WO2020063571A1 - 一种量子点白光二极管 - Google Patents

一种量子点白光二极管 Download PDF

Info

Publication number
WO2020063571A1
WO2020063571A1 PCT/CN2019/107468 CN2019107468W WO2020063571A1 WO 2020063571 A1 WO2020063571 A1 WO 2020063571A1 CN 2019107468 W CN2019107468 W CN 2019107468W WO 2020063571 A1 WO2020063571 A1 WO 2020063571A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
light
layer
type semiconductor
organic fluorescent
Prior art date
Application number
PCT/CN2019/107468
Other languages
English (en)
French (fr)
Inventor
苏亮
谢相伟
Original Assignee
Tcl集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811115321.0A external-priority patent/CN110943174B/zh
Priority claimed from CN201811115308.5A external-priority patent/CN110943172B/zh
Application filed by Tcl集团股份有限公司 filed Critical Tcl集团股份有限公司
Priority to US16/954,417 priority Critical patent/US11502265B2/en
Priority to JP2020531668A priority patent/JP6965452B2/ja
Publication of WO2020063571A1 publication Critical patent/WO2020063571A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present disclosure relates to the field of light emitting diodes, and in particular, to a quantum dot white light diode.
  • white light diodes are widely used in the field of display and lighting, which are mainly divided into two categories: inorganic white light diodes and organic or quantum dot white light diodes.
  • inorganic white light diodes are point-emissions
  • organic or quantum dot white light diodes are surface-emissions, which has promoted the diversified development of display and lighting equipment and application scenarios, bringing imagination and convenience to people's lives. .
  • quantum dot white light diodes In surface-emission technology, the bright and delicate color of quantum dots and easy adjustment make quantum dot white light diodes have unique advantages in the field of display and lighting. For example, they can realistically display or reproduce the original appearance of restored items, giving people a visual shock. And enjoy.
  • red and green monochromatic quantum dot light emitting diodes have made great progress in terms of efficiency and life span, and have reached commercial standards.
  • blue quantum dot light emitting diodes have very different life spans. Therefore, in order to realize a quantum dot white light diode with high efficiency, stability and long life, it is urgent to find a suitable blue light substitute material.
  • blue light organic fluorescent light-emitting diodes For blue light organic fluorescent light-emitting diodes, its advantages are good stability, long life, and meet commercial conditions, but its shortcomings are low luminous efficiency. This is because only organic singlet excitons are radiated and recombined to emit blue light, and triplet excitons return to the ground state in the form of non-radiative recombination. The ratio of singlet excitons to triplet excitons is 1: 3, so The theoretical maximum internal quantum efficiency of blue light organic fluorescent light-emitting diodes is only 25%, which is far from the internal quantum efficiency of 100% we are pursuing. Obviously, for a white light diode with a combination of blue organic phosphors and red and green quantum dots, such inefficient blue light emission severely restricts the internal quantum efficiency of the white light diode.
  • an object of the present disclosure is to provide a quantum dot white light diode, which aims to solve the problem of low quantum efficiency in the existing blue organic fluorescent light emitting diode and severely restricting the light emitting efficiency of the quantum dot white light diode.
  • a quantum dot white light diode includes a cathode, an anode, and a light emitting layer disposed between the cathode and the anode.
  • the light emitting layer includes a blue organic fluorescent layer, a spacer layer, and a quantum dot light emitting layer.
  • a blue organic fluorescent layer is disposed near the cathode side, the quantum dot light emitting layer is disposed near the anode side, the spacer layer is disposed between the blue organic fluorescent layer and the quantum dot light emitting layer, and the quantum dot light emitting layer Of the material contains quantum dots, the material of the blue organic fluorescent layer contains a blue organic fluorescent material, the material of the spacer layer contains a spacer material, and the triplet exciton energy of the spacer material is greater than that of the blue organic fluorescent material. The triplet exciton energy, and the triplet exciton energy of the spacer material is greater than the quantum dot exciton energy.
  • a quantum dot white light diode includes a cathode, an anode, and a light emitting layer disposed between the cathode and the anode, wherein the light emitting layer includes a blue organic light emitting layer and a quantum dot light emitting layer which are disposed in a stack, and the blue organic fluorescence
  • the layer material includes a first host material formed by mixing a first p-type semiconductor material and a first n-type semiconductor material, and a blue light organic fluorescent material doped in the first host material.
  • the singlet state of the first host material The exciton energy is greater than the singlet exciton energy of the blue organic fluorescent material, and the triplet exciton energy of the first host material is greater than the triplet exciton energy of the blue organic fluorescent material.
  • the present disclosure provides a spacer layer having electron and hole migration capabilities between the blue organic fluorescent layer of the light emitting layer and the quantum dot light emitting layer, and the spacer layer can prevent the singlet state of the blue organic fluorescent layer material.
  • the exciton vector point transfer enables the singlet exciton to be used to generate blue light.
  • the spacer layer can also diffuse the triplet exciton in the blue organic light-emitting layer to the quantum dot light-emitting layer and sensitize the quantum dot to emit light.
  • the quantum efficiency of the quantum dot white light diode is effectively improved.
  • FIG. 1 is a schematic structural diagram of a quantum dot white light diode provided in a specific embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of another quantum dot white light diode provided in a specific embodiment of the disclosure.
  • FIG. 3 is a schematic structural diagram of a quantum dot white light diode provided in Embodiment 1 of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a quantum dot white light diode provided in Embodiment 3 of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a quantum dot white light diode according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural diagram of a quantum dot white light diode according to Embodiment 6 of the present invention.
  • the present disclosure provides a quantum dot white light diode.
  • the present disclosure is described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present disclosure and are not intended to limit the present disclosure.
  • quantum dot light emitting diodes there are various forms of quantum dot light emitting diodes, and the quantum dot light emitting diodes are divided into a formal structure and a trans structure, and the quantum structure white light diodes of the trans structure may include a substrate, a cathode, and an electron layered from bottom to top.
  • a quantum dot white light diode with a formal structure as shown in FIG. 1 is mainly used as an example for description. Specifically, as shown in FIG.
  • the quantum dot white light diode with a formal structure includes a substrate 10, an anode 20, a hole transport layer 30, a blue organic fluorescent layer 40, a spacer layer 50, and a quantum layer, which are stacked and arranged from bottom to top.
  • the material of the quantum dot light emitting layer contains quantum dots
  • the material of the blue organic fluorescent layer contains blue organic fluorescent material
  • the material of the spacer layer contains a spacer material
  • the triplet exciton energy of the spacer material is greater than the triplet exciton energy of the blue organic fluorescent material, and the triplet exciton energy of the spacer material is greater than the quantum dot exciton energy.
  • a spacer layer having both electron and hole migration capabilities is provided between the blue organic fluorescent layer and the quantum dot light emitting layer, so that the light emitting efficiency of the quantum dot white light diode can be effectively improved.
  • the spacer layer not only transmits electrons injected from the cathode to the blue organic fluorescent layer, but also transmits holes injected from the anode.
  • the material of the spacer layer is a material having both electron and hole migration capabilities; at the same time, in order to avoid triplet excitons of the blue organic fluorescent layer and quantum dot excitons in the quantum dot light-emitting layer being separated Layer quenching, the triplet exciton energy of the spacer material should be greater than the triplet exciton energy of the blue organic fluorescent material in the blue organic fluorescent layer, and the triplet exciton energy of the spacer material should also be larger than the quantum dot Exciton energy of quantum dots in the light-emitting layer.
  • the spacer layer in this embodiment can prevent the singlet exciton vector sub-point transfer in the blue organic fluorescent layer, so that the singlet exciton can be completely used to generate blue light, and the spacer layer can also make the blue organic light emitting layer
  • the triplet exciton diffuses to the quantum dot light emitting layer and sensitizes the quantum dot light emission, thereby effectively improving the light emitting efficiency of the quantum dot white light diode.
  • the quantum dot white light diode with a formal structure may further include a substrate, an anode, a hole transport layer, a quantum dot light emitting layer, a spacer layer, a blue organic fluorescent layer, an electron transport layer, and a substrate, which are arranged in a stack from bottom to top.
  • the quantum dot white light diode with this structure can also improve its light emitting efficiency, and the mechanism for achieving the above-mentioned effect is the same as that of the above-mentioned embodiment.
  • the singlet exciton generally transfers the exciton energy by means of Forster energy transfer, and its effective radius is usually between 3-5 nm, while the triplet exciton has a longer life span and its exciton diffuses.
  • the length can reach 100nm.
  • by setting the thickness of the spacer layer to 3-100 nm it can effectively prevent the singlet excitons in the blue organic fluorescent layer from being transferred to the quantum dot light-emitting layer, thereby facilitating the diffusion of the triplet excitons to the quantum dots to emit light. Layer and sensitize the quantum dots to emit light.
  • the quantum efficiency of the quantum dot white light diode can be effectively improved.
  • the thickness of the spacer layer is 3-10 nm. Within this thickness range, the spacer layer can also effectively block the singlet exciton of the blue organic fluorescent layer material from being transferred to the quantum dot light-emitting layer, which is more beneficial
  • the triplet exciton of the blue light organic fluorescent layer material diffuses into the quantum dot light emitting layer and sensitizes the quantum dot light emission, which can further improve the light emitting efficiency of the quantum dot white light diode.
  • the material of the spacer layer is a first bipolar material having both electron and hole migration capabilities.
  • the first bipolar material includes at least one of CBP and NPB, but is not limited thereto.
  • the first bipolar material includes one component, such as one of CBP and NPB; in some embodiments, the first bipolar material includes two components, such as CBP and NPB.
  • the first bipolar material is CBP. Since the hole mobility and the electron mobility of CBP are similar, they are 10 -3 cm 2 V -1 S -1 and 10 -4 cm, respectively.
  • the triplet exciton energy T 1 of the CBP is 2.56 eV, which is higher than the exciton energy of red, yellow, and green quantum dots and the triplet exciton energy of common blue light organic fluorescent materials.
  • the spacer material is composed of a first n-type semiconductor material and a first p-type semiconductor material. Mixed materials.
  • the first n-type semiconductor material includes one component, such as one of TPBi, Bepp2, BTPS, and TmPyPb; in some modes, the first n-type semiconductor material includes two groups Points, such as TPBi and Bepp2, Bepp2 and BTPS, BTPS and TmPyPb; in some embodiments, the first n-type semiconductor material includes three components, such as TPBi, Bepp2 and BTPS, Bepp2, BTPS and TmPyPb, TPBi, Bepp2 and TmPyPb; in some embodiments, the first n-type semiconductor material includes four components, such as TPBi, Bepp2, BTPS, and TmPyPb.
  • the first p-type semiconductor material includes one component, such as one of TAPC, mCP, and TCTA; in some embodiments, the first p-type semiconductor material includes two components , Such as TAPC and mCP, TAPC and TCTA, mCP and TCTA; in some embodiments, the first p-type semiconductor material includes three components, such as TAPC, mCP, and TCTA.
  • the T 1 refers to the triplet exciton energy of the semiconductor material.
  • the mixed material composed of the first n-type semiconductor material and the first p-type semiconductor material may be one of TCTA: TPBi, TCTA: TmPyPb, and mCP: TmPyPb, but is not limited thereto.
  • the blue organic fluorescent layer includes a first host material and the blue organic fluorescent material doped in the first host material, wherein the first host material is a second bipolar material.
  • the first host material is a second bipolar material.
  • the singlet exciton energy of the first host material is greater than the singlet excitons of the blue organic fluorescent material.
  • the triplet exciton energy of the first host material is greater than the triplet exciton energy of the blue organic fluorescent material.
  • the first host material in the blue organic fluorescent layer is a second bipolar material
  • the second bipolar material includes at least one of CBP and NPB, but is not limited thereto.
  • the second bipolar material includes one component, such as one of CBP and NPB; in some embodiments, the second bipolar material includes two components, such as CBP and NPB.
  • the second bipolar material can ensure the transfer and balance of electric charges, reduce the accumulation of electric charges in the light-emitting layer, help improve the luminous efficiency of the quantum dot white light diode, reduce the efficiency roll-off, and maintain the stability of the spectrum.
  • White light diodes are essential.
  • the first host material in the blue organic fluorescent layer is a mixed material composed of a second n-type semiconductor material and a second p-type semiconductor material, and the second n-type semiconductor material includes TPBi, Bepp2 At least one of BTPS and TmPyPb.
  • the second n-type semiconductor material includes one component, such as one of TPBi, Bepp2, BTPS, and TmPyPb; in some modes, the second n-type semiconductor material includes two groups Points, such as TPBi and Bepp2, Bepp2 and BTPS, BTPS and TmPyPb; in some embodiments, the second n-type semiconductor material includes three components, such as TPBi, Bepp2 and BTPS, Bepp2, BTPS and TmPyPb, TPBi, Bepp2 and TmPyPb; in some embodiments, the second n-type semiconductor material includes four components, such as TPBi, Bepp2, BTPS, and TmPyPb.
  • the second p-type semiconductor material includes at least one of TAPC, mCP, and TCTA.
  • the second p-type semiconductor material includes one component, such as one of TAPC, mCP, and TCTA; in some embodiments, the second p-type semiconductor material includes two components , Such as TAPC and mCP, TAPC and TCTA, mCP and TCTA; in some embodiments, the second p-type semiconductor material includes three components, such as TAPC, mCP, and TCTA.
  • the T 1 refers to the triplet exciton energy of the semiconductor material.
  • the mixed material composed of the second n-type semiconductor material and the second p-type semiconductor material may be one of TCTA: TPBi, TCTA: TmPyPb, and mCP: TmPyPb, but is not limited thereto.
  • the mixed material composed of the second n-type semiconductor material and the second p-type semiconductor material can also ensure the transfer and balance of charges, reduce the accumulation of charges in the light-emitting layer, and help improve the light-emitting efficiency of the quantum dot white light diode and reduce Efficiency rolls off and maintains spectral stability, which is critical for white light diodes.
  • the blue light organic fluorescent material includes at least one of 4P-NPD, Cz-2pbb, POTA, DADBT, and the like, but is not limited thereto.
  • the blue organic fluorescent material includes one component, such as one of 4P-NPD, Cz-2pbb, POTA, and DADBT; in some embodiments, the blue organic fluorescent material includes two types Components, such as 4P-NPD and Cz-2pbb, Cz-2pbb and POTA, POTA and DADBT, Cz-2pbb and DADBT; in some embodiments, the blue organic fluorescent material includes three components, such as 4P-NPD , Cz-2pbb and POTA, 4P-NPD, Cz-2pbb and DADBT, Cz-2pbb, POTA and DADBT; in some embodiments, the blue organic fluorescent material includes four components, such as 4P-NPD, Cz- 2pbb, POTA and DADBT.
  • the blue organic fluorescent layer the blue organic fluorescent material includes the blue
  • the thickness of the blue organic fluorescent layer is 10-50 nm.
  • the blue organic fluorescent layer may also be a light emitting layer formed by a blue organic fluorescent material alone.
  • the thickness of the blue organic fluorescent layer is 5-30 nm.
  • the quantum dot light emitting layer material when the quantum dot light emitting layer material includes the quantum dot and a second host material, in order to prevent the quantum dot exciton from being quenched by the second host material, the singlet state of the second host material is excited. Both the exciton energy and the triplet exciton energy are greater than the exciton energy of the quantum dot.
  • the light-emitting mechanism of the quantum dot light-emitting layer includes three types: 1. Electrons and holes are transmitted from the cathode and anode to the quantum-dot light-emitting layer, respectively, and photons are emitted and emitted; 2.
  • the second host material is a third bipolar material, a third n-type semiconductor material, a third p-type semiconductor material, and a mixture of a third n-type semiconductor material and a third p-type semiconductor material.
  • One of the materials but not limited to this.
  • the third bipolar material includes at least one of CBP and NPB, but is not limited thereto. In some embodiments, the third bipolar material includes one component, such as one of CBP and NPB; in some embodiments, the third bipolar material includes two components, such as CBP and NPB.
  • the third n-type semiconductor material includes at least one of TPBi, Bepp2, BTPS, and TmPyPb, but is not limited thereto.
  • the third n-type semiconductor material includes one component, such as one of TPBi, Bepp2, BTPS, and TmPyPb; in some modes, the third n-type semiconductor material includes two groups Points, such as TPBi and Bepp2, Bepp2 and BTPS, BTPS and TmPyPb; in some embodiments, the third n-type semiconductor material includes three components, such as TPBi, Bepp2 and BTPS, Bepp2, BTPS and TmPyPb, TPBi, Bepp2 and TmPyPb; in some embodiments, the third n-type semiconductor material includes four components, such as TPBi, Bepp2, BTPS, and TmPyPb.
  • the third p-type semiconductor material includes at least one of TAPC, mCP, and TCTA, but is not limited thereto.
  • the third p-type semiconductor material includes one component, such as one of TAPC, mCP, and TCTA; in some embodiments, the third p-type semiconductor material includes two components , Such as TAPC and mCP, TAPC and TCTA, mCP and TCTA; in some embodiments, the third p-type semiconductor material includes three components, such as TAPC, mCP, and TCTA.
  • the material of the quantum dot light emitting layer is a quantum dot.
  • the quantum dot light emitting layer includes two kinds of light emitting mechanisms: 1. Electrons and holes are transmitted from the cathode and the anode to the quantum, respectively. The point emitting layer emits radiation and emits photons; 2. The triplet exciton of the blue organic fluorescent layer material diffuses to the quantum dot emitting layer and transfers the triplet exciton to the quantum dot through the Dexter energy transfer method, and excites the quantum dot to emit photons .
  • the blue organic fluorescent layer is disposed near the anode side
  • the quantum dot light emitting layer is disposed near the cathode side
  • the organic blue fluorescent layer material includes a first host material and doped on the first A blue organic fluorescent material in a host material
  • the quantum dot light-emitting layer material includes a quantum dot and a second host material
  • the barrier layer material is a first bipolar material or a first n-type semiconductor material and a first
  • the first host material is selected from a second bipolar material, a second p-type semiconductor material, and a mixed material composed of a second n-type semiconductor material and a second p-type semiconductor material.
  • the second host material is one selected from a third bipolar material, a third n-type semiconductor material, and a mixed material composed of a third n-type semiconductor material and a third p-type semiconductor material.
  • the first host material is a second A p-type semiconductor material
  • the second host material is a third n-type semiconductor material
  • the first body is a mixed material composed of a second n-type semiconductor material and a second p-type semiconductor material
  • the second host material is a third n-type semiconductor material.
  • the first host material can ensure the distribution of electrons and holes throughout the blue organic fluorescent layer, obtain sufficient blue light emission, and help reduce the probability of triplet exciton annihilation.
  • the uniformly dispersed triplet excitons are conducive to the diffusion of the vector dot layer and ensure the emission of quantum dots.
  • the first host material is a second The p-type semiconductor material
  • the second host material is a mixed material composed of a third n-type semiconductor material and a third p-type semiconductor material.
  • the second host material is a mixed material composed of a third n-type semiconductor material and a third p-type semiconductor material, and has both excellent electron-hole mobility, can effectively reduce the impedance of the quantum dot light-emitting layer, and make excitons It can uniformly distribute in the quantum dot light-emitting layer, reduce the possibility of exciton annihilation, and improve the stability of quantum dot light emission.
  • the barrier layer material is a mixed material composed of a first n-type semiconductor material and a first p-type semiconductor material
  • the first host material is a second n-type semiconductor material and a second A mixed material composed of a p-type semiconductor material
  • the second host material is a mixed material composed of a third n-type semiconductor material and a third p-type semiconductor material. Because the first host material and the second host material have the semiconductor characteristics of both the p-type semiconductor material and the n-type semiconductor material, that is, they have both good electron and hole migration capabilities, which is beneficial to reducing the impedance of the entire light-emitting layer and ensuring the anode direction transmission.
  • Incoming holes can move the vector dot light emitting layer unhindered, and at the same time ensure that the electrons moving from the quantum dot light emitting layer can pass through the blue organic fluorescent layer unhindered, so that the charge carriers can be uniformly distributed in the entire light emitting layer. Reduce the probability of exciton annihilation, and improve the efficiency and stability of the device.
  • the barrier layer material is a first bipolar material
  • the first host material is a second bipolar material
  • the second host material is a third bipolar material.
  • bipolar materials also have excellent electron-hole migration capabilities, which can reduce the impedance of the entire light-emitting layer, make the excitons uniformly dispersed throughout the light-emitting layer, and improve the efficiency and stability of the device.
  • the use of bipolar materials is helpful to simplify the device structure and manufacturing process.
  • the blue organic fluorescent layer is disposed near a cathode side
  • the quantum dot light emitting layer is disposed near an anode side
  • the organic blue fluorescent layer material includes a first host material and doped on the first A blue organic fluorescent material in a host material
  • the quantum dot light-emitting layer material includes a quantum dot and a second host material
  • the barrier layer material is a first bipolar material or a first n-type semiconductor material and a first
  • the first host material is selected from a second bipolar material, a second n-type semiconductor material, and a mixed material composed of a second n-type semiconductor material and a second p-type semiconductor material.
  • the second host material is one selected from a third bipolar material, a third p-type semiconductor material, and a mixed material composed of a third n-type semiconductor material and a third p-type semiconductor material.
  • the first host material is a second An n-type semiconductor material
  • the second host material is a third p-type semiconductor material
  • the first host material is formed by a first A mixed material composed of two n-type semiconductor materials and a second p-type semiconductor material, and the second host material is a third p-type semiconductor material.
  • the first host material is a mixed material composed of the second n-type semiconductor material and the second p-type semiconductor material, which can ensure the distribution of electrons and holes throughout the blue organic fluorescent layer, and obtain sufficient blue light emission, which is beneficial to Reduce the triplet exciton annihilation probability.
  • the uniformly dispersed triplet excitons are conducive to the diffusion of the vector dot layer and ensure the emission of quantum dots.
  • the first host material is a second An n-type semiconductor material
  • the second host material is a mixed material composed of a third n-type semiconductor material and a third p-type semiconductor material.
  • the second host material is a mixed material composed of a third n-type semiconductor material and a third p-type semiconductor material, and has both excellent electron-hole mobility, and can effectively reduce the impedance of the quantum dot light-emitting layer, so that The exciton can be uniformly distributed in the quantum dot light emitting layer, which reduces the possibility of exciton annihilation and improves the stability of quantum dot light emission.
  • the barrier layer material is a mixed material composed of a first n-type semiconductor material and a first p-type semiconductor material
  • the first host material is a second n-type semiconductor material and a second A mixed material composed of a p-type semiconductor material
  • the second host material is a mixed material composed of a third n-type semiconductor material and a third p-type semiconductor material. Because the first host material and the second host material have the semiconductor characteristics of both the p-type semiconductor material and the n-type semiconductor material, that is, they have both good electron and hole migration capabilities, which is beneficial to reducing the impedance of the entire light-emitting layer and ensuring the anode direction transmission.
  • the holes can move to the blue organic fluorescent layer without hindrance, and at the same time, the electrons from the organic fluorescent layer can pass through the quantum dot light-emitting layer without hindrance, so that the charge carriers can be evenly distributed in the entire light-emitting layer, reducing The probability of exciton annihilation improves the efficiency and stability of the device.
  • the barrier layer material is a first bipolar material
  • the first host material is a second bipolar material
  • the second host material is a third bipolar material.
  • Bipolar materials have excellent electron-hole migration capabilities, which can reduce the resistance of the entire light-emitting layer, make the excitons uniformly dispersed throughout the light-emitting layer, and improve the efficiency and stability of the device. Moreover, the use of bipolar materials is helpful to simplify the device structure and manufacturing process.
  • the triplet exciton energy of the blue organic fluorescent material should be greater than the energy of the quantum dots in the quantum dot light emitting layer. Therefore, in the light emitting layer, the selection of the quantum dots is different according to the triplet exciton energy of the blue organic fluorescent material.
  • the quantum dot is a yellow light quantum dot, or the quantum dot is a mixed quantum dot composed of a red light quantum dot and a green light quantum dot, or the The quantum dot is a mixed quantum dot including a red light quantum dot, a yellow light quantum dot, and a green light quantum dot, wherein a half-wave width of a light emission spectrum of the yellow light quantum dot is greater than 70 nm.
  • the yellow light quantum dots include CuInS / ZnS, ZnCuInS / ZnS, At least one of AgInS / ZnS, InP / ZnS, etc., but is not limited thereto; the two red and green quantum dots may be independently selected from CdSe / ZnS, CdSe / CdS, CdSe / CdS / ZnS, CuInS / ZnS At least one of ZnCuInS / ZnS, AgInS / ZnS, and InP / ZnS, but is not limited thereto.
  • the yellow light quantum dot includes a component, such as one of CuInS / ZnS, ZnCuInS / ZnS, AgInS / ZnS, and InP / ZnS; in some embodiments, the yellow light quantum dot includes Two components, such as CuInS / ZnS and ZnCuInS / ZnS, ZnCuInS / ZnS and AgInS / ZnS, AgInS / ZnS and InP / ZnS; in some embodiments, the yellow light quantum dot includes three components, such as CuInS / ZnS, ZnCuInS / ZnS, and AgInS / ZnS, ZnCuInS / ZnS, AgInS / ZnS, and InP / ZnS, CuInS / ZnS, ZnCuInS / ZnS, and InP / ZnS; in some embodiments, the yellow light quantum dot includes four components , Such as
  • the red light quantum dot or green light quantum dot includes a component such as CdSe / ZnS, CdSe / CdS, CdSe / CdS / ZnS, CuInS / ZnS, ZnCuInS / ZnS, AgInS / ZnS, and InP / One of ZnS; in some embodiments, the red light quantum dot or green light quantum dot includes two components, such as CdSe / ZnS and CdSe / CdS, CdSe / CdS / ZnS and CuInS / ZnS, ZnCuInS / ZnS and AgInS / ZnS, AgInS / ZnS, and InP / ZnS; in some embodiments, the red light quantum dot or green light quantum dot includes three components, such as CdSe / ZnS, CdSe / CdS, and CdSe / Cd
  • the quantum dot light emitting layer is a red light quantum dot thin film layer and a green light quantum dot thin film layer which are arranged in a stack, wherein the red light quantum The thickness of the dot film layer and the green quantum dot film layer are both 5-15 nm.
  • the quantum dot light emitting layer is a single mixed film layer formed by mixing red light quantum dots and green light quantum dots, wherein The thickness of the mixed film layer is 10-30 nm.
  • the quantum dots are yellow light quantum dots, and the thickness in the quantum dot light emitting layer is 5-50 nm.
  • the quantum dot when the triplet exciton energy of the blue light organic fluorescent layer material is greater than 2.38 eV, the quantum dot is a mixed quantum dot including a red light quantum dot, a yellow light quantum dot, and a green light quantum dot, and the quantum dot emits light.
  • the thickness in the layer is 15-50 nm.
  • the quantum dot light emitting layer is a red light quantum dot thin film layer, a yellow light quantum dot thin film layer, and a green light quantum dot thin film layer which are arranged in a stack.
  • the thickness of the red light quantum dot thin film layer, the yellow light quantum dot thin film layer, and the green light quantum dot thin film layer are all 5-15 nm.
  • the quantum dots are yellow light quantum dots, or the quantum dots are composed of red light quantum dots and yellow light quantum dots.
  • the quantum dot is a yellow light quantum dot
  • the thickness of the quantum dot light emitting layer is 5-50 nm.
  • the quantum dot is a single mixed film layer formed by mixing red light quantum dots and yellow light quantum dots, wherein the thickness of the single mixed film layer is 10-50 nm; when the light emitting layer of the quantum dots is a red light quantum layered and arranged The dot thin film layer and the yellow light quantum dot thin film layer, wherein the thickness of the red light quantum dot thin film layer and the yellow light quantum dot thin film layer are both 5-15 nm.
  • the red light quantum dots include CdSe / ZnS, CdSe / CdS, CdSe / CdS / ZnS At least one of CuInS / ZnS, ZnCuInS / ZnS, AgInS / ZnS, and InP / ZnS, but is not limited thereto; the yellow light quantum dots include CuInS / ZnS, ZnCuInS / ZnS, AgInS / ZnS, and InP / ZnS. At least one, but not limited to this.
  • the substrate may be a substrate of rigid material, such as glass, or a substrate of flexible material, such as one of PET or PI.
  • the anode may be selected from the group consisting of indium-doped tin oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), and the like. One or more.
  • ITO indium-doped tin oxide
  • FTO fluorine-doped tin oxide
  • ATO antimony-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • the material of the hole-transporting layer may be selected from materials having good hole-transporting properties, such as, but not limited to, p-type TAPC, mCP, TFB, PVK, Poly-TPD, PFB, One or more of TCTA, CBP, TPD and NPB.
  • the material of the electron transport layer may be selected from materials having good electron transport properties, for example, may be selected from, but not limited to, n-type TPBi, Bepp2, BTPS, TmPyPb, ZnO, TiO 2 , Fe 2 O 3 , one or more of SnO 2 , Ta 2 O 3 , AlZnO, ZnSnO, and InSnO.
  • the cathode may be selected from one of an aluminum (Al) electrode, a silver (Ag) electrode, a gold (Au) electrode, and the like.
  • the quantum dot white light diode of the present disclosure may further include one or more of the following functional layers: a hole injection layer provided between the anode and the hole transport layer, and a hole injection layer provided between the cathode and the electron transport layer Electron injection layer.
  • the present disclosure also provides an embodiment of a method for manufacturing a quantum dot white light diode with a formal structure as shown in FIG. 1, which specifically includes the following steps:
  • the spacer material is a material having both electron and hole migration capabilities, and the triplet exciton energy of the spacer material is greater than the triplet exciton energy of the blue organic fluorescent material in the blue organic fluorescent layer, and the The triplet exciton energy of the spacer material is greater than the exciton energy of the quantum dots in the quantum dot light emitting layer.
  • the method for preparing each layer may be a chemical method or a physical method.
  • the chemical method includes, but is not limited to, one of a chemical vapor deposition method, a continuous ion layer adsorption and reaction method, an anodization method, an electrolytic deposition method, and a co-precipitation method.
  • physical methods include, but are not limited to, solution methods (such as spin coating method, printing method, blade coating method, dipping and pulling method, dipping method, spraying method, roll coating method, casting method, slit coating method Or strip coating method), evaporation method (such as thermal evaporation method, electron beam evaporation method, magnetron sputtering method or multi-arc ion plating method, etc.), deposition method (such as physical vapor deposition method, atomic layer Deposition method, pulsed laser deposition method, etc.).
  • solution methods such as spin coating method, printing method, blade coating method, dipping and pulling method, dipping method, spraying method, roll coating method, casting method, slit coating method Or strip coating method
  • evaporation method such as thermal evaporation method, electron beam evaporation method, magnetron sputtering method or multi-arc ion plating method, etc.
  • deposition method such as physical vapor deposition method, atomic layer Deposition method, pulsed laser deposition method,
  • a quantum dot white light diode with a formal structure is also provided, as shown in FIG. 2, which includes a substrate 10, an anode 20, a hole transport layer 30, and a blue organic fluorescent layer, which are stacked and arranged from bottom to top. 40.
  • the blue organic fluorescent layer material in this embodiment includes a first host material formed by mixing a first p-type semiconductor material and a first n-type semiconductor material, and a blue organic fluorescent material doped in the first host material.
  • the blue organic fluorescent layer composed of this material can effectively improve the luminous efficiency of the quantum dot white light diode.
  • the blue organic fluorescent material in the blue organic fluorescent layer is doped in the first host material, the singlet and triplet excitons of the blue organic fluorescent material can also be distributed in the first host. In the material, this is beneficial to reduce the exciton annihilation effect and can ensure that the quantum dot white light diode can stably emit white light under high current density or high brightness conditions.
  • the singlet exciton energy of the first host material is greater than the singlet exciton energy of the blue organic fluorescent material, and the triplet exciton energy of the first host material is greater than the triplet of the blue organic fluorescent material.
  • State exciton energy which enables the singlet exciton formed in the first host material to be transferred to the blue organic fluorescent material through Forster energy transfer, and radiates and emits blue light in the blue organic fluorescent material; at the same time, the first A triplet exciton of a host material and a blue organic fluorescent material can diffuse into the quantum dot light-emitting layer and transfer the triplet exciton energy to the quantum dot through the Dexter energy transfer method, which excites the quantum dot to emit a photon, thereby enhancing the quantum dot white light diode. Luminous efficiency.
  • the quantum dot white light diode with a formal structure may further include a substrate, an anode, a hole transporting layer, a quantum dot light emitting layer, a blue organic fluorescent layer, an electron transporting layer, and a cathode layered from bottom to top.
  • the blue organic fluorescent layer material includes a first host material formed by mixing a first p-type semiconductor material and a first n-type semiconductor material, and a blue organic fluorescent material doped in the first host material, the The singlet exciton energy of the first host material is greater than the singlet exciton energy of the blue organic fluorescent material, and the triplet exciton energy of the first host material is greater than the triplet exciton energy of the blue organic fluorescent material.
  • the quantum dot white light diode with this structure can also improve its light emitting efficiency, and the mechanism for achieving the above-mentioned effect is the same as that of the above-mentioned embodiment.
  • a doping concentration of the blue organic fluorescent material is 0.5-3%. Because the singlet exciton has a very short life span and its exciton diffusion length is less than 1nm, the singlet exciton generally transfers exciton energy through the Forster energy transfer method, and its effective radius is usually between 3-5nm; and the triplet exciton Due to its long life span, its exciton diffusion length can reach 100nm. The triplet exciton generally transfers exciton energy by Dexter energy transfer, and its effective radius is within 1nm.
  • the doping concentration of the blue organic fluorescent material is set to 0.5-3%, so that the proportion of singlet excitons in the blue organic fluorescent layer in the range of 3-5nm near the quantum dot light emitting layer is significantly reduced. It is small, thereby effectively reducing the probability that the singlet excitons of the blue organic fluorescent material are transferred to the quantum dot light emitting layer, so that the singlet excitons of the blue organic fluorescent material can be radiated and compounded to emit blue light in the blue organic fluorescent layer.
  • the triplet excitons of the first host material cannot be found in the range of 1 nm under the condition that the doping concentration of the blue organic fluorescent material is 0.5-3%.
  • the blue-light organic fluorescent material that transfers energy so this embodiment can also effectively prevent the first host material from passing triplet excitons to the blue-light organic fluorescent material and return to the ground state in a non-radiative recombination manner, causing energy loss.
  • the thickness of the blue organic fluorescent layer is 10-40 nm. Within this thickness range, the triplet excitons of the first host material and the blue organic fluorescent material in the blue organic fluorescent layer can diffuse. Go to the quantum dot light-emitting layer and transfer the triplet exciton energy to the quantum dot by Dexter energy transfer, and excite the quantum dot to emit photons.
  • the first host material in the blue organic fluorescent layer is a mixed material composed of a first p-type semiconductor material having a hole-transporting capability and a first n-type semiconductor material having an electron-transporting capability, that is, That is, the first host material has both electron and hole migration capabilities. Therefore, the first host material can also ensure the transfer and balance of charges, reduce the accumulation of charges in the light-emitting layer, and help improve the quantum dot white light diode. Luminous efficiency, reducing efficiency roll-off, and maintaining spectral stability are critical for white light diodes.
  • the material of the electron transport layer and the At least one of the first n-type semiconductor materials in the blue organic fluorescent layer material is the same. Since the material in the electron transport layer is the same as at least one of the first n-type semiconductor materials in the blue light organic fluorescent layer material, the electrons output from the electron transport layer are transmitted to the blue light. There is no interface barrier in the organic fluorescent layer, and the electrons can be transferred from the electron transport layer to the blue organic fluorescent layer quickly and without hindrance, thereby improving exciton recombination efficiency.
  • the material of the hole transport layer when a hole transport layer is provided between the anode and the light emitting layer, and the blue organic fluorescent layer is disposed near one side of the hole transport layer, the material of the hole transport layer The same as at least one of the first p-type semiconductor materials in the blue organic fluorescent layer material. Since the material in the hole transport layer is the same as at least one of the first p-type semiconductor materials in the blue organic fluorescent layer material, the holes output from the hole transport layer are transmitted to the There is no interface barrier in the blue organic fluorescent layer, and the holes can be transferred from the electron transport layer to the blue organic fluorescent layer quickly and unobstructed, thereby improving exciton recombination efficiency.
  • the quantum dot light-emitting layer material includes the quantum dot and a second host material, and in order to prevent the quantum dot exciton from being quenched by the second host material, the singlet state of the second host material is excited. Both the exciton energy and the triplet exciton energy are greater than the exciton energy of the quantum dot.
  • the light-emitting mechanism of the quantum dot light-emitting layer includes three types: 1. Electrons and holes are transmitted from the cathode and anode to the quantum-dot light-emitting layer, respectively, and photons are emitted and emitted; 2.
  • the second host material is a first bipolar material, a second n-type semiconductor material, a second p-type semiconductor material, and a mixture of a second n-type semiconductor material and a second p-type semiconductor material.
  • the first bipolar material includes at least one of CBP and NPB, but is not limited thereto;
  • the second n-type semiconductor material includes at least one of TPBi, Bepp2, BTPS, and TmPyPb , But not limited thereto;
  • the second p-type semiconductor material includes at least one of TAPC, mCP, and TCTA, but is not limited thereto.
  • the material of the quantum dot light emitting layer is a quantum dot.
  • the quantum dot light emitting layer includes two kinds of light emitting mechanisms: 1. Electrons and holes are transmitted from the cathode and the anode to the quantum, respectively. The point emitting layer emits radiation and emits photons; 2. The triplet exciton of the blue organic fluorescent layer material diffuses to the quantum dot emitting layer and transfers the triplet exciton to the quantum dot through the Dexter energy transfer method, and excites the quantum dot to emit the photon. .
  • the blue organic fluorescent layer is disposed near the anode side
  • the quantum dot light emitting layer is disposed near the cathode side
  • the material of the quantum dot light emitting layer includes a quantum dot and a second host material
  • the second The host material is selected from one of a first bipolar material, a second n-type semiconductor material, a second p-type semiconductor material, and a mixed material composed of a second n-type semiconductor material and a second p-type semiconductor material.
  • the second host material is a mixed material composed of a second n-type semiconductor material and a second p-type semiconductor material.
  • the mixed material composed of the second n-type semiconductor material and the second p-type semiconductor material has both good electron and hole migration capabilities, which is beneficial to reducing the resistance of the light emitting layer and ensuring that electrons transmitted from the cathode direction can be unobstructed to blue light.
  • the organic fluorescent layer moves, and at the same time, the holes from the blue organic fluorescent layer can pass through the quantum dot light-emitting layer without hindrance, so that the charge carriers can be evenly distributed in the entire light-emitting layer, which reduces the probability of exciton annihilation and improves the device. Efficiency and stability.
  • the second host material is a first bipolar material.
  • the first bipolar material also has excellent electron-hole mobility, and can play the same role as the above-mentioned second n-type semiconductor and second p-type semiconductor mixed material.
  • the blue organic fluorescent layer is disposed near a cathode side
  • the quantum dot light emitting layer is disposed near an anode side
  • the quantum dot light emitting layer material includes a quantum dot and a second host material
  • the second The host material is selected from one of a first bipolar material, a second n-type semiconductor material, a second p-type semiconductor material, and a mixed material composed of a second n-type semiconductor material and a second p-type semiconductor material.
  • the second host material is a mixed material composed of a second n-type semiconductor material and a second p-type semiconductor material.
  • the mixed material composed of the second n-type semiconductor material and the second p-type semiconductor material has both good electron and hole migration capabilities, which is beneficial to reducing the resistance of the light emitting layer and ensuring that electrons transmitted from the cathode direction can be unobstructed to blue light.
  • the organic fluorescent layer moves, and at the same time, the holes from the blue organic fluorescent layer can pass through the quantum dot light-emitting layer without hindrance, so that the charge carriers can be evenly distributed in the entire light-emitting layer, which reduces the probability of exciton annihilation and improves the device. Efficiency and stability.
  • the second host material is a first bipolar material.
  • the first bipolar material also has excellent electron-hole mobility, and can play the same role as the above-mentioned second n-type semiconductor and second p-type semiconductor mixed material.
  • the present invention further provides an embodiment of a method for manufacturing a quantum dot white light diode with a formal structure as shown in FIG. 2, which specifically includes the following steps:
  • the spacer material is a material having both electron and hole migration capabilities, and the triplet exciton energy of the spacer material is greater than the triplet exciton energy of the blue organic fluorescent material in the blue organic fluorescent layer, and the The triplet exciton energy of the spacer material is greater than the exciton energy of the quantum dots in the quantum dot light emitting layer.
  • the quantum dot white light diode includes, from bottom to top, an ITO anode 101, a hole injection layer 102, a hole transport layer 103, a quantum dot light emitting layer 104, The spacer layer 105, the blue organic fluorescent layer 106, the electron transport layer 107, the electron injection layer 108, and the cathode 109.
  • the specific preparation includes the following steps:
  • PEDOT: PSS was deposited on the patterned ITO glass by the solution method as a hole injection layer with a thickness of 30 nm;
  • TFB as a hole transport layer on PEDOT: PSS by solution method, with a thickness of 30 nm;
  • the mixed red-green quantum dots are deposited on the TFB as a quantum dot light-emitting layer by a solution method with a thickness of 15 nm;
  • TmPyPb mixed material was co-evaporated on the quantum dot light-emitting layer by a vapor deposition method, with a thickness of 8 nm;
  • TmPyPb were co-evaporated on the spacer layer as a blue organic fluorescent layer with a thickness of 15 nm;
  • TmPyPb was deposited on the blue organic fluorescent layer by an evaporation method as an electron transport layer with a thickness of 30 nm;
  • LiF was deposited on TmPyPb as a electron injection layer by vapor deposition with a thickness of 1 nm;
  • Al was deposited on LiF by a vapor deposition method to a thickness of 100 nm.
  • the quantum dot white light diodes from bottom to top include: ITO anode, hole injection layer, hole transport layer, quantum dot light emitting layer, spacer layer, blue organic fluorescent layer, electron transport layer, and electron injection.
  • Layer and cathode the specific preparation includes the following steps:
  • PEDOT: PSS was deposited on the patterned ITO glass by the solution method as a hole injection layer with a thickness of 30 nm;
  • TFB as a hole transport layer on PEDOT: PSS by solution method, with a thickness of 30 nm;
  • CBP red-green quantum dot mixed material was deposited on TFB as a quantum dot light-emitting layer by solution method, with a thickness of 20 nm;
  • CBP was deposited on the quantum dot light-emitting layer by a vapor deposition method as a spacer layer with a thickness of 8 nm;
  • POTA and CBP are deposited on the spacer layer as a blue organic fluorescent layer with a thickness of 15 nm by evaporation;
  • TmPyPb was deposited on the blue organic fluorescent layer by an evaporation method as an electron transport layer with a thickness of 30 nm;
  • LiF was deposited on TmPyPb as a electron injection layer by vapor deposition with a thickness of 1 nm;
  • Al was deposited on LiF by a vapor deposition method to a thickness of 100 nm.
  • the quantum dot white light diode includes, from bottom to top, an ITO anode 201, a hole injection layer 202, a hole transport layer 203, a blue organic fluorescent layer 204,
  • the quantum dot light emitting layer 205, the spacer layer 206, the electron transport layer 207, the electron injection layer 208, and the cathode 209 are specifically prepared by the following steps:
  • PEDOT: PSS was deposited on the patterned ITO glass by the solution method as a hole injection layer with a thickness of 30 nm;
  • TFB as a hole transport layer on PEDOT: PSS by solution method, with a thickness of 30 nm;
  • TmPyPb were co-evaporated on TFB as a blue organic fluorescent layer with a thickness of 15 nm;
  • a stacked red and green quantum dot film is sequentially deposited as a quantum dot light-emitting layer by a solution method.
  • the thickness of the red quantum dot film is 5 nm, and the thickness of the green quantum dot film is 10 nm.
  • TmPyPb was deposited on the spacer layer as an electron transport layer by evaporation, with a thickness of 30 nm;
  • LiF was deposited on TmPyPb as a electron injection layer by vapor deposition with a thickness of 1 nm;
  • Al was deposited on LiF by a vapor deposition method to a thickness of 100 nm.
  • the quantum dot white light diodes from bottom to top include: ITO anode, hole injection layer, hole transport layer, blue organic fluorescent layer, quantum dot light emitting layer, spacer layer, electron transport layer, electron injection Layer and cathode, the specific preparation includes the following steps:
  • PEDOT: PSS was deposited on the patterned ITO glass by the solution method as a hole injection layer with a thickness of 30 nm;
  • TFB as a hole transport layer on PEDOT: PSS by solution method, with a thickness of 30 nm;
  • Cz-2pbb was deposited on TFB as a blue organic fluorescent layer by evaporation, with a thickness of 15 nm;
  • a stacked red and green quantum dot film is sequentially deposited as a quantum dot light-emitting layer by a solution method.
  • the thickness of the red quantum dot film is 5 nm, and the thickness of the green quantum dot film is 10 nm.
  • NPB was deposited on the quantum dot light-emitting layer by a vapor deposition method, with a thickness of 8 nm;
  • TmPyPb was deposited on the spacer layer as an electron transport layer by evaporation, with a thickness of 30 nm;
  • LiF was deposited on TmPyPb as a electron injection layer by vapor deposition with a thickness of 1 nm;
  • Al was deposited on LiF by a vapor deposition method to a thickness of 100 nm.
  • a quantum dot white light diode includes, from bottom to top, an ITO anode 101, a hole injection layer 102, a hole transport layer 103, a quantum dot light emitting layer 104, a blue organic fluorescent layer 105, and an electron transport layer. 106.
  • the blue organic fluorescent layer material includes a TCTA: TmPyPb host material with a weight ratio of 1: 1, and an organic fluorescent material POTA doped in the host material. The doping concentration is 2%.
  • the preparation method of the quantum dot white light diode includes the following steps:
  • PEDOT: PSS was deposited on the patterned ITO glass by the solution method as a hole injection layer with a thickness of 30 nm;
  • TFB as a hole transport layer on PEDOT: PSS by solution method, with a thickness of 30 nm;
  • the mixed red-green quantum dots are deposited on the TFB as a quantum dot light-emitting layer by a solution method with a thickness of 15 nm;
  • TmPyPb (1: 1) was co-evaporated on the quantum dot light-emitting layer as a blue organic fluorescent layer with a thickness of 25 nm;
  • TmPyPb was deposited on the blue organic fluorescent layer by an evaporation method as an electron transport layer with a thickness of 30 nm;
  • LiF was deposited on TmPyPb as a electron injection layer by vapor deposition with a thickness of 1 nm;
  • Al was deposited on LiF by a vapor deposition method to a thickness of 100 nm.
  • a quantum dot white light diode includes, from bottom to top, an ITO anode 201, a hole injection layer 202, a hole transport layer 203, a blue organic fluorescent layer 204, a quantum dot light emitting layer 205, and an electron transport layer. 206.
  • the blue organic fluorescent layer material includes a TCTA: TPBi host material with a weight ratio of 1: 1, and an organic fluorescent material 4P-NPD doped in the host material. The doping concentration of 4P-NPD is 1%.
  • the preparation method of the quantum dot white light diode includes the following steps:
  • PEDOT: PSS was deposited on the patterned ITO glass by the solution method as a hole injection layer with a thickness of 30 nm;
  • TCTA was deposited on PEDOT: PSS as a hole transport layer by solution method, with a thickness of 30 nm;
  • TPBi 4P-NPD (1%)-dopedTCTA: TPBi (1: 1) was co-evaporated on TFB as a blue organic fluorescent layer with a thickness of 25 nm;
  • CBP red-green quantum dot mixture was deposited on the blue organic fluorescent layer as a quantum dot light-emitting layer by a solution method with a thickness of 20 nm;
  • TmPyPb is deposited on the quantum dot light-emitting layer as an electron transport layer by evaporation, with a thickness of 30 nm;
  • LiF was deposited on TmPyPb as a electron injection layer by vapor deposition with a thickness of 1 nm;
  • Al was deposited on LiF by a vapor deposition method to a thickness of 100 nm.
  • a quantum dot white light diode from bottom to top includes: an ITO anode, a hole injection layer, a hole transport layer, a blue organic fluorescent layer, a quantum dot light emitting layer, an electron transport layer, an electron injection layer, and a cathode.
  • the fluorescent layer material includes a mCP: TmPyPb host material with a weight ratio of 1: 1, and an organic fluorescent material DADBT doped in the host material. The doping concentration of the DADBT is 3%.
  • the preparation method of the quantum dot white light diode includes the following steps:
  • PEDOT: PSS was deposited on the patterned ITO glass by the solution method as a hole injection layer with a thickness of 30 nm;
  • TFB as a hole transport layer on PEDOT: PSS by solution method, with a thickness of 30 nm;
  • a red light quantum dot film and a green light quantum dot film are sequentially deposited on the TFB as a quantum dot light-emitting layer by a solution method.
  • the thickness of the red light quantum dot film is 5 nm, and the thickness of the green light quantum dot film is 10 nm.
  • TmPyPb (1: 1) was co-evaporated on the quantum dot light-emitting layer as a blue organic fluorescent layer with a thickness of 25 nm;
  • TmPyPb is deposited on the quantum dot light-emitting layer as an electron transport layer by evaporation, with a thickness of 30 nm;
  • LiF was deposited on TmPyPb as a electron injection layer by vapor deposition with a thickness of 1 nm;
  • Al was deposited on LiF by a vapor deposition method to a thickness of 100 nm.
  • the present disclosure provides a quantum dot white light diode.
  • a spacer layer having an electron and hole migration capability is provided between a blue organic fluorescent layer of the light emitting layer and a quantum dot light emitting layer.
  • the spacer layer It can prevent the singlet exciton vector point transfer of the blue organic fluorescent layer material, so that the singlet exciton can be completely used to generate blue light; the spacer layer can also allow the triplet exciton in the blue organic light emitting layer to diffuse to the quantum dots
  • the light emitting layer also sensitizes the quantum dots to emit light, thereby effectively improving the luminous efficiency of the quantum dot white light diode.
  • the company also provides a quantum dot white light diode, which is obtained by uniformly doping a blue organic fluorescent material in a first host material formed by mixing a first p-type semiconductor material and a first n-type semiconductor material.
  • the singlet excitons in the material can be transferred to the blue organic fluorescent material through Forster energy transfer and radiate to compound and emit blue light; the triplet excitons of the first host material and the blue organic fluorescent material can diffuse into the quantum dot light emitting layer and pass through Dexter energy transfer is transferred to the quantum dots, which excites the quantum dots to emit photons, thereby effectively improving the luminous efficiency of the quantum dot white light diode.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种量子点白光二极管,所述量子点白光二极管包括阴极、阳极以及设置在阴极和阳极之间的发光层,发光层包括层叠设置的蓝光有机荧光层、间隔层以及量子点发光层,蓝光有机荧光层靠近阴极一侧设置,量子点发光层靠近阳极一侧设置,间隔层设置在蓝光有机荧光层和量子点发光层之间,所述量子点发光层的材料含有量子点,所述蓝光有机荧光层的材料含有蓝光有机荧光材料,所述间隔层的材料含有间隔层材料,所述间隔层材料的三线态激子能量大于所述蓝光有机荧光材料的三线态激子能量,且所述间隔层材料的三线态激子能量大于所述量子点的激子能量。

Description

一种量子点白光二极管 技术领域
本公开涉及发光二极管领域,尤其涉及一种量子点白光二极管。
背景技术
当前,白光二极管广泛应用于显示和照明领域,其主要分为无机白光二极管和有机或量子点白光二极管两大类。其中二者最大的区别是:无机白光二极管为点发光,而有机或量子点白光二极管为面发光,这促进了显示和照明设备及应用场景的多样化发展,为人们的生活带来想象和便利。
在面发光技术中,量子点发光颜色鲜明细腻且易调节使得量子点白光二极管在显示和照明领域具有独特的优势,例如能够逼真地显示或再现还原物品本来的面貌,给人以视觉上的震撼和享受。
经过近三十年的发展,红绿单色量子点发光二极管在效率和寿命等发面取得了很大的进步,已达到商业化的标准,然而蓝光量子点发光二极管在寿命上却相差甚远,因此为了实现高效稳定长寿命的量子点白光二极管,寻找合适的蓝光替代材料是当务之急。
在此之前,业界已经提出用蓝光有机材料结合红绿量子点实现白光,然而这些案例广泛应用磷光材料或者热活化延迟荧光材料(TADF)作为蓝光物质,虽然这些物质发光效率很高,但寿命依然达不到商业化的要求,因此难以实现长寿命的目标;而对于应用蓝光有机荧光物质与红绿量子点相结合的案例,其往往只是一种概念,并没有给出切实可行的实现方案。
对于蓝光有机荧光发光二极管,其优势是稳定性好、寿命长,满足商业化条件,而不足之处在于发光效率低。这是因为有机荧光材料只有单线态激子发生辐射复合放出蓝光,三线态激子则以非辐射复合的形式回到基态,而单线态激子和三线态激子的比例是1:3,因此,蓝光有机荧光发光二极管的理论最大内量子效率只有25%,与我们追求的100%的内量子效率有很大的差距。很显然,对于蓝光有机荧光粉与红绿量子点相结合的白光二极管而言,如此低效的蓝光发光严重制约了白光二极管的内量子效率。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本公开的目的在于提供一种量子点白光二极管,旨在解决现有蓝光有机荧光发光二极管内量子效率低下,严重制约量子点白光二极管发光效率的问题。
本公开的技术方案如下:
一种量子点白光二极管,包括阴极、阳极以及设置在所述阴极和阳极之间的发光层,其中,所述发光层包括层叠设置的蓝光有机荧光层、间隔层以及量子点发光层,所述蓝光有机荧光层靠近阴极一侧设置,所述量子点发光层靠近阳极一侧设置,所述间隔层设置在所述蓝光有机荧光层和所述量子点发光层之间,所述量子点发光层的材料含有量子点,所述蓝光有机荧光层的材料含有蓝光有机荧光材料,所述间隔层的材料含有间隔层材料,所述间隔层材料的三线态激子能量大于所述蓝光有机荧光材料的三线态激子能量,且所述间隔层材料的三线态激子能量大于所述量子点的激子能量。
一种量子点白光二极管,包括阴极、阳极以及设置在所述阴极和阳极之间的发光层,其中,所述发光层包括层叠设置的蓝光有机荧光层和量子点发光层,所述蓝光有机荧光层材料包括由第一p型半导体材料和第一n型半导体材料混合形成的第一主体材料以及掺杂在所述第一主体材料中的蓝光有机荧光材料,所述第一主体材料的单线态激子能量大于所述蓝光有机荧光材料的单线态激子能量,且所述第一主体材料的三线态激子能量大于所述蓝光有机荧光材料的三线态激子能量。
有益效果:本公开通过在所述发光层的蓝光有机荧光层和量子点发光层之间设置一具有电子和空穴迁移能力的间隔层,所述间隔层能够阻止蓝光有机荧光层材料的单线态激子向量子点转移,使单线态激子能够完全用来产生蓝光,同时所述间隔层还可使蓝光有机发光层中的三线态激子扩散至量子点发光层并敏化量子点发光,从而有效提高量子点白光二极管的量子效率。
附图说明
图1为本公开具体实施方式中提供的一种量子点白光二极管的结构示意图。
图2为公开具体实施方式中提供的另一种量子点白光二极管的结构示意图。
图3为本公开实施例1提供的一种量子点白光二极管的结构示意图。
图4为本公开实施例3提供的一种量子点白光二极管的结构示意图。
图5为本发明实施例5提供的一种量子点白光二极管的结构示意图。
图6为本发明实施例6提供的一种量子点白光二极管的结构示意图。
具体实施方式
本公开提供一种量子点白光二极管,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
量子点发光二极管有多种形式,且所述量子点发光二极管分为正式结构和反式结构,所述反式结构的量子点白光二极管可包括从下往上层叠设置的衬底、阴极、电子传输层、蓝光有机荧光层、量子点发光层、间隔层、空穴传输层以及阳极。而本公开的具体实施方式中将主要以如图1所示的正式结构的量子点白光二极管为实施例进行介绍。具体地,如图1所示,所述正式结构的量子点白光二极管包括从下往上层叠设置的衬底10、阳极20、空穴传输层30、蓝光有机荧光层40、间隔层50、量子点发光层60、电子传输层70以及阴极80;所述量子点发光层的材料含有量子点,所述蓝光有机荧光层的材料含有蓝光有机荧光材料,所述间隔层的材料含有间隔层材料,所述间隔层材料的三线态激子能量大于所述蓝光有机荧光材料的三线态激子能量,且所述间隔层材料的三线态激子能量大于所述量子点的激子能量。
本实施例通过在蓝光有机荧光层和量子点发光层之间设置一同时具有电子和空穴迁移能力的间隔层,能够使得量子点白光二极管的发光效率得到有效提升。实现上述效果的机理具体如下:
为保证本实施例中所述蓝光有机荧光层和量子点发光层能够稳定发光,所述间隔层既要将从阴极注入的电子传输给蓝光有机荧光层,又要将从阳极注入的空穴传输给量子点发光层,故所述间隔层材料为同时具有电子和空穴迁移能力的材料;同时,为避免蓝光有机荧光层的三线态激子和量子点发光层中量子点的激子被间隔层猝灭,所述间隔层材料的三线态激子能量应大于蓝光有机荧光层中蓝光有机荧光材料的三线态激子能量,且所述间隔层材料的三线态激子能量还应大于量子点发光层中量子点的激子能量。本实施例中的间隔层既能够阻止蓝光有机荧光层中的单线态激子向量子点转移,使单线态激子能够完全用来产生蓝光,同时 所述间隔层还可使蓝光有机发光层中的三线态激子扩散至量子点发光层并敏化量子点发光,从而有效提高量子点白光二极管的发光效率。
需要说明的是,正式结构的量子点白光二极管还可以包括从下往上叠层设置的衬底、阳极、空穴传输层、量子点发光层、间隔层、蓝光有机荧光层、电子传输层以及阴极;其中所述间隔层材料为同时具有电子和空穴迁移能力的材料,所述间隔层材料的三线态激子能量大于蓝光有机荧光层中蓝光有机荧光材料的三线态激子能量,且所述间隔层材料的三线态激子能量大于量子点发光层中量子点的激子能量。这种结构的量子点白光二极管同样能够提升其发光效率,实现上述效果的机理与上述实施例相同。
在一些实施方式中,单线态激子一般通过Forster能量转移的方式传递激子能量,它的有效作用半径通常在3-5nm之间,而三线态激子由于其寿命较长,其激子扩散长度可达100nm。本实施例通过将间隔层的厚度设置为3-100nm,使其可有效阻止蓝光有机荧光层中的单线态激子转移至量子点发光层,而便于让其三线态激子扩散至量子点发光层并敏化量子点发光,通过将间隔层的厚度设置为3-100nm可有效提升量子点白光二极管的量子效率。
更优选的,所述间隔层的厚度为3-10nm,在该厚度范围内,所述间隔层同样能够有效阻隔蓝光有机荧光层材料的单线态激子转移至量子点发光层,并更有利于所述蓝光有机荧光层材料的三线态激子扩散至量子点发光层并敏化量子点发光,可进一步提升量子点白光二极管的发光效率。
在一些实施方式中,为保证电子和空穴在蓝光有机荧光层和量子点发光层之间运动不受影响,所述间隔层材料为同时具有电子和空穴迁移能力的第一双极性材料。在一些实施方式中,所述第一双极性材料包括CBP和NPB中的至少一种,但不限于此。在一些实施方式中,所述第一双极性材料包括一种组分,如CBP和NPB中的一种;在一些实施方式中,所述第一双极性材料包括两种组分,如CBP和NPB。在一些具体的实施方式中,所述第一双极性材料为CBP,由于CBP的空穴迁移率和电子迁移率相近,分别为10 -3cm 2V -1S -1和10 -4cm 2V -1S -1,相近的空穴和电子迁移率能够保证电荷的传输和平衡,减少电荷在发光层的积累,有利于提升量子点发光二极管的发光效率并保持光谱的稳定型;更重要的是所述CBP的三线态激子能量T 1为2.56eV,高于红、黄、绿量子点的激子能量和常见的蓝光有机荧光材料的三线态激子能量。
在一些实施方式中,为保证电子和空穴在蓝光有机荧光层和量子点发光层之间运动不受影响,所述间隔层材料为由第一n型半导体材料和第一p型半导体材料组成的混合材料。在一些实施方式中,所述第一n型半导体材料包括TPBi(T 1=2.75eV)、Bepp2(T 1=2.60eV)、BTPS(T 1=2.79eV)和TmPyPb(T 1=2.78eV)中的至少一种。在一些实施方式中,所述第一n型半导体材料包括一种组分,如TPBi、Bepp2、BTPS和TmPyPb中的一种;在一些方式中,所述第一n型半导体材料包括两种组分,如TPBi和Bepp2,Bepp2和BTPS,BTPS和TmPyPb;在一些实施方式中,所述第一n型半导体材料包括三种组分,如TPBi、Bepp2和BTPS,Bepp2、BTPS和TmPyPb,TPBi、Bepp2和TmPyPb;在一些实施方式中,所述第一n型半导体材料包括四种组分,如TPBi、Bepp2、BTPS和TmPyPb。
在一些实施方式中,所述第一p型半导体材料包括TAPC(T 1=2.98eV)、mCP(T 1=2.91eV)和TCTA(T 1=2.76eV)中的至少一种。在一些实施方式中,所述第一p型半导体材料包括一种组分,如TAPC、mCP和TCTA中的一种;在一些实施方式中,所述第一p型半导体材料包括两种组分,如TAPC和mCP,TAPC和TCTA,mCP和TCTA;在一些实施方式中,所述第一p型半导体材料包括三种组分,如TAPC、mCP和TCTA。所述T 1是指半导体材料的三线态激子能量。作为举例,所述由第一n型半导体材料和第一p型半导体材料组成的混合材料可以为TCTA:TPBi、TCTA:TmPyPb和mCP:TmPyPb中的一种,但不限于此。
在一些实施方式中,所述蓝光有机荧光层包括第一主体材料以及掺杂在所述第一主体材料中的所述蓝光有机荧光材料,其中,所述第一主体材料为第二双极性材料、第二n型半导体材料、第二p型半导体材料以及由第二n型半导体材料和第二p型半导体材料组成的混合材料中的一种。为防止所述蓝光有机荧光材料的单线态激子和三线态激子被第一主体材料猝灭,所述第一主体材料的单线态激子能量大于所述蓝光有机荧光材料的单线态激子能量,且所述第一主体材料的三线态激子能量大于所述蓝光有机荧光材料的三线态激子能量。
在一些实施方式中,所述蓝光有机荧光层中的第一主体材料为第二双极性材料,所述第二双极性材料包括CBP和NPB中的至少一种,但不限于此。在一些实施方式中,所述第二双极性材料包括一种组分,如CBP和NPB中的一种;在一些实施方式中,所述第二双极性材料包括两种组分,如CBP和NPB。所述第二双极性材料可以保证电荷的传输和平衡,减少电荷在发光层的累积,有利于提 升量子点白光二极管的发光效率,减小效率滚降,并保持光谱的稳定性,这对白光二极管而言至关重要。
在一些实施方式中,所述蓝光有机荧光层中的第一主体材料为由第二n型半导体材料和第二p型半导体材料组成的混合材料,所述第二n型半导体材料包括TPBi、Bepp2、BTPS和TmPyPb中的至少一种。在一些实施方式中,所述第二n型半导体材料包括一种组分,如TPBi、Bepp2、BTPS和TmPyPb中的一种;在一些方式中,所述第二n型半导体材料包括两种组分,如TPBi和Bepp2,Bepp2和BTPS,BTPS和TmPyPb;在一些实施方式中,所述第二n型半导体材料包括三种组分,如TPBi、Bepp2和BTPS,Bepp2、BTPS和TmPyPb,TPBi、Bepp2和TmPyPb;在一些实施方式中,所述第二n型半导体材料包括四种组分,如TPBi、Bepp2、BTPS和TmPyPb。所述第二p型半导体材料包括TAPC、mCP和TCTA中的至少一种。在一些实施方式中,所述第二p型半导体材料包括一种组分,如TAPC、mCP和TCTA中的一种;在一些实施方式中,所述第二p型半导体材料包括两种组分,如TAPC和mCP,TAPC和TCTA,mCP和TCTA;在一些实施方式中,所述第二p型半导体材料包括三种组分,如TAPC、mCP和TCTA。所述T 1是指半导体材料的三线态激子能量。作为举例,所述由第二n型半导体材料和第二p型半导体材料组成的混合材料可以为TCTA:TPBi、TCTA:TmPyPb和mCP:TmPyPb中的一种,但不限于此。所述由第二n型半导体材料和第二p型半导体材料组成的混合材料同样可以保证电荷的传输和平衡,减少电荷在发光层的累积,有利于提升量子点白光二极管的发光效率,减小效率滚降,并保持光谱的稳定性,这对白光二极管而言至关重要。
在一些实施方式中,所述蓝光有机荧光材料包括4P-NPD、Cz-2pbb、POTA和DADBT等中的至少一种,但不限于此。在一些实施方式中,所述蓝光有机荧光材料包括一种组分,如4P-NPD、Cz-2pbb、POTA和DADBT中的一种;在一些实施方式中,所述蓝光有机荧光材料包括两种组分,如4P-NPD和Cz-2pbb,Cz-2pbb和POTA,POTA和DADBT,Cz-2pbb和DADBT;在一些实施方式中,所述蓝光有机荧光材料包括三种组分,如4P-NPD、Cz-2pbb和POTA,4P-NPD、Cz-2pbb和DADBT,Cz-2pbb、POTA和DADBT;在一些实施方式中,所述蓝光有机荧光材料包括四种组分,如4P-NPD、Cz-2pbb、POTA和DADBT。在所述蓝光有机荧光层中,所述蓝光有机荧光材料可以捕获电子空穴形成激子,也可 以接收从第一主体材料中转移来的激子。
在一些实施方式中,所述蓝光有机荧光层的厚度为10-50nm。
在一些实施方式中,所述蓝光有机荧光层还可以为蓝光有机荧光材料单独形成的发光层。本实施例中,所述蓝光有机荧光层的厚度为5-30nm。
在一些实施方式中,当所述量子点发光层材料包括所述量子点和第二主体材料时,为防止量子点激子被第二主体材料猝灭,所述第二主体材料的单线态激子能量和三线态激子能量均大于所述量子点的激子能量。在本实施例中,所述量子点发光层发光机制包括三种:1、电子、空穴分别从阴极和阳极传输至量子点发光层发生辐射复合放出光子;2、蓝光有机荧光层材料的三线态激子扩散至量子点发光层并通过Dexter能量转移的方式将三线态激子传递给量子点,并激发量子点放出光子;3、电子、空穴分别从阴极和阳极传输至第二主体材料中形成单线态和三线态激子,所述第二主体材料中形成的单线态和三线态激子分别通过Forster和Dexter能量转移传递给量子点,并在量子点发光层中辐射复合发出光子。
本实施例中,所述第二主体材料为第三双极性材料、第三n型半导体材料、第三p型半导体材料以及由第三n型半导体材料和第三p型半导体材料组成的混合材料中的一种,但不限于此。
在一些实施方式中,所述第三双极性材料包括CBP和NPB中的至少一种,但不限于此。在一些实施方式中,所述第三双极性材料包括一种组分,如CBP和NPB中的一种;在一些实施方式中,所述第三双极性材料包括两种组分,如CBP和NPB。
所述第三n型半导体材料包括TPBi、Bepp2、BTPS和TmPyPb中的至少一种,但不限于此。在一些实施方式中,所述第三n型半导体材料包括一种组分,如TPBi、Bepp2、BTPS和TmPyPb中的一种;在一些方式中,所述第三n型半导体材料包括两种组分,如TPBi和Bepp2,Bepp2和BTPS,BTPS和TmPyPb;在一些实施方式中,所述第三n型半导体材料包括三种组分,如TPBi、Bepp2和BTPS,Bepp2、BTPS和TmPyPb,TPBi、Bepp2和TmPyPb;在一些实施方式中,所述第三n型半导体材料包括四种组分,如TPBi、Bepp2、BTPS和TmPyPb。
在一些实施方式中,所述第三p型半导体材料包括TAPC、mCP和TCTA中的至少一种,但不限于此。在一些实施方式中,所述第三p型半导体材料包括一 种组分,如TAPC、mCP和TCTA中的一种;在一些实施方式中,所述第三p型半导体材料包括两种组分,如TAPC和mCP,TAPC和TCTA,mCP和TCTA;在一些实施方式中,所述第三p型半导体材料包括三种组分,如TAPC、mCP和TCTA。
在一些实施方式中,所述量子点发光层材料为量子点,则在本实施例中,所述量子点发光层发光机制包括两种:1、电子、空穴分别从阴极和阳极传输至量子点发光层发生辐射复合放出光子;2、蓝光有机荧光层材料的三线态激子扩散至量子点发光层并通过Dexter能量转移的方式将三线态激子传递给量子点,并激发量子点放出光子。
在一些实施方式中,所述蓝光有机荧光层靠近阳极一侧设置,所述量子点发光层靠近阴极一侧设置,所述有机蓝光荧光层材料包括第一主体材料以及掺杂在所述第一主体材料中的蓝光有机荧光材料,所述量子点发光层材料包括量子点和第二主体材料,当所述阻隔层材料为第一双极性材料或者为由第一n型半导体材料和第一p型半导体材料组成的混合材料时,所述第一主体材料选自第二双极性材料、第二p型半导体材料以及由第二n型半导体材料和第二p型半导体材料组成的混合材料中的一种,所述第二主体材料选自第三双极性材料、第三n型半导体材料以及由第三n型半导体材料和第三p型半导体材料组成的混合材料中的一种。
在一些实施方式中,当所述阻隔层材料为第一双极性材料或者为由第一n型半导体材料和第一p型半导体材料组成的混合材料时,所述第一主体材料为第二p型半导体材料,所述第二主体材料为第三n型半导体材料。
在一些实施方式中,当所述阻隔层材料为第一双极性材料或者为由第一n型半导体材料和第一p型半导体材料组成的混合材料中的一种时,所述第一主体材料为由第二n型半导体材料和第二p型半导体材料组成的混合材料,所述第二主体材料为第三n型半导体材料。此时,第一主体材料可以保证电子和空穴在整个蓝光有机荧光层中分布,得到充分的蓝光发光,且有利于降低三线态激子湮灭概率。另一方面,均匀分散的三线态激子有利于其向量子点层的扩散,保证量子点的发光。
在一些实施方式中,当所述阻隔层材料为第一双极性材料或者为由第一n型半导体材料和第一p型半导体材料组成的混合材料时,所述第一主体材料为第 二p型半导体材料,所述第二主体材料为由第三n型半导体材料和第三p型半导体材料组成的混合材料。此时,第二主体材料为由第三n型半导体材料和第三p型半导体材料组成的混合材料,兼具优异的电子空穴迁移能力,能够有效降低量子点发光层的阻抗,使激子能够在量子点发光层均匀分布,降低激子湮灭的可能性,提高量子点发光的稳定性。
在一些实施方式中,当所述阻隔层材料为由第一n型半导体材料和第一p型半导体材料组成的混合材料时,所述第一主体材料为由第二n型半导体材料和第二p型半导体材料组成的混合材料,所述第二主体材料为由第三n型半导体材料和第三p型半导体材料组成的混合材料。由于第一主体材料和第二主体材料兼具p型半导体材料和n型半导体材料的半导体特性,即兼具良好的电子和空穴迁移能力,有利于降低整个发光层的阻抗,保证阳极方向传输来的空穴可以无阻碍地向量子点发光层运动,同时保证量子点发光层运动来的电子可以无阻碍地通过蓝光有机荧光层,使电荷载流子能够均匀地分布在整个发光层中,降低激子湮灭的概率,提高器件的效率和稳定性。
在一些实施方式中,当所述阻隔层材料为第一双极性材料时,所述第一主体材料为第二双极性材料,所述第二主体材料为第三双极性材料。顾名思义,双极性材料同样具有优异的电子空穴迁移能力,可以降低整个发光层的阻抗,使得激子均匀分散在整个发光层中,提高器件的效率和稳定性。而且,采用双极性材料有利于简化器件结构和制作过程。
在一些实施方式中,所述蓝光有机荧光层靠近阴极一侧设置,所述量子点发光层靠近阳极一侧设置,所述有机蓝光荧光层材料包括第一主体材料以及掺杂在所述第一主体材料中的蓝光有机荧光材料,所述量子点发光层材料包括量子点和第二主体材料,当所述阻隔层材料为第一双极性材料或者为由第一n型半导体材料和第一p型半导体材料组成的混合材料时,所述第一主体材料选自第二双极性材料、第二n型半导体材料以及由第二n型半导体材料和第二p型半导体材料组成的混合材料中的一种,所述第二主体材料选自第三双极性材料、第三p型半导体材料以及由第三n型半导体材料和第三p型半导体材料组成的混合材料中的一种。
在一些实施方式中,当所述阻隔层材料为第一双极性材料或者为由第一n型半导体材料和第一p型半导体材料组成的混合材料时,所述第一主体材料为第 二n型半导体材料,所述第二主体材料为第三p型半导体材料。
在一些实施方式中,当所述阻隔层材料为第一双极性材料或者为由第一n型半导体材料和第一p型半导体材料组成的混合材料时,所述第一主体材料为由第二n型半导体材料和第二p型半导体材料组成的混合材料,所述第二主体材料为第三p型半导体材料。此时,第一主体材料为由第二n型半导体材料和第二p型半导体材料组成的混合材料可以保证电子和空穴在整个蓝光有机荧光层中分布,得到充分的蓝光发光,且有利于降低三线态激子湮灭概率。另一方面,均匀分散的三线态激子有利于其向量子点层的扩散,保证量子点的发光。
在一些实施方式中,当所述阻隔层材料为第一双极性材料或者为由第一n型半导体材料和第一p型半导体材料组成的混合材料时,所述第一主体材料为第二n型半导体材料,所述第二主体材料为由第三n型半导体材料和第三p型半导体材料组成的混合材料。此时,所述第二主体材料为由第三n型半导体材料和第三p型半导体材料组成的混合材料,兼具优异的电子空穴迁移能力,能够有效降低量子点发光层的阻抗,使激子能够在量子点发光层均匀分布,降低激子湮灭的可能性,提高量子点发光的稳定性。
在一些实施方式中,当所述阻隔层材料为由第一n型半导体材料和第一p型半导体材料组成的混合材料时,所述第一主体材料为由第二n型半导体材料和第二p型半导体材料组成的混合材料,所述第二主体材料为由第三n型半导体材料和第三p型半导体材料组成的混合材料。由于第一主体材料和第二主体材料兼具p型半导体材料和n型半导体材料的半导体特性,即兼具良好的电子和空穴迁移能力,有利于降低整个发光层的阻抗,保证阳极方向传输来的空穴可以无阻碍地向蓝光有机荧光层运动,同时保证有机荧光层运动来的电子可以无阻碍地通过量子点发光层,使电荷载流子能够均匀地分布在整个发光层中,降低激子湮灭的概率,提高器件的效率和稳定性。
在一些实施方式中,当所述阻隔层材料为第一双极性材料时,所述第一主体材料为第二双极性材料,所述第二主体材料均为第三双极性材料。双极性材料具有优异的电子空穴迁移能力,可以降低整个发光层的阻抗,使得激子均匀分散在整个发光层中,提高器件的效率和稳定性。而且,采用双极性材料有利于简化器件结构和制作过程。
在一些实施方式中,为防止蓝光有机荧光材料的三线态激子能量被猝灭,所 述蓝光有机荧光材料的三线态激子能量应大于量子点发光层中量子点的能量。因此,在所述发光层中,根据蓝光有机荧光材料的三线态激子能量大小的不同,所述量子点的选择也不相同。当所述蓝光有机荧光材料的三线态激子能量大于2.38eV时,所述量子点为黄光量子点,或者所述量子点为由红光量子点和绿光量子点组成的混合量子点,或者所述量子点为包括红光量子点、黄光量子点和绿光量子点的混合量子点,其中,所述黄光量子点的发光光谱的半波宽大于70nm。
作为举例,当所述蓝光有机荧光材料为Cz-2pbb(T 1=2.46eV)或POTA(T 1=2.44eV)中的一种时,所述黄光量子点包括CuInS/ZnS,ZnCuInS/ZnS、AgInS/ZnS和InP/ZnS等中的至少一种,但不限于此;所述红、绿两种量子点可独立地选自CdSe/ZnS、CdSe/CdS、CdSe/CdS/ZnS、CuInS/ZnS,ZnCuInS/ZnS、AgInS/ZnS和InP/ZnS中的至少一种,但不限于此。在一些实施方式中,所述黄光量子点包括一种组分,如CuInS/ZnS、ZnCuInS/ZnS、AgInS/ZnS和InP/ZnS中的一种;在一些实施方式中,所述黄光量子点包括两种组分,如CuInS/ZnS和ZnCuInS/ZnS,ZnCuInS/ZnS和AgInS/ZnS,AgInS/ZnS和InP/ZnS;在一些实施方式中,所述黄光量子点包括三种组分,如CuInS/ZnS、ZnCuInS/ZnS和AgInS/ZnS,ZnCuInS/ZnS、AgInS/ZnS和InP/ZnS,CuInS/ZnS、ZnCuInS/ZnS和InP/ZnS;在一些实施方式中,所述黄光量子点包括四种组分,如CuInS/ZnS,ZnCuInS/ZnS、AgInS/ZnS和InP/ZnS。
在一些实施方式中,所述红光量子点或绿光量子点包括一种组分,如CdSe/ZnS、CdSe/CdS、CdSe/CdS/ZnS、CuInS/ZnS,ZnCuInS/ZnS、AgInS/ZnS和InP/ZnS中的一种;在一些实施方式中,所述红光量子点或绿光量子点包括两种组分,如CdSe/ZnS和CdSe/CdS,CdSe/CdS/ZnS和CuInS/ZnS,ZnCuInS/ZnS和AgInS/ZnS,AgInS/ZnS和InP/ZnS;在一些实施方式中,所述红光量子点或绿光量子点包括三种组分,如CdSe/ZnS、CdSe/CdS和CdSe/CdS/ZnS,CdSe/CdS、CdSe/CdS/ZnS和CuInS/ZnS,CuInS/ZnS、ZnCuInS/ZnS和AgInS/ZnS;在一些实施方式中,所述红光量子点或绿光量子点包括四种组分,如CdSe/ZnS、CdSe/CdS、CdSe/CdS/ZnS和CuInS/ZnS,CuInS/ZnS,ZnCuInS/ZnS、AgInS/ZnS和InP/ZnS。
在一些实施方式中,当蓝光有机荧光材料的三线态激子能量大于2.38eV时,所述量子点发光层为层叠设置的红光量子点薄膜层和绿光量子点薄膜层,其中, 所述红光量子点薄膜层和绿光量子点薄膜层的厚度均为5-15nm。
在一些实施方式中,当蓝光有机荧光层材料的三线态激子能量大于2.38eV时,所述量子点发光层为红光量子点和绿光量子点混合形成的单一混合膜层,其中,所述单一混合膜层的厚度为10-30nm。
在一些实施方式中,当蓝光有机荧光层材料的三线态激子能量大于2.38eV时,所述量子点为黄光量子点,所述量子点发光层中的厚度为5-50nm。
在一些实施方式中,当蓝光有机荧光层材料的三线态激子能量大于2.38eV时,所述量子点为包括红光量子点、黄光量子点和绿光量子点的混合量子点,所述量子点发光层中的厚度为15-50nm。
在一些实施方式中,当蓝光有机荧光层材料的三线态激子能量大于2.38eV时,所述量子点发光层为层叠设置的红光量子点薄膜层、黄光量子点薄膜层和绿光量子点薄膜层,其中,所述红光量子点薄膜层、黄光量子点薄膜层和绿光量子点薄膜层的厚度均为5-15nm。
在一些实施方式中,当蓝光有机荧光层材料的三线态激子能量为2.25eV-2.38eV时,所述量子点为黄光量子点,或者所述量子点为由红光量子点和黄光量子点组成的混合量子点,其中,所述黄光量子点的发光光谱的半波宽大于70nm,所述红光量子点发光光谱的半波宽不受限制。当所述量子点为黄光量子点时,所述量子点发光层厚度为5-50nm。当所述量子点为由红光量子点和黄光量子点混合形成的单一混合膜层,其中,所述单一混合膜层的厚度为10-50nm;当所述量子点发光层为层叠设置的红光量子点薄膜层和黄光量子点薄膜层,其中,所述红光量子点薄膜层和黄光量子点薄膜层的厚度均为5-15nm。
作为举例,当蓝光有机荧光层材料为4P-NPD(T 1=2.3eV)或DADBT(T 1=2.38eV)时,所述红光量子点包括CdSe/ZnS、CdSe/CdS、CdSe/CdS/ZnS、CuInS/ZnS,ZnCuInS/ZnS、AgInS/ZnS和InP/ZnS中的至少一种,但不限于此;所述黄光量子点包括CuInS/ZnS,ZnCuInS/ZnS、AgInS/ZnS和InP/ZnS中的至少一种,但不限于此。
在一些实施方式中,所述衬底可以为刚性材质的衬底,如玻璃等,也可以为柔性材质的衬底,如PET或PI等中的一种。
在一些实施方式中,所述阳极可以选自铟掺杂氧化锡(ITO)、氟掺杂氧化锡(FTO)、锑掺杂氧化锡(ATO)、铝掺杂氧化锌(AZO)等中的一种或多种。
在一些实施方式中,所述空穴传输层的材料可以选自具有良好空穴传输性能的材料,例如可以选自但不限于p型的TAPC、mCP、TFB、PVK、Poly-TPD、PFB、TCTA、CBP、TPD和NPB等中的一种或多种。
在一些实施方式中,所述电子传输层的材料可以选自具有良好电子传输性能的材料,例如可以选自但不限于n型的TPBi、Bepp2、BTPS、TmPyPb、ZnO、TiO 2、Fe 2O 3、SnO 2、Ta 2O 3、AlZnO、ZnSnO和InSnO等中的一种或多种。
在一些实施方式中,所述阴极可选自铝(Al)电极、银(Ag)电极和金(Au)电极等中的一种。
需说明的是,本公开量子点白光二极管还可以包含以下功能层的一层或者多层:设置于阳极和空穴传输层之间的空穴注入层,设置于阴极和电子传输层之间的电子注入层。
本公开还提供一种如图1所述正式结构的量子点白光二极管的制备方法的实施例,具体的包括以下步骤:
提供一衬底,在所述衬底上形成阳极;
在所述阳极上制备空穴传输层;
在所述空穴传输层上制备蓝光有机荧光层;
在所述蓝光有机荧光层上制备间隔层;
在所述间隔层上制备量子点发光层;
在所述量子点发光层上制备电子传输层;
在所述电子传输层上制备阴极,得到所述量子点白光二极管;
其中,所述间隔层材料为同时具有电子和空穴迁移能力的材料,所述间隔层材料的三线态激子能量大于蓝光有机荧光层中蓝光有机荧光材料的三线态激子能量,且所述间隔层材料的三线态激子能量大于量子点发光层中量子点的激子能量。
本公开中,各层制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于溶液法(如旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法或条状涂布法等)、蒸镀法(如热蒸镀法、电子束蒸镀法、磁控溅射法或多弧离子镀膜法等)、沉积法(如物理气相沉积法、原子层沉积法、脉冲激光沉积法等)中的一种或多种。
在一些实施方式中,还提供一种正式结构的量子点白光二极管,如图2所示,其包括从下往上层叠设置的衬底10、阳极20、空穴传输层30、蓝光有机荧光层40、量子点发光层50、电子传输层60以及阴极70;其中所述蓝光有机荧光层材料包括由第一p型半导体材料和第一n型半导体材料混合形成的第一主体材料以及掺杂在所述第一主体材料中的蓝光有机荧光材料,所述第一主体材料的单线态激子能量大于所述蓝光有机荧光材料的单线态激子能量,且所述第一主体材料的三线态激子能量大于所述蓝光有机荧光材料的三线态激子能量。
本实施例中的蓝光有机荧光层材料包括由第一p型半导体材料和第一n型半导体材料混合形成的第一主体材料以及掺杂在所述第一主体材料中的蓝光有机荧光材料,由这种材料组成的蓝光有机荧光层可有效提升量子点白光二极管的发光效率。实现上述效果的机理具体如下:
1、由于所述蓝光有机荧光层中的蓝光有机荧光材料掺杂在所述第一主体材料中,使得所述蓝光有机荧光材料的单线态和三线态激子也可分布在所述第一主体材料中,这有利于减轻激子湮灭效应,可保证量子点白光二极管在大电流密度或高亮度情况下能稳定地发出白光。
2、所述第一主体材料的单线态激子能量大于所述蓝光有机荧光材料的单线态激子能量,且所述第一主体材料的三线态激子能量大于所述蓝光有机荧光材料的三线态激子能量,这使得所述第一主体材料中形成的单线态激子可通过Forster能量转移传递到蓝光有机荧光材料中,并在蓝光有机荧光材料中辐射复合发出蓝光;同时,所述第一主体材料和蓝光有机荧光材料的三线态激子可扩散至量子点发光层并通过Dexter能量转移的方式将三线态激子能量传递给量子点,激发量子点放出光子,从而提升量子点白光二极管的发光效率。
需要说明的是,所述正式结构的量子点白光二极管还可以包括从下往上叠层设置的衬底、阳极、空穴传输层、量子点发光层、蓝光有机荧光层、电子传输层以及阴极;其中所述蓝光有机荧光层材料包括由第一p型半导体材料和第一n型半导体材料混合形成的第一主体材料以及掺杂在所述第一主体材料中的蓝光有机荧光材料,所述第一主体材料的单线态激子能量大于所述蓝光有机荧光材料的单线态激子能量,且所述第一主体材料的三线态激子能量大于所述蓝光有机荧光材料的三线态激子能量。这种结构的量子点白光二极管同样能够提升其发光效率,实现上述效果的机理与上述实施例相同。
在一些实施方式中,所述蓝光有机荧光层中,所述蓝光有机荧光材料的掺杂浓度为0.5-3%。由于单线态激子寿命极短,其激子扩散长度小于1nm,单线态激子一般通过Forster能量转移的方式传递激子能量,其有效作用半径通常在3-5nm之间;而三线态激子由于其寿命较长,其激子扩散长度可达100nm,三线态激子一般通过Dexter能量转移的方式传递激子能量,其有效作用半径为1nm之内。本实施例将所述蓝光有机荧光材料的掺杂浓度设定为0.5-3%,使得所述蓝光有机荧光层在靠近量子点发光层的3-5nm范围内单线态激子所占比例明显减小,从而有效降低蓝光有机荧光材料的单线态激子转移至量子点发光层的概率,使得所述蓝光有机荧光材料的单线态激子可在蓝光有机荧光层中辐射复合发出蓝光。
由于Dexter能量转移的有效作用半径为1nm之内,在蓝光有机荧光材料的掺杂浓度为0.5-3%的条件下,所述第一主体材料的三线态激子在1nm范围内找不到可转移能量的蓝光有机荧光材料,因此本实施例还可以有效防止第一主体材料将三线态激子传递给蓝光有机荧光材料并以非辐射复合的方式回到基态,造成能量损失。
在一些实施方式中,所述蓝光有机荧光层的厚度为10-40nm,在该厚度范围内,所述蓝光有机荧光层中的第一主体材料和蓝光有机荧光材料的三线态激子均能够扩散至量子点发光层并通过Dexter能量转移的方式将三线态激子能量传递给量子点,激发量子点放出光子。
在一些实施方式中,所述蓝光有机荧光层中的第一主体材料为具有空穴传输能力的第一p型半导体材料和具有电子传输能力的第一n型半导体材料组成的混合材料,也就是说,所述第一主体材料同时具有电子和空穴迁移能力,因此,所述第一主体材料还可以保证电荷的传输和平衡,减少电荷在发光层的累积,有利于提升量子点白光二极管的发光效率,减小效率滚降,并保持光谱的稳定性,这对白光二极管而言至关重要。
在一些实施方式中,当所述阴极和发光层之间设置有电子传输层,且所述蓝光有机荧光层靠近所述电子传输层一侧设置时,则所述电子传输层的材料与所述蓝光有机荧光层材料中的第一n型半导体材料中的至少一种相同。由于所述电子传输层中的材料与所述蓝光有机荧光层材料中的第一n型半导体材料中的至少一种相同,因此,从所述电子传输层中输出的电子在传输到所述蓝光有机荧光层 时不存在界面势垒,所述电子可以快速无阻碍地从电子传输层传输到蓝光有机荧光层,从而提高激子复合效率。
在一些实施方式中,当所述阳极和发光层之间设置有空穴传输层,且所述蓝光有机荧光层靠近所述空穴传输层一侧设置时,则所述空穴传输层的材料与所述蓝光有机荧光层材料中的第一p型半导体材料中的至少一种相同。由于所述空穴传输层中的材料与所述蓝光有机荧光层材料中的第一p型半导体材料中的至少一种相同,因此,从空穴传输层中输出的空穴在传输到所述蓝光有机荧光层时不存在界面势垒,所述空穴可以快速无阻碍地从电子传输层传输到蓝光有机荧光层,从而提高激子复合效率。
在一些实施方式中,所述量子点发光层材料包括所述量子点和第二主体材料,其中,为防止量子点激子被第二主体材料猝灭,所述第二主体材料的单线态激子能量和三线态激子能量均大于所述量子点的激子能量。在本实施例中,所述量子点发光层发光机制包括三种:1、电子、空穴分别从阴极和阳极传输至量子点发光层发生辐射复合放出光子;2、蓝光有机荧光层材料的三线态激子扩散至量子点发光层并通过Dexter能量转移的方式将三线态激子传递给量子点,并激发量子点发出光子;3、电子、空穴分别从阴极和阳极传输至第二主体材料中形成单线态和三线态激子,所述第二主体材料中形成的单线态和三线态激子分别通过Forster和Dexter能量转移传递给量子点,并在量子点发光层中辐射复合发出光子。
本实施例中,所述第二主体材料为第一双极性材料、第二n型半导体材料、第二p型半导体材料以及由第二n型半导体材料和第二p型半导体材料组成的混合材料中的一种,但不限于此。在一些实施方式中,所述第一双极性材料包括CBP和NPB中的至少一种,但不限于此;所述第二n型半导体材料包括TPBi、Bepp2、BTPS和TmPyPb中的至少一种,但不限于此;所述第二p型半导体材料包括TAPC、mCP和TCTA中的至少一种,但不限于此。
在一些实施方式中,所述量子点发光层材料为量子点,则在本实施例中,所述量子点发光层发光机制包括两种:1、电子、空穴分别从阴极和阳极传输至量子点发光层发生辐射复合放出光子;2、蓝光有机荧光层材料的三线态激子扩散至量子点发光层并通过Dexter能量转移的方式将三线态激子传递给量子点,并激发量子点放出光子。
在一些实施方式中,所述蓝光有机荧光层靠近阳极一侧设置,所述量子点发光层靠近阴极一侧设置,所述量子点发光层材料包括量子点和第二主体材料,所述第二主体材料选自第一双极性材料、第二n型半导体材料、第二p型半导体材料以及由第二n型半导体材料和第二p型半导体材料组成的混合材料中的一种。
在一些实施方式中,所述第二主体材料为由第二n型半导体材料和第二p型半导体材料组成的混合材料。采用第二n型半导体材料和第二p型半导体材料组成的混合材料兼具良好的电子和空穴迁移能力,有利于降低发光层的阻抗,保证阴极方向传输来的电子可以无阻碍地向蓝光有机荧光层运动,同时保证蓝光有机荧光层运动来的空穴可以无阻碍地通过量子点发光层,使电荷载流子能够均匀地分布在整个发光层中,降低激子湮灭的概率,提高器件的效率和稳定性。
在一些实施方式中,所述第二主体材料为第一双极性材料。第一双极性材料同样具有优异的电子空穴迁移能力,可以起到上述第二n型半导体和第二p型半导体混合材料相同的作用。
在一些实施方式中,所述蓝光有机荧光层靠近阴极一侧设置,所述量子点发光层靠近阳极一侧设置,所述量子点发光层材料包括量子点和第二主体材料,所述第二主体材料选自第一双极性材料、第二n型半导体材料、第二p型半导体材料以及由第二n型半导体材料和第二p型半导体材料组成的混合材料中的一种。
在一些实施方式中,所述第二主体材料为由第二n型半导体材料和第二p型半导体材料组成的混合材料。采用第二n型半导体材料和第二p型半导体材料组成的混合材料兼具良好的电子和空穴迁移能力,有利于降低发光层的阻抗,保证阴极方向传输来的电子可以无阻碍地向蓝光有机荧光层运动,同时保证蓝光有机荧光层运动来的空穴可以无阻碍地通过量子点发光层,使电荷载流子能够均匀地分布在整个发光层中,降低激子湮灭的概率,提高器件的效率和稳定性。
在一些实施方式中,所述第二主体材料为第一双极性材料。同理,第一双极性材料同样具有优异的电子空穴迁移能力,可以起到上述第二n型半导体和第二p型半导体混合材料相同的作用。
在一些实施方式中,本发明还提供一种如图2所述正式结构的量子点白光二极管的制备方法的实施例,具体的包括以下步骤:
提供一衬底,在所述衬底上形成阳极;
在所述阳极上制备空穴传输层;
在所述空穴传输层上制备蓝光有机荧光层;
在所述蓝光有机荧光层上制备间隔层;
在所述间隔层上制备量子点发光层;
在所述量子点发光层上制备电子传输层;
在所述电子传输层上制备阴极,得到所述量子点白光二极管;
其中,所述间隔层材料为同时具有电子和空穴迁移能力的材料,所述间隔层材料的三线态激子能量大于蓝光有机荧光层中蓝光有机荧光材料的三线态激子能量,且所述间隔层材料的三线态激子能量大于量子点发光层中量子点的激子能量。
下面通过实施例对本公开进行详细说明。
实施例1
以TCTA:TmPyPb混合材料作为间隔层材料,如图3所示,量子点白光二极管自下而上依次包括:ITO阳极101、空穴注入层102、空穴传输层103、量子点发光层104、间隔层105、蓝光有机荧光层106、电子传输层107、电子注入层108以及阴极109,其具体的制备包括以下步骤:
在图案化的ITO玻璃上用溶液法沉积PEDOT:PSS作为空穴注入层,厚度为30nm;
在PEDOT:PSS上用溶液法沉积TFB作为空穴传输层,厚度为30nm;
在TFB上用溶液法沉积混合的红绿量子点作为量子点发光层,厚度为15nm;
在量子点发光层上用蒸镀法共蒸沉积TCTA:TmPyPb混合材料作为间隔层,厚度为8nm;
在间隔层上用蒸镀法共蒸沉积POTA和TCTA:TmPyPb作为蓝光有机荧光层,厚度为15nm;
在蓝光有机荧光层上用蒸镀法沉积TmPyPb作为电子传输层,厚度为30nm;
在TmPyPb上用蒸镀法沉积LiF作为电子注入层,厚度为1nm;
在LiF上用蒸镀法沉积Al作为阴极,厚度为100nm。
实施例2
以CBP作为间隔层材料,量子点白光二极管自下而上依次包括:ITO阳极、空穴注入层、空穴传输层、量子点发光层、间隔层、蓝光有机荧光层、电子传输层、电子注入层以及阴极,其具体的制备包括以下步骤:
在图案化的ITO玻璃上用溶液法沉积PEDOT:PSS作为空穴注入层,厚度为30nm;
在PEDOT:PSS上用溶液法沉积TFB作为空穴传输层,厚度为30nm;
在TFB上用溶液法沉积CBP:红绿量子点混合材料作为量子点发光层,厚度为20nm;
在量子点发光层上用蒸镀法沉积CBP作为间隔层,厚度为8nm;
在间隔层上用蒸镀法沉积POTA和CBP作为蓝光有机荧光层,厚度为15nm;
在蓝光有机荧光层上用蒸镀法沉积TmPyPb作为电子传输层,厚度为30nm;
在TmPyPb上用蒸镀法沉积LiF作为电子注入层,厚度为1nm;
在LiF上用蒸镀法沉积Al作为阴极,厚度为100nm。
实施例3
以TCTA:TPBi混合材料作为间隔层材料,如图4所示,量子点白光二极管自下而上依次包括:ITO阳极201、空穴注入层202、空穴传输层203、蓝光有机荧光层204、量子点发光层205、间隔层206、电子传输层207、电子注入层208以及阴极209,其具体的制备包括以下步骤:
在图案化的ITO玻璃上用溶液法沉积PEDOT:PSS作为空穴注入层,厚度为30nm;
在PEDOT:PSS上用溶液法沉积TFB作为空穴传输层,厚度为30nm;
在TFB上用蒸镀法共蒸沉积POTA和TCTA:TmPyPb作为蓝光有机荧光层,厚度为15nm;
在蓝光有机荧光层上用溶液法依次沉积层叠的红、绿量子点薄膜作为量子点发光层,红光量子点薄膜厚度为5nm,绿光量子点薄膜厚度为10nm;
在量子点发光层上用蒸镀法共蒸沉积TCTA:TPBi混合材料作为间隔层,厚度为8nm;
在间隔层上用蒸镀法沉积TmPyPb作为电子传输层,厚度为30nm;
在TmPyPb上用蒸镀法沉积LiF作为电子注入层,厚度为1nm;
在LiF上用蒸镀法沉积Al作为阴极,厚度为100nm。
实施例4
以NPB作为间隔层材料,量子点白光二极管自下而上依次包括:ITO阳极、空穴注入层、空穴传输层、蓝光有机荧光层、量子点发光层、间隔层、电子传输 层、电子注入层以及阴极,其具体的制备包括以下步骤:
在图案化的ITO玻璃上用溶液法沉积PEDOT:PSS作为空穴注入层,厚度为30nm;
在PEDOT:PSS上用溶液法沉积TFB作为空穴传输层,厚度为30nm;
在TFB上用蒸镀法沉积Cz-2pbb作为蓝光有机荧光层,厚度为15nm;
在蓝光有机荧光层上用溶液法依次沉积层叠的红、绿量子点薄膜作为量子点发光层,红光量子点薄膜厚度为5nm,绿光量子点薄膜厚度为10nm;
在量子点发光层上用蒸镀法沉积NPB作为间隔层,厚度为8nm;
在间隔层上用蒸镀法沉积TmPyPb作为电子传输层,厚度为30nm;
在TmPyPb上用蒸镀法沉积LiF作为电子注入层,厚度为1nm;
在LiF上用蒸镀法沉积Al作为阴极,厚度为100nm。
实施例5
如图5所示,一种量子点白光二极管自下而上依次包括:ITO阳极101、空穴注入层102、空穴传输层103、量子点发光层104、蓝光有机荧光层105、电子传输层106、电子注入层107以及阴极108,所述蓝光有机荧光层材料包括重量比为1:1的TCTA:TmPyPb主体材料,以及掺杂在所述主体材料中的有机荧光材料POTA,所述POTA的掺杂浓度为2%。所述量子点白光二极管的制备方法包括如下步骤:
在图案化的ITO玻璃上用溶液法沉积PEDOT:PSS作为空穴注入层,厚度为30nm;
在PEDOT:PSS上用溶液法沉积TFB作为空穴传输层,厚度为30nm;
在TFB上用溶液法沉积混合的红绿量子点作为量子点发光层,厚度为15nm;
在量子点发光层上用蒸镀法共蒸沉积POTA(2%)-dopedTCTA:TmPyPb(1:1)作为蓝光有机荧光层,厚度为25nm;
在蓝光有机荧光层上用蒸镀法沉积TmPyPb作为电子传输层,厚度为30nm;
在TmPyPb上用蒸镀法沉积LiF作为电子注入层,厚度为1nm;
在LiF上用蒸镀法沉积Al作为阴极,厚度为100nm。
实施例6
如图6所示,一种量子点白光二极管自下而上依次包括:ITO阳极201、空穴注入层202、空穴传输层203、蓝光有机荧光层204、量子点发光层205、电子 传输层206、电子注入层207以及阴极208,所述蓝光有机荧光层材料包括重量比为1:1的TCTA:TPBi主体材料,以及掺杂在所述主体材料中的有机荧光材料4P-NPD,所述4P-NPD的掺杂浓度为1%。所述量子点白光二极管的制备方法包括如下步骤:
在图案化的ITO玻璃上用溶液法沉积PEDOT:PSS作为空穴注入层,厚度为30nm;
在PEDOT:PSS上用溶液法沉积TCTA作为空穴传输层,厚度为30nm;
在TFB上用蒸镀法共蒸沉积4P-NPD(1%)-dopedTCTA:TPBi(1:1)作为蓝光有机荧光层,厚度为25nm;
在蓝光有机荧光层上用溶液法沉积CBP:红绿量子点混合物作为量子点发光层,厚度为20nm;
在量子点发光层上用蒸镀法沉积TmPyPb作为电子传输层,厚度为30nm;
在TmPyPb上用蒸镀法沉积LiF作为电子注入层,厚度为1nm;
在LiF上用蒸镀法沉积Al作为阴极,厚度为100nm。
实施例7
一种量子点白光二极管自下而上依次包括:ITO阳极、空穴注入层、空穴传输层、蓝光有机荧光层、量子点发光层、电子传输层、电子注入层以及阴极,所述蓝光有机荧光层材料包括重量比为1:1的mCP:TmPyPb主体材料,以及掺杂在所述主体材料中的有机荧光材料DADBT,所述DADBT的掺杂浓度为3%。所述量子点白光二极管的制备方法包括如下步骤:
在图案化的ITO玻璃上用溶液法沉积PEDOT:PSS作为空穴注入层,厚度为30nm;
在PEDOT:PSS上用溶液法沉积TFB作为空穴传输层,厚度为30nm;
在TFB上用溶液法依次沉积红光量子点薄膜、绿光量子点薄膜作为量子点发光层,红光量子点薄膜厚度为5nm,绿光量子点薄膜厚度为10nm;
在量子点发光层上用蒸镀法共蒸沉积DADBT(3%)-dopedmCP:TmPyPb(1:1)作为蓝光有机荧光层,厚度为25nm;
在量子点发光层上用蒸镀法沉积TmPyPb作为电子传输层,厚度为30nm;
在TmPyPb上用蒸镀法沉积LiF作为电子注入层,厚度为1nm;
在LiF上用蒸镀法沉积Al作为阴极,厚度为100nm。
综上所述,本公开提供一种量子点白光二极管,通过在所述发光层的蓝光有机荧光层和量子点发光层之间设置一具有电子和空穴迁移能力的间隔层,所述间隔层能够阻止蓝光有机荧光层材料的单线态激子向量子点转移,使单线态激子能够完全用来产生蓝光;所述间隔层还可使蓝光有机发光层中的三线态激子扩散至量子点发光层并敏化量子点发光,从而有效提升量子点白光二极管的发光效率。本公还提供一种量子点白光二极管,通过将蓝光有机荧光材料均匀地掺杂在由第一p型半导体材料和第一n型半导体材料混合形成的第一主体材料中,所述第一主体材料中的单线态激子可通过Forster能量转移传递到蓝光有机荧光材料中并辐射复合发出蓝光;所述第一主体材料和蓝光有机荧光材料的三线态激子可扩散至量子点发光层并通过Dexter能量转移传递给量子点,激发量子点发出光子,从而有效提升量子点白光二极管的发光效率。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (27)

  1. 一种量子点白光二极管,包括阴极、阳极以及设置在所述阴极和阳极之间的发光层,其特征在于,所述发光层包括层叠设置的蓝光有机荧光层、间隔层以及量子点发光层,所述蓝光有机荧光层靠近阴极一侧设置,所述量子点发光层靠近阳极一侧设置,所述间隔层设置在所述蓝光有机荧光层和所述量子点发光层之间,所述量子点发光层的材料含有量子点,所述蓝光有机荧光层的材料含有蓝光有机荧光材料,所述间隔层的材料含有间隔层材料,所述间隔层材料的三线态激子能量大于所述蓝光有机荧光材料的三线态激子能量,且所述间隔层材料的三线态激子能量大于所述量子点的激子能量。
  2. 根据权利要求1所述的量子点白光二极管,其特征在于,所述间隔层材料为由第一n型半导体材料和第一p型半导体材料组成的混合材料,
    或者,所述间隔层材料为同时具有电子和空穴迁移能力的第一双极性材料。
  3. 根据权利要求1所述的量子点白光二极管,其特征在于,所述间隔层的厚度为3-10nm。
  4. 根据权利要求2所述的量子点白光二极管,其特征在于,所述第一双极性材料为CBP和NPB中的一种或两种;
    或者,所述第一n型半导体材料包括TPBi、Bepp2、BTPS和TmPyPb中的至少一种;
    或者,所述第一p型半导体材料包括TAPC、mCP和TCTA中的至少一种。
  5. 根据权利要求1所述的量子点白光二极管,其特征在于,所述蓝光有机荧光材料包括4P-NPD、Cz-2pbb、POTA和DADBT中的至少一种。
  6. 根据权利要求1所述的量子点白光二极管,其特征在于,所述蓝光有机荧光层的厚度为5-30nm。
  7. 根据权利要求1-4任一项所述的量子点白光二极管,其特征在于,所述蓝光有机荧光层材料包括第一主体材料以及掺杂在所述第一主体材料中的所述蓝光有机荧光材料,所述第一主体材料的单线态激子能量大于所述蓝光有机荧光材料的单线态激子能量,且所述第一主体材料的三线态激子能量大于所述蓝光有机荧光材料的三线态激子能量。
  8. 根据权利要求7所述的量子点白光二极管,其特征在于,所述蓝光有机荧光层的厚度为10-50nm。
  9. 根据权利要求7所述的量子点白光二极管,其特征在于,所述量子点发 光层材料包括所述量子点和第二主体材料,其中,所述第二主体材料的单线态激子能量和三线态激子能量均大于所述量子点的激子能量。
  10. 根据权利要求9所述的量子点发光二极管,其特征在于,所述第一主体材料选自第二双极性材料、第二n型半导体材料以及由第二n型半导体材料和第二p型半导体材料组成的混合材料中的一种,所述第二主体材料选自第三双极性材料、第三p型半导体材料以及由第三n型半导体材料和第三p型半导体材料组成的混合材料中的一种。
  11. 根据权利要求10所述的量子点白光二极管,其特征在于,所述第一主体材料为第二n型半导体材料,所述第二主体材料为第三p型半导体材料;
    或者,所述第一主体材料为由第二n型半导体材料和第二p型半导体材料组成的混合材料,所述第二主体材料为第三p型半导体材料;
    或者,所述第一主体材料为第二n型半导体材料,所述第二主体材料为由第三n型半导体材料和第三p型半导体材料组成的混合材料;
    或者,所述第一主体材料为第二双极性材料,所述第二主体材料为第三双极性材料;
    或者,所述第一主体材料为由第二n型半导体材料和第二p型半导体材料组成的混合材料;所述第二主体材料为由第三n型半导体材料和第三p型半导体材料组成的混合材料。
  12. 根据权利要求10或11所述的量子点白光二极管,其特征在于,
    所述第二n型半导体材料包括TPBi、Bepp2、BTPS和TmPyPb中的至少一种;
    或者,所述第三n型半导体材料包括TPBi、Bepp2、BTPS和TmPyPb中的至少一种;
    或者,所述第二p型半导体材料包括TAPC、mCP和TCTA中的至少一种;
    或者,所述第三p型半导体材料包括TAPC、mCP和TCTA中的至少一种;
    或者,所述第二双极性材料包括CBP和NPB中的至少一种;
    或者,所述第三双极性材料包括CBP和NPB中的至少一种。
  13. 根据权利要求1所述的量子点白光二极管,其特征在于,当蓝光有机荧光材料的三线态激子能量大于2.38eV时,所述量子点为黄光量子点,或者所述量子点为由红光量子点和绿光量子点组成的混合量子点,或者所述量子点为包括 红光量子点、黄光量子点和绿光量子点的混合量子点,其中,所述黄光量子点的发光光谱的半波宽大于70nm。
  14. 根据权利要求1所述的量子点白光二极管,其特征在于,当蓝光有机荧光材料的三线态激子为2.25eV-2.38eV时,所述量子点为黄光量子点,或者所述量子点为由红光量子点和黄光量子点组成的混合量子点,其中,所述黄光量子点的发光光谱的半波宽大于70nm。
  15. 根据权利要求13所述的量子点白光二极管,其特征在于,所述量子点发光层为层叠设置的红光量子点薄膜层和绿光量子点薄膜层,所述红光量子点薄膜层和绿光量子点薄膜层的厚度均为5-15nm;或者,
    所述量子点发光层为红光量子点和绿光量子点混合形成的单一混合膜层,其中,所述单一混合膜层的厚度为10-30nm;或者,
    所述量子点为黄光量子点,所述量子点发光层中的厚度为5-50nm;或者
    所述量子点为包括红光量子点、黄光量子点和绿光量子点的混合量子点,所述量子点发光层中的厚度为15-50nm;或者
    所述量子点发光层为层叠设置的红光量子点薄膜层、黄光量子点薄膜层和绿光量子点薄膜层,其中,所述红光量子点薄膜层、黄光量子点薄膜层和绿光量子点薄膜层的厚度均为5-15nm。
  16. 根据权利要求14所述的量子点白光二极管,其特征在于,所述量子点为黄光量子点,所述量子点发光层厚度为5-50nm;或者,
    所述量子点为由红光量子点和黄光量子点混合形成的单一混合膜层,所述单一混合膜层的厚度为10-50nm;或者,
    所述量子点发光层为层叠设置的红光量子点薄膜层和黄光量子点薄膜层,所述红光量子点薄膜层和黄光量子点薄膜层的厚度均为5-15nm。
  17. 一种量子点白光二极管,包括阴极、阳极以及设置在所述阴极和阳极之间的发光层,其特征在于,所述发光层包括层叠设置的蓝光有机荧光层和量子点发光层,所述蓝光有机荧光层材料包括由第一p型半导体材料和第一n型半导体材料混合形成的第一主体材料以及掺杂在所述第一主体材料中的蓝光有机荧光材料,所述第一主体材料的单线态激子能量大于所述蓝光有机荧光材料的单线态激子能量,且所述第一主体材料的三线态激子能量大于所述蓝光有机荧光材料的三线态激子能量。
  18. 根据权利要求17所述的量子点白光二极管,其特征在于,所述蓝光有机荧光材料的掺杂浓度为0.5-3%。
  19. 根据权利要求17至18任一项所述的量子点发光二极管,其特征在于,所述阴极和发光层之间还设置有电子传输层,所述蓝光有机荧光层靠近所述电子传输层一侧设置,所述电子传输层的材料与所述蓝光有机荧光层材料中的第一n型半导体材料中的至少一种相同。
  20. 根据权利要求17至18任一项所述的量子点发光二极管,其特征在于,所述阳极和发光层之间还设置有空穴传输层,所述蓝光有机荧光层靠近所述空穴传输层一侧设置,所述空穴传输层的材料与所述蓝光有机荧光层材料中的第一p型半导体材料中的至少一种相同。
  21. 根据权利要求10至11任一项所述的量子点发光二极管,其特征在于,所述量子点发光层材料包括所述量子点和第二主体材料,所述第二主体材料的单线态激子能量和三线态激子能量均大于所述量子点的激子能量。
  22. 根据权利要求14所述的量子点白光二极管,其特征在于,所述蓝光有机荧光层靠近阳极一侧设置,所述量子点层靠近阴极一侧设置,所述第二主体材料选自第一双极性材料、第二n型半导体材料、第二p型半导体材料以及由第二n型半导体材料和第二p型半导体材料组成的混合材料中的一种。
  23. 根据权利要求14所述的量子点发光二极管,其特征在于,所述蓝光有机荧光层靠近阴极一侧设置,所述量子点发光层靠近阳极一侧设置,所述第二主体材料选自第一双极性材料、第二n型半导体材料、第二p型半导体材料以及由第二n型半导体材料和第二p型半导体材料组成的混合材料中的一种;或者,所述蓝光有机荧光层靠近阴极一侧设置,所述量子点发光层靠近阳极一侧设置,所述第二主体材料选自第一双极性材料、第二n型半导体材料、第二p型半导体材料以及由第二n型半导体材料和第二p型半导体材料组成的混合材料中的一种。
  24. 根据权利要求17所述的量子点白光二极管,其特征在于,当蓝光有机荧光材料的三线态激子能量大于2.38eV时,所述量子点为黄光量子点,或者所述量子点为由红光量子点和绿光量子点组成的混合量子点,或者所述量子点为包括红光量子点、黄光量子点和绿光量子点的混合量子点,其中,所述黄光量子点的发光光谱的半波宽大于70nm。
  25. 根据权利要求17所述的量子点白光二极管,其特征在于,当蓝光有机 荧光材料的三线态激子为2.25eV-2.38eV时,所述量子点为黄光量子点,或者所述量子点为由红光量子点和黄光量子点组成的混合量子点,其中,所述黄光量子点的发光光谱的半波宽大于70nm。
  26. 根据权利要求24所述的量子点白光二极管,其特征在于,所述量子点发光层为层叠设置的红光量子点薄膜层和绿光量子点薄膜层,所述红光量子点薄膜层和绿光量子点薄膜层的厚度均为5-15nm;或者,
    所述量子点发光层为红光量子点和绿光量子点混合形成的单一混合膜层,其中,所述单一混合膜层的厚度为10-30nm;或者,
    所述量子点为黄光量子点,所述量子点发光层中的厚度为5-50nm;或者
    所述量子点为包括红光量子点、黄光量子点和绿光量子点的混合量子点,所述量子点发光层中的厚度为15-50nm;或者
    所述量子点发光层为层叠设置的红光量子点薄膜层、黄光量子点薄膜层和绿光量子点薄膜层,其中,所述红光量子点薄膜层、黄光量子点薄膜层和绿光量子点薄膜层的厚度均为5-15nm。
  27. 根据权利要求25所述的量子点白光二极管,其特征在于,所述量子点为黄光量子点,所述量子点发光层厚度为5-50nm;或者,
    所述量子点为由红光量子点和黄光量子点混合形成的单一混合膜层,所述单一混合膜层的厚度为10-50nm;或者,
    所述量子点发光层为层叠设置的红光量子点薄膜层和黄光量子点薄膜层,所述红光量子点薄膜层和黄光量子点薄膜层的厚度均为5-15nm。
PCT/CN2019/107468 2018-09-25 2019-09-24 一种量子点白光二极管 WO2020063571A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/954,417 US11502265B2 (en) 2018-09-25 2019-09-24 Quantum dot white light diode
JP2020531668A JP6965452B2 (ja) 2018-09-25 2019-09-24 量子ドット白色光ダイオード

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811115321.0A CN110943174B (zh) 2018-09-25 2018-09-25 一种量子点白光二极管
CN201811115308.5A CN110943172B (zh) 2018-09-25 2018-09-25 一种量子点白光二极管
CN201811115308.5 2018-09-25
CN201811115321.0 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020063571A1 true WO2020063571A1 (zh) 2020-04-02

Family

ID=69949732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107468 WO2020063571A1 (zh) 2018-09-25 2019-09-24 一种量子点白光二极管

Country Status (3)

Country Link
US (1) US11502265B2 (zh)
JP (1) JP6965452B2 (zh)
WO (1) WO2020063571A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063592A1 (zh) * 2018-09-29 2020-04-02 Tcl集团股份有限公司 一种量子点发光二极管
KR20210014798A (ko) * 2019-07-30 2021-02-10 삼성디스플레이 주식회사 발광소자 및 이를 포함하는 표시패널
WO2023100244A1 (ja) * 2021-11-30 2023-06-08 シャープディスプレイテクノロジー株式会社 表示装置
WO2024084570A1 (ja) * 2022-10-18 2024-04-25 シャープディスプレイテクノロジー株式会社 発光素子および表示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135445A (ja) * 2013-01-11 2014-07-24 Sekisui Chem Co Ltd 半導体デバイス、太陽電池、発光素子及び受光素子の製造方法
CN106848080A (zh) * 2017-03-02 2017-06-13 瑞声光电科技(常州)有限公司 一种白光oled发光器件
CN107331782A (zh) * 2017-06-30 2017-11-07 上海天马有机发光显示技术有限公司 有机发光显示面板及有机发光显示装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1705727B1 (de) * 2005-03-15 2007-12-26 Novaled AG Lichtemittierendes Bauelement
US20080284317A1 (en) * 2007-05-17 2008-11-20 Liang-Sheng Liao Hybrid oled having improved efficiency
CN102136550B (zh) 2011-01-27 2013-04-24 电子科技大学 一种白光有机电致发光器件及其制备方法
CN102651452A (zh) 2011-02-24 2012-08-29 海洋王照明科技股份有限公司 一种白光电致发光器件
JP6225912B2 (ja) * 2012-10-10 2017-11-08 コニカミノルタ株式会社 エレクトロルミネッセンス素子
CN103500803B (zh) 2013-10-21 2016-06-08 京东方科技集团股份有限公司 一种复合发光层及其制作方法、白光有机电致发光器件
WO2016041802A1 (en) 2014-09-16 2016-03-24 Cynora Gmbh Light-emitting layer suitable for bright luminescence
JP6022014B2 (ja) * 2015-03-02 2016-11-09 Lumiotec株式会社 有機エレクトロルミネッセント素子及び照明装置
CN106997926B (zh) * 2016-01-26 2019-07-05 昆山工研院新型平板显示技术中心有限公司 一种白光量子点电致发光器件
CN106997889B (zh) 2016-01-26 2019-10-15 昆山工研院新型平板显示技术中心有限公司 一种基于量子点电致发光器件的rgb彩色显示器件
CN105552245B (zh) 2016-02-18 2017-07-28 京东方科技集团股份有限公司 电致发光器件及其制作方法、显示装置
CN105591035A (zh) 2016-02-29 2016-05-18 广州新视界光电科技有限公司 一种杂化白光有机电致发光器件
CN105826481B (zh) 2016-04-07 2018-05-08 上海大学 白光量子点薄膜电致发光器件及其制备方法
CN106229423B (zh) 2016-07-01 2018-07-17 京东方科技集团股份有限公司 量子点电致发光器件、其制备方法及显示器件
CN106784358A (zh) 2017-01-11 2017-05-31 广东工业大学 一种白光有机电致发光器件
CN106972111B (zh) * 2017-06-01 2018-11-20 上海天马有机发光显示技术有限公司 有机发光器件和显示装置
CN107452884B (zh) 2017-07-04 2019-08-09 华南师范大学 全溶液加工的磷光分子敏化多层结构量子点发光二极管及其制备方法
US11678499B2 (en) * 2017-07-27 2023-06-13 Universal Display Corporation Use of singlet-triplet gap hosts for increasing stability of blue phosphorescent emission
US20190237694A1 (en) * 2018-01-30 2019-08-01 The University Of Southern California Oled with hybrid emissive layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135445A (ja) * 2013-01-11 2014-07-24 Sekisui Chem Co Ltd 半導体デバイス、太陽電池、発光素子及び受光素子の製造方法
CN106848080A (zh) * 2017-03-02 2017-06-13 瑞声光电科技(常州)有限公司 一种白光oled发光器件
CN107331782A (zh) * 2017-06-30 2017-11-07 上海天马有机发光显示技术有限公司 有机发光显示面板及有机发光显示装置

Also Published As

Publication number Publication date
US11502265B2 (en) 2022-11-15
JP2021506084A (ja) 2021-02-18
JP6965452B2 (ja) 2021-11-10
US20210083216A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
WO2020063571A1 (zh) 一种量子点白光二极管
KR100752383B1 (ko) 유기전계발광소자 및 그 제조방법
EP2747160A2 (en) Organic light emitting diode
CN106531769A (zh) 一种有机发光显示面板、电子设备及其制作方法
KR20050024763A (ko) 도핑된 발광층을 갖는 유기전계발광소자
EP2747161B1 (en) Organic light emitting diode
CN110212105B (zh) 量子点发光器件及其制备方法、照明装置
CN110752307B (zh) 发光器件和显示面板
CN110943173B (zh) 一种量子点白光二极管
CN108963089A (zh) 量子点电致发光器件
WO2020134147A1 (zh) 一种量子点发光二极管
TWI575725B (zh) 包含金屬氧化物的陽極及具有該陽極之有機發光裝置
CN109935711A (zh) 发光二极管及其制备方法、显示面板
WO2020134161A1 (zh) 一种量子点发光二极管及其制备方法
CN111384274B (zh) 一种量子点发光二极管及其制备方法
WO2021238448A1 (zh) 有机电致发光器件及阵列基板
CN109980105B (zh) 一种qled器件
CN109309165B (zh) 一种有机发光二极管以及有机发光装置
TWI249368B (en) White organic light emitting device using three emissive layer
CN110943174B (zh) 一种量子点白光二极管
CN110943172B (zh) 一种量子点白光二极管
CN208028089U (zh) 掺杂与非掺杂互补型白光有机电致发光器件
CN112331783B (zh) 交流驱动的发光器件及其制备方法、发光装置
WO2022233145A1 (zh) 一种量子点电致发光器件
US20210013437A1 (en) Quantum dot light-emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531668

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865554

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19865554

Country of ref document: EP

Kind code of ref document: A1