WO2020063465A1 - 数据传输方法、终端及存储介质 - Google Patents

数据传输方法、终端及存储介质 Download PDF

Info

Publication number
WO2020063465A1
WO2020063465A1 PCT/CN2019/106900 CN2019106900W WO2020063465A1 WO 2020063465 A1 WO2020063465 A1 WO 2020063465A1 CN 2019106900 W CN2019106900 W CN 2019106900W WO 2020063465 A1 WO2020063465 A1 WO 2020063465A1
Authority
WO
WIPO (PCT)
Prior art keywords
quality
terminal
service flow
identifier
logical channel
Prior art date
Application number
PCT/CN2019/106900
Other languages
English (en)
French (fr)
Inventor
刘菁
王君
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19866178.7A priority Critical patent/EP3852430A4/en
Publication of WO2020063465A1 publication Critical patent/WO2020063465A1/zh
Priority to US17/213,656 priority patent/US11678216B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data transmission method, terminal, and storage medium.
  • LTE Long Term Evolution
  • V2X vehicle to X
  • PC5 wireless direct communication
  • the Uu interface It is the interface between the vehicle (as a terminal) and the radio access network equipment
  • the PC5 interface is the interface between two directly communicating vehicles (as a terminal).
  • the Uu interface uses a Quality of Service (QoS) mechanism based on the E-UTRA radio access bearer (E-RAB).
  • QoS Quality of Service
  • the radio access network device decides to map the data packets that need to be sent to the vehicle / terminal to the corresponding data radio bearer (DRB) and send them to the vehicle / terminal.
  • the vehicle / terminal maps the data packet through the traffic flow template (Traffic Flow Template, UL TFT) sent by the core network device (for example: Mobility Management Entity (MME)). Send it to the corresponding DRB to the radio access network device.
  • MME Mobility Management Entity
  • the PC5 interface uses a QoS mechanism based on the per-packet priority (PPPP) of the near-end communication and / or the per-packet reliability (PPPR) of the near-end communication.
  • PPPP per-packet priority
  • PPPR per-packet reliability
  • PPPP is used to indicate the priority of its associated data packet scheduling on the PC5 interface, thereby ensuring the delay of data packet transmission on the PC5 interface.
  • PPPR is used to indicate the reliability requirements of its associated data packets on the PC5 interface, thereby ensuring the reliability of data packet transmission on the PC5 interface.
  • the transmitting vehicle / terminal After the transmitting vehicle / terminal receives a data packet associated with PPPP and / or PPPR from its application layer, it maps it to a logical channel on the PC5 interface and sends it to the receiving vehicle / terminal, where the transmitting vehicle / terminal The terminal determines the scheduling priority of the logical channel used for transmitting the data packet on the PC5 interface according to the PPPP value corresponding to the data packet, and determines the blind weight of the data packet on the PC5 interface according to the PPPR value corresponding to the data packet. The number of passes.
  • the Uu interface introduces a more granular QoS mechanism, that is, a flow-based QoS mechanism.
  • the Service Data Adaptation Protocol (SDAP) layer is introduced on top of the Packet Data Convergence Protocol (PDCP) layer.
  • the role of the SDAP layer is: 1. To perform QoS flow Mapping to DRB. 2. Carry a quality of service flow identity (QoS, Flow Identity, QFI).
  • QoS Quality of service flow identity
  • the radio access network device maps the quality of service flow to the corresponding DRB according to the QoS parameters corresponding to the quality of service flow, and sends it to the vehicle / terminal.
  • the vehicle / terminal executes the vehicle / terminal's Internet Protocol (IP) packet to the non-access stratum (NAS) layer according to the acquired quality of service flow rule (QoS) rules. Mapping of quality of service flow QoS flow; secondly, the vehicle / terminal maps the quality of service flow QoS flow to the corresponding DRB at the access (AS) layer and sends it to the radio access network device.
  • IP Internet Protocol
  • NAS non-access stratum
  • QoS quality of service flow rule
  • V2X services In 5G NR, in the V2X communication scenario, the QoS requirements of V2X services are more. If the Uu interface and the PC5 interface still use different QoS mechanisms, V2X services will not be able to achieve all of the QoS requirements on the PC5 interface. V2X services cannot be flexibly switched between the Uu interface and the PC5 interface, which easily results in packet loss.
  • the embodiments of the present application provide a data transmission method, a terminal, and a storage medium. In this way, flexible switching of data transmission between different interfaces is achieved, and no packet loss is guaranteed during interface switching.
  • the present application provides a data transmission method, including: a first terminal obtaining an identifier of a quality of service flow and a QoS parameter of the quality of service flow; the identifier of the quality of service flow and a QoS parameter of the quality of service flow have a corresponding relationship;
  • the terminal determines the logical channel used by the quality of service flow of the first terminal on the wireless direct communication interface.
  • the wireless direct communication interface is a communication interface between the first terminal and the second terminal; the first terminal maps the quality of service flow to the logical channel.
  • the service quality is sent to the second terminal.
  • a unified QoS mechanism is adopted on the Uu interface and the PC5 interface. Since the QoS mechanism on the Uu interface and the PC5 interface are unified QoS mechanisms, when any one of the Uu interface and the PC5 interface cannot continue to transmit data, the first terminal can switch the quality of service flow to the other interface Transmission, thereby achieving flexible switching of data transmission on different interfaces, and ensuring no packet loss during interface switching.
  • the determining, by the first terminal, the logical channel used by the quality of service flow of the first terminal on the wireless direct communication interface includes: determining, by the first terminal, the quality of service flow of the first terminal used by the wireless direct communication interface according to the corresponding relationship. Logical channel.
  • the identity of the quality of service flow may be QFI.
  • the QoS parameters of the service quality flow may include any one or more of the following: a 5G quality identifier 5QI of the service quality flow, a priority of the service quality flow, a delay budget PDB, and a packet error rate PER.
  • the identification of the quality of service flow and the QoS parameters of the quality of service flow have a corresponding relationship, including: the correspondence between the identification of the quality of service flow and the 5G quality identification 5QI of the quality of service flow; or the identification of the quality of service flow and the quality of service Correspondence of at least one quality parameter among the priority of the flow, the delay budget PDB, and the packet error rate PER.
  • the identifier of the quality of service flow and the QoS parameters of the quality of service flow are carried in a radio resource control RRC message or a non-access stratum NAS message.
  • the present application provides a data transmission method, including: a first terminal receiving an identifier of a quality of service stream sent by a wireless access network device and an identifier of a logical channel on a wireless direct communication interface; The identification of the logical channel on the direct communication interface has a corresponding relationship.
  • the wireless direct communication interface is a communication interface between the first terminal and the second terminal; the first terminal maps the quality of service flow to the logical channel according to the corresponding relationship, and maps the service. The mass flow goes to the second terminal.
  • a unified QoS mechanism is adopted on the Uu interface and the PC5 interface. Since the QoS mechanism on the Uu interface and the PC5 interface are unified QoS mechanisms, when any of the Uu interface and the PC5 interface cannot continue to transmit data, the first terminal can switch the quality of service flow to the other interface Transmission, thereby achieving flexible switching of data transmission on different interfaces, and ensuring no packet loss during interface switching.
  • the present application provides a data transmission method, including: a first terminal acquiring each packet priority PPPP of near-end communication and / or each packet reliability PPPR of near-end communication and a service quality flow of the first terminal Corresponding to the QoS parameters of PPPP and / or PPPR and QoS parameters; the first terminal maps the data packets associated with PPPP and / or PPPR to the quality of service flow associated with the QoS parameters according to the corresponding relationship; the first terminal determines The logical channel used by the quality of service flow on the wireless direct communication interface; the first terminal maps the quality of service flow onto the logical channel and sends the quality of service flow to the second terminal.
  • a unified QoS mechanism is adopted on the Uu interface and the PC5 interface. Since the QoS mechanism on the Uu interface and the PC5 interface are unified QoS mechanisms, when any one of the Uu interface and the PC5 interface cannot continue to transmit data, the first terminal can switch the quality of service flow to the other interface Transmission, thereby achieving flexible switching of data transmission on different interfaces, and ensuring no packet loss during interface switching.
  • the QoS parameters of the quality of service flow may include any one or more of the following: a 5G quality identifier 5QI of the quality of service flow, a priority of the quality of service flow, a delay budget PDB, and a packet error rate PER.
  • the correspondence between PPPP and / or PPPR and the QoS parameters of the quality of service flow of the first terminal includes: the correspondence between PPPP and / or PPPR and the 5G quality identifier 5QI of the quality of service flow; or PPPP and / or Correspondence between PPPR and at least one quality parameter among priority of service quality flow, delay budget PDB, and packet error rate PER.
  • the correspondence relationship is obtained after the V2X control function entity in the near-end communication system negotiates with the packet control function PCF entity in the 3GPP system.
  • the first terminal obtains the corresponding relationship through a data radio bearer DRB; or the first terminal obtains the corresponding relationship through a radio resource control RRC message; or the first terminal obtains the corresponding relationship through a non-access stratum NAS message.
  • the present application provides a data transmission method, including: a first terminal obtaining a quality of service flow of the first terminal, wherein the quality of service flow is associated with a QoS parameter; and the first terminal determines that the quality of service flow is on a wireless direct communication interface Logical channel used on the network; the first terminal maps the quality of service flow onto the logical channel and sends the quality of service flow to the second terminal.
  • a unified QoS mechanism is adopted on the Uu interface and the PC5 interface. Since the QoS mechanism on the Uu interface and the PC5 interface are unified QoS mechanisms, when any one of the Uu interface and the PC5 interface cannot continue to transmit data, the first terminal can switch the quality of service flow to the other interface Transmission, thereby achieving flexible switching of data transmission on different interfaces, and ensuring no packet loss during interface switching.
  • the QoS parameters of the quality of service flow may include any one or more of the following: a 5G quality identifier 5QI of the quality of service flow, a priority of the quality of service flow, a delay budget PDB, and a packet error rate PER.
  • the quality of service flow is associated with the QoS parameters, including: the quality of service flow is associated with the 5G quality identifier 5QI of the quality of service flow; or, the quality of service flow and the priority of the quality of service flow, the delay budget PDB, and error packets At least one quality parameter in the rate PER is associated.
  • the method further includes: obtaining, by the first terminal, at least one quality parameter of the identifier of the service quality flow and the guaranteed bit rate GBR and maximum bit rate of the service quality flow, and the identifier of the service quality flow has a corresponding relationship with the at least one quality parameter;
  • the first terminal obtains at least one quality parameter of the 5G quality identifier 5QI of the service quality flow and the guaranteed bit rate GBR and maximum bit rate MBR of the service quality flow, and the identifier of the service quality flow has a corresponding relationship with the at least one quality parameter, so that Control the rate at which the GBR service quality stream is sent to the second terminal; and / or, the first terminal acquires the aggregate maximum bit rate AMBR of all non-guaranteed bit rate Non-GBR services sent by the first terminal to the second terminal. Thereby, the rate of sending a Non-GBR service quality flow to the second terminal can be controlled.
  • the method further includes: the first terminal determines the priority of the logical channel according to the priority of the quality of service flow; or The first terminal obtains the priority of the logical channel from the radio access network device.
  • the method further includes: the identification of the quality of service flow obtained by the first terminal and the identification of the logical channel group LCG on the wireless direct communication interface; the identification of the quality of service flow corresponds to the identification of the LCG; the identification of the quality of service flow and the LCG
  • the correspondence between the identifiers is used by the first terminal to send a buffer status report BSR to the access-side device; or, the first terminal obtains the identifier of the logical channel and the identifier of the logical channel group LCG on the wireless direct communication interface, and the identifier of the logical channel and
  • the identity of the LCG has a correspondence relationship, and the correspondence between the identity of the logical channel and the identity of the LCG is used by the first terminal to send a buffer status report BSR to the access-side device; or the first terminal obtains the 5G quality identity 5QI of the service quality flow and the wireless
  • the method further includes: The first terminal obtains a preset value.
  • the first terminal maps the quality of service flow onto a logical channel and sends the quality of service flow to the second terminal, including: if the quality of service flow identifier QFI, the priority of the quality of service flow Level, and at least one of the 5G quality identifiers 5QI of the service quality flow is less than or equal to a preset value, the first terminal preferentially sends the service quality flow to the second terminal through the logical channel.
  • the method further includes: the first terminal sends the physical layer control on the wireless direct communication interface to the second terminal.
  • the information SCI, SCI includes at least one of the following parameters: the identifier of the quality of service flow QFI, and the 5G quality identifier of the quality of service flow 5QI, so that the second terminal is aware of the service situation on the wireless direct communication interface.
  • the method further includes: the first terminal sends at least one of the following to the wireless access network device: the identifier of the quality of service flow QFI, and the 5G quality identifier of the quality of service flow 5QI, so that the wireless access network device determines whether the first A terminal performs semi-static scheduling.
  • the present application provides a data transmission method, including: a second terminal receiving a quality of service stream sent by a first terminal through a first logical channel on a wireless direct communication interface, and the quality of service stream is associated with QFI;
  • the terminal receives the quality of service flow sent by the radio access network device through the second logical channel on the Uu interface, and the quality of service flow is associated with QFI; if the QFI of the quality of service flow received by the second terminal from the first logical channel is from the second If the QFI of the service quality flow received by the logical channel is the same, the service quality flow is sent to the same protocol layer for processing. This ensures the continuity of the quality of service flow before and after switching between different interfaces.
  • the second terminal has both a user plane protocol stack of the Uu interface and a user plane protocol stack of the wireless direct communication interface, wherein the user plane protocol stack of the user plane protocol stack of the wireless direct communication interface includes from the top down : The first physical PHY layer, the first media access control MAC layer, the first radio link control RLC layer, the first packet data convergence protocol PDCP layer, the first service data adaptation SDAP layer, the adaptation layer and the application layer, Uu
  • the user plane protocol stack of the interface from bottom to top includes: the second PHY layer, the second MAC layer, the second RLC layer, the second PDCP layer, the second SDAP layer, the adaptation layer and the application layer; correspondingly, the quality of service
  • the flow is sent to the same protocol layer for processing, including: the second terminal sends the service quality flow received from the Uu interface and the wireless direct communication interface to the same adaptation layer for processing.
  • the present application provides a data transmission method, including: a radio access network device receiving an identifier of a quality of service stream and an identifier of a first logical channel sent by a first terminal, and an identifier of the quality of service stream and an identifier of the first logical channel.
  • the identifier has a first correspondence relationship, where the quality of service flow is the quality of service flow sent by the first terminal to the second terminal through the first logical channel on the wireless direct communication interface; the radio access network device determines the first logical channel and the second The second correspondence between the logical channels is mapped to the quality of service stream received from the first terminal to the second logical channel and sent to the second terminal, and the second logical channel identifier and the second logical channel identifier are sent to the second terminal.
  • the second logical channel is a logical channel on a Uu interface between the radio access network device and the second terminal.
  • the present application provides a data transmission method, including: a second terminal receiving a first logical channel identifier and a second logical channel identifier sent by a wireless access network device, and a first logical channel identifier and a second logical channel
  • the channel identifier has a second correspondence relationship, wherein the first logical channel is a logical channel on a wireless direct communication interface between the first terminal and the second terminal, and the second logical channel is between the radio access network device and the second terminal.
  • the second terminal determines the service quality flow sent from the radio access network device through the second logical channel and the service sent from the first terminal through the first logical channel according to the second correspondence relationship
  • the quality flows belong to the same service quality flow, and the service quality flow is sent to the same protocol layer for processing. This ensures the continuity of the quality of service flow before and after switching between different interfaces.
  • the method further includes that the second terminal receives the service through the first logical channel on the wireless direct communication interface. Mass flow.
  • the second terminal has both the user plane protocol stack of the Uu interface and the user plane protocol stack of the wireless direct communication interface, wherein the user plane protocol stack of the Uu interface includes the first physical PHY layer, the first A media access control MAC layer, a first radio link control RLC layer, a first packet data convergence protocol PDCP layer, a first service data adaptation SDAP layer, an adaptation layer and an application layer, and a user plane protocol for a wireless direct communication interface
  • the stack from bottom to top includes: the second PHY layer, the second MAC layer, the second RLC layer, the second PDCP layer, the adaptation layer, and the application layer; correspondingly, the service quality flow is sent to the same protocol layer for processing, including : The second terminal sends the quality of service stream received from the Uu interface and the wireless direct communication interface to the same adaptation layer for processing.
  • the second terminal has both a user plane protocol stack of the Uu interface and a user plane protocol stack of the wireless direct communication interface.
  • the user plane protocol stack of the user plane protocol stack of the Uu interface includes the following from the top: The physical PHY layer, the first media access control MAC layer, the first radio link control RLC layer, the packet data convergence protocol PDCP layer, the service data adaptation SDAP layer, and the application layer.
  • the user plane protocol stack of the wireless direct communication interface is from below From the top: the second PHY layer, the second MAC layer, the second RLC layer, the PDCP layer, the SDAP layer, and the application layer; correspondingly, the service quality flow is sent to the same protocol layer for processing, including: the second terminal will The quality of service flows received by the Uu interface and the wireless direct communication interface are sent to the same PDCP layer for processing.
  • the receiving, by the second terminal, the identifier of the first logical channel and the identifier of the second logical channel sent by the wireless access network device includes: the radio resource control RRC message or the wireless direct communication interface signal sent by the second terminal through the Uu interface. Let the identifier of the first logical channel and the identifier of the second logical channel sent by the receiving radio access network device.
  • the present application provides a data transmission method, including: a radio access network device receiving a quality of service stream sent by a first terminal, mapping the quality of service stream to a second logical channel, and sending the quality of service stream to a second terminal.
  • the two logical channels are the logical channels on the Uu interface between the radio access network device and the second terminal; the radio access network device sends the identification of the quality of service flow and the identification of the second logical channel to the first terminal and passes the second
  • the logical channel sends a quality of service flow to the second terminal, where the identifier of the quality of service flow and the identifier of the second logical channel have a corresponding relationship. This ensures the continuity of the quality of service flow before and after switching between different interfaces.
  • the present application provides a data transmission method, including: a first terminal sending a quality of service flow to a radio access network device; a first terminal receiving an identifier of the quality of service flow sent by the radio access network device and a second logical channel There is a corresponding relationship between the identifier of the service quality flow and the identifier of the second logical channel, where the second logical channel is a logical channel on a Uu interface between the radio access network device and the second terminal; the first terminal determines the first The correspondence between the two logical channels and the first logical channel, and sending the identifier of the second logical channel and the identifier of the first logical channel to the second terminal, and sending the quality of service flow to the second terminal through the first logical channel. This ensures the continuity of the quality of service flow before and after switching between different interfaces.
  • the present application provides a data transmission method, including: a second terminal receiving an identifier of a first logical channel and an identifier of a second logical channel sent by the first terminal, an identifier of the first logical channel, and an identifier of the second logical channel.
  • the identifiers have a corresponding relationship, wherein the first logical channel is a logical channel in a wireless direct communication interface between the first terminal and the second terminal, and the second logical channel is a Uu between the radio access network device and the second terminal.
  • the second terminal determines the quality of service flow sent from the radio access network device over the second logical channel according to the corresponding relationship, and belongs to the same service as the quality of service flow sent from the first terminal over the first logical channel Quality flow and send the business flow to the same protocol layer for processing. This ensures the continuity of the quality of service flow before and after switching between different interfaces.
  • the second terminal has both a user plane protocol stack of the Uu interface and a user plane protocol stack of the wireless direct communication interface interface, wherein the user plane protocol stack of the Uu interface includes the first physical PHY layer, The first media access control MAC layer, the first radio link control RLC layer, the first packet data convergence protocol PDCP layer, the first service data adaptation SDAP layer, the adaptation layer and the application layer, and the user of the wireless direct communication interface interface interface
  • the plane protocol stack from the bottom includes: the second PHY layer, the second MAC layer, the second RLC layer, the second PDCP layer, the adaptation layer, and the application layer; correspondingly, the service quality flow is sent to the same protocol layer for processing Including: the second terminal sends the quality of service stream received from the Uu interface and the wireless direct communication interface to the same adaptation layer for processing.
  • the second terminal has both a user plane protocol stack of the Uu interface and a user plane protocol stack of the wireless direct communication interface interface, wherein the user plane protocol stack of the Uu interface includes the first physical PHY layer, The first media access control MAC layer, the first radio link control RLC layer, the packet data convergence protocol PDCP layer, the service data adaptation SDAP layer, and the application layer, and the user plane protocol stack of the wireless direct communication interface interface includes from the top : The second PHY layer, the second MAC layer, the second RLC layer, the PDCP layer, the SDAP layer, and the application layer.
  • the service quality flow is sent to the same protocol layer for processing, including: the second terminal will send data from the Uu interface and The quality of service stream received by the wireless direct communication interface is sent to the same PDCP layer for processing.
  • the second terminal receiving the identifier of the first logical channel and the identifier of the second logical channel sent by the first terminal includes: the radio resource control RRC message or the wireless direct communication interface of the second terminal through the wireless direct communication interface.
  • the signaling receives the identity of the first logical channel and the identity of the second logical channel.
  • the terminal and the storage medium will be described below, and its contents and effects can be referred to the above method part, which will not be described in detail below.
  • the present application provides a terminal.
  • the terminal is a first terminal, and includes: an acquiring module, configured to acquire an identifier of a service quality flow and a QoS parameter of the service quality flow, an identifier of the service quality flow, and a QoS of the service quality flow
  • the parameters have a corresponding relationship;
  • a determining module for determining a logical channel used by the quality of service flow of the first terminal on the wireless direct communication interface, the wireless direct communication interface is a communication interface between the first terminal and the second terminal;
  • a sending module Used to map the service quality flow to the logical channel, and send the service quality flow to the second terminal.
  • the present application provides a terminal.
  • the terminal is a first terminal, and includes: an acquiring module configured to receive an identifier of a quality of service stream sent by a radio access network device and an identifier of a logical channel on a wireless direct communication interface;
  • the identification of the quality of service flow corresponds to the identification of the logical channel on the wireless direct communication interface.
  • the wireless direct communication interface is the communication interface between the first terminal and the second terminal; the sending module is used to change the quality of service according to the corresponding relationship.
  • the flow is mapped on the logical channel, and the quality of service flow is sent to the second terminal.
  • the present application provides a terminal, where the terminal is the first terminal, and includes: an obtaining module, configured to obtain the priority of each packet of near-end communication, PPPP, and / or the reliability of each packet of near-end communication, PPPR and
  • the QoS parameters of the quality of service flow of the first terminal have a corresponding relationship between PPPP and / or PPPR and QoS parameters;
  • a mapping module for the end to map the data packets associated with PPPP and / or PPPR to be related to the QoS parameters according to the corresponding relationship Associated quality of service flow;
  • a determination module for determining a logical channel used by the quality of service flow on the wireless direct communication interface;
  • a sending module for mapping the quality of service flow onto the logical channel and sending the quality of service flow to the second terminal.
  • the present application provides a terminal, where the terminal is a first terminal, and includes: an acquisition module for acquiring a quality of service flow of the first terminal, wherein the quality of service flow is associated with a QoS parameter; and a determining module for: Determine the logical channel used by the quality of service flow on the wireless direct communication interface; the sending module is configured to map the quality of service flow to the logical channel and send the quality of service flow to the second terminal.
  • the present application provides a terminal.
  • the terminal is a second terminal, and includes: a receiving module and a sending module, where the receiving module is configured to receive a first terminal sending through a first logical channel on a wireless direct communication interface.
  • Quality of service flow which is associated with QFI; receive the quality of service flow sent by the radio access network device through the second logical channel on the Uu interface, and the quality of service flow includes QFI; if the quality of service received from the first logical channel
  • the QFI of the flow is the same as the QFI of the quality of service flow received from the second logical channel, and the sending module sends the quality of service flow to the same protocol layer for processing.
  • the present application provides a radio access network device, which is characterized by including a receiving module, a determining module, and a sending module.
  • the receiving module is configured to receive the identifier of the quality of service flow QFI and the identifier of the first logical channel sent by the first terminal.
  • the identifier of the quality of service flow and the identifier of the first logical channel have a first correspondence relationship, and the quality of service flow is the first
  • a terminal sends a quality of service flow to a second terminal through a first logical channel on a wireless direct communication interface;
  • the determining module is configured to determine a second correspondence between the first logical channel and the second logical channel, and the sending module is configured to
  • the quality of service stream received by the first terminal is mapped to the second logical channel and sent to the second terminal, and the first logical channel identifier and the second logical channel identifier are sent to the second terminal, where the second logical channel is a wireless connection.
  • this application provides a terminal, which is a second terminal, and includes a receiving module, a determining module, and a sending module.
  • the receiving module is configured to receive the identifier of the first logical channel and the identifier of the second logical channel sent by the radio access network device, and the identifier of the first logical channel and the identifier of the second logical channel have a second correspondence relationship.
  • a logical channel is a logical channel on a wireless direct communication interface between the first terminal and a second terminal, and the second logical channel is a logical channel on a Uu interface between the radio access network device and the second terminal;
  • the quality of service flow sent from the radio access network device over the second logical channel is determined according to the second correspondence relationship, and belongs to the same quality of service flow sent from the first terminal over the first logical channel.
  • the sending module uses It sends the quality of service flow to the same protocol layer for processing. This ensures the continuity of the quality of service flow before and after switching between different interfaces.
  • the present application provides a radio access network device, including: a receiving mapping module and a sending module.
  • the receiving and mapping module is configured to receive the quality of service flow sent by the first terminal, map the quality of service flow to the second logical channel, and send the quality of service flow to the second terminal, where the second logical channel is the radio access network device and the second terminal.
  • Logical channel on the Uu interface between the two; the sending module is used to send the identifier of the quality of service flow QFI and the identifier of the second logical channel to the first terminal, and send the quality of service flow to the second terminal through the second logical channel, where the service
  • the identification of the quality flow and the identification of the second logical channel have a corresponding relationship. This ensures the continuity of the quality of service flow before and after switching between different interfaces.
  • the present application provides a terminal.
  • the terminal is a first terminal and includes a sending module, a receiving module, a determining module, and a sending module.
  • the sending module is configured to send the quality of service flow to the wireless access network device;
  • the receiving module is configured to receive the identification of the quality of service flow and the identification of the second logical channel, the identification of the quality of service flow and the second
  • the identification of the logical channel has a correspondence relationship, wherein the second logical channel is a logical channel on a Uu interface between the radio access network device and the second terminal;
  • the determining module is configured to determine the correspondence between the second logical channel and the first logical channel Relationship, the sending module is configured to send the identifier of the second logical channel and the identifier of the first logical channel to the second terminal, and send the quality of service flow to the second terminal through the first logical channel. This ensures the continuity of the quality of service flow before and after switching between different interfaces.
  • the present application provides a terminal.
  • the terminal is a second terminal, and includes a receiving module, a determining module, and a sending module.
  • the receiving module is configured to receive a first logical channel and a second logic sent by a first terminal.
  • the identifier of the channel, the identifier of the first logical channel and the identifier of the second logical channel have a corresponding relationship, wherein the first logical channel is a logical channel in a wireless direct communication interface between the first terminal and the second terminal, and the second The logical channel is a logical channel on the Uu interface between the radio access network device and the second terminal; the determining module is configured to determine the quality of service flow sent from the radio access network device through the second logical channel according to the corresponding relationship, and The quality of service flow sent by the first terminal over the first logical channel belongs to the same quality of service flow, and the sending module is configured to send the service flow to the same protocol layer for processing. This ensures the continuity of the quality of service flow before and after switching between different interfaces.
  • the present application provides a terminal including a memory and a processor.
  • the memory is used to store a computer program, and the computer program runs on the processor, so that the terminal implements the first aspect, the optional manner of the first aspect, Second aspect, alternative aspect of the second aspect, third aspect, alternative aspect of the third aspect, fourth aspect, alternative aspect of the fourth aspect, fifth aspect, alternative aspect of the fifth aspect, seventh Aspect, the method of the seventh aspect, the method of the ninth aspect, the method of the ninth aspect, or the method of any one of the tenth aspect and the tenth aspect.
  • the present application provides a radio access network device, including: a memory and a processor.
  • the memory is used to store a computer program, and the computer program runs on the processor, so that the radio access network device implements the sixth aspect, An alternative aspect of the sixth aspect or the method of any one of the eighth aspect and the eighth aspect.
  • the present application provides a storage medium including a computer program, and the computer program is configured to implement the method according to any one of the first aspect and the optional aspect to the tenth aspect and the optional aspect.
  • the present application provides a computer program product including a computer program, and the computer program is configured to implement the method according to any one of the first aspect and the optional aspect to the tenth aspect and the optional aspect.
  • the embodiments of the present application provide a data transmission method, a terminal, and a storage medium.
  • the QoS mechanism on the Uu interface and the PC5 interface are unified QoS mechanisms, when any one of the Uu interface and the PC5 interface cannot continue to transmit data, the first terminal can switch the quality of service flow to another interface It can realize flexible switching of data transmission on different interfaces, and ensure no packet loss during interface switching.
  • FIG. 1 is an application scenario diagram provided by an embodiment of the present application
  • FIG. 2 is an interaction flowchart of a data transmission method according to an embodiment of the present application
  • FIG. 3 is an interaction flowchart of a data transmission method according to another embodiment of the present application.
  • FIG. 6 is an interaction flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a user plane protocol stack of a Uu interface and a PC5 interface according to an embodiment of the present application
  • 9A is a schematic diagram of a user plane protocol stack of a Uu interface and a PC5 interface according to an embodiment of the present application.
  • 9B is a schematic diagram of a user plane protocol stack of a Uu interface and a PC5 interface according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a terminal provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a terminal provided by another embodiment of the present application.
  • FIG. 13 is a schematic diagram of a terminal provided by another embodiment of the present application.
  • FIG. 14 is a schematic diagram of a terminal according to another embodiment of the present application.
  • 15 is a schematic diagram of a terminal according to another embodiment of the present application.
  • 16 is a schematic diagram of a wireless access network device according to another embodiment of the present application.
  • FIG. 17 is a schematic diagram of a terminal according to another embodiment of the present application.
  • FIG. 18 is a schematic diagram of a wireless access network device according to another embodiment of the present application.
  • FIG. 19 is a schematic diagram of a terminal according to another embodiment of the present application.
  • FIG. 20 is a schematic diagram of a terminal according to another embodiment of the present application.
  • 21 is a schematic diagram of a terminal according to an embodiment of the present application.
  • FIG. 22 is a schematic diagram of a wireless access network device according to an embodiment of the present application.
  • the present application provides a data transmission method, a terminal, a wireless access network device, and a storage medium.
  • the wireless access network device involved in the embodiment of the present invention may be a base station (Base Transceiver Station) in Global System of Mobile (GSM) or Code Division Multiple Access (CDMA).
  • BTS Base station
  • NB base station
  • WCDMA Wideband Code Division Multiple Access
  • eNB evolved base station
  • An access point (AP) or a relay station may also be a base station in a next generation network (ie, a 5G network), which is not limited herein.
  • the terminal involved in the embodiment of the present invention points to a device that provides users with voice and / or data connectivity, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the terminal can communicate with at least one core network via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • the access network exchanges voice and / or data.
  • the terminal can also be called a subscriber unit, a subscriber station, a mobile station, a mobile station, a mobile station, a remote station, an access point, and a remote terminal.
  • (Remote Terminal), Access Terminal (Access Terminal), User Terminal (User Terminal), User Agent (User Agent), or User Equipment (User Equipment), or vehicles in the V2X scenario, etc. are not limited here.
  • FIG. 1 is an application scenario diagram provided by an embodiment of the present application.
  • data transmission between the terminals 11 may be implemented through a Uu interface with the radio access network device 12, and / or, the terminal 11 Data transmission between them can be realized through PC5 interface.
  • the Uu interface and the PC5 interface use a unified QoS mechanism (this unified QoS mechanism is based on flow-based QoS), that is, the terminal NAS layer uniformly performs data packet (which can be IP Packets, or non-IP packets) into QoS flows.
  • this unified QoS mechanism is based on flow-based QoS
  • the terminal NAS layer uniformly performs data packet (which can be IP Packets, or non-IP packets) into QoS flows.
  • FIG. 2 is an interaction flowchart of a data transmission method according to an embodiment of the present application.
  • the network element involved in the method includes a first terminal and a second terminal.
  • the method includes the following steps:
  • Step S201 The first terminal obtains the identifier of the quality of service flow and the QoS parameter of the quality of service flow, and the identifier of the quality of service flow and the QoS parameter of the quality of service flow have a corresponding relationship.
  • Step S202 The first terminal determines a logical channel used by the quality of service flow of the first terminal on the wireless direct communication interface, and the wireless direct communication interface is a communication interface between the first terminal and the second terminal.
  • Step S203 The first terminal maps the quality of service flow to the logical channel, and sends the quality of service flow to the second terminal.
  • the first terminal uses the QoS rule information at the NAS layer to map the data packet received from the application layer into a quality of service flow (QoS) flow, where the quality of service flow and an identifier of the quality of service flow QFI Correlation, that is, QFI is used to uniquely identify the quality of service flow.
  • QoS quality of service flow
  • the first terminal determines the logical channel used on the PC5 interface according to the correspondence between the identifier of the quality of service flow and the QoS parameter of the quality of service flow.
  • the first terminal determines the logical channel used on the PC5 interface according to the QoS parameter of the quality of service flow. For example, the first terminal configures the maximum number of retransmissions of the logical channel according to the packet loss rate PER corresponding to the quality of service flow. In addition, the first terminal may also determine the logical channel according to other information, which is not limited in this application.
  • the identifier of the quality of service flow may be QFI.
  • QoS parameters of the quality of service flow there are two types, including: standardized QoS parameters and non-standardized QoS parameters.
  • the standardized QoS parameters are shown in Table 1, including: 5G Quality Identity (5G Quality Identity, 5QI), service type (Guranteed BitRate (GBR) service or Non-GBR service), priority (Priority Level), Delay Budget (PDB), Packet Error Rate (PER), Maximum Data Volume (Burst Volume), Average Window (Averaging Window), etc. That is, the first terminal can learn other QoS parameters corresponding to the service through Table 1 as long as it is based on the 5QI parameters.
  • Non-standardized QoS parameters can be defined by the operator. The network side needs to clearly indicate the specific QoS parameters of the terminal, including at least one of the following parameters: 5QI, priority level, PDB, PER, etc.
  • the correspondence between the so-called quality of service flow identifier and the QoS parameter of the quality of service flow includes the correspondence between the quality of service flow identifier QFI and the standard 5QI.
  • the correspondence between the so-called quality of service flow identification and the QoS parameters of the quality of service flow includes: the correspondence between the identification of the quality of service flow QFI and the priority of the quality of service flow, at least one of the QoS parameters in PDB, PER .
  • the manner in which the first terminal obtains the identifier of the quality of service flow and the QoS parameter of the quality of service flow is: it can be sent through a radio resource control (Radio Resource Control (RRC)) message sent by a radio access network device or through a mobility management function ( Access and Mobility Management Function (AMF) entities obtain NAS messages.
  • RRC Radio Resource Control
  • AMF Access and Mobility Management Function
  • the method further includes: obtaining, by the first terminal, at least one of an identity QFI of the service quality flow and a guaranteed bit rate (GBR) of the quality of service flow (GBR) and a maximum bit rate (MBR) A parameter, the identifier QFI of the service quality flow has a corresponding relationship with the at least one quality parameter, or the first terminal acquires the quality identifier 5QI of the service quality flow and at least one quality parameter in the GBR and MBR of the service quality flow, The quality identifier 5QI of the quality of service flow has a correspondence relationship with the at least one quality parameter, so as to control the rate at which the GBR service quality flow is sent to the second terminal.
  • GBR guaranteed bit rate
  • MBR maximum bit rate
  • the method further includes: the first terminal acquiring an aggregated maximum bit rate (AMBR) of the first terminal to control a rate at which all Non-GBR service quality flows are sent to the second terminal sum.
  • AMBR aggregated maximum bit rate
  • the first terminal learns at least one quality parameter among QFI, GBR, and MBR, and / or the AMBR of the first terminal can be obtained through an RRC message sent by a radio access network device or a NAS message sent by an AMF entity.
  • the method further includes: the first terminal determines the priority of the logical channel according to the priority corresponding to the quality of service flow. Specifically, the first terminal uses the priority of the quality of service flow as the priority of the logical channel (for example, as an absolute priority or as a relative priority). Alternatively, the first terminal acquires the priority of the logical channel from a radio access network device. That is, the radio access network device configures the priority of the logical channel for the first terminal.
  • the method further includes: obtaining, by the first terminal, the QFI of the service quality flow sent by the radio access network device and the identification of a logical channel group (Logical Channel Group) on the PC5 interface, where The identifier has a correspondence relationship with the identifier of the LCG, so that the first terminal may calculate the traffic of the service quality flow QFI in the corresponding LCG service according to the correspondence between the QFI of the service quality flow and the identifier of the LCG on the PC5 interface.
  • a buffer status report (Buffer Status Report (BSR)) is sent to the access-side device to request scheduling resources on the PC5 interface.
  • BSR Buffer Status Report
  • the first terminal obtains the identifier of the logical channel and the logical channel group LCG on the PC5 interface sent by the wireless access network device, and the logical channel identifier has a correspondence relationship with the identifier of the LCG, so that the first terminal may Correspondence between the logical channel of the logical channel and the identifier of the logical channel group LCG, the traffic transmitted on the logical channel is counted in the traffic of the corresponding LCG, and the BSR is sent to the access-side device to request the scheduling resources on the PC5 interface.
  • the first terminal acquires the quality identifier 5QI of the quality of service flow sent by the radio access network device and the identifier of the LCG on the PC5 interface, and the 5QI and the identifier of the LCG have a corresponding relationship, so that the first terminal may
  • the correspondence between the 5QI and the LCG identity on the PC5 interface counts the traffic of the quality of service flow 5QI in the traffic of the corresponding LCG, and sends a BSR to the access-side device to request scheduling resources on the PC5 interface.
  • the BSR carries the traffic to be transmitted reported by the first terminal to the radio access network device, and the first terminal reports according to different LCGs.
  • the BSR carries traffic corresponding to different LCGs.
  • step S203 when the first terminal communicates with the radio access network device and the second terminal at the same time, before step S203, the method further includes: the first terminal obtains a preset value; correspondingly, step S203 includes: If at least one of the QFI of the quality flow, the priority of the quality of service flow, and the 5QI of the quality of service flow is less than or equal to the preset value, the first terminal preferentially sends the service to the second terminal through the logical channel on the PC5 interface. Mass flow.
  • the preset value may be obtained through a system broadcast message, an RRC reconfiguration message, or a pre-configuration mode.
  • the preset value may be set according to an actual situation, which is not limited in the embodiment of the present application.
  • the method further includes: sending, by the first terminal, physical layer control information (Sidelink Control Information) on the PC5 interface to the second terminal, where the SCI includes at least one of the following parameters: the The QFI of the quality of service flow and the 5QI of the quality of service flow make the second terminal aware of the service situation on the PC5 interface.
  • SCI includes at least one of the following parameters: the The QFI of the quality of service flow and the 5QI of the quality of service flow make the second terminal aware of the service situation on the PC5 interface.
  • the method further includes: the first terminal sends at least one of the following: a QFI of the quality of service flow and a 5QI of the quality of service flow to enable the wireless access network device to determine the first terminal
  • the service characteristics transmitted on the logical channel of the PC5 interface in order to determine whether the first terminal needs to be allocated semi-statically scheduled resources on the PC5 interface. For example, for services with a relatively fixed service scheduling period, semi-static scheduling can be adopted, that is, the radio access network device only needs to allocate resources once, and the first terminal can periodically use the allocated resources, thereby avoiding the radio access network device every time All allocate resources to the first terminal.
  • Method 1 the wireless access network device sends the information to the first terminal.
  • the RRC message carries an interface indication information, which is used to indicate whether the information carried in the RRC message is used for the PC5 interface.
  • Method two the radio access network device uses a bypass-wireless network temporary in the RRC message sent to the first terminal.
  • Identification Sidelink-Radio Network Tempory Identity, SL-RNTI
  • SL-RNTI Segment-Radio Network Tempory Identity
  • the embodiment of the present application provides a data transmission method.
  • a unified QoS mechanism is adopted on the Uu interface and the PC5 interface. That is, the first terminal obtains the identifier of the quality of service flow of the first terminal and the QoS parameters of the quality of service flow. It has a corresponding relationship, and determines the logical channel used by the quality of service flow on the PC5 interface according to the QoS parameter. The first terminal maps the quality of service flow to the determined logical channel, and sends the quality of service flow to the second terminal.
  • the QoS mechanism on the Uu interface and the PC5 interface are the unified QoS mechanism, when any one of the Uu interface and the PC5 interface cannot continue to transmit data, the first terminal can switch the quality of service flow to another Transmission on the interface, so as to achieve flexible switching of data transmission on different interfaces, and ensure that no packet loss is caused during interface switching.
  • FIG. 3 is an interaction flowchart of a data transmission method according to another embodiment of the present application.
  • the network element involved in the method includes a first terminal, a radio access network device, and a second terminal.
  • the method includes the following steps:
  • Step S301 The first terminal receives the identifier of the quality of service flow sent by the radio access network device and the identifier of the logical channel on the PC5 interface.
  • the identifier of the quality of service flow corresponds to the identifier of the logical channel on the PC5 interface.
  • the PC5 interface is A communication interface between the first terminal and the second terminal.
  • Step S302 The first terminal determines a logical channel used by the quality of service flow on the PC5 interface according to the corresponding relationship.
  • Step S303 The first terminal maps the quality of service flow to the logical channel, and sends the quality of service flow to the second terminal.
  • the first terminal uses the QoS rule information at the NAS layer to map a data packet received from the application layer into a quality of service flow QoS flow, where the quality of service flow is related to a quality of service flow identifier QFI QFI is used to uniquely identify the quality of service flow.
  • the correspondence between the identifier of the service quality flow and the identifier of the logical channel on the PC5 interface is not limited to the correspondence between the QFI of the service quality flow and the identifier of the logical channel, for example, the quality of service flow of the first terminal and the PC5
  • the corresponding relationship of the logical channels on the interface includes: the corresponding relationship between the 5QI of the quality of service flow and the identifier of the logical channel, where the 5QI corresponds to the quality of service flow QFI.
  • the first terminal may map the quality of service flow 1 corresponding to QFI1 to logical channel 1 on the PC5 interface, and map the quality of service flow 2 corresponding to QFI2 to logical channel 2 on the PC5 interface.
  • the method further includes: the first terminal obtaining at least one quality parameter of the QFI of the service quality flow and the GBR and MBR of the service quality flow, and the identifier QFI of the service quality flow has a correspondence with the at least one quality parameter Relationship to control the rate at which the GBR service quality flow is sent to the second terminal.
  • the first terminal acquires at least one quality parameter of the 5G quality identifier 5QI of the service quality flow and the GBR and MBR of the service quality flow, and the 5G quality identifier 5QI of the service quality flow has a corresponding relationship with the at least one quality parameter. Controlling the rate at which the GBR service quality flow is sent to the second terminal.
  • the method further includes: the first terminal acquiring the AMBR of the first terminal to control the sum of the rates of sending all Non-GBR service quality flows to the second terminal.
  • the first terminal learns at least one quality parameter among QFI, GBR, and MBR, and / or the AMBR of the first terminal can be obtained through an RRC message sent by a radio access network device or a NAS message sent by an AMF entity.
  • the method further includes: the first terminal determines the priority of the logical channel according to the priority of the quality of service flow. Specifically, the first terminal regards the priority of the quality of service flow as a priority.
  • the priority of the logical channel is described (for example, as an absolute priority or as a relative priority).
  • the first terminal acquires the priority of the logical channel from a radio access network device. That is, the radio access network device configures the priority of the logical channel for the first terminal.
  • the method further includes: obtaining, by the first terminal, the identifier QFI of the service quality flow sent by the radio access network device and the identifier of the LCG on the PC5 interface, the identifier of the quality of service flow and the identifier of the LCG having Correspondence relationship, so that the first terminal counts the traffic of the quality of service flow QFI in the traffic of the corresponding LCG according to the correspondence between the QFI of the quality of service flow and the LCG identifier on the PC5 interface, and sends it to the access side device BSR to request scheduling resources on the PC5 interface.
  • the first terminal obtains the identifier of the logical channel and the logical channel group LCG on the PC5 interface sent by the wireless access network device, and the logical channel identifier has a correspondence relationship with the identifier of the LCG, so that the first terminal may Correspondence between the logical channel of the logical channel and the identifier of the logical channel group LCG, the traffic transmitted on the logical channel is counted in the traffic of the corresponding LCG, and the BSR is sent to the access-side device to request the scheduling resources on the PC5 interface.
  • the first terminal obtains the 5QI of the quality of service flow sent by the radio access network device and the identifier of the LCG on the PC5 interface, and the 5QI corresponds to the identifier of the LCG, so that the first terminal can determine the The correspondence relationship of the LCG identification on the PC5 interface counts the traffic of the quality of service flow 5QI in the traffic of the corresponding LCG, and sends a BSR to the access-side device in order to request the scheduling resources on the PC5 interface.
  • the BSR carries the traffic to be transmitted reported by the first terminal to the radio access network device, and the first terminal reports according to different LCGs.
  • the BSR carries traffic corresponding to different LCGs.
  • step S303 when the first terminal communicates with the radio access network device and the second terminal at the same time, before step S303, the method further includes: the first terminal obtains a preset value; correspondingly, step S303 includes: If at least one of the QFI of the quality flow, the priority of the quality of service flow, and the 5QI of the quality of service flow is less than or equal to the preset value, the first terminal preferentially sends the service to the second terminal through the logical channel on the PC5 interface. Mass flow.
  • the preset value is obtained through a system broadcast message, an RRC reconfiguration message, or a pre-configuration manner.
  • the preset value may be set according to an actual situation, which is not limited in the embodiment of the present application.
  • the method further includes: the first terminal sends a SCI on the PC5 interface to the second terminal, where the SCI includes at least one of the following parameters: the QFI of the quality of service flow, the quality of service 5QI of the stream, so that the second terminal is aware of the service situation on the PC5 interface.
  • the method further includes: the first terminal sends at least one of the following: a QFI of the quality of service flow and a 5QI of the quality of service flow to enable the wireless access network device to determine the first terminal
  • the service characteristics transmitted on the logical channel of the PC5 interface in order to determine whether the first terminal needs to be allocated semi-statically scheduled resources on the PC5 interface. For example, for services with a relatively fixed service scheduling period, semi-static scheduling can be adopted, that is, the radio access network device only needs to allocate resources once, and the first terminal can periodically use the allocated resources, thereby avoiding the radio access network device every time All allocate resources to the first terminal.
  • Method 1 the wireless access network device sends the information to the first terminal.
  • the RRC message carries an interface indication information, which is used to indicate whether the information carried in the RRC message is used for the PC5 interface.
  • Method two the radio access network device uses the SL-RNTI (the first in the RRC message sent to the first terminal). The unique identifier of the terminal on the PC5 interface is scrambled, so that the first terminal learns whether the information carried in the RRC message is used for the PC5 interface.
  • the embodiment of the present application provides a data transmission method, which adopts a unified QoS mechanism on the Uu interface and the PC5 interface, that is, the first terminal obtains the identifier of the service quality flow of the first terminal and the PC5 sent by the wireless access network device.
  • the identifier of the logical channel on the interface which has a corresponding relationship.
  • the first terminal determines a logical channel used by the quality of service flow on the PC5 interface according to the corresponding relationship.
  • the first terminal maps the quality of service flow to a logical channel and sends it to the second terminal.
  • the QoS mechanism on the Uu interface and the PC5 interface are the unified QoS mechanism, when any one of the Uu interface and the PC5 interface cannot continue to transmit data, the first terminal can switch the quality of service flow to another Transmission on the interface, so as to achieve flexible switching of data transmission on different interfaces, and ensure that no packet loss is caused during interface switching.
  • FIG. 4 is an interaction flowchart of a data transmission method according to another embodiment of the present application.
  • the network element involved in the method includes a first terminal and a second terminal.
  • the method includes the following steps:
  • Step S401 The first terminal acquires QoS parameters of the service quality flow between PPPP and / or PPPR and the first terminal, and the PPPP and / or PPPR has a corresponding relationship with the QoS parameters.
  • Step S402 The first terminal maps a data packet associated with PPPP and / or PPPR into a quality of service flow associated with a QoS parameter according to the corresponding relationship.
  • Step S403 The first terminal determines a logical channel used by the quality of service flow on the PC5 interface.
  • Step S404 The first terminal maps the quality of service flow to the logical channel, and sends the quality of service flow to the second terminal.
  • the data packet received by the first terminal device from the application layer is associated with PPPP and / or PPPR, and then according to the corresponding relationship obtained in step S401, the first terminal device may be related to PPPP and / or PPPR at the NAS layer.
  • the associated data packet is mapped into a quality of service flow QoS flow associated with the QoS parameters.
  • the standardized QoS parameters are shown in Table 1, including: 5QI, service type (GBR service or Non-GBR service), priority level (Priority Level), delay budget (Packet Delay Delay Budget (PDB), packet error rate ( Packet Error Rate (PER), Maximum Data Volume (Burst Volume), Average Window (Averaging Window), etc. That is, the first terminal can learn other QoS parameters corresponding to the service through Table 1 as long as it is based on the 5QI parameters.
  • the non-standardized QoS parameters may be defined by the operator. The network side needs to clearly indicate the specific QoS parameters of the terminal, including at least one of the following parameters: 5QI, priority level, PDB, PER, etc.
  • the corresponding relationship between the so-called PPPP and / or PPPR and the QoS parameter of the quality of service flow of the first terminal includes: the corresponding relationship between PPPP and / or PPPR and the 5QI of the quality of service flow.
  • the correspondence between PPPP and / or PPPR and the quality of service flow identifier QFI the first terminal also needs to obtain the correspondence between the QFI and 5QI, so that the first terminal will associate the PFI and / or PPPR with the The data packet is mapped into a QoS flow associated with 5QI.
  • the correspondence between the so-called PPPP and / or PPPR and the QoS parameters of the quality of service flow of the first terminal includes: at least one of the quality parameters of PPPP and / or PPPR and the quality of service flow, PDB, PER Corresponding relationship.
  • the QoS parameters of the quality of service flow between the PPPP and / or PPPR and the first terminal may be obtained through a DRB with the radio access network device, or through an RRC message with the radio access network device. Obtained, or obtained through NAS messages with the core network device.
  • the correspondence between PPPP and / or PPPR and the QoS parameters of the quality of service flow of the first terminal is determined by the V2X control function entity in the near-end communication system and the Packet Control Function (PCF) in the 3GPP system. Obtained after entity negotiation.
  • V2X control function entity in the near-end communication system
  • PCF Packet Control Function
  • the method further includes: the first terminal obtaining at least one quality parameter of the QFI of the service quality flow and the GBR and MBR of the service quality flow, and the identifier QFI of the service quality flow has a correspondence with the at least one quality parameter Relationship to control the rate at which the GBR service quality flow is sent to the second terminal.
  • the first terminal acquires at least one quality parameter of the 5G quality identifier 5QI of the service quality flow and the GBR and MBR of the service quality flow, and the 5G quality identifier 5QI of the service quality flow has a corresponding relationship with the at least one quality parameter. Controlling the rate at which the GBR service quality flow is sent to the second terminal.
  • the method further includes: the first terminal acquiring the AMBR of the first terminal to control the sum of the rates of sending all Non-GBR service quality flows to the second terminal.
  • the first terminal learns at least one quality parameter among QFI, GBR, and MBR, and / or the AMBR of the first terminal can be obtained through an RRC message sent by a radio access network device or a NAS message sent by an AMF entity.
  • the method further includes: the first terminal determines the priority of the logical channel according to the priority of the quality of service flow. Specifically, the first terminal regards the priority of the quality of service flow as a priority.
  • the priority of the logical channel is described (for example, as an absolute priority or as a relative priority).
  • the first terminal acquires the priority of the logical channel from a radio access network device. That is, the radio access network device configures the priority of the logical channel for the first terminal.
  • the method further includes: obtaining, by the first terminal, the identifier QFI of the service quality flow sent by the radio access network device and the identifier of the LCG on the PC5 interface, the identifier of the quality of service flow and the identifier of the LCG having Correspondence relationship, so that the first terminal counts the traffic of the quality of service flow QFI in the traffic of the corresponding LCG according to the correspondence between the QFI of the quality of service flow and the LCG identifier on the PC5 interface, and sends it to the access side device BSR to request scheduling resources on the PC5 interface.
  • the first terminal obtains the identifier of the logical channel and the logical channel group LCG on the PC5 interface sent by the wireless access network device, and the logical channel identifier has a correspondence relationship with the identifier of the LCG, so that the first terminal may Correspondence between the logical channel of the logical channel and the identifier of the logical channel group LCG, the traffic transmitted on the logical channel is counted in the traffic of the corresponding LCG, and the BSR is sent to the access-side device to request the scheduling resources on the PC5 interface.
  • the first terminal obtains the 5QI of the quality of service flow sent by the radio access network device and the identifier of the LCG on the PC5 interface, and the 5QI corresponds to the identifier of the LCG, so that the first terminal can determine the The correspondence relationship of the LCG identification on the PC5 interface counts the traffic of the quality of service flow 5QI in the traffic of the corresponding LCG, and sends a BSR to the access-side device in order to request the scheduling resources on the PC5 interface.
  • the BSR carries the traffic to be transmitted reported by the first terminal to the radio access network device, and the first terminal reports according to different LCGs.
  • the BSR carries traffic corresponding to different LCGs.
  • step S403 when the first terminal communicates with the radio access network device and the second terminal at the same time, before step S403, the method further includes: the first terminal obtains a preset value; correspondingly, step S403 includes: If at least one of the QFI of the quality flow, the priority of the quality of service flow, and the 5QI of the quality of service flow is less than or equal to the preset value, the first terminal preferentially sends the service to the second terminal through the logical channel on the PC5 interface. Mass flow.
  • the preset value is obtained through a system broadcast message, an RRC reconfiguration message, or a pre-configuration manner.
  • the preset value may be set according to an actual situation, which is not limited in the embodiment of the present application.
  • the method further includes: the first terminal sends a SCI on the PC5 interface to the second terminal, where the SCI includes at least one of the following parameters: the QFI of the quality of service flow, the quality of service 5QI of the stream, so that the second terminal is aware of the service situation on the PC5 interface.
  • the method further includes: the first terminal sends at least one of the following: a QFI of the quality of service flow and a 5QI of the quality of service flow to enable the wireless access network device to determine the first terminal
  • the service characteristics transmitted on the logical channel of the PC5 interface in order to determine whether the first terminal needs to be allocated semi-statically scheduled resources on the PC5 interface. For example, for services with a relatively fixed service scheduling period, semi-static scheduling can be adopted, that is, the radio access network device only needs to allocate resources once, and the first terminal can periodically use the allocated resources, thereby avoiding the radio access network device every time All allocate resources to the first terminal.
  • Method 1 the wireless access network device sends the information to the first terminal.
  • the RRC message carries an interface indication information, which is used to indicate whether the information carried in the RRC message is used for the PC5 interface.
  • Method two the radio access network device uses the SL-RNTI (the first in the RRC message sent to the first terminal). The unique identifier of the terminal on the PC5 interface is scrambled, so that the first terminal learns whether the information carried in the RRC message is used for the PC5 interface.
  • the embodiment of the present application provides a data transmission method.
  • a unified QoS mechanism is adopted on the Uu interface and the PC5 interface, that is, the first terminal obtains QoS parameters of PPPP and / or PPPR and the quality of service flow of the first terminal.
  • PPPP and / or PPPR have a corresponding relationship with the QoS parameters of the quality of service flow.
  • the first terminal maps a data packet associated with PPPP and / or PPPR into a quality of service flow QoS flow associated with a QoS parameter according to the corresponding relationship.
  • the first terminal determines the logical channel used by the quality of service flow on the PC5 interface.
  • the first terminal maps the quality of service flow onto the logical channel, and sends the quality of service flow to the second terminal. Since the QoS mechanism on the Uu interface and the PC5 interface are the unified QoS mechanism, when any one of the Uu interface and the PC5 interface cannot continue to transmit data, the first terminal can switch the quality of service flow to another Transmission on the interface, so as to achieve flexible switching of data transmission on different interfaces, and ensure that no packet loss is caused during interface switching.
  • FIG. 5 is an interaction flowchart of a data transmission method according to another embodiment of the present application.
  • the network element involved in the method includes a first terminal and a second terminal.
  • the method includes the following steps:
  • Step S501 The first terminal obtains a quality of service flow of the first terminal, where the quality of service flow is associated with a QoS parameter.
  • Step S502 The first terminal determines a logical channel used by the quality of service flow on the PC5 interface.
  • Step S503 The first terminal maps the quality of service flow to the logical channel, and sends the quality of service flow to the second terminal.
  • the difference between the fourth embodiment and the first embodiment is that in the fourth embodiment, the data packet obtained by the first terminal from the application layer is already associated with the QoS parameter. Specifically, the first terminal may have mapped the data packets associated with PPPP and / or PPPR into 5QI-related data packets at the application layer, or the first terminal may directly associate the data packets with 5QI at the application layer.
  • the standardized QoS parameters are shown in Table 1, and further include: 5QI, service type (GBR service or Non-GBR service), priority level (Priority level), delay budget (Packet Delay Delay Budget, PDB), packet error rate (Packet Error Rate, PER), Maximum Data Volume (Burst Volume), Average Window (Averaging Window), etc. That is, the first terminal can learn other QoS parameters corresponding to the service through Table 1 as long as it is based on the 5QI parameters.
  • the non-standardized QoS parameters may be defined by the operator. The network side needs to clearly indicate the specific QoS parameters of the terminal, including at least one of the following parameters: 5QI, priority level, PDB, PER, etc.
  • the so-called service quality flow and QoS parameter association include: the service quality flow is associated with 5QI.
  • the so-called service quality flow and QoS parameter association include: the service quality flow is associated with at least one quality parameter among the priority of the service quality flow, PDB, and PER.
  • the method further includes: the first terminal obtaining at least one quality parameter of the QFI of the service quality flow and the GBR and MBR of the service quality flow, and the identifier QFI of the service quality flow has a correspondence with the at least one quality parameter Relationship to control the rate at which the GBR service quality flow is sent to the second terminal.
  • the first terminal acquires at least one quality parameter of the 5G quality identifier 5QI of the service quality flow and the GBR and MBR of the service quality flow, and the identifier of the service quality flow has a corresponding relationship with the at least one quality parameter to control the The rate at which the second terminal sends the GBR service quality flow.
  • the method further includes: the first terminal acquiring the AMBR of the first terminal to control the sum of the rates of sending all Non-GBR service quality flows to the second terminal.
  • the first terminal learns at least one quality parameter among QFI, GBR, and MBR, and / or the AMBR of the first terminal can be obtained through an RRC message sent by a radio access network device or a NAS message sent by an AMF entity. .
  • the method further includes: the first terminal determines the priority of the logical channel according to the priority of the quality of service flow. Specifically, the first terminal regards the priority of the quality of service flow as a priority.
  • the priority of the logical channel is described (for example, as an absolute priority or as a relative priority).
  • the first terminal acquires the priority of the logical channel from a radio access network device. That is, the wireless radio access network device configures the priority of the logical channel for the first terminal.
  • the method further includes: obtaining, by the first terminal, the identifier of the quality of service flow QFI sent by the wireless radio access network device and the identifier of the LCG on the PC5 interface, the identifier of the quality of service flow and the identifier of the LCG Corresponding relationship, so that the first terminal can calculate the traffic of the quality of service flow QFI in the traffic of the corresponding LCG according to the correspondence between the QFI of the quality of service flow and the identifier of the LCG on the PC5 interface, and send it to the access side device.
  • Send a BSR to request scheduling resources on the PC5 interface.
  • the first terminal acquires the identifier of the logical channel and the logical channel group LCG on the PC5 interface sent by the wireless radio access network device, and the identifier of the logical channel has a correspondence relationship with the identifier of the LCG, so that the first terminal according to the PC5 interface
  • the correspondence between the logical channel on the logical channel and the identifier of the LCG of the logical channel group counts the traffic transmitted on the logical channel in the traffic of the corresponding LCG, and sends a BSR to the access-side device in order to request scheduling resources on the PC5 interface.
  • the first terminal obtains the 5QI of the quality of service flow sent by the wireless radio access network device and the identifier of the LCG on the PC5 interface, and the 5QI has a correspondence relationship with the identifier of the LCG, so that the first terminal can determine the Correspondence with the identification of the LCG on the PC5 interface, the traffic of the quality of service flow 5QI is counted in the traffic of the corresponding LCG, and a BSR is sent to the access-side device in order to request scheduling resources on the PC5 interface.
  • the BSR carries the traffic to be transmitted reported by the first terminal to the wireless radio access network device, and the first terminal reports according to different LCGs.
  • the BSR carries traffic corresponding to different LCGs.
  • step S503 when the first terminal communicates with the radio access network device and the second terminal simultaneously, before step S503, the method further includes: the first terminal obtains a preset value; correspondingly, step S503 includes: If at least one of the QFI of the quality of service flow, the priority of the quality of service flow, and the 5QI of the quality of service flow is less than or equal to the preset value, the first terminal preferentially sends the second terminal through the logical channel on the PC5 interface to the second terminal.
  • the preset value is obtained through a system broadcast message, an RRC reconfiguration message, or a pre-configuration manner.
  • the preset value may be set according to an actual situation, which is not limited in the embodiment of the present application.
  • the method further includes: the first terminal sends a SCI on the PC5 interface to the second terminal, where the SCI includes at least one of the following parameters: the QFI of the quality of service flow, the quality of service 5QI of the stream, so that the second terminal is aware of the service situation on the PC5 interface.
  • the method further includes: the first terminal sends at least one of the following: a QFI of the quality of service flow and a 5QI of the quality of service flow, so that the wireless radio access network device determines the first The service characteristics of a terminal transmitted on the logical channel of the PC5 interface in order to determine whether the first terminal needs to be allocated semi-statically scheduled resources on the PC5 interface. For example, for services with a relatively fixed service scheduling period, semi-static scheduling can be used, that is, the radio access network device needs to allocate resources only once, and the first terminal can use the allocated resources periodically, thereby avoiding radio access network devices Allocate resources to the first terminal each time.
  • semi-static scheduling can be used, that is, the radio access network device needs to allocate resources only once, and the first terminal can use the allocated resources periodically, thereby avoiding radio access network devices Allocate resources to the first terminal each time.
  • Method 1 the wireless radio access network device is giving the first terminal
  • the RRC message sent carries interface indication information, which is used to indicate whether the information carried in the RRC message is used for the PC5 interface.
  • Method two the radio access network device uses SL-RNTI in the RRC message sent to the first terminal. (The unique identifier of the first terminal on the PC5 interface) is scrambled so that the first terminal knows whether the information carried in the RRC message is used for the PC5 interface.
  • Method 1 the wireless access network device sends the information to the first terminal.
  • the RRC message carries an interface indication information, which is used to indicate whether the information carried in the RRC message is used for the PC5 interface.
  • Method two the radio access network device uses the SL-RNTI (the first in the RRC message sent to the first terminal). The unique identifier of the terminal on the PC5 interface is scrambled, so that the first terminal learns whether the information carried in the RRC message is used for the PC5 interface.
  • the embodiment of the present application provides a data transmission method, which adopts a unified QoS mechanism on the Uu interface and the PC5 interface, that is, the first terminal obtains the quality of service flow of the first terminal, wherein the quality of service flow is associated with QoS parameters .
  • the first terminal determines the logical channel used by the quality of service flow on the PC5 interface.
  • the first terminal maps the quality of service flow onto the logical channel, and sends the quality of service flow to the second terminal.
  • the QoS mechanism on the Uu interface and the PC5 interface are the unified QoS mechanism, when any one of the Uu interface and the PC5 interface cannot continue to transmit data, the first terminal can switch the quality of service flow to another Transmission on the interface, so as to achieve flexible switching of data transmission on different interfaces, and ensure that no packet loss is caused during interface switching.
  • FIG. 6 is an interaction flowchart of a data transmission method according to an embodiment of the present application.
  • the network elements involved in the method include: a first terminal, a second terminal, and a radio access network device, where the first terminal and the second terminal are simultaneously User plane protocol stack with Uu interface and user plane protocol stack with PC5 interface.
  • FIG. 7 is a schematic diagram of the user plane protocol stack with Uu interface and PC5 interface provided by an embodiment of the present application. As shown in FIG.
  • the user plane protocol stack includes the first physical (PHY) layer (also called SL PHY), the first media access control (MAC) layer (also called SL MAC), First Radio Link Control (RLC) layer (also known as SLRLC), first Packet Data Convergence Protocol (PDCP) layer (also known as SLPDCP), first service Data adaptation (Service Adaptation Protocol, SDAP) layer (also called SL SDAP), newly defined adaptation layer and application layer
  • the user plane protocol stack of the Uu interface includes the second PHY layer from the top (Also known as Uu PHY), the second MAC layer (also Uu MAC), second RLC layer (also called Uu RLC), second PDCP layer (also called Uu PDCP), second SDAP layer (also called Uu SDAP), the adaptation layer and The application layer, in short, as shown in FIG.
  • a new adaptation layer is introduced between the V2X application layer and the AS layer.
  • This adaptation layer can also be referred to as the convergence layer. This embodiment does not do this.
  • Limitation where the adaptation layer is used to shield different interfaces of the AS layer (or the technology of shielding AS interfaces of different interfaces), that is, no matter which interface is selected, the same adaptation layer is used, thereby ensuring that the quality of service flows in different Continuity before and after interface switching.
  • the data transmission method includes the following steps:
  • Step S601 The first terminal sends a quality of service flow through a first logical channel on the PC5 interface, and the quality of service flow is associated with an identifier of the quality of service flow.
  • Step S602 The first terminal sends the quality of service flow to the radio access network device through a Uu interface.
  • Step S603 The radio access network device maps the quality of service flow to the second logical channel on the Uu interface, and sends the quality of service flow to the second terminal through the second logical channel.
  • Step S604 If the identifier of the quality of service stream received by the second terminal from the first logical channel is the same as the identifier of the quality of service stream received from the second logical channel, send the quality of service stream to the same protocol layer for processing.
  • the identifier of the quality of service flow may be QFI.
  • step S601 and steps S602 and S603 are not limited. If step S601 is performed first, step S602 and step S603 are performed later. , It means that the quality of service flow on the first terminal is switched from the PC5 interface to the Uu interface. If step S602 and step S603 are performed first, and then step S601 is performed, the quality of service flow on the first terminal is switched from the Uu interface to the PC5 interface. .
  • the first terminal may measure the Uu interface and the PC5 interface respectively. If the first terminal determines to meet the interface switching conditions, for example, the interface link quality of the current data transmission is degraded, While the link quality of the other interface is better, the first terminal sends an interface switching request message to the radio access network device, and the interface switching request message includes at least one of the following: the QFI of the quality of service flow, and a packet data unit session. Identification (PDU, session ID), switching type (such as switching from Uu interface to PC5 interface, or switching from PC5 interface to Uu interface).
  • the radio access network device After receiving the interface switching request message, the radio access network device sends a switching command to the first terminal, instructing the first terminal to switch from the original interface link to the target interface link to continue data transmission.
  • the SDAP layer of the Uu needs to carry the identifier QFI of the quality of service flow and perform mapping of the quality of service flow to the DRB.
  • the SDAPAP layer is used to carry the QFI of the service quality flow and perform mapping of the service quality flow to the first logical channel.
  • the second terminal When the quality of service flow sent by the first terminal to the second terminal is switched, the second terminal needs to map the same quality of service flow from different interfaces to the same adaptation layer, and process the quality of service flow.
  • both the USD SDAP layer and the SL SDAP layer can carry the QFI of the service quality flow, as long as the second terminal determines the QFI of the service quality flow received from the first logical channel and the quality of service received from the second logical channel
  • the flow identifiers QFI are the same, and it can be determined that the quality of service flow received from the first logical channel and the quality of service flow received from the second logical channel belong to the same quality of service flow.
  • the identifier QFI of the quality of service flow received by the second terminal from the first logical channel is the same as the identifier QFI of the quality of service flow received from the second logical channel, it will be different from The quality of service stream received on the interface is sent to the same adaptation layer for processing.
  • the foregoing processing of the service quality flow includes: reordering the service quality flows received from different interfaces, or performing duplicate packet detection processing, etc. This application does not limit this.
  • An embodiment of the present application provides a data transmission method.
  • the second terminal can identify the received QFI received from the first logical channel according to the identifier QFI in the quality of service flow. Whether the quality of service flow and the quality of service flow received from the second logical channel are the same quality of service flow. If the quality of service flow is the same, the second terminal sends the quality of service flow to the same protocol layer for processing, thereby ensuring that the quality of service flow is before and after switching between different interfaces. Continuity.
  • FIG. 8 is an interaction flowchart of a data transmission method according to an embodiment of the present application.
  • the network elements involved in the method include: a first terminal, a second terminal, and a radio access network device, where the first terminal and the second terminal are simultaneously A user plane protocol stack with a Uu interface and a user plane protocol stack with a PC5 interface.
  • FIG. 9A is a schematic diagram of a user plane protocol stack with a Uu interface and a PC5 interface according to an embodiment of the present application. As shown in FIG.
  • the second terminal A user plane protocol stack with a Uu interface and a user plane protocol stack with a PC5 interface at the same time, wherein the user plane protocol stack of the Uu interface includes, from the bottom, the first physical PHY layer (also called UuPHY), the first A media access control MAC layer (also called Uu MAC), a first radio link control RLC layer (also called Uu RLC), a first packet data convergence protocol PDCP layer (also called Uu PDCP), A service data adaptation SDAP layer (also called Uu SDAP), a newly introduced adaptation layer, and an application layer.
  • the first physical PHY layer also called UuPHY
  • the first A media access control MAC layer also called Uu MAC
  • a first radio link control RLC layer also called Uu RLC
  • PDCP packet data convergence protocol
  • Uu SDAP A service data adaptation SDAP layer
  • the user plane protocol stack of the PC5 interface includes the following from top to bottom: a second PHY layer (also called PC5 PHY), second MAC layer (also called PC5 MAC), second RLC layer (also called As PC5 RLC), the second PDCP layer (also referred to PC5 PDCP), the adaptation layer and the application layer.
  • a second PHY layer also called PC5 PHY
  • second MAC layer also called PC5 MAC
  • second RLC layer also called As PC5 RLC
  • the second PDCP layer also referred to PC5 PDCP
  • the adaptation layer As shown in FIG. 9A, an adaptation layer is newly introduced at the V2X application layer and the AS layer.
  • This adaptation layer may also be referred to as an aggregation layer. This embodiment of the present application does not limit this.
  • the adaptation layer is used for Shield different interfaces of the AS layer (or technology of shielding different layers of the AS layer), that is, no matter which interface is selected, the same adaptation layer is used in order to ensure the continuity of the quality of service flow before and after switching between different interfaces.
  • the difference between the protocol stack shown in FIG. 9A and the protocol stack shown in FIG. 7 is that the PC5 interface protocol stack shown in FIG. 9A has no SDAP layer.
  • FIG. 9B is a schematic diagram of a user plane protocol stack of a Uu interface and a PC5 interface provided by another embodiment of the present application.
  • the second terminal has a user plane protocol stack of a Uu interface and a user plane protocol of the PC5 interface
  • a stack in which the user plane protocol stack of the Uu interface from bottom to top includes: a first physical PHY layer (also called UuPHY), a first media access control MAC layer (also called Uu MAC), A radio link control RLC layer (also called Uu RLC), packet data convergence protocol PDCP layer (also called Uu PDCP), service data adaptation SDAP layer and application layer, the user plane protocol stack of the PC5 interface From bottom to top: the second PHY layer (also called PC5 PHY), the second MAC layer (also called PC5 MAC), the second RLC layer (also called PC5 RLC), the PDCP layer (also called It is called PC5 (PDCP) and the service data is adapted to the SDAP layer and the application layer.
  • the difference between the protocol stacks shown in FIGS. 9A and 9B is that based on the protocol stack shown in FIG. 9A, no matter which interface the terminal data is sent to, the anchor point of the terminal data is at the adaptation layer, that is, different interfaces share adaptation. Based on the protocol stack shown in FIG. 9B, no matter which interface the terminal data is sent to, the anchor point of the terminal data is at the PDCP layer, that is, different interfaces share the PDCP layer. Among them, based on the protocol stack shown in FIG. 9B, 1.
  • Different interfaces are unified SDAP entities and configured as SDAP without SDAP header (the SDAP layer does not need to add header processing to the data packets received from the upper protocol stack), that is, at the SDAP layer Only the process of mapping the quality of service flow to the DRB is performed, and the SDAP layer does not need to carry information such as the identification QFI of the quality of service flow.
  • SN Sequence Number
  • the data transmission method includes the following steps:
  • Step S801 The first terminal sends a quality of service flow to the second terminal through a first logical channel on the PC5 interface, and the quality of service flow is associated with an identifier of the quality of service flow.
  • Step S802 The first terminal sends the identifier of the quality of service flow and the identifier of the first logical channel to the radio access network device, and the identifier of the quality of service flow and the identifier of the first logical channel have a first correspondence relationship.
  • Step S803 The radio access network device determines a second correspondence between the first logical channel and the second logical channel.
  • the second logical channel is a logical channel on a Uu interface between the radio access network device and the second terminal.
  • Step S804 The radio access network device sends the identifier of the first logical channel and the identifier of the second logical channel to the second terminal, and the identifier of the first logical channel and the identifier of the second logical channel have a second correspondence relationship.
  • Step S805 The radio access network device maps the quality of service stream received from the first terminal to a second logical channel and sends it to the second terminal.
  • Step S806 The second terminal determines, according to the second correspondence relationship, the quality of service flow sent from the radio access network device over the second logical channel, which belongs to the same quality of service as the quality of service flow sent from the first terminal over the first logical channel. Stream and send the quality of service stream to the same protocol layer for processing.
  • the identifier of the quality of service flow may be QFI.
  • steps S804 and S805 is not limited. S804 can be executed before S805, and S804 can also be executed after S805.
  • the quality of service flow on the first terminal implements switching from the PC5 interface to the Uu interface.
  • the first terminal may measure the Uu interface and the PC5 interface respectively. If the first terminal determines to meet the interface switching conditions, for example, the interface link quality of the current data transmission is degraded, When the link quality of the other interface is better, the first terminal sends an interface switching request message to the radio access network device, where the interface switching request message includes at least one of the following: the QFI of the quality of service flow, and a packet data unit session. Identification (PDU, session ID), switching type (such as switching from Uu interface to PC5 interface, or switching from PC5 interface to Uu interface).
  • the radio access network device After receiving the interface switching request message, the radio access network device sends a switching command to the first terminal, instructing the first terminal to switch from the original interface link to the target interface link to continue data transmission.
  • the second terminal may receive the identifier of the first logical channel and the identifier of the second logical channel from the radio access network device through an RRC message of the Uu interface, or the radio access network device may The identifier and the identifier of the second logical channel are sent to the first terminal, and the first terminal sends the signaling through the PC5 interface (which may be RRC signaling of the PC5 interface, or existing PC5 interface signaling) to the second terminal.
  • the PC5 interface which may be RRC signaling of the PC5 interface, or existing PC5 interface signaling
  • the second terminal determines the quality of service flow sent from the radio access network device through the second logical channel according to the second correspondence relationship, and the first terminal passes the first logic through the first logic
  • the quality of service flow sent on the channel belongs to the same quality of service flow, and then the quality of service flow is sent to the same adaptation layer for processing.
  • the second terminal determines the quality of service flow sent from the radio access network device through the second logical channel according to the second correspondence relationship, and the first terminal passes the first logic through the first logic
  • the quality of service flow sent on the channel belongs to the same quality of service flow, and then the quality of service flow is sent to the same PDCP layer for processing.
  • the foregoing processing of the service quality flow includes: reordering the service quality flows received from different interfaces, or performing duplicate packet detection processing, etc. This application does not limit this.
  • An embodiment of the present application provides a data transmission method, in which, when an interface switching occurs in a quality of service flow sent by a first terminal to a second terminal, the second terminal may use a first logical channel identifier and a second logical channel identifier.
  • the two correspondences identify whether the quality of service flow received from the first logical channel and the quality of service flow received from the second logical channel are the same quality of service flow. If they are the same, the second terminal sends the quality of service flow to the same protocol layer for processing. So as to ensure the continuity of the quality of service flow before and after switching between different interfaces.
  • FIG. 10 is an interaction flowchart of a data transmission method according to another embodiment of the present application.
  • the network elements involved in the method include: a first terminal, a second terminal, and a radio access network device, where the first terminal and the second terminal As shown in FIG. 9A, the second terminal has both a user plane protocol stack with a Uu interface and a user plane protocol stack with a PC5 interface, as shown in FIG. 9A.
  • the user plane protocol stack of the Uu interface from bottom to top includes: the first physical PHY layer (also called UuPHY), the first media access control MAC layer (also called Uu MAC), and the first radio link control RLC layer (also called Uu RLC), first packet data convergence protocol PDCP layer (also called Uu PDCP), first service data adaptation SDAP layer (also called Uu SDAP), newly introduced adaptation Layer and application layer,
  • the user plane protocol stack of the PC5 interface from bottom to top includes: a second PHY layer (also called PC5 PHY), a second MAC layer (also called PC5 MAC), and a second RLC layer (Also known as PC5 RLC), a second PDCP layer (also called PC5 PDCP), the adaptation layer, and the application .
  • an adaptation layer is newly introduced at the V2X application layer and the AS layer.
  • This adaptation layer may also be referred to as an aggregation layer.
  • This embodiment of the present application does not limit this.
  • the adaptation layer is used for Shield different interfaces of the AS layer (or technology of shielding different layers of the AS layer), that is, no matter which interface is selected, the same adaptation layer is used to ensure the continuity of the quality of service flow before and after switching between different interfaces.
  • the difference between the protocol stack shown in FIG. 9A and the protocol stack shown in FIG. 7 is that the PC5 interface protocol stack shown in FIG. 9A has no SDAP layer.
  • the second terminal is applicable to both the user plane protocol stack of the Uu interface and the user plane protocol stack of the PC5 interface, and the user plane protocol stack of the user plane protocol stack of the Uu interface is from bottom to top Including: the first physical PHY layer (also called Uu PHY), the first media access control MAC layer (also called Uu MAC), the first radio link control RLC layer (also called Uu RLC), the packet Data aggregation protocol PDCP layer (also called Uu PDCP), service data adaptation SDAP layer and application layer.
  • the first physical PHY layer also called Uu PHY
  • the first media access control MAC layer also called Uu MAC
  • the first radio link control RLC layer also called Uu RLC
  • the packet Data aggregation protocol PDCP layer also called Uu PDCP
  • service data adaptation SDAP layer service data adaptation SDAP layer
  • the user plane protocol stack of the PC5 interface includes the following from top to bottom: the second PHY layer (also called PC5 PHY ), The second MAC layer (also called PC5 MAC), the second RLC layer (also called PC5 RLC), the PDCP layer (also called PC5 PDCP), and the service data adaptation SDAP layer, the Application layer.
  • the second PHY layer also called PC5 PHY
  • the second MAC layer also called PC5 MAC
  • the second RLC layer also called PC5 RLC
  • the PDCP layer also called PC5 PDCP
  • service data adaptation SDAP layer the Application layer.
  • the difference between the protocol stacks shown in FIG. 9A and FIG. 9B is that based on the protocol stack shown in FIG. 9A, no matter which interface the terminal data is sent to, the anchor point of the terminal data is at the adaptation layer, that is: different Interfaces share the adaptation layer, and based on the protocol stack shown in FIG. 9B, no matter which interface data is sent to, the anchor point of the terminal data is at the PDCP layer, that is, different interfaces share the PDCP layer. Among them, based on the protocol stack shown in FIG. 9B, 1.
  • Different interfaces are unified SDAP entities and configured as SDAP without SDAP header (the SDAP layer does not need to add header processing to the data packets received from the upper protocol stack), that is, at the SDAP layer Only the process of mapping the quality of service flow to the DRB is performed, and the SDAP layer does not need to carry information such as the identification QFI of the quality of service flow.
  • SN Sequence Number
  • the data transmission method includes the following steps:
  • Step S1001 The first terminal sends a quality of service flow to the radio access network device, and the quality of service flow is associated with an identifier of the quality of service flow.
  • Step S1002 The radio access network device sends the identifier of the quality of service flow and the identifier of the second logical channel to the first terminal, where the identifier of the quality of service flow and the identifier of the second logical channel have a corresponding relationship.
  • the second logical channel is a logical channel used by the radio access network device to send a quality of service associated with the identifier of the quality of service flow to the second terminal.
  • Step S1003 The first terminal determines the correspondence between the second logical channel and the first logical channel, where the first logical channel is a service associated with the identifier of the quality of service flow sent by the first terminal to the second terminal through the PC5 interface. Logical channel used by the mass flow.
  • Step S1004 The first terminal sends the identifier of the second logical channel and the identifier of the first logical channel to the second terminal, and sends a quality of service stream to the second terminal through the first logical channel.
  • Step S1005 the second terminal determines, according to the correspondence between the second logical channel and the first logical channel, the quality of service flow sent from the radio access network device through the second logical channel, and the first logical channel from the first terminal.
  • the service quality flow sent on the network belongs to the same service quality flow, and the service flow is sent to the same protocol layer for processing.
  • the identifier of the quality of service flow may be QFI.
  • the quality of service flow on the first terminal implements switching from the Uu interface to the PC5 interface.
  • the first terminal may measure the Uu interface and the PC5 interface respectively. If the first terminal determines to meet the interface switching conditions, for example, the interface link quality of the current data transmission is degraded, While the link quality of the other interface is better, the first terminal sends an interface switching request message to the radio access network device, and the interface switching request message includes at least one of the following: the QFI of the quality of service flow, and a packet data unit session. Identification (PDU, session ID), switching type (such as switching from Uu interface to PC5 interface, or switching from PC5 interface to Uu interface).
  • the radio access network device After receiving the interface switching request message, the radio access network device sends a switching command to the first terminal, instructing the first terminal to switch from the original interface link to the target interface link to continue data transmission.
  • the second terminal may receive the second correspondence relationship through signaling of the PC5 interface (which may be RRC signaling of the PC5 interface, or existing PC5 interface signaling).
  • the PC5 interface which may be RRC signaling of the PC5 interface, or existing PC5 interface signaling.
  • the second terminal determines the service sent from the radio access network device through the second logical channel according to the correspondence between the identifier of the second logical channel and the identifier of the first logical channel If the quality flow belongs to the same quality of service flow as the quality of service flow sent on the first logical channel from the first terminal, the quality of service flow is sent to the same adaptation layer for processing.
  • the second terminal determines the service sent from the radio access network device through the second logical channel according to the correspondence between the identifier of the second logical channel and the identifier of the first logical channel If the quality flow belongs to the same quality of service flow as the quality of service flow sent on the first logical channel from the first terminal, the quality of service flow is sent to the same PDCP layer for processing.
  • the foregoing processing of the service quality flow includes: reordering the service quality flows received from different interfaces, or performing duplicate packet detection processing, etc. This application does not limit this.
  • An embodiment of the present application provides a data transmission method.
  • the second terminal may identify the slave logical channel according to the correspondence between the first logical channel and the second logical channel. Whether the quality of service flow received on one logical channel and the quality of service flow received from the second logical channel are the same quality of service flow. If they are the same, the second terminal sends the quality of service flow to the same protocol layer for processing, thereby ensuring the quality of service flow. Continuity before and after switching between different interfaces.
  • FIG. 11 is a schematic diagram of a terminal provided by an embodiment of the present application. As shown in FIG. 11, the terminal is a first terminal and includes an obtaining module 1101, a determining module 1102, and a sending module 1103.
  • the obtaining module 1101 is configured to obtain an identifier of a quality of service flow and a QoS parameter of the quality of service flow, and the identifier of the quality of service flow corresponds to a QoS parameter of the quality of service flow;
  • a determining module 1102 is configured to determine the first A logical channel used by the quality of service flow of a terminal on a wireless direct communication interface, the wireless direct communication interface being a communication interface between the first terminal and a second terminal;
  • a sending module 1103 is configured to transfer the The quality of service flow is mapped onto the logical channel, and the quality of service flow is sent to the second terminal.
  • the determining module 1102 is specifically configured to determine a logical channel used by the quality of service flow of the first terminal on a wireless direct communication interface according to the corresponding relationship.
  • the correspondence between the identifier of the quality of service flow and the QoS parameter of the quality of service flow includes a correspondence between the identifier of the quality of service flow and the 5G quality identifier 5QI of the quality of service flow; or The correspondence between the identifier of the service quality flow and at least one quality parameter among the priority of the service quality flow, the delay budget PDB, and the packet error rate PER.
  • the identifier of the quality of service flow and the QoS parameters of the quality of service flow are carried in a radio resource control RRC message or a non-access stratum NAS message.
  • the obtaining module 1101 is further configured to obtain an identifier of the quality of service flow and at least one quality parameter of a guaranteed bit rate GBR and a maximum bit rate MBR of the quality of service flow, the identifier of the quality of service flow and the quality parameter.
  • At least one quality parameter has a corresponding relationship; or, the first terminal obtains at least one quality parameter from the 5G quality identifier 5QI of the service quality flow and the guaranteed bit rate GBR and maximum bit rate MBR of the service quality flow, the service quality
  • the identifier of the flow has a corresponding relationship with the at least one quality parameter; and / or, obtain an aggregate maximum bit rate AMBR of all non-guaranteed bit rate Non-GBR services sent by the first terminal to the second terminal.
  • the determining module 1102 is further configured to determine the quality of service flow according to the priority of the quality of service flow.
  • the priority of the logical channel; or, the priority of the logical channel is obtained from a radio access network device.
  • the obtaining module 1101 is further configured to obtain an identifier of the quality of service flow and an identifier of a logical channel group LCG on the wireless direct communication interface, and the identifier of the quality of service flow corresponds to the identifier of the LCG.
  • a correspondence between the identifier of the quality of service flow and the LCG is used by the first terminal to send a buffer status report BSR to the access-side device; or acquiring the identifier of a logical channel on the wireless direct communication interface
  • the identification of the logical channel group LCG the identification of the logical channel and the identification of the LCG have a corresponding relationship
  • the correspondence between the identification of the logical channel and the identification of the LCG is used by the first terminal to the access
  • the inbound device sends a buffer status report BSR; or, obtains a 5G quality identifier 5QI of the quality of service flow and an identifier of a logical channel group LCG on the wireless direct communication interface, and the 5QI corresponds to the identifier of the LCG.
  • the correspondence between the 5QI and the identifier of the LCG is used by the first terminal to send a buffer status report BSR to the access-side device.
  • the obtaining module 1101 was also used to obtain a preset value
  • the sending module 1103 is specifically configured to: if at least one of the identifier of the quality of service flow, the priority of the quality of service flow, and the 5G quality identifier 5QI of the quality of service flow is less than or equal to the preset Value, the quality of service flow is sent to the second terminal preferentially through the logical channel.
  • the sending module 1103 is further configured to send the wireless direct stream to the second terminal.
  • the SCI includes at least one of the following parameters: an identifier of the quality of service flow, a 5G quality identifier 5QI of the quality of service flow, so that the second terminal is aware of the Business conditions on the wireless direct communication interface.
  • the sending module 1103 is further configured to send at least one of the following: an identifier of the quality of service flow, a 5G quality identifier 5QI of the quality of service flow, so that the wireless access network The device determines whether semi-static scheduling needs to be performed on the first terminal.
  • the terminal provided in this embodiment of the present application may be used to perform operations performed by the first terminal in Embodiment 1.
  • FIG. 12 is a schematic diagram of a terminal provided by another embodiment of the present application. As shown in FIG. 12, the terminal is a first terminal and includes an obtaining module 1201 and a sending module 1202.
  • the obtaining module 1201 is configured to receive an identifier of a quality of service flow and an identifier of a logical channel on a wireless direct communication interface sent by a wireless access network device, and an identifier of the logical quality channel on the wireless direct communication interface.
  • the wireless direct communication interface is a communication interface between the first terminal and the second terminal;
  • the sending module 1202 is configured to map the quality of service flow to the logical channel according to the corresponding relationship, and send the quality of service flow to the second terminal.
  • the obtaining module 1201 is further configured to obtain an identifier of the quality of service flow and at least one quality parameter of a guaranteed bit rate GBR and a maximum bit rate MBR of the quality of service flow, the identifier of the quality of service flow and the quality parameter.
  • At least one quality parameter has a corresponding relationship; or, the first terminal obtains at least one quality parameter of the 5G quality identifier 5QI of the service quality flow and the guaranteed bit rate GBR and maximum bit rate MBR of the service quality flow, the service quality The identifier of the flow has a corresponding relationship with the at least one quality parameter; and / or, obtain an aggregate maximum bit rate AMBR of all non-guaranteed bit rate Non-GBR services sent by the first terminal to the second terminal.
  • the method further includes: a determining module 1203, which maps the quality of service flow to the logical channel and sends the quality of service flow to the second terminal.
  • the determining module 1203 is further configured to determine the quality of service according to the quality of service.
  • the priority of the flow determines the priority of the logical channel; or, the priority of the logical channel is obtained from a radio access network device.
  • the obtaining module 1201 is further configured to obtain an identifier of the quality of service flow and an identifier of a logical channel group LCG on the wireless direct communication interface, where the identifier of the quality of service flow corresponds to the identifier of the LCG
  • a correspondence between the identifier of the quality of service flow and the LCG is used by the first terminal to send a buffer status report BSR to the access-side device; or acquiring the identifier of a logical channel on the wireless direct communication interface
  • the identification of the logical channel group LCG the identification of the logical channel and the identification of the LCG have a corresponding relationship, and the correspondence between the identification of the logical channel and the identification of the LCG is used by the first terminal to the access
  • the inbound device sends a buffer status report BSR; or, obtains a 5G quality identifier 5QI of the quality of service flow and an identifier of a logical channel group LCG on the wireless direct communication interface, and the 5QI corresponds to the identifier
  • the obtaining module 1201 was also used to obtain a preset value
  • the sending module 1202 is specifically configured to: if at least one of the identifier of the quality of service flow, the priority of the quality of service flow, and the 5G quality identifier 5QI of the quality of service flow is less than or equal to the preset Value, the quality of service flow is sent to the second terminal preferentially through the logical channel.
  • the sending module 1202 is further configured to send the wireless direct stream to the second terminal.
  • the SCI includes at least one of the following parameters: an identifier of the quality of service flow, a 5G quality identifier 5QI of the quality of service flow, so that the second terminal is aware of the Business conditions on the wireless direct communication interface.
  • the sending module 1202 is further configured to send at least one of the following: an identifier of the quality of service flow, a 5G quality identifier 5QI of the quality of service flow, so that the wireless access network The device determines whether semi-static scheduling needs to be performed on the first terminal.
  • the terminal provided in this embodiment of the present application may be used to perform operations performed by the first terminal in Embodiment 2.
  • FIG. 13 is a schematic diagram of a terminal provided by another embodiment of the present application. As shown in FIG. 13, the terminal is a first terminal, and includes an obtaining module 1301, a mapping module 1302, a determining module 1303, and a sending module 1304.
  • the obtaining module 1301 is configured to obtain the priority PPPP of each packet of the near-end communication and / or the QoS parameters of the reliability PPPR of each packet of the near-end communication and the quality of service flow of the first terminal, the PPPP and / Or the PPPR has a corresponding relationship with the QoS parameters;
  • the mapping module 1302 is configured to map a data packet associated with the PPPP and / or PPPR into a quality of service flow associated with the QoS parameter according to the corresponding relationship;
  • the determining module 1303 is configured to determine a logical channel used by the quality of service flow on a wireless direct communication interface
  • the sending module 1304 is configured to map the quality of service flow to the logical channel, and send the quality of service flow to a second terminal.
  • the correspondence between PPPP and / or PPPR and the QoS parameters of the quality of service flow of the first terminal includes the correspondence between the PPPP and / or PPPR and the 5G quality identifier 5QI of the quality of service flow;
  • the correspondence relationship is obtained after the V2X control function entity in the near-end communication system negotiates with the packet control function PCF entity in the 3GPP system.
  • the first terminal obtains the corresponding relationship through a data radio bearer DRB; or the first terminal obtains the corresponding relationship through a radio resource control RRC message; or the first terminal obtains the corresponding relationship through non-access
  • the layer NAS message acquires the corresponding relationship.
  • the obtaining module 1301 is further configured to obtain an identifier of the quality of service flow and at least one quality parameter of a guaranteed bit rate GBR and a maximum bit rate MBR of the quality of service flow, the identifier of the quality of service flow and the quality parameter.
  • At least one quality parameter has a corresponding relationship; or, the first terminal obtains at least one quality parameter of the 5G quality identifier 5QI of the service quality flow and the guaranteed bit rate GBR and maximum bit rate MBR of the service quality flow, the service quality The identifier of the flow has a corresponding relationship with the at least one quality parameter; and / or, obtain an aggregate maximum bit rate AMBR of all non-guaranteed bit rate Non-GBR services sent by the first terminal to the second terminal.
  • the determining module 1303 is further configured to determine the quality of service flow according to the priority of the quality of service flow.
  • the priority of the logical channel; or, the priority of the logical channel is obtained from a radio access network device.
  • the obtaining module 1301 is further configured to obtain an identifier of the quality of service flow and an identifier of a logical channel group LCG on the wireless direct communication interface, where the identifier of the quality of service flow corresponds to the identifier of the LCG
  • a correspondence between the identifier of the quality of service flow and the LCG is used by the first terminal to send a buffer status report BSR to the access-side device; or acquiring the identifier of a logical channel on the wireless direct communication interface
  • the identification of the logical channel group LCG the identification of the logical channel and the identification of the LCG have a corresponding relationship, and the correspondence between the identification of the logical channel and the identification of the LCG is used by the first terminal to the access
  • the inbound device sends a buffer status report BSR; or, obtains a 5G quality identifier 5QI of the quality of service flow and an identifier of a logical channel group LCG on the wireless direct communication interface, and the 5QI corresponds to the identifier
  • the obtaining module 1301 was also used to obtain a preset value
  • the sending module 1304 is specifically configured to: if at least one of the identifier of the quality of service flow, the priority of the quality of service flow, and the 5G quality identifier 5QI of the quality of service flow is less than or equal to the preset Value, the quality of service flow is sent to the second terminal preferentially through the logical channel.
  • the sending module 1304 is further configured to send the wireless direct stream to the second terminal.
  • the SCI includes at least one of the following parameters: an identifier of the quality of service flow, a 5G quality identifier 5QI of the quality of service flow, so that the second terminal is aware of the Business conditions on the wireless direct communication interface.
  • the sending module 1304 is further configured to send at least one of the following: an identifier of the quality of service flow, a 5G quality identifier 5QI of the quality of service flow, so that the wireless access network The device determines whether semi-static scheduling needs to be performed on the first terminal.
  • the terminal provided in this embodiment of the present application may be used to perform operations performed by the first terminal in Embodiment 3.
  • FIG. 14 is a schematic diagram of a terminal according to another embodiment of the present application. As shown in FIG. 14, the terminal is a first terminal and includes an obtaining module 1401, a determining module 1402, and a sending module 1403.
  • the obtaining module 1401 is configured to obtain a quality of service flow of the first terminal, where the quality of service flow is associated with a QoS parameter; and the determining module 1402 is configured to determine a quality of service flow used on the wireless direct communication interface.
  • a logical channel; a sending module 1403 is configured to map the quality of service flow to the logical channel and send the quality of service flow to a second terminal.
  • associating a quality of service flow with a QoS parameter includes: the quality of service flow is associated with a 5G quality identifier 5QI of the quality of service flow; or the quality of service flow and the priority and delay budget of the quality of service flow At least one quality parameter among PDB and packet error rate PER is associated.
  • the correspondence between the identifier of the quality of service flow and the QoS parameter of the quality of service flow includes a correspondence between the identifier of the quality of service flow and the 5G quality identifier 5QI of the quality of service flow; or The correspondence between the identifier of the service quality flow and at least one quality parameter among the priority of the service quality flow, the delay budget PDB, and the packet error rate PER.
  • the identifier of the quality of service flow and the QoS parameters of the quality of service flow are carried in a radio resource control RRC message or a non-access stratum NAS message.
  • the obtaining module 1401 is further configured to obtain the identifier of the quality of service flow and at least one quality parameter of the guaranteed bit rate GBR and the maximum bit rate MBR of the quality of service flow, and the identifier of the quality of service flow and the quality parameter At least one quality parameter has a corresponding relationship; or, the first terminal obtains at least one quality parameter of the 5G quality identifier 5QI of the service quality flow and the guaranteed bit rate GBR and maximum bit rate MBR of the service quality flow, the service quality The identifier of the flow has a corresponding relationship with the at least one quality parameter; and / or, obtain an aggregate maximum bit rate AMBR of all non-guaranteed bit rate Non-GBR services sent by the first terminal to the second terminal.
  • the determining module 1402 is further configured to determine the quality of service quality flow according to a priority of the quality of service flow.
  • the priority of the logical channel; or, the priority of the logical channel is obtained from a radio access network device.
  • the obtaining module 1401 is further configured to obtain an identifier of the quality of service flow and an identifier of a logical channel group LCG on the wireless direct communication interface, where the identifier of the quality of service flow corresponds to the identifier of the LCG
  • a correspondence between the identifier of the quality of service flow and the LCG is used by the first terminal to send a buffer status report BSR to the access-side device; or acquiring the identifier of a logical channel on the wireless direct communication interface
  • the identification of the logical channel group LCG the identification of the logical channel and the identification of the LCG have a corresponding relationship, and the correspondence between the identification of the logical channel and the identification of the LCG is used by the first terminal to the access
  • the inbound device sends a buffer status report BSR; or, obtains a 5G quality identifier 5QI of the quality of service flow and an identifier of a logical channel group LCG on the wireless direct communication interface, and the 5QI corresponds to the identifier
  • the obtaining module 1401 was also used to obtain a preset value
  • the sending module 1403 is specifically configured to: if at least one of the identifier of the quality of service flow, the priority of the quality of service flow, and the 5G quality identifier 5QI of the quality of service flow is less than or equal to the preset Value, the quality of service flow is sent to the second terminal preferentially through the logical channel.
  • the sending module 1403 is further configured to send the wireless direct stream to the second terminal.
  • the SCI includes at least one of the following parameters: an identifier of the quality of service flow, a 5G quality identifier 5QI of the quality of service flow, so that the second terminal is aware of the Business conditions on the wireless direct communication interface.
  • the sending module 1403 is further configured to send at least one of the following: an identifier of the quality of service flow, a 5G quality identifier 5QI of the quality of service flow, so that the wireless access network The device determines whether semi-static scheduling needs to be performed on the first terminal.
  • the terminal provided in this embodiment of the present application may be used to perform operations performed by the first terminal in Embodiment 4.
  • FIG. 15 is a schematic diagram of a terminal according to another embodiment of the present application. As shown in FIG. 15, the terminal is a second terminal and includes a receiving module 1501 and a sending module 1502.
  • the receiving module 1501 is configured to receive a quality of service stream sent by a first terminal through a first logical channel on a wireless direct communication interface, where the quality of service stream is associated with a QFI; and a radio access network device receives the A quality of service flow sent by a second logical channel, where the quality of service flow includes QFI; if the QFI of the quality of service flow received from the first logical channel is the same as the QFI of the quality of service flow received from the second logical channel, Then, the sending module 1502 sends the quality of service flow to the same protocol layer for processing.
  • the second terminal is applicable to both the user plane protocol stack of the Uu interface and the user plane protocol stack of the wireless direct communication interface, wherein the user plane protocol stack of the user plane protocol stack of the wireless direct communication interface is from below From the top: the first physical PHY layer, the first media access control MAC layer, the first radio link control RLC layer, the first packet data convergence protocol PDCP layer, the first service data adaptation SDAP layer, the adaptation layer and applications Layer, the user plane protocol stack of the Uu interface from bottom to top includes: a second PHY layer, a second MAC layer, a second RLC layer, a second PDCP layer, a second SDAP layer, the adaptation layer, and the Application layer; correspondingly, the sending module 1502 is specifically configured to send the quality of service stream received from the Uu interface and the wireless direct communication interface to the same adaptation layer for processing.
  • the terminal provided in this embodiment of the present application may be used to perform operations performed by the second terminal in Embodiment 5.
  • FIG. 16 is a schematic diagram of a wireless access network device according to another embodiment of the present application. As shown in FIG. 16, the wireless access network device includes a receiving module 1601, a determining module 1602, and a sending module 1603.
  • the receiving module 1601 is configured to receive an identifier of a quality of service flow and an identifier of a first logical channel sent by a first terminal, where the identifier of the quality of service flow and the identifier of the first logical channel have a first correspondence relationship, and
  • the quality of service flow is a quality of service flow sent by the first terminal to the second terminal through the first logical channel on the wireless direct communication interface;
  • the determining module 1602 is configured to determine the first logical channel and the second logical channel
  • the second correspondence between the channels, the sending module 1603 is configured to map the quality of service stream received from the first terminal to the second logical channel and send it to a second terminal, and send the second terminal to the second terminal.
  • the terminal provided in this embodiment of the present application may be used to perform operations performed by the radio access network device in Embodiment 6.
  • the radio access network device in Embodiment 6.
  • FIG. 17 is a schematic diagram of a terminal according to another embodiment of the present application. As shown in FIG. 17, the terminal is a second terminal and includes a receiving module 1701, a determining module 1702, and a sending module 1703.
  • the receiving module 1701 is configured to receive an identifier of a first logical channel and an identifier of a second logical channel sent by a radio access network device, and the identifier of the first logical channel and the identifier of the second logical channel have a second correspondence.
  • the first logical channel is a logical channel on a wireless direct communication interface between the first terminal and the second terminal, and the second logical channel is the radio access network device and The logical channel on the Uu interface between the second terminals;
  • the determining module 1702 is configured to determine a quality of service flow sent from the radio access network device through the second logical channel according to the second correspondence, and The quality of service flow sent from the first terminal through the first logical channel belongs to the same quality of service flow, and the sending module 1703 is configured to send the quality of service flow to the same protocol layer for processing. This ensures the continuity of the quality of service flow before and after switching between different interfaces.
  • the terminal provided in this embodiment of the present application may be used to perform operations performed by the second terminal in Embodiment 6.
  • FIG. 18 is a schematic diagram of a radio access network device according to another embodiment of the present application. As shown in FIG. 18, the radio access network device includes a receiving mapping module 1801 and a sending module 1802.
  • the receiving and mapping module 1801 is configured to receive a quality of service flow sent by a first terminal, map the quality of service flow to a second logical channel, and send it to a second terminal, where the second logical channel is the wireless connection.
  • the terminal provided in this embodiment of the present application may be used to perform operations performed by the access network device in Embodiment 7.
  • the access network device in Embodiment 7 For the content and effect, refer to Embodiment 7, and details are not described herein again.
  • FIG. 19 is a schematic diagram of a terminal according to another embodiment of the present application.
  • the terminal is a first terminal.
  • the terminal includes a sending module 1901, a receiving module 1902, and a determining module 1903.
  • the sending module 1901 is configured to send a quality of service flow to a radio access network device; the receiving module 1902 is configured to receive an identification of the quality of service flow and an identification of a second logical channel sent by the wireless access network device, where The identifier of the quality of service flow and the identifier of the second logical channel have a corresponding relationship, wherein the second logical channel is a logical channel on a Uu interface between the radio access network device and the second terminal; a determining module 1903 is used to determine the correspondence between the second logical channel and the first logical channel, and the sending module 1901 is used to send the identifier of the second logical channel and the identifier of the first logical channel to the second terminal, And sending the quality of service flow to the second terminal through the first logical channel. This ensures the continuity of the quality of service flow before and after switching between different interfaces.
  • the terminal provided in this embodiment of the present application may be used to perform operations performed by the first terminal in Embodiment 7.
  • FIG. 20 is a schematic diagram of a terminal according to another embodiment of the present application.
  • the terminal is a second terminal.
  • the terminal includes a receiving module 2001, a determining module 2002, and a sending module 2003.
  • the receiving module 2001 is configured to receive an identifier of a first logical channel and a second logical channel sent by a first terminal, and the identifier of the first logical channel and the identifier of the second logical channel have a corresponding relationship.
  • the first logical channel is a logical channel in a wireless direct communication interface between the first terminal and the second terminal, and the second logical channel is between the radio access network device and the second terminal.
  • a logical channel on a Uu interface between the two; a determining module 2002 is configured to determine, according to the corresponding relationship, a quality of service flow sent from the radio access network device through the second logical channel and passed through the first terminal
  • the quality of service flow sent on the first logical channel belongs to the same quality of service flow
  • the sending module 2003 is configured to send the service flow to the same protocol layer for processing. This ensures the continuity of the quality of service flow before and after switching between different interfaces.
  • the second terminal is applicable to both the user plane protocol stack of the Uu interface and the user plane protocol stack of the wireless direct communication interface interface, wherein the user plane protocol stack of the user plane protocol stack of the Uu interface is from top to bottom Including: a first physical PHY layer, a first media access control MAC layer, a first radio link control RLC layer, a first packet data convergence protocol PDCP layer, a first service data adaptation SDAP layer, an adaptation layer, and an application layer,
  • the user plane protocol stack of the wireless direct communication interface interface includes from the bottom to the top: a second PHY layer, a second MAC layer, a second RLC layer, a second PDCP layer, the adaptation layer, and the application layer;
  • the sending module 2003 is specifically configured to send the quality of service stream received from the Uu interface and the wireless direct communication interface to the same adaptation layer for processing.
  • the second terminal is applicable to both the user plane protocol stack of the Uu interface and the user plane protocol stack of the wireless direct communication interface interface, wherein the user plane protocol stack of the user plane protocol stack of the Uu interface is from top to bottom Including: a first physical PHY layer, a first media access control MAC layer, a first wireless link control RLC layer, a packet data convergence protocol PDCP layer, a service data adaptation SDAP layer, and an application layer, the wireless direct communication interface interface interface
  • the user plane protocol stack from bottom to top includes: the second PHY layer, the second MAC layer, the second RLC layer, the PDCP layer, the SDAP layer, and the application layer.
  • the sending module 2003 is specifically used for And sending the quality of service stream received from the Uu interface and the wireless direct communication interface to the same PDCP layer for processing.
  • the receiving module 2001 is specifically configured to receive the identifier of the first logical channel and the identifier of the second logical channel through a radio resource control RRC message of the wireless direct communication interface or wireless direct communication interface signaling. .
  • the terminal provided in this embodiment of the present application may be used to perform operations performed by the second-person terminal in Embodiment 7.
  • the second-person terminal in Embodiment 7 For the content and effect, refer to Embodiment 7, and details are not described herein again.
  • FIG. 21 is a schematic diagram of a terminal according to an embodiment of the present application.
  • the terminal includes a memory 2101 and a processor 2102 and a transceiver 2103.
  • the memory 2101 is used to store a computer program.
  • the processor 2102 runs so that the terminal implements the data transmission method performed by the first terminal or the second terminal described above.
  • the transceiver 2103 is used to implement communication with other devices.
  • the terminal provided in this embodiment of the present application may be used to execute the data transmission method performed by the first terminal or the second terminal.
  • the terminal provided in this embodiment of the present application may be used to execute the data transmission method performed by the first terminal or the second terminal.
  • the wireless access network device includes a memory 2201, a processor 2202, and a transceiver 2203.
  • the memory 2201 is configured to store a computer program.
  • a computer program runs on the processor 2202, so that the terminal implements the data transmission method performed by the first terminal or the second terminal described above.
  • the transceiver 2203 is used to implement communication with other devices.
  • the terminal provided in the embodiment of the present application may be used to execute the data transmission method performed by the radio access network device.
  • the terminal provided in the embodiment of the present application may be used to execute the data transmission method performed by the radio access network device.
  • the content and effect refer to the method embodiment, and details are not described herein again.
  • the storage medium includes a computer program.
  • the computer program is used to implement the foregoing data transmission method. For the content and effect, refer to the method embodiment, and details are not described herein again.
  • the computer program product includes a computer program, and the computer program is used to implement the foregoing data transmission method.
  • the content and effect refer to the method embodiment, and details are not described herein again.

Abstract

本申请实施例提供一种数据传输方法、终端及存储介质,包括:第一终端获取第一终端的业务质量流的标识与业务质量流的QoS参数,它们具有对应关系,根据该QoS参数确定业务质量流在PC5接口上使用的逻辑信道。第一终端将业务质量流映射到确定的逻辑信道上,并将所述业务质量流发向所述第二终端。由于Uu接口和PC5接口上的QoS机制均为所述统一的QoS机制,因此当Uu接口和PC5接口中的任一个接口无法继续传输数据时,第一终端都可以将业务质量流切换至另一个接口上传输,从而实现数据传输在不同接口的灵活切换,并保证在接口切换过程中的不丢包。

Description

数据传输方法、终端及存储介质
本申请要求于2018年09月28日提交中国专利局、申请号为201811156284.8、申请名称为“数据传输方法、终端及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法、终端及存储介质。
背景技术
长期演进(Long Term Evolution,LTE)系统中,车辆到其他设备(Vehicle to X,V2X)的通信场景下,存在两种接口,分别是Uu接口和无线直接通信(PC5)接口,其中,Uu接口为车辆(作为终端)和无线接入网设备之间的接口,PC5接口为两个直接通信车辆(作为终端)之间的接口。
LTE系统中,Uu接口采用基于E-UTRA无线接入承载(E-UTRAN Radio Access Bearer,E-RAB)的业务质量(Quality of Service,QoS)机制。在下行链路(Downlink,DL)中,无线接入网设备决定将需要发送给车辆/终端的数据包映射到对应的数据无线承载(Data Radio Bearer,DRB)上发送给车辆/终端。在上行链路(Uplink,UL)中,通过核心网设备(例如:移动管理实体(Mobility Management Entity,MME))发送的业务流模板(Traffic Flow Template,UL TFT),车辆/终端将数据包映射到对应的DRB上发送给无线接入网设备。
LTE系统中,PC5接口采用基于近端通信的每个包优先级(ProSe Per-Packet Priority,PPPP)和/或近端通信的每个包可靠性(ProSe Per-Packet Reliablity,PPPR)的QoS机制。其中,PPPP用于指示其关联的数据包在PC5接口上调度的优先级,从而保证数据包在PC5接口上传输的时延。PPPR用于指示其关联的数据包在PC5接口上的可靠性要求,从而保证数据包在PC5接口上传输的可靠性。发送端车辆/终端从其应用层接收到一个与PPPP和/或PPPR相关联的数据包后,将其映射到PC5接口的一个逻辑信道上发送给接收端车辆/终端,其中,发送端车辆/终端根据该数据包对应的PPPP取值,确定传输该数据包使用的逻辑信道在PC5接口上的调度优先级,并根据该数据包对应的PPPR取值,确定该数据包在PC5接口上盲重传的次数。
5G NR中,Uu接口引入了更细粒度的QoS机制,即基于流(flow-based)的QoS机制。同时,在包数据汇聚协议(Packet Data Convergence Protocol,PDCP)层之上引入服务数据适配层(Service Data Adaptation Protocol,SDAP)层,SDAP层的作用是:1、执行业务质量流(QoS flow)到DRB的映射。2、携带业务质量流的标识(QoS Flow Identity, QFI)。在DL中,无线接入网设备根据业务质量流对应的QoS参数,将该业务质量流映射到对应的DRB上,并发送给车辆/终端。在UL,首先车辆/终端根据获取到的业务质量流规则(QoS rules)信息,在非接入层(Non-Access Stratum,NAS)层执行车辆/终端的互联网协议(Internet Protocol,IP)包到业务质量流QoS flow的映射;其次,车辆/终端在接入(Access Stratum,AS)层将业务质量流QoS flow映射到对应的DRB上,并发送给无线接入网设备。
5G NR中,V2X通信场景下,V2X业务的QoS需求更多,如果Uu接口和PC5接口还是采用不同的QoS机制,将导致V2X业务在PC5接口上无法实现所有的QoS需求,同时,还将导致V2X业务无法在Uu接口和PC5接口之间灵活切换,容易造成丢包。
发明内容
本申请实施例提供一种数据传输方法、终端及存储介质。从而实现数据传输在不同接口的灵活切换,并保证在接口切换过程中的不丢包。
第一方面,本申请提供一种数据传输方法,包括:第一终端获取业务质量流的标识与业务质量流的QoS参数,业务质量流的标识和业务质量流的QoS参数具有对应关系;第一终端确定第一终端的业务质量流在无线直接通信接口上使用的逻辑信道,无线直连通信接口是第一终端和第二终端之间的通信接口;第一终端将业务质量流映射到逻辑信道上,将业务质量流发向第二终端。
即在Uu接口和PC5接口上采用统一的QoS机制。由于Uu接口和PC5接口上的QoS机制均为统一的QoS机制,因此当Uu接口和PC5接口中的任一个接口无法继续传输数据时,第一终端都可以将业务质量流切换至另一个接口上传输,从而实现数据传输在不同接口的灵活切换,并保证在接口切换过程中的不丢包。
可选地,第一终端确定第一终端的业务质量流在无线直接通信接口上使用的逻辑信道,包括:第一终端根据对应关系确定第一终端的业务质量流在无线直接通信接口上使用的逻辑信道。
可选地,业务质量流的标识可以是QFI。业务质量流的QoS参数可以包括如下中的任一种或几种:业务质量流的5G质量标识5QI、所述业务质量流的优先级、时延预算PDB以及误包率PER。可选地,业务质量流的标识和业务质量流的QoS参数具有对应关系,包括:业务质量流的标识与业务质量流的5G质量标识5QI的对应关系;或者,业务质量流的标识与业务质量流的优先级、时延预算PDB、误包率PER中至少一个质量参数的对应关系。
可选地,业务质量流的标识与业务质量流的QoS参数携带在无线资源控制RRC消息或者非接入层NAS消息中。
第二方面,本申请提供一种数据传输方法,包括:第一终端接收无线接入网设备发送的业务质量流的标识与无线直接通信接口上的逻辑信道的标识,业务质量流的标识与无线直接通信接口上的逻辑信道的标识具有对应关系,无线直连通信接口是第一终端和第二终端之间的通信接口;第一终端根据对应关系将业务质量流映射到逻辑信道上,将业务质量流发向第二终端。
即在Uu接口和PC5接口上采用统一的QoS机制。由于Uu接口和PC5接口上的QoS 机制均为统一的QoS机制,因此当Uu接口和PC5接口中的任一个接口无法继续传输数据时,第一终端都可以将业务质量流切换至另一个接口上传输,从而实现数据传输在不同接口的灵活切换,并保证在接口切换过程中的不丢包。
第三方面,本申请提供一种数据传输方法,包括:第一终端获取近端通信的每个包优先级PPPP和/或近端通信的每个包可靠性PPPR与第一终端的业务质量流的QoS参数,PPPP和/或PPPR与QoS参数具有对应关系;第一终端根据对应关系将与PPPP和/或PPPR相关联的数据包映射成与QoS参数相关联的业务质量流;第一终端确定业务质量流在无线直接通信接口上使用的逻辑信道;第一终端将业务质量流映射到逻辑信道上,并将业务质量流发送给第二终端。
即在Uu接口和PC5接口上采用统一的QoS机制。由于Uu接口和PC5接口上的QoS机制均为统一的QoS机制,因此当Uu接口和PC5接口中的任一个接口无法继续传输数据时,第一终端都可以将业务质量流切换至另一个接口上传输,从而实现数据传输在不同接口的灵活切换,并保证在接口切换过程中的不丢包。
可选地,业务质量流的QoS参数可以包括如下中的任一种或几种:业务质量流的5G质量标识5QI、所述业务质量流的优先级、时延预算PDB以及误包率PER。
可选地,PPPP和/或PPPR与第一终端的业务质量流的QoS参数的对应关系,包括:PPPP和/或PPPR与业务质量流的5G质量标识5QI的对应关系;或者,PPPP和/或PPPR与业务质量流的优先级、时延预算PDB、误包率PER中至少一个质量参数的对应关系。
可选地,对应关系是近端通信系统中的V2X控制功能实体与3GPP系统中的分组控制功能PCF实体协商之后得到。
可选地,包括:第一终端通过数据无线承载DRB获取对应关系;或者,第一终端通过无线资源控制RRC消息获取对应关系;或者,第一终端通过非接入层NAS消息获取对应关系。
第四方面,本申请提供一种数据传输方法,包括:第一终端获取第一终端的业务质量流,其中,业务质量流与QoS参数相关联;第一终端确定业务质量流在无线直接通信接口上使用的逻辑信道;第一终端将业务质量流映射到逻辑信道上,并将业务质量流发送给第二终端。
即在Uu接口和PC5接口上采用统一的QoS机制。由于Uu接口和PC5接口上的QoS机制均为统一的QoS机制,因此当Uu接口和PC5接口中的任一个接口无法继续传输数据时,第一终端都可以将业务质量流切换至另一个接口上传输,从而实现数据传输在不同接口的灵活切换,并保证在接口切换过程中的不丢包。
可选地,业务质量流的QoS参数可以包括如下中的任一种或几种:业务质量流的5G质量标识5QI、所述业务质量流的优先级、时延预算PDB以及误包率PER。
可选地,业务质量流与QoS参数相关联,包括:业务质量流与业务质量流的5G质量标识5QI相关联;或者,业务质量流与业务质量流的优先级、时延预算PDB、误包率PER中至少一个质量参数相关联。
可选地,还包括:第一终端获取业务质量流的标识与业务质量流的保证比特速率GBR、最大比特速率MBR中至少一个质量参数,业务质量流的标识与至少一个质量参数具有对应关系;或者,第一终端获取业务质量流的5G质量标识5QI与业务质量流的保证比特速 率GBR、最大比特速率MBR中至少一个质量参数,业务质量流的标识与至少一个质量参数具有对应关系,从而可以控制向第二终端发送GBR业务质量流的速率;和/或,第一终端获取第一终端向第二终端发送的所有非-保证比特速率Non-GBR业务的汇聚最大比特速率AMBR。从而可以控制向第二终端发送Non-GBR业务质量流的速率。
可选地,第一终端将业务质量流映射到逻辑信道上,并将业务质量流发送给第二终端之前,还包括:第一终端根据业务质量流的优先级确定逻辑信道的优先级;或者,第一终端从无线接入网设备获取逻辑信道的优先级。
可选地,还包括:第一终端获取业务质量流的标识与无线直接通信接口上的逻辑信道组LCG的标识,业务质量流的标识与LCG的标识具有对应关系,业务质量流的标识与LCG的标识的对应关系用于第一终端向接入侧设备发送缓存状态报告BSR;或者,第一终端获取无线直接通信接口上的逻辑信道的标识与逻辑信道组LCG的标识,逻辑信道的标识与LCG的标识具有对应关系,逻辑信道的标识与LCG的标识的对应关系用于第一终端向接入侧设备发送缓存状态报告BSR;或者,第一终端获取业务质量流的5G质量标识5QI与无线直接通信接口上的逻辑信道组LCG的标识,5QI与LCG的标识具有对应关系,5QI与LCG的标识的对应关系用于第一终端向接入侧设备发送缓存状态报告BSR。以便请求PC5接口上的调度资源。
可选地,当第一终端同时与无线接入网设备和第二终端通信时,第一终端将业务质量流映射到逻辑信道上,并将业务质量流发送给第二终端之前,还包括:第一终端获取预设值;相应的,第一终端将业务质量流映射到逻辑信道上,并将业务质量流发送给第二终端,包括:若业务质量流的标识QFI、业务质量流的优先级、业务质量流的5G质量标识5QI中的至少一项小于或者等于预设值,则第一终端优先通过逻辑信道向第二终端发送业务质量流。
可选地,第一终端将业务质量流映射到逻辑信道上,并将业务质量流发送给第二终端之前,还包括:第一终端向第二终端发送无线直连通信接口上的物理层控制信息SCI,SCI包括以下至少一项参数:业务质量流的标识QFI、业务质量流的5G质量标识5QI,以使第二终端感知无线直连通信接口上的业务情况。
可选地,还包括:第一终端向无线接入网设备发送以下至少一项:业务质量流的标识QFI、业务质量流的5G质量标识5QI,以使无线接入网设备确定是否需要对第一终端执行半静态调度。
第五方面,本申请提供一种数据传输方法,包括:第二终端接收第一终端通过无线直连通信接口上的第一逻辑信道发送的业务质量流,业务质量流与QFI相关联;第二终端接收无线接入网设备通过Uu接口上的第二逻辑信道发送的业务质量流,业务质量流与QFI相关联;若第二终端从第一逻辑信道接收的业务质量流的QFI与从第二逻辑信道接收的业务质量流的QFI相同,则将业务质量流发送到同一协议层进行处理。从而保证业务质量流在不同接口切换前后的连续性。
可选地,第二终端同时具有Uu接口的用户面协议栈和无线直连通信接口的用户面协议栈,其中,无线直连通信接口的用户面协议栈的用户面协议栈从下自上包括:第一物理PHY层、第一媒体访问控制MAC层、第一无线链路控制RLC层、第一包数据汇聚协议PDCP层、第一服务数据适配SDAP层、适配层和应用层,Uu接口的用户面协议栈从下自 上包括:第二PHY层、第二MAC层、第二RLC层、第二PDCP层、第二SDAP层、适配层和应用层;相应的,将业务质量流发送到同一协议层进行处理,包括:第二终端将从Uu接口和无线直连通信接口接收到的业务质量流发送到同一个适配层进行处理。
第六方面,本申请提供一种数据传输方法,包括:无线接入网设备接收第一终端发送的业务质量流的标识与第一逻辑信道的标识,业务质量流的标识与第一逻辑信道的标识具有第一对应关系,其中业务质量流为第一终端通过无线直连通信接口上的第一逻辑信道向第二终端发送的业务质量流;无线接入网设备确定第一逻辑信道与第二逻辑信道的第二对应关系,将从第一终端接收到的业务质量流映射到第二逻辑信道上发送给第二终端,并向第二终端发送第一逻辑信道的标识与第二逻辑信道标识,其中,第二逻辑信道为无线接入网设备与第二终端之间的Uu接口上的逻辑信道。
第七方面,本申请提供一种数据传输方法,包括:第二终端接收无线接入网设备发送的第一逻辑信道的标识与第二逻辑信道的标识,第一逻辑信道的标识与第二逻辑信道的标识具有第二对应关系,其中,第一逻辑信道是第一终端与第二终端之间无线直连通信接口上的逻辑信道,第二逻辑信道为无线接入网设备与第二终端之间的Uu接口上的逻辑信道;第二终端根据第二对应关系确定从无线接入网设备通过第二逻辑信道上发送的业务质量流,与从第一终端通过第一逻辑信道上发送的业务质量流属于同一业务质量流,并将业务质量流发送到同一协议层进行处理。从而保证业务质量流在不同接口切换前后的连续性。
可选地,第二终端接收无线接入网设备发送的第一逻辑信道的标识与第二逻辑信道的标识之前,还包括:第二终端通过无线直连通信接口上的第一逻辑信道接收业务质量流。
可选地,第二终端同时具有Uu接口的用户面协议栈和无线直连通信接口的用户面协议栈,其中,Uu接口的用户面协议栈从下自上包括:第一物理PHY层、第一媒体访问控制MAC层、第一无线链路控制RLC层、第一包数据汇聚协议PDCP层、第一服务数据适配SDAP层、适配层和应用层,无线直连通信接口的用户面协议栈从下自上包括:第二PHY层、第二MAC层、第二RLC层、第二PDCP层、适配层和应用层;相应的,将业务质量流发送到同一协议层进行处理,包括:第二终端将从Uu接口和无线直连通信接口接收到的业务质量流发送到同一个适配层进行处理。
可选地,第二终端同时具有Uu接口的用户面协议栈和无线直连通信接口的用户面协议栈,其中,Uu接口的用户面协议栈的用户面协议栈从下自上包括:第一物理PHY层、第一媒体访问控制MAC层、第一无线链路控制RLC层、包数据汇聚协议PDCP层、服务数据适配SDAP层和应用层,无线直连通信接口的用户面协议栈从下自上包括:第二PHY层、第二MAC层、第二RLC层、PDCP层、SDAP层和应用层;相应的,将业务质量流发送到同一协议层进行处理,包括:第二终端将从Uu接口和无线直连通信接口接收到的业务质量流发送到同一个PDCP层进行处理。
可选地,第二终端接收无线接入网设备发送的第一逻辑信道的标识与第二逻辑信道的标识,包括:第二终端通过Uu接口的无线资源控制RRC消息或者无线直连通信接口信令接收无线接入网设备发送的第一逻辑信道的标识与第二逻辑信道的标识。
第八方面,本申请提供一种数据传输方法,包括:无线接入网设备接收第一终端发送的业务质量流,将业务质量流映射到第二逻辑信道上发送给第二终端,其中,第二逻辑信道为无线接入网设备与第二终端之间的Uu接口上的逻辑信道;无线接入网设备向第一终 端发送业务质量流的标识和第二逻辑信道的标识,并通过第二逻辑信道向第二终端发送业务质量流,其中业务质量流的标识和第二逻辑信道的标识具有对应关系。从而保证业务质量流在不同接口切换前后的连续性。
第九方面,本申请提供一种数据传输方法,包括:第一终端向无线接入网设备发送业务质量流;第一终端接收无线接入网设备发送的业务质量流的标识和第二逻辑信道的标识,业务质量流的标识和第二逻辑信道的标识具有对应关系,其中,第二逻辑信道为无线接入网设备与第二终端之间的Uu接口上的逻辑信道;第一终端确定第二逻辑信道和第一逻辑信道的对应关系,并将第二逻辑信道的标识和第一逻辑信道的标识发送给第二终端,并通过第一逻辑信道向第二终端发送业务质量流。从而保证业务质量流在不同接口切换前后的连续性。
第十方面,本申请提供一种数据传输方法,包括:第二终端接收第一终端发送的第一逻辑信道的标识和第二逻辑信道的标识,第一逻辑信道的标识和第二逻辑信道的标识具有对应关系,其中,第一逻辑信道为第一终端与第二终端之间的无线直连通信接口中的逻辑信道,第二逻辑信道为无线接入网设备与第二终端之间的Uu接口上的逻辑信道;第二终端根据对应关系确定从无线接入网设备通过第二逻辑信道上发送的业务质量流,与从第一终端通过第一逻辑信道上发送的业务质量流属于同一业务质量流,并将业务流发送到同一个协议层进行处理。从而保证业务质量流在不同接口切换前后的连续性。
可选地,第二终端同时具有Uu接口的用户面协议栈和无线直连通信接口接口的用户面协议栈,其中,Uu接口的用户面协议栈从下自上包括:第一物理PHY层、第一媒体访问控制MAC层、第一无线链路控制RLC层、第一包数据汇聚协议PDCP层、第一服务数据适配SDAP层、适配层和应用层,无线直连通信接口接口的用户面协议栈从下自上包括:第二PHY层、第二MAC层、第二RLC层、第二PDCP层、适配层和应用层;相应的,将业务质量流发送到同一协议层进行处理,包括:第二终端将从Uu接口和无线直连通信接口接收到的业务质量流发送到同一个适配层进行处理。
可选地,第二终端同时具有Uu接口的用户面协议栈和无线直连通信接口接口的用户面协议栈,其中,Uu接口的用户面协议栈从下自上包括:第一物理PHY层、第一媒体访问控制MAC层、第一无线链路控制RLC层、包数据汇聚协议PDCP层、服务数据适配SDAP层和应用层,无线直连通信接口接口的用户面协议栈从下自上包括:第二PHY层、第二MAC层、第二RLC层、PDCP层、SDAP层和应用层,相应的,将业务质量流发送到同一协议层进行处理,包括:第二终端将从Uu接口和无线直连通信接口接收到的业务质量流发送到同一个PDCP层进行处理。
可选地,第二终端接收第一终端发送的第一逻辑信道的标识和第二逻辑信道的标识,包括:第二终端通过无线直连通信接口的无线资源控制RRC消息或者无线直连通信接口信令接收第一逻辑信道的标识和第二逻辑信道的标识。
下面将对终端及存储介质进行说明,其内容和效果可参考上述方法部分,下面对此不再赘述。
第十一方面,本申请提供一种终端,终端为第一终端,包括:获取模块,用于获取业务质量流的标识与业务质量流的QoS参数,业务质量流的标识和业务质量流的QoS参数具有对应关系;确定模块,用于确定第一终端的业务质量流在无线直接通信接口上使用的 逻辑信道,无线直连通信接口是第一终端和第二终端之间的通信接口;发送模块,用于将业务质量流映射到逻辑信道上,将业务质量流发向第二终端。
第十二方面,本申请提供一种终端,终端为第一终端,包括:获取模块,用于接收无线接入网设备发送的业务质量流的标识与无线直接通信接口上的逻辑信道的标识,业务质量流的标识与无线直接通信接口上的逻辑信道的标识具有对应关系,无线直连通信接口是第一终端和第二终端之间的通信接口;发送模块,用于根据对应关系将业务质量流映射到逻辑信道上,将业务质量流发向第二终端。
第十三方面,本申请提供一种终端,终端为第一终端,包括:获取模块,用于获取近端通信的每个包优先级PPPP和/或近端通信的每个包可靠性PPPR与第一终端的业务质量流的QoS参数,PPPP和/或PPPR与QoS参数具有对应关系;映射模块,用于端根据对应关系将与PPPP和/或PPPR相关联的数据包映射成与QoS参数相关联的业务质量流;确定模块,用于确定业务质量流在无线直接通信接口上使用的逻辑信道;发送模块,用于将业务质量流映射到逻辑信道上,并将业务质量流发送给第二终端。
第十四方面,本申请提供一种终端,终端为第一终端,包括:获取模块,用于获取第一终端的业务质量流,其中,业务质量流与QoS参数相关联;确定模块,用于确定业务质量流在无线直接通信接口上使用的逻辑信道;发送模块,用于将业务质量流映射到逻辑信道上,并将业务质量流发送给第二终端。
第十五方面,本申请提供一种终端,该终端为第二终端,包括:接收模块和发送模块,其中,接收模块用于接收第一终端通过无线直连通信接口上的第一逻辑信道发送的业务质量流,业务质量流与QFI相关联;接收无线接入网设备通过Uu接口上的第二逻辑信道发送的业务质量流,业务质量流包括QFI;若从第一逻辑信道接收的业务质量流的QFI与从第二逻辑信道接收的业务质量流的QFI相同,则发送模块将业务质量流发送到同一协议层进行处理。
第十六方面,本申请提供一种无线接入网设备,其特征在于,包括:接收模块、确定模块和发送模块。其中,接收模块用于接收第一终端发送的业务质量流的标识QFI与第一逻辑信道的标识,业务质量流的标识与第一逻辑信道的标识具有第一对应关系,其中业务质量流为第一终端通过无线直连通信接口上的第一逻辑信道向第二终端发送的业务质量流;确定模块用于确定第一逻辑信道与第二逻辑信道的第二对应关系,发送模块用于将从第一终端接收到的业务质量流映射到第二逻辑信道上发送给第二终端,并向第二终端发送第一逻辑信道的标识与第二逻辑信道标识,其中,第二逻辑信道为无线接入网设备与第二终端之间的Uu接口上的逻辑信道。从而保证业务质量流在不同接口切换前后的连续性。
第十七方面,本申请提供一种终端,该终端为第二终端,包括:接收模块、确定模块和发送模块。其中,接收模块用于接收无线接入网设备发送的第一逻辑信道的标识与第二逻辑信道的标识,第一逻辑信道的标识与第二逻辑信道的标识具有第二对应关系,其中,第一逻辑信道是第一终端与第二终端之间无线直连通信接口上的逻辑信道,第二逻辑信道为无线接入网设备与第二终端之间的Uu接口上的逻辑信道;确定模块用于根据第二对应关系确定从无线接入网设备通过第二逻辑信道上发送的业务质量流,与从第一终端通过第一逻辑信道上发送的业务质量流属于同一业务质量流,发送模块用于将业务质量流发送到同一协议层进行处理。从而保证业务质量流在不同接口切换前后的连续性。
第十八方面,本申请提供一种无线接入网设备,包括:接收映射模块和发送模块。其中,接收映射模块用于接收第一终端发送的业务质量流,将业务质量流映射到第二逻辑信道上发送给第二终端,其中,第二逻辑信道为无线接入网设备与第二终端之间的Uu接口上的逻辑信道;发送模块用于向第一终端发送业务质量流的标识QFI和第二逻辑信道的标识,并通过第二逻辑信道向第二终端发送业务质量流,其中业务质量流的标识和第二逻辑信道的标识具有对应关系。从而保证业务质量流在不同接口切换前后的连续性。
第十九方面,本申请提供一种终端,该终端为第一终端,包括:发送模块、接收模块、确定模块和发送模块。其中,发送模块用于向无线接入网设备发送业务质量流;接收模块用于接收无线接入网设备发送的业务质量流的标识和第二逻辑信道的标识,业务质量流的标识和第二逻辑信道的标识具有对应关系,其中,第二逻辑信道为无线接入网设备与第二终端之间的Uu接口上的逻辑信道;确定模块用于确定第二逻辑信道和第一逻辑信道的对应关系,发送模块用于将第二逻辑信道的标识和第一逻辑信道的标识发送给第二终端,并通过第一逻辑信道向第二终端发送业务质量流。从而保证业务质量流在不同接口切换前后的连续性。
第二十方面,本申请提供一种终端,该终端为第二终端,包括:接收模块、确定模块和发送模块,其中,接收模块用于接收第一终端发送的第一逻辑信道和第二逻辑信道的标识,第一逻辑信道的标识和第二逻辑信道的标识具有对应关系,其中,第一逻辑信道为第一终端与第二终端之间的无线直连通信接口中的逻辑信道,第二逻辑信道为无线接入网设备与第二终端之间的Uu接口上的逻辑信道;确定模块用于根据对应关系确定从无线接入网设备通过第二逻辑信道上发送的业务质量流,与从第一终端通过第一逻辑信道上发送的业务质量流属于同一业务质量流,发送模块用于将业务流发送到同一个协议层进行处理。从而保证业务质量流在不同接口切换前后的连续性。
第二十一方面,本申请提供一种终端,包括:存储器和处理器,存储器用于存储计算机程序,计算机程序在处理器运行,使得终端实现如第一方面、第一方面的可选方式、第二方面、第二方面的可选方式、第三方面、第三方面的可选方式、第四方面、第四方面的可选方式、第五方面、第五方面的可选方式、第七方面、第七方面的可选方式的方法、第九方面、第九方面的可选方式或第十方面、第十方面的可选方式中任一项的方法。
第二十二方面,本申请提供一种无线接入网设备,包括:存储器和处理器,存储器用于存储计算机程序,计算机程序在处理器运行,使得无线接入网设备实现如第六方面、第六方面的可选方式或第八方面、第八方面的可选方式中任一项的方法。
第二十三方面,本申请提供一种存储介质,存储介质包括计算机程序,计算机程序用于实现如第一方面及可选方式至第十方面及可选方式中的任一项的方法。
第二十四方面,本申请提供一种计算机程序产品,包括计算机程序,计算机程序用于实现如第一方面及可选方式至第十方面及可选方式中的任一项的方法。
本申请实施例提供一种数据传输方法、终端及存储介质。其中由于Uu接口和PC5接口上的QoS机制均为统一的QoS机制,因此当Uu接口和PC5接口中的任一个接口无法继续传输数据时,第一终端都可以将业务质量流切换至另一个接口上传输,从而实现数据传输在不同接口的灵活切换,并保证在接口切换过程中的不丢包。
附图说明
图1为本申请一实施例提供的应用场景图;
图2为本申请一实施例提供的一种数据传输方法的交互流程图;
图3为本申请另一实施例提供的一种数据传输方法的交互流程图;
图4为本申请再一实施例提供的一种数据传输方法的交互流程图;
图5为本申请又一实施例提供的一种数据传输方法的交互流程图;
图6为本申请一实施例提供的数据传输方法的交互流程图;
图7为本申请一实施例提供的Uu接口和PC5接口的用户面协议栈示意图;
图8为本申请一实施例提供的数据传输方法的交互流程图;
图9A为本申请一实施例提供的Uu接口和PC5接口的用户面协议栈示意图;
图9B为本申请另一实施例提供的Uu接口和PC5接口的用户面协议栈示意图;
图10为本申请另一实施例提供的数据传输方法的交互流程图;
图11为本申请一实施例提供的终端的示意图;
图12为本申请另一实施例提供的终端的示意图;
图13为本申请再一实施例提供的终端的示意图;
图14为本申请又一实施例提供的终端的示意图;
图15为本申请又一实施例提供的终端的示意图;
图16为本申请又一实施例提供的无线接入网设备的示意图;
图17为本申请又一实施例提供的终端的示意图;
图18为本申请又一实施例提供的无线接入网设备的示意图;
图19为本申请又一实施例提供的终端的示意图;
图20为本申请又一实施例提供的终端的示意图;
图21为本申请一实施例提供的一种终端的示意图;
图22为本申请一实施例提供的一种的无线接入网设备的示意图。
具体实施方式
如上所述,在5G NR的V2X场景下,V2X业务的QoS需求更多,如果不同接口还是采用不同的QoS机制,将导致V2X业务在PC5接口上无法实现所有的QoS需求,同时,还将导致V2X业务无法在Uu接口和PC5接口之间灵活切换,容易造成丢包。为了解决该技术问题,本申请提供一种数据传输方法、终端、无线接入网设备及存储介质。其中,本发明实施例中涉及的无线接入网设备可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS)中,也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE网络中的演进型基站(evolved NodeB,简称eNB)、接入点(access point,AP)或者中继站,也可以是下一代网络(即5G网络)中的基站等,在此不作限定。
另外,本发明实施例中涉及的终端指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其它处理设备。终端可以经无线接 入网(Radio Access Network,RAN)与至少一个核心网进行通信。终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和带有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。终端也可以称为用户单元(Subscriber Unit)、用户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile Station)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)或用户设备(User Equipment),也可以是V2X场景下的车辆等,在此不作限定。
图1为本申请一实施例提供的应用场景图,如图1所示,终端11之间的数据传输可以通过与无线接入网设备12之间的Uu接口来实现,和/或,终端11之间的数据传输可以通过PC5接口来实现。其中在本申请实施例一至实施例七中,Uu接口和PC5接口使用统一的QoS机制(这种统一的QoS机制是基于flow-based QoS),即终端NAS层统一执行将数据包(可以是IP包,或者non-IP包)映射成业务质量流(QoS flow)的操作。
实施例一
图2为本申请一实施例提供的一种数据传输方法的交互流程图,如图2所示,该方法涉及的网元包括:第一终端以及第二终端,该方法包括如下步骤:
步骤S201:第一终端获取业务质量流的标识与业务质量流的QoS参数,业务质量流的标识和业务质量流的QoS参数具有对应关系。
步骤S202:第一终端确定第一终端的业务质量流在无线直接通信接口上使用的逻辑信道,无线直连通信接口是第一终端和第二终端之间的通信接口。
步骤S203:第一终端将业务质量流映射到所述逻辑信道上,并将业务质量流发向第二终端。
可选地,在步骤S201之前,第一终端在NAS层通过QoS规则信息将从应用层接收到的数据包映射成业务质量流QoS flow,其中,该业务质量流与一个业务质量流的标识QFI相关联,即QFI用于唯一标识该业务质量流。
结合步骤S201和步骤S202进行说明:
第一终端根据业务质量流的标识和业务质量流的QoS参数的对应关系确定在PC5接口上使用的逻辑信道。
可选的,第一终端根据业务质量流的QoS参数确定在PC5接口上使用的逻辑信道,例如:第一终端根据业务质量流对应的丢包率PER,配置该逻辑信道的最大重传次数。此外,第一终端还可以根据其他信息来确定逻辑信道,本申请对此不做限制。
示例性的,业务质量流的标识可以是QFI。具体地,目前通信技术领域中,业务质量流的QoS参数存在两种类型,包括:标准化的QoS参数,以及非标准化的QoS参数。其中,标准化的QoS参数如表1所示,包括:5G质量标识(5G Quality Identity,5QI)、业务类型(保证比特速率(Guranteed Bit Rate,GBR)业务或者Non-GBR业务)、优先级别(Priority Level)、时延预算(Packet Delay Budget,PDB)、误包率(Packet Error Rate,PER)、最大数据量(Maximum Data Burst Volume)、平均窗口(Averaging Window)等。也就是说,第一终端只要根据5QI参数,通过表1就可以获知该业务对应的其他QoS参数。非标准化的QoS参数可以是运营商自己定义的,网络侧需要明确指示终端具体的QoS参 数,包括以下至少一个参数:5QI、优先级别、PDB、PER等。
表1 标准化的QoS参数
Figure PCTCN2019106900-appb-000001
对于标准化的QoS参数,所谓业务质量流的标识和业务质量流的QoS参数具有对应关系包括:业务质量流的标识QFI与标准5QI的对应关系。
对于非标准化的QoS参数,所谓业务质量流的标识和业务质量流的QoS参数具有对应关系包括:业务质量流的标识QFI与业务质量流的优先级、PDB、PER中至少一个QoS参数的对应关系。
其中,第一终端获取业务质量流的标识与所述业务质量流的QoS参数的方式是:可以通过无线接入网设备发送的无线资源控制(Radio Resource Control,RRC)消息或者通过移动管理功能(Access and Mobility Management Function,AMF)实体发送的NAS消息获得。
可选地,所述方法还包括:第一终端获取业务质量流的标识QFI与业务质量流的保证比特速率(Guranteed Bit Rate,GBR)、最大比特速率(Maximum Bit Rate,MBR)中至少一个质量参数,所述业务质量流的标识QFI与所述至少一个质量参数具有对应关系,或者,第一终端获取业务质量流的质量标识5QI与业务质量流的GBR、MBR中至少一个质量参数,所述业务质量流的质量标识5QI与所述至少一个质量参数具有对应关系,以控制向所述第二终端发送所述GBR业务质量流的速率。
可选地,所述方法还包括:第一终端获取第一终端的汇聚最大比特速率(Aggregated Maximum Bit Rate,AMBR),以控制向所述第二终端发送所有Non-GBR业务质量流的速率的总和。
其中,第一终端获知QFI与GBR、MBR中至少一个质量参数,和/或,获知第一终端的AMBR,可以通过无线接入网设备发送的RRC消息,或者通过AMF实体发送的NAS消息获得。
可选地,在步骤S203之前,所述方法还包括:第一终端根据业务质量流对应的优先级确定逻辑信道的优先级。具体的,第一终端将所述业务质量流的优先级就作为所述逻辑信道的优先级(例如:作为绝对优先级,或者作为相对优先级)。或者,第一终端从无线接入网设备获取所述逻辑信道的优先级。即无线接入网设备为第一终端配置所述逻辑信道的优先级。
可选地,所述方法还包括:第一终端获取无线接入网设备发送的业务质量流的QFI与PC5接口上的逻辑信道组(Logical Channel Group,LCG)的标识,所述业务质量流的标识与所述LCG的标识具有对应关系,以使第一终端根据业务质量流的QFI与PC5接口上的LCG的标识的对应关系,将业务质量流QFI的业务量统计在对应的LCG的业务量中,向 接入侧设备发送缓存状态报告(Buffer Status Report,BSR),以便请求PC5接口上的调度资源。
或者,
第一终端获取无线接入网设备发送的PC5接口上的逻辑信道与逻辑信道组LCG的标识,所述逻辑信道的标识与所述LCG的标识具有对应关系,以使第一终端根据PC5接口上的逻辑信道与逻辑信道组LCG的标识的对应关系,将逻辑信道上传输的业务量统计在对应的LCG的业务量中,向接入侧设备发送BSR,以便请求PC5接口上的调度资源。
或者,
第一终端获取无线接入网设备发送的业务质量流的质量标识5QI与PC5接口上的LCG的标识,所述5QI与所述LCG的标识具有对应关系,以使第一终端根据业务质量流的5QI与PC5接口上的LCG的标识的对应关系,将业务质量流5QI的业务量统计在对应的LCG的业务量中,向接入侧设备发送BSR,以便请求PC5接口上的调度资源。
其中,上述BSR携带的是第一终端向无线接入网设备上报的待发送的业务量,第一终端按照不同LCG进行上报。也就是说,BSR中携带了不同LCG对应的业务量。
可选地,当第一终端同时与无线接入网设备和第二终端通信时,在步骤S203之前,所述方法还包括:第一终端获取预设值;相应的,步骤S203包括:若业务质量流的QFI、业务质量流的优先级、业务质量流的5QI中的至少一项小于或者等于该预设值,则第一终端优先通过PC5接口上的逻辑信道向第二终端发送所述业务质量流。其中,所述预设值可以通过系统广播消息、RRC重配置消息或者预配置方式等来获取。可选地,该预设值可以根据实际情况设置,本申请实施例对此不做限制。
可选地,在步骤S203之前,所述方法还包括:第一终端向第二终端发送PC5接口上的物理层控制信息(Sidelink Control Information,SCI),该SCI包括以下至少一项参数:所述业务质量流的QFI、所述业务质量流的5QI,以使第二终端感知PC5接口上的业务情况。
可选地,所述方法还包括:第一终端向无线接入网设备发送以下至少一项:业务质量流的QFI、业务质量流的5QI,以使所述无线接入网设备确定第一终端在PC5接口的逻辑信道上传输的业务特性,以便决定是否需要给第一终端在PC5接口上分配半静态调度的资源。例如:对于业务调度周期比较固定的业务,可以采用半静态调度,即无线接入网设备只需要分配一次资源,第一终端可以周期性的使用该分配资源,从而避免无线接入网设备每次都给第一终端分配资源。
本实施例中,针对以上所有第一终端从所述无线接入网设备获取的用于PC5接口相关的信息,存在两种实现方法:方法一,无线接入网设备在给第一终端发送的RRC消息中,携带一个接口指示信息,用于指示RRC消息中携带的信息是否用于PC5接口;方法二,无线接入网设备在给第一终端发送的RRC消息中使用旁路-无线网络临时标识(Sidelink-Radio Network Tempory Identity,SL-RNTI)(第一终端在PC5接口上的唯一标识)进行加扰,以便第一终端获知该RRC消息中携带的信息是否用于PC5接口。
综上,本申请实施例提供一种数据传输方法,在Uu接口和PC5接口上采用统一的QoS机制,即第一终端获取第一终端的业务质量流的标识与业务质量流的QoS参数,它们具有对应关系,根据该QoS参数确定业务质量流在PC5接口上使用的逻辑信道。第一终端将 业务质量流映射到确定的逻辑信道上,并将所述业务质量流发向所述第二终端。由于Uu接口和PC5接口上的QoS机制均为所述统一的QoS机制,因此当Uu接口和PC5接口中的任一个接口无法继续传输数据时,第一终端都可以将业务质量流切换至另一个接口上传输,从而实现数据传输在不同接口的灵活切换,并保证在接口切换过程中的不丢包。
实施例二
图3为本申请另一实施例提供的一种数据传输方法的交互流程图,如图3所示,该方法涉及的网元包括:第一终端、无线接入网设备以及第二终端,该方法包括如下步骤:
步骤S301:第一终端接收无线接入网设备发送的业务质量流的标识与PC5接口上的逻辑信道的标识,业务质量流的标识与PC5接口上的逻辑信道的标识具有对应关系,PC5接口是第一终端和第二终端之间的通信接口。
步骤S302:第一终端根据对应关系确定业务质量流在PC5接口上使用的逻辑信道。
步骤S303:第一终端将业务质量流映射到逻辑信道上,并将业务质量流发向第二终端。
可选地,在步骤S301之前,第一终端在NAS层通过QoS规则信息将从应用层接收到的数据包映射成业务质量流QoS flow,其中,该业务质量流与一个业务质量流标识QFI相关联,即QFI用于唯一标识该业务质量流。
需要说明的是,业务质量流的标识与PC5接口上的逻辑信道的标识的对应关系不限于业务质量流的QFI与逻辑信道的标识的对应关系,例如:该第一终端的业务质量流与PC5接口上的逻辑信道的对应关系包括:业务质量流的5QI与逻辑信道的标识的对应关系,其中该5QI与业务质量流QFI对应。
针对步骤S302和步骤S303进行说明:
例如:第一终端可以将QFI1对应的业务质量流1映射到PC5接口上的逻辑信道1,将QFI2对应的业务质量流2映射到PC5接口上的逻辑信道2。
可选地,所述方法还包括:第一终端获取业务质量流的QFI与业务质量流的GBR、MBR中至少一个质量参数,所述业务质量流的标识QFI与所述至少一个质量参数具有对应关系,以控制向所述第二终端发送所述GBR业务质量流的速率。或者,第一终端获取业务质量流的5G质量标识5QI与业务质量流的GBR、MBR中至少一个质量参数,所述业务质量流的5G质量标识5QI与所述至少一个质量参数具有对应关系,以控制向所述第二终端发送所述GBR业务质量流的速率。
可选地,所述方法还包括:第一终端获取第一终端的AMBR,以控制向所述第二终端发送所有Non-GBR业务质量流的速率的总和。
其中,第一终端获知QFI与GBR、MBR中至少一个质量参数,和/或,获知第一终端的AMBR,可以通过无线接入网设备发送的RRC消息,或者通过AMF实体发送的NAS消息获得。
可选地,在步骤S303之前,所述方法还包括:第一终端根据业务质量流的优先级确定逻辑信道的优先级,具体的,第一终端将所述业务质量流的优先级就作为所述逻辑信道的优先级(例如:作为绝对优先级,或者作为相对优先级)。或者,第一终端从无线接入网设备获取所述逻辑信道的优先级。即无线接入网设备为第一终端配置所述逻辑信道的优先级。
可选地,所述方法还包括:第一终端获取无线接入网设备发送的业务质量流的标识QFI与PC5接口上的LCG的标识,所述业务质量流的标识与所述LCG的标识具有对应关系,以使第一终端根据业务质量流的QFI与PC5接口上的LCG的标识的对应关系,将业务质量流QFI的业务量统计在对应的LCG的业务量中,向接入侧设备发送BSR,以便请求PC5接口上的调度资源。
或者,
第一终端获取无线接入网设备发送的PC5接口上的逻辑信道与逻辑信道组LCG的标识,所述逻辑信道的标识与所述LCG的标识具有对应关系,以使第一终端根据PC5接口上的逻辑信道与逻辑信道组LCG的标识的对应关系,将逻辑信道上传输的业务量统计在对应的LCG的业务量中,向接入侧设备发送BSR,以便请求PC5接口上的调度资源。
或者,
第一终端获取无线接入网设备发送的业务质量流的5QI与PC5接口上的LCG的标识,所述5QI与所述LCG的标识具有对应关系,以使第一终端根据业务质量流的5QI与PC5接口上的LCG的标识的对应关系,将业务质量流5QI的业务量统计在对应的LCG的业务量中,向接入侧设备发送BSR,以便请求PC5接口上的调度资源。
其中,上述BSR携带的是第一终端向无线接入网设备上报的待发送的业务量,第一终端按照不同LCG进行上报。也就是说,BSR中携带了不同LCG对应的业务量。
可选地,当第一终端同时与无线接入网设备和第二终端通信时,在步骤S303之前,所述方法还包括:第一终端获取预设值;相应的,步骤S303包括:若业务质量流的QFI、业务质量流的优先级、业务质量流的5QI中的至少一项小于或者等于该预设值,则第一终端优先通过PC5接口上的逻辑信道向第二终端发送所述业务质量流。其中,所述预设值通过系统广播消息、RRC重配置消息或者预配置方式获取。可选地,该预设值可以根据实际情况设置,本申请实施例对此不做限制。
可选地,在步骤S303之前,所述方法还包括:第一终端向第二终端发送PC5接口上的SCI,该SCI包括以下至少一项参数:所述业务质量流的QFI、所述业务质量流的5QI,以使第二终端感知PC5接口上的业务情况。
可选地,所述方法还包括:第一终端向无线接入网设备发送以下至少一项:业务质量流的QFI、业务质量流的5QI,以使所述无线接入网设备确定第一终端在PC5接口的逻辑信道上传输的业务特性,以便决定是否需要给第一终端在PC5接口上分配半静态调度的资源。例如:对于业务调度周期比较固定的业务,可以采用半静态调度,即无线接入网设备只需要分配一次资源,第一终端可以周期性的使用该分配资源,从而避免无线接入网设备每次都给第一终端分配资源。
本实施例中,针对以上所有第一终端从所述无线接入网设备获取的用于PC5接口相关的信息,存在两种实现方法:方法一,无线接入网设备在给第一终端发送的RRC消息中,携带一个接口指示信息,用于指示RRC消息中携带的信息是否用于PC5接口;方法二,无线接入网设备在给第一终端发送的RRC消息中使用SL-RNTI(第一终端在PC5接口上的唯一标识)进行加扰,以便第一终端获知该RRC消息中携带的信息是否用于PC5接口。
综上,本申请实施例提供一种数据传输方法,在Uu接口和PC5接口上采用统一的QoS机制,即第一终端获取无线接入网设备发送的第一终端的业务质量流的标识与PC5接口上 的逻辑信道的标识,它们具有对应关系。第一终端根据对应关系确定业务质量流在PC5接口上使用的逻辑信道。第一终端将业务质量流映射到逻辑信道上发向第二终端。由于Uu接口和PC5接口上的QoS机制均为所述统一的QoS机制,因此当Uu接口和PC5接口中的任一个接口无法继续传输数据时,第一终端都可以将业务质量流切换至另一个接口上传输,从而实现数据传输在不同接口的灵活切换,并保证在接口切换过程中的不丢包。
实施例三
图4为本申请再一实施例提供的一种数据传输方法的交互流程图,如图4所示,该方法涉及的网元包括:第一终端以及第二终端,该方法包括如下步骤:
步骤S401:第一终端获取PPPP和/或PPPR与第一终端的业务质量流的QoS参数,所述PPPP和/或PPPR与所述QoS参数具有对应关系。
步骤S402:第一终端根据对应关系将与PPPP和/或PPPR相关联的数据包映射成与QoS参数相关联的业务质量流。
步骤S403:第一终端确定业务质量流在PC5接口上使用的逻辑信道。
步骤S404:第一终端将业务质量流映射到逻辑信道上,并将业务质量流发送给第二终端。
其中,第一终端设备从应用层收到的数据包与PPPP和/或PPPR相关联,然后根据步骤S401中获取到的对应关系,第一终端设备可以在NAS层将与PPPP和/或PPPR相关联的数据包映射成与QoS参数相关联的业务质量流QoS flow。
如实施例一所述,目前通信技术领域中,QoS参数存在两种类型,包括:标准化的QoS参数,以及非标准化的QoS参数。其中,标准化的QoS参数如表1所示,包括:5QI、业务类型(GBR业务或者Non-GBR业务)、优先级别(Priority Level)、时延预算(Packet Delay Budget,PDB)、误包率(Packet Error Rate,PER)、最大数据量(Maximum Data Burst Volume)、平均窗口(Averaging Window)等。也就是说,第一终端只要根据5QI参数,通过表1就可以获知该业务对应的其他QoS参数。非标准化的QoS参数可以是运营商自己定义的,网络侧需要明确指示终端具体的QoS参数,包括以下至少一个参数:5QI、优先级别、PDB、PER等。
对于标准化的QoS参数,所谓PPPP和/或PPPR与第一终端的业务质量流的QoS参数的对应关系包括:PPPP和/或PPPR与业务质量流的5QI的对应关系。或者,PPPP和/或PPPR与业务质量流的标识QFI的对应关系,该情况下,第一终端还需要获取该QFI与5QI的对应关系,以便第一终端将与PPPP和/或PPPR相关联的数据包映射成一个与5QI相关联的QoS flow。
对于非标准化的QoS参数,所谓PPPP和/或PPPR与第一终端的业务质量流的QoS参数的对应关系包括:PPPP和/或PPPR与业务质量流的优先级、PDB、PER中至少一个质量参数的对应关系。
可选地,PPPP和/或PPPR与第一终端的业务质量流的QoS参数可以通过与无线接入网设备之间的DRB来获取,或者,通过与无线接入网设备之间的RRC消息来获取,或者,通过与核心网设备之间的NAS消息来获取。
可选地,PPPP和/或PPPR与第一终端的业务质量流的QoS参数的对应关系是由近端 通信系统中的V2X控制功能实体与3GPP系统中的分组控制功能(Packet Control Function,PCF)实体协商之后得到。
可选地,所述方法还包括:第一终端获取业务质量流的QFI与业务质量流的GBR、MBR中至少一个质量参数,所述业务质量流的标识QFI与所述至少一个质量参数具有对应关系,以控制向所述第二终端发送所述GBR业务质量流的速率。或者,第一终端获取业务质量流的5G质量标识5QI与业务质量流的GBR、MBR中至少一个质量参数,所述业务质量流的5G质量标识5QI与所述至少一个质量参数具有对应关系,以控制向所述第二终端发送所述GBR业务质量流的速率。
可选地,所述方法还包括:第一终端获取第一终端的AMBR,以控制向所述第二终端发送所有Non-GBR业务质量流的速率的总和。
其中,第一终端获知QFI与GBR、MBR中至少一个质量参数,和/或,获知第一终端的AMBR,可以通过无线接入网设备发送的RRC消息,或者通过AMF实体发送的NAS消息获得。
可选地,在步骤S403之前,所述方法还包括:第一终端根据业务质量流的优先级确定逻辑信道的优先级,具体的,第一终端将所述业务质量流的优先级就作为所述逻辑信道的优先级(例如:作为绝对优先级,或者作为相对优先级)。或者,第一终端从无线接入网设备获取所述逻辑信道的优先级。即无线接入网设备为第一终端配置所述逻辑信道的优先级。
可选地,所述方法还包括:第一终端获取无线接入网设备发送的业务质量流的标识QFI与PC5接口上的LCG的标识,所述业务质量流的标识与所述LCG的标识具有对应关系,以使第一终端根据业务质量流的QFI与PC5接口上的LCG的标识的对应关系,将业务质量流QFI的业务量统计在对应的LCG的业务量中,向接入侧设备发送BSR,以便请求PC5接口上的调度资源。
或者,
第一终端获取无线接入网设备发送的PC5接口上的逻辑信道与逻辑信道组LCG的标识,所述逻辑信道的标识与所述LCG的标识具有对应关系,以使第一终端根据PC5接口上的逻辑信道与逻辑信道组LCG的标识的对应关系,将逻辑信道上传输的业务量统计在对应的LCG的业务量中,向接入侧设备发送BSR,以便请求PC5接口上的调度资源。
或者,
第一终端获取无线接入网设备发送的业务质量流的5QI与PC5接口上的LCG的标识,所述5QI与所述LCG的标识具有对应关系,以使第一终端根据业务质量流的5QI与PC5接口上的LCG的标识的对应关系,将业务质量流5QI的业务量统计在对应的LCG的业务量中,向接入侧设备发送BSR,以便请求PC5接口上的调度资源。
其中,上述BSR携带的是第一终端向无线接入网设备上报的待发送的业务量,第一终端按照不同LCG进行上报。也就是说,BSR中携带了不同LCG对应的业务量。
可选地,当第一终端同时与无线接入网设备和第二终端通信时,在步骤S403之前,所述方法还包括:第一终端获取预设值;相应的,步骤S403包括:若业务质量流的QFI、业务质量流的优先级、业务质量流的5QI中的至少一项小于或者等于该预设值,则第一终端优先通过PC5接口上的逻辑信道向第二终端发送所述业务质量流。其中,所述预设值通 过系统广播消息、RRC重配置消息或者预配置方式获取。可选地,该预设值可以根据实际情况设置,本申请实施例对此不做限制。
可选地,在步骤S403之前,所述方法还包括:第一终端向第二终端发送PC5接口上的SCI,该SCI包括以下至少一项参数:所述业务质量流的QFI、所述业务质量流的5QI,以使第二终端感知PC5接口上的业务情况。
可选地,所述方法还包括:第一终端向无线接入网设备发送以下至少一项:业务质量流的QFI、业务质量流的5QI,以使所述无线接入网设备确定第一终端在PC5接口的逻辑信道上传输的业务特性,以便决定是否需要给第一终端在PC5接口上分配半静态调度的资源。例如:对于业务调度周期比较固定的业务,可以采用半静态调度,即无线接入网设备只需要分配一次资源,第一终端可以周期性的使用该分配资源,从而避免无线接入网设备每次都给第一终端分配资源。
本实施例中,针对以上所有第一终端从所述无线接入网设备获取的用于PC5接口相关的信息,存在两种实现方法:方法一,无线接入网设备在给第一终端发送的RRC消息中,携带一个接口指示信息,用于指示RRC消息中携带的信息是否用于PC5接口;方法二,无线接入网设备在给第一终端发送的RRC消息中使用SL-RNTI(第一终端在PC5接口上的唯一标识)进行加扰,以便第一终端获知该RRC消息中携带的信息是否用于PC5接口。
综上,本申请实施例提供一种数据传输方法,在Uu接口和PC5接口上采用统一的QoS机制,即第一终端获取PPPP和/或PPPR与第一终端的业务质量流的QoS参数,该PPPP和/或PPPR与业务质量流的QoS参数具有对应关系。第一终端根据对应关系将与PPPP和/或PPPR相关联的数据包映射成与QoS参数相关联的业务质量流QoS flow。第一终端确定业务质量流在PC5接口上使用的逻辑信道。第一终端将业务质量流映射到逻辑信道上,并将业务质量流发向第二终端。由于Uu接口和PC5接口上的QoS机制均为所述统一的QoS机制,因此当Uu接口和PC5接口中的任一个接口无法继续传输数据时,第一终端都可以将业务质量流切换至另一个接口上传输,从而实现数据传输在不同接口的灵活切换,并保证在接口切换过程中的不丢包。
实施例四
图5为本申请又一实施例提供的一种数据传输方法的交互流程图,如图5所示,该方法涉及的网元包括:第一终端以及第二终端,该方法包括如下步骤:
步骤S501:第一终端获取第一终端的业务质量流,其中,业务质量流与QoS参数相关联。
步骤S502:第一终端确定业务质量流在PC5接口上使用的逻辑信道。
步骤S503:第一终端将业务质量流映射到逻辑信道上,并将业务质量流发送给第二终端。
其中,实施例四与实施例一的区别是:在实施例四中,第一终端从应用层获取的数据包已经与QoS参数相关联。具体的,可以是第一终端在应用层已经将与PPPP和/或PPPR相关联的数据包映射成与5QI相关的数据包,或者,第一终端在应用层直接将数据包与5QI相关联。
结合步骤S501和步骤S502进行说明:
如实施例一所述,目前通信技术领域中,QoS参数存在两种类型,包括:标准化的QoS参数,以及非标准化的QoS参数。其中,标准化的QoS参数如表1所示,进一步包括:5QI、业务类型(GBR业务或者Non-GBR业务)、优先级别(Priority Level)、时延预算(Packet Delay Budget,PDB)、误包率(Packet Error Rate,PER)、最大数据量(Maximum Data Burst Volume)、平均窗口(Averaging Window)等。也就是说,第一终端只要根据5QI参数,通过表1就可以获知该业务对应的其他QoS参数。非标准化的QoS参数可以是运营商自己定义的,网络侧需要明确指示终端具体的QoS参数,包括以下至少一个参数:5QI、优先级别、PDB、PER等。
对于标准化的QoS参数,所谓业务质量流与QoS参数相关联包括:业务质量流与5QI相关联。
对于非标准化的QoS参数,所谓业务质量流与QoS参数相关联包括:业务质量流与业务质量流的优先级、PDB、PER中至少一个质量参数相关联。
可选地,所述方法还包括:第一终端获取业务质量流的QFI与业务质量流的GBR、MBR中至少一个质量参数,所述业务质量流的标识QFI与所述至少一个质量参数具有对应关系,以控制向所述第二终端发送所述GBR业务质量流的速率。或者,第一终端获取业务质量流的5G质量标识5QI与业务质量流的GBR、MBR中至少一个质量参数,所述业务质量流的标识与所述至少一个质量参数具有对应关系,以控制向所述第二终端发送所述GBR业务质量流的速率。
可选地,所述方法还包括:第一终端获取第一终端的AMBR,以控制向所述第二终端发送所有Non-GBR业务质量流的速率的总和。
其中,第一终端获知QFI与GBR、MBR中至少一个质量参数,和/或,获知第一终端的AMBR,可以通过无线无线接入网设备发送的RRC消息,或者通过AMF实体发送的NAS消息获得。
可选地,在步骤S503之前,所述方法还包括:第一终端根据业务质量流的优先级确定逻辑信道的优先级,具体的,第一终端将所述业务质量流的优先级就作为所述逻辑信道的优先级(例如:作为绝对优先级,或者作为相对优先级)。或者,第一终端从无线无线接入网设备获取所述逻辑信道的优先级。即无线无线接入网设备为第一终端配置所述逻辑信道的优先级。
可选地,所述方法还包括:第一终端获取无线无线接入网设备发送的业务质量流的标识QFI与PC5接口上的LCG的标识,所述业务质量流的标识与所述LCG的标识具有对应关系,以使第一终端根据业务质量流的QFI与PC5接口上的LCG的标识的对应关系,将业务质量流QFI的业务量统计在对应的LCG的业务量中,向接入侧设备发送BSR,以便请求PC5接口上的调度资源。
或者,
第一终端获取无线无线接入网设备发送的PC5接口上的逻辑信道与逻辑信道组LCG的标识,所述逻辑信道的标识与所述LCG的标识具有对应关系,以使第一终端根据PC5接口上的逻辑信道与逻辑信道组LCG的标识的对应关系,将逻辑信道上传输的业务量统计在对应的LCG的业务量中,向接入侧设备发送BSR,以便请求PC5接口上的调度资源。
或者,
第一终端获取无线无线接入网设备发送的业务质量流的5QI与PC5接口上的LCG的标识,所述5QI与所述LCG的标识具有对应关系,以使第一终端根据业务质量流的5QI与PC5接口上的LCG的标识的对应关系,将业务质量流5QI的业务量统计在对应的LCG的业务量中,向接入侧设备发送BSR,以便请求PC5接口上的调度资源。
其中,上述BSR携带的是第一终端向无线无线接入网设备上报的待发送的业务量,第一终端按照不同LCG进行上报。也就是说,BSR中携带了不同LCG对应的业务量。
可选地,当第一终端同时与无线无线接入网设备和第二终端通信时,在步骤S503之前,所述方法还包括:第一终端获取预设值;相应的,步骤S503包括:若业务质量流的QFI、业务质量流的优先级、业务质量流的5QI中的至少一项小于或者等于该预设值,则第一终端优先通过PC5接口上的逻辑信道向第二终端发送所述业务质量流。其中,所述预设值通过系统广播消息、RRC重配置消息或者预配置方式获取。可选地,该预设值可以根据实际情况设置,本申请实施例对此不做限制。
可选地,在步骤S503之前,所述方法还包括:第一终端向第二终端发送PC5接口上的SCI,该SCI包括以下至少一项参数:所述业务质量流的QFI、所述业务质量流的5QI,以使第二终端感知PC5接口上的业务情况。
可选地,所述方法还包括:第一终端向无线无线接入网设备发送以下至少一项:业务质量流的QFI、业务质量流的5QI,以使所述无线无线接入网设备确定第一终端在PC5接口的逻辑信道上传输的业务特性,以便决定是否需要给第一终端在PC5接口上分配半静态调度的资源。例如:对于业务调度周期比较固定的业务,可以采用半静态调度,即无线无线接入网设备只需要分配一次资源,第一终端可以周期性的使用该分配资源,从而避免无线无线接入网设备每次都给第一终端分配资源。
本实施例中,针对以上所有第一终端从所述无线无线接入网设备获取的用于PC5接口相关的信息,存在两种实现方法:方法一,无线无线接入网设备在给第一终端发送的RRC消息中,携带一个接口指示信息,用于指示RRC消息中携带的信息是否用于PC5接口;方法二,无线无线接入网设备在给第一终端发送的RRC消息中使用SL-RNTI(第一终端在PC5接口上的唯一标识)进行加扰,以便第一终端获知该RRC消息中携带的信息是否用于PC5接口。
本实施例中,针对以上所有第一终端从所述无线接入网设备获取的用于PC5接口相关的信息,存在两种实现方法:方法一,无线接入网设备在给第一终端发送的RRC消息中,携带一个接口指示信息,用于指示RRC消息中携带的信息是否用于PC5接口;方法二,无线接入网设备在给第一终端发送的RRC消息中使用SL-RNTI(第一终端在PC5接口上的唯一标识)进行加扰,以便第一终端获知该RRC消息中携带的信息是否用于PC5接口。
综上,本申请实施例提供一种数据传输方法,在Uu接口和PC5接口上采用统一的QoS机制,即第一终端获取第一终端的业务质量流,其中,业务质量流与QoS参数相关联。第一终端确定业务质量流在PC5接口上使用的逻辑信道。第一终端将业务质量流映射到逻辑信道上,并将业务质量流发送给第二终端。由于Uu接口和PC5接口上的QoS机制均为所述统一的QoS机制,因此当Uu接口和PC5接口中的任一个接口无法继续传输数据时,第一终端都可以将业务质量流切换至另一个接口上传输,从而实现数据传输在不同接口的灵活切换,并保证在接口切换过程中的不丢包。
实施例五
图6为本申请一实施例提供的数据传输方法的交互流程图,该方法涉及的网元包括:第一终端、第二终端以及无线接入网设备,其中,第一终端和第二终端同时具有Uu接口的用户面协议栈和PC5接口的用户面协议栈,图7为本申请一实施例提供的Uu接口和PC5接口的用户面协议栈示意图,如图7所示,所述PC5接口的用户面协议栈从下自上包括:第一物理(Physical,PHY)层(也被称为SL PHY)、第一媒体访问控制(Media Access Control,MAC)层(也被称为SL MAC)、第一无线链路控制(Radio Link Control,RLC)层(也被称为SL RLC)、第一包数据汇聚协议(Packet Data Convergence Protocol,PDCP)层(也被称为SL PDCP)、第一服务数据适配(Service Data Adaptation Protocol,SDAP)层(也被称为SL SDAP)、新定义的适配层和应用层,所述Uu接口的用户面协议栈从下自上包括:第二PHY层(也被称为Uu PHY)、第二MAC层(也被称为Uu MAC)、第二RLC层(也被称为Uu RLC)、第二PDCP层(也被称为Uu PDCP)、第二SDAP层(也被称为Uu SDAP)、所述适配层和所述应用层,总之,如图7所示,在V2X应用层和AS层之间新引入了一个适配层,该适配层也可以被称为汇聚层,本申请实施例对此不做限制,其中该适配层用于屏蔽AS层不同的接口(或者屏蔽不同接口AS层的技术),即:不论选择哪个接口,使用的都是相同的适配层,从而保证业务质量流在不同接口切换前后的连续性。
基于图7所示的协议栈,如图6所示,该数据传输方法包括如下步骤:
步骤S601:第一终端通过PC5接口上的第一逻辑信道发送业务质量流,所述业务质量流与所述业务质量流的标识相关联。
步骤S602:第一终端通过Uu接口向无线接入网设备发送所述业务质量流。
步骤S603:无线接入网设备将所述业务质量流映射至Uu接口上的第二逻辑信道上,并通过第二逻辑信道向第二终端发送所述业务质量流。
步骤S604:若第二终端从第一逻辑信道接收的业务质量流的标识与从第二逻辑信道接收的业务质量流的标识相同,则将所述业务质量流发送到同一协议层进行处理。
示例性的,业务质量流的标识可以是QFI。
具体地,在本申请实施例中,对步骤S601以及步骤S602和步骤S603(步骤S602和步骤S603作为一个整体步骤)的执行顺序不做限制,如果先执行步骤S601,后执行步骤S602和步骤S603,则表示第一终端上的业务质量流从PC5接口切换到Uu接口,如果先执行步骤S602和步骤S603,后执行步骤S601,则表示第一终端上的业务质量流从Uu接口切换到PC5接口。
可选地,在第一终端进行接口切换之前,第一终端可以分别对Uu接口和PC5接口进行测量,如果第一终端确定满足接口切换条件,例如:当前数据传输的接口链路质量变差,而另外一个接口的链路质量比较好,则第一终端向无线接入网设备发送接口切换请求消息,该接口切换请求消息包括以下至少一项:所述业务质量流的QFI、分组数据单元会话标识(PDU session ID)、切换类型(如从Uu接口切换到PC5接口,或者,从PC5接口切换到Uu接口)。无线接入网设备接收到接口切换请求消息之后,向第一终端发送切换命令,指示第一终端从原来的接口链路切换到目标接口链路上继续进行数据传输。
进一步地,Uu SDAP层需要携带业务质量流的标识QFI,并执行业务质量流到DRB上的映射。SL SDAP层用于携带业务质量流的QFI,并执行业务质量流到第一逻辑信道上的映射。
当第一终端向第二终端发送的业务质量流发生接口切换时,对于第二终端需要将来自不同接口上的同一业务质量流映射到同一个适配层,并对该业务质量流进行处理。其中,由于Uu SDAP层和SL SDAP层都可以携带业务质量流的标识QFI,因此对于第二终端只要确定从第一逻辑信道接收的业务质量流的标识QFI与从第二逻辑信道接收的业务质量流的标识QFI相同,即可确定从第一逻辑信道接收的业务质量流和从第二逻辑信道接收的业务质量流属于同一业务质量流。
可选地,基于图7所示的协议栈,若第二终端从第一逻辑信道接收的业务质量流的标识QFI与从第二逻辑信道接收的业务质量流的标识QFI相同,则将从不同接口上收到的所述业务质量流发送到所述同一适配层进行处理。
可选地,上述对业务质量流的处理包括:对从不同接口上收到的所述业务质量流进行重排序处理,或者进行重复包检测处理等,本申请对此不做限制。
本申请实施例提供一种数据传输方法,其中在第一终端向第二终端发送的业务质量流发生接口切换时,第二终端根据业务质量流中的标识QFI可以识别从第一逻辑信道接收的业务质量流与从第二逻辑信道接收的业务质量流是否为同一业务质量流,如果相同,第二终端将该业务质量流发送至同一协议层进行处理,从而保证业务质量流在不同接口切换前后的连续性。
实施例六
图8为本申请一实施例提供的数据传输方法的交互流程图,该方法涉及的网元包括:第一终端、第二终端以及无线接入网设备,其中,第一终端和第二终端同时具有Uu接口的用户面协议栈和PC5接口的用户面协议栈,图9A为本申请一实施例提供的Uu接口和PC5接口的用户面协议栈示意图,如图9A所示,所述第二终端同时具有Uu接口的用户面协议栈和PC5接口的用户面协议栈,其中,所述Uu接口的用户面协议栈从下自上包括:第一物理PHY层(也被称为Uu PHY)、第一媒体访问控制MAC层(也被称为Uu MAC)、第一无线链路控制RLC层(也被称为Uu RLC)、第一包数据汇聚协议PDCP层(也被称为Uu PDCP)、第一服务数据适配SDAP层(也被称为Uu SDAP)、新引入的适配层和应用层,所述PC5接口的用户面协议栈从下自上包括:第二PHY层(也被称为PC5 PHY)、第二MAC层(也被称为PC5 MAC)、第二RLC层(也被称为PC5 RLC)、第二PDCP层(也被称为PC5 PDCP)、所述适配层和所述应用层。如图9A所示,在V2X应用层和AS层新引入了一个适配层,该适配层也可以被称为汇聚层,本申请实施例对此不做限制,其中该适配层用于屏蔽AS层不同的接口(或者屏蔽不同接口AS层的技术),即:不论选择哪个接口,使用的都是相同的适配层,以便保证业务质量流在不同接口切换前后的连续性。图9A所示的协议栈和图7所示的协议栈的区别是:图9A所示的PC5接口协议栈没有SDAP层。
图9B为本申请另一实施例提供的Uu接口和PC5接口的用户面协议栈示意图,如图9B所示,所述第二终端同时具有Uu接口的用户面协议栈和PC5接口的用户面协议栈,其 中,所述Uu接口的用户面协议栈从下自上包括:第一物理PHY层(也被称为Uu PHY)、第一媒体访问控制MAC层(也被称为Uu MAC)、第一无线链路控制RLC层(也被称为Uu RLC)、包数据汇聚协议PDCP层(也被称为Uu PDCP)、服务数据适配SDAP层和应用层,所述PC5接口的用户面协议栈从下自上包括:第二PHY层(也被称为PC5 PHY)、第二MAC层(也被称为PC5 MAC)、第二RLC层(也被称为PC5 RLC)、PDCP层(也被称为PC5 PDCP)和所述服务数据适配SDAP层、所述应用层。
图9A和图9B所示的协议栈的区别是:基于图9A所示的协议栈,不论终端数据往哪个接口上发送,该终端数据的锚点在适配层,即:不同接口共用适配层,而基于图9B所示的协议栈,不论终端数据往哪个接口上发送,该终端数据的锚点在PDCP层,即:不同接口共用PDCP层。其中,基于图9B所示的协议栈,1、不同接口统一SDAP实体,配置为SDAP without SDAP header(SDAP层不需要对从上层协议栈收到的数据包进行加头处理),即在SDAP层仅执行将业务质量流映射到DRB的处理,该SDAP层不需要携带该业务质量流的标识QFI等信息。2、不同接口统一PDCP实体,以保持业务连续性。对Uu接口而言,PDCP实体采用网络侧的配置,有安全保护;对PC5接口而言,PDCP实体保留序列号(Sequence Number,SN)功能和头压缩功能,安全功能关闭。也就是说,对第一终端而言,Uu接口和PC5接口上同一个业务质量流使用一个PDCP实体,但是PDCP配置可以不同,第一终端需要根据选择的接口来启动PDCP实体的配置。
基于图9A或图9B所示的协议栈,如图8所示,该数据传输方法包括如下步骤:
步骤S801:第一终端通过PC5接口上的第一逻辑信道向第二终端发送业务质量流,所述业务质量流与所述业务质量流的标识相关联。
步骤S802:第一终端向无线接入网设备发送业务质量流的标识与第一逻辑信道的标识,所述业务质量流的标识与所述第一逻辑信道的标识具有第一对应关系。
步骤S803:无线接入网设备确定第一逻辑信道与第二逻辑信道的第二对应关系。其中,第二逻辑信道为无线接入网设备与第二终端之间的Uu接口上的逻辑信道。
步骤S804:无线接入网设备向第二终端发送第一逻辑信道的标识与第二逻辑信道标识,第一逻辑信道的标识与第二逻辑信道的标识具有第二对应关系。
步骤S805:无线接入网设备将从第一终端接收到的业务质量流映射到第二逻辑信道上发送给第二终端。
步骤S806:第二终端根据第二对应关系确定从无线接入网设备通过第二逻辑信道上发送的业务质量流,与从第一终端通过第一逻辑信道上发送的业务质量流属于同一业务质量流,并将业务质量流发送到同一协议层进行处理。
示例性的,业务质量流的标识可以是QFI。
本实施例中,步骤S804和S805的顺序不受限制,S804可以在S805之前执行,S804也可以在S805之后执行。
具体地,在本申请实施例中,第一终端上的业务质量流实现从PC5接口到Uu接口的切换。
可选地,在第一终端进行接口切换之前,第一终端可以分别对Uu接口和PC5接口进行测量,如果第一终端确定满足接口切换条件,例如:当前数据传输的接口链路质量变差,而另外一个接口的链路质量比较好,则第一终端向无线接入网设备发送接口切换请求消息, 该接口切换请求消息包括以下至少一项:所述业务质量流的QFI、分组数据单元会话标识(PDU session ID)、切换类型(如从Uu接口切换到PC5接口,或者,从PC5接口切换到Uu接口)。无线接入网设备接收到接口切换请求消息之后,向第一终端发送切换命令,指示第一终端从原来的接口链路切换到目标接口链路上继续进行数据传输。
可选地,第二终端可以通过Uu接口的RRC消息从无线接入网设备接收第一逻辑信道的标识与第二逻辑信道的标识,或者,无线接入网设备将所述第一逻辑信道的标识与第二逻辑信道的标识发送给第一终端,由第一终端通过PC5接口的信令(可以是PC5接口的RRC信令,或者是现有PC5接口信令)发送给第二终端。
可选地,基于图9A所示的协议栈,若第二终端根据第二对应关系确定从无线接入网设备通过第二逻辑信道上发送的业务质量流,与从第一终端通过第一逻辑信道上发送的业务质量流属于同一业务质量流,则将所述业务质量流发送到所述同一适配层进行处理。
可选地,基于图9B所示的协议栈,若第二终端根据第二对应关系确定从无线接入网设备通过第二逻辑信道上发送的业务质量流,与从第一终端通过第一逻辑信道上发送的业务质量流属于同一业务质量流,则将所述业务质量流发送到所述同一PDCP层进行处理。
可选地,上述对业务质量流的处理包括:对从不同接口上收到的所述业务质量流进行重排序处理,或者进行重复包检测处理等,本申请对此不做限制。
本申请实施例提供一种数据传输方法,其中在第一终端向第二终端发送的业务质量流发生接口切换时,第二终端可以根据第一逻辑信道的标识和第二逻辑信道的标识的第二对应关系识别从第一逻辑信道接收的业务质量流与从第二逻辑信道接收的业务质量流是否为同一业务质量流,如果相同,第二终端将该业务质量流发送至同一协议层进行处理,从而保证业务质量流在不同接口切换前后的连续性。
实施例七
图10为本申请另一实施例提供的数据传输方法的交互流程图,该方法涉及的网元包括:第一终端、第二终端以及无线接入网设备,其中,第一终端和第二终端同时具有Uu接口的用户面协议栈和PC5接口的用户面协议栈,如图9A所示,所述第二终端同时具有Uu接口的用户面协议栈和PC5接口的用户面协议栈,其中,所述Uu接口的用户面协议栈从下自上包括:第一物理PHY层(也被称为Uu PHY)、第一媒体访问控制MAC层(也被称为Uu MAC)、第一无线链路控制RLC层(也被称为Uu RLC)、第一包数据汇聚协议PDCP层(也被称为Uu PDCP)、第一服务数据适配SDAP层(也被称为Uu SDAP)、新引入的适配层和应用层,所述PC5接口的用户面协议栈从下自上包括:第二PHY层(也被称为PC5 PHY)、第二MAC层(也被称为PC5 MAC)、第二RLC层(也被称为PC5 RLC)、第二PDCP层(也被称为PC5 PDCP)、所述适配层和所述应用层。如图9A所示,在V2X应用层和AS层新引入了一个适配层,该适配层也可以被称为汇聚层,本申请实施例对此不做限制,其中该适配层用于屏蔽AS层不同的接口(或者屏蔽不同接口AS层的技术),即:不论选择哪个接口,使用的都是相同的适配层,保证业务质量流在不同接口切换前后的连续性。图9A所示的协议栈和图7所示的协议栈的区别是:图9A所示的PC5接口协议栈没有SDAP层。
如图9B所示,所述第二终端同时适用于Uu接口的用户面协议栈和PC5接口的用户面协议栈,其中,所述Uu接口的用户面协议栈的用户面协议栈从下自上包括:第一物理 PHY层(也被称为Uu PHY)、第一媒体访问控制MAC层(也被称为Uu MAC)、第一无线链路控制RLC层(也被称为Uu RLC)、包数据汇聚协议PDCP层(也被称为Uu PDCP)、服务数据适配SDAP层和应用层,所述PC5接口的用户面协议栈从下自上包括:第二PHY层(也被称为PC5 PHY)、第二MAC层(也被称为PC5 MAC)、第二RLC层(也被称为PC5 RLC)、PDCP层(也被称为PC5 PDCP)和所述服务数据适配SDAP层、所述应用层。
如上所述,图9A和图9B所示的协议栈的区别是:基于图9A所示的协议栈,不论终端数据往哪个接口上发送,该终端数据的锚点在适配层,即:不同接口共用适配层,而基于图9B所示的协议栈,不论数据往哪个接口上发送,该终端数据的锚点在PDCP层,即:不同接口共用PDCP层。其中,基于图9B所示的协议栈,1、不同接口统一SDAP实体,配置为SDAP without SDAP header(SDAP层不需要对从上层协议栈收到的数据包进行加头处理),即在SDAP层仅执行将业务质量流映射到DRB的处理,该SDAP层不需要携带该业务质量流的标识QFI等信息。2、不同接口统一PDCP实体,以保持业务连续性。对Uu接口而言,PDCP实体采用网络侧的配置,有安全保护;对PC5接口而言,PDCP实体保留序列号(Sequence Number,SN)功能和头压缩功能,安全功能关闭。也就是说,对第一终端而言,Uu接口和PC5接口上同一个业务质量流使用一个PDCP实体,但是PDCP配置不同,第一终端需要根据选择的接口来启动PDCP实体的配置。
基于图9A或图9B所示的协议栈,如图10所示,该数据传输方法包括如下步骤:
步骤S1001:第一终端向无线接入网设备发送业务质量流,业务质量流与业务质量流的标识相关联。
步骤S1002:无线接入网设备向第一终端发送所述业务质量流的标识和第二逻辑信道的标识,其中所述业务质量流的标识和所述第二逻辑信道的标识具有对应关系。其中,第二逻辑信道为无线接入网设备向第二终端发送所述业务质量流的标识关联的业务质量流使用的逻辑信道。
步骤S1003:第一终端确定第二逻辑信道和第一逻辑信道的对应关系,其中,所述第一逻辑信道为第一终端通过PC5接口向第二终端发送所述业务质量流的标识关联的业务质量流使用的逻辑信道。
步骤S1004:第一终端将将第二逻辑信道的标识和第一逻辑信道的标识发送给第二终端,并通过第一逻辑信道向第二终端发送业务质量流。
步骤S1005:第二终端根据第二逻辑信道和第一逻辑信道的对应关系确定从无线接入网设备通过所述第二逻辑信道上发送的业务质量流,与从第一终端通过第一逻辑信道上发送的业务质量流属于同一业务质量流,并将业务流发送到同一个协议层进行处理。
示例性的,业务质量流的标识可以是QFI。
具体地,在本申请实施例中,第一终端上的业务质量流实现从Uu接口到PC5接口的切换。
可选地,在第一终端进行接口切换之前,第一终端可以分别对Uu接口和PC5接口进行测量,如果第一终端确定满足接口切换条件,例如:当前数据传输的接口链路质量变差,而另外一个接口的链路质量比较好,则第一终端向无线接入网设备发送接口切换请求消息,该接口切换请求消息包括以下至少一项:所述业务质量流的QFI、分组数据单元会话标识 (PDU session ID)、切换类型(如从Uu接口切换到PC5接口,或者,从PC5接口切换到Uu接口)。无线接入网设备接收到接口切换请求消息之后,向第一终端发送切换命令,指示第一终端从原来的接口链路切换到目标接口链路上继续进行数据传输。
可选地,第二终端可以通过PC5接口的信令(可以是PC5接口的RRC信令,或者是现有PC5接口信令)接收第二对应关系。
可选地,基于图9A所示的协议栈,若第二终端根据第二逻辑信道的标识和第一逻辑信道的标识的对应关系确定从无线接入网设备通过第二逻辑信道上发送的业务质量流,与从第一终端通过第一逻辑信道上发送的业务质量流属于同一业务质量流,则将所述业务质量流发送到所述同一适配层进行处理。
可选地,基于图9B所示的协议栈,若第二终端根据第二逻辑信道的标识和第一逻辑信道的标识的对应关系确定从无线接入网设备通过第二逻辑信道上发送的业务质量流,与从第一终端通过第一逻辑信道上发送的业务质量流属于同一业务质量流,则将所述业务质量流发送到所述同一PDCP层进行处理。
可选地,上述对业务质量流的处理包括:对从不同接口上收到的所述业务质量流进行重排序处理,或者进行重复包检测处理等,本申请对此不做限制。
本申请实施例提供一种数据传输方法,其中在第一终端向第二终端发送的业务质量流发生接口切换时,第二终端可以根据第一逻辑信道和第二逻辑信道的对应关系识别从第一逻辑信道接收的业务质量流与从第二逻辑信道接收的业务质量流是否为同一业务质量流,如果相同,第二终端将该业务质量流发送至同一协议层进行处理,从而保证业务质量流在不同接口切换前后的连续性。
实施例八
图11为本申请一实施例提供的终端的示意图,如图11所示,该终端为第一终端,包括:获取模块1101、确定模块1102和发送模块1103。
获取模块1101用于获取业务质量流的标识与所述业务质量流的QoS参数,所述业务质量流的标识和所述业务质量流的QoS参数具有对应关系;确定模块1102用于确定所述第一终端的所述业务质量流在无线直接通信接口上使用的逻辑信道,所述无线直连通信接口是所述第一终端和第二终端之间的通信接口;发送模块1103用于将所述业务质量流映射到所述逻辑信道上,将所述业务质量流发向所述第二终端。
确定模块1102具体用于:根据所述对应关系确定所述第一终端的所述业务质量流在无线直接通信接口上使用的逻辑信道。
可选地,业务质量流的标识和所述业务质量流的QoS参数具有对应关系,包括:所述业务质量流的标识与所述业务质量流的5G质量标识5QI的对应关系;或者,所述业务质量流的标识与所述业务质量流的优先级、时延预算PDB、误包率PER中至少一个质量参数的对应关系。
可选地,业务质量流的标识与所述业务质量流的QoS参数携带在无线资源控制RRC消息或者非接入层NAS消息中。
可选地,获取模块1101还用于获取所述业务质量流的标识与所述业务质量流的保证比特速率GBR、最大比特速率MBR中至少一个质量参数,所述业务质量流的标识与所述至少一个质量参数具有对应关系;或者,第一终端获取所述业务质量流的5G质量标识5QI 与所述业务质量流的保证比特速率GBR、最大比特速率MBR中至少一个质量参数,所述业务质量流的标识与所述至少一个质量参数具有对应关系;和/或,获取所述第一终端向所述第二终端发送的所有非-保证比特速率Non-GBR业务的汇聚最大比特速率AMBR。
可选地,将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,确定模块1102还用于根据所述业务质量流的优先级确定所述逻辑信道的优先级;或者,从无线接入网设备获取所述逻辑信道的优先级。
可选地,获取模块1101还用于获取所述业务质量流的标识与所述无线直接通信接口上的逻辑信道组LCG的标识,所述业务质量流的标识与所述LCG的标识具有对应关系,所述业务质量流的标识与所述LCG的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR;或者,获取所述无线直接通信接口上的逻辑信道的标识与逻辑信道组LCG的标识,所述逻辑信道的标识与所述LCG的标识具有对应关系,所述逻辑信道的标识与所述LCG的标识的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR;或者,获取所述业务质量流的5G质量标识5QI与所述无线直接通信接口上的逻辑信道组LCG的标识,所述5QI与所述LCG的标识具有对应关系,所述5QI与所述LCG的标识的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR。
可选地,当所述第一终端同时与无线接入网设备和第二终端通信时,将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,获取模块1101还用于获取预设值;
相应的,发送模块1103具体用于:若所述业务质量流的标识、所述业务质量流的优先级、所述业务质量流的5G质量标识5QI中的至少一项小于或者等于所述预设值,则优先通过所述逻辑信道向所述第二终端发送所述业务质量流。
可选地,将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,发送模块1103还用于:向所述第二终端发送所述无线直连通信接口上的物理层控制信息SCI,所述SCI包括以下至少一项参数:所述业务质量流的标识、所述业务质量流的5G质量标识5QI,以使所述第二终端感知所述无线直连通信接口上的业务情况。
可选地,发送模块1103还用于:向无线接入网设备发送以下至少一项:所述业务质量流的标识、所述业务质量流的5G质量标识5QI,以使所述无线接入网设备确定是否需要对所述第一终端执行半静态调度。
本申请实施例提供的终端可以用于执行实施例一中第一终端所执行的操作,其内容和效果可参考实施例一,对此不再赘述。
实施例九
图12为本申请另一实施例提供的终端的示意图,如图12所示,该终端为第一终端,包括:获取模块1201和发送模块1202。
其中,获取模块1201用于接收无线接入网设备发送的业务质量流的标识与无线直接通信接口上的逻辑信道的标识,所述业务质量流的标识与无线直接通信接口上的逻辑信道的标识具有对应关系,所述无线直连通信接口是所述第一终端和第二终端之间的通信接口;
发送模块1202用于根据所述对应关系将所述业务质量流映射到所述逻辑信道上,将所述业务质量流发向所述第二终端。
可选地,获取模块1201还用于获取所述业务质量流的标识与所述业务质量流的保证 比特速率GBR、最大比特速率MBR中至少一个质量参数,所述业务质量流的标识与所述至少一个质量参数具有对应关系;或者,第一终端获取所述业务质量流的5G质量标识5QI与所述业务质量流的保证比特速率GBR、最大比特速率MBR中至少一个质量参数,所述业务质量流的标识与所述至少一个质量参数具有对应关系;和/或,获取所述第一终端向所述第二终端发送的所有非-保证比特速率Non-GBR业务的汇聚最大比特速率AMBR。
可选地,还包括:确定模块1203,将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,确定模块1203还用于根据所述业务质量流的优先级确定所述逻辑信道的优先级;或者,从无线接入网设备获取所述逻辑信道的优先级。
可选地,获取模块1201还用于获取所述业务质量流的标识与所述无线直接通信接口上的逻辑信道组LCG的标识,所述业务质量流的标识与所述LCG的标识具有对应关系,所述业务质量流的标识与所述LCG的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR;或者,获取所述无线直接通信接口上的逻辑信道的标识与逻辑信道组LCG的标识,所述逻辑信道的标识与所述LCG的标识具有对应关系,所述逻辑信道的标识与所述LCG的标识的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR;或者,获取所述业务质量流的5G质量标识5QI与所述无线直接通信接口上的逻辑信道组LCG的标识,所述5QI与所述LCG的标识具有对应关系,所述5QI与所述LCG的标识的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR。
可选地,当所述第一终端同时与无线接入网设备和第二终端通信时,将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,获取模块1201还用于获取预设值;
相应的,发送模块1202具体用于:若所述业务质量流的标识、所述业务质量流的优先级、所述业务质量流的5G质量标识5QI中的至少一项小于或者等于所述预设值,则优先通过所述逻辑信道向所述第二终端发送所述业务质量流。
可选地,将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,发送模块1202还用于:向所述第二终端发送所述无线直连通信接口上的物理层控制信息SCI,所述SCI包括以下至少一项参数:所述业务质量流的标识、所述业务质量流的5G质量标识5QI,以使所述第二终端感知所述无线直连通信接口上的业务情况。
可选地,发送模块1202还用于:向无线接入网设备发送以下至少一项:所述业务质量流的标识、所述业务质量流的5G质量标识5QI,以使所述无线接入网设备确定是否需要对所述第一终端执行半静态调度。
本申请实施例提供的终端可以用于执行实施例二中第一终端所执行的操作,其内容和效果可参考实施例二,对此不再赘述。
实施例十
图13为本申请再一实施例提供的终端的示意图,如图13所示,该终端为第一终端,包括:获取模块1301、映射模块1302、确定模块1303和发送模块1304。
其中,获取模块1301用于获取近端通信的每个包优先级PPPP和/或近端通信的每个包可靠性PPPR与所述第一终端的业务质量流的QoS参数,所述PPPP和/或PPPR与所述QoS参数具有对应关系;
映射模块1302用于端根据所述对应关系将与所述PPPP和/或PPPR相关联的数据包映 射成与所述QoS参数相关联的业务质量流;
确定模块1303用于确定所述业务质量流在无线直接通信接口上使用的逻辑信道;
发送模块1304用于将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端。
可选地,PPPP和/或PPPR与所述第一终端的业务质量流的QoS参数的对应关系,包括:所述PPPP和/或PPPR与所述业务质量流的5G质量标识5QI的对应关系;或者,所述PPPP和/或PPPR与所述业务质量流的优先级、时延预算PDB、误包率PER中至少一个质量参数的对应关系。
可选地,对应关系是近端通信系统中的V2X控制功能实体与3GPP系统中的分组控制功能PCF实体协商之后得到。
可选地,所述第一终端通过数据无线承载DRB获取所述对应关系;或者,所述第一终端通过无线资源控制RRC消息获取所述对应关系;或者,所述第一终端通过非接入层NAS消息获取所述对应关系。
可选地,获取模块1301还用于获取所述业务质量流的标识与所述业务质量流的保证比特速率GBR、最大比特速率MBR中至少一个质量参数,所述业务质量流的标识与所述至少一个质量参数具有对应关系;或者,第一终端获取所述业务质量流的5G质量标识5QI与所述业务质量流的保证比特速率GBR、最大比特速率MBR中至少一个质量参数,所述业务质量流的标识与所述至少一个质量参数具有对应关系;和/或,获取所述第一终端向所述第二终端发送的所有非-保证比特速率Non-GBR业务的汇聚最大比特速率AMBR。
可选地,将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,确定模块1303还用于根据所述业务质量流的优先级确定所述逻辑信道的优先级;或者,从无线接入网设备获取所述逻辑信道的优先级。
可选地,获取模块1301还用于获取所述业务质量流的标识与所述无线直接通信接口上的逻辑信道组LCG的标识,所述业务质量流的标识与所述LCG的标识具有对应关系,所述业务质量流的标识与所述LCG的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR;或者,获取所述无线直接通信接口上的逻辑信道的标识与逻辑信道组LCG的标识,所述逻辑信道的标识与所述LCG的标识具有对应关系,所述逻辑信道的标识与所述LCG的标识的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR;或者,获取所述业务质量流的5G质量标识5QI与所述无线直接通信接口上的逻辑信道组LCG的标识,所述5QI与所述LCG的标识具有对应关系,所述5QI与所述LCG的标识的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR。
可选地,当所述第一终端同时与无线接入网设备和第二终端通信时,将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,获取模块1301还用于获取预设值;
相应的,发送模块1304具体用于:若所述业务质量流的标识、所述业务质量流的优先级、所述业务质量流的5G质量标识5QI中的至少一项小于或者等于所述预设值,则优先通过所述逻辑信道向所述第二终端发送所述业务质量流。
可选地,将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,发送模块1304还用于:向所述第二终端发送所述无线直连通信接口上的物理 层控制信息SCI,所述SCI包括以下至少一项参数:所述业务质量流的标识、所述业务质量流的5G质量标识5QI,以使所述第二终端感知所述无线直连通信接口上的业务情况。
可选地,发送模块1304还用于:向无线接入网设备发送以下至少一项:所述业务质量流的标识、所述业务质量流的5G质量标识5QI,以使所述无线接入网设备确定是否需要对所述第一终端执行半静态调度。
本申请实施例提供的终端可以用于执行实施例三中第一终端所执行的操作,其内容和效果可参考实施例三,对此不再赘述。
实施例十一
图14为本申请又一实施例提供的终端的示意图,如图14所示,该终端为第一终端,包括:获取模块1401、确定模块1402和发送模块1403。
其中,获取模块1401用于获取所述第一终端的业务质量流,其中,所述业务质量流与QoS参数相关联;确定模块1402用于确定所述业务质量流在无线直接通信接口上使用的逻辑信道;发送模块1403用于将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端。
可选地,业务质量流与QoS参数相关联,包括:所述业务质量流与业务质量流的5G质量标识5QI相关联;或者,所述业务质量流与业务质量流的优先级、时延预算PDB、误包率PER中至少一个质量参数相关联。
可选地,业务质量流的标识和所述业务质量流的QoS参数具有对应关系,包括:所述业务质量流的标识与所述业务质量流的5G质量标识5QI的对应关系;或者,所述业务质量流的标识与所述业务质量流的优先级、时延预算PDB、误包率PER中至少一个质量参数的对应关系。
可选地,业务质量流的标识与所述业务质量流的QoS参数携带在无线资源控制RRC消息或者非接入层NAS消息中。
可选地,获取模块1401还用于获取所述业务质量流的标识与所述业务质量流的保证比特速率GBR、最大比特速率MBR中至少一个质量参数,所述业务质量流的标识与所述至少一个质量参数具有对应关系;或者,第一终端获取所述业务质量流的5G质量标识5QI与所述业务质量流的保证比特速率GBR、最大比特速率MBR中至少一个质量参数,所述业务质量流的标识与所述至少一个质量参数具有对应关系;和/或,获取所述第一终端向所述第二终端发送的所有非-保证比特速率Non-GBR业务的汇聚最大比特速率AMBR。
可选地,将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,确定模块1402还用于根据所述业务质量流的优先级确定所述逻辑信道的优先级;或者,从无线接入网设备获取所述逻辑信道的优先级。
可选地,获取模块1401还用于获取所述业务质量流的标识与所述无线直接通信接口上的逻辑信道组LCG的标识,所述业务质量流的标识与所述LCG的标识具有对应关系,所述业务质量流的标识与所述LCG的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR;或者,获取所述无线直接通信接口上的逻辑信道的标识与逻辑信道组LCG的标识,所述逻辑信道的标识与所述LCG的标识具有对应关系,所述逻辑信道的标识与所述LCG的标识的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR;或者,获取所述业务质量流的5G质量标识5QI与所述无线直接通信接口上的逻辑 信道组LCG的标识,所述5QI与所述LCG的标识具有对应关系,所述5QI与所述LCG的标识的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR。
可选地,当所述第一终端同时与无线接入网设备和第二终端通信时,将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,获取模块1401还用于获取预设值;
相应的,发送模块1403具体用于:若所述业务质量流的标识、所述业务质量流的优先级、所述业务质量流的5G质量标识5QI中的至少一项小于或者等于所述预设值,则优先通过所述逻辑信道向所述第二终端发送所述业务质量流。
可选地,将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,发送模块1403还用于:向所述第二终端发送所述无线直连通信接口上的物理层控制信息SCI,所述SCI包括以下至少一项参数:所述业务质量流的标识、所述业务质量流的5G质量标识5QI,以使所述第二终端感知所述无线直连通信接口上的业务情况。
可选地,发送模块1403还用于:向无线接入网设备发送以下至少一项:所述业务质量流的标识、所述业务质量流的5G质量标识5QI,以使所述无线接入网设备确定是否需要对所述第一终端执行半静态调度。
本申请实施例提供的终端可以用于执行实施例四中第一终端所执行的操作,其内容和效果可参考实施例四,对此不再赘述。
实施例十二
图15为本申请又一实施例提供的终端的示意图,如图15所示,该终端为第二终端,包括:接收模块1501和发送模块1502。
其中,接收模块1501用于接收第一终端通过无线直连通信接口上的第一逻辑信道发送的业务质量流,所述业务质量流与QFI相关联;接收无线接入网设备通过Uu接口上的第二逻辑信道发送的业务质量流,所述业务质量流包括QFI;若从所述第一逻辑信道接收的业务质量流的QFI与从所述第二逻辑信道接收的业务质量流的QFI相同,则发送模块1502将所述业务质量流发送到同一协议层进行处理。
可选地,第二终端同时适用于Uu接口的用户面协议栈和无线直连通信接口的用户面协议栈,其中,所述无线直连通信接口的用户面协议栈的用户面协议栈从下自上包括:第一物理PHY层、第一媒体访问控制MAC层、第一无线链路控制RLC层、第一包数据汇聚协议PDCP层、第一服务数据适配SDAP层、适配层和应用层,所述Uu接口的用户面协议栈从下自上包括:第二PHY层、第二MAC层、第二RLC层、第二PDCP层、第二SDAP层、所述适配层和所述应用层;相应的,发送模块1502具体用于将从所述Uu接口和所述无线直连通信接口接收到的所述业务质量流发送到同一个所述适配层进行处理。
本申请实施例提供的终端可以用于执行实施例五中第二终端所执行的操作,其内容和效果可参考实施例五,对此不再赘述。
实施例十三
图16为本申请又一实施例提供的无线接入网设备的示意图,如图16所示,包括:接收模块1601、确定模块1602和发送模块1603。
其中,接收模块1601用于接收第一终端发送的业务质量流的标识与第一逻辑信道的标识,所述业务质量流的标识与所述第一逻辑信道的标识具有第一对应关系,其中所述业 务质量流为所述第一终端通过无线直连通信接口上的所述第一逻辑信道向第二终端发送的业务质量流;确定模块1602用于确定所述第一逻辑信道与第二逻辑信道的第二对应关系,发送模块1603用于将从所述第一终端接收到的所述业务质量流映射到所述第二逻辑信道上发送给第二终端,并向所述第二终端发送第一逻辑信道的标识与第二逻辑信道标识,其中,所述第二逻辑信道为所述无线接入网设备与所述第二终端之间的Uu接口上的逻辑信道。从而保证业务质量流在不同接口切换前后的连续性。
本申请实施例提供的终端可以用于执行实施例六中无线接入网设备所执行的操作,其内容和效果可参考实施例六,对此不再赘述。
实施例十四
图17为本申请又一实施例提供的终端的示意图,如图17所示,该终端为第二终端,包括:接收模块1701、确定模块1702和发送模块1703。
其中,接收模块1701用于接收无线接入网设备发送的第一逻辑信道的标识与第二逻辑信道的标识,所述第一逻辑信道的标识与所述第二逻辑信道的标识具有第二对应关系,其中,所述第一逻辑信道是所述第一终端与所述第二终端之间无线直连通信接口上的逻辑信道,所述第二逻辑信道为所述无线接入网设备与所述第二终端之间的Uu接口上的逻辑信道;确定模块1702用于根据所述第二对应关系确定从所述无线接入网设备通过所述第二逻辑信道上发送的业务质量流,与从所述第一终端通过所述第一逻辑信道上发送的业务质量流属于同一业务质量流,发送模块1703用于将所述业务质量流发送到同一协议层进行处理。从而保证业务质量流在不同接口切换前后的连续性。
本申请实施例提供的终端可以用于执行实施例六中第二终端所执行的操作,其内容和效果可参考实施例六,对此不再赘述。
实施例十五
图18为本申请又一实施例提供的无线接入网设备的示意图,如图18所示,包括:接收映射模块1801和发送模块1802。
其中,接收映射模块1801用于接收第一终端发送的业务质量流,将所述业务质量流映射到第二逻辑信道上发送给第二终端,其中,所述第二逻辑信道为所述无线接入网设备与所述第二终端之间的Uu接口上的逻辑信道;发送模块1802用于向所述第一终端发送所述业务质量流的标识和第二逻辑信道的标识,并通过所述第二逻辑信道向所述第二终端发送所述业务质量流,其中所述业务质量流的标识和所述第二逻辑信道的标识具有对应关系。从而保证业务质量流在不同接口切换前后的连续性。
本申请实施例提供的终端可以用于执行实施例七中接入网设备所执行的操作,其内容和效果可参考实施例七,对此不再赘述。
实施例十六
图19为本申请又一实施例提供的终端的示意图,该终端为第一终端,如图19所示,包括:发送模块1901、接收模块1902、确定模块1903。
其中,发送模块1901用于向无线接入网设备发送业务质量流;接收模块1902用于接收所述无线接入网设备发送的所述业务质量流的标识和第二逻辑信道的标识,所述业务质量流的标识和第二逻辑信道的标识具有对应关系,其中,所述第二逻辑信道为所述无线接入网设备与所述第二终端之间的Uu接口上的逻辑信道;确定模块1903用于确定所述第二 逻辑信道和第一逻辑信道的对应关系,发送模块1901用于将所述第二逻辑信道的标识和所述第一逻辑信道的标识发送给所述第二终端,并通过所述第一逻辑信道向所述第二终端发送所述业务质量流。从而保证业务质量流在不同接口切换前后的连续性。
本申请实施例提供的终端可以用于执行实施例七中第一终端所执行的操作,其内容和效果可参考实施例七,对此不再赘述。
实施例十七
图20为本申请又一实施例提供的终端的示意图,该终端为第二终端,如图20所示,包括:接收模块2001、确定模块2002和发送模块2003。
其中,接收模块2001用于接收第一终端发送的第一逻辑信道和第二逻辑信道的标识,所述第一逻辑信道的标识和所述第二逻辑信道的标识具有对应关系,其中,所述第一逻辑信道为所述第一终端与所述第二终端之间的无线直连通信接口中的逻辑信道,所述第二逻辑信道为所述无线接入网设备与所述第二终端之间的Uu接口上的逻辑信道;确定模块2002用于根据所述对应关系确定从所述无线接入网设备通过所述第二逻辑信道上发送的业务质量流,与从所述第一终端通过所述第一逻辑信道上发送的业务质量流属于同一业务质量流,发送模块2003用于将所述业务流发送到同一个协议层进行处理。从而保证业务质量流在不同接口切换前后的连续性。
可选地,第二终端同时适用于Uu接口的用户面协议栈和无线直连通信接口接口的用户面协议栈,其中,所述Uu接口的用户面协议栈的用户面协议栈从下自上包括:第一物理PHY层、第一媒体访问控制MAC层、第一无线链路控制RLC层、第一包数据汇聚协议PDCP层、第一服务数据适配SDAP层、适配层和应用层,所述无线直连通信接口接口的用户面协议栈从下自上包括:第二PHY层、第二MAC层、第二RLC层、第二PDCP层、所述适配层和所述应用层;相应的,发送模块2003具体用于将从所述Uu接口和所述无线直连通信接口接收到的所述业务质量流发送到同一个所述适配层进行处理。
可选地,第二终端同时适用于Uu接口的用户面协议栈和无线直连通信接口接口的用户面协议栈,其中,所述Uu接口的用户面协议栈的用户面协议栈从下自上包括:第一物理PHY层、第一媒体访问控制MAC层、第一无线链路控制RLC层、包数据汇聚协议PDCP层、服务数据适配SDAP层和应用层,所述无线直连通信接口接口的用户面协议栈从下自上包括:第二PHY层、第二MAC层、第二RLC层、所述PDCP层、所述SDAP层和所述应用层,相应的,发送模块2003具体用于将从所述Uu接口和所述无线直连通信接口接收到的所述业务质量流发送到同一个所述PDCP层进行处理。
可选地,接收模块2001具体用于通过所述无线直连通信接口的无线资源控制RRC消息或者无线直连通信接口信令接收所述第一逻辑信道的标识和所述第二逻辑信道的标识。
本申请实施例提供的终端可以用于执行实施例七中第二人终端所执行的操作,其内容和效果可参考实施例七,对此不再赘述。
实施例十八
图21为本申请一实施例提供的一种终端的示意图,如图21所示,包括:存储器2101和处理器2102、收发器2103,存储器2101用于存储计算机程序,所述计算机程序在所述处理器2102运行,使得所述终端实现如上述第一终端或第二终端执行的数据传输方法。收发器2103用于实现与其他设备之间的通信。
本申请实施例提供的终端可以用于执行上述第一终端或第二终端所执行的数据传输方法,其内容和效果可参考方法实施例部分,对此不再赘述。
实施例十九
图22为本申请一实施例提供的一种的无线接入网设备的示意图,如图22所示,包括:存储器2201和处理器2202、收发器2203,存储器2201用于存储计算机程序,所述计算机程序在所述处理器2202运行,使得所述终端实现如上述第一终端或第二终端执行的数据传输方法。收发器2203用于实现与其他设备之间的通信。
本申请实施例提供的终端可以用于执行上述无线接入网设备所执行的数据传输方法,其内容和效果可参考方法实施例部分,对此不再赘述。
实施例二十
本申请提供一种存储介质,所述存储介质包括计算机程序,所述计算机程序用于实现上述的数据传输方法,其内容和效果可参考方法实施例部分,对此不再赘述。
实施例二十一
本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序,所述计算机程序用于实现上述的数据传输方法,其内容和效果可参考方法实施例部分,对此不再赘述。

Claims (25)

  1. 一种数据传输方法,其特征在于,包括:
    第一终端获取业务质量流的标识与所述业务质量流的QoS参数,所述业务质量流的标识和所述业务质量流的QoS参数具有对应关系;
    所述第一终端确定所述第一终端的所述业务质量流在无线直接通信接口上使用的逻辑信道,所述无线直连通信接口是所述第一终端和第二终端之间的通信接口;
    所述第一终端将所述业务质量流映射到所述逻辑信道上,将所述业务质量流发向所述第二终端。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端确定所述第一终端的所述业务质量流在无线直接通信接口上使用的逻辑信道,包括:
    所述第一终端根据所述对应关系确定所述第一终端的所述业务质量流在无线直接通信接口上使用的逻辑信道。
  3. 根据权利要求1或2所述的方法,其特征在于,所述业务质量流的标识和所述业务质量流的QoS参数具有对应关系,包括:
    所述业务质量流的标识与所述业务质量流的5G质量标识5QI的对应关系;
    或者,
    所述业务质量流的标识与所述业务质量流的优先级、时延预算PDB、误包率PER中至少一个质量参数的对应关系。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述业务质量流的标识与所述业务质量流的QoS参数携带在无线资源控制RRC消息或者非接入层NAS消息中。
  5. 一种数据传输方法,其特征在于,包括:
    第一终端接收无线接入网设备发送的业务质量流的标识与无线直接通信接口上的逻辑信道的标识,所述业务质量流的标识与无线直接通信接口上的逻辑信道的标识具有对应关系,所述无线直连通信接口是所述第一终端和第二终端之间的通信接口;
    所述第一终端根据所述对应关系将所述业务质量流映射到所述逻辑信道上,将所述业务质量流发向所述第二终端。
  6. 一种数据传输方法,其特征在于,包括:
    第一终端获取近端通信的每个包优先级PPPP和/或近端通信的每个包可靠性PPPR与所述第一终端的业务质量流的QoS参数,所述PPPP和/或PPPR与所述QoS参数具有对应关系;
    所述第一终端根据所述对应关系将与所述PPPP和/或PPPR相关联的数据包映射成与所述QoS参数相关联的业务质量流;
    所述第一终端确定所述业务质量流在无线直接通信接口上使用的逻辑信道;
    所述第一终端将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端。
  7. 根据权利要求6所述的方法,其特征在于,所述PPPP和/或PPPR与所述第一终端的业务质量流的QoS参数的对应关系,包括:
    所述PPPP和/或PPPR与所述业务质量流的5G质量标识5QI的对应关系;
    或者,
    所述PPPP和/或PPPR与所述业务质量流的优先级、时延预算PDB、误包率PER中至少一个质量参数的对应关系。
  8. 根据权利要求6或7所述的方法,其特征在于,所述对应关系是近端通信系统中的V2X控制功能实体与3GPP系统中的分组控制功能PCF实体协商之后得到。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,包括:
    所述第一终端通过数据无线承载DRB获取所述对应关系;
    或者,
    所述第一终端通过无线资源控制RRC消息获取所述对应关系;
    或者,
    所述第一终端通过非接入层NAS消息获取所述对应关系。
  10. 一种数据传输方法,其特征在于,包括:
    第一终端获取所述第一终端的业务质量流,其中,所述业务质量流与QoS参数相关联;
    第一终端确定所述业务质量流在无线直接通信接口上使用的逻辑信道;
    所述第一终端将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端。
  11. 根据权利要求10所述的方法,所述业务质量流与QoS参数相关联,包括:
    所述业务质量流与业务质量流的5G质量标识5QI相关联;
    或者,
    所述业务质量流与业务质量流的优先级、时延预算PDB、误包率PER中至少一个质量参数相关联。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,还包括:
    第一终端获取所述业务质量流的标识与所述业务质量流的保证比特速率GBR、最大比特速率MBR中至少一个质量参数,所述业务质量流的标识与所述至少一个质量参数具有对应关系;或者,第一终端获取所述业务质量流的5G质量标识5QI与所述业务质量流的保证比特速率GBR、最大比特速率MBR中至少一个质量参数,所述业务质量流的5G质量标识5QI与所述至少一个质量参数具有对应关系;
    和/或,
    所述第一终端获取所述第一终端向所述第二终端发送的所有非-保证比特速率Non-GBR业务的汇聚最大比特速率AMBR。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述第一终端将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,还包括:
    所述第一终端根据所述业务质量流的优先级确定所述逻辑信道的优先级;
    或者,
    所述第一终端从无线接入网设备获取所述逻辑信道的优先级。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,还包括:
    所述第一终端获取所述业务质量流的标识与所述无线直接通信接口上的逻辑信道组LCG的标识,所述业务质量流的标识与所述LCG的标识具有对应关系,所述业务质量流的标识与所述LCG的标识的对应关系用于所述第一终端向接入侧设备发送缓存状态报告 BSR;
    或者,
    所述第一终端获取所述无线直接通信接口上的逻辑信道的标识与逻辑信道组LCG的标识,所述逻辑信道的标识与所述LCG的标识具有对应关系,所述逻辑信道的标识与所述LCG的标识的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR;
    或者,
    所述第一终端获取所述业务质量流的5G质量标识5QI与所述无线直接通信接口上的逻辑信道组LCG的标识,所述5QI与所述LCG的标识具有对应关系,所述5QI与所述LCG的标识的对应关系用于所述第一终端向所述接入侧设备发送缓存状态报告BSR。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,当所述第一终端同时与无线接入网设备和第二终端通信时,所述第一终端将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,还包括:
    所述第一终端获取预设值;
    相应的,所述第一终端将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端,包括:
    若所述业务质量流的标识QFI、所述业务质量流的优先级、所述业务质量流的5G质量标识5QI中的至少一项小于或者等于所述预设值,则所述第一终端优先通过所述逻辑信道向所述第二终端发送所述业务质量流。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,所述第一终端将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端之前,还包括:
    所述第一终端向所述第二终端发送所述无线直连通信接口上的物理层控制信息SCI,所述SCI包括以下至少一项参数:所述业务质量流的标识QFI、所述业务质量流的5G质量标识5QI,以使所述第二终端感知所述无线直连通信接口上的业务情况。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,还包括:
    所述第一终端向无线接入网设备发送以下至少一项:所述业务质量流的标识QFI、所述业务质量流的5G质量标识5QI,以使所述无线接入网设备确定是否需要对所述第一终端执行半静态调度。
  18. 一种终端,所述终端为第一终端,其特征在于,包括:
    获取模块,用于获取业务质量流的标识与所述业务质量流的QoS参数,所述业务质量流的标识和所述业务质量流的QoS参数具有对应关系;
    确定模块,用于确定所述第一终端的所述业务质量流在无线直接通信接口上使用的逻辑信道,所述无线直连通信接口是所述第一终端和第二终端之间的通信接口;
    发送模块,用于将所述业务质量流映射到所述逻辑信道上,将所述业务质量流发向所述第二终端。
  19. 一种终端,所述终端为第一终端,其特征在于,包括:
    获取模块,用于接收无线接入网设备发送的业务质量流的标识与无线直接通信接口上的逻辑信道的标识,所述业务质量流的标识与无线直接通信接口上的逻辑信道的标识具有对应关系,所述无线直连通信接口是所述第一终端和第二终端之间的通信接口;
    发送模块,用于根据所述对应关系将所述业务质量流映射到所述逻辑信道上,将所述 业务质量流发向所述第二终端。
  20. 一种终端,所述终端为第一终端,其特征在于,包括:
    获取模块,用于获取近端通信的每个包优先级PPPP和/或近端通信的每个包可靠性PPPR与所述第一终端的业务质量流的QoS参数,所述PPPP和/或PPPR与所述QoS参数具有对应关系;
    映射模块,用于根据所述对应关系将与所述PPPP和/或PPPR相关联的数据包映射成与所述QoS参数相关联的业务质量流;
    确定模块,用于确定所述业务质量流在无线直接通信接口上使用的逻辑信道;
    发送模块,用于将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端。
  21. 一种终端,所述终端为第一终端,其特征在于,包括:
    获取模块,用于获取所述第一终端的业务质量流,其中,所述业务质量流与QoS参数相关联;
    确定模块,用于确定所述业务质量流在无线直接通信接口上使用的逻辑信道;
    发送模块,用于将所述业务质量流映射到所述逻辑信道上,并将所述业务质量流发送给第二终端。
  22. 一种终端,其特征在于,包括:存储器和处理器,所述存储器用于存储计算机程序,所述计算机程序在所述处理器运行,使得所述终端实现如权利要求1至17中任一项所述的方法。
  23. 一种存储介质,其特征在于,所述存储介质包括计算机程序,所述计算机程序用于实现如权利要求1至17中任一项所述的方法。
  24. 一种芯片,其特征在于,所述芯片用于执行如权利要求1至17中任一项所述的方法。
  25. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令用于实现如权利要求1至17中任一项所述的方法。
PCT/CN2019/106900 2018-09-28 2019-09-20 数据传输方法、终端及存储介质 WO2020063465A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19866178.7A EP3852430A4 (en) 2018-09-28 2019-09-20 DATA TRANSMISSION PROCESS, TERMINAL AND STORAGE MEDIA
US17/213,656 US11678216B2 (en) 2018-09-28 2021-03-26 Data transmission method, terminal, and storage medium for mapping a quality of service flow to a logical channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811156284.8 2018-09-28
CN201811156284.8A CN110972197B (zh) 2018-09-28 2018-09-28 数据传输方法、终端及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/213,656 Continuation US11678216B2 (en) 2018-09-28 2021-03-26 Data transmission method, terminal, and storage medium for mapping a quality of service flow to a logical channel

Publications (1)

Publication Number Publication Date
WO2020063465A1 true WO2020063465A1 (zh) 2020-04-02

Family

ID=69952397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106900 WO2020063465A1 (zh) 2018-09-28 2019-09-20 数据传输方法、终端及存储介质

Country Status (4)

Country Link
US (1) US11678216B2 (zh)
EP (1) EP3852430A4 (zh)
CN (1) CN110972197B (zh)
WO (1) WO2020063465A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021197269A1 (zh) * 2020-04-03 2021-10-07 华为技术有限公司 一种临近服务的数据传输方法、设备及系统
WO2021234570A1 (en) * 2020-05-22 2021-11-25 Telefonaktiebolaget Lm Ericsson (Publ) Quality of service (qos) handling for layer-3 ue-to-network relay

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11234285B2 (en) * 2018-11-13 2022-01-25 Qualcomm Incorporated EV2X mobility support for mode 3.5/RSU scheduled mode
PL3879907T3 (pl) * 2018-12-14 2022-12-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Sposób i urządzenie do przetwarzania danych oraz nośnik danych
KR102631108B1 (ko) * 2019-04-26 2024-01-30 삼성전자 주식회사 무선 통신 시스템에서 QoS Flow 기반으로 브로드캐스트와 그룹캐스트를 통한 단말 대 단말 직접 통신을 지원하는 방법
US11540166B2 (en) * 2019-12-05 2022-12-27 Qualcomm Incorporated Procedures for managing quality of service flows
WO2021208096A1 (en) * 2020-04-17 2021-10-21 Nokia Shanghai Bell Co., Ltd. Dynamic update of mapping restrictions for logical channel
CN113676907B (zh) * 2020-04-30 2023-08-04 华为技术有限公司 一种确定服务质量流的方法,装置,设备及计算机可读存储介质
WO2021226930A1 (en) * 2020-05-14 2021-11-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Qos control method for ue to access network through relay
CN113747509A (zh) * 2020-05-27 2021-12-03 华为技术有限公司 一种通信方法及相关设备
CN115699820A (zh) * 2020-07-29 2023-02-03 Oppo广东移动通信有限公司 QoS参数的设置方法、装置、通信设备及存储介质
US11490231B2 (en) * 2020-08-14 2022-11-01 Qualcomm Incorporated V2X congestion-sensitive preemptive data download request
CN115209473A (zh) * 2021-04-13 2022-10-18 华为技术有限公司 通信方法及装置
CN117016011A (zh) * 2021-06-03 2023-11-07 Oppo广东移动通信有限公司 业务控制方法、装置、设备及存储介质
CN115701727A (zh) * 2021-08-02 2023-02-10 华为技术有限公司 数据传输方法、电子设备、芯片和存储介质
US20230058076A1 (en) * 2021-08-18 2023-02-23 Cerebrumx Labs Private Limited Method and system for auto generating automotive data quality marker
CN113727390B (zh) * 2021-08-23 2023-07-07 中国联合网络通信集团有限公司 一种数据传输方法、装置及通信系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026169A1 (en) * 2016-08-01 2018-02-08 Samsung Electronics Co., Ltd. Method and apparatus for managing data communication in wireless communication network
WO2018066876A1 (ko) * 2016-10-06 2018-04-12 엘지전자(주) 무선 통신 시스템에서 v2x 통신 지원 방법
WO2018131902A1 (en) * 2017-01-13 2018-07-19 Lg Electronics Inc. METHOD FOR TRANSMITTING UL PACKET BASED ON QUALITY OF SERVICE (QoS) FLOW IN WIRELESS COMMUNICATION SYSTEM AND A DEVICE THEREFOR

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883457B (zh) * 2011-07-15 2016-06-22 华为技术有限公司 保证上行服务质量的方法、基站及用户设备
CN106162930B (zh) * 2015-04-07 2021-08-06 中兴通讯股份有限公司 在设备直通系统中承载的管理方法和装置
US10630410B2 (en) 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
EP3273634A1 (en) * 2016-07-18 2018-01-24 Panasonic Intellectual Property Corporation of America Improved support of quality of service for v2x transmissions
KR102631108B1 (ko) * 2019-04-26 2024-01-30 삼성전자 주식회사 무선 통신 시스템에서 QoS Flow 기반으로 브로드캐스트와 그룹캐스트를 통한 단말 대 단말 직접 통신을 지원하는 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026169A1 (en) * 2016-08-01 2018-02-08 Samsung Electronics Co., Ltd. Method and apparatus for managing data communication in wireless communication network
WO2018066876A1 (ko) * 2016-10-06 2018-04-12 엘지전자(주) 무선 통신 시스템에서 v2x 통신 지원 방법
WO2018131902A1 (en) * 2017-01-13 2018-07-19 Lg Electronics Inc. METHOD FOR TRANSMITTING UL PACKET BASED ON QUALITY OF SERVICE (QoS) FLOW IN WIRELESS COMMUNICATION SYSTEM AND A DEVICE THEREFOR

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System Architecture for the 5G System; Stage 2(Release 15", 3GPP TS 23.501 V15.3.0, 17 September 2018 (2018-09-17), XP051487016 *
"eV2X QoS Support of PC5 communications", SA WG2 MEETING #128 S 2-186979, 6 July 2018 (2018-07-06), XP051470356 *
HUAWEI: "QoS management for NR V2X", 3GPP TSG RAN WG1 MEETING #94 RL-1809336, 24 August 2018 (2018-08-24), XP051516700 *
QUALCOMM: "eV2X QoS Support of PC5 communications", SA WG2 MEETING #128 S 2-186990, 6 July 2018 (2018-07-06), XP051538444 *
See also references of EP3852430A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021197269A1 (zh) * 2020-04-03 2021-10-07 华为技术有限公司 一种临近服务的数据传输方法、设备及系统
CN113498113A (zh) * 2020-04-03 2021-10-12 华为技术有限公司 一种临近服务的数据传输方法、设备及系统
CN113498113B (zh) * 2020-04-03 2023-06-20 华为技术有限公司 一种临近服务的数据传输方法、设备及系统
WO2021234570A1 (en) * 2020-05-22 2021-11-25 Telefonaktiebolaget Lm Ericsson (Publ) Quality of service (qos) handling for layer-3 ue-to-network relay

Also Published As

Publication number Publication date
CN110972197A (zh) 2020-04-07
EP3852430A4 (en) 2021-12-01
US11678216B2 (en) 2023-06-13
US20210219168A1 (en) 2021-07-15
CN110972197B (zh) 2021-12-28
EP3852430A1 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
WO2020063465A1 (zh) 数据传输方法、终端及存储介质
US10306529B2 (en) Method and apparatus for assigning data to split bearers in dual connectivity
CN110249597B (zh) 一种通信处理方法及装置
US10721754B2 (en) Data transmission method and apparatus
EP3048845B1 (en) Device and method for data transmission
KR20200074068A (ko) Ue-ambr을 구성하는 방법
EP3123772B1 (en) Method for allocating aggregate maximum bit rate of ue, method for allocating aggregate bit rates of non-gbr services and base stations
CN110352610B (zh) 在无线通信系统中发送tcp ack分组的方法及其装置
WO2016155292A1 (zh) 一种获取接入技术网络间传输时延的方法及装置
EP3695642B1 (en) Management of bitrate for ue bearers
WO2015180157A1 (zh) 承载建立装置和方法
WO2014059606A1 (zh) 传输调度请求的方法和装置、用户设备以及基站
KR20140122941A (ko) 무선 통신 시스템에서 스케쥴링 요청 송수신 방법 및 장치
US20230308940A1 (en) Data transmission method and apparatus
WO2024082361A1 (en) Method and apparatus of data transmission
CN115150910A (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019866178

Country of ref document: EP

Effective date: 20210413