intelligent mobile robot, which are used to achieve the purpose of the intelligent mobile robot escaping from the scene to a safe place by exchanging information with the server when the intelligent mobile robot encounters danger.
  • the intelligent mobile robot is a robot with built-in artificial intelligence and capable of moving.
  • the built-in artificial intelligence of a smart mobile robot can be realized by an intelligent system consisting of sensors, processors, remote operators and automatically controlled mobile carriers.
  • intelligent mobile robots can have multiple functions such as environmental perception, dynamic decision-making and planning, behavior control and execution tasks.
  • intelligent mobile robots can use the mobile function to replace humans to work in dangerous and harsh environments (such as radiation, toxic, etc.), or in environments that humans cannot reach (such as space, underwater, etc.).
  • dangerous and harsh environments such as radiation, toxic, etc.
  • the application range of intelligent mobile robots has been greatly expanded, not only in industrial, agricultural, medical, service and other industries, but also in hazardous and dangerous situations such as urban security, national defense and space detection. Good application.
  • Intelligent mobile robots can be divided into wheeled mobile robots (such as self-driving cars), walking mobile robots (single-legged, two-legged, and multi-legged), crawler mobile robots, crawling robots, creeping robots, flying Types of robots (such as automatic flying drones) and mobile robots.
  • wheeled mobile robots such as self-driving cars
  • walking mobile robots single-legged, two-legged, and multi-legged
  • crawler mobile robots crawling robots
  • crawling robots crawling robots
  • creeping robots creeping robots
  • flying Types of robots such as automatic flying drones
  • mobile robots such as automatic flying drones
  • self-driving cars also known as self-driving cars, computer-driven cars, or wheeled mobile robots
  • artificial intelligence-enabled, self-driving smart cars In the case of operation, automatic and safe driving is realized.
  • traditional car manufacturers and Internet companies have set up mobile service companies to explore passenger-carrying services for autonomous vehicles, provide competitive mobile travel services, and realize multiple functions of autonomous vehicles. Not only can they drive automatically, they can also automatically find parking spaces. , Automatically find the charging pile, or automatically pick up people and so on.
  • Self-driving cars can accomplish their intended tasks through artificial intelligence, but when confronted with situations that could cause damage to autonomous vehicles such as fire, there is no coping mechanism. For example, when a fire accident is encountered in a parking lot, the autonomous vehicle does not have a corresponding response mechanism, which may cause certain damage to the autonomous vehicle.
  • the intelligent mobile robot may send a danger alert to the server, so that the server determines a safe position for the intelligent mobile robot that no dangerous event currently occurs, and sends the included safe position to the intelligent mobile robot.
  • Escape instructions so the intelligent mobile robot can travel to a safe location according to the escape instructions, thereby staying away from dangerous events and reducing the risk of injury.
  • a danger alert can be sent to the server.
  • the server can first find a safe location where no dangerous event has occurred, such as another parking lot, determine the available parking space in the parking lot as a safe location, and return to the autonomous vehicle including the safe location Escape instructions. Then the autonomous vehicle can determine the driving route to the safe position through the navigation function, and follow the driving route to the safe position.
  • Autonomous drones are a type of drones. Automated drones can be remotely controlled or driven automatically. As long as the drone has the function of autonomous driving, it can be called an autonomous drone. In some scenarios, such as in the case of autonomous drones in private private parks, such as the life of a manufacturer of autonomous drones or a park developed by them, autonomous drones can achieve automatic flight, perform tasks, and Automatic return home, return to a dedicated or public place, such as a rechargeable storage cabinet, and realize automatic connection charging.
  • the self-driving drone When a self-driving drone encounters a dangerous event in the execution map, or it is on fire, or has no power, or is partially damaged, the self-driving drone can automatically return to the sea, return to the storage cabinet, charge, wait for repair, or wait for the next One mission.
  • the autonomous drone if it encounters a dangerous event in the storage cabinet, it can also send a danger alert to the server, the server can arrange another storage cabinet for the autonomous drone as a safe location So that autonomous drones can fly to a safe location.
  • FIG. 1 is an information interaction system 100 including a server 101 and an intelligent mobile robot 102, wherein the server 101 and the intelligent mobile robot 102 communicate with each other through a wireless network.
  • the server 101 may include one or more central processing units (CPUs) (for example, one or more processors) and a memory, and one or more storage media storing application programs or data. (Such as one or one storage device in Shanghai).
  • the memory and the storage medium may be transient storage or persistent storage.
  • the program stored in the storage medium may include one or more modules, and each module may include a series of instruction operations on the server 101.
  • the central processing unit may be configured to communicate with the storage medium, and execute a series of instruction operations in the storage medium on the server 101.
  • the server 101 may further include one or more power sources, one or more wired or wireless network interfaces, one or more input-output interfaces, and / or, one or more operating systems, such as Windows ServerTM, Mac OSXTM, UnixTM, LinuxTM, FreeBSDTM, etc. are not limited here.
  • the server 101 may be a cloud server.
  • the so-called cloud server is a server that uses cloud technology. Cloud technology integrates multiple functions such as software search, download, use, management, and backup into an integrated software platform, which can package all kinds of commonly used software in an independent virtualized environment, so that application software will not be generated with the system. Coupling to achieve the purpose of green software use.
  • the server 101 may also be another type of server, which is not limited herein.
  • the intelligent mobile robot 102 may have a built-in positioning and navigation module (such as a global positioning navigation system / Beidou satellite navigation system / Galileo satellite navigation system / Grossner navigation system), a vision module, a radar module, a calculation module, and a battery.
  • a built-in positioning and navigation module such as a global positioning navigation system / Beidou satellite navigation system / Galileo satellite navigation system / Grossner navigation system
  • a vision module such as a global positioning navigation system / Beidou satellite navigation system / Galileo satellite navigation system / Grossner navigation system
  • the intelligent mobile robot 102 may include one or more of the above-mentioned modules as required, or may include more modules, which are not limited herein.
  • the positioning and navigation module can realize the precise positioning of the intelligent mobile robot 102, including the position of the intelligent mobile robot 102 during the stationary or moving process
  • the vision module refers to the monocular, binocular or multi-eye vision of the intelligent mobile robot 102.
  • radar module refers to millimeter-wave radar and lidar of smart mobile robot 102 for identifying obstacles around 102 smart mobile robots
  • calculation module refers to smart mobile
  • the computing unit of the robot 102 is used to integrate the data of the vision module, the radar module and the positioning and navigation module, and to output and guide the driving of the intelligent mobile robot 102.
  • the battery module refers to the power system of the intelligent mobile robot 102, which can also be the power system of the internal combustion engine. Replacement is not limited here; the wireless module refers to the data transmission channel of the server 101 and the intelligent mobile robot 102.
  • the intelligent mobile robot 102 can obtain the corresponding data of the surrounding traffic conditions and upload it to the server 101 so that the server 101 can process a large amount of information about the surrounding terrain and return relevant information to the intelligent mobile robot 102 or Instruction, the intelligent mobile robot 102 travels safely according to related information or instructions. Due to the processing of data by the server 101, the driving mode of the intelligent mobile robot 102 can reduce the incidence of traffic accidents and make it safer during driving.
  • intelligent mobile robots may have one or more of the functions described above and the intelligent mobile robot 102, and may also have other special functions, such as automatic flying drones with flight capabilities , Not limited here.
  • an embodiment of the present application provides an information processing method, including:
  • the intelligent mobile robot monitors the surrounding environment to determine whether a dangerous event occurs.
  • the intelligent mobile robot sends a dangerous alarm to the server, and the dangerous alarm is used to instruct the intelligent mobile robot to detect the dangerous event.
  • the server determines a safe position for the intelligent mobile robot, and the safe position is a position where no dangerous event currently occurs.
  • the server sends an escape instruction to the intelligent mobile robot, and the escape instruction includes a safe location.
  • the intelligent mobile robot when a dangerous event occurs, can send a danger alert to the server, because the server can determine the safe position for the intelligent mobile robot that no dangerous event currently occurs, and send the intelligent mobile robot including the safe position. Escape instructions, so the intelligent mobile robot can travel to a safe location according to the escape instructions, thereby staying away from dangerous events and reducing the risk of injury.
  • an intelligent mobile robot uses an autonomous vehicle as an example. Please refer to FIG. 3-1.
  • an information processing method is provided, including:
  • the autonomous vehicle sends the current position of the autonomous vehicle to the server.
  • the current location of the autonomous vehicle changes with time. If the autonomous vehicle periodically sends its current location to the server, the server may periodically To obtain the latest current position of the autonomous vehicle. If the period is 1 second or 0.1 second, the server can obtain the latest current position of the autonomous vehicle at any time.
  • the autonomous driving vehicle may have two states, namely a running state and a parked state.
  • the driving state refers to the driving mode of the self-driving car, which uses a built-in power system (such as electricity or gasoline) to start the motor and a motion vision system to make the self-driving car move relative to the ground as a reference, such as on a highway or a mountain road.
  • Driving status a built-in power system (such as electricity or gasoline) to start the motor and a motion vision system to make the self-driving car move relative to the ground as a reference, such as on a highway or a mountain road.
  • the self-driving car when the self-driving car is driving on the highway, it stops at the traffic light due to the relationship of the red light, because the driving mode is activated, that is, the motor is activated, the vision system is used, etc., and it stays in front of the red light. Just to comply with traffic rules, can be understood as still driving.
  • the specific situation and different definitions are used to determine whether the vehicle is in a driving state, such as a self-driving vehicle being loaded on a truck, or a cargo vehicle driving on a highway, such as a self-driving vehicle that violates parking regulations or is damaged. Towed away by trailer, not limited here.
  • the above-mentioned parking state may be parked in a parking space of a parking lot, also parked in a private parking space, or parked in a private garage, or other non-driving states may be regarded as a parking state. There are no restrictions here.
  • the current position of the autonomous vehicle may be expressed in coordinates, for example, the coordinates may be coordinates in a reference frame of the earth.
  • the coordinates of the earth are used as the reference system, longitude can be used as the x-axis (if the positive direction is north), latitude can be used as the y-axis (if the positive direction is east), and the direction of gravity is the z-axis (if the positive direction is (Above), using a certain point on the ground surface or the center of the earth as the 0 point, to obtain the coordinates (x, y, z) of any position on the earth.
  • the coordinates of the city, province, or country can be used as the coordinates, the longitude as the x-axis, the latitude as the y-axis, the direction of gravity as the z-axis, and a certain point in the city, province, or country. (Such as city government) is 0 point, get the coordinates of any location in the city, province or country, such as: city A (x, y, z). In some feasible embodiments, coordinates that can be expressed in other ways are not limited herein.
  • Vehicle number coordinate 001 (x1, y1, z1)
  • the coordinates of the vehicle with the vehicle number 001 are (x1, y1, z1).
  • the coordinates of the current position of the autonomous vehicle may be the coordinates of the position of a device of a positioning system on the autonomous vehicle (such as GPS or other positioning systems). Such as a locator, it can be placed on the front or rear of the car to send a positioning signal to the server.
  • the space occupied by the position where the autonomous vehicle is parked can also be determined by the positioner. If the forward direction of the positioner is preset, the forward direction is set to the front direction, the front direction is opposite to the rear direction, the front direction is 90 ° counterclockwise to the left, the front direction is 90 ° clockwise to the right, and the gravitational direction is down. The opposite direction is up.
  • the coordinates of the current position can be determined to move a preset distance toward the front, rear, left, right, up, and down respectively to obtain a space with a volume or area as the position of the parking space.
  • the coordinates obtained by the positioner of an autonomous vehicle are (x1, y1, z1).
  • the positioner is placed at the center of the car.
  • the positive direction of the x-axis is the heading direction.
  • the position of the autonomous vehicle is determined to be ⁇ (x, y, z)
  • the coordinates of the parking space may also have other representation methods, which are not limited herein.
  • the autonomous vehicle when the autonomous vehicle is parked, if the autonomous vehicle is parked in a parking space in the parking lot, the current location is the parking space in the parking lot, and the autonomous driving vehicle may send the parking lot to the server.
  • Parking space as the current location.
  • the parking space is represented by information such as a parking lot name, a parking lot address, a parking lot area, a floor, a row number, a column number, and a parking lot number, which are not limited herein.
  • the parking spaces in the parking lot can correspond to the coordinates, so that the parking spaces can be represented by coordinates, which is not limited here.
  • the number of the self-driving car is 001
  • the parking space as the current location is: the parking lot name is A
  • the floor is the first floor
  • the parking area is A1
  • the coordinates are (x1, y1, z1)
  • the parking space number It is 1001. Since the vehicle with the vehicle number 001 is used, the use situation of the parking space is "used".
  • the coordinates (x1, y1, z1) may be coordinates determined in advance in a parking space, or may be coordinates determined by an autonomous vehicle through a navigation system, which is not limited here.
  • the autonomous driving vehicle may obtain the allocated parking space and the information of the parking space through information interaction with the service equipment of the parking lot, or may use other methods, which is not limited herein.
  • the parking lot described in the embodiment itself refers to a place where a special space is provided for parking the vehicle.
  • the parking lot may include multiple parking spaces, where each parking space is only used by one vehicle at a point in time.
  • the parking lot may be a public parking lot, a dedicated parking lot, or a road parking lot.
  • public parking lots are constructed according to urban planning and public buildings (open or indoor) parking lots dedicated to social vehicles.
  • the special parking lot refers to the parking place constructed by investors outside the road, which is dedicated to the parking of vehicles in the unit and the residential area, and is generally not open to the public.
  • the dedicated parking lot may also be a free parking lot provided by a business place such as a shopping mall or hotel according to user consumption.
  • a road parking lot can also be called a public parking area, which refers to a limited allowable parking area and limited parking time. It can only be used during non-traffic peak hours without affecting the smooth flow of roads (generally located on unbroken ends) Roads), parking lots that must be adjusted with changes in municipal engineering construction and dynamic traffic.
  • the server updates the parking space information database using the current location, so that the updated parking space information database indicates that the use situation of the current location is used.
  • the server may have a parking space information database, and the parking space information database may include at least one parking space and a usage situation of each parking space in the at least one parking space, wherein the usage situation is unused or used.
  • the parking space in the parking space information database may be a parking space serving only autonomous vehicles, or a parking space serving both autonomous and non-autonomous vehicles, which is not limited herein. It should be noted that parking spaces that can serve autonomous vehicles can be provided with charging piles, so that when the electric vehicles using electricity are parked in the parking spaces, they can be charged at the same time.
  • the parking spaces in the parking space information database may be distributed throughout a small town, city, province, or country, or even the whole world, which is not limited herein.
  • the parking spaces in the parking space information database can be obtained from the update entry of the background staff of the server, or can be obtained by uploading data from the service equipment of different parking lots.
  • the self-driving car when the self-driving car is parked, the current position is sent to the server. If the self-driving car is parked for a long time (such as 1 hour, to exclude situations such as waiting for traffic lights or refueling at a gas station), then The server can determine where the autonomous vehicle is parked as a parking space. In some feasible embodiments, after the autonomous vehicle enters the parking state, it is determined that the parking is a parking space in the parking lot, and when the current position is sent to the server, the server is notified to the parking space in the parking lot. There are other ways to obtain the parking space database, which is not limited here.
  • not all autonomous vehicles come from the same manufacturer, and autonomous vehicles that are not of the same manufacturer may not receive services from the same server, so the servers described in the embodiments of this application cannot serve For all self-driving cars, if the self-driving cars of other manufacturers are parked in a certain parking space, the current position may not be sent to the server described in the embodiment of the present application. For this reason, in the embodiment of the present application, servers of different manufacturers can share data, so that when servers of other manufacturers receive the current position sent by other autonomous vehicles, the servers described in the embodiments of the present application can Obtain relevant information from the manufacturer's server, and timely and accurately update the parking space information database.
  • the parking space information database may include usage conditions of each parking space in at least one parking space, and the usage situation may be unused or used. It should be noted that if the current location is a parking space in a parking lot, when the autonomous vehicle sends the current location to the server, the server may update the parking space information database, so that the updated parking space information database indicates that the current location usage is Used. That is, if the usage of the parking space corresponding to the current position is unused before then, it has been used; if the usage of the parking space corresponding to the current position is used before, it remains used. It should be noted that when the self-driving car is in the driving state, it means that the self-driving car is not parked in any parking space. After the auto-driving car sends the current position to the server, the server can use the current position to update the parking space information database.
  • the server can serve both self-driving cars and non-autonomous cars. Both the self-driving cars and non-autonomous cars can send the corresponding current position to the server.
  • the parking spaces in the parking space database can be Autonomous vehicles can also be used for non-autonomous vehicles (except for dedicated parking spaces for autonomous vehicles), which is not limited here.
  • the server receives the current positions sent by vehicles with vehicle numbers 001 (for autonomous driving vehicles) and 003 (for non-autonomous driving vehicles), and the parking spaces are 1001 and 1003, respectively.
  • the parking space information database is updated so that the usage of the parking spaces with the parking spaces numbered 1001 and 1003 is used. And because no parking space is available for parking space number 1002, the use of parking space number 1002 is unused.
  • the vehicle may reserve a parking space (such as a phone reservation) on the APP or other channels, so the use situation of such parking space may be used.
  • the parking lot may have an intelligent management system.
  • the intelligent management system is a set of computers, network equipment, and lane management equipment that manages the entry and exit of parking lots, guidance of on-site traffic, and collection of parking fees. network system.
  • the intelligent management system of the parking lot has information of multiple parking spaces, and the information of multiple parking spaces may be sent to the server, so that the server stores the information of multiple parking spaces in the parking space information database here.
  • the intelligent management system can also collect and record the vehicle entry and exit records and on-site location to realize the dynamic and static comprehensive management of vehicle entry and exit and on-site vehicles, record the vehicle entry and exit information through the induction card, complete the charging strategy through management software, and implement charging accounting. Management, lane equipment control and other functions.
  • both the approaching vehicle owner and the parking lot management personnel hold a proximity card with a private identification, as a personal identification, and can only be operated by the card approved by the system inspection (management card) or In and out (parking card), after swiping the card into the parking lot, it can automatically allocate parking spaces and receive the parking space information from the intelligent management system.
  • the intelligent management system can forward the parking space information to the server. Send, not limited here.
  • the autonomous vehicle monitors the surrounding environment to determine whether a dangerous event occurs.
  • the dangerous event may include a fire event, a flood event, and an earthquake event, and may also include other events, which are not limited herein.
  • an autonomous driving vehicle may have a built-in monitoring module, and the monitoring module may include one or more sensors for monitoring the surrounding environment.
  • the autonomous vehicle monitors the surrounding environment through infrared sensors and / or smoke sensors to determine whether a fire event has occurred. If the self-driving car determines that a fire has occurred through the smoke sensor, and / or determines the heat sensation through the infrared sensor, it can also determine the direction of the source of the heat sensation. When the sensed smoke reaches a preset density, and / or the heat sensed by the infrared sensor feels preset heat, it can be determined that a fire has occurred.
  • the self-driving vehicle monitors the surrounding environment through a surface contact sensor to determine whether a flood event has occurred.
  • the vehicle may have a built-in water surface contact sensor, which can be used to shut off the engine or other devices when the vehicle enters the water to prevent further damage.
  • a water surface contact sensor may be built into the autonomous driving vehicle. When the autonomous vehicle detects water ingress through the water surface contact sensor and the water ingress reaches a certain level, it can be determined that a flood has occurred. It should be noted that floods can be caused by storms, floods, and breakwaters, and are not described here.
  • the autonomous vehicle monitors the surrounding environment through an angle sensor to determine whether an earthquake event has occurred.
  • an angle sensor such as a gyroscope
  • the autonomous vehicle may also receive a disaster warning through a wireless network, and when a disaster warning is received, it is determined that a dangerous event occurs, and a danger warning is sent to the server.
  • a disaster warning As long as the manner in which a dangerous event occurs in the surrounding environment can be determined, it is not limited here.
  • the surrounding environment may be a circular area with the autonomous vehicle as the center and a preset length as a radius, or a predetermined size with the autonomous vehicle as the center. Areas of other shapes (such as squares) are not limited here.
  • the surrounding environment may be the parking lot in which it is located, or the floor or parking area of the parking lot, which is not limited herein.
  • the autonomous vehicle sends a danger alarm to the server, and the danger alarm is used to instruct the autonomous vehicle to detect the dangerous event.
  • the hazard alert can indicate the type of dangerous event, such as a fire event, flood event, or earthquake event, and can indicate the degree of danger of the dangerous event, and can also indicate the location of the dangerous event, the coverage of the danger, and other information. , Not limited here.
  • the server may set the current location of the autonomous vehicle as a dangerous location, or set the area where the current location is located as a dangerous area.
  • the parking space corresponding to the current location may be set as a dangerous parking space, or several parking spaces near the parking space are dangerous parking spaces, or the parking lot is set as a dangerous parking space. All parking spaces in the parking lot are dangerous parking spaces, which are not limited here.
  • the server may further set a danger index and a dangerous event type, which is not limited herein. It should be noted that when the dangerous incident has ended and the parking space or parking lot is restored to safety, the setting of the dangerous location can be cancelled and restored to safety.
  • the server determines a safe position for the autonomous vehicle, and the safe position is a position where no dangerous event currently occurs.
  • the safe location may be a suburban area or a parking space in a parking lot, which is not limited herein.
  • the server may determine from the parking space information database that the use situation of the parking lot without a dangerous event is an unused parking space as a safe location. Specifically, since the parking space information database includes the usage of at least one parking space and each parking space in the at least one parking space, and the usage situation is unused or used, the server may first obtain unused parking spaces according to the usage situation in the parking space database. The parking space set is used.
  • the server determines a parking space from the unused parking space set as a safe place. In some feasible embodiments, if there are less than one parking space in the unused parking space set, you can wait for a preset time until there are not less than one parking space in the unused parking space set, or determine a safe location by other means, here No restrictions.
  • the usage of the parking space with the parking number 1003 is used, and the usage of the parking spaces with the parking number 1001, 1002, and 1004 is unused, but the parking number A dangerous event currently occurs at the parking space of 1001, so the parking space number of the unused parking space set can be obtained as ⁇ 1002, 1004 ⁇ . Since there is no less than one parking space in the unused parking space set, the server may determine a parking space in the unused parking space set as a safe place.
  • the server may separately calculate the distance from the current position to each parking space in the unused parking space set, and then determine the parking space with the shortest distance from the current location in the unused parking space set as the safe location.
  • the distance may be a straight distance or a driving distance, where the straight distance is the length of a line segment with the two positions as endpoints, and the driving distance is the distance of the driving route of the autonomous vehicle between the two positions. Distance.
  • (x7, y7, z7) is selected as the safe position of the autonomous driving vehicle, or (x10, y10, z10) is selected as the safe position of the autonomous driving vehicle.
  • the distance between the two is the same (in some calculation methods, if the obtained number omits a part of the mantissa, such as 5781.18, and 5700 is obtained after the mantissa is omitted, there is a higher probability that the same data will appear) You can choose the driving distance, or choose one randomly, which is not limited here.
  • the straight-line distance may not be able to represent the distance traveled by the autonomous vehicle between the two positions, and the driving distance may be used as a parameter.
  • the coordinates of the current position of the autonomous vehicle are (x0, y0, z0). It is known from Table 4 that there are two parking spaces as candidate safe positions, and the coordinates are (x8, y8, z8) and (10, y10, z10), you can first design the driving routes from (x0, y0, z0) to (x8, y8, z8) and (10, y10, z10) through the navigation module.
  • the server can plan the route based on the parking space information database and the combination of maps and other information, and provide an optional driving route that the autonomous vehicle can use, so that the autonomous vehicle can select a reasonable driving route according to a certain rule.
  • the escape route includes a plurality of absolute coordinate points with a time series relationship to instruct the autonomous vehicle to sequentially pass the positions indicated by the plurality of absolute coordinate points, where the starting point of the escape route is the current position and escape The end of the route is a safe location.
  • the distances of the two driving routes are calculated respectively, and the driving distance of the current position of the autonomous vehicle to (x8, y8, z8) and (10, y10, z10) is obtained, and then the shorter distance is taken.
  • the parking space corresponding to the driving route of the vehicle serves as a safe position.
  • Figure 3-2 a schematic diagram of the driving route.
  • the server obtains the current traffic conditions, such as traffic jams, weather, and other reasons. It may take longer to use the driving route if it follows the driving route, resulting in delays or losses.
  • the parking space may be selected according to the duration. Specifically, the server can obtain the current traffic situation, and then calculate the length of time from the current location to each of the unused parking spaces in the set of unused parking spaces according to the current traffic situation, and finally determine that the shortest time spent in driving from the current location Parking spaces are safe.
  • the time required for the autonomous vehicle to complete the two driving routes is determined to use the shorter parking space as the safety position.
  • servers of different manufacturers can implement data sharing, so that in this embodiment, the server can know the corresponding current positions of all autonomous vehicles, and thus can know the parking conditions of all parking lots, thereby guaranteeing The accuracy of the information and the avoidance of multiple autonomous vehicles corresponding to the same parking space.
  • the server sends an escape instruction to the autonomous vehicle, and the escape instruction includes a safe location.
  • the use status of the parking space in the safe position may be set as used.
  • the safe position corresponding to the autonomous vehicle is determined, but the autonomous vehicle may not necessarily stop, you can wait for the autonomous vehicle to return a confirmation message to confirm that the autonomous vehicle will stop at a safe location, or Send a confirmation request to the self-driving car, and then wait for the self-driving car to return a confirmation message.
  • the use status of the parking space corresponding to the safe position can be modified to used.
  • the escape instruction may further include an escape route, and the escape route is used to indicate to the autonomous vehicle a driving route from a current position to a safe position.
  • the calculation method of the escape route is as described in step 305, and is not repeated here.
  • the autonomous vehicle drives to a safe position according to the escape instruction.
  • the autonomous vehicle when the autonomous vehicle receives the escape instruction, the autonomous vehicle may drive to a safe position according to the escape instruction. In some feasible embodiments, if there is an escape route in the escape instruction, the autonomous vehicle can use its autonomous driving function, such as using millimeter wave radar and lidar, to identify obstacles around the autonomous vehicle, and to follow the escape The route heads to a safe location. If the escape instruction has no escape route, the autonomous vehicle can also obtain a driving route from the current location to a safe location through the navigation system, which is not limited here.
  • the autonomous driving function such as using millimeter wave radar and lidar
  • an embodiment of the present application provides a server 400 including:
  • the transceiver module 401 is configured to receive a danger alarm sent by the intelligent mobile robot, where the danger alarm is used to indicate that the intelligent mobile robot detects a dangerous event.
  • the processing module 402 is configured to determine a safe position for the intelligent mobile robot, where the safe position is a position where the dangerous event does not currently occur.
  • the transceiver module is further configured to send an escape instruction to the intelligent mobile robot, where the escape instruction includes the safe position.
  • the intelligent mobile robot can travel to a safe location according to the escape instructions, it can stay away from dangerous events and reduce the risk of injury.
  • the transceiver module 401 is further configured to receive the current position of the intelligent mobile robot sent by the intelligent mobile robot.
  • the escape instruction further includes an escape route, and the escape route is used to indicate to the intelligent mobile robot a traveling route from the current location to the safe location.
  • the intelligent mobile robot Because the intelligent mobile robot has a clear travel route, it can follow the travel route to a safe location to escape danger.
  • processing module 402 is specifically configured to:
  • the safe position is determined for the intelligent mobile robot according to a parking space database, which includes at least one parking space and usage of each parking space in the at least one parking space, and the usage situation is not used Or used, the safe location is a parking space in the parking space database that is unused.
  • the determination of the safe position is realized, so that the intelligent mobile robot can travel to the safe position when encountering danger.
  • the processing module 402 performs at least the following steps:
  • the use situation is determined as an unused parking space, and an unused parking space set is obtained.
  • a parking space is determined from the unused parking space set as the safe position.
  • the processing module 402 performs at least the following steps:
  • the distance from the current position to each parking space in the unused parking space set is calculated separately.
  • a parking space with the shortest distance from the current location in the unused parking space set is determined as the safe location.
  • the safe position can be determined effectively.
  • the processing module 402 performs at least the following steps:
  • the time taken to drive from the current location to each of the unused parking spaces in the set is calculated.
  • the shortest parking space used from the current location is the safe location.
  • the safe position can be effectively determined.
  • the processing module 402 is further configured to modify the usage of the safe location in the parking space information database to be used, so that the parking space information database can be updated in time, so that the information in the parking space information database is more updated. Prepare, use experience is better.
  • the processing module 402 is further configured to update the parking space information database using the current location if the current location is a parking space in the parking space information database, so that the updated parking space information database Indicates that the use situation of the parking space corresponding to the current position is used, so that the parking space information database can be updated in time, so that the information of the parking space database is more prepared and the use experience is better.
  • the server in the embodiment of the present application is described above, and the intelligent mobile robot in the embodiment of the present application is described below.
  • an intelligent mobile robot 500 including:
  • the monitoring module 501 is configured to monitor the surrounding environment to determine whether a dangerous event occurs.
  • the transceiver module 502 is configured to send a dangerous alarm to the server when the dangerous event is determined to occur, and the dangerous alarm is used to instruct the monitoring module to detect the dangerous event, so that the server determines a safe position for the intelligent mobile robot, and The location is where the hazardous event has not occurred.
  • the transceiver module 502 is further configured to receive an escape instruction sent by the server, and the escape instruction includes the safe location, so the intelligent mobile robot can travel to the safe location according to the escape instruction, thereby avoiding dangerous events and reducing the risk of injury.
  • the intelligent mobile robot 500 further includes:
  • An automatic driving module 503 is configured to drive to the safe position according to the escape instruction, thereby staying away from dangerous events and reducing the risk of injury.
  • the transceiver module 502 is further configured to send the current position of the intelligent mobile robot to the server.
  • the escape instruction also includes an escape route.
  • the escape route is used to indicate to the intelligent mobile robot 500 a driving route from the current position to the safe location. Through a clear driving route, the intelligent mobile robot 500 can follow Drive the route to a safe location to escape the danger.
  • the monitoring module 501 is specifically configured to:
  • the surrounding environment is monitored by infrared sensors and / or smoke sensors to determine if a fire event has occurred.
  • the surrounding environment is monitored by an angle sensor to determine whether a seismic event has occurred.
  • the intelligent mobile robot when a dangerous event occurs, since the intelligent mobile robot can send a danger alert to the server, since the server can determine the safe position for the intelligent mobile robot that no dangerous event currently occurs, and send the intelligent mobile robot including the safe position Escape instructions, so the intelligent mobile robot can travel to a safe location according to the escape instructions, thereby staying away from dangerous events and reducing the risk of injury.
  • an embodiment of the present application further provides a server 600 including a transceiver 601, a processor 602, and a memory 603.
  • the transceiver 601, the processor 602, and the memory 603 are connected through a bus 604.
  • the transceiver 601 is configured to receive a danger alarm sent by an intelligent mobile robot, and the danger alarm is used to indicate that the intelligent mobile robot detects a dangerous event.
  • the memory 603 is configured to store a program, and the processor 602 calls the program stored in the memory to determine a safe position for the intelligent mobile robot, where the safe position is a position where the dangerous event does not currently occur.
  • the transceiver 601 is further configured to send an escape instruction to the intelligent mobile robot, where the escape instruction includes the safe position.
  • an embodiment of the present application further provides an intelligent mobile robot 700 including a transceiver 701, a processor 702, and a memory 703.
  • the transceiver 701, the processor 702, and the memory 703 are connected through a bus 704.
  • the memory 703 is configured to store a program, and the processor 702 calls the program stored in the memory to monitor a surrounding environment to determine whether a dangerous event occurs.
  • the transceiver 701 is further configured to send a danger alarm to the server when the dangerous event is determined to occur, and the danger alarm is used to instruct the intelligent mobile robot to detect the dangerous event, so that the server determines a safe location for the intelligent mobile robot.
  • the safe location is a location where the dangerous event does not currently occur, and an escape instruction sent by the server is received, and the escape instruction includes the safe location.
  • the transceivers 601/701 include ZigBee, Wi-Fi, LTE (Long Term Evolution, Long Term Evolution), RFID (Radio Frequency Identification), NFC (Near Field Communication, Near Field Communication), and infrared One or more combinations of UWB (Ultra Wideband, ultra wideband), which are not limited here; may also include communication interfaces under the EIA-RS-232C standard, that is, data terminal equipment (English: Data Terminal Equipment, abbreviation: DTE ) And data communication equipment (English: Data Circuit-terminating Equipment, abbreviation: DCE) communication interface of the serial binary data exchange interface technology standard, can also include the communication interface under the RS-485 protocol, which is not limited here.
  • the processors 602/702 may be a central processing unit (English: central processing unit, abbreviation: CPU), a network processor (English: network processor, abbreviation: NP), or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processors 602/702 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (English: application-specific integrated circuit (abbreviation: ASIC)), a programmable logic device (English: programmable logic device (abbreviation: PLD)), or any combination thereof.
  • the PLD may be a complex programmable logic device (English: complex programmable device, abbreviation: CPLD), a field programmable logic gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array) logic, abbreviation: GAL) or any combination thereof.
  • the memory 603/703 may include volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 603/703 may also include non-volatile memory (English: non-volatile memory, such as flash memory (English: flash memory), hard disk (English: hard disk drive (abbreviation: HDD)) or solid-state hard disk (English: solid-state drive (abbreviation: SSD)); memory 603/703 also Any combination of the above types of memories may be included, which is not limited herein.
  • volatile memory such as a random access memory (English: random-access memory, abbreviation: RAM)
  • non-volatile memory such as flash memory (English: flash memory), hard disk (English: hard disk drive (abbreviation: HDD)) or solid-state hard disk (English: solid-state drive (abbreviation: SSD)
  • memory 603/703 also Any combination of the above types of memories may be included, which is not limited herein.
  • the memory 603/703 may also be used to store program instructions, and the processor 602/702 may call the program instructions stored in the memory 603/703 to execute one or more of the embodiments shown in FIG. 2 or FIG. 3 Steps, or alternative implementations therein.
  • an embodiment of the present application provides a chip system including a processor, which is configured to support a server or an intelligent mobile robot to implement the foregoing information processing method.
  • the chip system further includes a memory. This memory is used to store the necessary program instructions and data of the server or the intelligent mobile robot.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices, which are not specifically limited in the embodiments of the present application.
  • the intelligent mobile robot when a dangerous event occurs, can send a danger alert to the server, because the server can determine the safe position for the intelligent mobile robot that no dangerous event currently occurs, and send the intelligent mobile robot including the safe position. Escape instructions, so the intelligent mobile robot can travel to a safe location according to the escape instructions, thereby staying away from dangerous events and reducing the risk of injury.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • wire for example, coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless for example, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • a chip including a processing unit and a storage unit, wherein the storage unit is configured to store a computer operation instruction, and the processing unit is configured to execute the foregoing method steps by calling the computer operation instruction The information processing method.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present invention essentially or part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium , Including a number of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present invention.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Robotics (AREA)
  • Public Health (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Traffic Control Systems (AREA)
  • Alarm Systems (AREA)

Abstract

一种信息处理方法、服务器和智能移动机器人,用于当智能移动机器人(102)遇到危险时,通过与服务器(101)的信息交互,实现智能移动机器人(102)逃离现场到安全的地方的目的。该方法包括:服务器(101)接收智能移动机器人(102)发送的危险告警,危险告警用于指示智能移动机器人(102)监测到危险事件;服务器(101)为智能移动机器人(102)确定安全位置,安全位置为当前没有发生危险事件的位置;服务器(101)向智能移动机器人(102)发送逃离指示,逃离指示包括该安全位置。

Description

一种信息处理方法、服务器和智能移动机器人
本申请要求于2018年09月26日提交中国专利局、申请号为201811124563.6、发明名称为“一种信息处理方法、服务器和智能移动机器人”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及一种信息处理方法、服务器和智能移动机器人。
背景技术
智能移动机器人是内置人工智能、具有移动能力的机器人。智能移动机器人内置的人工智能可以通过传感器、处理器、遥控操作器和自动控制的移动载体组成的智能系统实现。通过人工智能,智能移动机器人可以具备环境感知、动态决策与规划、行为控制与执行等多种功能。由于智能移动机器人具有移动功能,在从事危险、恶劣(如辐射、有毒等)环境下作业和人所不及的(如宇宙空间、水下等)环境作业方面,比一般机器人有更大的机动性、灵活性。
在一些可行的实施例中,智能移动机器人可以根据移动方式分为轮式移动机器人(如自动驾驶车)、步行移动机器人(单腿式、双腿式和多腿式)、履带式移动机器人、爬行机器人、蠕动式机器人、飞行式机器人(如自动飞行无人机)和游动式机器人等类型。以自动驾驶车为例,自动驾驶车可以自动规划行车的行驶路线,通过车载传感系统感知道路环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶,直至预定目的地。
自从自动驾驶车上路以来,对于自动驾驶的研究越来越多,如从人工智能的角度进行研究。与此同时传统车厂和互联网公司纷纷成立移动服务公司,探索自动驾驶车的载客服务,提供有竞争力的移动出行服务。当下,自动驾驶车不仅可以自动行驶,还可以自动寻找停车位,自动寻找充电桩,或者自动接人等。但是,当遇到如火灾等可能会对自动驾驶车造成损伤的情况时,自动驾驶车却没有相应的应对机制。
发明内容
本发明实施例提供了一种信息处理方法、服务器和智能移动机器人,用于当智能移动机器人遇到危险时,通过与服务器的信息交互,实现智能移动机器人逃离现场到安全的地方的目的。
本申请第一方面提供了一种信息处理方法,包括:
服务器接收智能移动机器人发送的危险告警后,该危险告警用于指示该智能移动机器人监测到危险事件,为该智能移动机器人确定安全位置,该安全位置为当前没有发生该危险事件的位置,接着向该智能移动机器人发送逃离指示,该逃离指示包括该安全位置,因此智能移动机器人可以根据逃离指示向安全位置行驶,从而远离危险事件,降低受损伤的风险。
以自动驾驶车为例,当自动驾驶车遇到危险事件时,如自动驾驶车停靠在停车场时,遇到火灾、水灾或地震,可以向服务器发送危险告警。服务器接收到自动驾驶车发送的危险告警后,可以首先寻找没有发生危险事件的安全位置,如另一个停车场,确定停车场的可用的车位,作为安全位置,并向自动驾驶车返回包括安全位置的逃离指示。则自动驾驶车可以通过导航功能确定到达安全位置的行驶路线,遵循行驶路线向安全位置行驶。
在一些可行的实施例中,该服务器接收智能移动机器人发送的危险告警之前,还包括:
该服务器接收该智能移动机器人发送该智能移动机器人的当前位置,该逃离指示还包括逃离路线,该逃离路线用于向该智能移动机器人指示从该当前位置行驶至该安全位置的行驶路线,通过明确的行驶路线,智能移动机器人可以遵循行驶路线行驶到安全位置,以逃离危险。
在本申请实施例中,当智能移动机器人在行驶状态的时候,智能移动机器人的当前位置可能随着时间而改变,则若智能移动机器人周期性地向服务器发送自身的当前位置的信息,则服务器可以周期性地获取智能移动机器人的最新的当前位置,若周期为1秒或0.1秒,则可以视为服务器“随时”获取智能移动机器人的最新的当前位置。
在一些可行的实施例中,本申请的方法适用的范围广泛,该智能移动机器人包括自动驾驶车和自动飞行无人机。自动驾驶车又称无人驾驶车、电脑驾驶车、或轮式移动机器人,是一种人工智能实现的无人驾驶的智能汽车,自动驾驶车可以在没有任何人类主动操作的情况下,实现自动安全地行驶。自动驾驶无人机属于无人机的一种,自动驾驶无人机可以被遥控,也可以自动驾驶,只要无人机具备自动驾驶的功能,就可以称为自动驾驶无人机。
在一些可行的实施例中,若该智能移动机器人为该自动驾驶车,该服务器可以根据车位信息库为该智能移动机器人确定该安全位置,该车位信息库包括至少一个车位以及该至少一个车位中各个车位的使用情况,该使用情况为未使用或已使用,该安全位置为该车位信息库中使用情况为未使用的一个车位,通过车位信息库以及对车位信息库的管理,实现了对安全位置的确定,使得智能移动机器人可以在遇到危险时可以向安全位置行驶。
在一些可行的实施例中,安全位置可以是郊外,也可以是停车场中的车位,此处不做限定。以安全位置为停车场中的车位的情况为例,在一些可行的实施例中,服务器可以从车位信息库中确定没有危险事件的停车场中使用情况为未使用的车位,作为安全位置。具体的,由于车位信息库包括至少一个车位以及至少一个车位中各个车位的使用情况,使用情况为未使用或已使用,则服务器可以首先根据车位信息库中使用情况为未使用的车位,得到未使用车位集合,若未使用车位集合中的车位不少于一个,则服务器从未使用车位集合中确定一个车位,作为安全位置。在一些可行的实施例中,若未使用车位集合中的车位少于一个,则可以等待预设时间,直到未使用车位集合中的车位不少于一个,或者从其他方式确定安全位置,此处不做限定。
具体的,该服务器根据该车位信息库确定使用情况为未使用的车位,得到未使用车位集合,若该未使用车位集合中的车位不少于一个,则该服务器从该未使用车位集合中确定一个车位,作为该安全位置。
在一些可行的实施例中,若该未使用车位集合中的车位多于一个,该服务器分别计算该当前位置到该未使用车位集合中的每一个车位的距离,该服务器确定该未使用车位集合 中离该当前位置的距离最短的车位,作为该安全位置,由于以当前位置和车位之间的距离为依据,可以有效地确定安全位置。
在一些可行的实施例中,该距离为直线距离或驾驶距离,该直线距离为以两个位置分别作为端点的线段的长度,该驾驶距离为该智能移动机器人在两个位置之间的行驶路线的路程。
在一些可行的实施例中,若该未使用车位集合中的车位多于一个,该服务器获取当下的交通情况,该服务器根据该当下的交通情况计算从该当前位置行驶到该未使用车位集合中的每一个车位所使用的时长,该服务器确定从该当前位置行驶到达的所使用的时长最短的车位为该安全位置,由于以当前位置和车位之间的行驶的时长为依据,可以有效地确定安全位置。
在一些可行的实施例中,该服务器向该智能移动机器人发送逃离指示之后,还包括:该服务器在该车位信息库中将该安全位置的使用情况修改为已使用,以使得可以及时更新车位信息库,使得车位信息库的信息更准备,使用体验更好。
在一些可行的实施例中,该服务器接收该智能移动机器人发送该智能移动机器人的当前位置之后,还包括:若该当前位置为该车位信息库中的一个车位,则该服务器使用该当前位置更新该车位信息库,以使得更新后的该车位信息库指示该当前位置所对应的车位的使用情况为已使用,以使得可以及时更新车位信息库,使得车位信息库的信息更准备,使用体验更好。
在一些可行的实施例中,该安全位置为停车场中的车位,和/或,该当前位置为停车场中的车位。
在一些可行的实施例中,该危险事件包括火灾事件、水灾事件和地震事件。
本申请第二方面提供了一种信息处理方法,包括:
智能移动机器人对周围环境进行监测,以确定是否发生危险事件,当确定发生该危险事件时,该智能移动机器人向服务器发送危险告警,该危险告警用于指示该智能移动机器人监测到该危险事件,以使得该服务器为该智能移动机器人确定安全位置,该安全位置为当前没有发生该危险事件的位置,该智能移动机器人接收该服务器发送的逃离指示,该逃离指示包括该安全位置,因此智能移动机器人可以根据逃离指示向安全位置行驶,从而远离危险事件,降低受损伤的风险。
在一些可行的实施例中,该智能移动机器人接收该服务器发送的逃离指示之后,还包括:该智能移动机器人根据该逃离指示向该安全位置行驶,从而远离危险事件,降低受损伤的风险。
在一些可行的实施例中,该智能移动机器人向服务器发送危险告警之前,还包括:该智能移动机器人向服务器发送该智能移动机器人的当前位置,该逃离指示还包括逃离路线,该逃离路线用于向该智能移动机器人指示从该当前位置行驶至该安全位置的行驶路线,通过明确的行驶路线,智能移动机器人可以遵循行驶路线行驶到安全位置,以逃离危险。
在一些可行的实施例中,该智能移动机器人包括自动驾驶车和自动飞行无人机,若该智能移动机器人为该自动驾驶车,该安全位置为停车场中的车位,和/或,该当前位置为停车场中的车位,该危险事件包括火灾事件、水灾事件和地震事件。
在一些可行的实施例中,该智能移动机器人对周围环境进行监测,以确定是否发生危险事件包括:该智能移动机器人通过红外传感器和/或烟雾传感器监测该周围环境,以确定是否发生该火灾事件;和/或,该智能移动机器人通过水面接触传感器监测该周围环境,以确定是否发生该水灾事件;和/或,该智能移动机器人通过角度传感器监测该周围环境,以确定是否发生该地震事件,以此确定监测不同危险事件的方法。
在一些可行的实施例中,智能移动机器人通过水面接触传感器监测周围环境,以确定是否发生水灾事件。在一些可行的实施例中,车辆可以内置水面接触传感器,用于当车辆进水的时候,可以关掉引擎或者其他器件,防止进一步的损害。在一些可行的实施例中,智能移动机器人中可以内置水面接触传感器,当智能移动机器人通过水面接触传感器感应到进水,且进水程度到达一定程度时,可以确定发生了水灾。需要说明的是,水灾可以由暴雨、洪水、决堤等原因产生,此处不做赘述。
在一些可行的实施例中,智能移动机器人通过角度传感器监测周围环境,以确定是否发生地震事件。在本申请实施例中,角度传感器如陀螺仪等,可以检测到当下的环境下是否一致摇晃,若摇晃程度达到一定程度,则可以确定发生了地震事件。需要说明的是,由于地震事件的发生是有轻度到重度的,当轻度地震时,如2级地震,还不会为车身造成损害,当到达地震灾害的程度时,则可能会车身造成损害,期间可能有足够时间逃离现场。
在一些可行的实施例中,智能移动机器人还可以通过无线网络接收灾难预警,当接收到灾难预警时,则确定发生危险事件,则向服务器发送危险告警。只要可以确定周围环境发生了危险事件的方式,此处不做限定。
本申请第三方面提供了一种服务器,包括:
收发模块,用于接收智能移动机器人发送的危险告警,该危险告警用于指示该智能移动机器人监测到危险事件。处理模块,用于为该智能移动机器人确定安全位置,该安全位置为当前没有发生该危险事件的位置。该收发模块,还用于向该智能移动机器人发送逃离指示,该逃离指示包括该安全位置。由于智能移动机器人可以根据逃离指示向安全位置行驶,因此可以远离危险事件,降低受损伤的风险。
在一些可行的实施例中,该收发模块,还用于接收该智能移动机器人发送该智能移动机器人的当前位置。该逃离指示还包括逃离路线,该逃离路线用于向该智能移动机器人指示从该当前位置行驶至该安全位置的行驶路线,由于具有明确的行驶路线,智能移动机器人可以遵循行驶路线行驶到安全位置,以逃离危险。
在一些可行的实施例中,该处理模块,具体用于:
若该智能移动机器人为自动驾驶车,根据车位信息库为该智能移动机器人确定该安全位置,该车位信息库包括至少一个车位以及该至少一个车位中各个车位的使用情况,该使用情况为未使用或已使用,该安全位置为该车位信息库中使用情况为未使用的一个车位,由于对获取了车位信息库以及对车位信息库的管理,实现了对安全位置的确定,使得智能移动机器人可以在遇到危险时可以向安全位置行驶。
在一些可行的实施例中,在该根据车位信息库为该智能移动机器人确该定安全位置的步骤中,该处理模块至少执行如下步骤:
根据该车位信息库确定使用情况为未使用的车位,得到未使用车位集合。若该未使用 车位集合中的车位不少于一个,则从该未使用车位集合中确定一个车位,作为该安全位置。
在一些可行的实施例中,在该从该未使用车位集合中确定一个车位,作为该安全位置的步骤中,该处理模块至少执行如下步骤:
若该未使用车位集合中的车位多于一个,分别计算该当前位置到该未使用车位集合中的每一个车位的距离。确定该未使用车位集合中离该当前位置的距离最短的车位,作为该安全位置,由于以当前位置和车位之间的距离为依据,可以有效地确定安全位置。
在一些可行的实施例中,在该从该未使用车位集合中确定一个车位作为该安全位置的步骤中,该处理模块至少执行如下步骤:
若该未使用车位集合中的车位多于一个,获取当下的交通情况。根据该当下的交通情况计算从该当前位置行驶到该未使用车位集合中的每一个车位所使用的时长。确定从该当前位置行驶到达的所使用的时长最短的车位为该安全位置,由于以当前位置和车位之间的行驶的时长为依据,可以有效地确定安全位置。
在一些可行的实施例中,该处理模块,还用于在该车位信息库中将该安全位置的使用情况修改为已使用,以使得可以及时更新车位信息库,使得车位信息库的信息更准备,使用体验更好。
在一些可行的实施例中,该处理模块,还用于若该当前位置为该车位信息库中的一个车位,则使用该当前位置更新该车位信息库,以使得更新后的该车位信息库指示该当前位置所对应的车位的使用情况为已使用,以使得可以及时更新车位信息库,使得车位信息库的信息更准备,使用体验更好。
本申请第四方面提供了一种智能移动机器人,包括:
监测模块,用于对周围环境进行监测,以确定是否发生危险事件。收发模块,用于当确定发生该危险事件时,向服务器发送危险告警,该危险告警用于指示该监测模块监测到该危险事件,以使得该服务器为该智能移动机器人确定安全位置,该安全位置为当前没有发生该危险事件的位置。该收发模块,还用于接收该服务器发送的逃离指示,该逃离指示包括该安全位置,因此智能移动机器人可以根据逃离指示向安全位置行驶,从而远离危险事件,降低受损伤的风险。
在一些可行的实施例中,该智能移动机器人还包括:
自动驾驶模块,用于根据该逃离指示向该安全位置行驶,从而远离危险事件,降低受损伤的风险。
在一些可行的实施例中,该收发模块,还用于向该服务器发送该智能移动机器人的当前位置。该逃离指示还包括逃离路线,该逃离路线用于向该智能移动机器人指示从该当前位置行驶至该安全位置的行驶路线,通过明确的行驶路线,智能移动机器人可以遵循行驶路线行驶到安全位置,以逃离危险。
在一些可行的实施例中,该监测模块,具体用于:
通过红外传感器和/或烟雾传感器监测该周围环境,以确定是否发生火灾事件。
和/或,通过水面接触传感器监测该周围环境,以确定是否发生水灾事件。
和/或,通过角度传感器监测该周围环境,以确定是否发生地震事件。
在一些可行的实施例中,该智能移动机器人对周围环境进行监测,以确定是否发生危 险事件包括:该智能移动机器人通过红外传感器和/或烟雾传感器监测该周围环境,以确定是否发生该火灾事件;和/或,该智能移动机器人通过水面接触传感器监测该周围环境,以确定是否发生该水灾事件;和/或,该智能移动机器人通过角度传感器监测该周围环境,以确定是否发生该地震事件,以此确定监测不同危险事件的方法。
在一些可行的实施例中,智能移动机器人通过水面接触传感器监测周围环境,以确定是否发生水灾事件。在一些可行的实施例中,车辆可以内置水面接触传感器,用于当车辆进水的时候,可以关掉引擎或者其他器件,防止进一步的损害。在一些可行的实施例中,智能移动机器人中可以内置水面接触传感器,当智能移动机器人通过水面接触传感器感应到进水,且进水程度到达一定程度时,可以确定发生了水灾。需要说明的是,水灾可以由暴雨、洪水、决堤等原因产生,此处不做赘述。
在一些可行的实施例中,智能移动机器人通过角度传感器监测周围环境,以确定是否发生地震事件。在本申请实施例中,角度传感器如陀螺仪等,可以检测到当下的环境下是否一致摇晃,若摇晃程度达到一定程度,则可以确定发生了地震事件。需要说明的是,由于地震事件的发生是有轻度到重度的,当轻度地震时,如2级地震,还不会为车身造成损害,当到达地震灾害的程度时,则可能会车身造成损害,期间可能有足够时间逃离现场。
在一些可行的实施例中,智能移动机器人还可以通过无线网络接收灾难预警,当接收到灾难预警时,则确定发生危险事件,则向服务器发送危险告警。只要可以确定周围环境发生了危险事件的方式,此处不做限定。
本申请的第五方面提供了一种服务器,包括收发器、处理器和存储器。
该收发器,用于接收智能移动机器人发送的危险告警,该危险告警用于指示该智能移动机器人监测到危险事件。
该存储器,用于存储程序;该处理器调用该存储器存储的程序,用于为该智能移动机器人确定安全位置,该安全位置为当前没有发生该危险事件的位置。
该收发器,还用于向该智能移动机器人发送逃离指示,该逃离指示包括该安全位置。
本申请的第六方面提供了一种智能移动机器人,包括收发器、处理器和存储器。
其中,该存储器用于存储程序,该处理器调用该存储器存储的程序,用于对周围环境进行监测,以确定是否发生危险事件,当确定发生该危险事件时。该收发器,用于向服务器发送危险告警,该危险告警用于指示该智能移动机器人监测到该危险事件,以使得该服务器为该智能移动机器人确定安全位置,该安全位置为当前没有发生该危险事件的位置,接收该服务器发送的逃离指示,该逃离指示包括该安全位置。
本申请的第七方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面任意一种可能实现方式所述的信息处理方法。
本申请的第八方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面任意一种可能实现方式所述的信息处理方法。
本申请实施例第九方面提供一种芯片系统,该芯片系统包括处理器,用于支持服务器实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功能。在一种可能的设 计中,芯片系统还包括存储器,存储器,用于保存执行功能网元必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第十方面提供一种芯片系统,该芯片系统包括处理器,用于支持智能移动机器人实现上述第二方面或第二方面任意一种可能的实现方式中所涉及的功能。在一种可能的设计中,芯片系统还包括存储器,存储器,用于保存控制功能网元必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
从以上技术方案可以看出,本发明实施例具有以下优点:
当发生危险事件时,智能移动机器人可以向服务器发送危险告警,由于服务器可以为智能移动机器人确定当前没有发生危险事件的安全位置,并向智能移动机器人发送包括安全位置的逃离指示,因此智能移动机器人可以根据逃离指示向安全位置行驶,从而远离危险事件,降低受损伤的风险。
附图说明
图1为一种信息交互系统的实施例示意图;
图2为一种信息处理方法的实施例示意图;
图3-1为一种信息处理方法的另一实施例示意图;
图3-2为行驶路线的实施例示意图;
图4为一种服务器的实施例示意图;
图5为一种智能移动机器人的实施例示意图;
图6为一种服务器的实施例示意图;
图7为一种智能移动机器人的实施例示意图。
具体实施方式
本发明实施例提供了一种信息处理方法、服务器和智能移动机器人,用于当智能移动机器人遇到危险时,通过与服务器的信息交互,实现智能移动机器人逃离现场到安全的地方的目的。
为了使本领域技术人员更好地理解本申请实施方式方案,下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分的实施方式,而不是全部的实施方式。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施方式能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请实施例中,智能移动机器人是内置人工智能、具有移动能力的机器人。智能移动机器人内置的人工智能可以通过由传感器、处理器、遥控操作器和自动控制的移动载 体组成的智能系统实现。通过人工智能,智能移动机器人可以具备环境感知、动态决策与规划、行为控制与执行任务等多种功能。同时智能移动机器人可以通过移动功能代替人类在危险恶劣的环境(如辐射、有毒等)下进行作业,或在人类所不能及的环境(如宇宙空间、水下等)下进行作业。随着人工智能的发展,智能移动机器人的应用范围大为扩展,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在城市安全、国防和空间探测领域等有害与危险场合得到很好的应用。
智能移动机器人可以根据移动方式分为轮式移动机器人(如自动驾驶车)、步行移动机器人(单腿式、双腿式和多腿式)、履带式移动机器人、爬行机器人、蠕动式机器人、飞行式机器人(如自动飞行无人机)和游动式机器人等类型。
当下,关于智能移动机器人的各方面的研究越来越多,如从人工智能的发明进行的研究。以自动驾驶车为例,自动驾驶车又称无人驾驶车、电脑驾驶车、或轮式移动机器人,是一种人工智能实现的无人驾驶的智能汽车,自动驾驶车可以在没有任何人类主动操作的情况下,实现自动安全地行驶。当前传统车厂和互联网公司纷纷成立移动服务公司,探索自动驾驶车的载客服务,提供有竞争力的移动出行服务,实现了自动驾驶车多种功能,不仅可以自动行驶,还可以自动寻找停车位,自动寻找充电桩,或者自动接人等。
自动驾驶车可以通过人工智能完成既定的任务,但是,当遇到如火灾等可能会对自动驾驶车造成损伤的情况时,却没有应对机制。如在停车场中遇到火灾事件时,自动驾驶车却没有相应的应对机制,可能会对自动驾驶车造成一定的损伤。
在本申请实施例中,当发生危险事件时,智能移动机器人可以通过向服务器发送危险告警,以使得服务器为智能移动机器人确定当前没有发生危险事件的安全位置,并向智能移动机器人发送包括安全位置的逃离指示,因此智能移动机器人可以根据逃离指示向安全位置行驶,从而远离危险事件,降低受损伤的风险。
以自动驾驶车为例,当自动驾驶车遇到危险事件时,如自动驾驶车停靠在停车场时,遇到火灾、水灾或地震,可以向服务器发送危险告警。服务器接收到自动驾驶车发送的危险告警后,可以首先寻找没有发生危险事件的安全位置,如另一个停车场,确定停车场的可用的车位,作为安全位置,并向自动驾驶车返回包括安全位置的逃离指示。则自动驾驶车可以通过导航功能确定到达安全位置的行驶路线,遵循行驶路线向安全位置行驶。
以智能移动机器人为自动驾驶无人机为例进行说明。自动驾驶无人机属于无人机的一种,自动驾驶无人机可以被遥控,也可以自动驾驶,只要无人机具备自动驾驶的功能,就可以称为自动驾驶无人机。在一些场景中,如在自动驾驶无人机在私人的专用园区内,如自动驾驶无人机的生产厂家的生活或研发的园区中,自动驾驶无人机可以实现自动飞行,执行任务,以及自动返航,回到专用的或公用的位置中,如可充电的存储柜,并实现自动连接充电。当自动驾驶无人机在执行任务图中遇到危险事件时,或火灾,或者没电,或者局部受损,自动驾驶无人机可以自动返航,返回存储柜中,充电、等待修理或者等待下一次任务。在一些可行的实施例中,若自动驾驶无人机在存储柜中遇到危险事件时,也可以向服务器发送危险告警,则服务器可以为自动驾驶无人机安排另一个存储柜,作为安全位置,以使得自动驾驶无人机可以飞向安全位置。
由于智能移动机器人种类繁多,在此不一一列举。
请参考图1,为信息交互系统100,包括服务器101和智能移动机器人102,其中,服务器101与智能移动机器人102通过无线网络进行通信连接。
在本申请实施例中,服务器101可以包括一个或一个以上中央处理器(central processing units,CPU)(例如,一个或一个以上处理器)和存储器,一个或一个以上存储应用程序或数据的存储介质(例如一个或一个以上海量存储设备)。其中,存储器和存储介质可以是短暂存储或持久存储。存储在存储介质的程序可以包括一个或一个以上模块,每个模块可以包括对服务器101中的一系列指令操作。更进一步地,中央处理器可以设置为与存储介质通信,在服务器101上执行存储介质中的一系列指令操作。在一些可行的实施例中,服务器101还可以包括一个或一个以上电源,一个或一个以上有线或无线网络接口,一个或一个以上输入输出接口,和/或,一个或一个以上操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等,此处不做限定。
在一些可行的实施例中,服务器101可以为云端服务器。所谓云端服务器,即为使用了云端技术的服务器。云端技术通过集软件搜索、下载、使用、管理、备份等多种功能为一体软件平台,将各类常用软件都能够在独立的虚拟化环境中被封装起来,从而使应用软件不会与系统产生耦合,达到绿色使用软件的目的。在一些可行的实施例中,服务器101还可以为其他类型的服务器,此处不做限定。
在本申请实施例中,智能移动机器人102可以内置定位导航模块(如全球定位导航系统/北斗卫星导航系统/伽利略卫星导航系统/格罗斯纳导航系统)、视觉模块、雷达模块、计算模块、电池模块和无线模块,智能移动机器人102可以根据需要内置上述的一个或多个模块,也可以包括更多的模块,此处不做限定。其中,定位导航模块可以实现智能移动机器人102的精准定位,包含静止时或运动时过程中的智能移动机器人102的位置;视觉模块是指智能移动机器人102的诸如单目、双目或者多目视觉系统,用于识别智能移动机器人102辆周边的环境要素;雷达模块是指智能移动机器人102的毫米波雷达、激光雷达,用于识别智能移动机器人102辆周边的障碍物;计算模块是指智能移动机器人102的计算单元,用于综合视觉模块、雷达模块和定位导航模块的数据,并输出引导智能移动机器人102的行驶;电池模块是指智能移动机器人102的动力系统,也可以是内燃机的动力系统替换,此处不受限;无线模块是指服务器101和智能移动机器人102的数据传输通道。
通过上述多个模块,智能移动机器人102可以获取周围的交通状况的相应数据,并上传至服务器101,以使得服务器101可以处理有关周围地形的大量信息,并向智能移动机器人102返回相关的信息或指令,智能移动机器人102根据相关的信息或指令进行安全地行驶。由于通过服务器101对数据的处理,智能移动机器人102的行驶模式可以使得交通事故发生率下降,行驶过程中更安全。
需要说明的是,不同类型的智能移动机器人,可以具备上述的与智能移动机器人102所具备的功能中的一个或多个,还可以具备其他特殊的功能,如自动飞行无人机具备飞行的能力,此处不做限定。
请参考图2,在本申请实施例中提供了一种信息处理方法,包括:
201、智能移动机器人对周围环境进行监测,以确定是否发生危险事件。
202、当确定发生危险事件时,智能移动机器人向服务器发送危险告警,危险告警用于 指示智能移动机器人监测到危险事件。
203、服务器为智能移动机器人确定安全位置,安全位置为当前没有发生危险事件的位置。
204、服务器向智能移动机器人发送逃离指示,逃离指示包括安全位置。
在本申请实施例中,当发生危险事件时,智能移动机器人可以向服务器发送危险告警,由于服务器可以为智能移动机器人确定当前没有发生危险事件的安全位置,并向智能移动机器人发送包括安全位置的逃离指示,因此智能移动机器人可以根据逃离指示向安全位置行驶,从而远离危险事件,降低受损伤的风险。
具体的,智能移动机器人以自动驾驶车为例,请参考图3-1,在本申请实施例中提供了一种信息处理方法,包括:
301、自动驾驶车向服务器发送自动驾驶车的当前位置。
在本申请实施例中,当自动驾驶车在行驶状态的时候,自动驾驶车的当前位置随着时间而改变,则若自动驾驶车周期性地向服务器发送自身的当前位置,则服务器可以周期性地获取自动驾驶车的最新的当前位置,若周期为1秒或0.1秒,则服务器可以随时获取自动驾驶车的最新的当前位置。
在本申请实施例中,自动驾驶车可以有两种状态,分别为行驶状态和停靠状态。其中,行驶状态是指自动驾驶车开启驾驶模式,通过内置的动力系统(如电力或汽油)发动马达,运动视觉系统等使得自动驾驶车相对于地面为参照物进行位移,如在公路或山路上行驶的状态。
在一些可行的实施例中,当自动驾驶车在公路上行驶时,由于红灯的关系停靠在红绿灯前,由于启动了行驶模式,即开动了马达,运用了视觉系统等,停留在红灯前只是为了遵守交通规则,可以理解为仍然在行驶状态。
在一些可行的实施例中,以具体的情况和不同的定义确定是否为行驶状态,如自动驾驶车被载在货车上,货车载公路上行驶,如自动驾驶车由于违反停车条例或者受损上被拖车拖走,此处不做限定。
在本申请实施例中,上述的停靠状态可以为停靠在停车场的车位上,也停靠在私人车位上,也可以停靠在私人车库中,或者其他非行驶状态,均可视为停靠状态,此处不做限定。
在一些可行的实施例中,自动驾驶车的当前位置的表示方式可以为坐标,如坐标可以为以地球的参考系的坐标。具体的,若以地球为参考系的坐标,可以以经度作为x轴(如正方向为北向),以纬度作为y轴(如正方向为东向),引力方向为z轴(如正方向为上),以地表的某一点或地心为0点,得到地球上的任意一个位置的坐标(x,y,z)。在一些可行的实施例中,还可以以城市、省份或国家为参考系的坐标,以经度作为x轴,以纬度作为y轴,引力方向为z轴,以城市、省份或国家中的某一点(如市政府)为0点,得到城市、省份或国家上的任意一个位置的坐标,如:A市(x,y,z)。在一些可行的实施例中,还可以以其他方式表示的坐标,此处不做限定。
以下举例说明,请参考表1:
车辆编号 坐标
001 (x1,y1,z1)
表1
如表1所示,车辆编号为001的车辆的坐标为(x1,y1,z1)。
在一些可行的实施例中,自动驾驶车的当前位置的坐标可以为自动驾驶车上的定位系统的器件的位置(如GPS或者其他定位系统)的坐标。如定位器,可以放在车头,或者车尾的定位器,向服务器发送定位信号。在一些可行的实施例中,还可以通过定位器确定自动驾驶车所停靠的位置所占的空间。如预设定位器的正方向,正方向设置为车头方向,则车头方向相反为车尾方向,车头方向逆时针90°为左,车头方向顺时针90°为右方向,引力方向为下,引力方向相反为上。当接收到当前位置的坐标时,则可以确定坐标往车头方向、车尾方向、左、右、上和下分别移动预设距离,得到一个具有体积或者面积的空间,作为车位的位置。如通过自动驾驶车的定位器获取的坐标为(x1,y1,z1),定位器放在车中心的位置,x轴的正方向为车头方向,假设定位器到车头和车尾的距离分别是1.5米,到左车门和右车门的距离分别为0.6米,到车顶和车底的位置分别为0.7米,则确定自动驾驶车的位置为{(x,y,z)|x1-1.5<x<x1+1.5,y1-0.6<y<y1+0.6,z1-0.0.7<z<z1-0.0.7},是一个具有体积的空间。在一些可行的实施例中,车位的坐标还可以有其他表示方法,此处不做限定。
在一些可行的实施例中,当自动驾驶车处于停靠状态时,若自动驾驶车停靠在停车场中车位中,则当前位置为停车场中的车位,则自动驾驶车可以向服务器发送停车场中的车位,作为当前位置。具体的,车位的表示方法为停车场名、停车场地址、停车场区域、楼层、行号列号、车位编号等信息,此处不做限定。需要说明的是,停车场的车位可以与坐标对应,使得车位可以使用坐标表示,此处不做限定。
以下举例说明,请参考表2:
车位编号 坐标 停车场区域 楼层 停车场 车辆编号 使用情况
1001 (x1,y1,z1) A1 1 A 001 已使用
表2
如表2所示,自动驾驶车的编号为001,作为当前位置的车位为:停车场名为A,楼层为1楼,停车场区域为A1,坐标为(x1,y1,z1),车位编号为1001,由于车辆编号为001的车辆使用了,所以车位的使用情况为“已使用”。需要说明的是,坐标(x1,y1,z1)可以是预先在停车场的车位上确定好的坐标,也可以是自动驾驶车通过导航系统确定的坐标,此处不做限定。在一些可行的实施例中,自动驾驶车可以通过与停车场的服务设备进行信息交互中获取分配的车位以及车位的信息,也可以通过其他方式,此处不做限定。
需要说明的是,本身请实施例所述的停车场是指提供专门的空间,以供车辆停放的场所。在一些可行的实施例中,停车场中可以包括多个车位,其中每一个车位在一个时间点上仅供一部车使用。
需要说明的是,停车场可以为公共停车场、专用停车场和道路停车场。其中,公共停车场是根据城市规划建造以及公共建筑配套专供社会车辆停放的(露天或室内)停车场。 而专用停车场是指投资者在路外建造的停车场地,专供本单位、本居住小区车辆停放的场所,一般不对外开放。在一些可行的实施例中,专用停车场也可以为商场或者酒店等营业性质的场所根据用户的消费而提供的免费停车场。道路停车场亦可称为公共停车区域,是指允许停车范围有限,规定停放时间有限的情况下,只能在非交通高峰时段,又不影响交通畅通的路段(一般设在未贯通的断头路段)设置,必须随着市政工程建设和动态交通的变化而调整的停车场。
302、服务器使用所述当前位置更新车位信息库,以使得更新后的该车位信息库指示该当前位置的使用情况为已使用。
在一些可行的实施例中,服务器中可以具有车位信息库,车位信息库中可以包括至少一个车位以及至少一个车位中各个车位的使用情况,其中,使用情况为未使用或已使用。在一些可行的实施例中,车位信息库中的车位可以为只服务自动驾驶车的车位,也可以为自动驾驶车和非自动驾驶车均可服务的车位,此处不做限定。需要说明的是,可以服务自动驾驶车的车位,可以设置有充电桩,以使得使用电力的自动驾驶车在停靠在车位上时,可以同时进行充电。在一些可行的实施例中,车位信息库中的车位可以分布在整个小镇、城市、省或者国家,甚至全世界,此处不做限定。
在一些可行的实施例中,车位信息库中的车位可以来源于服务器的后台人员的更新录入,也可以通过不同的停车场的服务设备上传数据获得。在一些可行的实施例中,当自动驾驶车处于停靠状态时,向服务器发送当前位置,若自动驾驶车停靠较久(如1小时,以排除如等待红绿灯或在加油站加油的情况),则服务器可以确定自动驾驶车停靠的位置为一个车位。在一些可行的实施例中,自动驾驶车进入停靠状态后,确定停靠的为停车场中的一个车位,向服务器发送当前位置时,向服务器知会当前停靠在停车场的一个车位上。车位信息库的获取还可以有其他方式,此处不做限定。
在一些可行的实施例中,并非所有自动驾驶车都来自同一家厂商,不是同一家厂商的自动驾驶车可能不会接受同一个服务器的服务,则本申请实施例中所述的服务器并不能服务所有自动驾驶车,则若其他厂商的自动驾驶车停靠在某个车位上,有可能不会向本申请实施例中所述的服务器发送当前位置。为此,在本申请实施例中,不同家的厂商的服务器可以共享数据,以使得当其他厂商的服务器接收其他自动驾驶车发送的当前位置时,本申请实施例中所述的服务器可以从其他厂商的服务器中获取相关的信息,以及时并准确地更新车位信息库。
在本申请实施例中,车位信息库可以包括至少一个车位中各个车位的使用情况,使用情况可以为未使用或已使用。需要说明的是,若当前位置为停车场中的车位,当自动驾驶车向服务器发送当前位置时,服务器可以更新所述车位信息库,以使得更新后的车位信息库指示当前位置的使用情况为已使用。即若当前位置对应的车位的使用情况在此之前为未使用,则改为已使用;若当前位置对应的车位的使用情况在此之前为已使用,则保持为已使用。需要说明的是,当自动驾驶车处于行驶状态时,说明自动驾驶车未停靠在任何车位上,则当自动驾驶车向服务器发送当前位置后,服务器可以使用当前位置更新车位信息库。
在本申请实施例中,服务器既可以服务自动驾驶车,也可以非自动驾驶车,则自动驾驶车或非自动驾驶车都可以向服务器发送对应的当前位置,车位信息库中的车位既可以给 自动驾驶车使用,也可以给非自动驾驶车使用(除了自动驾驶车专用的车位),此处不做限定。
以下举例说明,请参考表3:
Figure PCTCN2019108045-appb-000001
表3
如表3所示,服务器分别接收了车辆编号为001(是自动驾驶车)和003(是非自动驾驶车)的车辆发送的当前位置,分别为车位编号为1001和1003的车位,服务器可以以此更新车位信息库,使得车位编号为1001和1003的车位的使用情况为已使用。而由于车位编号为1002的车位没有车辆使用,因此车位编号为1002的车位的使用情况为未使用。在一些可行的实施例中,一些车位虽然暂时没有车辆使用,但是车辆可以在APP或者其他渠道预定了车位(如电话预定),因此这样的车位的使用情况可以为已使用。
在一些可行的实施例中,停车场可以具有智能管理系统,智能管理系统是通过计算机、网络设备、车道管理设备搭建的一套对停车场车辆出入、场内车流引导、收取停车费进行管理的网络系统。在一些可行的实施例中,停车场的智能管理系统具有多个车位的信息,可以将多个车位的信息向服务器发送,以使得服务器将多个车位的信息此处在车位信息库中。智能管理系统还可以通过采集记录车辆出入记录、场内位置,实现车辆出入和场内车辆的动态和静态的综合管理,通过感应卡记录车辆进出信息,通过管理软件完成收费策略,实现收费账务管理,车道设备控制等功能。在一些可行的实施例中,进场车主和停车场的管理人员均持有一张具有私人标识的感应卡,作为个人的身份识别,只有通过系统检验认可的卡片才能进行操作(管理卡)或进出(停车卡),当刷卡进入停车场后,可以自动分配车位,并接收到来自智能管理系统发送的车位的信息,在一些可行的实施例中,并智能管理系统可以将车位的信息向服务器发送,此处不做限定。
303、自动驾驶车对周围环境进行监测,以确定是否发生危险事件。
在本申请实施例中,危险事件可以包括火灾事件、水灾事件和地震事件,还可以包括其他事件,此处不做限定。在本申请实施例中,自动驾驶车可以内置监测模块,监测模块可以包括一种或多种传感器,用于对周围环境进行监测。
在一些可行的实施例中,自动驾驶车通过红外传感器和/或烟雾传感器监测周围环境,以确定是否发生火灾事件。如自动驾驶车通过烟雾传感器确定发生了火灾,和/或通过红外传感器确定热感,还可以确定热感的来源方向。当感应的烟雾的浓度达到预设浓度,和/或红外传感器感应到的热感到达预设热度,则可以确定发生了火灾。
在一些可行的实施例中,自动驾驶车通过水面接触传感器监测周围环境,以确定是否发生水灾事件。在一些可行的实施例中,车辆可以内置水面接触传感器,用于当车辆进水的时候,可以关掉引擎或者其他器件,防止进一步的损害。在一些可行的实施例中,自动驾驶车中可以内置水面接触传感器,当自动驾驶车通过水面接触传感器感应到进水,且进水程度到达一定程度时,可以确定发生了水灾。需要说明的是,水灾可以由暴雨、洪水、决堤等原因产生,此处不做赘述。
在一些可行的实施例中,自动驾驶车通过角度传感器监测周围环境,以确定是否发生地震事件。在本申请实施例中,角度传感器如陀螺仪等,可以检测到当下的环境下是否一致摇晃,若摇晃程度达到一定程度,则可以确定发生了地震事件。需要说明的是,由于地震事件的发生是有轻度到重度的,当轻度地震时,如2级地震,还不会为车身造成损害,当到达地震灾害的程度时,则可能会车身造成损害,期间可能有足够时间逃离现场。
在一些可行的实施例中,自动驾驶车还可以通过无线网络接收灾难预警,当接收到灾难预警时,则确定发生危险事件,则向服务器发送危险告警。只要可以确定周围环境发生了危险事件的方式,此处不做限定。
在本申请实施例中,对自动驾驶车而言,周围环境可以为以自动驾驶车为中心,以预设长度为半径的圆形区域,也可以为以自动驾驶车为中心的预设大小的其他形状的区域(如正方形),此处不做限定。在一些可行的实施例中,若自动驾驶车在停车场中,周围环境可以为所在的停车场,或者所在的停车场的楼层或者停车场区域,此处不做限定。
304、当确定发生危险事件时,自动驾驶车向服务器发送危险告警,危险告警用于指示自动驾驶车监测到危险事件。
在一些可行的实施例中,危险告警可以指示危险事件的类型,如火灾事件、水灾事件或地震事件,而且可以指示危险事件的危险程度,还可以指示危险事件的地点,危险的覆盖范围等信息,此处不做限定。
在一些可行的实施例中,当服务器接收到自动驾驶车向发送的危险告警后,可以在将自动驾驶车的当前位置设置为危险位置,或者将当前位置所在的区域设置为危险区域。在一些可行的实施例中,若当前位置为停车场中的车位,则可以设置当前位置对应的车位为危险车位,或者车位附近的若干个车位为危险车位,或者设置停车场为危险停车场,则停车场中所有的车位都为危险车位,此处不做限定。
在一些可行的实施例中,服务器还可以设置危险指数,还可以设置危险事件类型,此处不做限定。需要说明的是,当危险事件已经结束,车位或者停车场恢复安全,则可以将危险位置的设置取消,恢复为安全。
305、服务器为自动驾驶车确定安全位置,安全位置为当前没有发生危险事件的位置。
在一些可行的实施例中,安全位置可以是郊外,也可以是停车场中的车位,此处不做限定。以安全位置为停车场中的车位的情况为例,在一些可行的实施例中,服务器可以从车位信息库中确定没有危险事件的停车场中使用情况为未使用的车位,作为安全位置。具体的,由于车位信息库包括至少一个车位以及至少一个车位中各个车位的使用情况,使用情况为未使用或已使用,则服务器可以首先根据车位信息库中使用情况为未使用的车位,得到未使用车位集合,若未使用车位集合中的车位不少于一个,则服务器从未使用车位集 合中确定一个车位,作为安全位置。在一些可行的实施例中,若未使用车位集合中的车位少于一个,则可以等待预设时间,直到未使用车位集合中的车位不少于一个,或者从其他方式确定安全位置,此处不做限定。
以下举例说明,请参考表4:
车位编号 坐标 停车场区域 楼层 停车场 车辆编号 使用情况 是否危险
1001 (x7,y7,z7) B3 负2 B - 未使用
1002 (x8,y8,z8) C3 负3 C - 未使用
1003 (x9,y9,z9) D1 1 D 102 已使用
1004 (x10,y10,z10) D2 2 D - 未使用
表4
在车位信息库中,如表4所示的4个位置中,车位编号为1003的车位的使用情况为已使用,车位编号为1001、1002和1004的车位的使用情况为未使用,但是车位编号为1001的车位当前发生危险事件,因此,可以得到未使用车位集合中车位的车位编号为{1002,1004}。由于未使用车位集合中的车位不少于一个,则服务器可以从未使用车位集合中确定一个车位,作为安全位置。
在一些可行的实施例中,当确定了未使用车位集合后,若未使用车位集合中的车位多于一个,则可以通过考虑一些因素(如距离或时间)来确定选择一个车位作为安全位置。在一些可行的实施例中,服务器可以分别计算当前位置到未使用车位集合中的每一个车位的距离,然后确定未使用车位集合中离当前位置的距离最短的车位,作为安全位置。在一些可行的实施例中,距离可以为直线距离或驾驶距离,其中,直线距离为以两个位置分别作为端点的线段的长度,驾驶距离为自动驾驶车在两个位置之间的行驶路线的路程。
以下以直线距离为例进行说明,假设自动驾驶车的当前位置的坐标为(x0,y0,z0),从表4得知,有两个车位作为候选的安全位置,坐标分别为(x8,y8,z8)和(10,y10,z10),则可以分别计算(x0,y0,z0)到(x8,y8,z8)和(10,y10,z10)的直线距离,分别得到自动驾驶车的当前位置到(x8,y8,z8)和(10,y10,z10)的直线距离:
Figure PCTCN2019108045-appb-000002
Figure PCTCN2019108045-appb-000003
然后选择直线距离较短的位置作为安全位置,如
Figure PCTCN2019108045-appb-000004
较小,则选择(x7,y7,z7)作为自动驾驶车的安全位置,否者选择(x10,y10,z10)作为自动驾驶车的安全位置。在一些可行的实施例中,若两者距离一样(在一些计算方式中,如得到的数字省略一部分尾数,如5784.18,省略尾数后得到5700,则有较大概率出现数据相同的情况),则可以选用驾驶距离,或者随机选择一个,此处不做限定。
在一些可行的实施例中,由于路况可能比较复杂,直线距离未必是能够表现出自动驾驶车在两个位置之间行驶的路程,则可以使用驾驶距离作为参数。假设自动驾驶车的当前位置的坐标为(x0,y0,z0),从表4得知,有两个车位作为候选的安全位置,坐标分别为(x8,y8,z8)和(10,y10,z10),则可以首先通过导航模块设计出(x0,y0,z0)分别到(x8,y8,z8)和(10,y10,z10)的行驶路线。具体的,服务器可以基于车位信息库、结合地图等信息进行路径规划,给出自动驾驶车可以行使的可选的行驶路线,以使得 自动驾驶车可以从中根据某一规则选择一条合理的行驶路线,作为逃离路线。在一些可行的实施例中,逃离路线包括具有时序关系的多个绝对坐标点,以指示自动驾驶车依次经过所述多个绝对坐标点所指示的位置,其中逃离路线的起点为当前位置,逃离路线的终点为安全位置。当确定两条行驶路线后,分别计算出两条行驶路线的路程,得到自动驾驶车的当前位置到(x8,y8,z8)和(10,y10,z10)的驾驶距离,然后取距离较短的行驶路线对应的车位作为安全位置。
具体的,以自动驾驶车的当前位置的坐标(x0,y0,z0)到点(x8,y8,z8)的驾驶距离的计算方法,如图3-2所示(为行驶路线的示意图),可以首先确定从点(x0,y0,z0)到点(x8,y8,z8)的行驶路线,确定行驶路线中的若干个点,如3个点,依次为(x8-1,y8-1,z8-1)、(x8-2,y8-2,z8-2)和(x8-3,y8-3,z8-3),则点(x0,y0,z0)到(x8,y8,z8)需要依次经过(x8-1,y8-1,z8-1)、(x8-2,y8-2,z8-2)和(x8-3,y8-3,z8-3),则需要分别计算点(x0,y0,z0)到点(x8-1,y8-1,z8-1)、点(x8-1,y8-1,z8-1)到点(x8-2,y8-2,z8-2)和点(x8-2,y8-2,z8-2)到点(x8-3,y8-3,z8-3)的直线距离,然后进行相加,得到点(x0,y0,z0)到点(x8,y8,z8)的驾驶距离。
当出现灾难的情况时,路况可能十分拥堵,则服务器获取当下的交通情况,如是否堵车、天气等原因,使用若遵循行驶路线进行行驶,可能时间会更久,从而造成延误或者损失,因此在一些可行的实施例中,可以根据时长来确定选择什么车位。具体的,服务器可以获取当下的交通情况,然后根据当下的交通情况计算从当前位置行驶到未使用车位集合中的每一个车位所使用的时长,最后确定从当前位置行驶到达的所使用的时长最短的车位为安全位置。
如计算出从自动驾驶车的当前位置的坐标为(x0,y0,z0)分别到(x8,y8,z8)或(10,y10,z10)的两条行驶路线,根据当下的交通情况分别预测自动驾驶车走完两条行驶路线所需要的时长,确定以时长较短的车位作为安全位置。
需要说明的是,并非所有自动驾驶车都来自同一家厂商,则服务器无法从所有自动驾驶车中获知对应的当前位置,也获知所有停车场的车位情况。在一些可行的实施例中,不同厂商的服务器可以实现数据共享,以使得本实施例中服务器可以获知所有自动驾驶车的对应的当前位置,从而或获知所有停车场的车位情况,以此保障了信息的准确性以及避免出现多部自动驾驶车对应同一个车位的情况。
306、服务器向自动驾驶车发送逃离指示,逃离指示包括安全位置。
在一些可行的实施例中,在确定了自动驾驶车对应的安全位置后,可以设置安全位置的车位的使用状态为已使用。在一些可行的实施例中,虽然确定了自动驾驶车对应的安全位置,但是自动驾驶车未必会去停靠,则可以等待自动驾驶车返回确认消息,以确认自动驾驶车会去安全位置停靠,或者向自动驾驶车发送确认请求,然后等待自动驾驶车返回确认消息,当确认自动驾驶车会去停靠在安全位置上时,则可以将安全位置对应的车位的使用状态修改为已使用。
在一些可行的实施例中,逃离指示还可以包括逃离路线,逃离路线用于向自动驾驶车指示从当前位置行驶至安全位置的行驶路线。逃离路线的计算方法如步骤305所述,此处 不再赘述。
307、自动驾驶车根据逃离指示向安全位置行驶。
在一些可行的实施例中,当自动驾驶车接收到逃离指示后,自动驾驶车可以根据逃离指示向安全位置行驶。在一些可行的实施例中,若逃离指示中具有逃离路线,则自动驾驶车可以使用其自动驾驶功能,如使用毫米波雷达、激光雷达,用于识别自动驾驶车辆周边的障碍物,实现遵循逃离路线向安全位置行驶。若逃离指示没有逃离路线,自动驾驶车也可以通过导航系统获取从当前位置行驶安全位置的行驶路线,此处不做限定。
上面对本申请实施例中的信息处理方法进行描述,下面对本申请实施例中的服务器进行描述。
请参考图4,本申请实施例提供了一种服务器400,包括:
收发模块401,用于接收智能移动机器人发送的危险告警,该危险告警用于指示该智能移动机器人监测到危险事件。
处理模块402,用于为该智能移动机器人确定安全位置,该安全位置为当前没有发生该危险事件的位置。该收发模块,还用于向该智能移动机器人发送逃离指示,该逃离指示包括该安全位置。
由于智能移动机器人可以根据逃离指示向安全位置行驶,因此可以远离危险事件,降低受损伤的风险。
在一些可行的实施例中,该收发模块401,还用于接收该智能移动机器人发送该智能移动机器人的当前位置。需要说明的是,该逃离指示还包括逃离路线,该逃离路线用于向该智能移动机器人指示从该当前位置行驶至该安全位置的行驶路线。
由于使得智能移动机器人具有明确的行驶路线,因此可以遵循行驶路线行驶到安全位置,以逃离危险。
在一些可行的实施例中,该处理模块402,具体用于:
若该智能移动机器人为自动驾驶车,根据车位信息库为该智能移动机器人确定该安全位置,该车位信息库包括至少一个车位以及该至少一个车位中各个车位的使用情况,该使用情况为未使用或已使用,该安全位置为该车位信息库中使用情况为未使用的一个车位。
由于对获取了车位信息库以及对车位信息库的管理,实现了对安全位置的确定,使得智能移动机器人可以在遇到危险时可以向安全位置行驶。
在一些可行的实施例中,在该根据车位信息库为该智能移动机器人确该定安全位置的步骤中,该处理模块402至少执行如下步骤:
根据该车位信息库确定使用情况为未使用的车位,得到未使用车位集合。
若该未使用车位集合中的车位不少于一个,则从该未使用车位集合中确定一个车位,作为该安全位置。
在一些可行的实施例中,在该从该未使用车位集合中确定一个车位,作为该安全位置的步骤中,该处理模块402至少执行如下步骤:
若该未使用车位集合中的车位多于一个,分别计算该当前位置到该未使用车位集合中的每一个车位的距离。
确定该未使用车位集合中离该当前位置的距离最短的车位,作为该安全位置。
由于以当前位置和车位之间的距离为依据,可以有效地确定安全位置。
在一些可行的实施例中,在该从该未使用车位集合中确定一个车位作为该安全位置的步骤中,该处理模块402至少执行如下步骤:
若该未使用车位集合中的车位多于一个,获取当下的交通情况。
根据该当下的交通情况计算从该当前位置行驶到该未使用车位集合中的每一个车位所使用的时长。
确定从该当前位置行驶到达的所使用的时长最短的车位为该安全位置。
由于以当前位置和车位之间的行驶的时长为依据,可以有效地确定安全位置。
在一些可行的实施例中,该处理模块402,还用于在该车位信息库中将该安全位置的使用情况修改为已使用,以使得可以及时更新车位信息库,使得车位信息库的信息更准备,使用体验更好。
在一些可行的实施例中,该处理模块402,还用于若该当前位置为该车位信息库中的一个车位,则使用该当前位置更新该车位信息库,以使得更新后的该车位信息库指示该当前位置所对应的车位的使用情况为已使用,以使得可以及时更新车位信息库,使得车位信息库的信息更准备,使用体验更好。
上面对本申请实施例中的服务器进行描述,下面对本申请实施例中的智能移动机器人进行描述。
请参考图5,本申请实施例提供了一种智能移动机器人500,包括:
监测模块501,用于对周围环境进行监测,以确定是否发生危险事件。
收发模块502,用于当确定发生该危险事件时,向服务器发送危险告警,该危险告警用于指示该监测模块监测到该危险事件,以使得该服务器为该智能移动机器人确定安全位置,该安全位置为当前没有发生该危险事件的位置。
该收发模块502,还用于接收该服务器发送的逃离指示,该逃离指示包括该安全位置,因此智能移动机器人可以根据逃离指示向安全位置行驶,从而远离危险事件,降低受损伤的风险。
在一些可行的实施例中,该智能移动机器人500还包括:
自动驾驶模块503,用于根据该逃离指示向该安全位置行驶,从而远离危险事件,降低受损伤的风险。
在一些可行的实施例中,该收发模块502,还用于向该服务器发送该智能移动机器人的当前位置。
需要说明的是,该逃离指示还包括逃离路线,该逃离路线用于向该智能移动机器人500指示从该当前位置行驶至该安全位置的行驶路线,通过明确的行驶路线,智能移动机器人500可以遵循行驶路线行驶到安全位置,以逃离危险。
在一些可行的实施例中,该监测模块501,具体用于:
通过红外传感器和/或烟雾传感器监测该周围环境,以确定是否发生火灾事件。
和/或,通过水面接触传感器监测该周围环境,以确定是否发生水灾事件。
和/或,通过角度传感器监测该周围环境,以确定是否发生地震事件。
在本申请实施例中,当发生危险事件时,由于智能移动机器人可以向服务器发送危险 告警,由于服务器可以为智能移动机器人确定当前没有发生危险事件的安全位置,并向智能移动机器人发送包括安全位置的逃离指示,因此智能移动机器人可以根据逃离指示向安全位置行驶,从而远离危险事件,降低受损伤的风险。
请参考图6,本申请实施例还提供了一种服务器600,包括收发器601、处理器602和存储器603。
该收发器601、该处理器602和该存储器603通过总线604连接。
该收发器601,用于接收智能移动机器人发送的危险告警,该危险告警用于指示该智能移动机器人监测到危险事件。
该存储器603,用于存储程序,该处理器602调用该存储器存储的程序,用于为该智能移动机器人确定安全位置,该安全位置为当前没有发生该危险事件的位置。
该收发器601,还用于向该智能移动机器人发送逃离指示,该逃离指示包括该安全位置。
请参考图7,本申请实施例还提供了一种智能移动机器人700,包括收发器701、处理器702和存储器703。
该收发器701、该处理器702和该存储器703通过总线704连接。
该存储器703,用于存储程序,该处理器702调用该存储器存储的程序,用于对周围环境进行监测,以确定是否发生危险事件。
该收发器701,还用于当确定发生该危险事件时,向服务器发送危险告警,该危险告警用于指示该智能移动机器人监测到该危险事件,以使得该服务器为该智能移动机器人确定安全位置,该安全位置为当前没有发生该危险事件的位置,接收该服务器发送的逃离指示,该逃离指示包括该安全位置。
需要说明的是,收发器601/701包括ZigBee、Wi-Fi、LTE(Long Term Evolution,长期演进)、RFID(Radio Frequency Identification,射频识别技术)、NFC(Near Field Communication,近场通信)、红外、UWB(Ultra Wideband,超宽带)的一种或多种组合,此处不作限定;也可以包括EIA-RS-232C标准下的通信接口,即数据终端设备(英文:Data Terminal Equipment,缩写:DTE)和数据通信设备(英文:Data Circuit-terminating Equipment,缩写:DCE)之间串行二进制数据交换接口技术标准的通信接口,也可以包括RS-485协议下的通信接口,此处不作限定。
处理器602/702可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。
处理器602/702还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其任意组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。
存储器603/703可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器603/703也可以包括非易失性 存储器(英文:non-volatile memory),例如快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器603/703还可以包括上述种类的存储器的任意组合,此处不作限定。
可选地,存储器603/703还可以用于存储程序指令,处理器602/702可以调用该存储器603/703中存储的程序指令,执行图2或图3所示实施例中的一个或多个步骤,或其中可选的实施方式。
可选的,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持服务器或者智能移动机器人实现上述信息处理方法。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存服务器或者智能移动机器人必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在本申请实施例中,当发生危险事件时,智能移动机器人可以向服务器发送危险告警,由于服务器可以为智能移动机器人确定当前没有发生危险事件的安全位置,并向智能移动机器人发送包括安全位置的逃离指示,因此智能移动机器人可以根据逃离指示向安全位置行驶,从而远离危险事件,降低受损伤的风险。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
在上述实施例中,还提供了一种芯片,包括处理单元和存储单元,其中所述存储单元用于存储计算机操作指令,所述处理单元用于通过调用所述计算机操作指令执行上述各个方法步骤所述的信息处理方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (35)

  1. 一种信息处理方法,其特征在于,包括:
    服务器接收智能移动机器人发送的危险告警,所述危险告警用于指示所述智能移动机器人监测到危险事件;
    所述服务器为所述智能移动机器人确定安全位置,所述安全位置为当前没有发生所述危险事件的位置;
    所述服务器向所述智能移动机器人发送逃离指示,所述逃离指示包括所述安全位置。
  2. 根据权利要求1所述方法,其特征在于,所述服务器接收智能移动机器人发送的危险告警之前,还包括:
    所述服务器接收所述智能移动机器人发送所述智能移动机器人的当前位置;
    所述逃离指示还包括逃离路线,所述逃离路线用于向所述智能移动机器人指示从所述当前位置行驶至所述安全位置的行驶路线。
  3. 根据权利要求1或2所述方法,其特征在于,所述智能移动机器人包括自动驾驶车和自动飞行无人机。
  4. 根据权利要求3所述方法,其特征在于,所述服务器为所述智能移动机器人确定安全位置包括:
    若所述智能移动机器人为所述自动驾驶车,所述服务器根据车位信息库为所述智能移动机器人确定所述安全位置,所述车位信息库包括至少一个车位以及所述至少一个车位中各个车位的使用情况,所述使用情况为未使用或已使用,所述安全位置为所述车位信息库中使用情况为未使用的一个车位。
  5. 根据权利要求4所述方法,其特征在于,所述服务器根据车位信息为所述智能移动机器人确定所述安全位置包括:
    所述服务器根据所述车位信息库确定使用情况为未使用的车位,得到未使用车位集合;
    若所述未使用车位集合中的车位不少于一个,则所述服务器从所述未使用车位集合中确定一个车位,作为所述安全位置。
  6. 根据权利要求5所述方法,其特征在于,所述服务器从所述未使用车位集合中确定一个车位,作为所述安全位置包括:
    若所述未使用车位集合中的车位多于一个,所述服务器分别计算所述当前位置到所述未使用车位集合中的每一个车位的距离;
    所述服务器确定所述未使用车位集合中离所述当前位置的距离最短的车位,作为所述安全位置。
  7. 根据权利要求6所述方法,其特征在于,所述距离为直线距离或驾驶距离,所述直线距离为以两个位置分别作为端点的线段的长度,所述驾驶距离为所述智能移动机器人在两个位置之间的行驶路线的路程。
  8. 根据权利要求5所述方法,其特征在于,所述服务器从所述未使用车位集合中确定一个车位作为所述安全位置包括:
    若所述未使用车位集合中的车位多于一个,所述服务器获取当下的交通情况;
    所述服务器根据所述当下的交通情况计算从所述当前位置行驶到所述未使用车位集合 中的每一个车位所使用的时长;
    所述服务器确定从所述当前位置行驶到达的所使用的时长最短的车位为所述安全位置。
  9. 根据权利要求4-8中任一项所述方法,其特征在于,所述服务器向所述智能移动机器人发送逃离指示之后,还包括:
    所述服务器在所述车位信息库中将所述安全位置的使用情况修改为已使用。
  10. 根据权利要求4-9中任一项所述方法,其特征在于,所述服务器接收所述智能移动机器人发送所述智能移动机器人的当前位置之后,还包括:
    若所述当前位置为所述车位信息库中的一个车位,则所述服务器使用所述当前位置更新所述车位信息库,以使得更新后的所述车位信息库指示所述当前位置所对应的车位的使用情况为已使用。
  11. 根据权利要求4-10中任一项所述方法,其特征在于,所述安全位置为停车场中的车位,和/或,所述当前位置为停车场中的车位。
  12. 根据权利要求1-11中任一项所述方法,其特征在于,所述危险事件包括火灾事件、水灾事件和地震事件。
  13. 一种信息处理方法,其特征在于,包括:
    智能移动机器人对周围环境进行监测,以确定是否发生危险事件;
    当确定发生所述危险事件时,所述智能移动机器人向服务器发送危险告警,所述危险告警用于指示所述智能移动机器人监测到所述危险事件,以使得所述服务器为所述智能移动机器人确定安全位置,所述安全位置为当前没有发生所述危险事件的位置;
    所述智能移动机器人接收所述服务器发送的逃离指示,所述逃离指示包括所述安全位置。
  14. 根据权利要求13所述方法,其特征在于,所述智能移动机器人接收所述服务器发送的逃离指示之后,还包括:
    所述智能移动机器人根据所述逃离指示向所述安全位置行驶。
  15. 根据权利要求13或14所述方法,其特征在于,所述智能移动机器人向服务器发送危险告警之前,还包括:
    所述智能移动机器人向所述服务器发送所述智能移动机器人的当前位置;
    所述逃离指示还包括逃离路线,所述逃离路线用于向所述智能移动机器人指示从所述当前位置行驶至所述安全位置的行驶路线。
  16. 根据权利要求13-15中任一项所述方法,其特征在于,所述智能移动机器人包括自动驾驶车和自动飞行无人机。
  17. 根据权利要求16所述方法,其特征在于,若所述智能移动机器人为所述自动驾驶车,则所述安全位置为停车场中的车位,和/或,所述当前位置为停车场中的车位。
  18. 根据权利要求13-17中任一项所述方法,其特征在于,所述危险事件包括火灾事件、水灾事件和地震事件。
  19. 根据权利要求18中任一项所述方法,其特征在于,所述智能移动机器人对周围环境进行监测,以确定是否发生危险事件包括:
    所述智能移动机器人通过红外传感器和/或烟雾传感器监测所述周围环境,以确定是否发生所述火灾事件;
    和/或,所述智能移动机器人通过水面接触传感器监测所述周围环境,以确定是否发生所述水灾事件;
    和/或,所述智能移动机器人通过角度传感器监测所述周围环境,以确定是否发生所述地震事件。
  20. 一种服务器,其特征在于,包括:
    收发模块,用于接收智能移动机器人发送的危险告警,所述危险告警用于指示所述智能移动机器人监测到危险事件;
    处理模块,用于为所述智能移动机器人确定安全位置,所述安全位置为当前没有发生所述危险事件的位置;
    所述收发模块,还用于向所述智能移动机器人发送逃离指示,所述逃离指示包括所述安全位置。
  21. 根据权利要求20所述服务器,其特征在于,
    所述收发模块,还用于接收所述智能移动机器人发送所述智能移动机器人的当前位置;
    所述逃离指示还包括逃离路线,所述逃离路线用于向所述智能移动机器人指示从所述当前位置行驶至所述安全位置的行驶路线。
  22. 根据权利要求20或21所述服务器,其特征在于,所述处理模块,具体用于:
    若所述智能移动机器人为自动驾驶车,根据车位信息库为所述智能移动机器人确定所述安全位置,所述车位信息库包括至少一个车位以及所述至少一个车位中各个车位的使用情况,所述使用情况为未使用或已使用,所述安全位置为所述车位信息库中使用情况为未使用的一个车位。
  23. 根据权利要求22所述服务器,其特征在于,在所述根据车位信息库为所述智能移动机器人确定所述安全位置的步骤中,所述处理模块至少执行如下步骤:
    根据所述车位信息库确定使用情况为未使用的车位,得到未使用车位集合;
    若所述未使用车位集合中的车位不少于一个,则从所述未使用车位集合中确定一个车位,作为所述安全位置。
  24. 根据权利要求23所述服务器,其特征在于,在所述从所述未使用车位集合中确定一个车位,作为所述安全位置的步骤中,所述处理模块至少执行如下步骤:
    若所述未使用车位集合中的车位多于一个,分别计算所述当前位置到所述未使用车位集合中的每一个车位的距离;
    确定所述未使用车位集合中离所述当前位置的距离最短的车位,作为所述安全位置。
  25. 根据权利要求23所述服务器,其特征在于,在所述从所述未使用车位集合中确定一个车位作为所述安全位置的步骤中,所述处理模块至少执行如下步骤:
    若所述未使用车位集合中的车位多于一个,获取当下的交通情况;
    根据所述当下的交通情况计算从所述当前位置行驶到所述未使用车位集合中的每一个车位所使用的时长;
    确定从所述当前位置行驶到达的所使用的时长最短的车位为所述安全位置。
  26. 根据权利要求23-25中任一项所述服务器,其特征在于,
    所述处理模块,还用于在所述车位信息库中将所述安全位置的使用情况修改为已使用。
  27. 根据权利要求23-25中任一项所述服务器,其特征在于,
    所述处理模块,还用于若所述当前位置为所述车位信息库中的一个车位,则使用所述当前位置更新所述车位信息库,以使得更新后的所述车位信息库指示所述当前位置所对应的车位的使用情况为已使用。
  28. 一种智能移动机器人,其特征在于,包括:
    监测模块,用于对周围环境进行监测,以确定是否发生危险事件;
    收发模块,用于当确定发生所述危险事件时,向服务器发送危险告警,所述危险告警用于指示所述监测模块监测到所述危险事件,以使得所述服务器为所述智能移动机器人确定安全位置,所述安全位置为当前没有发生所述危险事件的位置;
    所述收发模块,还用于接收所述服务器发送的逃离指示,所述逃离指示包括所述安全位置。
  29. 根据权利要求28所述智能移动机器人,其特征在于,所述智能移动机器人还包括:
    自动驾驶模块,用于根据所述逃离指示向所述安全位置行驶。
  30. 根据权利要求28或29所述智能移动机器人,其特征在于,
    所述收发模块,还用于向所述服务器发送所述智能移动机器人的当前位置;
    所述逃离指示还包括逃离路线,所述逃离路线用于向所述智能移动机器人指示从所述当前位置行驶至所述安全位置的行驶路线。
  31. 根据权利要求28-30中任一项所述智能移动机器人,其特征在于,所述监测模块,具体用于:
    通过红外传感器和/或烟雾传感器监测所述周围环境,以确定是否发生火灾事件;
    和/或,通过水面接触传感器监测所述周围环境,以确定是否发生水灾事件;
    和/或,通过角度传感器监测所述周围环境,以确定是否发生地震事件。
  32. 一种服务器,其特征在于,包括:
    收发器、处理器和存储器;
    所述收发器,用于接收智能移动机器人发送的危险告警,所述危险告警用于指示所述智能移动机器人监测到危险事件;
    所述存储器,用于存储程序;所述处理器调用所述存储器存储的程序,用于为所述智能移动机器人确定安全位置,所述安全位置为当前没有发生所述危险事件的位置;
    所述收发器,还用于向所述智能移动机器人发送逃离指示,所述逃离指示包括所述安全位置。
  33. 一种智能移动机器人,其特征在于,包括:
    收发器、处理器和存储器;
    所述存储器,用于存储程序;所述处理器调用所述存储器存储的程序,用于对周围环境进行监测,以确定是否发生危险事件;
    所述收发器,用于当确定发生所述危险事件时,向服务器发送危险告警,所述危险告警用于指示所述智能移动机器人监测到所述危险事件,以使得所述服务器为所述智能移动 机器人确定安全位置,所述安全位置为当前没有发生所述危险事件的位置;
    所述收发器,还用于接收所述服务器发送的逃离指示,所述逃离指示包括所述安全位置。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述权利要求1至12中任意一项所述的信息处理方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述权利要求13至19中任意一项所述的信息处理方法。
PCT/CN2019/108045 2018-09-26 2019-09-26 一种信息处理方法、服务器和智能移动机器人 WO2020063717A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/210,980 US11541880B2 (en) 2018-09-26 2021-03-24 Information processing method, server, and intelligent mobile robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811124563.6 2018-09-26
CN201811124563.6A CN109448410A (zh) 2018-09-26 2018-09-26 一种信息处理方法、服务器和智能移动机器人

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/210,980 Continuation US11541880B2 (en) 2018-09-26 2021-03-24 Information processing method, server, and intelligent mobile robot

Publications (1)

Publication Number Publication Date
WO2020063717A1 true WO2020063717A1 (zh) 2020-04-02

Family

ID=65544470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108045 WO2020063717A1 (zh) 2018-09-26 2019-09-26 一种信息处理方法、服务器和智能移动机器人

Country Status (3)

Country Link
US (1) US11541880B2 (zh)
CN (1) CN109448410A (zh)
WO (1) WO2020063717A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109448410A (zh) 2018-09-26 2019-03-08 华为技术有限公司 一种信息处理方法、服务器和智能移动机器人
CN109940639A (zh) * 2019-05-06 2019-06-28 广东工业大学 一种地震应急机器人
CN110058195A (zh) * 2019-05-24 2019-07-26 珠海格力电器股份有限公司 工业机器人的工作范围状态的确定方法及装置
WO2020242065A1 (ko) * 2019-05-31 2020-12-03 주식회사 라운지랩 위험도 판단에 기초한 로봇 움직임 제어 방법 및 이를 이용한 이동 로봇 장치
US10796582B1 (en) 2019-06-12 2020-10-06 International Business Machines Corporation Autonomous emergency evacuation
CN117191065A (zh) * 2020-04-01 2023-12-08 华为技术有限公司 自动驾驶方法及装置
CN111968368A (zh) * 2020-08-12 2020-11-20 上海宝通汎球电子有限公司 一种物联网数据处理系统和处理方法
FR3136726A1 (fr) * 2022-06-17 2023-12-22 Psa Automobiles Sa Procédé de sécurisation d’un véhicule automobile à la suite d’une perte de contrôle dudit véhicule

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051515A (ja) * 2006-08-22 2008-03-06 Sanyo Electric Co Ltd ナビゲーション装置
US20110169647A1 (en) * 2010-01-08 2011-07-14 Simon Dean Morley Method of Providing Crime-Related Safety Information to a User of a Personal Navigation Device and Related Device
CN106898153A (zh) * 2015-11-24 2017-06-27 沈玮 自动化停车
CN108198448A (zh) * 2018-01-26 2018-06-22 济南浪潮高新科技投资发展有限公司 一种车辆脱困系统及方法
CN109448410A (zh) * 2018-09-26 2019-03-08 华为技术有限公司 一种信息处理方法、服务器和智能移动机器人

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100559420C (zh) * 2007-03-29 2009-11-11 汤一平 基于计算机视觉的停车诱导系统
KR20120096808A (ko) * 2011-02-23 2012-08-31 한국전자통신연구원 보안 관제 장치, 궤도 보안 장치, 관제 로봇 장치, 보안 관제 서비스 시스템 및 그 방법
US9773413B1 (en) * 2014-09-16 2017-09-26 Knighscope, Inc. Autonomous parking monitor
CN105043376B (zh) * 2015-06-04 2018-02-13 上海物景智能科技有限公司 一种适用于非全向移动车辆的智能导航方法及系统
US10145699B2 (en) * 2015-08-28 2018-12-04 The Boeing Company System and methods for real-time escape route planning for fire fighting and natural disasters
CN205632352U (zh) * 2016-03-31 2016-10-12 汪家琳 全智能全自动无人驾驶汽车
GB201608744D0 (en) * 2016-05-18 2016-06-29 Unmanned Systems Ltd Intelligent autonomous unmanned system
CN106043222B (zh) * 2016-06-01 2017-12-12 百度在线网络技术(北京)有限公司 无人驾驶车辆防盗系统
US20180239359A1 (en) * 2016-08-16 2018-08-23 Faraday&Future Inc. System and method for determining navigational hazards
DE102016120060A1 (de) * 2016-10-20 2018-04-26 Deutsche Post Ag Abwehren einer Gefährdung
CN106504574A (zh) * 2016-10-31 2017-03-15 陕西科技大学 一种智能停车引导系统及方法
US10328853B2 (en) * 2017-01-16 2019-06-25 Nio Usa, Inc. Method and system for providing an escape route from a vehicle
CN106920416B (zh) * 2017-04-18 2019-08-20 民太安财产保险公估股份有限公司 基于物联网大数据技术的车辆防止被淹的方法及系统
CN107170276B (zh) * 2017-06-08 2020-05-08 浙江大学 一种基于云的无人停车场自动泊车管理系统
US10656645B1 (en) * 2017-10-10 2020-05-19 Uatc, Llc Determining autonomous vehicle routes
CN107845263B (zh) * 2017-10-14 2020-06-19 首鼎科技股份有限公司 一种应用于停车场的物联网管理平台
US11460849B2 (en) * 2018-08-09 2022-10-04 Cobalt Robotics Inc. Automated route selection by a mobile robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051515A (ja) * 2006-08-22 2008-03-06 Sanyo Electric Co Ltd ナビゲーション装置
US20110169647A1 (en) * 2010-01-08 2011-07-14 Simon Dean Morley Method of Providing Crime-Related Safety Information to a User of a Personal Navigation Device and Related Device
CN106898153A (zh) * 2015-11-24 2017-06-27 沈玮 自动化停车
CN108198448A (zh) * 2018-01-26 2018-06-22 济南浪潮高新科技投资发展有限公司 一种车辆脱困系统及方法
CN109448410A (zh) * 2018-09-26 2019-03-08 华为技术有限公司 一种信息处理方法、服务器和智能移动机器人

Also Published As

Publication number Publication date
US20210206367A1 (en) 2021-07-08
US11541880B2 (en) 2023-01-03
CN109448410A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2020063717A1 (zh) 一种信息处理方法、服务器和智能移动机器人
EP4071661A1 (en) Automatic driving method, related device and computer-readable storage medium
US11287270B2 (en) Systems and methods for safe route planning for a vehicle
EP3580084B1 (en) Autonomous vehicle operational management including operating a partially observable markov decision process model instance
US8682573B2 (en) Method of initiating vehicle movement
US20150346727A1 (en) Parking Autonomous Vehicles
WO2021128028A1 (zh) 一种自动驾驶车辆的控制方法及装置
US20200273335A1 (en) Processing device, processing method, and processing program
JP7330142B2 (ja) 車両のuターン経路を決定する方法、装置、デバイスおよび媒体
CN111902782A (zh) 集中式共享自主运载工具操作管理
RU2759975C1 (ru) Операционное управление автономным транспортным средством с управлением восприятием визуальной салиентности
EP4145416A1 (en) Vehicle self-protection method and system, and autonomous driving vehicle comprising system
US20190250635A1 (en) Mobile shop vehicle and mobile shop system
US11804136B1 (en) Managing and tracking scouting tasks using autonomous vehicles
CN113748316B (zh) 用于车辆遥测的系统和方法
US11797003B2 (en) System and method for autonomous vehicles to perform autonomous trips
US20210095978A1 (en) Autonomous Navigation for Light Electric Vehicle Repositioning
KR20200070065A (ko) 전동 스쿠터의 주행방법, 전동 스쿠터 및 저장매체
CN111693055A (zh) 道路网络变化检测和所检测的变化的本地传播
US11402214B2 (en) Method and apparatus for providing aerial route calculation in a three-dimensional space
CN113665565A (zh) 一种自动泊车方法、汽车及存储介质
WO2022052881A1 (zh) 一种构建地图的方法及计算设备
US20220269281A1 (en) Method and system for generating a topological graph map
US11448514B2 (en) Route information decision device, route information system, terminal, and method for deciding route information
CN114995519B (zh) 一种基于多障碍场景的无人机ai降落方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865441

Country of ref document: EP

Kind code of ref document: A1