WO2020063417A1 - Ue迁移方法、装置、系统、nrf、备用smf及存储介质 - Google Patents

Ue迁移方法、装置、系统、nrf、备用smf及存储介质 Download PDF

Info

Publication number
WO2020063417A1
WO2020063417A1 PCT/CN2019/106410 CN2019106410W WO2020063417A1 WO 2020063417 A1 WO2020063417 A1 WO 2020063417A1 CN 2019106410 W CN2019106410 W CN 2019106410W WO 2020063417 A1 WO2020063417 A1 WO 2020063417A1
Authority
WO
WIPO (PCT)
Prior art keywords
smf
information
active
standby
nrf
Prior art date
Application number
PCT/CN2019/106410
Other languages
English (en)
French (fr)
Inventor
李志军
梁爽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020063417A1 publication Critical patent/WO2020063417A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure

Definitions

  • This disclosure relates to, but is not limited to, the field of communications.
  • 5G systems include the wireless subsystem 5GRAN (5G Radio Access Network, 5G Wireless Access system), 5G core network subsystem 5GC (5G Core, 5G core network).
  • 5G system is composed of several NF (Network Function).
  • a current NF fails, especially when the SMF (Session Management Function) fails, it will directly cause the corresponding PDU (Packet Data Unit) session to fail, making the UE (User Equipment)
  • PDU Packet Data Unit
  • one solution is to wait for the UE to initiate an uplink data transmission, then detect the failure of the SMF, and then resume the PDU session.
  • the recovery of the PDU cannot be triggered, and the delivery of the downlink data fails.
  • An embodiment of the present disclosure provides a UE migration method, including: NF storage function NRF obtains status information of an active session management function SMF, the status information is used to indicate a fault status of the active SMF; the NRF is determining When the active SMF fails, an SMF failure notification message is sent to the standby SMF; the SMF failure notification message is used to trigger the standby SMF to migrate the UE on the active SMF to the standby SMF itself.
  • An embodiment of the present disclosure further provides a UE migration method, including: when a standby SMF receives an NRF that determines that a failure occurs in an active SMF, an SMF failure notification message sent by the NRF; UEs on the network migrate to the standby SMF itself.
  • An embodiment of the present disclosure further provides a UE migration method, including: NRF acquiring status information of an active SMF, the status information used to indicate a fault status of the active SMF; and the NRF determining that the active SMF has occurred And send an SMF failure notification message to the standby SMF; the standby SMF migrates the UE on the active SMF to itself when receiving the SMF failure notification message.
  • An embodiment of the present disclosure further provides a user equipment UE migration apparatus, which is applied to NRF and includes: an acquisition module configured to acquire status information of an active SMF, where the status information is used to indicate a fault status of the active SMF And a sending module configured to send an SMF failure notification message to a standby SMF when it is determined that the active SMF has failed; the SMF failure notification message is used to trigger the standby SMF to send a UE on the active SMF Migrate to the backup SMF itself.
  • An embodiment of the present disclosure further provides a user equipment UE migration apparatus, which is applied to a standby SMF, and includes: a receiving module configured to receive an SMF failure notification message sent by the NRF when it is determined that the primary SMF fails. And a migration module configured to migrate a UE on the active SMF to the migration module itself.
  • An embodiment of the present disclosure further provides a user equipment UE migration system, including: an NRF and a standby SMF; wherein the NRF is configured to obtain status information of an active SMF, and when it is determined that the active SMF fails, Sending an SMF failure notification message to the standby SMF; wherein the status information is used to indicate the failure status of the active SMF, and the SMF failure notification message is used to trigger the standby SMF to migrate the UE on the active SMF To the standby SMF itself; the standby SMF is configured to receive an SMF failure notification message sent by the NRF when it is determined that the active SMF fails, and the standby SMF uploads the active SMF to the active SMF The UE migrates to the standby SMF itself.
  • An embodiment of the present disclosure further provides an NRF, which includes a first processor, a first memory, and a first communication bus; the first communication bus is configured to implement between the first processor and the first memory Connection communication; the first processor is configured to execute one or more programs stored in the first memory to implement the steps of the UE migration method applied to NRF as described above.
  • NRF which includes a first processor, a first memory, and a first communication bus; the first communication bus is configured to implement between the first processor and the first memory Connection communication; the first processor is configured to execute one or more programs stored in the first memory to implement the steps of the UE migration method applied to NRF as described above.
  • An embodiment of the present disclosure further provides a backup SMF, which includes a second processor, a second memory, and a second communication bus; the second communication bus is configured to implement a connection between the second processor and the second memory The second processor is configured to execute one or more programs stored in the second memory to implement the steps of the UE migration method applied to the standby SMF as described above.
  • a backup SMF which includes a second processor, a second memory, and a second communication bus; the second communication bus is configured to implement a connection between the second processor and the second memory
  • the second processor is configured to execute one or more programs stored in the second memory to implement the steps of the UE migration method applied to the standby SMF as described above.
  • An embodiment of the present disclosure further provides a user equipment UE migration system, including a third processor, a third memory, and a third communication bus; the third communication bus is configured to implement the third processor and the third communication bus. Connection communication between memories; the third processor is configured to execute one or more programs stored in the third memory to implement the steps of the UE migration method applied to the system as described above.
  • An embodiment of the present disclosure further provides a computer-readable storage medium, where the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the foregoing.
  • the steps of any of the UE migration methods are not limited to:
  • FIG. 1 is a schematic architecture diagram of a 5G system in related technologies
  • FIG. 2 is a schematic diagram of a stateless design supporting different types of NFs according to the UDSF of the present disclosure
  • FIG. 3 is a schematic flowchart of a UE registering to a 5G network in the related art
  • FIG. 4 is a schematic flowchart of creating a PDU session after a UE registers with a 5G network in the related art
  • FIG. 5 is a schematic flowchart of a UE migration method applied to an NRF side according to Embodiment 1 of the present disclosure
  • FIG. 6 is a flowchart of sending status information to the NRF when the UPF detects a failure of the active SMF according to the first embodiment of the present disclosure
  • FIG. 7 is a flowchart of sending status information to a NRF when a non-UPF NF detects a failure of an active SMF according to Embodiment 1 of the present disclosure
  • FIG. 8 is a schematic flowchart of determining an SMF fault according to a heartbeat detection between the SMF and the NRF according to the first embodiment of the present disclosure
  • FIG. 9 is a schematic flowchart of a UE migration method applied to a standby SMF side according to Embodiment 2 of the present disclosure.
  • FIG. 10 is a schematic flowchart of an NRF triggering UE migration to a standby SMF after learning that a primary SMF fails according to Embodiment 2 of the present disclosure
  • FIG. 11 is a schematic flowchart of another type of NRF triggering UE migration to a standby SMF after learning that the primary SMF fails according to Embodiment 2 of the present disclosure
  • FIG. 12 is a schematic flowchart of another type of NRF triggering UE migration to a standby SMF after learning that the primary SMF fails according to Embodiment 2 of the present disclosure
  • FIG. 13 is a schematic flowchart of a UE migration method applied to a system according to Embodiment 3 of the present disclosure
  • FIG. 14 is a schematic structural diagram of a UE migration system according to Embodiment 4 of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a UE migration apparatus applied to an NRF according to Embodiment 4 of the present disclosure
  • FIG. 16 is a schematic structural diagram of a UE migration apparatus applied to a standby SMF according to Embodiment 4 of the present disclosure
  • FIG. 17 is a schematic structural diagram of an NRF according to Embodiment 5 of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a standby SMF according to Embodiment 5 of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a UE migration system according to Embodiment 5 of the present disclosure.
  • FIG. 1 is a schematic diagram of the architecture of a 5G system.
  • the 5G system is composed of several NF (Network Function).
  • the 5G wireless subsystem part mainly includes NR (New Radio).
  • the 5G core network subsystem mainly includes UDM (Unified Data Management), AMF (Access Management Function, Access Management Function), SMF (Session Management Function, Session Management Function), UPF (User, Plane Function, User) Surface function) and PCF (Policy Control Function).
  • UDM which is a unified data management function, is a permanent storage place for user-subscribed data and is located in the home network where the user subscribes.
  • AMF which is the access management function, manages the needs of users to access the network, and is responsible for terminal-to-network NAS layer (Non-Access Stratum, non-access layer) signaling management, user mobility management and other functions.
  • SMF that is, a session management function, manages a user's PDU (Packet Data Unit) session, a QoS (Quality of Service) flow, and formulates packet detection and forwarding rules for the UPF.
  • UPF which is a user plane function, is responsible for functions such as routing and forwarding of IP data and non-IP data, and reporting of usage.
  • PCF the policy control function, is responsible for providing various levels of policy rules for AMF and SMF.
  • the main NF also includes DN (Data Network), such as operator services, network access, third-party services; and AF (Application Function), which manages AF sessions.
  • DN Data Network
  • AF Application Function
  • 5G networks support the stateless design of NF.
  • Stateless design means that the same type of NF serving the UE can be replaced in the two processes before and after.
  • the AMF can be replaced in two processes.
  • the context information of the UE needs to be stored in the UDSF (Unstructured Data Storage Function).
  • the same type of NF such as AMF
  • FIG. 2 is a schematic diagram of a stateless design in which the UDSF supports different types of NF (for example, AMF, SMF, UDM, PCF). Different types of NFs use different interfaces to access UE context information on the UDSF.
  • NF handover under NF failure basically depends on the realization of specific products, for example, NFs that are active and standby each other detect each other and initiate the migration of UE PDU sessions. Therefore, it is urgent to provide a method for migrating UEs on the failed SMF when the SMF fails.
  • the UE registers with a 5G network and initiates a related process of creating a PDU session to the 5G network. After these processes, the UE can obtain packet data services from the 5G network.
  • FIG. 3 is a schematic flowchart of a UE registering with a 5G network, including the following steps S301 to S314.
  • step S301 the UE sends a registration request (Registration Request) to the gNB.
  • step S302 the gNB selects an appropriate AMF according to the conditions.
  • step S303 the gNB forwards the registration request of the UE to the AMF.
  • step S304 if the UE does not provide SUCI (Subscription, Concealed, Identifier), the AMF sends an Identity Request (Identification Request) to the UE.
  • step S305 the UE returns the requested SUCI to the AMF in response to the identity request.
  • step S306 the AMF selects a suitable AUSF (Authentication Server Function) for the UE to perform an authentication operation.
  • AUSF Authentication Server Function
  • step S307 the AUSF initiates an identity authentication and authentication process for the UE.
  • step S308 the AMF selects a suitable UDM for the UE.
  • step S309 the AMF initiates AMF registration to the UDM, and the UDM receives the AMF registration and registers the AMF information for the UE service.
  • step S310 the AMF sends a subscription request to the UDM to obtain a mobility management related subscription of the UE.
  • the UDM receives the request from the AMF and sends related contract data to the AMF.
  • step S311 the AMF selects a suitable PCF for the UE.
  • step S312 the AMF sends a mobility policy request to the PCF.
  • the PCF receives the AMF request, and returns mobility policy data (AM Policy) to the AMF.
  • AM Policy mobility policy data
  • step S313 the AMF returns a registration acceptance response (Registration Accept) to the UE.
  • step S314 after receiving the registration reception response from the AMF, the UE sends a registration reception message (Registration Complete) to the AMF.
  • FIG. 4 is a schematic flowchart of initiating a PDU session creation after the UE registers with the 5G network, and has the following steps S401 to S416.
  • step S401 the UE sends a PDU Session Establishment Request (PDU Session Establishment Request) to the AMF.
  • PDU Session Establishment Request PDU Session Establishment Request
  • step S402 the AMF selects an appropriate SMF for the UE according to the PDU session establishment request of the UE, for example, according to the DNN (Data Network Name) requested by the UE.
  • DNN Data Network Name
  • step S403 the AMF sends a SM Session Context Request (Create SMContext Request) to the SMF.
  • SM Session Context Request Create SMContext Request
  • step S404 the SMF initiates a session subscription data acquisition process to the UDM.
  • the UDM returns the session subscription data of the UE to the SMF.
  • step S405 the SMF returns a Create SMContext context response (Create SMContext Response) to the AMF.
  • step S406 the SMF selects a suitable PCF. If the AMF provided the AMF-selected PCF in the foregoing steps, the SMF uses the PCF.
  • step S407 the SMF sends a session policy request to the PCF.
  • the PCF receives the SMF request and returns session policy data (SM Policy) to the SMF.
  • SM Policy session policy data
  • step S408 the SMF selects an appropriate UPF according to information such as DNN and UE location.
  • step S409 the SMF sends an N4 session establishment request (N4 Session Establishment Request) to the UPF.
  • N4 Session Establishment Request N4 Session Establishment Request
  • the UPF responds to the request of the SMF, establishes an N4 session, and returns an N4 session establishment response (N4 Session Establishment Response) to the SMF.
  • step S410 after the N4 session is successfully established, the SMF sends an N1 / N2 message transfer request (N1 / N2 Message Transfer) to the AMF, which carries the context information of the PDU session, such as the QoS flow list created and the uplink F allocated by the UPF. -TEID (Full Qualified Tunnel Endpoint Identifier, etc.).
  • N1 / N2 message transfer request N1 / N2 Message Transfer
  • the AMF which carries the context information of the PDU session, such as the QoS flow list created and the uplink F allocated by the UPF.
  • -TEID Full Qualified Tunnel Endpoint Identifier, etc.
  • step S411 the AMF sends an N2 interface PDU Session Request (N2) PDU Session Request message to the gNB, which carries a NAS message (Non-access stratum, non-access stratum) to be sent by the AMF to the UE.
  • N2 interface PDU Session Request N2 interface PDU Session Request
  • the NAS message includes part of the information of the PDU session context that needs to be sent to the UE.
  • step S412 the gNB sends a radio resource setup (AN Resource Setup) request to the UE, and establishes an appropriate radio bearer for the UE according to the PDU session information provided by the AMF.
  • AN Resource Setup AN Resource Setup
  • step S413 after the wireless resource is created, the gNB returns an N2 interface PDU Session Receive (N2) PDU Session Receive message to the AMF, which carries the N3 interface resource allocated by the gNB, such as the F-TEID of the gNB.
  • N2 interface PDU Session Receive N2 interface PDU Session Receive
  • step S414 the AMF sends an Update SM Session Context Request (Update SMContext Request) to the SMF to update the remote F-TEID of the UPF on the N3 interface, that is, the F-TEID of the gNB on the UPF.
  • Update SM Session Context Request Update SMContext Request
  • step S415 the SMF sends an N4 session update request (N4 Session Update Request) to the UPF, and updates the F-TEID of the gNB on the N3 interface.
  • N4 Session Update Request N4 Session Update Request
  • the UPF returns an N4 session update response to the SMF.
  • step S416 the SMF returns an update SM session context response (Update SMContext Response) to the AMF.
  • update SM session context response Update SMContext Response
  • the UE migration method, NRF, standby SMF, system, and storage medium mainly solve the technical problem that when the SMF fails in the related technology, the PDU session is invalidated, and the uplink and downlink data of the UE cannot be delivered normally.
  • an embodiment of the present disclosure provides a user equipment (UE) migration method, and the UE migration provided by this embodiment The method is applied on the NRF side.
  • the UE migration method provided in this embodiment includes steps S501 and S502.
  • step S501 the NF storage function NRF (NF Repository Function) acquires the status information of the active session management function SMF.
  • the status information is used to indicate the fault status of the active SMF.
  • step S502 the NRF determines that the active SMF fails, and sends an SMF failure notification message to the standby SMF.
  • the SMF failure notification message is used to trigger the standby SMF to migrate the UE on the active SMF to the standby SMF itself.
  • Step S501 will be described in detail below.
  • the NRF which is the NF storage function, supports network function service registration, status monitoring, etc., and is configured to realize automatic management, selection, and scalability of network function services.
  • the active SMF is the currently used SMF, and its status information is used to indicate to the NRF that the active SMF is a faulty SMF.
  • the status information of the active SMF includes at least one of the following: an SMF instantiation identifier, an SMF node identifier, and an SMF fault indication.
  • the status information (that is, NF status information) may carry an SMF fault indication and an SMF instantiation identifier of the faulty SMF.
  • the NRF obtains the status information of the active SMF including, but not limited to, the following two ways.
  • Method 1 When the NRF receives the network function NF and detects the failure of the active SMF, the status information of the active SMF sent by the NF.
  • the NF is a non-SMF NF that generates signaling interaction with the SMF.
  • the non-SMF NF detects whether the active SMF fails. When a failure of the active SMF is detected, the non-SMF NF sends status information to the NRF, so that the NRF learns that the active SMF is currently malfunctioning.
  • FIG. 6 is a flowchart of sending status information to the NRF when the UPF detects a failure of the primary SMF according to the embodiment, and includes the following steps S601 to S612.
  • step S601 the AMF receives a request to create a PDU session.
  • the request to create a PDU session may come from the UE.
  • step S602 the AMF selects an appropriate SMF for the UE as the active SMF, and sends a request for creating an SM session context to the active SMF.
  • step S603 the active SMF returns an SM session context response to the AMF.
  • step S604 the master SMF selects a suitable UPF.
  • step S605 the active SMF sends an N4 connection establishment request to the UPF to establish a connection between the active SMF and the UPF.
  • the N4 connection establishment request may carry an SMF instance ID (SMF instance ID).
  • step S606 the UPF receives an N4 connection establishment request, establishes an N4 connection with the master SMF, and returns an N4 connection establishment response.
  • step S607 the active SMF sends an N4 session establishment request to the UPF to establish an N4 session for the UE.
  • the N4 session establishment request may carry an SMF instantiation identifier.
  • the primary SMF may provide the UPF with its own SMF instantiated identity when establishing an N4 connection to the UPF or when establishing an N4 session with the UPF, which is not limited here.
  • the N4 session establishment request may further carry a Connection Set ID (CSID).
  • the CSID can associate several N4 sessions of several UEs together, and can be taken over by another SMF together when the active SMF fails.
  • step S608 after the UPF establishes the N4 session, it returns an N4 session establishment response to the active SMF.
  • step S609 the active SMF continues to create a PDU session.
  • the subsequent process steps for creating a PDU session include: the active SMF sends an N1 / N2 message transmission request to the AMF; the AMF sends an N2 interface PDU session request to the gNB; the gNB sends a radio resource establishment request to the UE; after the radio resource is created, the gNB sends the AMF to the AMF Returns the N2 interface PDU session reception message; the AMF sends an update SM session context request to the active SMF; the active SMF sends an N4 session update request to the UPF; the active SMF returns an update SM session context response to the AMF.
  • step S610 after the active SMF and the UPF establish an N4 connection, a periodic heartbeat detection is initiated between the active SMF and the UPF.
  • the heartbeat detection between the active SMF and the UPF may be that the active SMF sends an N4 heartbeat request to the UPF, and the UPF returns an N4 heartbeat response.
  • the heartbeat detection between the active SMF and the UPF may also be that the UPF sends an N4 heartbeat request to the active SMF, and the active SMF returns an N4 heartbeat response.
  • the heartbeat detection between the primary SMF and the UPF can be performed as long as any step after the establishment of the N4 connection in step S606 is performed, and is not limited to the step of creating a PDU session in step S609.
  • step S611 when the UPF determines that the active SMF has failed, the UPF sends status information indicating that the active SMF has failed to the NRF.
  • the heartbeat detection between the UPF and the active SMF fails. After multiple heartbeat detection failures, the UPF can determine that the active SMF has failed.
  • step S612 the NRF determines that the active SMF fails according to the received status information.
  • the NF is a NF of a non-user plane function UPF, that is, the NF is AMF, PCF, UDM, and the like.
  • the non-UPF NF determines that the active SMF fails according to the heartbeat detection or signaling interaction response between the non-UPF and the active SMF.
  • the non-UPF NF sends the status information of the active SMF to the NRF.
  • FIG. 7 is a flowchart of sending status information to the NRF when a non-UPF NF detects a failure of the primary SMF according to this embodiment, and includes steps S701 to S708.
  • step S701 the non-UPF NF and the active SMF generate a message flow interaction. Due to the interaction requirements of the message flow, users of non-UPF SMF services, such as AMF, PCF, UDM, etc., interact with the SMF to generate the message flow.
  • non-UPF SMF services such as AMF, PCF, UDM, etc.
  • step S702 the non-UPF NF sends a heartbeat request message to the active SMF.
  • step S703 the master SMF returns a heartbeat response message to the non-UPF NF.
  • step S704 when there is still a process interaction between the non-UPF NF and the active SMF, the non-UPF NF periodically sends a heartbeat request to the active SMF.
  • step S705 when the master SMF fails, the master SMF cannot respond to the heartbeat request of the non-UPF NF.
  • the non-UPF NF may determine that the primary SMF has failed.
  • step S706 the non-UPF NF sends status information to the NRF indicating that the active SMF has failed.
  • step S707 after receiving the status information, the NRF returns a response message to the non-UPF NF.
  • step S708 the NRF determines that the active SMF fails according to the status information.
  • Method 2 The NRF generates status information of the active SMF when it detects that the active SMF fails.
  • the NRF determines whether the active SMF is faulty through heartbeat detection between itself and the active SMF. When the active SMF fails, the NRF generates status information of the active SMF.
  • FIG. 8 is a schematic flowchart of determining an SMF fault according to the heartbeat detection between the SMF and the NRF according to the embodiment, including steps S801 to S806.
  • step S801 the master SMF sends a NF registration request to the NRF, which carries the SMF configuration parameters and the backup SMF information.
  • step S802 the NRF returns a NF registration response to the active SMF, and carries the heartbeat time.
  • step S803 after receiving the heartbeat time from the NRF, the master SMF periodically sends a heartbeat request message to the NRF according to the requirements of the heartbeat time.
  • the so-called heartbeat message is essentially an NF registration update.
  • the registration update only carries NF status information, such as: active / inactive, load factor, etc.
  • step S804 the NRF returns a heartbeat response message to the SMF.
  • step S805 if the master SMF fails, the master SMF cannot continue to send a heartbeat request message to the NRF.
  • step S806 after the heartbeat message of the active SMF is not received within a preset number of times, the NRF determines that the active SMF fails.
  • step S502 shown in FIG. 5 the NRF determines that the primary SMF fails, and sends an SMF failure notification message to the standby SMF.
  • the SMF failure notification message is used to trigger the standby SMF to migrate the UE on the active SMF to the standby SMF itself. Step S502 will be described in detail below.
  • the NRF When the NRF detects a failure of the active SMF, it can send an SMF failure notification message to the standby SMF, trigger the standby SMF to replace the failed SMF, and take over the UE on the failed SMF.
  • sending the SMF failure notification message to the standby SMF includes: the NRF obtains the standby SMF information of the active SMF; the NRF sends an SMF failure notification message to the standby SMF according to the standby SMF information.
  • the backup SMF information includes at least one of the following: an SMF group identifier, an SMF instance identifier, and an SMF fault indication callback address.
  • the SMF group ID is used to identify a group of SMFs with the same or similar characteristics, and the SMFs belonging to the same group are backed up to each other.
  • the SMF group identifier can be set.
  • the NRF can query other SMFs with the same SMF group identifier as the backup SMF according to the SMF group identifier.
  • the SMF instance ID is used to uniquely identify a specified SMF.
  • the SMF information in the SMF configuration parameters of the active SMF several SMF instantiation identifiers of the backup SMF can be specified, and the NRF can definitely select one as the backup SMF according to the SMF instantiation identifiers of the backup SMF.
  • SMF failure indication callback address (callback URL for SMF restoration) for SMF to receive SMF failure indication.
  • the SMF fault indication callback address can be configured in the SMF configuration parameters or in the backup SMF information of the SMF configuration parameters. When the SMF fault indication callback address is configured in the SMF configuration parameters, it indicates that the SMF fault indication callback address of the SMF itself. When the SMF fault indication callback address is configured in the backup SMF information of the SMF configuration parameter, it means that the SMF fault indication callback address in the backup SMF information specifies the SMF backup SMF.
  • the NRF obtains, from itself, the standby SMF information provided when the primary SMF performs NF registration with the NRF.
  • the master SMF sends an NF registration request to the NRF, which carries SMF configuration parameters.
  • the SMF also carries one or a combination of the following information: SMF group ID (SMF Set ID), SMF fault indication callback address, and backup SMF information.
  • the backup SMF information may include a backup SMF list, which includes the SMF instance ID (SMF instance ID) of the backup SMF, and / or the SMF fault indication callback address of the backup SMF.
  • the NRF receives and processes the NF registration request of the SMF, and returns a NF registration response to the SMF, so that the primary SMF registers the backup SMF information on the NRF.
  • the SMF failure notification message includes at least one of the following: an SMF replacement indication, an identity of the replaced SMF, and a UE migration range indication.
  • the SMF replacement indication indicates that the specified SMF needs to be replaced.
  • the identity of the replaced SMF can be, for example, the SMF instance ID (SMF instance ID).
  • the UE scope indication indicates the scope of the UE that needs to be migrated.
  • the UE migration range indication includes any of the following: all UEs, UEs in a specified range, and UEs in a random range.
  • All UEs instruct the standby SMF to migrate all UEs from the failed active SMF to the standby SMF.
  • the UE in the specified range instructs the standby SMF to migrate the UE in the specific range from the active SMF to the standby SMF.
  • the random range UE does not specify a specific UE range, and the standby SMF migrates all or part of the UE from the active SMF to the standby SMF according to the local policy or the UDSF decision.
  • the NRF obtains status information of the primary SMF, and when the NRF determines that the primary SMF fails according to the status information, it sends an SMF failure notification message to the standby SMF to trigger
  • the standby SMF migrates the UE on the active SMF to the standby SMF itself, which avoids the problem of uplink and downlink data transmission failure of the UE due to the failure of the PDU session when the SMF fails, and can quickly migrate the UEs on the failed SMF to Standby SMF.
  • an embodiment of the present disclosure provides a UE migration method. As shown in FIG. 9, the embodiment provides The UE migration method is applied to the standby SMF side, and the UE migration method includes steps S901 and S902.
  • step S901 the standby SMF receives the SMF failure notification message sent by the NRF.
  • the active SMF is the currently used SMF, and its status information is used to indicate to the NRF that the active SMF is a faulty SMF.
  • the NRF detects a failure of the active SMF, it sends an SMF failure notification message to the standby SMF, instructing the standby SMF to replace the failed SMF, and takes over the UE on the failed SMF.
  • step S902 the standby SMF migrates the UE on the active SMF to itself.
  • the standby SMF migrates the UE on the active SMF to the standby SMF itself including but not limited to the following two ways.
  • the standby SMF obtains the context information of the UE on the active SMF from the unstructured data storage function UDSF.
  • the standby SMF updates the SMF information on the NF according to the context information of the UE, and migrates the UE from the active SMF to itself.
  • the NF is a non-SMF NF that generates signaling interaction with the SMF. In other words, if there is a UDSF in the network, the SMF dynamically stores data on the UDSF, and when a failure occurs, the standby SMF goes to the UDSF to obtain the context.
  • the standby SMF obtains the context information of the UE on the active SMF from the active SMF information dynamically backed up in the local storage.
  • the standby SMF updates the SMF information on the NF according to the context information of the UE, and migrates the UE from the active SMF to itself.
  • the NF is a non-SMF NF that generates signaling interaction with the SMF. In other words, if there is no UDSF in the network, the SMF dynamically backs up the data to the standby SMF. When a failure occurs, the standby SMF directly enables the local storage context for recovery.
  • the standby SMF determines the UE to be migrated on the active SMF according to the UE migration range indication in the SMF failure notification message.
  • the standby SMF migrates the determined UE to itself. If the UE migration range is set to all UEs, the standby SMF migrates all UEs on the active SMF to itself. If the UE migration range is set to a UE in a specified range, the standby SMF migrates the specified UE on the active SMF to itself. If the UE migration range is set to an unspecified range, the standby SMF migrates a randomly determined UE (which may be all or part of the UE) to itself according to a local policy.
  • the backup SMF migrates the UE on the primary SMF further including, but not limited to, the following three ways.
  • Method 1 The standby SMF is based on a single UE, and the SMF information on the NF is updated according to the context information of the UE.
  • updating the SMF information on the NF according to the context information of the UE includes at least one of the following:
  • the standby SMF sends the user plane function UPF according to the context information of the UE.
  • N4 session update request to update the SMF information on the UPF, where the N4 session update request includes SMF replacement instructions and primary SMF information;
  • the standby SMF sends an SMF registration update request to the unified data management function UDM according to the context information of the UE to update SMF information on the UDM, where the SMF registration update request includes SMF replacement instructions and the primary SMF information;
  • the standby SMF sends an SM session status update request to the access management function AMF according to the context information of the UE to update the SMF information on the AMF
  • the SM session state update request includes an SMF replacement instruction and the primary SMF information.
  • the standby SMF sends an SM policy update request to the policy control function PCF according to the context information of the UE to update the SMF information on the PCF.
  • the SM policy update request includes SMF replacement instruction, main SMF information.
  • FIG. 10 is a schematic flowchart of an NRF triggering UE migration to a standby SMF after learning that the primary SMF fails, including steps S1001 to S1014.
  • step S1001 the NRF detects a failure of the active SMF.
  • the NRF can detect the failure of the active SMF according to the method in the first embodiment, and the NRF obtains the backup SMF information from the SMF profile (SMF profile) to notify the backup SMF to take over the failed SMF UE.
  • SMF profile SMF profile
  • step S1002 the NRF sends an SMF fault notification message to the standby SMF to trigger the standby SMF to replace the designated SMF and take over all or part of the UEs under the designated SMF.
  • the SMF failure notification message carries the SMF instantiation identifier of the failed SMF.
  • the SMF failure notification message may also carry at least one of the following information: SMF replacement indication, UE migration range indication, and NF replacement reason.
  • the UE migration range indication may be one of the following: all UEs, a UE in a specified range, and a random range.
  • NF replacement causes can be such as SMF failure.
  • the failed SMF is the active SMF that has failed.
  • step S1003 the standby SMF returns an SMF failure notification response to the NRF.
  • step S1004 the standby SMF queries the UDSF for the UE context information of the failed SMF.
  • the standby SMF uses one of the following methods a) to c) to query the UDSF for the UE context information of the failed SMF.
  • the UE context information obtained by the standby SMF from the UDSF includes one or a combination of the following information: PDU session context, N4 session context, UDM registration information, AMF information, and PCF information.
  • step S1005 according to the request of the standby SMF, the UDSF returns the UE context information list of the requested failed SMF to the standby SMF.
  • the standby SMF obtains UE context information of each UE, including PDU session context, N4 session context, UDM registration information, AMF information, PCF information, and so on.
  • step S1006 the backup SMF absolutely updates SMF information on other NFs for each UE.
  • the standby SMF obtains the UE context information of each UE from the obtained UE context information list of the failed SMF. According to the UE context information, the standby SMF resumes the N4 sessions of SMF and UPF (steps S1007 to S1008), updates the SMF registration information of the SMF on the UDM (steps S1009 to S1010), and updates the information of the SMF on the AMF (steps S1011 to S1012), and update the information of the SMF on the PCF (steps S1013 to S1014).
  • step S1007 the standby SMF decides to update the N4 session of the UE on the UPF.
  • the standby SMF Before the SMF initiates an N4 session update request to the UPF, the standby SMF first establishes an N4 connection with the UPF.
  • step S1008 the standby SMF sends an N4 session update request to the UPF, instructing the UPF to update the SMF information of the N4 session.
  • the UPF returns an N4 session update response to the standby SMF.
  • the standby SMF when it sends an N4 session update request, it carries the following information: an SMF replacement instruction, and the original SMF information (old SMF info).
  • the original SMF information may include one or a combination of the following information: SMF node ID (SMF node ID), SMF instance ID (SMF instance ID).
  • the standby SMF can also carry target SMF information (new SMF info).
  • the target SMF information may include one or a combination of the following information: SMF node identifier (SMF node ID), SMF instance identifier (SMF instance ID).
  • step S1009 the standby SMF decides to update the SMF registration information on the UDM.
  • step S1010 the standby SMF sends an SMF registration update request to the UDM, instructing the UDM to update the SMF registration information, and the UDM returns an SMF registration update response to the standby SMF.
  • the standby SMF when it sends an SMF registration update request, it carries the following information: UE identification (such as SUPI), SMF replacement instruction, and original SMF information (old SMF information).
  • UE identification such as SUPI
  • SMF replacement instruction such as SMF
  • original SMF information old SMF information
  • the standby SMF can also carry target SMF information (new SMF info).
  • step S1011 the standby SMF decides to update the SMF information on the AMF.
  • step S1012 the standby SMF sends an SM session status notification request to the AMF, instructing the AMF to update the SMF information.
  • the AMF returns an SM session status notification response to the standby SMF.
  • the standby SMF may also carry the following information: UE identification (such as SUPI), SMF replacement instruction, and original SMF information (old SMF information).
  • the standby SMF can also carry target SMF information (new SMF info).
  • step S1013 the standby SMF decides to update the SMF information on the PCF.
  • step S1014 the standby SMF sends an SM policy update request to the PCF, instructing the PCF to update the SMF information.
  • the PCF returns a SM policy update response to the standby SMF.
  • the standby SMF may also carry the following information: UE identification (such as SUPI), SMF replacement instruction, and original SMF information (old SMF information).
  • the standby SMF can also carry target SMF information (new SMF info).
  • Method 2 The backup SMF uses a single NF as a unit, and the SMF information on the NF is updated according to the context information of the UE.
  • updating the SMF information on the NF according to the context information of the UE includes at least one of the following: the standby SMF sends the NF to each UPF according to the context information of the UE A replacement request to update the SMF information on the UPF, where the NF replacement request includes an SMF replacement instruction and the primary SMF information; the standby SMF sends a NF replacement request to each UDM according to the context information of the UE to update the SMF information on the UDM,
  • the NF replacement request includes an SMF replacement instruction and the primary SMF information.
  • the standby SMF sends an NF replacement request to each AMF according to the context information of the UE to update the SMF information on the AMF.
  • the NF replacement request includes the SMF replacement instruction, the primary SMF information is used; the standby SMF sends an NF replacement request to each PCF according to the context information of the UE to update the SMF information on the PCF, where the NF replacement request includes an SMF replacement instruction and the primary SMF information.
  • FIG. 11 is a schematic flowchart of another type of NRF triggering UE migration to a standby SMF after learning that the primary SMF fails, including steps S1101 to S1113.
  • Steps S1101 to S1105 are the same as steps S1001 to S1005 in the embodiment corresponding to FIG. 10, and details are not described herein again.
  • the backup SMF absolutely updates SMF information on other NFs for each NF.
  • the standby SMF enumerates the UPF, UDM, AMF, PCF, etc. associated with the SMF from the UE context information of the failed SMF, and sends a NF replacement request to each UPF, UDM, AMF, PCF.
  • step S1106 for each UPF, the standby SMF decides to update the SMF information on the UPF.
  • step S1107 the standby SMF sends a NF replacement request to the UPF, instructing the UPF to update the SMF information.
  • the UPF returns a NF replacement response to the standby SMF.
  • step S1108 for each UDM, the standby SMF decides to update the SMF information on the UDM.
  • step S1109 the standby SMF sends a NF replacement request to the UDM, instructing the UDM to update the SMF information.
  • the UDM returns a NF replacement response to the standby SMF.
  • step S1110 for each AMF, the standby SMF decides to update the SMF information on the AMF.
  • step S1111 the standby SMF sends an NF replacement request to the AMF, instructing the AMF to update the SMF information.
  • the AMF returns a NF replacement response to the standby SMF.
  • step S1112 for each PCF, the standby SMF decides to update the SMF information on the PCF.
  • step S1113 the standby SMF sends a NF replacement request to the PCF, instructing the PCF to update the SMF information.
  • the PCF returns a NF replacement response to the standby SMF.
  • the standby SMF may carry the following information when sending the NF replacement request: the SMF replacement instruction and the original SMF information. Further, the standby SMF may also carry the following information: target SMF information. It should be noted that both the original SMF information and the target SMF information include corresponding SMF instantiation identifiers.
  • Method 3 The standby SMF is based on a single UE, and the packet data unit PDU session is updated according to the context information of the UE, so that the SMF information on the NF is updated.
  • the standby SMF when the standby SMF is based on a single UE, the standby SMF sends an N1 / N2 message transmission request to the AMF according to the context information of the UE.
  • the N1 / N2 message transmission request includes a PDU session update request, and
  • the AMF is caused to send a PDU session update request to the UE to update the PDU session.
  • FIG. 12 is another schematic flowchart of triggering UE migration to a standby SMF by another NRF after learning that the primary SMF fails, including steps S1201 to S1209.
  • Steps S1201 to S1205 are the same as steps S1001 to S1005 in the embodiment corresponding to FIG. 10, and details are not described herein again.
  • step S1206 the standby SMF absolutely initiates a PDU session update process for each UE.
  • the standby SMF obtains the UE context information of each UE from the obtained UE context information list of the failed active SMF, and uses the UE context information to initiate a PDU session update process.
  • step S1207 the standby SMF sends a N1 / N2 message transmission request to the AMF, which carries a PDU session update request.
  • the backup SMF may carry the following information: SMF replacement instruction and original SMF information. Further, the standby SMF may also carry the following information: target SMF information. It should be noted that both the original SMF information and the target SMF information include corresponding SMF instantiation identifiers.
  • step S1208 the AMF sends a PDU session update request to the UE.
  • step S1209 the PDU session update is continuously performed, so that the sessions or information associations between SMF and UPF, SMF and UDM, SMF and AMF, SMF and PCF are all updated. That is, the original SMF (failed active SMF) information on UPF, UDM, AMF, and PCF is updated to new SMF (standby SMF) information.
  • the standby SMF receives the SMF failure notification message sent by the NRF when it is determined that the active SMF has failed. After the standby SMF determines that the active SMF fails according to the SMF failure notification message, it migrates the UE on the active SMF to itself. Therefore, the problem that the uplink and downlink data transmission of the UE fails due to the failure of the PDU session when the SMF fails is avoided, and the UEs on the failed SMF can be quickly migrated to the standby SMF in batches.
  • an embodiment of the present disclosure provides a UE migration method, and the UE migration method provided by this embodiment is applied to include System side of NRF and standby SMF. As shown in FIG. 13, the UE migration method includes steps S1301 to S1303.
  • step S1301 the NRF obtains status information of the active SMF.
  • the status information is used to indicate that the active SMF has failed.
  • the NRF acquiring the status information of the active SMF includes, but is not limited to, the following two ways.
  • Method 1 When the NRF receives the network function NF detects a failure of the active SMF, the status information of the active SMF sent by the NF.
  • the NF is a non-SMF NF that generates signaling interaction with the SMF.
  • the non-SMF NF when the non-SMF NF is UPF, after the UPF establishes an N4 connection with the active SMF, it detects the heartbeat between itself and the active SMF to determine that the active SMF fails.
  • the NRF receives the status information of the active SMF sent by the UPF.
  • the non-UPF NF is established with the active SMF.
  • the NRF receives the status information of the master SMF sent by the non-UPF NF.
  • Method 2 The NRF generates status information of the active SMF when it detects that the active SMF fails.
  • the NRF generates status information of the primary SMF when it is determined that the primary SMF is faulty through heartbeat detection between itself and the primary SMF.
  • step S1302 the NRF determines that the active SMF fails, and sends an SMF failure notification message to the standby SMF.
  • the NRF obtains the backup SMF information of the active SMF, and the NRF sends an SMF failure notification message to the backup SMF according to the backup SMF information.
  • the backup SMF information includes at least one of the following: a group identifier of the SMF, an instance identifier of the SMF, and an SMF fault indication callback address of the SMF.
  • the NRF obtains, from itself, the standby SMF information registered by the active SMF when receiving the NF registration request of the active SMF.
  • the SMF failure notification message includes at least one of the following: an SMF replacement indication, an identity of the replaced SMF, and a UE migration range indication.
  • the UE migration range indication includes any of the following: all UEs, UEs in a specified range, and UEs in a random range.
  • step S1303 when receiving the SMF failure notification message, the standby SMF migrates the UE on the active SMF to itself.
  • the standby SMF migrates the UE on the active SMF to the standby SMF itself including but not limited to the following two ways.
  • Method 1 The standby SMF obtains the context information of the UE on the active SMF from the unstructured data storage function UDSF.
  • the standby SMF updates the SMF information on the NF according to the context information, and migrates the UE from the active SMF to itself.
  • the NF is a non-SMF NF that generates signaling interaction with the SMF.
  • Method 2 The standby SMF obtains the context information of the UE on the active SMF from the active SMF information dynamically backed up in the local storage.
  • the standby SMF updates the SMF information on the NF according to the context information, and migrates the UE from the active SMF to itself.
  • the NF is a non-SMF NF that generates signaling interaction with the SMF.
  • the backup SMF migrates the UE on the primary SMF further including, but not limited to, the following three ways.
  • Method 1 The standby SMF is based on a single UE, and the SMF information on the NF is updated according to the context information of the UE.
  • updating the SMF information on the NF according to the context information of the UE includes at least one of the following:
  • the standby SMF sends the user plane function UPF according to the context information of the UE.
  • N4 session update request to update the SMF information on the UPF, where the N4 session update request includes SMF replacement instructions and primary SMF information;
  • the standby SMF sends an SMF registration update request to the unified data management function UDM according to the context information of the UE to update SMF information on the UDM, where the SMF registration update request includes the SMF replacement instruction and the primary SMF information;
  • the standby SMF sends an SM session state update request to the access management function AMF according to the context information of the UE to update the SMF information on the AMF,
  • the SM session state update request includes an SMF replacement instruction and the primary SMF information.
  • the standby SMF sends an SM policy update request to the policy control function PCF according to the context information of the UE to update the SMF information on the PCF.
  • the SM policy update request includes SMF replacement instruction, main SMF information.
  • Method 2 The backup SMF uses a single NF as a unit, and the SMF information on the NF is updated according to the context information of the UE.
  • updating the SMF information on the NF according to the context information of the UE includes at least one of the following: the standby SMF sends the NF to each UPF according to the context information of the UE A replacement request to update the SMF information on the UPF, where the NF replacement request includes an SMF replacement instruction and the primary SMF information; the standby SMF sends a NF replacement request to each UDM according to the context information of the UE to update the SMF information on the UDM,
  • the NF replacement request includes an SMF replacement instruction and the primary SMF information.
  • the standby SMF sends an NF replacement request to each AMF according to the context information of the UE to update the SMF information on the AMF.
  • the NF replacement request includes the SMF replacement instruction, the primary SMF information is used; the standby SMF sends an NF replacement request to each PCF according to the context information of the UE to update the SMF information on the PCF, where the NF replacement request includes an SMF replacement instruction and the primary SMF information.
  • Method 3 The standby SMF is based on a single UE, and the packet data unit PDU session is updated according to the context information of the UE, so that the SMF information on the NF is updated.
  • the standby SMF when the standby SMF is based on a single UE, the standby SMF sends an N1 / N2 message transmission request to the AMF according to the context information of the UE.
  • the N1 / N2 message transmission request includes a PDU session update request, and
  • the AMF is caused to send a PDU session update request to the UE to update the PDU session.
  • the NRF obtains status information of the primary SMF.
  • the NRF determines that the active SMF fails according to the status information, it sends an SMF failure notification message to the standby SMF.
  • the standby SMF migrates the UE on the active SMF to itself according to the received SMF failure notification message. Therefore, the problem that the uplink and downlink data transmission of the UE fails due to the failure of the PDU session when the SMF fails is avoided, and the UEs on the failed SMF can be quickly migrated to the standby SMF in batches.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 14 is a schematic structural diagram of a user equipment UE migration system according to this embodiment.
  • the user equipment UE migration system includes NRF 1401 and standby SMF 1402.
  • NRF 1401 is configured to obtain the status information of the active SMF, determine that the active SMF has failed, and send an SMF failure notification message to the standby SMF 1402.
  • the status information is used to indicate the fault status of the active SMF
  • the SMF failure notification message is used to instruct the standby SMF 1402 to migrate the UE on the active SMF to itself.
  • the standby SMF 1402 is configured to receive the SMF failure notification message sent by the NRF 1401 when it determines that the active SMF has failed, and migrates the UE on the active SMF to itself.
  • FIG. 15 is a user equipment UE migration apparatus applied to NRF according to an embodiment of the present disclosure, including: an obtaining module 1501 and a sending module 1502.
  • the obtaining module 1501 is configured to obtain status information of the active SMF; the status information is used to indicate a fault status of the active SMF.
  • the sending module 1502 is configured to determine that the active SMF fails, and send an SMF failure notification message to the standby SMF; wherein the SMF failure notification message is used to trigger the standby SMF to migrate the UE on the active SMF to itself.
  • the active SMF is the currently used SMF, and its status information is used to indicate to the NRF that the active SMF is a faulty SMF.
  • the NRF detects a failure of the active SMF, it sends an SMF failure notification message to the standby SMF, triggers the standby SMF to replace the failed SMF, and takes over the UE on the failed SMF.
  • the obtaining module 1501 obtains the status information of the active SMF includes, but is not limited to, the following two ways.
  • the acquisition module 1501 receives the status information of the active SMF sent by the NF when the network function NF detects a failure of the active SMF.
  • the NF is a non-SMF NF that generates signaling interaction with the SMF.
  • the acquisition module 1501 receives the UPF after establishing an N4 connection with the active SMF, and the UPF detects the heartbeat between itself and the active SMF to determine the master.
  • the SMF fails, the status information of the active SMF sent by the UPF.
  • the obtaining module 1501 receives the non-UPF NF After the signaling interaction with the active SMF is established, the non-UPF NF detects the heartbeat or signaling interaction response between itself and the active SMF and determines that the active SMF fails. Use SMF status information.
  • Method 2 The acquisition module 1501 generates status information of the active SMF when it detects that the active SMF is faulty.
  • the acquisition module 1501 generates status information of the master SMF when it is determined that the master SMF fails through the heartbeat detection between the NRF itself and the master SMF.
  • the obtaining module 1501 obtains the standby SMF information of the active SMF, and then the sending module 1502 sends an SMF fault notification message to the standby SMF according to the standby SMF information.
  • the backup SMF information includes at least one of the following: a group identifier of the SMF, an instance identifier of the SMF, and an SMF fault indication callback address of the SMF.
  • the obtaining module 1501 obtains, from the NRF itself, the standby SMF information registered by the active SMF when receiving the NF registration request of the active SMF.
  • the SMF failure notification message includes at least one of the following: an SMF replacement indication, an identity of the replaced SMF, and a UE migration range indication.
  • the UE migration range indication includes any of the following: all UEs, UEs in a specified range, and UEs in a random range.
  • FIG. 16 is a user equipment UE migration apparatus applied to a backup SMF according to an embodiment of the present disclosure, including a receiving module 1601 and a migration module 1602.
  • the receiving module 1601 is configured to receive an SMF failure notification message sent by the NRF when the NRF determines that the active SMF fails.
  • the migration module 1602 is configured to migrate a UE on the active SMF to itself.
  • the active SMF is the currently used SMF, and its status information is used to indicate to the NRF that the active SMF is a faulty SMF.
  • the NRF detects a failure of the active SMF, it sends an SMF failure notification message to the standby SMF.
  • the receiving module 1601 receives the SMF failure notification message, it instructs the standby SMF to replace the failed SMF, and takes over the UE on the failed SMF.
  • the migration module 1602 migrates the UE on the primary SMF to the backup SMF itself, including but not limited to the following two ways.
  • the migration module 1602 obtains the context information of the UE on the primary SMF from the unstructured data storage function UDSF, and then updates the SMF information on the NF according to the context information, and migrates the UE from the primary SMF to the standby SMF itself.
  • the NF is a non-SMF NF that generates signaling interaction with the SMF.
  • the SMF dynamically stores data on the UDSF.
  • the migration module 1602 obtains the context from the UDSF.
  • the migration module 1602 obtains the context information of the UE on the master SMF from the master SMF information dynamically backed up in the local storage, and then updates the SMF information on the NF according to the context information, and migrates the UE from the master SMF.
  • the NF is a non-SMF NF that generates signaling interaction with the SMF. In other words, if there is no UDSF in the network, the SMF dynamically backs up the data to the standby SMF, and when a failure occurs, the migration module 1602 directly enables the context of the standby SMF local storage to recover.
  • the migration module 1602 determines the UE on the active SMF according to the UE migration range indication in the SMF failure notification message, and the migration module 1602 migrates the determined UE to the standby SMF itself. If the UE migration range is set to all UEs, the migration module 1602 migrates all UEs on the active SMF to the standby SMF itself. If the UE migration range is set to a UE in a specified range, the migration module 1602 migrates the specified UE on the active SMF to the standby SMF itself. If the UE migration range is set to an unspecified range, the migration module 1602 migrates the randomly determined UE to the standby SMF itself according to a local policy, which may be all or part of the UE.
  • the migration module 1602 migrates the UE on the active SMF also includes but is not limited to the following three ways:
  • the migration module 1602 uses a single UE as a unit, and updates the SMF information on the NF according to the context information of the UE.
  • updating the SMF information on the NF according to the context information of the UE includes at least one of the following:
  • the migration module 1602 provides a user plane function according to the context information of the UE.
  • the UPF sends an N4 session update request to update the SMF information on the UPF.
  • the N4 session update request includes an SMF replacement instruction and the main SMF information.
  • the migration module 1602 sends an SMF registration update request to the unified data management function UDM according to the context information of the UE.
  • the migration module 1602 sends an SM session state update request to the access management function AMF according to the context information of the UE to update the AMF SMF information, where the SM session state update request includes SMF replacement instructions and active SMF information; the migration module 1602 sends an SM policy update request to the policy control function PCF according to the context information of the UE to update the SMF information on the PCF, where:
  • the SM policy update request includes an SMF replacement instruction and active SMF information.
  • Method 2 The migration module 1602 uses a single NF as a unit, and updates the SMF information on the NF according to the context information of the UE.
  • updating the SMF information on the NF according to the context information of the UE includes at least one of the following:
  • the migration module 1602 provides each UPF according to the context information of the UE.
  • the migration module 1602 sends a NF replacement request to update the SMF information on the UPF, where the NF replacement request includes an SMF replacement instruction and the main SMF information; the migration module 1602 sends a NF replacement request to each UDM according to the context information of the UE to update the UMF SMF information, where the NF replacement request includes SMF replacement instructions and active SMF information; the migration module 1602 sends a NF replacement request to each AMF according to the context information of the UE to update the SMF information on the AMF, where the NF replacement request includes SMF Replacement instruction and active SMF information; the migration module 1602 sends an NF replacement request to each PCF according to the context information of the UE to update the SMF information on the PCF, where the NF replacement request includes the SMF replacement instruction and the active SMF information.
  • Method 3 The migration module 1602 uses a single UE as a unit, and updates the packet data unit PDU session according to the context information of the UE, so that the SMF information on the NF is updated.
  • the migration module 1602 when the migration module 1602 uses a single UE as a unit, the migration module 1602 sends an N1 / N2 message transmission request to the AMF according to the context information of the UE, and the N1 / N2 message transmission request includes a PDU session update request To enable the AMF to send a PDU session update request to the UE to update the PDU session.
  • the NRF obtains status information of the primary SMF.
  • the NRF determines that the active SMF fails according to the status information, it sends an SMF failure notification message to the standby SMF.
  • the standby SMF migrates the UE on the active SMF to itself according to the received SMF failure notification message. Therefore, the problem that the uplink and downlink data transmission of the UE fails due to the failure of the PDU session when the SMF fails is avoided, and the UEs on the failed SMF can be quickly migrated to the standby SMF in batches.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • an embodiment of the present disclosure further provides an NRF, which includes a first processor 1701, a first memory 1702, and a first communication bus 1703.
  • the first communication bus 1703 is configured to enable connection communication between the first processor 1701 and the first memory 1702.
  • the first processor 1701 is configured to execute one or more computer programs stored in the first memory 1702 to implement at least one step in the method for user equipment UE migration applied to the NRF side in the first embodiment described above.
  • an embodiment of the present disclosure further provides a standby SMF, which includes a second processor 1801, a second memory 1802, and a second communication bus 1803.
  • the second communication bus 1803 is configured to enable connection communication between the second processor 1801 and the second memory 1802.
  • the second processor 1801 is configured to execute one or more computer programs stored in the second memory 1802 to implement at least one step in the method for migrating the user equipment UE applied to the standby SMF side in the second embodiment described above.
  • an embodiment of the present disclosure further provides a user equipment UE migration system, which includes a third processor 1901, a third memory 1902, and a third communication bus 1903.
  • the third communication bus 1903 is configured to enable connection communication between the third processor 1901 and the third memory 1902.
  • the third processor 1901 is configured to execute one or more computer programs stored in the third memory 1902 to implement at least one of the user equipment UE migration methods applied to the system side including the NRF and the backup SMF in the third embodiment.
  • Embodiments of the present disclosure also provide a computer-readable storage medium included in any method or technology for storing information such as computer-readable instructions, data structures, computer program modules, or other data Implemented volatile or non-volatile, removable or non-removable media.
  • Computer-readable storage media include, but are not limited to, RAM (Random Access Memory), ROM (Read-Only Memory, Read-Only Memory), EEPROM (Electrically Erasable, Programmable, Read-Only Memory) ), Flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic box, magnetic tape, disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and can be accessed by a computer.
  • RAM Random Access Memory
  • ROM Read-Only Memory
  • Read-Only Memory Read-Only Memory
  • EEPROM Electrically Erasable, Programmable, Read-Only Memory
  • Flash memory or other memory technology
  • CD-ROM Compact Disc Read-Only Memory
  • DVD digital versatile disk
  • the computer-readable storage medium in this embodiment may be used to store one or more computer programs, and the stored one or more computer programs may be executed by a processor to implement the foregoing first embodiment, and / or the second embodiment, and And / or at least one step of the user equipment UE migration method in Embodiment 3.
  • This embodiment also provides a computer program, which can be distributed on a computer-readable medium and executed by a computable device to implement the first embodiment, and / or the second embodiment, and / or the third embodiment. At least one step of the user equipment UE migration method in; and in some cases, at least one step shown or described may be performed in an order different from that described in the above embodiments.
  • This embodiment also provides a computer program product including a computer-readable device, where the computer-readable device stores the computer program as shown above.
  • the computer-readable device in this embodiment may include a computer-readable storage medium as shown above.
  • NRF obtains status information of the primary SMF, and NRF sends an SMF failure notification message to the standby SMF when it determines that the primary SMF fails according to the status information , And then the standby SMF migrates the UE on the active SMF to itself according to the received SMF fault notification message, which can effectively solve the problem that the PDU session is invalidated due to the SMF failure and the uplink and downlink data of the UE cannot be delivered normally;
  • the present disclosure also provides a method for batch recovery of UEs on a failed SMF to a standby SMF, which can effectively save the overall time of SMF failure recovery.
  • a communication medium typically contains computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. Therefore, the present disclosure is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供UE迁移方法、装置、系统、NRF、备用SMF、及存储介质。在该UE迁移方法中,NRF获取主用SMF的状态信息,NRF根据状态信息确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息,然后备用SMF根据接收到的SMF故障通知消息将主用SMF上的待迁移UE迁移到备用SMF自身上。

Description

UE迁移方法、装置、系统、NRF、备用SMF及存储介质 技术领域
本公开涉及但不限于通信领域。
背景技术
3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)目前正在进行5G(5th Generation)系统的研究,根据3GPP标准工作组的定义,5G系统包括无线子系统5G RAN(5G Radio Access Network,5G无线接入系统)、5G核心网子系统5GC(5G Core,5G核心网)。5G系统由若干的NF(Network Function,网络功能)构成。
在一些情形下,若当前某个NF发生故障时,尤其是SMF(Session Management Function,会话管理功能)发生故障时,会直接导致相应的PDU(Packet Data Unit,分组数据单元)会话失效,使得UE(User Equipment,用户设备)的上下行数据无法正常投递。针对此问题,一种解决方案是在等候UE发起上行数据传输时,才能检测到SMF发生故障,进而才会恢复此PDU会话。但如果在SMF故障时,有下行数据发往UE,则无法触发PDU的恢复,使得下行数据的投递失败。
发明内容
本公开实施例提供了一种UE迁移方法,包括:NF存储功能NRF获取主用会话管理功能SMF的状态信息,所述状态信息用于指示所述主用SMF的故障状态;所述NRF在确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息;所述SMF故障通知消息用于触发所述备用SMF将所述主用SMF上的UE迁移到所述备用SMF自身上。
本公开实施例还提供了一种UE迁移方法,包括:备用SMF接收NRF在确定主用SMF发生故障时,所述NRF所发送过来的SMF故障通知消息;所述备用SMF将所述主用SMF上的UE迁移到所述备用SMF 自身上。
本公开实施例还提供了一种UE迁移方法,包括:NRF获取主用SMF的状态信息,所述状态信息用于指示所述主用SMF的故障状态;所述NRF确定所述主用SMF发生故障,而向备用SMF发送SMF故障通知消息;所述备用SMF在接收到所述SMF故障通知消息时,将所述主用SMF上的UE迁移到自身上。
本公开实施例还提供了一种用户设备UE迁移装置,应用于NRF,包括:获取模块,被配置为获取主用SMF的状态信息,所述状态信息用于指示所述主用SMF的故障状态;以及发送模块,被配置为在确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息;所述SMF故障通知消息用于触发所述备用SMF将所述主用SMF上的UE迁移到所述备用SMF自身上。
本公开实施例还提供了一种用户设备UE迁移装置,应用于备用SMF,包括:接收模块,被配置为接收NRF在确定主用SMF发生故障时,所述NRF所发送过来的SMF故障通知消息;以及迁移模块,被配置为将所述主用SMF上的UE迁移到所述迁移模块自身上。
本公开实施例还提供了一种用户设备UE迁移系统,包括:NRF和备用SMF;其中,所述NRF被配置为获取主用SMF的状态信息,并在确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息;其中,所述状态信息用于指示所述主用SMF的故障状态,所述SMF故障通知消息用于触发所述备用SMF将所述主用SMF上的UE迁移到所述备用SMF自身上;所述备用SMF被配置为接收NRF在确定主用SMF发生故障时,所述NRF所发送过来的SMF故障通知消息,并且所述备用SMF将所述主用SMF上的UE迁移到所述备用SMF自身上。
本公开实施例还提供了一种NRF,包括第一处理器、第一存储器和第一通信总线;所述第一通信总线被配置为实现所述第一处理器和所述第一存储器之间的连接通信;所述第一处理器被配置为执行所述第一存储器中存储的一个或者多个程序,以实现如上述所述的应用于NRF的UE迁移方法的步骤。
本公开实施例还提供一种备用SMF,包括第二处理器、第二存储 器和第二通信总线;所述第二通信总线被配置为实现所述第二处理器和所述第二存储器之间的连接通信;所述第二处理器被配置为执行所述第二存储器中存储的一个或者多个程序,以实现如上述所述的应用于备用SMF的UE迁移方法的步骤。
本公开实施例还提供一种用户设备UE迁移系统,包括第三处理器、第三存储器和第三通信总线;所述第三通信总线被配置为实现所述第三处理器和所述第三存储器之间的连接通信;所述第三处理器被配置为执行所述第三存储器中存储的一个或者多个程序,以实现如上述所述的应用于系统的UE迁移方法的步骤。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如上述所述的任一UE迁移方法的步骤。
附图说明
图1为相关技术中的5G系统的架构示意图;
图2为根据本公开的UDSF支持不同类别NF的无状态设计的示意图;
图3为相关技术中UE注册到5G网络的流程示意图;
图4为相关技术中UE注册到5G网络后发起PDU会话创建的流程示意图;
图5为根据本公开的实施例一的应用于NRF侧的UE迁移方法的流程示意图;
图6为根据本公开的实施例一的UPF检测到主用SMF故障时向NRF发送状态信息的流程图;
图7为根据本公开的实施例一的非UPF的NF检测到主用SMF故障时向NRF发送状态信息的流程图;
图8为根据本公开的实施例一的NRF根据SMF和NRF间的心跳检测确定SMF故障的流程示意图;
图9为根据本公开的实施例二的应用于备用SMF侧的UE迁移方法的流程示意图;
图10为根据本公开的实施例二的一种NRF在获知主用SMF故障后向备用SMF触发UE迁移的流程示意图;
图11为根据本公开的实施例二的另一种NRF在获知主用SMF故障后向备用SMF触发UE迁移的流程示意图;
图12为根据本公开的实施例二的又一种NRF在获知主用SMF故障后向备用SMF触发UE迁移的流程示意图;
图13为根据本公开的实施例三的应用于系统的UE迁移方法的流程示意图;
图14为根据本公开的实施例四的UE迁移系统的结构示意图;
图15为根据本公开的实施例四的应用于NRF的UE迁移装置的结构示意图;
图16为根据本公开的实施例四的应用于备用SMF的UE迁移装置的结构示意图;
图17为根据本公开的实施例五的NRF的结构示意图;
图18为根据本公开的实施例五的备用SMF的结构示意图;
图19为根据本公开的实施例五的UE迁移系统的结构示意图。
具体实施方式
图1是5G系统的架构示意图。5G系统由若干的NF(Network Function,网络功能)构成。在5G系统中,5G无线子系统部分主要包括NR(New Radio,新一代无线基站)。5G核心网子系统部分主要包含UDM(Unified Data Management,统一数据管理功能)、AMF(Access Management Function,接入管理功能)、SMF(Session Management Function,会话管理功能)、UPF(User Plane Function,用户面功能)以及PCF(Policy Control Function,策略控制功能)。UDM,即统一数据管理功能,其是用户签约数据的永久存放地点,位于用户签约的归属网。AMF,即接入管理功能,其对用户接入到网络的需求进行管理,并且负责终端到网络的NAS层(Non-Access  Stratum,非接入层)信令管理、用户移动性管理等功能。SMF,即会话管理功能,其管理用户的PDU(Packet Data Unit,分组数据单元)会话、QoS(Quality of Service,服务质量)流,并且为UPF制定包检测和转发规则等。UPF,即用户面功能,其负责IP数据、非IP数据的路由和转发、用量上报等功能。PCF,即策略控制功能,其负责为AMF、SMF提供各级别策略规则。主要的NF还包括DN(Data Network,数据网络),例如运营商服务,网络接入,第三方服务;以及AF(Application Function,应用功能),其对AF会话进行管理。
在相关技术中,5G网络支持NF的无状态化设计。无状态化设计,意味着服务于UE的同一类NF在前后两个流程中可以更换。例如,在前后两个流程中,AMF可以更换。为了保证更换NF后流程可以正常执行,UE的上下文信息需要存储到UDSF(Unstructured Data Storage Function,非结构化数据存储功能)上。此外,需要保证同一类NF(例如AMF)可以相互存取在UDSF上的UE上下文信息。但是,不同类别的NF,原则上不可以相互存取在UDSF上的UE上下文信息。图2为UDSF支持不同类别NF(例如,AMF、SMF、UDM、PCF)的无状态设计的示意图。不同类别的NF,使用不同的接口来存取UDSF上的UE上下文信息。
基于NF的无状态设计,使得在某个NF故障时,该故障NF的同类NF可基于UDSF上的UE上下文,接替故障NF的流程。
但是,对于NF故障下的NF切换,尤其是对于在SMF故障时,将UE的PDU会话迁移到其他SMF,还未提出标准化的解决方案。NF故障下的NF切换基本依赖于具体产品的实现,例如,互为主备的NF之间相互探测并发起UE的PDU会话的迁移。因此,亟需提供一种在SMF故障时,将故障SMF上的UE进行迁移的方法。
应当说明的是,在相关技术中,UE注册到5G网络,并向5G网络发起PDU会话创建的相关流程。经过这些流程,UE才能从5G网络获得分组数据服务。
图3是UE注册到5G网络的流程示意图,包括如下步骤S301至 S314。
在步骤S301中,UE向gNB发送注册请求(Registration Request)。
在步骤S302中,gNB根据条件,选择合适的AMF。
在步骤S303中,gNB向AMF转发UE的注册请求。
在步骤S304中,如果UE没有提供SUCI(Subscription Concealed Identifier,加密签约标识),则AMF向UE发送身份请求(Identification Request)。
在步骤S305中,UE响应身份请求而向AMF返回所请求的SUCI。
在步骤S306中,AMF为UE选择合适的AUSF(Authentication Server Function,鉴权服务器功能),用以执行鉴权操作。
在步骤S307中,AUSF发起对UE的身份认证和鉴权流程。
在步骤S308中,AMF为UE选择合适的UDM。
在步骤S309中,AMF向UDM发起AMF注册,UDM接收AMF注册,登记为UE服务的AMF信息。
在步骤S310中,AMF向UDM发送签约请求,获取UE的移动性管理相关签约。UDM接收AMF的请求,并向AMF发送相关签约数据。
在步骤S311中,AMF为UE选择合适的PCF。
在步骤S312中,AMF向PCF发送移动性策略请求。PCF接收AMF请求,并向AMF返回移动性策略数据(AM Policy)。
在步骤S313中,AMF向UE返回注册接收响应(Registration Accept)。
在步骤S314中,UE收到AMF的注册接收响应后,向AMF发送注册接收消息(Registration Complete)。
另外,在UE成功注册到5G网络后,UE可以发起PDU会话的创建。图4是在UE注册到5G网络后,发起PDU会话创建的流程示意图,具有如下步骤S401至S416。
在步骤S401中,UE向AMF发送PDU会话建立请求(PDU Session Establishment Request)。
在步骤S402中,AMF根据UE的PDU会话建立请求,例如根据 UE请求的DNN(Data Network Name,数据网络名称),为UE选择合适的SMF。
在步骤S403中,AMF向SMF发送创建SM会话上下文请求(Create SMContext Request)。
在步骤S404中,SMF向UDM发起会话签约数据获取流程。UDM向SMF返回UE的会话签约数据。
在步骤S405中,SMF向AMF返回创建SM会话上下文响应(Create SMContext Response)。
在步骤S406中,SMF选择合适的PCF。如果AMF在前述步骤中提供了AMF选择的PCF,则SMF使用该PCF。
在步骤S407中,SMF向PCF发送会话策略请求。PCF接收SMF请求,并向SMF返回会话策略数据(SM Policy)。
在步骤S408中,SMF根据DNN、UE位置等信息,选择合适的UPF。
在步骤S409中,SMF向UPF发送N4会话建立请求(N4 Session Establishment Request)。UPF响应SMF的请求,建立N4会话,并向SMF返回N4会话建立响应(N4 Session Establishment Response)。
在步骤S410中,在N4会话成功建立后,SMF向AMF发送N1/N2消息传输请求(N1/N2 Message Transfer),携带PDU会话的上下文信息,例如:创建的QoS流列表、UPF分配的上行F-TEID(Full Qualified Tunnel Endpoint Identifier,全量隧道端点标识)等。
在步骤S411中,AMF向gNB发送N2接口PDU会话请求(N2 PDU Session Request)消息,其中携带AMF要发送给UE的NAS消息(Non-access stratum,非接入层)。NAS消息中包括需要发送给UE的PDU会话上下文的部分信息。
在步骤S412中,gNB向UE发送无线资源建立(AN Resource Setup)请求,并且根据AMF提供的PDU会话信息,为UE建立合适的无线承载。
在步骤S413中,在创建无线资源后,gNB向AMF返回N2接口PDU会话接收(N2 PDU Session ack)消息,其中携带gNB分配的N3接口资源,例如gNB的F-TEID。
在步骤S414中,AMF向SMF发送更新SM会话上下文请求(Update SMContext Request),用以更新UPF在N3接口上的远端F-TEID,即更新UPF上的gNB的F-TEID。
在步骤S415中,SMF向UPF发送N4会话更新请求(N4 Session Update Request),并更新N3接口上gNB的F-TEID。UPF向SMF返回N4会话更新响应。
在步骤S416中,SMF向AMF返回更新SM会话上下文响应(Update SMContext Response)。
本公开提供的UE迁移方法、NRF、备用SMF、系统及存储介质,主要解决的技术问题是相关技术中在SMF发生故障时,造成PDU会话失效,导致UE的上下行数据都将无法正常投递。
为了使本公开的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本公开实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
实施例一:
为了解决相关技术中在SMF发生故障时,PDU会话失效,导致UE的上下行数据传输失败的技术问题,本公开的实施例提供一种用户设备(UE)迁移方法,本实施例提供的UE迁移方法应用于NRF侧。如图5所示,本实施例提供的UE迁移方法包括步骤S501和S502。
在步骤S501中,NF存储功能NRF(NF Repository Function)获取主用会话管理功能SMF的状态信息。状态信息用于指示主用SMF的故障状态。
在步骤S502中,NRF确定主用SMF发生故障,而向备用SMF发送SMF故障通知消息。SMF故障通知消息用于触发备用SMF将主用SMF上的UE迁移到备用SMF自身上。
下面将详细描述步骤S501。
NRF,即NF存储功能,其支持网络功能服务注册登记、状态监测等,被配置为实现网络功能服务自动化管理、选择和可扩展。在本 公开的实施例中,主用SMF为当前所使用的SMF,其状态信息用于向NRF指示该主用SMF为故障SMF。在本实施例中的一些实施方式中,主用SMF的状态信息包括以下至少之一:SMF实例化标识、SMF节点标识、SMF故障指示。其中,该状态信息(即,NF状态信息)可以携带SMF故障指示,以及故障SMF的SMF实例化标识。
应当说明的是,NRF获取主用SMF的状态信息包括但不限于以下两种方式。
方式一:NRF接收网络功能NF检测到主用SMF发生故障时,NF发送过来的主用SMF的状态信息;其中,NF为与SMF产生信令交互的非SMF的NF。
在本实施例的一种实施方式中,非SMF的NF检测主用SMF是否发生故障。在检测到主用SMF发生故障时,非SMF的NF向NRF发送状态信息,以使NRF获知主用SMF当前发生故障。
在本实施例的一些实施方式中,在该非SMF的NF为UPF时,UPF在建立与主用SMF的N4连接之后,通过检测UPF自身和主用SMF之间的心跳而确定主用SMF发生故障,继而UPF向NRF发送SMF的状态信息。图6为本实施例提供的UPF检测到主用SMF故障时向NRF发送状态信息的流程图,包括以下步骤S601至S612。
在步骤S601中,AMF收到创建PDU会话请求。该创建PDU会话请求可以来自于UE。
在步骤S602中,AMF为UE选择合适的SMF作为主用SMF,并向主用SMF发送创建SM会话上下文请求。
在步骤S603中,主用SMF向AMF返回创建SM会话上下文响应。
在步骤S604中,主用SMF选择合适的UPF。
在步骤S605中,主用SMF向UPF发送N4连接建立请求,用以建立主用SMF和UPF之间的连接。
在本实施例的一些实施方式中,该N4连接建立请求可以携带SMF实例化标识(SMF Instance ID)。
在步骤S606中,UPF接收N4连接建立请求,和主用SMF建立N4连接,并返回N4连接建立响应。
在步骤S607中,主用SMF向UPF发送N4会话建立请求,用以为UE建立N4会话。
在本实施例的一些实施方式中,该N4会话建立请求可以携带SMF实例化标识。
应当说明的是,主用SMF可以在向UPF建立N4连接时、也可以在向UPF建立N4会话时,向UPF提供自身的SMF实例化标识,在此不作唯一限定。
另外,本实施例的一些实施方式中,该N4会话建立请求还可以携带连接分组ID(Connection Set ID,CSID)。该CSID,可以将若干UE的若干N4会话关联在一起,可在主用SMF故障时由另一个SMF一起接管。
在步骤S608中,UPF建立N4会话后,向主用SMF返回N4会话建立响应。
在步骤S609中,主用SMF继续执行创建PDU会话。
创建PDU会话的后续流程步骤包括:主用SMF向AMF发送N1/N2消息传输请求;AMF向gNB发送N2接口PDU会话请求;gNB向UE发送无线资源建立请求;在创建无线资源后,gNB向AMF返回N2接口PDU会话接收消息;AMF向主用SMF发送更新SM会话上下文请求;主用SMF向UPF发送N4会话更新请求;主用SMF向AMF返回更新SM会话上下文响应。
在步骤S610中,在主用SMF和UPF建立N4连接后,主用SMF和UPF之间周期性发起心跳检测。
其中,主用SMF和UPF间的心跳检测可以是主用SMF向UPF发送N4心跳请求,UPF返回N4心跳响应。主用SMF和UPF间的心跳检测也可以是UPF向主用SMF发送N4心跳请求,主用SMF返回N4心跳响应。另外,应当说明的是,主用SMF和UPF之间的心跳检测只要在步骤S606的N4连接建立之后的任何步骤均可执行,而并非唯一限定于步骤S609的创建PDU会话步骤之后。
在步骤S611中,当UPF判断主用SMF发生故障时,UPF向NRF发送指示主用SMF发生故障的状态信息。
当主用SMF故障时,UPF和主用SMF之间的心跳检测会失败,在多次心跳检测失败后,UPF可判断主用SMF发生故障。
在步骤S612中,NRF根据收到的状态信息,确定主用SMF发生故障。
另外,本实施例的另一些实施方式中,NF为非用户面功能UPF的NF,即NF为AMF、PCF、UDM等。在该非UPF的NF与主用SMF的建立信令交互之后,该非UPF的NF根据其与主用SMF之间的心跳检测或信令交互响应情况,而确定主用SMF发生故障时,该非UPF的NF向NRF发送主用SMF的状态信息。图7为本实施例提供的非UPF的NF检测到主用SMF故障时向NRF发送状态信息的流程图,包括步骤S701至S708。
在步骤S701中,非UPF的NF和主用SMF产生消息流程的交互。由于消息流程的交互需要,非UPF的SMF服务的使用者,例如AMF、PCF、UDM等,和SMF产生消息流程的交互。
在步骤S702中,非UPF的NF向主用SMF发送心跳请求消息。
在步骤S703中,主用SMF向非UPF的NF返回心跳响应消息。
在步骤S704中,在非UPF的NF和主用SMF仍然存在流程交互时,该非UPF的NF周期性地向主用SMF发送心跳请求。
在步骤S705中,在主用SMF发生故障时,主用SMF无法响应该非UPF的NF的心跳请求。在一些实施方式中,可以是多次心跳请求无响应后,该非UPF的NF可判断主用SMF发生了故障。
在步骤S706中,非UPF的NF向NRF发送指示主用SMF发生故障的状态信息。
在步骤S707中,NRF收到状态信息后,向非UPF的NF返回响应消息。
在步骤S708中,NRF根据状态信息确定主用SMF发生故障。
方式二:NRF在自身检测到主用SMF发生故障时,生成主用SMF的状态信息。
其中,本实施例的一些实施方式中,NRF通过自身与主用SMF之间的心跳检测来确定主用SMF是否发生故障。NRF在主用SMF发生 故障时,生成主用SMF的状态信息。图8为本实施例提供的NRF根据SMF和NRF间的心跳检测确定SMF故障的流程示意图,包括步骤S801至S806。
在步骤S801中,主用SMF向NRF发送NF注册请求,携带SMF配置参数,以及备用SMF信息。
在步骤S802中,NRF向主用SMF返回NF注册响应,并携带心跳时间。
在步骤S803中,主用SMF从NRF收到心跳时间后,按心跳时间的要求,周期性地向NRF发送心跳请求消息。
所谓心跳消息,本质上是一次NF注册更新,该注册更新仅携带NF状态信息,例如:活动/不活动、负荷因子等。
在步骤S804中,NRF向SMF返回心跳响应消息。
在步骤S805中,若主用SMF发生故障,则主用SMF无法继续向NRF发送心跳请求消息。
在步骤S806中,在预设次数内未收到主用SMF的心跳消息后,NRF确定主用SMF发生故障。
如上文所述,在如图5所示的步骤S502,NRF确定主用SMF发生故障,而向备用SMF发送SMF故障通知消息。SMF故障通知消息用于触发备用SMF将主用SMF上的UE迁移到备用SMF自身上。下面将详细描述步骤S502。
当NRF检测到主用SMF发生故障时,可向备用SMF发送SMF故障通知消息,触发备用SMF替换故障SMF,并接管故障SMF上的UE。
进一步地,向备用SMF发送SMF故障通知消息包括:NRF获取主用SMF的备用SMF信息;NRF根据备用SMF信息向备用SMF发送SMF故障通知消息。其中,备用SMF信息包括以下至少之一:SMF分组标识、SMF实例化标识、SMF故障指示回调地址。
其中,SMF分组标识(SMF Set ID)用于标识一组具有相同或相似特征的SMF,归属同一组的SMF相互之间互为备份。在主用SMF的SMF配置参数中,可设置SMF分组标识。NRF可根据SMF分组标识,查询具有相同SMF分组标识的其他SMF作为备用SMF。
其中,SMF实例化标识(SMF Instance ID)用于唯一标识一个指定的SMF。在主用SMF的SMF配置参数中的备用SMF信息中,可指定若干备用SMF的SMF实例化标识,则NRF可根据此备用SMF的SMF实例化标识,确定地选择某一个作为备用SMF。
SMF故障指示回调地址(callback URI for SMF restoration),供SMF用以接收SMF故障指示。SMF故障指示回调地址,可配置在SMF配置参数中,或SMF配置参数的备用SMF信息中。当在SMF故障指示回调地址配置在SMF配置参数中,则表示该SMF自身的SMF故障指示回调地址。当SMF故障指示回调地址配置在SMF配置参数的备用SMF信息中,则表示通过备用SMF信息中的SMF故障指示回调地址指定了该SMF的备用SMF。
在本实施例的一些实施方式中,NRF从自身获取主用SMF向NRF执行NF注册时所提供的备用SMF信息。
其中,首先,主用SMF向NRF发送NF注册请求,携带SMF配置参数,应当说明的是,SMF还携带如下信息之一或组合:SMF分组标识(SMF Set ID)、SMF故障指示回调地址、备用SMF信息。备用SMF信息中,可以包含备用SMF列表,列表中包含备用SMF的SMF实例化标识(SMF Instance ID)、和/或备用SMF的SMF故障指示回调地址。然后,NRF接收并处理SMF的NF注册请求,向SMF返回NF注册响应,从而主用SMF将备用SMF信息注册到NRF上。
在本实施例的一些实施方式中,SMF故障通知消息包括以下至少之一:SMF替换指示、被替换SMF的标识、UE迁移范围指示。
其中,SMF替换指示(SMF Replacement Indication)指示需要替换指定的SMF。被替换SMF的标识(Replaced SMF Instance ID)可以为如SMF实例化标识(SMF Instance ID)。UE迁移范围指示(UE Scope Indication)则是指示需要迁移的UE范围。
另外,UE迁移范围指示包括以下任一种:全部UE、指定范围的UE、随机范围的UE。
其中,全部UE指示备用SMF将全部UE从发生故障的主用SMF上迁移到备用SMF上。指定范围的UE指示备用SMF将特定范围的UE 从主用SMF上迁移到备用SMF上。随机范围的UE则是不指定具体的UE范围,而由备用SMF根据本地策略、或由UDSF决定,将全部或部分UE从主用SMF上迁移到备用SMF上。
通过本公开实施例提供的UE迁移方法,在某些实施过程中,NRF获取主用SMF的状态信息,NRF根据状态信息确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息,以触发备用SMF将主用SMF上的UE迁移到备用SMF自身上,避免了SMF故障时因PDU会话失效而导致UE的上下行数据传输失败的问题,并能批量的将故障SMF上的UE快速迁移到备用SMF上。
实施例二:
为了解决相关技术中在SMF发生故障时,因PDU会话失效而导致UE的上下行数据传输失败的技术问题,本公开实施例提供一种UE迁移方法,如图9所示,本实施例提供的UE迁移方法应用于备用SMF侧,该UE迁移方法包括步骤S901和S902。
在步骤S901中,备用SMF接收NRF所发送过来的SMF故障通知消息。
在本公开实施例中,主用SMF为当前所使用的SMF,其状态信息用于向NRF指示该主用SMF为故障SMF。当NRF检测到主用SMF发生故障时,则向备用SMF发送SMF故障通知消息,指示备用SMF替换故障SMF,并接管故障SMF上的UE。
在步骤S902中,备用SMF将主用SMF上的UE迁移到自身上。
在本公开实施例中,备用SMF迁移主用SMF上的UE至备用SMF自身上包括但不限于以下两种方式。
方式一:备用SMF从非结构化数据存储功能UDSF获取主用SMF上的UE的上下文信息。备用SMF根据UE的上下文信息更新NF上的SMF信息,而将UE从主用SMF上迁移到自身上。其中,NF为与SMF产生信令交互的非SMF的NF。换言之,如果网络中存在UDSF,则SMF动态的将数据存储在UDSF上,当发生故障时备用SMF去UDSF获取上下文。
方式二:备用SMF从本地存储所动态备份的主用SMF信息中,获取主用SMF上的UE的上下文信息。备用SMF根据UE的上下文信息更新NF上的SMF信息,而将UE从主用SMF上迁移到自身上。其中,NF为与SMF产生信令交互的非SMF的NF。换言之,如果网络中不存在UDSF,则SMF动态的将数据备份到备用SMF中,发生故障时备用SMF直接启用本地存储的上下文进行恢复。
在本实施例的一些实施方式中,备用SMF根据SMF故障通知消息中的UE迁移范围指示确定主用SMF上所需迁移的UE。备用SMF将所确定的UE迁移到自身上。若UE迁移范围设置为全部UE,备用SMF将主用SMF上的所有UE迁移到自身上。若UE迁移范围设置为指定范围的UE,备用SMF将主用SMF上的指定的UE迁移到自身上。若UE迁移范围设置为不指定范围,备用SMF根据本地策略将随机确定的UE(可以是全部或者部分UE)迁移到自身上,。
另外,在本公开实施例中,备用SMF迁移主用SMF上的UE还包括但不限于以下三种方式。
方式一:备用SMF以单个UE为单位,而根据UE的上下文信息更新NF上的SMF信息。
在本实施例的一些实施方式中,在备用SMF以单个UE为单位时,根据UE的上下文信息更新NF上的SMF信息包括以下至少之一:备用SMF根据UE的上下文信息向用户面功能UPF发送N4会话更新请求,以更新UPF上的SMF信息,其中,N4会话更新请求包括SMF替换指示、主用SMF信息;备用SMF根据UE的上下文信息向统一数据管理功能UDM发送SMF注册更新请求,以更新UDM上的SMF信息,其中,SMF注册更新请求包括SMF替换指示、主用SMF信息;备用SMF根据UE的上下文信息向接入管理功能AMF发送SM会话状态更新请求,以更新AMF上的SMF信息,其中,SM会话状态更新请求包括SMF替换指示、主用SMF信息;备用SMF根据UE的上下文信息向策略控制功能PCF发送SM策略更新请求,以更新PCF上的SMF信息,其中,SM策略更新请求包括SMF替换指示、主用SMF信息。图10为本实施例提供的一种NRF在获知主用SMF故障后,向备用SMF触发UE迁移的 流程示意图,包括步骤S1001至S1014。
在步骤S1001中,NRF检测到主用SMF故障。
NRF可以根据实施例一中的方式检测到主用SMF故障,则NRF从SMF配置参数(SMF Profile)中获取备用SMF信息,以通知备用SMF接管故障SMF的UE。
在步骤S1002中,NRF向备用SMF发送SMF故障通知消息,以触发备用SMF替换指定SMF,并接管指定SMF下的全部或部分UE。
在本步骤中,SMF故障通知消息携带有故障SMF的SMF实例化标识。另外,在一些实施方式中,SMF故障通知消息还可以携带有至少如下信息之一:SMF替换指示、UE迁移范围指示、NF替换原因。UE迁移范围指示可以是如下之一:全部UE、指定范围的UE、随机范围。NF替换原因可以如SMF故障。在本公开的实施例中,故障SMF即发生故障的主用SMF。
在步骤S1003中,备用SMF向NRF返回SMF故障通知响应。
在步骤S1004中,备用SMF向UDSF查询发生故障SMF的UE上下文信息。
根据UE迁移范围不同,备用SMF使用如下方式a)至c)中的一种向UDSF查询故障SMF的UE上下文信息。
方式a),如果UE迁移范围设置为全部UE,则备用SMF从UDSF获取故障SMF下全部的UE上下文信息。
方式b),如果UE迁移范围设置为指定范围的UE,则备用SMF将所述UE范围提供给UDSF,从UDSF获取故障SMF下指定范围的UE上下文信息。
方式c),如果UE迁移范围设置为随机范围的UE,则备用SMF使用本地策略、或按UDSF策略,从UDSF获取故障SMF下全部或部分的UE上下文信息。
备用SMF从UDSF获取的UE上下文信息,包括如下信息之一或组合:PDU会话上下文、N4会话上下文、UDM注册信息、AMF信息、PCF信息。
在步骤S1005中,根据备用SMF的请求,UDSF向备用SMF返回 所请求的故障SMF的UE上下文信息列表。
备用SMF获取每一UE的UE上下文信息,包括PDU会话上下文、N4会话上下文、UDM注册信息、AMF信息、PCF信息等。
在步骤S1006中,备用SMF绝对针对每一UE,更新在其他NF上的SMF信息。
备用SMF从获取的故障SMF的UE上下文信息列表中,获取每一个UE的UE上下文信息。根据所述UE上下文信息,备用SMF恢复SMF和UPF的N4会话(步骤S1007至S1008)、更新SMF在UDM上的SMF注册信息(步骤S1009至S1010)、更新SMF在AMF上的信息(步骤S1011至S1012)、并且更新SMF在PCF上的信息(步骤S1013至S1014)。
在步骤S1007中,备用SMF决定更新UPF上UE的N4会话。
在SMF向UPF发起N4会话更新请求前,备用SMF首先和UPF建立N4连接。
在步骤S1008中,备用SMF向UPF发送N4会话更新请求,指示UPF更新N4会话的SMF信息。UPF向备用SMF返回N4会话更新响应。
在本步骤中,备用SMF在发送N4会话更新请求时,携带如下信息:SMF替换指示、原SMF信息(old SMF info)。原SMF信息可以包括如下信息之一或组合:SMF节点标识(SMF Node ID)、SMF实例化标识(SMF Instance ID)。另外,备用SMF还可以携带目标SMF信息(new SMF info)。目标SMF信息可以包括如下信息之一或组合:SMF节点标识(SMF Node ID)、SMF实例化标识(SMF Instance ID)。
在步骤S1009中,备用SMF决定更新UDM上的SMF注册信息。
在步骤S1010中,备用SMF向UDM发送SMF注册更新请求,指示UDM更新SMF注册信息,UDM向备用SMF返回SMF注册更新响应。
在本步骤中,备用SMF在发送SMF注册更新请求时,携带如下信息:UE标识(如SUPI)、SMF替换指示、原SMF信息(old SMF info)。另外,备用SMF还可以携带目标SMF信息(new SMF info)。
在步骤S1011中,备用SMF决定更新AMF上的SMF信息。
在步骤S1012中,备用SMF向AMF发送SM会话状态通知请求, 指示AMF更新SMF信息。AMF向备用SMF返回SM会话状态通知响应。
在本步骤中,备用SMF在发送SM会话状态通知请求时,也可以携带如下信息:UE标识(如SUPI)、SMF替换指示、原SMF信息(old SMF info)。另外,备用SMF还可以携带目标SMF信息(new SMF info)。
在步骤S1013中,备用SMF决定更新PCF上的SMF信息。
在步骤S1014中,备用SMF向PCF发送SM策略更新请求,指示PCF更新SMF信息。PCF向备用SMF返回SM策略更新响应。
在本步骤中,备用SMF在发送SM会话策略更新请求时,也可以携带如下信息:UE标识(如SUPI)、SMF替换指示、原SMF信息(old SMF info)。另外,备用SMF还可以携带目标SMF信息(new SMF info)。
方式二:备用SMF以单个NF为单位,而根据UE的上下文信息更新NF上的SMF信息。
在本实施例的一些实施方式中,在备用SMF以单个NF为单位时,根据UE的上下文信息更新NF上的SMF信息包括以下至少之一:备用SMF根据UE的上下文信息向每个UPF发送NF替换请求,以更新UPF上的SMF信息,其中,NF替换请求包括SMF替换指示、主用SMF信息;备用SMF根据UE的上下文信息向每个UDM发送NF替换请求,以更新UDM上的SMF信息,其中,NF替换请求包括SMF替换指示、主用SMF信息;备用SMF根据UE的上下文信息向每个AMF发送NF替换请求,以更新AMF上的SMF信息,其中,NF替换请求包括SMF替换指示、主用SMF信息;备用SMF根据UE的上下文信息向每个PCF发送NF替换请求,以更新PCF上的SMF信息,其中,NF替换请求包括SMF替换指示、主用SMF信息。图11为本实施例提供的另一种NRF在获知主用SMF故障后,向备用SMF触发UE迁移的流程示意图,包括步骤S1101至S1113。
S1101至S1105和图10所对应的实施方式中的步骤S1001至S1005相同,在此不再赘述。
在本实施例中,备用SMF绝对针对每一NF,更新在其他NF上的SMF信息。换言之,备用SMF从获取的故障SMF的UE上下文信息中,列举和SMF关联的UPF、UDM、AMF、PCF等,分别向每个UPF、UDM、 AMF、PCF发送NF替换请求。
在步骤S1106中,对每一个UPF,备用SMF决定更新UPF上的SMF信息。
在步骤S1107中,备用SMF向UPF发送NF替换请求,指示UPF更新SMF信息。UPF向备用SMF返回NF替换响应。
在步骤S1108中,对每一个UDM,备用SMF决定更新UDM上的SMF信息。
在步骤S1109中,备用SMF向UDM发送NF替换请求,指示UDM更新SMF信息。UDM向备用SMF返回NF替换响应。
在步骤S1110中,对每一个AMF,备用SMF决定更新AMF上的SMF信息。
在步骤S1111中,备用SMF向AMF发送NF替换请求,指示AMF更新SMF信息。AMF向备用SMF返回NF替换响应。
在步骤S1112中,对每一个PCF,备用SMF决定更新PCF上的SMF信息。
在步骤S1113中,备用SMF向PCF发送NF替换请求,指示PCF更新SMF信息。PCF向备用SMF返回NF替换响应。
在步骤S1107、S1109、S1111、S1113中,备用SMF在发送NF替换请求时,可以携带如下信息:SMF替换指示、原SMF信息。进一步地,备用SMF还可以携带如下信息:目标SMF信息。应当说明的是,原SMF信息中和目标SMF信息均包括对应的SMF实例化标识。
方式三:备用SMF以单个UE为单位,而根据UE的上下文信息更新分组数据单元PDU会话,以使NF上的SMF信息被更新。
在本实施例的一些实施方式中,在备用SMF以单个UE为单位时,备用SMF根据UE的上下文信息向AMF发送N1/N2消息传输请求,N1/N2消息传输请求包括PDU会话更新请求,以使AMF向UE发送PDU会话更新请求而对PDU会话进行更新。图12为本实施例提供的又一种NRF在获知主用SMF故障后,向备用SMF触发UE迁移的流程示意图,包括步骤S1201至S1209。
S1201至S1205和图10所对应的实施方式中的步骤S1001至 S1005相同,在此不再赘述。
在步骤S1206中,备用SMF绝对针对每一UE,发起PDU会话更新流程。
备用SMF从获取的发生故障的主用SMF的UE上下文信息列表中,获取每一个UE的UE上下文信息,使用所述UE上下文信息,发起PDU会话更新流程。
在步骤S1207中,备用SMF向AMF发送N1/N2消息传输请求,其中携带PDU会话更新请求。
在本步骤中,备份SMF可以携带如下信息:SMF替换指示、原SMF信息。进一步地,备用SMF还可以携带如下信息:目标SMF信息。应当说明的是,原SMF信息中和目标SMF信息均包括对应的SMF实例化标识。
在步骤S1208中,AMF向UE发送PDU会话更新请求。
在步骤S1209中,继续执行PDU会话更新,以使SMF和UPF、SMF和UDM、SMF和AMF、SMF和PCF之间的会话或信息关联均被更新。也就是说,UPF、UDM、AMF、PCF上的原SMF(发生故障的主用SMF)信息被更新为新SMF(备用SMF)信息。
通过本公开实施例提供的UE迁移方法,在某些实施过程中,备用SMF接收NRF在确定主用SMF发生故障时,所发送过来的SMF故障通知消息。备用SMF根据SMF故障通知消息确定主用SMF发生故障后,将主用SMF上的UE迁移到自身上。由此,避免了SMF故障时因PDU会话失效而导致UE的上下行数据传输失败的问题,并能批量的将故障SMF上的UE快速迁移到备用SMF上。
实施例三:
为了解决相关技术中在SMF发生故障时,造成PDU会话失效,导致UE的上下行数据传输失败的技术问题,本公开实施例提供一种UE迁移方法,本实施例提供的UE迁移方法应用于包括NRF和备用SMF的系统侧。如图13所示,该UE迁移方法包括步骤S1301至S1303。
在步骤S1301中,NRF获取主用SMF的状态信息。状态信息用于 指示主用SMF发生故障。
在本公开实施例中,NRF获取主用SMF的状态信息包括但不限于以下两种方式。
方式一:NRF接收网络功能NF检测到主用SMF发生故障时,NF所发送过来的主用SMF的状态信息。其中,NF为与SMF产生信令交互的非SMF的NF。
本实施例的一些实施方式中,在非SMF的NF为UPF的情况下,UPF在建立与主用SMF的N4连接之后,检测自身和主用SMF之间的心跳而确定主用SMF发生故障时,NRF接收UPF所发送过来的主用SMF的状态信息。
另外,本实施例的另一些实施方式中,在NF为非用户面功能UPF的NF(即,该NF为AMF、PCF、UDM等)的情况下,非UPF的NF在建立与主用SMF的信令交互之后,检测自身与主用SMF之间的心跳或信令交互响应情况而确定主用SMF发生故障时,NRF接收该非UPF的NF所发送过来的主用SMF的状态信息。
方式二:NRF在自身检测到主用SMF发生故障时,生成主用SMF的状态信息。
本实施例的一些实施方式中,NRF在通过自身与主用SMF之间的心跳检测而确定主用SMF发生故障时,生成主用SMF的状态信息。
在步骤S1302中,NRF确定主用SMF发生故障,而向备用SMF发送SMF故障通知消息。
在本实施例的一些实施方式中,NRF获取主用SMF的备用SMF信息,而NRF根据备用SMF信息向备用SMF发送SMF故障通知消息。其中,备用SMF信息包括以下至少之一:SMF的分组标识、SMF的实例化标识、SMF的SMF故障指示回调地址。
在本实施例的一些实施方式中,NRF从自身获取在接收到主用SMF的NF注册请求时,由主用SMF所注册的备用SMF信息。
在本实施例的一些实施方式中,SMF故障通知消息包括以下至少之一:SMF替换指示、被替换SMF的标识、UE迁移范围指示。
UE迁移范围指示包括以下任一种:全部UE、指定范围的UE、随 机范围的UE。
在步骤S1303中,备用SMF在接收到SMF故障通知消息时,将主用SMF上的UE迁移到自身上。
在本公开实施例中,备用SMF迁移主用SMF上的UE至备用SMF自身上包括但不限于以下两种方式。
方式一:备用SMF从非结构化数据存储功能UDSF获取主用SMF上的UE的上下文信息。备用SMF根据上下文信息更新NF上的SMF信息,而将UE从主用SMF上迁移到自身上。其中,NF为与SMF产生信令交互的非SMF的NF。
方式二:备用SMF从本地存储所动态备份的主用SMF信息中,获取主用SMF上的UE的上下文信息。备用SMF根据上下文信息更新NF上的SMF信息,而将UE从主用SMF上迁移到自身上。其中,NF为与SMF产生信令交互的非SMF的NF。
另外,在本公开实施例中,备用SMF迁移主用SMF上的UE还包括但不限于以下三种方式。
方式一:备用SMF以单个UE为单位,而根据UE的上下文信息更新NF上的SMF信息。
在本实施例的一些实施方式中,在备用SMF以单个UE为单位时,根据UE的上下文信息更新NF上的SMF信息包括以下至少之一:备用SMF根据UE的上下文信息向用户面功能UPF发送N4会话更新请求,以更新UPF上的SMF信息,其中,N4会话更新请求包括SMF替换指示、主用SMF信息;备用SMF根据UE的上下文信息向统一数据管理功能UDM发送SMF注册更新请求,以更新UDM上的SMF信息,其中,SMF注册更新请求包括SMF替换指示、主用SMF信息;备用SMF根据UE的上下文信息向接入管理功能AMF发送SM会话状态更新请求,以更新AMF上的SMF信息,其中,SM会话状态更新请求包括SMF替换指示、主用SMF信息;备用SMF根据UE的上下文信息向策略控制功能PCF发送SM策略更新请求,以更新PCF上的SMF信息,其中,SM策略更新请求包括SMF替换指示、主用SMF信息。
方式二:备用SMF以单个NF为单位,而根据UE的上下文信息 更新NF上的SMF信息。
在本实施例的一些实施方式中,在备用SMF以单个NF为单位时,根据UE的上下文信息更新NF上的SMF信息包括以下至少之一:备用SMF根据UE的上下文信息向每个UPF发送NF替换请求,以更新UPF上的SMF信息,其中,NF替换请求包括SMF替换指示、主用SMF信息;备用SMF根据UE的上下文信息向每个UDM发送NF替换请求,以更新UDM上的SMF信息,其中,NF替换请求包括SMF替换指示、主用SMF信息;备用SMF根据UE的上下文信息向每个AMF发送NF替换请求,以更新AMF上的SMF信息,其中,NF替换请求包括SMF替换指示、主用SMF信息;备用SMF根据UE的上下文信息向每个PCF发送NF替换请求,以更新PCF上的SMF信息,其中,NF替换请求包括SMF替换指示、主用SMF信息。
方式三:备用SMF以单个UE为单位,而根据UE的上下文信息更新分组数据单元PDU会话,以使NF上的SMF信息被更新。
在本实施例的一些实施方式中,在备用SMF以单个UE为单位时,备用SMF根据UE的上下文信息向AMF发送N1/N2消息传输请求,N1/N2消息传输请求包括PDU会话更新请求,以使AMF向UE发送PDU会话更新请求而对PDU会话进行更新。
通过本公开实施例提供的UE迁移方法,在某些实施过程中,NRF获取主用SMF的状态信息。NRF根据状态信息确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息。备用SMF根据接收到的SMF故障通知消息将主用SMF上的UE迁移到自身上。由此,避免了SMF故障时因PDU会话失效而导致UE的上下行数据传输失败的问题,并能批量的将故障SMF上的UE快速迁移到备用SMF上。
实施例四:
图14为本实施例提供的用户设备UE迁移系统的结构示意图。该用户设备UE迁移系统包括NRF 1401和备用SMF 1402。NRF 1401被配置为获取主用SMF的状态信息,并确定主用SMF发生故障,而向备用SMF 1402发送SMF故障通知消息。其中,状态信息用于指示主 用SMF的故障状态,而SMF故障通知消息用于指示备用SMF 1402将主用SMF上的UE迁移到自身上。备用SMF 1402被配置为接收NRF 1401在确定主用SMF发生故障时,NRF 1401所发送过来的SMF故障通知消息,并将主用SMF上的UE迁移到自身上。
图15为本公开实施例提供的一种应用于NRF的用户设备UE迁移装置,包括:获取模块1501和发送模块1502。其中,获取模块1501被配置为获取主用SMF的状态信息;状态信息用于指示主用SMF的故障状态。发送模块1502被配置为确定主用SMF发生故障,而向备用SMF发送SMF故障通知消息;其中,SMF故障通知消息用于触发备用SMF将主用SMF上的UE迁移到自身上。
在本公开实施例中,主用SMF为当前所使用的SMF,其状态信息用于向NRF指示该主用SMF为故障SMF。当NRF检测到主用SMF发生故障时,则向备用SMF发送SMF故障通知消息,触发备用SMF替换故障SMF,并接管故障SMF上的UE。其中,获取模块1501获取主用SMF的状态信息包括但不限于以下两种方式。
方式一:获取模块1501接收网络功能NF检测到主用SMF发生故障时,NF所发送过来的主用SMF的状态信息。其中,NF为与SMF产生信令交互的非SMF的NF。
本实施例的一些实施方式中,在非SMF的NF为UPF的情况下,获取模块1501接收UPF在建立与主用SMF的N4连接之后,UPF检测自身和主用SMF之间的心跳而确定主用SMF发生故障时,UPF所发送过来的主用SMF的状态信息。
另外,本实施例的另一些实施方式中,在非SMF的NF为非用户面功能UPF的NF(即,该NF为AMF、PCF、UDM等)的情况下,获取模块1501接收非UPF的NF在建立与主用SMF的信令交互之后,非UPF的NF检测自身和主用SMF之间的心跳或信令交互响应情况而确定主用SMF发生故障时,非UPF的NF所发送过来的主用SMF的状态信息。
方式二:获取模块1501在自身检测到主用SMF发生故障时,生成主用SMF的状态信息。
本实施例的一些实施方式中,获取模块1501在通过NRF自身与主用SMF之间的心跳检测而确定主用SMF发生故障时,生成主用SMF的状态信息。
应当理解的是,在本实施例的一些实施方式中,获取模块1501获取主用SMF的备用SMF信息,然后发送模块1502根据备用SMF信息向备用SMF发送SMF故障通知消息。其中,备用SMF信息包括以下至少之一:SMF的分组标识、SMF的实例化标识、SMF的SMF故障指示回调地址。
在本实施例的一些实施方式中,获取模块1501从NRF自身获取在接收到主用SMF的NF注册请求时,由主用SMF所注册的备用SMF信息。
在本实施例的一些实施方式中,SMF故障通知消息包括以下至少之一:SMF替换指示、被替换SMF的标识、UE迁移范围指示。
其中,UE迁移范围指示包括以下任一种:全部UE、指定范围的UE、随机范围的UE。
图16为本公开实施例提供的一种应用于备用SMF的用户设备UE迁移装置,包括:接收模块1601和迁移模块1602。其中,接收模块1601被配置为接收NRF在确定主用SMF发生故障时,NRF所发送过来的SMF故障通知消息。迁移模块1602,被配置为将主用SMF上的UE迁移到自身上。
在本公开实施例中,主用SMF为当前所使用的SMF,其状态信息用于向NRF指示该主用SMF为故障SMF。当NRF检测到主用SMF发生故障时,则向备用SMF发送SMF故障通知消息,在接收模块1601接收到该SMF故障通知消息时,指示备用SMF替换故障SMF,并接管故障SMF上的UE。
在本公开实施例中,迁移模块1602迁移主用SMF上的UE至备用SMF自身上包括但不限于以下两种方式。
方式一:迁移模块1602从非结构化数据存储功能UDSF获取主用SMF上的UE的上下文信息,然后根据上下文信息更新NF上的SMF信息,而将UE从主用SMF上迁移到备用SMF自身上。其中,NF为与 SMF产生信令交互的非SMF的NF。换言之,如果网络中存在UDSF,则SMF动态的将数据存储在UDSF上,当发生故障时,迁移模块1602从UDSF获取上下文。
方式二:迁移模块1602从本地存储所动态备份的主用SMF信息中,获取主用SMF上的UE的上下文信息,然后根据上下文信息更新NF上的SMF信息,而将UE从主用SMF上迁移到备用SMF自身上。其中,NF为与SMF产生信令交互的非SMF的NF。换言之,如果网络中不存在UDSF,则SMF动态的将数据备份到备用SMF中,发生故障时由迁移模块1602直接启用备用SMF本地存储的上下文进行恢复。
在本实施例的一些实施方式中,迁移模块1602根据SMF故障通知消息中的UE迁移范围指示确定主用SMF上的UE,并且迁移模块1602将所确定的UE迁移到备用SMF自身上。若UE迁移范围设置为全部UE,迁移模块1602将主用SMF上的所有UE迁移到备用SMF自身上。若UE迁移范围设置为指定范围的UE,迁移模块1602将主用SMF上的指定的UE迁移到备用SMF自身上。若UE迁移范围设置为不指定范围,迁移模块1602根据本地策略将随机确定的UE迁移到备用SMF自身上,可以是全部或者部分UE。
另外,在本公开实施例中,迁移模块1602迁移主用SMF上的UE还包括但不限于以下三种方式:
方式一:迁移模块1602以单个UE为单位,而根据UE的上下文信息更新NF上的SMF信息。
在本实施例的一些实施方式中,在迁移模块1602以单个UE为单位时,根据UE的上下文信息更新NF上的SMF信息包括以下至少之一:迁移模块1602根据UE的上下文信息向用户面功能UPF发送N4会话更新请求,以更新UPF上的SMF信息,其中,N4会话更新请求包括SMF替换指示、主用SMF信息;迁移模块1602根据UE的上下文信息向统一数据管理功能UDM发送SMF注册更新请求,以更新UDM上的SMF信息,其中,SMF注册更新请求包括SMF替换指示、主用SMF信息;迁移模块1602根据UE的上下文信息向接入管理功能AMF发送SM会话状态更新请求,以更新AMF上的SMF信息,其中,SM会话状 态更新请求包括SMF替换指示、主用SMF信息;迁移模块1602根据UE的上下文信息向策略控制功能PCF发送SM策略更新请求,以更新PCF上的SMF信息,其中,SM策略更新请求包括SMF替换指示、主用SMF信息。
方式二:迁移模块1602以单个NF为单位,而根据UE的上下文信息更新NF上的SMF信息。
在本实施例的一些实施方式中,在迁移模块1602以单个NF为单位时,根据UE的上下文信息更新NF上的SMF信息包括以下至少之一:迁移模块1602根据UE的上下文信息向每个UPF发送NF替换请求,以更新UPF上的SMF信息,其中,NF替换请求包括SMF替换指示、主用SMF信息;迁移模块1602根据UE的上下文信息向每个UDM发送NF替换请求,以更新UDM上的SMF信息,其中,NF替换请求包括SMF替换指示、主用SMF信息;迁移模块1602根据UE的上下文信息向每个AMF发送NF替换请求,以更新AMF上的SMF信息,其中,NF替换请求包括SMF替换指示、主用SMF信息;迁移模块1602根据UE的上下文信息向每个PCF发送NF替换请求,以更新PCF上的SMF信息,其中,NF替换请求包括SMF替换指示、主用SMF信息。
方式三:迁移模块1602以单个UE为单位,而根据UE的上下文信息更新分组数据单元PDU会话,以使NF上的SMF信息被更新。
在本实施例的一些实施方式中,在迁移模块1602以单个UE为单位时,迁移模块1602根据UE的上下文信息向AMF发送N1/N2消息传输请求,N1/N2消息传输请求包括PDU会话更新请求,以使AMF向UE发送PDU会话更新请求而对PDU会话进行更新。
通过本公开实施例提供的用户设备UE迁移系统,在某些实施过程中,NRF获取主用SMF的状态信息。NRF根据状态信息确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息。备用SMF根据接收到的SMF故障通知消息将主用SMF上的UE迁移到自身上。由此,避免了SMF故障时因PDU会话失效而导致UE的上下行数据传输失败的问题,并能批量的将故障SMF上的UE快速迁移到备用SMF上。
实施例五:
如图17所示,本公开实施例还提供了一种NRF,其包括第一处理器1701、第一存储器1702及第一通信总线1703。第一通信总线1703被配置为实现第一处理器1701和第一存储器1702之间的连接通信。第一处理器1701被配置为执行第一存储器1702中存储的一个或者多个计算机程序,以实现上述实施例一中的应用于NRF侧的用户设备UE迁移方法中的至少一个步骤。
如图18所示,本公开实施例还提供了一种备用SMF,其包括第二处理器1801、第二存储器1802及第二通信总线1803。第二通信总线1803被配置为实现第二处理器1801和第二存储器1802之间的连接通信。第二处理器1801被配置为执行第二存储器1802中存储的一个或者多个计算机程序,以实现上述实施例二中的应用于备用SMF侧的用户设备UE迁移方法中的至少一个步骤。
如图19所示,本公开实施例还提供了一种用户设备UE迁移系统,其包括第三处理器1901、第三存储器1902及第三通信总线1903。第三通信总线1903被配置为实现第三处理器1901和第三存储器1902之间的连接通信。第三处理器1901被配置为执行第三存储器1902中存储的一个或者多个计算机程序,以实现上述实施例三中的应用于包括NRF和备用SMF的系统侧的用户设备UE迁移方法中的至少一个步骤。
本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且 可以被计算机访问的任何其他的介质。
本实施例中的计算机可读存储介质可用于存储一个或者多个计算机程序,其存储的一个或者多个计算机程序可被处理器执行,以实现上述实施例一、和/或实施例二、和/或实施例三中的用户设备UE迁移方法的至少一个步骤。
本实施例还提供了一种计算机程序,该计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现上述实施例一、和/或实施例二、和/或实施例三中的用户设备UE迁移方法的至少一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
根据本公开实施例提供的UE迁移方法、NRF、备用SMF、系统及存储介质,NRF获取主用SMF的状态信息,NRF根据状态信息确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息,然后备用SMF根据接收到的SMF故障通知消息将主用SMF上的UE迁移到自身上,能有效解决因SMF故障造成PDU会话失效,进而导致UE的上下行数据无法正常投递的问题;并且,本公开还提供了一种将故障SMF上的UE批量恢复到备用SMF上的方法,能有效节省SMF故障恢复的总体时间。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本公开不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本公开实施例所作的进一步详细说明,不能认定本公开的具体实施只局限于这些说明。对于本公开所属技术领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本公开的保护范围。

Claims (28)

  1. 一种用户设备UE迁移方法,包括:
    NF存储功能NRF获取主用会话管理功能SMF的状态信息,所述状态信息用于指示所述主用SMF的故障状态;
    所述NRF在确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息;所述SMF故障通知消息用于触发所述备用SMF将所述主用SMF上的UE迁移到所述备用SMF自身上。
  2. 如权利要求1所述的UE迁移方法,其中,所述NRF获取所述主用SMF的状态信息的步骤包括:
    所述NRF接收网络功能NF检测到所述主用SMF发生故障时,所述NF发送过来的所述主用SMF的状态信息;其中,所述NF为与SMF产生信令交互的NF。
  3. 如权利要求2所述的UE迁移方法,其中,所述NF为用户面功能UPF时,所述NRF接收所述NF检测到所述主用SMF发生故障时,所述NF所发送过来的所述主用SMF的状态信息的步骤包括:
    所述NRF接收所述UPF通过检测所述UPF与所述主用SMF之间的心跳而确定所述主用SMF发生故障时,所述UPF所发送过来的所述主用SMF的状态信息。
  4. 如权利要求2所述的UE迁移方法,其中,所述NF为非用户面功能UPF的NF时,所述NRF接收所述NF检测到所述主用SMF发生故障时,所述NF所发送过来的所述主用SMF的状态信息的步骤包括:
    所述NRF接收所述非UPF的NF通过检测所述非UPF的NF与所述主用SMF之间的心跳或信令交互响应情况,而确定所述主用SMF故障时,所述非UPF的NF所发送过来的所述主用SMF的状态信息。
  5. 如权利要求1所述的UE迁移方法,其中,所述NRF获取所 述主用SMF的状态信息的步骤包括:
    所述NRF在自身检测到所述主用SMF发生故障时,生成所述主用SMF的状态信息。
  6. 如权利要求5所述的UE迁移方法,其中,所述NRF在自身检测到所述主用SMF发生故障时,生成所述主用SMF的状态信息的步骤包括:
    所述NRF在通过自身与所述主用SMF之间的心跳检测而确定所述主用SMF发生故障时,生成所述主用SMF的状态信息。
  7. 如权利要求1所述的UE迁移方法,其中,所述主用SMF的状态信息包括以下至少之一:SMF实例化标识、SMF节点标识、SMF故障指示。
  8. 如权利要求1至7中任一项所述的UE迁移方法,其中,所述向备用SMF发送SMF故障通知消息的步骤包括:
    所述NRF获取所述主用SMF的备用SMF信息;
    所述NRF根据所述备用SMF信息向备用SMF发送SMF故障通知消息。
  9. 如权利要求8所述的UE迁移方法,其中,所述NRF获取所述主用SMF的备用SMF信息的步骤包括:
    所述NRF在接收到所述主用SMF的NF注册请求时,从所述NRF自身获取由所述主用SMF所注册的备用SMF信息。
  10. 如权利要求8所述的UE迁移方法,其中,所述备用SMF信息包括以下至少之一:SMF的分组标识、SMF的实例化标识、SMF的SMF故障指示回调地址。
  11. 如权利要求1至7中任一项所述的UE迁移方法,其中,所 述SMF故障通知消息包括以下至少之一:SMF替换指示、被替换SMF的标识、UE迁移范围指示。
  12. 如权利要求11所述的UE迁移方法,其中,所述UE迁移范围指示包括以下任一种:全部UE、指定范围的UE、随机范围的UE。
  13. 一种用户设备UE迁移方法,包括:
    备用SMF接收NRF在确定主用SMF发生故障时,所述NRF所发送过来的SMF故障通知消息;
    所述备用SMF将所述主用SMF上的UE迁移到所述备用SMF自身上。
  14. 如权利要求13所述的UE迁移方法,其中,所述备用SMF将所述主用SMF上的UE迁移到所述备用SMF自身上的步骤包括:
    所述备用SMF从非结构化数据存储功能UDSF获取所述主用SMF上的UE的上下文信息;
    所述备用SMF根据所述UE的上下文信息更新NF上的SMF信息,而将所述UE从所述主用SMF上迁移到所述备用SMF自身上;其中,所述NF为与SMF产生信令交互的NF。
  15. 如权利要求13所述的UE迁移方法,其中,所述备用SMF将所述主用SMF上的UE迁移到自身上的步骤包括:
    所述备用SMF从本地存储所动态备份的主用SMF信息中,获取所述主用SMF上的UE的上下文信息;
    所述备用SMF根据所述UE的上下文信息更新NF上的SMF信息,而将所述UE从所述主用SMF上迁移到所述备用SMF自身上;所述NF为与SMF产生信令交互的NF。
  16. 如权利要求14或15所述的UE迁移方法,其中,所述备用SMF根据所述UE的上下文信息更新NF上的SMF信息的步骤包括以下 之一:
    所述备用SMF以单个UE为单位,而根据所述UE的上下文信息更新NF上的SMF信息;
    所述备用SMF以单个NF为单位,而根据所述UE的上下文信息更新NF上的SMF信息;
    所述备用SMF以单个UE为单位,而根据所述UE的上下文信息更新分组数据单元PDU会话,以使NF上的SMF信息被更新。
  17. 如权利要求16所述的UE迁移方法,其中,在所述备用SMF以单个UE为单位时,所述根据所述UE的上下文信息更新NF上的SMF信息的步骤包括以下至少之一:
    所述备用SMF根据所述UE的上下文信息向UPF发送N4会话更新请求,以更新所述UPF上的SMF信息,其中,所述N4会话更新请求包括SMF替换指示、主用SMF信息;
    所述备用SMF根据所述UE的上下文信息向统一数据管理功能UDM发送SMF注册更新请求,以更新所述UDM上的SMF信息,其中,所述SMF注册更新请求包括SMF替换指示、主用SMF信息;
    所述备用SMF根据所述UE的上下文信息向接入管理功能AMF发送SM会话状态更新请求,以更新所述AMF上的SMF信息,其中,所述SM会话状态更新请求包括SMF替换指示、主用SMF信息;
    所述备用SMF根据所述UE的上下文信息向策略控制功能PCF发送SM策略更新请求,以更新所述PCF上的SMF信息,其中,所述SM策略更新请求包括SMF替换指示、主用SMF信息。
  18. 如权利要求16所述的UE迁移方法,其中,在所述备用SMF以单个NF为单位时,所述根据所述UE的上下文信息更新NF上的SMF信息的步骤包括以下至少之一:
    所述备用SMF根据所述UE的上下文信息向每个UPF发送NF替换请求,以更新所述UPF上的SMF信息,其中,所述NF替换请求包括SMF替换指示、主用SMF信息;
    所述备用SMF根据所述UE的上下文信息向每个UDM发送NF替换请求,以更新所述UDM上的SMF信息,其中,所述NF替换请求包括SMF替换指示、主用SMF信息;
    所述备用SMF根据所述UE的上下文信息向每个AMF发送NF替换请求,以更新所述AMF上的SMF信息,其中,所述NF替换请求包括SMF替换指示、主用SMF信息;
    所述备用SMF根据所述UE的上下文信息向每个PCF发送NF替换请求,以更新所述PCF上的SMF信息,其中,所述NF替换请求包括SMF替换指示、主用SMF信息。
  19. 如权利要求16所述的UE迁移方法,其中,在所述备用SMF以单个UE为单位时,所述根据所述UE的上下文信息更新分组数据单元PDU会话的步骤包括:
    所述备用SMF根据所述UE的上下文信息向AMF发送N1/N2消息传输请求,所述N1/N2消息传输请求包括PDU会话更新请求,以使所述AMF向所述UE发送所述PDU会话更新请求而对PDU会话进行更新。
  20. 如权利要求13所述的UE迁移方法,其中,所述备用SMF将所述主用SMF上的UE迁移到所述备用SMF自身上的步骤包括:
    所述备用SMF根据SMF故障通知消息中的UE迁移范围指示确定所述主用SMF上所需迁移的UE;
    所述备用SMF将所确定的所述UE迁移到所述备用SMF自身上。
  21. 一种用户设备UE迁移方法,包括:
    NRF获取主用SMF的状态信息;所述状态信息用于指示所述主用SMF的故障状态;
    所述NRF在确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息;
    所述备用SMF在接收到所述SMF故障通知消息时,将所述主用SMF上的UE迁移到自身上。
  22. 一种用户设备UE迁移装置,应用于NRF,包括:
    获取模块,被配置为获取主用SMF的状态信息,所述状态信息用于指示所述主用SMF的故障状态;
    发送模块,被配置为在确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息,所述SMF故障通知消息用于触发所述备用SMF将所述主用SMF上的UE迁移到所述备用SMF自身上。
  23. 一种用户设备UE迁移装置,应用于备用SMF,包括:
    接收模块,被配置为接收NRF在确定主用SMF发生故障时,所述NRF所发送过来的SMF故障通知消息;
    迁移模块,被配置为将所述主用SMF上的UE迁移到所述迁移模块自身上。
  24. 一种用户设备UE迁移系统,包括:NRF和备用SMF;
    所述NRF,被配置为获取主用SMF的状态信息,并在确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息,其中,所述状态信息用于指示所述主用SMF的故障状态,所述SMF故障通知消息用于触发所述备用SMF将所述主用SMF上的UE迁移到所述备用SMF自身上;
    所述备用SMF,被配置为接收所述NRF在确定所述主用SMF发生故障时,所述NRF所发送过来的所述SMF故障通知消息,并且所述备用SMF将所述主用SMF上的所述UE迁移到所述备用SMF自身上。
  25. 一种NRF,包括第一处理器、第一存储器和第一通信总线;
    所述第一通信总线被配置为实现所述第一处理器和所述第一存储器之间的连接通信;
    所述第一处理器被配置为执行所述第一存储器中存储的一个或者多个程序,以实现如权利要求1至12中任一项所述的UE迁移方法的步骤。
  26. 一种备用SMF,包括第二处理器、第二存储器和第二通信总线;
    所述第二通信总线被配置为实现所述第二处理器和所述第二存储器之间的连接通信;
    所述第二处理器被配置为执行所述第二存储器中存储的一个或者多个程序,以实现如权利要求13至20任一项所述的UE迁移方法的步骤。
  27. 一种用户设备UE迁移系统,包括第三处理器、第三存储器和第三通信总线;
    所述第三通信总线被配置为实现所述第三处理器和所述第三存储器之间的连接通信;
    所述第三处理器被配置为执行所述第三存储器中存储的一个或者多个程序,以实现如权利要求21所述的UE迁移方法的步骤。
  28. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至12中任一项所述的UE迁移方法的步骤,和/或以实现如权利要求13至20中任一项所述的UE迁移方法的步骤,和/或以实现如权利要求21所述的UE迁移方法的步骤。
PCT/CN2019/106410 2018-09-27 2019-09-18 Ue迁移方法、装置、系统、nrf、备用smf及存储介质 WO2020063417A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811134186.4 2018-09-27
CN201811134186.4A CN110958719B (zh) 2018-09-27 2018-09-27 Ue迁移方法、nrf、备用smf、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2020063417A1 true WO2020063417A1 (zh) 2020-04-02

Family

ID=69949273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106410 WO2020063417A1 (zh) 2018-09-27 2019-09-18 Ue迁移方法、装置、系统、nrf、备用smf及存储介质

Country Status (2)

Country Link
CN (1) CN110958719B (zh)
WO (1) WO2020063417A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115460635A (zh) * 2021-06-08 2022-12-09 中国移动通信集团重庆有限公司 故障检测方法、装置、设备及计算机存储介质
CN113382432B (zh) * 2021-08-13 2021-11-23 新华三技术有限公司 一种5g网络服务提供方法、装置及设备
CN115915222A (zh) * 2021-09-30 2023-04-04 中兴通讯股份有限公司 容灾方法、装置、系统及可读存储介质
WO2023185800A1 (en) * 2022-03-29 2023-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for processing smf set mismatch
CN115022876A (zh) * 2022-05-30 2022-09-06 中国电信股份有限公司 用户签约数据更新方法、装置和系统
CN115243400B (zh) * 2022-08-04 2023-05-05 广州爱浦路网络技术有限公司 一种业务会话重建方法、装置及网元

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129136A1 (en) * 2011-03-18 2012-09-27 Alcatel-Lucent Usa Inc. System and method for session restoration at geo-redundant gateways
CN104284359A (zh) * 2014-06-17 2015-01-14 南京邮电大学 一种epc网络下跨地区容灾系统及控制方法
CN105592486A (zh) * 2014-10-21 2016-05-18 中兴通讯股份有限公司 一种容灾方法及网元、服务器
CN108271149A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 一种用户数据锚点迁移的方法、设备和系统
CN109818766A (zh) * 2017-11-21 2019-05-28 中兴通讯股份有限公司 一种通信方法、网络功能实体、网络功能仓储及计算机可读存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014079514A1 (en) * 2012-11-26 2014-05-30 Telefonaktiebolaget L M Ericsson (Publ) Handling of serving gateway failure
CN105813119B (zh) * 2014-12-31 2019-06-14 中国电信股份有限公司 容灾恢复方法、网元以及通信系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129136A1 (en) * 2011-03-18 2012-09-27 Alcatel-Lucent Usa Inc. System and method for session restoration at geo-redundant gateways
CN103535072A (zh) * 2011-03-18 2014-01-22 阿尔卡特朗讯公司 用于地理冗余网关处的会话弹性的系统和方法
CN104284359A (zh) * 2014-06-17 2015-01-14 南京邮电大学 一种epc网络下跨地区容灾系统及控制方法
CN105592486A (zh) * 2014-10-21 2016-05-18 中兴通讯股份有限公司 一种容灾方法及网元、服务器
CN108271149A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 一种用户数据锚点迁移的方法、设备和系统
CN109818766A (zh) * 2017-11-21 2019-05-28 中兴通讯股份有限公司 一种通信方法、网络功能实体、网络功能仓储及计算机可读存储介质

Also Published As

Publication number Publication date
CN110958719B (zh) 2023-05-30
CN110958719A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
CN110536330B (zh) 一种ue迁移方法、装置、系统及存储介质
WO2020063417A1 (zh) Ue迁移方法、装置、系统、nrf、备用smf及存储介质
WO2020063412A1 (zh) 一种pdu会话重建方法、装置、系统及存储介质
JP7272736B2 (ja) サービス加入方法、当該方法を実行するためのチップ、情報伝達装置およびプログラム、並びにネットワーク機能ネットワーク要素
JP5113684B2 (ja) アクセスゲートウェイ装置の制御方法及び通信システム
KR102470461B1 (ko) 통신 방법, 통신 장치, 및 통신 시스템
US11902838B2 (en) Transferring monitoring event information during a mobility procedure
EP2139257A1 (en) Synchronization method, communication handover method, radio network and node
EP3544232B1 (en) Processing method, device and system for nf component abnormality
JP7250955B2 (ja) セッション処理方法、通信装置、および通信システム
US11108636B2 (en) Integrity verification for managing network configurations
EP2572526A1 (en) Method and apparatus for managing communications of a physical network entity
US11343686B2 (en) Systems and methods for call session control function failover using dynamic routing techniques
JP5363643B2 (ja) Imsにおけるサービングプロキシ機能の再割当て
CN113993147B (zh) 信息处理方法、网元、存储介质及程序产品
WO2021018202A1 (zh) 下行数据通知失败检测方法、amf、smf及存储介质
KR101609956B1 (ko) Lte 시스템, 이동성 관리장치 및 그 장애 복구방법
WO2024034299A1 (ja) RAN Intelligent Controller(RIC)及びその方法
US20220019380A1 (en) Methods providing network service restoration context and related service instance sets and storage resource nodes
CN115915220A (zh) 一种异常处理方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19865537

Country of ref document: EP

Kind code of ref document: A1