WO2020063412A1 - 一种pdu会话重建方法、装置、系统及存储介质 - Google Patents

一种pdu会话重建方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2020063412A1
WO2020063412A1 PCT/CN2019/106353 CN2019106353W WO2020063412A1 WO 2020063412 A1 WO2020063412 A1 WO 2020063412A1 CN 2019106353 W CN2019106353 W CN 2019106353W WO 2020063412 A1 WO2020063412 A1 WO 2020063412A1
Authority
WO
WIPO (PCT)
Prior art keywords
smf
pdu session
standby
active
information
Prior art date
Application number
PCT/CN2019/106353
Other languages
English (en)
French (fr)
Inventor
李志军
梁爽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020063412A1 publication Critical patent/WO2020063412A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/32Release of transport tunnels

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the field of communications, and in particular, to but not limited to a PDU session reconstruction method, device, system, and storage medium.
  • 5G systems include the wireless subsystem 5GRAN (5G Radio Access Network, 5G Wireless Access system), 5G core network subsystem 5GC (5G Core, 5G core network).
  • 5GRAN 5G Radio Access Network, 5G Wireless Access system
  • 5G core network subsystem 5GC 5G Core, 5G core network
  • FIG. 1 is a schematic diagram of the architecture of a 5G system.
  • the architecture is composed of several NFs (Network Functions).
  • the 5G wireless subsystem part mainly includes NR (New Radio).
  • the 5G core network subsystem includes UDM (Unified Data Management), AMF (Access Management Function), SMF (Session Management Function), and UPF (User Plane Function, User plane function), PCF (Policy Control Function).
  • UDM Unified Data Management
  • a unified data management function which is a permanent storage place for user-signed data, which is located in the home network where the user has signed up;
  • AMF Access Management Function
  • the access management function manages the user's access to the network. It is responsible for the terminal-to-network NAS layer (Non-Access Stratum, non-access layer) signaling management, user mobility management, etc.
  • NAS layer Non-Access Stratum, non-access layer
  • SMF Session Management Function: Session management function, manages user's PDU (Packet Data Unit) sessions, QoS (Quality of Service) flows, and formulates packet detection and forwarding rules for the UPF;
  • PDU Packet Data Unit
  • QoS Quality of Service
  • UPF User Plane Function
  • User Plane Function responsible for IP data, non-IP data routing and forwarding, usage reporting functions.
  • PCF Policy Control Function: Policy control function, responsible for providing various levels of policy rules for AMF and SMF.
  • DN Data Network
  • operator business services such as operator business services, enterprise network business services, and third-party business services.
  • AF Application Function
  • the corresponding PDU (Packet Data Unit) session will be invalidated, and the uplink and downlink data of the UE will be affected.
  • the release and re-establishment of the PDU session can be triggered only when the UE initiates uplink data transmission, and the PDU session can be resumed.
  • the PDU cannot be released and rebuilt.
  • An embodiment of the present disclosure provides a PDU session reconstruction method, which includes: a network function NF obtains standby SMF information of an active session management function SMF, wherein the NF is an NF that generates signaling interaction with the SMF; the NF is determining the primary When the SMF fails, an SMF failure notification message is sent to the standby SMF; the SMF failure notification message is used to instruct the standby SMF to trigger the release and reactivation of the PDU session.
  • An embodiment of the present disclosure further provides a PDU session reconstruction method, including: the standby SMF receives an SMF failure notification message sent by the NF when it determines that the active SMF fails; the NF is an NF that generates signaling interaction with the SMF ; The standby SMF triggers the release and reactivation of the PDU session.
  • An embodiment of the present disclosure further provides a PDU session reconstruction method, which includes: when the UE receives a backup SMF to determine the failure of the primary SMF, the SMF failure indication and the PDU session identifier sent by the AMF; and the UE releases and reactivates the PDU session.
  • An embodiment of the present disclosure also provides a PDU session reestablishment method, including: the primary SMF determines a NF that generates a signaling interaction with the primary SMF when the PDU session creation request; the primary SMF sends the primary SMF to the NF. Standby SMF information; the standby SMF information is used by the NF to send an SMF failure notification message to the standby SMF when it determines that the active SMF has failed.
  • An embodiment of the present disclosure further provides a PDU session reconstruction method, including: NF obtaining standby SMF information of a primary session management function SMF, wherein NF is an NF that generates signaling interaction with the SMF; and the NF is determining the primary SMF
  • a failure occurs, an SMF failure notification message is sent to the standby SMF; when the standby SMF receives the SMF failure notification message, the release and reactivation of the PDU session is triggered; the UE releases and reactivates the PDU session.
  • An embodiment of the present disclosure further provides a PDU session reestablishment device, which is applied to an NF that generates signaling interaction with SMF, and includes: an acquisition module configured to acquire backup SMF information of a primary session management function SMF; a first transmission The module is configured to send an SMF failure notification message to the standby SMF when it is determined that the active SMF fails, wherein the SMF failure notification message is used to instruct the standby SMF to trigger the release of the PDU session and reactivate it.
  • An embodiment of the present disclosure further provides a PDU session reconstruction apparatus, which is applied to a standby SMF and includes: a first receiving module configured to receive an SMF failure notification message sent by the NF when it is determined that the primary SMF fails NF is the NF that generates signaling interactions with the SMF; the trigger module is configured to trigger the release and reactivation of the PDU session.
  • An embodiment of the present disclosure further provides a PDU session reestablishment device, which is applied to a UE and includes: a second receiving module configured to receive a standby SMF, and when determining a failure of the primary SMF, an SMF failure indication and PDU sent by the AMF Session identification; reconstruction module, configured to release and reactivate PDU sessions.
  • An embodiment of the present disclosure also provides a PDU session reconstruction device, which is applied to an active SMF and includes: a selection module configured to determine an NF that generates a signaling interaction with the active SMF when a PDU session creation request is made; The two sending modules are configured to send the backup SMF information of the active SMF to the NF.
  • the backup SMF information is used by the NF to send an SMF failure notification message to the backup SMF when it is determined that the active SMF fails.
  • An embodiment of the present disclosure further provides a user equipment UE migration system, including: a NF, a backup SMF, and a UE.
  • the NF is a NF that generates signaling interaction with the SMF.
  • the NF is configured to obtain a primary session management function. SMF backup SMF information, and when it is determined that the active SMF fails, the SMF failure notification message is sent to the standby SMF; the standby SMF is configured to receive the SMF failure notification message sent by the NF when it is determined that the active SMF fails And then trigger the UE to release the invalid PDU session and reactivate the valid PDU session; the UE is configured to release and reactivate the PDU session.
  • An embodiment of the present disclosure further provides a NF, which includes a first processor, a first memory, and a first communication bus; the first communication bus is configured to implement a connection between the first processor and the first memory.
  • the first processor is configured to execute one or more programs stored in the first memory, so as to implement the steps of the PDU session reconstruction method applied to the NF as described above.
  • An embodiment of the present disclosure further provides a backup SMF, which includes a second processor, a second memory, and a second communication bus; the second communication bus is configured to implement a connection between the second processor and the second memory
  • the second processor is configured to execute one or more programs stored in the second memory, so as to implement the steps of the PDU session reconstruction method applied to the standby SMF as described above.
  • An embodiment of the present disclosure further provides a UE, including a third processor, a third memory, and a third communication bus; the third communication bus is configured to implement the communication between the third processor and the third memory. Connection communication; the third processor is configured to execute one or more programs stored in the third memory to implement the steps of the PDU session reconstruction method applied to the UE as described above.
  • An embodiment of the present disclosure further provides a master SMF, which includes a fourth processor, a fourth memory, and a fourth communication bus; the fourth communication bus is configured to implement the fourth processor and the fourth memory.
  • the fourth processor is configured to execute one or more programs stored in the fourth memory, so as to implement the steps of the PDU session reconstruction method applied to the active SMF as described above.
  • An embodiment of the present disclosure further provides a PDU session reconstruction system including a fifth processor, a fifth memory, and a fifth communication bus; the fifth communication bus is configured to implement the fifth processor and the fifth memory Connection communication; the fifth processor is configured to execute one or more programs stored in the fifth memory, so as to implement the steps of the PDU session reconstruction method applied to the PDU session reconstruction system as described above .
  • An embodiment of the present disclosure further provides a computer-readable storage medium, where the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement Steps of any PDU session reconstruction method as described above.
  • FIG. 1 is a schematic architecture diagram of a 5G system in related technologies
  • FIG. 2 is a schematic diagram of a stateless design in which different types of NFs are supported by the UDSF provided by the present disclosure
  • FIG. 3 is a schematic flowchart of a UE registering to a 5G network in the related art
  • FIG. 4 is a schematic flowchart of creating a PDU session after a UE registers with a 5G network in the related art
  • FIG. 5 is a schematic flowchart of a PDU session reconstruction method applied to a NF side according to the first embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a process in which a primary SMF sends backup SMF information to a NF during a PDU session creation process according to the first embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of obtaining backup SMF information by a UPF according to Embodiment 1 of the present disclosure
  • FIG. 8 is a schematic flowchart of a process in which a NF obtains standby SMF information of a primary SMF from a NRF according to Embodiment 1 of the present disclosure
  • FIG. 9 is a schematic flowchart of a PDU session reconstruction method applied to a standby SMF side according to Embodiment 2 of the present disclosure.
  • FIG. 10 is a schematic flowchart of a PDU session re-establishment triggered by a backup SMF after a failure of the primary SMF according to Embodiment 2 of the present disclosure
  • FIG. 11 is a schematic flowchart of another process of triggering a PDU session re-establishment by a backup SMF after the primary SMF fails according to Embodiment 2 of the present disclosure
  • FIG. 12 is a schematic flowchart of another process of triggering a PDU session reconstruction by a backup SMF after the primary SMF fails according to Embodiment 2 of the present disclosure
  • FIG. 13 is a schematic flowchart of a PDU session reconstruction method applied to a system according to Embodiment 3 of the present disclosure
  • FIG. 14 is a schematic structural diagram of a PDU session reconstruction system according to Embodiment 4 of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a PDU session reconstruction apparatus applied to an NF according to Embodiment 4 of the present disclosure
  • FIG. 16 is a schematic structural diagram of a PDU session reconstruction apparatus applied to a standby SMF according to Embodiment 4 of the present disclosure
  • FIG. 17 is a schematic structural diagram of a PDU session reconstruction apparatus applied to a UE according to Embodiment 4 of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a PDU session reconstruction apparatus applied to an active SMF according to Embodiment 4 of the present disclosure
  • FIG. 19 is a schematic structural diagram of a NF according to Embodiment 5 of the present disclosure.
  • FIG. 20 is a schematic structural diagram of a standby SMF according to Embodiment 5 of the present disclosure.
  • FIG. 21 is a schematic structural diagram of a UE according to Embodiment 5 of the present disclosure.
  • FIG. 22 is a schematic structural diagram of a primary SMF according to Embodiment 5 of the present disclosure.
  • FIG. 23 is a schematic structural diagram of a PDU session reconstruction system according to Embodiment 5 of the present disclosure.
  • 5G networks support NF's stateless design.
  • the stateless design means that the same type of NF (for example, AMF) that serves the UE can be replaced by the AMF in the two processes before and after.
  • the context information of the UE needs to be stored in the UDSF (Unstructured Data Storage Function).
  • the same type of NF such as AMF
  • FIG 2 illustrates the stateless design of UDSF supporting different types of NF, such as AMF, SMF, UDM, PCF. Different types of NFs use different interfaces to access the UE context on the UDSF.
  • the stateless design based on NF provides a capability. When a certain NF fails, the similar NF can quickly replace the failed NF with the same NF based on the UE context on the UDSF in order to continue the subsequent process.
  • the UE registers with the 5G network and initiates the related processes of PDU session creation to the 5G network. After these processes, the UE can obtain packet data services from the 5G network.
  • FIG. 3 is a schematic flowchart of a UE registering with a 5G network, which includes the following steps:
  • the UE sends a registration request (Registration Request) to the gNB.
  • the gNB selects an appropriate AMF according to the conditions
  • the gNB forwards the UE registration request to the AMF.
  • the AMF sends an Identity Request (Identification Request) to the UE;
  • the UE returns the requested SUCI to the AMF in response to the identity request.
  • the AMF selects a suitable AUSF (Authentication Server Function) for the UE to perform an authentication operation.
  • AUSF Authentication Server Function
  • the AUSF initiates an identity authentication and authentication process for the UE
  • the AMF selects a suitable UDM for the UE.
  • the AMF initiates AMF registration with the UDM, and the UDM receives the AMF registration and registers the AMF information for the UE service;
  • the AMF sends a subscription request to the UDM to obtain a mobility management related subscription of the UE.
  • the UDM receives the request from the AMF and sends related contract data to the AMF;
  • the AMF selects a suitable PCF for the UE
  • the AMF sends a mobility policy request to the PCF.
  • the PCF receives the AMF request and returns mobility policy data (AM Policy) to the AMF.
  • AM Policy mobility policy data
  • the AMF returns a Registration Accept Response to the UE.
  • FIG. 4 is a flowchart of the process of initiating the creation of a PDU session after the UE registers with the 5G network, and has the following steps:
  • the UE sends a PDU session establishment request (PDU Session Establishment Request) to the AMF.
  • PDU Session Establishment Request PDU Session Establishment Request
  • the AMF selects an appropriate SMF for the UE according to the PDU session establishment request of the UE, for example, according to the DNN (Data Network Name) requested by the UE;
  • DNN Data Network Name
  • the AMF sends a Create SMContext Request to the SMF.
  • the SMF initiates a session subscription data acquisition process to the UDM, and the UDM returns the UE's session subscription data to the SMF;
  • the SMF returns a Create SMContext context response (Create SMContext Response) to the AMF.
  • the SMF selects a suitable PCF. If the AMF provides the PCF selected by the AMF in the foregoing steps, the SMF uses the PCF;
  • the SMF sends a session policy request to the PCF.
  • the PCF receives the SMF request and returns session policy data (SM Policy) to the SMF.
  • SM Policy session policy data
  • the SMF selects an appropriate UPF according to the information such as DNN and UE location;
  • the SMF sends an N4 session establishment request (N4 Session Establishment Request) to the UPF, the UPF responds to the SMF request, establishes an N4 session, and returns an N4 session establishment response to the SMF (N4 Session Establishment Response);
  • N4 Session Establishment Request N4 Session Establishment Request
  • N4 Session Establishment Response N4 Session Establishment Response
  • the SMF sends an N1 / N2 Message Transfer Request (N1 / N2Message Transfer) to the AMF, which carries the context information of the PDU session, such as the created QoS flow list, the uplink F-TEID allocated by the UPF, etc. ;
  • the AMF sends an N2 interface PDU Session Request (N2) PDU Session Request message to the gNB, which carries a NAS message to be sent to the UE by the AMF, and the NAS (Non-access stratum, non-access stratum) message includes the need to send to the UE Partial information of the PDU session context;
  • N2 interface PDU Session Request N2 interface PDU Session Request (N2) PDU Session Request message to the gNB, which carries a NAS message to be sent to the UE by the AMF, and the NAS (Non-access stratum, non-access stratum) message includes the need to send to the UE Partial information of the PDU session context;
  • the gNB sends a radio resource setup (AN Resource Setup) request to the UE, and establishes an appropriate radio bearer for the UE according to the PDU session information provided by the AMF;
  • AN Resource Setup AN Resource Setup
  • the gNB After the wireless resource is created, the gNB returns an N2 interface PDU Session Receive (N2) PDU Session Receive message to the AMF, which carries the N3 interface resources allocated by the gNB, such as the F-TEID of the gNB;
  • N2 interface PDU Session Receive N2 interface PDU Session Receive (N2) PDU Session Receive message to the AMF, which carries the N3 interface resources allocated by the gNB, such as the F-TEID of the gNB;
  • the AMF sends an Update SM Session Context Request (Update SMContext Request) to the SMF to update the remote F-TEID of the UPF on the N3 interface, that is, the F-TEID of the gNB on the UPF;
  • Update SM Session Context Request Update SMContext Request
  • the SMF sends an N4 session update request (N4 Session Update Request) to the UPF, updates the F-TEID of the gNB on the N3 interface, and the UPF returns an N4 session update response to the SMF;
  • N4 Session Update Request N4 Session Update Request
  • the SMF returns an update SM session context response (Update SMContext Response) to the AMF.
  • Update SMContext Response Update SMContext Response
  • An embodiment of the present invention provides a PDU session reconstruction method.
  • the PDU session reconstruction method provided in this embodiment is applied to the NF side, as shown in FIG. 5, including:
  • the NF obtains the backup SMF information of the active SMF, where the NF is an NF that generates signaling interaction with the SMF.
  • NF and SMF Due to the need for message flow interaction, NF and SMF generate message flow interaction.
  • the types of NF include non-SMF NFs such as AMF, UDM, UPF, and PCF.
  • the main SMF is the SMF that currently generates signaling interactions with the NF.
  • the standby SMF information includes at least one of the following: the SMF group identifier of the standby SMF, the SMF instantiation identifier of the standby SMF, the SMF node identifier of the standby SMF, the SMF failure indication callback address of the standby SMF, and the N4 interface information of the standby SMF .
  • the SMF group ID (SMF Set ID) is used to identify a group of SMFs with the same or similar characteristics, and the SMFs belonging to the same group are backed up to each other;
  • the SMF fault indication callback address of the standby SMF (callback URL for SMF restoration)
  • the N4 interface information of the standby SMF is used to establish the N4 connection, which can include the following information: IP address of the N4 interface (IP address for N4 association), and port of the N4 interface (Port for N4 association).
  • the manner in which the NF obtains the backup SMF information of the active session management function SMF includes, but is not limited to, the following two methods:
  • Method 1 When a PDU session is created, the NF obtains the backup SMF information sent by the primary SMF.
  • a schematic diagram of a process in which a primary SMF sends backup SMF information to a NF includes the following steps:
  • the UE sends a PDU session establishment request to the AMF.
  • the AMF selects an appropriate SMF for the UE according to the PDU session establishment request of the UE, for example, according to the DNN requested by the UE.
  • the AMF sends an SMF session creation request to the SMF.
  • the SMF registers with the UDM and obtains the session subscription data.
  • the SMF provides the UDM with backup SMF information.
  • the SMF returns an SM session context response to the AMF.
  • the SMF provides the AMF with backup SMF information.
  • the SMF selects a suitable PCF. If the AMF provides the PCF selected by the AMF in the foregoing steps, the SMF uses the PCF.
  • the SMF obtains the session policy data from the PCF.
  • the SMF provides the backup SMF information to the PCF.
  • the SMF selects an appropriate UPF according to the information such as DNN and UE location.
  • the SMF sends an N4 session establishment request to the UPF.
  • the SMF provides backup SMF information to the UPF.
  • the UPF when the NF is a user plane function UPF, the UPF receives an N4 connection establishment request, an N4 connection update request, an N4 session establishment request, or an N4 session change request sent by the active SMF.
  • the UPF receives an N4 connection establishment request, an N4 connection update request, an N4 session establishment request, or an N4 session change request sent by the active SMF.
  • FIG. 7 is a schematic flowchart of a method for obtaining backup SMF information provided by a UPF according to this embodiment, and the two above-mentioned acquisition methods are shown through processes A and B, respectively.
  • Process A obtains backup SMF information when it is established through the N4 interface, including:
  • step A701 the active SMF sends an N4 connection establishment request to the UPF, and the N4 connection establishment request carries backup SMF information.
  • the SMF may also carry its own identification information, which may be one or a combination of the following: SMF node identification (SMF node ID), SMF instance identification (SMF instance ID).
  • SMF node ID SMF node identification
  • SMF instance ID SMF instance ID
  • Step A702 The UPF receives the N4 connection establishment request of the SMF, and returns an N4 connection establishment response (N4 Association Establishment Response) to the SMF according to the N4 connection establishment request.
  • N4 connection establishment response N4 Association Establishment Response
  • the UPF When the UPF receives the N4 connection establishment request of the SMF, it obtains the standby SMF information. It should be noted that the backup SMF information may also be updated in the future. If it is updated, it may be issued through the N4 connection update request, and the carrying method is the same as when the N4 connection is established.
  • Process B is the acquisition of standby SMF information triggered by session-level message establishment, including:
  • Step B701 The AMF sends a SM context creation request to the active SMF.
  • Step B702 The master SMF receives the SM context creation request from the AMF, and returns a SM context creation response to the AMF.
  • Step B703 The master SMF selects a suitable UPF for the UE.
  • step B704 the master SMF sends an N4 session establishment request to the UPF, and the N4 session establishment request carries backup SMF information.
  • Step B705 The UPF receives the N4 session establishment request of the active SMF, establishes an N4 session according to the request, and returns an N4 session establishment response to the active SMF.
  • the backup SMF information may also be updated in the future. If it is updated, it may be issued through an N4 session update request, and the carrying method is the same as when the N4 session is established.
  • Method 2 The NF uses the SMF ID of the primary SMF, obtains the SMF configuration parameters of the primary SMF from the NF storage function NRF, and obtains the backup SMF information from the SMF configuration parameters.
  • FIG. 8 is a schematic flowchart of the process in which the NF obtains the standby SMF information of the active SMF from the NRF provided in this embodiment, and the processes of the active SMF initiating the NF registration with the NRF and the NF acquisition master are shown through processes A and B, respectively.
  • the process of configuring parameters with SMF includes the following steps:
  • Step A801 The primary SMF sends a NF registration request to the NRF, which carries the backup SMF configuration parameters, and the backup SMF configuration parameters include the backup SMF information.
  • the active SMF also carries one or a combination of the following information: the SMF group identifier and the standby SMF list.
  • the standby SMF list contains its SMF instantiation identifier.
  • Step A802 The NRF receives and processes the NF registration request of the SMF, and returns a NF registration response to the SMF.
  • steps B801 to B802 when the NF needs to obtain several standby SMFs, perform steps B801 to B802 to obtain a list of alternative standby SMFs from the NRF.
  • step B801 the NF sends a NF discovery request to the NRF, specifies the NF type as SMF, provides a DNN that needs SMF support, and other necessary information.
  • the NF may also specify an SMF group identifier, and requires the NRF to return a backup SMF list with the same SMF group identifier.
  • the NRF searches for a suitable standby SMF according to the NF discovery request of the NF, and returns a NF discovery response to the NF.
  • the NF discovery response includes a list of candidate SMFs and configuration parameters for each SMF.
  • Step B803 The NF sends a NF discovery request to the NRF, specifies the NF type as SMF, and provides an SMF identifier.
  • the SMF identifier may be one of the following: the SMF instance identifier and the SMF node identifier.
  • Step B804 The NRF obtains the SMF configuration parameters of the specified SMF according to the NF discovery request of the NF, and returns an NF discovery response to the NF.
  • the NF discovery response includes the SMF configuration parameters of the requested SMF.
  • the SMF configuration parameters include backup SMF information of the SMF.
  • the NF After the NF selects the standby SMF or obtains the configuration parameters of the designated standby SMF from the NRF, it initiates a message interaction process with the standby SMF according to process requirements.
  • the SMF identifier when the NF is a user plane function UPF, the SMF identifier sends an N4 connection establishment request, or an N4 connection change request, or an N4 session establishment request, or an N4 session change request to the UPF as the primary SMF. , The SMF ID of the primary SMF carried in the request message.
  • the NF sends an SMF failure notification message to the standby SMF when it is determined that the primary SMF fails, where the SMF failure notification message is used to instruct the standby SMF to trigger the release and reactivation of the PDU session.
  • the NF itself sends an SMF failure notification message to the standby SMF when it determines that the active SMF fails by detecting the link status between itself and the active AMF.
  • the manner in which the UPF detects the link status between itself and the active SMF includes, but is not limited to, the following two methods:
  • Method 1 The UPF acquires the link status between the UPF and the active SMF by detecting the N4 signaling transmission status when the N4 signaling message is sent to the active SMF.
  • the N4 signaling message sent by the UPF to the SMF such as the notification of the arrival of downlink data.
  • the UPF can detect the link interruption and determine that the active SMF has failed.
  • Method 2 The UPF obtains the link status between the UPF and the active SMF according to the heartbeat detection between the UPF and the active SMF after the N4 connection with the active SMF is established.
  • a heartbeat-like keep-alive mechanism that is, a detection message is sent periodically to determine the link status.
  • the NF when the NF is a non-UPF or non-SMF other NF, that is, when the NF is AMF, PCF, UDM, etc., after establishing a signaling interaction with the active SMF, the other NF passes the detection and the active SMF. The heartbeat or signaling interaction response between the two to obtain the link status with the active SMF, so as to determine whether the active SMF fails.
  • the SMF fault notification message may carry at least one of the following: the SMF identifier of the faulty SMF, the N4 session failure indication, and the UE identifier. Furthermore, it can carry DNN information. It should be understood that, because the active SMF fails, the faulty SMF is the active SMF. It should also be noted that the N4 session failure indication is used to indicate that the N4 session context of the UE has expired and the N4 session needs to be rebuilt. The standby SMF can obtain the PDU session context information of the UE from the UDSF or UDM according to the UE identity.
  • the SMF identifier of the faulty SMF may be: the SMF node identifier (that is, the SMF node identifier on the N4 interface), or the SMF instance identifier, and the identifier information of the UE may be: SUPI.
  • the NF sends an SMF failure notification message to the standby SMF, including but not limited to the following two ways:
  • Method 1 Obtain the SMF failure indication callback address of the standby SMF; send the SMF failure notification message to the standby SMF through the SMF failure indication callback address.
  • sending an SMF failure notification message to the standby SMF includes: obtaining N4 interface information of the standby SMF; and sending an SMF failure notification message to the standby SMF through the N4 interface.
  • the SMF failure indication callback address or N4 interface information of the standby SMF includes, but is not limited to, the following three ways:
  • Method 1 The NF directly obtains the SMF fault indication callback address or N4 interface information of the standby SMF from the standby SMF information.
  • Method 2 The NF obtains the group identification of the backup SMF from the backup SMF information, obtains the SMF list from the NRF through the group identification of the backup SMF, and then obtains the SMF of the target backup SMF from the SMF configuration parameters of the target backup SMF in the SMF list. Failure indication callback address or N4 interface information.
  • Method 3 The NF obtains the instantiation ID of the backup SMF from the backup SMF information, and obtains the SMF configuration parameters of the target backup SMF from the NRF through the instantiation ID of the backup SMF, and then obtains the SMF fault indication callback of the target backup SMF from the SMF configuration parameters. Address or N4 interface information.
  • the NF that generates signaling interaction with the SMF obtains the backup SMF information of the active session management function SMF.
  • the NF determines The standby SMF information sends an SMF failure notification message to the standby SMF to instruct the standby SMF to trigger the release and reactivation of the PDU session, avoiding the failure of data transmission when the SMF fails, especially when the UPF receives downlink data sent to the UE due to the SMF failure
  • the resulting data delivery failure can effectively improve the PDU session recovery process when SMF fails, and effectively guarantee the normal transmission of uplink and downlink data.
  • an embodiment of the present disclosure provides a PDU session reconstruction method.
  • the PDU session reconstruction method provided by this embodiment is applied On the standby SMF side, refer to Figure 9, including:
  • the standby SMF receives the SMF failure notification message sent by the NF when it is determined that the active SMF fails, where NF is the NF that generates signaling interaction with the SMF.
  • the active SMF is the SMF that currently generates signaling interactions with the NF.
  • the NF that interacts with the SMF When the NF that interacts with the SMF generates signalings and detects that the active SMF fails, it sends an SMF failure notification message to the standby SMF. While instructing the standby SMF to trigger the release and reactivation of the PDU session.
  • the types of NF include non-SMF NFs such as AMF, UDM, UPF, PCF.
  • the SMF fault notification message carries at least one of the following: the SMF identifier of the faulty SMF, the N4 session failure indication, and the UE identifier. Further, it can also carry DNN information.
  • the failed SMF is the active SMF that has failed.
  • the N4 session failure indication is used to indicate that the N4 session context of the UE has expired and the N4 session needs to be rebuilt.
  • the standby SMF can obtain the PDU session context information of the UE from the UDSF or UDM according to the UE identity.
  • the SMF identifier of the primary SMF may be: the SMF node identifier (that is, the SMF node identifier on the N4 interface), or the SMF instance identifier, and the identifier information of the UE may be: SUPI.
  • the SMF failure notification message sent includes but is not limited to the following two ways:
  • Method 1 The standby SMF receives the SMF fault notification message sent by the SMF fault indication callback address of the standby SMF when it determines that the primary SMF fails.
  • Method 2 When the NF is UPF, the standby SMF receives the SMF failure notification message sent by the UPF through the N4 interface of the standby SMF when it determines that the active SMF has failed.
  • the NF uses the SMF instantiated identifier to obtain the SMF configuration parameters of the SMF from the NRF.
  • the SMF configuration parameters include a callback address for receiving an SMF failure indication or information for establishing an N4 interface, so the NF sends an SMF failure notification message to the callback address or the N4 interface.
  • S902 The standby SMF triggers the release and reactivation of the PDU session.
  • the standby SMF triggering the release and reactivation of the PDU session includes, but is not limited to, the following three ways:
  • Method 1 The standby SMF constructs a PDU session release and reactivation request based on the SMF failure notification message and the PDU session identifier, and then sends the request to the UE through the access management function AMF to trigger the release and reactivation of the PDU session.
  • FIG. 10 is a schematic flowchart of a PDU session re-establishment triggered by a backup SMF after the primary SMF fails according to this embodiment.
  • the NF is an UPF as an example, and includes the following steps:
  • S1001 The UE requests to establish a PDU session, and the network creates a PDU session for the UE.
  • the UE may initiate uplink data transmission or receive downlink data.
  • the SMF may carry the backup SMF information to the UPF when it establishes an N4 connection or establishes an N4 session with the UPF, or updates the N4 connection or N4 session.
  • the SMF can carry the backup SMF information to the UDM, AMF, and PCF during the process interaction.
  • the UDM, AMF, and PCF receive the message request initiated by the backup SMF, According to the backup SMF information registered by the primary SMF, the message request of the backup SMF can be authorized.
  • the UPF receives the downlink data, if the UE is currently in an idle state, the UPF sends a downlink data notification to the active SMF.
  • the UPF may attempt to resend the message.
  • the UPF can determine that the primary SMF has failed, and the UPF sends an SMF failure notification message to the standby SMF.
  • the UPF sends an SMF failure notification message to the standby SMF through the obtained standby SMF information or the callback address of the SMF failure indication in the configuration parameters of the standby SMF or the N4 interface information, and if the standby SMF obtained by the UPF is Information only contains the SMF instantiation identifier of the standby SMF, then the UPF first uses the SMF instantiation identifier, obtains the SMF configuration parameters from the NRF, and then obtains the callback address used to receive the SMF fault notification message from the SMF configuration parameters. Or information used to establish the N4 interface.
  • the UPF when the UPF sends an SMF failure notification message to the standby SMF, it can also carry the following information: identification information of the failed SMF, such as: SMF node identification, or SMF instance identification; N4 session failure indication, N4 session failure Indicates that the N4 session context used to indicate that the UE has expired and the N4 session needs to be rebuilt, the standby SMF can obtain the PDU session context information of the UE from the UDSF or UDM according to the UE identity; the identity information of the UE, such as SUPI; Carry DNN information. It should be understood that the faulty SMF here is the primary SMF that has failed.
  • identification information of the failed SMF such as: SMF node identification, or SMF instance identification
  • N4 session failure indication N4 session failure Indicates that the N4 session context used to indicate that the UE has expired and the N4 session needs to be rebuilt
  • the standby SMF can obtain the PDU session context information of the UE from the UDSF or UDM according to the
  • the identification information of the faulty SMF and the identification information of the UE are used by the UDM and AMF to locate the faulty SMF (that is, the faulty active SMF) for the PDU session established for the UE.
  • the DNN information can be used to further limit the specific PDU session established by the active SMF for the UE.
  • the standby SMF After receiving the SMF failure indication sent by the UPF, the standby SMF queries the UDM for the PDU session context of the UE.
  • the backup SMF provides the UDM with identification information of the faulty SMF, identification information of the UE, DNN, and the like.
  • the UDM uses the information to locate the specific PDU session established by the faulty SMF for the UE, and returns the PDU session context information (ie, SM context) to the standby SMF.
  • PDU session context information ie, SM context
  • the standby SMF After receiving the SMF fault notification message sent by the UPF, the standby SMF queries the UDM for the AMF information of the currently serving UE.
  • the standby SMF provides the UDM with identification information of the UE.
  • the UDM uses the information to locate the AMF information of the currently serving UE, and returns the AMF context information (ie, AM context) to the standby SMF, which at least contains the instantiation identifier of the AMF or the globally unique AMF identifier.
  • AMF context information ie, AM context
  • the standby SMF may need to interact with the NRF to obtain the AMF profile (AMF profile).
  • S1006 After the standby SMF obtains the PDU session context and AMF context information, it uses the obtained information to construct a PDU session release and reactivate request.
  • the standby SMF sends a N1 / N2 message transmission request to the AMF, and carries a PDU session release and reactivation request in the NAS message.
  • the AMF sends a NAS message to the UE, and the NAS message carries a PDU session release and reactivation request.
  • the UE After receiving the PDU session release and reactivation request sent by the AMF, the UE initiates a PDU session release and reactivation process, and the network reselects the SMF for the UE and re-establishes the PDU session.
  • the reselected SMF may be the standby SMF in the foregoing step.
  • the UPF continues to send downlink data to the UE.
  • Method 2 The standby SMF sends an SMF failure indication and a PDU session identifier to the AMF, so that the AMF constructs a PDU session release and reactivation request and triggers the release and reactivation of the PDU session.
  • FIG. 11 is a schematic flowchart of another process of triggering a PDU session reestablishment by a backup SMF after the failure of the primary SMF according to this embodiment.
  • the NF is also used as an example of the UPF, and includes the following steps:
  • S1101 to S1105 are the same as steps S1001 to S1005 in the embodiment corresponding to FIG. 10, and details are not described herein again.
  • S1106 The standby SMF sends an SMF fault indication to the AMF.
  • the SMF failure indication is obtained by the standby SMF from the SMF failure notification message or received separately after receiving the SMF failure notification message.
  • the SMF failure indication carries a PDU session ID.
  • the AMF uses the received message to construct a PDU session release and reactivation request.
  • the AMF sends a NAS message to the UE, and the NAS message carries a PDU session release and reactivation request.
  • the UE After receiving the PDU session release and reactivation request sent by the AMF, the UE initiates a PDU session release and reactivation process, and the network reselects the SMF for the UE and re-establishes the PDU session.
  • Method 3 The standby SMF sends an SMF fault indication and a PDU session identifier to the AMF, and the AMF sends a NAS message to the UE, which carries the SMF fault indication and the PDU session identifier to trigger the UE to initiate a PDU session and reactivate.
  • FIG. 12 is a schematic flowchart of another process of triggering a PDU session reestablishment by a backup SMF after the primary SMF fails according to this embodiment.
  • the NF is also used as an example of the UPF, and includes the following steps:
  • S1201 to S1205 are the same as steps S1001 to S1005 in the embodiment corresponding to FIG. 10, and details are not described herein again.
  • S1206 The standby SMF sends an SMF fault indication to the AMF.
  • the SMF failure indication carries a PDU session ID.
  • the SMF fault indication is used to indicate that a certain SMF fault of the UE and its related PDU session need to be released and rebuilt.
  • the PDU session ID is used to indicate to the UE which PDU session needs to be released and reactivated.
  • the AMF sends a NAS message to the UE, and the NAS message carries an SMF failure indication and a PDU session ID.
  • S1208 After receiving the SMF failure indication sent by the AMF, the UE initiates a PDU session release and reactivation process according to the PDU session ID, and the network reselects the SMF for the UE and re-establishes the PDU session.
  • the reselected SMF may be the standby SMF in the foregoing step.
  • the UPF continues to send downlink data to the UE.
  • the standby SMF before the standby SMF triggers the release and reactivation of the PDU session, it also includes at least one of the following: the standby SMF uses the SMF identifier of the failed SMF carried in the SMF failure notification message, the N4 session failure indication, UE identification, obtain the PDU session context information of the SMF from the UDM or UDSF, and the faulty SMF is the active SMF that has failed; the standby SMF uses the UE identification carried in the SMF failure notification message to obtain the UE from the UDM or UDSF AMF context information; the standby SMF obtains the instantiation ID of the AMF from the UPF, and obtains the AMF configuration parameters from the NRF through the instantiation ID of the AMF.
  • the N4 session failure indication is used to indicate that the N4 session context of the UE has expired and the N4 session needs to be rebuilt.
  • the standby SMF can obtain the PDU session context information of the UE from the UDSF or UDM according to the UE identity.
  • the standby SMF can use the UE identifier, the instantiated identifier of the faulty SMF (that is, the primary SMF that has failed), and obtains the PDU session context information of the SMF from the UDM or UDSF.
  • the PDU session context information can be used to construct the PDU session release. And reactivate the request.
  • the standby SMF In order to send a PDU session release and reactivation request to the AMF, or send an SMF failure notification message to the AMF, the standby SMF needs to obtain AMF context information.
  • the standby SMF may use the UE identity to obtain the AMF context information of the UE from the UDM.
  • the AMF instantiation ID and other information can be obtained from the AMF context information.
  • the standby SMF can query the NRF to obtain the configuration parameters of the AMF; the standby SMF can also obtain the instantiation identification of the AMF from the UPF, and the standby SMF can query the NRF through the instantiation identification of the AMF to obtain the configuration of the AMF. parameter.
  • an SMF failure notification message is sent to the standby SMF to trigger the SMF to initiate a PDU session. Release and reactivate.
  • other non-UPF NFs such as AMF, UDM, and PCF
  • AMF, UDM, and PCF can also send a failure notification message to the standby SMF when a failure of the active SMF is detected, to trigger the SMF to initiate the release of the PDU session and reactivate it.
  • Other NFs, such as AMF, UDM, and PCF can determine whether the active SMF fails based on the response of the signaling interaction or the heartbeat keep-alive detection.
  • the standby SMF receives the SMF fault notification message sent by the NF that interacts with the SMF to generate a signal, and then sends the SMF failure notification message to the standby SMF.
  • the SMF triggers the release and reactivation of the PDU session according to the SMF failure notification message, which prevents data transmission failures when the SMF fails, especially when the UPF receives downlink data sent to the UE due to the SMF failure and the data delivery fails, which can effectively improve
  • the PDU session recovery process when SMF fails and effectively guarantees the normal transmission of uplink and downlink data.
  • An embodiment of the present invention provides a method for re-establishing a PDU session.
  • the method for re-establishing a PDU session provided in this embodiment is applied to a system side including a NF, a backup SMF, and a UE. See FIG. 13, including:
  • the NF obtains the backup SMF information of the active SMF.
  • NF and SMF Due to the need for message flow interaction, NF and SMF generate message flow interaction.
  • the types of NF include non-SMF NFs such as AMF, UDM, UPF, and PCF.
  • the main SMF is the SMF that currently generates signaling interactions with the NF.
  • the standby SMF information includes at least one of the following: the SMF group identifier of the standby SMF, the SMF instantiation identifier of the standby SMF, the SMF node identifier of the standby SMF, the SMF failure indication callback address of the standby SMF, and the N4 interface information of the standby SMF .
  • the manner in which the NF obtains the backup SMF information of the active session management function SMF includes, but is not limited to, the following two methods:
  • Method 1 NF obtains the backup SMF information sent by the primary SMF when the PDU session is created.
  • Method 2 The NF uses the SMF ID of the primary SMF, obtains the SMF configuration parameters of the primary SMF from the NF storage function NRF, and obtains the backup SMF information from the SMF configuration parameters.
  • the SMF identifier when the NF is a user plane function UPF, the SMF identifier sends an N4 connection establishment request, or an N4 connection change request, or an N4 session establishment request, or an N4 session change request to the UPF as the primary SMF. , The SMF ID of the primary SMF carried in the request message.
  • the NF itself sends an SMF failure notification message to the standby SMF when it determines that the active SMF fails by detecting the link status between itself and the active AMF.
  • the manner in which the UPF detects the link status between itself and the active SMF includes, but is not limited to, the following two methods:
  • Method 1 The UPF acquires the link status between the UPF and the active SMF by detecting the N4 signaling transmission status when the N4 signaling message is sent to the active SMF.
  • the N4 signaling message sent by the UPF to the SMF such as the notification of the arrival of downlink data.
  • the UPF can detect the link interruption and determine that the active SMF has failed.
  • Method 2 The UPF obtains the link status between the UPF and the active SMF according to the heartbeat detection between the UPF and the active SMF after the N4 connection with the active SMF is established.
  • a heartbeat-like keep-alive mechanism that is, a detection message is sent periodically to determine the link status.
  • the NF when the NF is a non-UPF or non-SMF other NF, that is, when the NF is AMF, PCF, UDM, etc., after establishing a signaling interaction with the active SMF, the other NF passes the detection and the active SMF. The heartbeat or signaling interaction response between the two to obtain the link status with the active SMF, so as to determine whether the active SMF fails.
  • the SMF fault notification message may carry at least one of the following: the SMF identifier of the faulty SMF, the N4 session failure indication, and the UE identifier. Furthermore, it can carry DNN information. It should be understood that, because the active SMF fails, the faulty SMF is the active SMF.
  • the NF sends an SMF failure notification message to the standby SMF, including but not limited to the following two ways:
  • Method 1 Obtain the SMF failure indication callback address of the standby SMF; send the SMF failure notification message to the standby SMF through the SMF failure indication callback address.
  • sending an SMF fault notification message to the standby SMF includes: obtaining N4 interface information of the standby SMF; and sending an SMF failure notification message to the standby SMF through the N4 interface.
  • the SMF failure indication callback address or N4 interface information of the standby SMF includes, but is not limited to, the following three ways:
  • Method 1 The NF directly obtains the SMF fault indication callback address or N4 interface information of the standby SMF from the standby SMF information.
  • Method 2 The NF obtains the group identification of the backup SMF from the backup SMF information, obtains the SMF list from the NRF through the group identification of the backup SMF, and then obtains the SMF of the target backup SMF from the SMF configuration parameters of the target backup SMF in the SMF list. Failure indication callback address or N4 interface information.
  • Method 3 The NF obtains the instantiation ID of the backup SMF from the backup SMF information, and obtains the SMF configuration parameters of the target backup SMF from the NRF through the instantiation ID of the backup SMF, and then obtains the SMF fault indication callback of the target backup SMF from the SMF configuration parameters. Address or N4 interface information.
  • the standby SMF uses the SMF identifier of the failed SMF carried in the SMF failure notification message , N4 session failure indication, UE identification, obtain the PDU session context information of the SMF from the UDM or UDSF, the faulty SMF is the active SMF that has failed;
  • the standby SMF uses the UE identification carried in the SMF failure notification message, from The UMF or UDSF obtains the AMF context information of the UE;
  • the standby SMF obtains the instantiation identifier of the AMF from the UPF, and obtains the AMF configuration parameters from the NRF through the instantiation identifier of the AMF.
  • the trigger for the UE to accept the reestablishment of the PDU session of the standby SMF includes, but is not limited to, the following three ways:
  • Method 1 The UE receives a PDU session release and reactivation request constructed by the standby SMF through the AMF based on the SMF fault notification message and the PDU session identifier, and releases an invalid PDU session and reactivates a valid PDU session.
  • Method 2 The UE receives the SMF failure indication sent by the AMF based on the standby SMF and the PDU session release and reactivation request constructed by the PDU session identifier, and releases the invalid PDU session and reactivates the valid PDU session.
  • Method 3 The UE receives the SMF failure indication and the PDU session identifier sent by the standby SMF through the AMF, and releases the invalid PDU session and reactivates the valid PDU session.
  • the system side further includes a master SMF, where the master determines, when a PDU session creation request is made, an NF that generates a signaling interaction with the master SMF, and then reports to the master SMF.
  • the NF sends backup SMF information of the primary SMF.
  • the primary SMF sends backup SMF information of the primary SMF to the NF including: the primary SMF sends an N4 connection establishment request, or an N4 connection change request, or an N4 session to the UPF.
  • the backup SMF information of the active SMF is carried.
  • the NF that generates signaling interaction with the SMF obtains the backup SMF information of the active SMF.
  • the backup SMF information is based on the backup SMF information.
  • the standby SMF receives the SMF failure notification message, it triggers the user equipment UE to release and reactivate the PDU session, which prevents data transmission failures when the SMF fails, especially when the UPF receives the message sent to the UE.
  • Data delivery failure due to SMF failure during downlink data can effectively improve the PDU session recovery process when SMF failure occurs, and effectively ensure the normal transmission of uplink and downlink data.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 14 is a schematic structural diagram of a PDU session reconstruction system according to this embodiment.
  • the user equipment UE migration system includes a NF 1401 that generates signaling interaction with SMF, a standby SMF 1402, and a UE 1403, NF 1401.
  • the standby SMF 1402 is used to receive the NF sent when it determines that the active SMF has failed.
  • the SMF fault notification message that is sent then triggers the release and reactivation of the PDU session; the UE 1403 is used to release and reactivate the PDU session.
  • FIG. 15 is a PDU session reconstruction device applied to an NF that generates signaling interaction with SMF according to an embodiment of the present disclosure, and includes: an obtaining module 1501 and a first sending module 1502.
  • the obtaining module 1501 is configured to obtain standby SMF information of the active session management function SMF;
  • the first sending module 1502 is configured to send an SMF failure notification message to the standby SMF when it is determined that the active SMF fails, wherein the SMF failure notification message is used to instruct the standby SMF to trigger the release of the PDU session and reactivate.
  • NF and SMF generate message flow interaction.
  • the types of NF include AMF, UDM, UPF, PCF and other non-SMF NFs.
  • the active SMF generates signaling for the current NF.
  • Interactive SMF is a registered trademark of Lucent Technologies Inc.
  • the standby SMF information includes at least one of the following: the SMF group identifier of the standby SMF, the SMF instantiation identifier of the standby SMF, the SMF node identifier of the standby SMF, the SMF failure indication callback address of the standby SMF, and the N4 interface information of the standby SMF .
  • the manner in which the obtaining module 1501 obtains the standby SMF information of the active session management function SMF includes, but is not limited to, the following two ways:
  • Method 1 The acquisition module 1501 acquires the backup SMF information sent by the primary SMF when the PDU session is created.
  • the obtaining module 1501 uses the SMF ID of the active SMF, obtains the SMF configuration parameters of the active SMF from the NF storage function NRF, and obtains the backup SMF information from the SMF configuration parameters.
  • the SMF identifier is an acquisition module 1501 that sends an N4 connection establishment request, or an N4 connection change request, or an N4 session establishment request, or an N4 session change request to the UPF.
  • the SMF ID of the primary SMF carried in the request message.
  • the SMF fault notification message may carry at least one of the following: the SMF identifier and the UE identifier of the faulty SMF. Furthermore, it can carry DNN information. It should be understood that, because the active SMF fails, the faulty SMF is the active SMF.
  • the first sending module 1502 sends an SMF fault notification message to the standby SMF, including but not limited to the following two ways:
  • Method 1 Obtain the SMF failure indication callback address of the standby SMF; send the SMF failure notification message to the standby SMF through the SMF failure indication callback address.
  • sending an SMF failure notification message to the standby SMF includes: obtaining N4 interface information of the standby SMF; and sending an SMF failure notification message to the standby SMF through the N4 interface information.
  • the manner in which the first sending module 1502 obtains the SMF fault indication callback address or N4 interface information of the standby SMF includes, but is not limited to, the following three manners:
  • Method 1 The first sending module 1502 directly obtains the SMF fault indication callback address or N4 interface information of the standby SMF from the standby SMF information.
  • the first sending module 1502 obtains the group identification of the backup SMF from the backup SMF information, obtains the SMF list from the NRF through the group identification of the backup SMF, and then obtains the target from the SMF configuration parameters of the target backup SMF in the SMF list.
  • the SMF failure indication of the standby SMF indicates the callback address or N4 interface information.
  • Method 3 The first sending module 1502 obtains the instantiation ID of the backup SMF from the backup SMF information, and obtains the SMF configuration parameters of the target backup SMF from the NRF through the instantiation ID of the backup SMF, and then obtains the target backup SMF from the SMF configuration parameters.
  • SMF failure indicates callback address or N4 interface information.
  • FIG. 16 is a PDU session reconstruction apparatus applied to a standby SMF according to an embodiment of the present disclosure, including: a first receiving module 1601 and a triggering module 1602,
  • the first receiving module 1601 is configured to receive the SMF failure notification message sent by the NF when it is determined that the active SMF has failed; the NF is an NF that generates signaling interaction with the SMF;
  • the triggering module 1602 is configured to trigger the release and reactivation of the PDU session.
  • the first receiving module 1601 receives the SMF failure notification message sent by the NF when it determines that the primary SMF fails, including but not limited to the following two ways:
  • Method 1 The first receiving module 1601 receives the SMF failure notification message sent by the SMF failure indication callback address of the standby SMF when the UPF determines that the primary SMF has failed.
  • Method 2 When the NF is UPF, the first receiving module 1601 receives the SMF failure notification message sent through the N4 interface of the standby SMF when the UPF determines that the primary SMF fails.
  • the NF uses the SMF instantiated identifier to obtain the configuration parameters of the SMF from the NRF.
  • the SMF configuration parameters include a callback address for receiving an SMF failure indication or information for establishing an N4 interface, so the NF sends an SMF failure notification message to the callback address or the N4 interface.
  • the manner in which the trigger module 1602 triggers the UE to release the invalid PDU session and reactivate the valid PDU session includes, but is not limited to, the following three ways:
  • the trigger module 1602 constructs a PDU session release and reactivation request based on the SMF fault notification message and the PDU session identifier, and then sends the request to the UE through the access management function AMF to trigger the PDU session and reactivate.
  • Method 2 The triggering module 1602 sends an SMF fault indication and a PDU session identifier to the AMF, so that the AMF constructs a PDU session release and reactivation request and triggers the release and reactivation of the PDU session.
  • the trigger module 1602 sends an SMF fault indication and a PDU session identifier to the AMF, and the AMF sends a NAS message to the UE, which carries the SMF fault indication and the PDU session identifier to trigger the UE to initiate a PDU session and reactivate.
  • the PDU session reconstruction device applied to the standby SMF further includes a second acquisition module configured to use the SMF identifier of the faulty SMF carried in the SMF fault notification message, and the N4 session.
  • FIG. 17 is a PDU session reconstruction apparatus applied to a UE according to an embodiment of the present disclosure, including a second receiving module 1701 and a reconstruction module 1702.
  • the second receiving module 1701 is configured to receive a PDU session release and reactivation request constructed by the backup SMF based on the SMF fault notification message and the PDU session identifier sent by the backup SMF through the AMF, or receive the AMF based on the backup SMF.
  • SMF failure indication and PDU session identifier constructed by the PDU session release and reactivation request, or receiving the SMF failure indication and PDU session identifier sent by the standby SMF through the AMF;
  • the reconstruction module 1702 is configured to release and reactivate a PDU session.
  • the PDU session reconstruction system may further include a primary SMF.
  • FIG. 18 is a PDU session reconstruction device applied to the primary SMF according to an embodiment of the present disclosure. Including: a selection module 1801 and a second sending module 1802,
  • the selection module 1801 is configured to determine an NF that generates signaling interaction with the active SMF when a PDU session creation request is made;
  • the second sending module 1802 is configured to send the standby SMF information of the active SMF to the NF; the standby SMF information is used by the NF to send an SMF failure notification message to the standby SMF when it is determined that the active SMF fails.
  • the process in which the second sending module 1802 sends the backup SMF information of the active SMF to the NF includes: the second sending module 1802 sends an N4 connection establishment request or an N4 connection to the UPF.
  • the backup SMF information of the primary SMF is carried.
  • the NF that generates signaling interaction with the SMF obtains the backup SMF information of the active session management function SMF.
  • the NF determines The standby SMF information sends an SMF failure notification message to the standby SMF.
  • the standby SMF receives the SMF failure notification message, it triggers the user equipment UE to release and reactivate the PDU session, which avoids data transmission failure when the SMF fails, especially when the UPF receives the
  • the failure of data delivery due to the SMF failure during downlink data to the UE can effectively improve the PDU session recovery process when the SMF fails, and effectively ensure the normal transmission of uplink and downlink data.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • An embodiment of the present disclosure also provides a NF. As shown in FIG. 19, it includes a first processor 1901, a first memory 1902, and a first communication bus 1903.
  • the first communication bus 1903 is configured to implement a first communication bus 1903.
  • a connection and communication between a processor 1901 and a first memory 1902; the first processor 1901 is configured to execute one or more computer programs stored in the first memory 1902, so as to implement the application on the NF side in the foregoing embodiment.
  • At least one step in a PDU session reconstruction method At least one step in a PDU session reconstruction method.
  • An embodiment of the present disclosure also provides a backup SMF.
  • FIG. 20 includes a second processor 2001, a second memory 2002, and a second communication bus 2003.
  • the second communication bus 2003 is configured to implement Connection communication between the second processor 2001 and the second memory 2002;
  • the second processor 2001 is configured to execute one or more computer programs stored in the second memory 2002, so as to implement the application to the standby SMF in the above embodiment At least one step in the PDU session reconstruction method on the side.
  • An embodiment of the present disclosure further provides a UE. As shown in FIG. 21, it includes a third processor 2101, a third memory 2102, and a third communication bus 2103.
  • the third communication bus 2103 is configured to implement the first communication bus 2103.
  • the connection and communication between the third processor 2101 and the third memory 2102; the third processor 2101 is configured to execute one or more computer programs stored in the third memory 2102 to implement the application on the UE side in the foregoing embodiment. At least one step in a PDU session reconstruction method.
  • An embodiment of the present disclosure also provides a master SMF, as shown in FIG. 22, which includes a fourth processor 2201, a fourth memory 2202, and a fourth communication bus 2203.
  • the fourth communication bus 2203 is configured to Realize the connection and communication between the fourth processor 2201 and the fourth memory 2202; the fourth processor 2201 is configured to execute one or more computer programs stored in the fourth memory 2202, so as to implement the application to the host in the above embodiment; At least one step in the method of re-establishing a PDU session on the SMF side.
  • An embodiment of the present disclosure further provides a PDU session reconstruction system.
  • a PDU session reconstruction system As shown in FIG. 23, it includes a fifth processor 2301, a fifth memory 2302, and a fifth communication bus 2303.
  • the fifth communication bus 2303 is configured.
  • the fifth processor 2301 is configured to execute one or more computer programs stored in the fifth memory 2302 to implement the application system in the foregoing embodiment At least one step in the PDU session reconstruction method on the side.
  • Embodiments of the present disclosure also provide a computer-readable storage medium included in any method or technology for storing information such as computer-readable instructions, data structures, computer program modules, or other data Implemented volatile or non-volatile, removable or non-removable media.
  • Computer-readable storage media include, but are not limited to, RAM (Random Access Memory), ROM (Read-Only Memory, Read-Only Memory), EEPROM (Electrically Erasable, Programmable, Read-Only Memory) ), Flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic box, magnetic tape, disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and can be accessed by a computer.
  • RAM Random Access Memory
  • ROM Read-Only Memory
  • Read-Only Memory Read-Only Memory
  • EEPROM Electrically Erasable, Programmable, Read-Only Memory
  • Flash memory or other memory technology
  • CD-ROM Compact Disc Read-Only Memory
  • DVD digital versatile disk
  • the computer-readable storage medium in this embodiment may be used to store one or more computer programs, and the stored one or more computer programs may be executed by a processor to implement the foregoing first embodiment, and / or the second embodiment, and And / or at least one step of the PDU session reconstruction method in Embodiment 3.
  • An embodiment of the present disclosure also provides a computer program, which may be distributed on a computer-readable medium and executed by a computing device to implement the first embodiment, and / or the second embodiment, and / or At least one step of the PDU session reconstruction method in Embodiment 3; and in some cases, at least one step shown or described may be performed in a different order than that described in the above embodiments.
  • An embodiment of the present disclosure also provides a computer program product, including a computer-readable device, where the computer-readable device stores the computer program as shown above.
  • the computer-readable device in this embodiment may include a computer-readable storage medium as shown above.
  • a communication medium typically contains computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. Therefore, the present disclosure is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开的实施例提供了PDU会话重建方法、装置、系统及存储介质,其中,与SMF产生信令交互的NF获取主用会话管理功能SMF的备用SMF信息,在NF确定主用SMF发生故障时,基于备用SMF信息向备用SMF发送SMF故障通知消息,备用SMF在接收到SMF故障通知消息时,触发PDU会话的释放并重激活。

Description

一种PDU会话重建方法、装置、系统及存储介质 技术领域
本公开的实施例涉及但不限于通信领域,具体而言,涉及但不限于一种PDU会话重建方法、装置、系统及存储介质。
背景技术
3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)目前正在进行5G(5th Generation)系统的研究,根据3GPP标准工作组的定义,5G系统包括无线子系统5G RAN(5G Radio Access Network,5G无线接入系统)、5G核心网子系统5GC(5G Core,5G核心网)。
图1是5G系统的架构示意图,该架构由若干的NF(Network Function,网络功能)构成。在该架构中,5G无线子系统部分,主要包括NR(New Radio,新一代无线基站)。5G核心网子系统部分,主要包含UDM(Unified Data Management,统一数据管理功能)、AMF(Access Management Function,接入管理功能)、SMF(Session Management Function,会话管理功能)、UPF(User Plane Function,用户面功能)、PCF(Policy Control Function,策略控制功能)。
具体地说,UDM(Unified Data Management):统一数据管理功能,是用户签约数据的永久存放地点,位于用户签约的归属网;
AMF(Access Management Function):接入管理功能,对用户接入到网络的需求进行管理,负责终端到网络的NAS层(Non-Access Stratum,非接入层)信令管理、用户移动性管理等功能;
SMF(Session Management Function):会话管理功能,管理用户的PDU(Packet Data Unit,分组数据单元)会话、QoS(Quality of Service,服务质量)流,为UPF制定包检测和转发规则等;
UPF(User Plane Function):用户面功能,负责IP数据、非IP数据的路由和转发、用量上报等功能。
PCF(Policy Control Function):策略控制功能,负责为AMF、SMF提供各级别策略规则。
DN(Data Network)数据网络,提供特定数据服务,比如运营商业务服务,企业网业务服务,第三方业务服务等。
AF(Application Function)应用功能,对AF会话进行管理。
在相关技术中,若当前某个NF发生故障时,尤其是对于SMF发生故障,会直接导致相应的PDU(Packet Data Unit,分组数据单元)会话失效,而UE的上下行数据都将受到影响。此时,只能等候UE发起上行数据传输时,才能触发PDU会话的释放并重建,恢复此PDU会话。而此时如果在SMF故障时,有下行数据发往UE,则无法触发PDU的释放并重建。
发明内容
本公开的一个实施例提供了一种PDU会话重建方法,包括:网络功能NF获取主用会话管理功能SMF的备用SMF信息,其中,NF为与SMF产生信令交互的NF;NF在确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息;SMF故障通知消息用于指示备用SMF触发PDU会话的释放并重激活。
本公开的一个实施例还提供了一种PDU会话重建方法,包括:备用SMF接收NF在确定主用SMF发生故障时,所发送过来的SMF故障通知消息;NF为与SMF产生信令交互的NF;备用SMF触发PDU会话的释放并重激活。
本公开的一个实施例还提供了一种PDU会话重建方法,包括:UE接收备用SMF在确定主用SMF故障时,通过AMF发送的SMF故障指示以及PDU会话标识;UE释放并重激活PDU会话。
本公开的一个实施例还提供了一种PDU会话重建方法,包括:主用SMF在PDU会话创建请求时,确定与主用SMF产生信令交互的NF;主用SMF向NF发送主用SMF的备用SMF信息;备用SMF信息用于NF在确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息。
本公开的一个实施例还提供了一种PDU会话重建方法,包括:NF获取主用会话管理功能SMF的备用SMF信息,其中,NF为与SMF 产生信令交互的NF;NF在确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息;备用SMF在接收到SMF故障通知消息时,触发PDU会话的释放并重激活;UE释放并重激活PDU会话。
本公开的一个实施例还提供了一种PDU会话重建装置,应用于与SMF产生信令交互的NF,包括:获取模块,被配制成获取主用会话管理功能SMF的备用SMF信息;第一发送模块,被配制成在确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息,其中,SMF故障通知消息用于指示备用SMF触发PDU会话的释放并重激活。
本公开的一个实施例还提供了一种PDU会话重建装置,应用于备用SMF,包括:第一接收模块,被配制成接收NF在确定主用SMF发生故障时,所发送过来的SMF故障通知消息;NF为与SMF产生信令交互的NF;触发模块,被配制成触发PDU会话的释放并重激活。
本公开的一个实施例还提供了一种PDU会话重建装置,应用于UE,包括:第二接收模块,被配制成接收备用SMF在确定主用SMF故障时,通过AMF发送的SMF故障指示以及PDU会话标识;重建模块,被配制成释放并重激活PDU会话。
本公开的一个实施例还提供了一种PDU会话重建装置,应用于主用SMF,包括:选择模块,被配制成在PDU会话创建请求时,确定与主用SMF产生信令交互的NF;第二发送模块,被配制成向NF发送主用SMF的备用SMF信息,其中,备用SMF信息用于NF在确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息。
本公开的一个实施例还提供了一种用户设备UE迁移系统,包括:NF、备用SMF和UE,NF为与SMF产生信令交互的NF,其中,NF,被配制成获取主用会话管理功能SMF的备用SMF信息,并在确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息;备用SMF,被配制成接收NF在确定主用SMF发生故障时,所发送过来的SMF故障通知消息,然后触发UE进行无效PDU会话的释放并重激活有效PDU会话;UE,被配制成释放并重激活PDU会话。
本公开的一个实施例还提供了一种NF,包括第一处理器、第一存储器和第一通信总线;所述第一通信总线被配制成实现所述第一处理 器和第一存储器之间的连接通信;所述第一处理器被配制成执行所述第一存储器中存储的一个或者多个程序,以实现如上述所述的应用于NF的PDU会话重建方法的步骤。
本公开的一个实施例还提供一种备用SMF,包括第二处理器、第二存储器和第二通信总线;所述第二通信总线被配制成实现所述第二处理器和第二存储器之间的连接通信;所述第二处理器被配制成执行所述第二存储器中存储的一个或者多个程序,以实现如上述所述的应用于备用SMF的PDU会话重建方法的步骤。
本公开的一个实施例还提供一种UE,包括第三处理器、第三存储器和第三通信总线;所述第三通信总线被配制成实现所述第三处理器和第三存储器之间的连接通信;所述第三处理器被配制成执行所述第三存储器中存储的一个或者多个程序,以实现如上述所述的应用于UE的PDU会话重建方法的步骤。
本公开的一个实施例还提供一种主用SMF,包括第四处理器、第四存储器和第四通信总线;所述第四通信总线被配制成实现所述第四处理器和第四存储器之间的连接通信;所述第四处理器被配制成执行所述第四存储器中存储的一个或者多个程序,以实现如上述所述的应用于主用SMF的PDU会话重建方法的步骤。
本公开的一个实施例还提供一种PDU会话重建系统,包括第五处理器、第五存储器和第五通信总线;所述第五通信总线被配制成实现所述第五处理器和第五存储器之间的连接通信;所述第五处理器被配制成执行所述第五存储器中存储的一个或者多个程序,以实现如上述所述的应用于PDU会话重建系统的PDU会话重建方法的步骤。
本公开的一个实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如上述所述的任一PDU会话重建方法的步骤。
附图说明
图1为相关技术中的5G系统的架构示意图;
图2为本公开提供的UDSF支持不同类别NF的无状态设计的示意图;
图3为相关技术中UE注册到5G网络的流程示意图;
图4为相关技术中UE注册到5G网络后发起PDU会话创建的流程示意图;
图5为本公开实施例一的应用于NF侧的PDU会话重建方法的流程示意图;
图6为本公开实施例一的在PDU会话创建流程中,主用SMF将备用SMF信息发送给NF的流程示意图;
图7为本公开实施例一的一种UPF获取备用SMF信息的流程示意图;
图8为本公开实施例一的NF从NRF获取主用SMF的备用SMF信息的流程示意图;
图9为本公开实施例二的应用于备用SMF侧的PDU会话重建方法的流程示意图;
图10为本公开实施例二的一种在主用SMF故障后,备用SMF触发PDU会话重建的流程示意图;
图11为本公开实施例二的另一种在主用SMF故障后,备用SMF触发PDU会话重建的流程示意图;
图12为本公开实施例二的又一种在主用SMF故障后,备用SMF触发PDU会话重建的流程示意图;
图13为本公开实施例三的应用于系统的PDU会话重建方法的流程示意图;
图14为本公开实施例四的PDU会话重建系统的结构示意图;
图15为本公开实施例四的应用于NF的PDU会话重建装置的结构示意图;
图16为本公开实施例四的应用于备用SMF的PDU会话重建装置的结构示意图;
图17为本公开实施例四的应用于UE的PDU会话重建装置的结 构示意图;
图18为本公开实施例四的应用于主用SMF的PDU会话重建装置的结构示意图;
图19为本公开实施例五的NF的结构示意图;
图20为本公开实施例五的备用SMF的结构示意图;
图21为本公开实施例五的UE的结构示意图;
图22为本公开实施例五的主用SMF的结构示意图;
图23为本公开实施例五的PDU会话重建系统的结构示意图。
具体实施方式
在相关技术中,5G网络,支持NF的无状态化设计。无状态化设计,意味着服务于UE的同一类NF(比如,AMF)在前后两个流程中,AMF可以更换。为了保证更换NF后流程可以正常执行,需要将UE的上下文信息,存储到UDSF(Unstructured Data Storage Function,非结构化数据存储功能)上。并且,保证同一类NF(如AMF)可以相互存取在UDSF上的UE上下文信息。不同类别的NF,原则上不可以相互存取在UDSF上的UE上下文信息。图2描述了UDSF支持不同类别NF的无状态设计示意图,如AMF、SMF、UDM、PCF。不同类别的NF,使用不同的接口来存取UDSF上的UE上下文。
基于NF的无状态设计,提供了一种能力,在某个NF故障时,同类NF可基于UDSF上的UE上下文,使用同类NF快速替换出现故障的NF,以便继续执行后续流程。
但是,对于SMF故障后,将UE的PDU会话进行重建,还未提出标准化的解决方案。因此,亟需一种SMF故障时,将UE的PDU会话进行重建的方法。
应当说明的是,在相关技术中,UE注册到5G网络,并向5G网络发起PDU会话创建的相关流程,经过这些流程,UE才能从5G网络获得分组数据服务。
图3是UE注册到5G网络的流程示意图,具有如下步骤:
S301,UE向gNB发送注册请求(Registration Request);
S302,gNB根据条件,选择合适的AMF;
S303,gNB向AMF转发UE的注册请求;
S304,如果UE没有提供SUCI(Subscription Concealed Identifier,加密签约标识),则AMF向UE发送身份请求(Identification Request);
S305,UE响应身份请求而向AMF返回所请求的SUCI;
S306,AMF为UE选择合适的AUSF(Authentication Server Function,鉴权服务器功能),用以执行鉴权操作;
S307,AUSF发起对UE的身份认证和鉴权流程;
S308,AMF为UE选择合适的UDM;
S309,AMF向UDM发起AMF注册,UDM接收AMF注册,登记为UE服务的AMF信息;
S310,AMF向UDM发送签约请求,获取UE的移动性管理相关签约。UDM接收AMF的请求,并向AMF发送相关签约数据;
S311,AMF为UE选择合适的PCF;
S312,AMF向PCF发送移动性策略请求,PCF接收AMF请求,并向AMF返回移动性策略数据(AM Policy);
S313,AMF向UE返回注册接收响应(Registration Accept);
S314,UE收到AMF的注册接收响应后,向AMF发送注册接收消息(Registration Complete);
另外,在UE成功注册到5G网络后,UE可以发起PDU会话的创建。图4是UE注册到5G网络后,发起PDU会话创建的流程示意图,具有如下步骤:
S401,UE向AMF发送PDU会话建立请求(PDU Session Establishment Request);
S402,AMF根据UE的PDU会话建立请求,比如根据UE请求的DNN(Data Network Name,数据网络名称),为UE选择合适的SMF;
S403,AMF向SMF发送创建SM会话上下文请求(Create SMContext Request);
S404,SMF向UDM发起会话签约数据获取流程,UDM向SMF返回UE的会话签约数据;
S405,SMF向AMF返回创建SM会话上下文响应(Create SMContext Response);
S406,SMF选择合适的PCF,如果AMF在前述步骤中提供了AMF选择的PCF,则SMF使用该PCF;
S407,SMF向PCF发送会话策略请求,PCF接收SMF请求,并向SMF返回会话策略数据(SM Policy);
S408,SMF根据DNN、UE位置等信息,选择合适的UPF;
S409,SMF向UPF发送N4会话建立请求(N4 Session Establishment Request),UPF响应SMF的请求,建立N4会话,并向SMF返回N4会话建立响应(N4 Session Establishment Response);
S410,在N4会话成功建立后,SMF向AMF发送N1/N2消息传输请求(N1/N2Message Transfer),携带PDU会话的上下文信息,比如:创建的QoS流列表、UPF分配的上行F-TEID,等;
S411,AMF向gNB发送N2接口PDU会话请求(N2 PDU Session Request)消息,其中,携带AMF要发送给UE的NAS消息,NAS(Non-access stratum,非接入层)消息中包括需要发送给UE的PDU会话上下文的部分信息;
S412,gNB向UE发送无线资源建立(AN Resource Setup)请求,根据AMF提供的PDU会话信息,为UE建立合适的无线承载;
S413,在创建无线资源后,gNB向AMF返回N2接口PDU会话接收(N2 PDU Session ack)消息,其中携带gNB分配的N3接口资源,如gNB的F-TEID;
S414,AMF向SMF发送更新SM会话上下文请求(Update SMContext Request),用以更新UPF在N3接口上的远端F-TEID,即更新UPF上的gNB的F-TEID;
S415,SMF向UPF发送N4会话更新请求(N4 Session Update Request),更新N3接口上gNB的F-TEID,UPF向SMF返回N4会话更新响应;
S416,SMF向AMF返回更新SM会话上下文响应(Update SMContext Response)。
为了使本公开的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本公开实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
实施例一:
为了解决相关技术中在SMF发生故障时,因SMF故障导致PDU会话失效,导致数据传输无法执行,尤其是当UPF收到发往UE的下行数据时将导致下行数据投递失败的技术问题,本公开的一个实施例提供一种PDU会话重建方法,本实施例提供的PDU会话重建方法应用于NF侧,请参见图5所示,包括:
S501:NF获取主用SMF的备用SMF信息,其中,NF为与SMF产生信令交互的NF。
由于消息流程的交互需要,NF和SMF产生消息流程的交互,NF的类型包括AMF、UDM、UPF、PCF等非SMF的NF,主用SMF为当前与NF产生信令交互的SMF。
可选的,备用SMF信息包括以下至少之一:备用SMF的SMF分组标识、备用SMF的SMF实例化标识、备用SMF的SMF节点标识、备用SMF的SMF故障指示回调地址、备用SMF的N4接口信息。
其中,SMF分组标识(SMF Set ID),用于标识一组具有相同或相似特征的SMF,归属同一组的SMF相互之间互为备份;备用SMF的SMF故障指示回调地址(callback URI for SMF restoration),供备用SMF用以接收SMF故障指示;备用SMF的N4接口信息,用于建立N4连接,可以包括如下信息:N4接口的IP地址(IP address for N4 association)、N4接口的端口(Port for N4 association)。
在本实施例中,NF获取主用会话管理功能SMF的备用SMF信息的方式包括但不限于以下两种:
方式一:NF在PDU会话创建时,获取主用SMF发送过来的备用SMF信息。如图6所示为本实施例提供的在PDU会话创建流程中,主用SMF将备用SMF信息发送给NF的流程示意图,包括以下步骤:
S601,UE向AMF发送PDU会话建立请求。
S602,AMF根据UE的PDU会话建立请求,比如根据UE请求的DNN,为UE选择合适的SMF。
S603,AMF向SMF发送创建SM会话上下文请求。
S604,SMF向UDM注册、获取会话签约数据,可选地,SMF向UDM提供备用SMF信息。
S605,SMF向AMF返回创建SM会话上下文响应,可选地,SMF向AMF提供备用SMF信息。
S606,SMF选择合适的PCF,如果AMF在前述步骤中提供了AMF选择的PCF,则SMF使用该PCF。
S607,SMF向PCF获取会话策略数据,可选地,SMF向PCF提供备用SMF信息。
S608,SMF根据DNN、UE位置等信息,选择合适的UPF。
S609,SMF向UPF发送N4会话建立请求,可选的,SMF向UPF提供备用SMF信息。
另外,在本实施例的一些实施方式中,在NF为用户面功能UPF时,UPF在接收主用SMF发送过来的N4连接建立请求、N4连接更新请求、N4会话建立请求、或N4会话变更请求时,获取N4连接建立请求或N4会话建立请求所携带的备用SMF信息。图7所示出的为本实施例提供的一种UPF获取备用SMF信息的流程示意图,分别通过流程A和B来示出上述两种获取方式
流程A是通过N4接口建立的的时候获取备用SMF信息,包括:
步骤A701,主用SMF向UPF发送N4连接建立请求,N4连接建立请求中携带备用SMF信息。
可选地,在本步骤中,SMF还可以携带自身的标识信息,可以是如下之一或组合:SMF节点标识(SMF Node D)、SMF实例化标识(SMF Instance ID)。
步骤A702,UPF接收SMF的N4连接建立请求,根据N4连接建立请求向SMF返回N4连接建立响应(N4 Association Establishment Response)。
UPF接收到SMF的N4连接建立请求的同时获取到备用SMF信 息。应当注意的是,备用SMF信息也可以在后续发生更新,如果是更新,则可以通过N4连接更新请求下发,携带方式与N4连接建立的时候一致。
流程B是通过会话级的消息建立触发的备用SMF信息的获取,包括:
步骤B701,AMF向主用SMF发送创建SM上下文请求。
步骤B702,主用SMF接收AMF的创建SM上下文请求,向AMF返回创建SM上下文响应。
步骤B703,主用SMF为UE选择合适的UPF。
步骤B704,主用SMF向UPF发送N4会话建立请求,N4会话建立请求中携带备用SMF信息。
步骤B705,UPF接收主用SMF的N4会话建立请求,根据请求建立N4会话,向主用SMF返回N4会话建立响应。
应当理解的是,备用SMF信息也可能在后续发生更新,如果是更新,则可以通过N4会话更新请求下发,携带方式与N4会话建立的时候一致。
方式二:NF使用主用SMF的SMF标识,从NF存储功能NRF上获取主用SMF的SMF配置参数,并从SMF配置参数中获取备用SMF信息。图8所示出的为本实施例提供的NF从NRF获取主用SMF的备用SMF信息的流程示意图,分别通过流程A和B来示出主用SMF向NRF发起NF注册的流程和NF获取主用SMF的配置参数的流程,包括以下步骤:
步骤A801,主用SMF向NRF发送NF注册请求,携带备用SMF配置参数,备用SMF配置参数中包括备用SMF信息。
可选的,在本步骤中,主用SMF还携带如下信息之一或组合:SMF分组标识、备用SMF列表。备用SMF列表中每个SMF包含其SMF实例化标识。
步骤A802,NRF接收并处理SMF的NF注册请求,向SMF返回NF注册响应。
根据不同流程的需要,当NF需要获取若干备用SMF时,执行步 骤B801~B802,从NRF获取可供选择的备用SMF列表。或者,当NF已经获得了某个具体SMF(可以是主用SMF或备用SMF)的SMF标识,需要从NRF获得该SMF的配置参数时,执行步骤B803~B804。
步骤B801,NF向NRF发送NF发现请求,指定NF类型为SMF,提供需要SMF支持的DNN,以及其他的必要信息。
可选的,在本步骤中,NF还可以指定SMF分组标识,要求NRF返回具有相同SMF分组标识的备用SMF列表。
步骤B802,NRF根据NF的NF发现请求,寻找合适的备用SMF,向NF返回NF发现响应。在NF发现响应中,包含备选SMF列表,以及每个SMF的配置参数。
步骤B803,NF向NRF发送NF发现请求,指定NF类型为SMF,提供SMF标识。
可选的,在本步骤中,SMF标识可以是如下之一:SMF实例化标识、SMF节点标识。
步骤B804,NRF根据NF的NF发现请求,获取指定的SMF的SMF配置参数,向NF返回NF发现响应;在NF发现响应中,包含所述请求的SMF的SMF配置参数。通常,在SMF配置参数中包含该SMF的备用SMF信息。
当NF选定备用SMF后,或从NRF获得指定备用SMF的配置参数后,根据流程需要,和所述备用SMF发起消息交互流程。
在本实施例的一些实施方式中,在NF为用户面功能UPF时,SMF标识为主用SMF向UPF发送N4连接建立请求、或N4连接变更请求、或N4会话建立请求、或N4会话变更请求时,在请求消息中所携带的主用SMF的SMF标识。
S502:NF在确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息,其中,SMF故障通知消息用于指示备用SMF触发PDU会话的释放并重激活。
在本实施例的一种实施方式中,NF自身通过检测自身与主用AMF之间的链路状态而确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息。
例如,NF为用户面功能UPF时,UPF对自身与主用SMF之间的链路状态进行检测的方式包括但不限于以下两种:
方式一:UPF通过检测向主用SMF发送N4信令消息时的N4信令发送状态,来对UPF与主用SMF之间的链路状态进行获取。UPF向SMF发送的N4信令消息,例如下行数据到达通知,当这种信令发送失败时,UPF可以感知链路中断,而确定主用SMF发生故障。
方式二:UPF根据在建立与主用SMF的N4连接之后,UPF与主用SMF之间的心跳检测,获取UPF与主用SMF之间的链路状态。UPF和SMF之间为了进行链路探测,会有类似心跳的保活机制,即周期性的发送探测消息来确定链路状态。
此外,还例如,在NF为非UPF、非SMF的其他NF时,也即NF为AMF、PCF、UDM等时,其他NF在建立与主用SMF的信令交互之后,通过检测和主用SMF之间的心跳或信令交互响应情况,来获取与主用SMF之间的链路状态,从而确定主用SMF是否发生故障。
可选的,在NF向备用SMF发送SMF故障通知消息时,SMF故障通知消息可以携带以下至少之一:故障SMF的SMF标识、N4会话失效指示、UE标识。更进一步的还可以携带DNN信息。应当理解的是,在此处,由于主用SMF发生故障,所述故障SMF即主用SMF。还应当说明的是,N4会话失效指示用于指明UE的N4会话上下文已失效,需要重建N4会话,则备用SMF可以根据UE标识从UDSF或UDM获取UE的PDU会话上下文信息。
在本实施例的一些实施方式中,故障SMF的SMF标识可以是:SMF节点标识(即N4接口上的SMF节点标识)、或SMF实例化标识,UE的标识信息则可以是:SUPI。
在本实施例的一些实施方式中,NF向备用SMF发送SMF故障通知消息包括但不限于以下两种方式:
方式一:获取备用SMF的SMF故障指示回调地址;通过SMF故障指示回调地址向备用SMF发送SMF故障通知消息。
方式二:在NF为UPF时,向备用SMF发送SMF故障通知消息包括:获取备用SMF的N4接口信息;通过N4接口向备用SMF发送 SMF故障通知消息。
还应当说明的是,获取备用SMF的SMF故障指示回调地址或N4接口信息包括但不限于以下三种方式:
方式一:NF从备用SMF信息中直接获取备用SMF的SMF故障指示回调地址或N4接口信息。
方式二:NF从备用SMF信息中获取备用SMF的分组标识,并通过备用SMF的分组标识从NRF获取SMF列表,然后从SMF列表中的目标备用SMF的SMF配置参数中,获取目标备用SMF的SMF故障指示回调地址或N4接口信息。
方式三:NF从备用SMF信息中获取备用SMF的实例化标识,并通过备用SMF的实例化标识从NRF获取目标备用SMF的SMF配置参数,然后从SMF配置参数获取目标备用SMF的SMF故障指示回调地址或N4接口信息。
通过本公开实施例提供的PDU会话重建方法,在某些实施过程中,与SMF产生信令交互的NF获取主用会话管理功能SMF的备用SMF信息,在NF确定主用SMF发生故障时,基于备用SMF信息向备用SMF发送SMF故障通知消息,以指示备用SMF触发PDU会话的释放并重激活,避免了SMF故障时数据传输的失败,尤其是当UPF收到发往UE的下行数据时因SMF故障而导致的数据投递失败,能有效改进SMF故障时的的PDU会话恢复流程,并有效保证了上下行数据的正常传输。
实施例二:
为了解决相关技术中在SMF发生故障时,导致PDU会话失效,造成上下行数据传输失败的技术问题,本公开的一个实施例提供一种PDU会话重建方法,本实施例提供的PDU会话重建方法应用于备用SMF侧,请参见图9所示,包括:
S901:备用SMF接收NF在确定主用SMF发生故障时,所发送的SMF故障通知消息,其中,NF为与SMF产生信令交互的NF。
在本公开的实施例中,主用SMF为当前与NF产生信令交互的 SMF,当与SMF产生信令交互的NF检测到该主用SMF发生故障时,则向备用SMF发送SMF故障通知消息,而指示备用SMF触发PDU会话的释放并重激活。应当理解的是,NF的类型包括AMF、UDM、UPF、PCF等非SMF的NF。
其中,可选的,在备用SMF接收到NF发送SMF故障通知消息时,SMF故障通知消息中携带以下至少之一:故障SMF的SMF标识、N4会话失效指示、UE标识。更进一步的还可以携带有DNN信息。在此处,故障SMF即发生故障的主用SMF。还应当说明的是,N4会话失效指示用于指明UE的N4会话上下文已失效,需要重建N4会话,则备用SMF可以根据UE标识从UDSF或UDM获取UE的PDU会话上下文信息。
应当理解的是,主用SMF的SMF标识可以是:SMF节点标识(即N4接口上的SMF节点标识)、或SMF实例化标识,UE的标识信息则可以是:SUPI。
在本实施例的一些实施方式中,备用SMF接收NF在确定主用SMF发生故障时,所发送过来的SMF故障通知消息包括但不限于以下两种方式:
方式一:备用SMF接收UPF在确定主用SMF发生故障时,通过备用SMF的SMF故障指示回调地址所发送过来的SMF故障通知消息。
方式二:在NF为UPF时,备用SMF接收UPF在确定主用SMF发生故障时,通过备用SMF的N4接口所发送过来的SMF故障通知消息。
其中,如果NF所获取的备用SMF信息中仅包含备用SMF的SMF实例化标识,则NF使用该SMF实例化标识,从NRF处获取该SMF的SMF配置参数。SMF配置参数中,包含用以接收SMF故障指示的回调地址或用以建立N4接口的信息,从而NF向该回调地址或N4接口发送SMF故障通知消息。
S902:备用SMF触发PDU会话的释放并重激活。
在本实施例的一些实施方式中,备用SMF触发PDU会话的释放并重激活包括但不限于以下三种方式:
方式一:备用SMF基于SMF故障通知消息以及PDU会话标识构造PDU会话释放并重激活请求,然后通过接入管理功能AMF发送至UE,以触发PDU会话的释放并重激活。图10所示出的为本实施例提供的一种在主用SMF故障后,备用SMF触发PDU会话重建的流程示意图,本实施例中以NF为UPF为例,包括以下步骤:
S1001,UE请求建立PDU会话,网络为UE创建PDU会话。
其中,在为UE建立PDU会话后,UE可以发起上行数据传输、或接收下行数据。
在本步骤中,若NF为UPF,则可选的,SMF在和UPF建立N4连接、或建立N4会话时,或更新N4连接、N4会话时,可以将备用SMF信息携带给UPF。
或者,若NF为非UPF的其他NF,可选的,SMF在流程交互中,可以将备用SMF信息携带给UDM、AMF、PCF,则UDM、AMF、PCF在接收到备用SMF发起的消息请求时,根据主用SMF所登记的备用SMF信息,可授权备用SMF的消息请求。
S1002,某一时刻,有下行数据要发往UE,当UPF收到下行数据后,若UE当前在空闲态,则UPF向主用SMF发送下行数据通知。
假定主用SMF发生故障,则会无响应,那么UPF发往主用SMF的下行数据通知,将无法获得正确的响应。根据配置,UPF可尝试重发该消息。
S1003,由于主用SMF无响应,且重发尝试失败后,UPF可判断主用SMF发生故障,则UPF向备用SMF发送SMF故障通知消息。
在本步骤中,UPF通过所获取的备用SMF信息、或备用SMF的配置参数中的SMF故障指示的回调地址或N4接口信息,向备用SMF发送SMF故障通知消息,而如果UPF所获取的备用SMF信息,仅包含备用SMF的SMF实例化标识,那么则UPF先使用该SMF实例化标识,从NRF处获取该SMF的配置参数,再从SMF配置参数中获取用以接收SMF故障通知消息的回调地址、或用以建立N4接口的信息。
在本步骤中,当UPF向备用SMF发送SMF故障通知消息时,同时还可以携带如下信息:故障SMF的标识信息,如:SMF节点标识、 或SMF实例化标识;N4会话失效指示,N4会话失效指示用于指明UE的N4会话上下文已失效,需要重建N4会话,则备用SMF可以根据UE标识从UDSF或UDM获取UE的PDU会话上下文信息;UE的标识信息,如SUPI;可选地,还可以携带DNN信息。应当理解的是,此处的故障SMF即发生故障的主用SMF。
应当说明的是,发生故障的SMF的标识信息、以及UE的标识信息,用以供UDM、AMF定位故障SMF(即发生故障的主用SMF)为UE建立的PDU会话。DNN信息可用以进一步限定主用SMF为UE建立的特定PDU会话。
S1004,收到UPF发送的SMF故障指示后,备用SMF向UDM查询UE的PDU会话上下文。
其中,备用SMF向UDM提供:故障SMF的标识信息、UE的标识信息、DNN等。UDM使用所述信息,定位故障SMF为UE所建立的特定PDU会话,并向备用SMF返回PDU会话上下文信息(也即SM Context)。
S1005,收到UPF发送的SMF故障通知消息后,备用SMF向UDM查询当前服务UE的AMF信息。
其中,备用SMF向UDM提供:UE的标识信息。UDM使用所述信息,定位当前服务UE的AMF信息,并向备用SMF返回AMF上下文信息(也即AM Context),其中至少包含AMF的实例化标识、或全局唯一AMF标识。
可选的,备用SMF获得AMF上下文信息后,有可能需要和NRF交互,以获得AMF的配置参数(AMF Profile)。
S1006,备用SMF获得PDU会话上下文、AMF上下文信息后,利用所获得的信息,构造PDU会话释放并重激活请求。
S1007,备用SMF向AMF发送N1/N2消息传输请求,在NAS消息中携带PDU会话释放并重激活请求。
S1008,AMF向UE发送NAS消息,NAS消息中携带PDU会话释放并重激活请求。
S1009,UE收到AMF发送的PDU会话释放并重激活请求后,发 起PDU会话释放并重激活流程,网络为UE重选SMF,并重建PDU会话。
在此步骤中,网络为UE重选SMF时,可选的,重选的SMF可以为前述步骤中的备用SMF。在完成PDU会话重建后,UPF继续将下行数据继续发往UE。
方式二:备用SMF向AMF发送SMF故障指示以及PDU会话标识,以使AMF构造PDU会话释放并重激活请求而触发PDU会话的释放并重激活。图11所示出的为本实施例提供的另一种在主用SMF故障后,备用SMF触发PDU会话重建的流程示意图,本实施例中同样以NF为UPF为例,包括以下步骤:
S1101~S1105,和图10所对应的实施方式中的步骤S1001~S1005相同,在此不再赘述。
S1106,备用SMF向AMF发送SMF故障指示。
应当说明的是,该SMF故障指示为备用SMF在接收到SMF故障通知消息后,从该SMF故障通知消息中获取,或单独生成,可选的,SMF故障指示携带有PDU会话ID。
S1107,AMF利用所接收的消息,构造PDU会话释放并重激活请求。
S1108,AMF向UE发送NAS消息,NAS消息中携带PDU会话释放并重激活请求。
S1109,UE收到AMF发送的PDU会话释放并重激活请求后,发起PDU会话释放并重激活流程,网络为UE重选SMF,并重建PDU会话。
方式三:备用SMF向AMF发送SMF故障指示以及PDU会话标识,AMF向UE发送NAS消息,其中携带SMF故障指示和PDU会话标识,以触发UE发起PDU会话并重激活。图12所示出的为本实施例提供的又一种在主用SMF故障后,备用SMF触发PDU会话重建的流程示意图,本实施例中同样以NF为UPF为例,包括以下步骤:
S1201~S1205,和图10所对应的实施方式中的步骤S1001~S1005相同,在此不再赘述。
S1206,备用SMF向AMF发送SMF故障指示。
可选的,SMF故障指示携带有PDU会话ID。SMF故障指示,用以指示UE某个SMF故障,和其相关的PDU会话需要释放并重建。PDU会话ID用以向UE指示哪个PDU会话需要释放并重激活。
S1207,AMF向UE发送NAS消息,NAS消息中携带SMF故障指示以及PDU会话ID。
S1208,UE接收AMF发送的SMF故障指示后,根据PDU会话ID发起PDU会话释放并重激活流程,网络为UE重选SMF,并重建PDU会话。
在此步骤中,网络为UE重选SMF时,可选的,重选的SMF可以为前述步骤中的备用SMF。在完成PDU会话重建后,UPF继续将下行数据继续发往UE。
应当说明的是,可选的,在备用SMF触发PDU会话的释放并重激活之前,还包括以下至少之一:备用SMF使用SMF故障通知消息中所携带的故障SMF的SMF标识、N4会话失效指示、UE标识,从UDM或UDSF中获取SMF的PDU会话上下文信息,该故障SMF即发生故障的所述主用SMF;备用SMF使用SMF故障通知消息中所携带的UE标识,从UDM或UDSF中获取UE的AMF上下文信息;备用SMF从UPF获取AMF的实例化标识,并通过AMF的实例化标识从NRF获取AMF配置参数。还应当说明的是,N4会话失效指示用于指明UE的N4会话上下文已失效,需要重建N4会话,则备用SMF可以根据UE标识从UDSF或UDM获取UE的PDU会话上下文信息。
为了构造PDU会话释放并重激活请求,需要获得PDU会话上下文信息。备用SMF可使用UE标识、故障SMF(即发生故障的主用SMF)的实例化标识,从UDM或UDSF中获取到SMF的PDU会话上下文信息,使用该PDU会话上下文信息,才可以构造PDU会话释放并重新激活请求。
为了向AMF发送PDU会话释放并重激活请求,或向AMF发送SMF故障通知消息,备用SMF需要获得AMF上下文信息。备用SMF可使用UE标识,从UDM获取到UE的AMF上下文信息。从AMF上 下文信息中,可获得AMF的实例化标识以及其他信息。根据需要,备用SMF可向NRF查询,以获得该AMF的配置参数;备用SMF还可以从UPF获得AMF的实例化标识,备用SMF可通过AMF的实例化标识向NRF查询,以获得该AMF的配置参数。
应当说明的是,如图10、11、12所对应的实施方式中,是以UPF为例,在检测到主用SMF发生故障时,向备用SMF发送SMF故障通知消息,以触发SMF发起PDU会话的释放并重激活。同理地,非UPF的其他NF,如AMF、UDM、PCF,也可以在检测到主用SMF发生故障时,向备用SMF发送故障通知消息,以触发SMF发起PDU会话的释放并重激活。其他NF,如AMF、UDM、PCF,可以根据信令交互的响应、或心跳保活检测,来判断主用SMF是否发生故障。
通过本公开实施例提供的PDU会话重建方法,在某些实施过程中,备用SMF接收与SMF产生信令交互的NF在确定主用SMF发生故障时,所发送过来的SMF故障通知消息,然后备用SMF根据SMF故障通知消息触发PDU会话的释放并重激活,避免了SMF故障时数据传输的失败,尤其是当UPF收到发往UE的下行数据时因SMF故障而导致的数据投递失败,能有效改进SMF故障时的的PDU会话恢复流程,并有效保证了上下行数据的正常传输。
实施例三:
为了解决相关技术中在SMF发生故障时,因SMF故障导致PDU会话失效,导致数据传输无法执行,尤其是当UPF收到发往UE的下行数据时将导致下行数据投递失败的技术问题,本公开的一个实施例提供一种PDU会话重建方法,本实施例提供的PDU会话重建方法应用于包括NF、备用SMF和UE的系统侧,请参见图13所示,包括:
S1301:NF获取主用SMF的备用SMF信息。
由于消息流程的交互需要,NF和SMF产生消息流程的交互,NF的类型包括AMF、UDM、UPF、PCF等非SMF的NF,主用SMF为当前与NF产生信令交互的SMF。
可选的,备用SMF信息包括以下至少之一:备用SMF的SMF分 组标识、备用SMF的SMF实例化标识、备用SMF的SMF节点标识、备用SMF的SMF故障指示回调地址、备用SMF的N4接口信息。
在本实施例中,NF获取主用会话管理功能SMF的备用SMF信息的方式包括但不限于以下两种:
方式一:NF获取在PDU会话创建时,获取主用SMF发送过来的备用SMF信息。
方式二:NF使用主用SMF的SMF标识,从NF存储功能NRF上获取主用SMF的SMF配置参数,并从SMF配置参数中获取备用SMF信息。
在本实施例的一些实施方式中,在NF为用户面功能UPF时,SMF标识为主用SMF向UPF发送N4连接建立请求、或N4连接变更请求、或N4会话建立请求、或N4会话变更请求时,在请求消息中所携带的主用SMF的SMF标识。
S1302:NF在确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息。
在本实施例的一种实施方式中,NF自身通过检测自身与主用AMF之间的链路状态而确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息。
例如,NF为用户面功能UPF时,UPF对自身与主用SMF之间的链路状态进行检测的方式包括但不限于以下两种:
方式一:UPF通过检测向主用SMF发送N4信令消息时的N4信令发送状态,来对UPF与主用SMF之间的链路状态进行获取。UPF向SMF发送的N4信令消息,例如下行数据到达通知,当这种信令发送失败时,UPF可以感知链路中断,而确定主用SMF发生故障。
方式二:UPF根据在建立与主用SMF的N4连接之后,UPF与主用SMF之间的心跳检测,获取UPF与主用SMF之间的链路状态。UPF和SMF之间为了进行链路探测,会有类似心跳的保活机制,即周期性的发送探测消息来确定链路状态。
此外,还例如,在NF为非UPF、非SMF的其他NF时,也即NF为AMF、PCF、UDM等时,其他NF在建立与主用SMF的信令交互 之后,通过检测和主用SMF之间的心跳或信令交互响应情况,来获取与主用SMF之间的链路状态,从而确定主用SMF是否发生故障。
可选的,在NF向备用SMF发送SMF故障通知消息时,SMF故障通知消息可以携带以下至少之一:故障SMF的SMF标识、N4会话失效指示、UE标识。更进一步的还可以携带DNN信息。应当理解的是,在此处,由于主用SMF发生故障,所述故障SMF即主用SMF。
在本实施例的一些实施方式中,NF向备用SMF发送SMF故障通知消息包括但不限于以下两种方式:
方式一:获取备用SMF的SMF故障指示回调地址;通过SMF故障指示回调地址向备用SMF发送SMF故障通知消息。
方式二:在NF为UPF时,向备用SMF发送SMF故障通知消息包括:获取备用SMF的N4接口信息;通过N4接口向备用SMF发送SMF故障通知消息。
还应当说明的是,获取备用SMF的SMF故障指示回调地址或N4接口信息包括但不限于以下三种方式:
方式一:NF从备用SMF信息中直接获取备用SMF的SMF故障指示回调地址或N4接口信息。
方式二:NF从备用SMF信息中获取备用SMF的分组标识,并通过备用SMF的分组标识从NRF获取SMF列表,然后从SMF列表中的目标备用SMF的SMF配置参数中,获取目标备用SMF的SMF故障指示回调地址或N4接口信息。
方式三:NF从备用SMF信息中获取备用SMF的实例化标识,并通过备用SMF的实例化标识从NRF获取目标备用SMF的SMF配置参数,然后从SMF配置参数获取目标备用SMF的SMF故障指示回调地址或N4接口信息。
S1303:备用SMF在接收到SMF故障通知消息时,触发PDU会话的释放并重激活。
S1304:UE释放并重激活PDU会话。
应当说明的是,可选的,在备用SMF触发UE进行无效PDU会话的释放并重激活有效PDU会话之前,还包括以下至少之一:备用SMF 使用SMF故障通知消息中所携带的故障SMF的SMF标识、N4会话失效指示、UE标识,从UDM或UDSF中获取SMF的PDU会话上下文信息,该故障SMF即发生故障的所述主用SMF;备用SMF使用SMF故障通知消息中所携带的UE标识,从UDM或UDSF中获取UE的AMF上下文信息;备用SMF从UPF获取AMF的实例化标识,并通过AMF的实例化标识从NRF获取AMF配置参数。
另外,UE侧接受备用SMF的PDU会话的重建的触发包括但不限于以下三种方式:
方式一:UE接收备用SMF通过AMF发送过来的、备用SMF基于SMF故障通知消息以及PDU会话标识所构造的PDU会话释放并重激活请求,而释放无效PDU会话并重激活有效PDU会话。
方式二:UE接收AMF基于备用SMF所发送的SMF故障指示以及PDU会话标识所构造的PDU会话释放并重激活请求,而释放无效PDU会话并重激活有效PDU会话。
方式三:UE接收备用SMF通过AMF发送过来的SMF故障指示以及PDU会话标识,而释放无效PDU会话并重激活有效PDU会话。
应当说明的是,在本实施例的一些实施方式中,系统侧还包括主用SMF,其中,主用在PDU会话创建请求时,确定与所述主用SMF产生信令交互的NF,然后向NF发送主用SMF的备用SMF信息。
应当理解的是,可选的,在NF为UPF时,主用SMF向NF发送主用SMF的备用SMF信息包括:主用SMF向UPF发送N4连接建立请求、或N4连接变更请求、或N4会话建立请求、或N4会话变更请求时,携带主用SMF的备用SMF信息。
通过本公开实施例提供的PDU会话重建方法,在某些实施过程中,与SMF产生信令交互的NF获取主用SMF的备用SMF信息,在NF确定主用SMF发生故障时,基于备用SMF信息向备用SMF发送SMF故障通知消息,备用SMF在接收到SMF故障通知消息时,触发用户设备UE释放并重激活PDU会话,避免了SMF故障时数据传输的失败,尤其是当UPF收到发往UE的下行数据时因SMF故障而导致的数据投递失败,能有效改进SMF故障时的的PDU会话恢复流程,并有效保 证了上下行数据的正常传输。
实施例四:
如图14所示为本实施例提供的一种PDU会话重建系统的结构示意图,该用户设备UE迁移系统包括与SMF产生信令交互的NF 1401、备用SMF 1402和UE 1403,NF 1401,用于获取主用会话管理功能SMF的备用SMF信息,并在确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息;备用SMF 1402,用于接收NF在确定主用SMF发生故障时,所发送过来的SMF故障通知消息,然后触发PDU会话的释放并重激活;UE 1403,用于释放并重激活PDU会话。
请参见图15所示,图15为本公开的一个实施例提供的一种应用于与SMF产生信令交互的NF的PDU会话重建装置,包括:获取模块1501和第一发送模块1502,
其中,获取模块1501,被配置为获取主用会话管理功能SMF的备用SMF信息;
第一发送模块1502,被配置为在确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息,其中,SMF故障通知消息用于指示备用SMF触发PDU会话的释放并重激活。
在本公开实施例中,由于消息流程的交互需要,NF和SMF产生消息流程的交互,NF的类型包括AMF、UDM、UPF、PCF等非SMF的NF,主用SMF为当前与NF产生信令交互的SMF。
可选的,备用SMF信息包括以下至少之一:备用SMF的SMF分组标识、备用SMF的SMF实例化标识、备用SMF的SMF节点标识、备用SMF的SMF故障指示回调地址、备用SMF的N4接口信息。
其中,在本实施例中,获取模块1501获取主用会话管理功能SMF的备用SMF信息的方式包括但不限于以下两种:
方式一:获取模块1501在PDU会话创建时,获取主用SMF发送过来的备用SMF信息。
方式二:获取模块1501使用主用SMF的SMF标识,从NF存储功能NRF上获取主用SMF的SMF配置参数,并从SMF配置参数中获 取备用SMF信息。
在本实施例的一些实施方式中,在NF为用户面功能UPF时,SMF标识为获取模块1501向UPF发送N4连接建立请求、或N4连接变更请求、或N4会话建立请求、或N4会话变更请求时,在请求消息中所携带的主用SMF的SMF标识。
另外,在第一发送模块1502向备用SMF发送SMF故障通知消息时,SMF故障通知消息可以携带以下至少之一:故障SMF的SMF标识、UE标识。更进一步的还可以携带DNN信息。应当理解的是,在此处,由于主用SMF发生故障,所述故障SMF即主用SMF。
在本实施例的一些实施方式中,第一发送模块1502向备用SMF发送SMF故障通知消息包括但不限于以下两种方式:
方式一:获取备用SMF的SMF故障指示回调地址;通过SMF故障指示回调地址向备用SMF发送SMF故障通知消息。
方式二:在NF为UPF时,向备用SMF发送SMF故障通知消息包括:获取备用SMF的N4接口信息;通过N4接口信息向备用SMF发送SMF故障通知消息。
还应当说明的是,第一发送模块1502获取备用SMF的SMF故障指示回调地址或N4接口信息的方式包括但不限于以下三种方式:
方式一:第一发送模块1502从备用SMF信息中直接获取备用SMF的SMF故障指示回调地址或N4接口信息。
方式二:第一发送模块1502从备用SMF信息中获取备用SMF的分组标识,并通过备用SMF的分组标识从NRF获取SMF列表,然后从SMF列表中的目标备用SMF的SMF配置参数中,获取目标备用SMF的SMF故障指示回调地址或N4接口信息。
方式三:第一发送模块1502从备用SMF信息中获取备用SMF的实例化标识,并通过备用SMF的实例化标识从NRF获取目标备用SMF的SMF配置参数,然后从SMF配置参数获取目标备用SMF的SMF故障指示回调地址或N4接口信息。
请参见图16所示,图16为本公开的一个实施例提供的一种应用于备用SMF的PDU会话重建装置,包括:第一接收模块1601和触发 模块1602,
其中,第一接收模块1601,被配置成接收NF在确定主用SMF发生故障时,所发送过来的SMF故障通知消息;NF为与SMF产生信令交互的NF;
触发模块1602,被配置成触发PDU会话的释放并重激活。
在本实施例的一些实施方式中,第一接收模块1601接收NF在确定主用SMF发生故障时,所发送过来的SMF故障通知消息包括但不限于以下两种方式:
方式一:第一接收模块1601接收在UPF确定主用SMF发生故障时,通过备用SMF的SMF故障指示回调地址所发送过来的SMF故障通知消息。
方式二:在NF为UPF时,第一接收模块1601接收在UPF确定主用SMF发生故障时,通过备用SMF的N4接口所发送过来的SMF故障通知消息。
其中,如果NF所获取的备用SMF信息中仅包含备用SMF的SMF实例化标识,则NF使用该SMF实例化标识,从NRF处获取该SMF的配置参数。SMF配置参数中,包含用以接收SMF故障指示的回调地址或用以建立N4接口的信息,从而NF向该回调地址或N4接口发送SMF故障通知消息。
在本实施例的一些实施方式中,触发模块1602触发UE进行无效PDU会话的释放并重激活有效PDU会话的方式包括但不限于以下三种方式:
方式一:触发模块1602基于SMF故障通知消息以及PDU会话标识构造PDU会话释放并重激活请求,然后通过接入管理功能AMF发送至UE,以触发PDU会话并重激活。
方式二:触发模块1602向AMF发送SMF故障指示以及PDU会话标识,以使AMF构造PDU会话释放并重激活请求而触发PDU会话的释放并重激活。
方式三:触发模块1602向AMF发送SMF故障指示以及PDU会话标识,AMF向UE发送NAS消息,其中携带SMF故障指示和PDU 会话标识,以触发UE发起PDU会话并重激活。
应当说明的是,可选的,应用于备用SMF的PDU会话重建装置还包括:第二获取模块,第二获取模块被配置成使用SMF故障通知消息中所携带的故障SMF的SMF标识、N4会话失效指示、UE标识,从UDM或UDSF中获取SMF的PDU会话上下文信息,该故障SMF即发生故障的所述主用SMF;或,第二获取模块被配置成使用SMF故障通知消息中所携带的UE标识,从UDM或UDSF中获取UE的AMF上下文信息;或,第二获取模块用于从UPF获取AMF的实例化标识,并通过AMF的实例化标识从NRF获取AMF配置参数。
请参见图17所示,图17为本公开实施例提供的一种应用于UE的PDU会话重建装置,包括:第二接收模块1701和重建模块1702,
其中,第二接收模块1701被配置成接收备用SMF通过AMF发送过来的、备用SMF基于SMF故障通知消息以及PDU会话标识所构造的PDU会话释放并重激活请求,或,接收AMF基于备用SMF所发送的SMF故障指示以及PDU会话标识所构造的PDU会话释放并重激活请求,或,接收备用SMF通过AMF发送过来的SMF故障指示以及PDU会话标识;
重建模块1702,被配置成释放并重激活PDU会话。
应当说明的是,在本实施例的一些实施方式中,PDU会话重建系统还可以包括主用SMF,图18为本公开的一个实施例提供的一种应用于主用SMF的PDU会话重建装置,包括:选择模块1801和第二发送模块1802,
其中,选择模块1801,被配置成在PDU会话创建请求时,确定与所述主用SMF产生信令交互的NF;
第二发送模块1802,被配置成向NF发送主用SMF的备用SMF信息;备用SMF信息用于NF在确定主用SMF发生故障时,向备用SMF发送SMF故障通知消息。
应当理解的是,可选的,在NF为UPF时,第二发送模块1802向NF发送主用SMF的备用SMF信息的过程包括:第二发送模块1802向UPF发送N4连接建立请求、或N4连接变更请求、或N4会话建立 请求、或N4会话变更请求时,携带主用SMF的备用SMF信息。
通过本公开实施例提供的PDU会话重建系统,在某些实施过程中,与SMF产生信令交互的NF获取主用会话管理功能SMF的备用SMF信息,在NF确定主用SMF发生故障时,基于备用SMF信息向备用SMF发送SMF故障通知消息,备用SMF在接收到SMF故障通知消息时,触发用户设备UE释放并重激活PDU会话,避免了SMF故障时数据传输的失败,尤其是当UPF收到发往UE的下行数据时因SMF故障而导致的数据投递失败,能有效改进SMF故障时的的PDU会话恢复流程,并有效保证了上下行数据的正常传输。
实施例五:
本公开的一个实施例还提供了一种NF,参见图19所示,其包括第一处理器1901、第一存储器1902及第一通信总线1903,其中:第一通信总线1903被配置成实现第一处理器1901和第一存储器1902之间的连接通信;第一处理器1901被配置成执行第一存储器1902中存储的一个或者多个计算机程序,以实现上述实施例中的应用于NF侧的PDU会话重建方法中的至少一个步骤。
本公开的一个实施例还提供了一种备用SMF,参见图20所示,其包括第二处理器2001、第二存储器2002及第二通信总线2003,其中:第二通信总线2003被配置成实现第二处理器2001和第二存储器2002之间的连接通信;第二处理器2001被配置成执行第二存储器2002中存储的一个或者多个计算机程序,以实现上述实施例中的应用于备用SMF侧的PDU会话重建方法中的至少一个步骤。
本公开的一个实施例还提供了一种UE,参见图21所示,其包括第三处理器2101、第三存储器2102及第三通信总线2103,其中:第三通信总线2103被配置成实现第三处理器2101和第三存储器2102之间的连接通信;第三处理器2101被配置成执行第三存储器2102中存储的一个或者多个计算机程序,以实现上述实施例中的应用于UE侧的PDU会话重建方法中的至少一个步骤。
本公开的一个实施例还提供了一种主用SMF,参见图22所示, 其包括第四处理器2201、第四存储器2202及第四通信总线2203,其中:第四通信总线2203被配置成实现第四处理器2201和第四存储器2202之间的连接通信;第四处理器2201被配置成执行第四存储器2202中存储的一个或者多个计算机程序,以实现上述实施例中的应用于主用SMF侧的PDU会话重建方法中的至少一个步骤。
本公开的一个实施例还提供了一种PDU会话重建系统,参见图23所示,其包括第五处理器2301、第五存储器2302及第五通信总线2303,其中:第五通信总线2303被配置成实现第五处理器2301和第五存储器2302之间的连接通信;第五处理器2301用于执行第五存储器2302中存储的一个或者多个计算机程序,以实现上述实施例中的应用于系统侧的PDU会话重建方法中的至少一个步骤。
本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
本实施例中的计算机可读存储介质可用于存储一个或者多个计算机程序,其存储的一个或者多个计算机程序可被处理器执行,以实现上述实施例一、和/或实施例二、和/或实施例三中的PDU会话重建方法的至少一个步骤。
本公开的一个实施例还提供了一种计算机程序,该计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现上述实施例一、和/或实施例二、和/或实施例三中的PDU会话重建方法的至少 一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本公开的一个实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本公开不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本公开实施例所作的进一步详细说明,不能认定本公开的具体实施只局限于这些说明。对于本公开所属技术领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本公开的保护范围。

Claims (33)

  1. 一种分组数据单元PDU会话重建方法,包括:
    网络功能NF获取主用会话管理功能SMF的备用SMF信息,其中,所述NF为与SMF产生信令交互的NF;
    所述NF在确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息,其中,所述SMF故障通知消息用于指示所述备用SMF触发PDU会话的释放并重激活。
  2. 如权利要求1所述的PDU会话重建方法,其中,所述网络功能NF获取主用会话管理功能SMF的备用SMF信息包括:
    所述NF获取在PDU会话创建时,所述主用SMF发送过来的备用SMF信息。
  3. 如权利要求2所述的PDU会话重建方法,其中,在所述NF为用户面功能UPF的情况下,所述NF获取在PDU会话创建时,所述主用SMF发送过来的备用SMF信息的步骤包括:
    所述UPF在接收所述主用SMF发送过来的N4连接建立请求、或N4连接变更请求、或N4会话建立请求、或N4会话变更请求时,获取所述N4连接建立请求、或N4连接变更请求、或N4会话建立请求、或N4会话变更请求所携带的备用SMF信息。
  4. 如权利要求1所述的PDU会话重建方法,其中,网络功能NF获取主用会话管理功能SMF的备用SMF信息的步骤包括:
    所述NF使用所述主用SMF的SMF标识,从NF存储功能NRF上获取所述主用SMF的备用SMF信息。
  5. 如权利要求4所述的PDU会话重建方法,其中,在所述NF为用户面功能UPF的情况下,所述SMF标识为所述UPF在接收所述主用SMF发送过来的N4连接建立请求、或N4连接变更请求、或N4会 话建立请求、或N4会话变更请求时,所述N4连接建立请求、或N4连接变更请求、或N4会话建立请求、或N4会话变更请求所携带的所述主用SMF的SMF标识。
  6. 如权利要求4所述的PDU会话重建方法,其中,所述SMF标识包括以下其中之一:SMF分组标识、SMF实例化标识、SMF节点标识。
  7. 如权利要求1所述的PDU会话重建方法,其中,所述备用SMF信息包括以下至少之一:备用SMF的SMF分组标识、备用SMF的SMF实例化标识、备用SMF的SMF节点标识、备用SMF的SMF故障指示回调地址、备用SMF的N4接口信息。
  8. 如权利要求1所述的PDU会话重建方法,其中,所述NF在确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息的步骤包括:
    在所述NF自身通过检测而确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息。
  9. 如权利要求1所述的PDU会话重建方法,其中,所述SMF故障通知消息携带以下至少之一:故障SMF的SMF标识、UE标识、N4会话失效指示;并且
    所述故障SMF为发生故障的所述主用SMF。
  10. 如权利要求1至9中任一项所述的PDU会话重建方法,其中,所述向备用SMF发送SMF故障通知消息的步骤包括:
    获取备用SMF的SMF故障指示回调地址;
    通过所述SMF故障指示回调地址向所述备用SMF发送SMF故障通知消息;
    或,在所述NF为UPF的情况下,所述向备用SMF发送SMF故 障通知消息的步骤包括:
    获取备用SMF的N4接口信息;
    通过所述N4接口向所述备用SMF发送SMF故障通知消息。
  11. 如权利要求10所述的PDU会话重建方法,其中,所述获取备用SMF的SMF故障指示回调地址的步骤或获取备用SMF的N4接口信息的步骤包括:
    所述NF从所述备用SMF信息中直接获取备用SMF的SMF故障指示回调地址或N4接口信息;
    或,所述NF从所述备用SMF信息中获取备用SMF的分组标识,并通过所述备用SMF的分组标识从NRF获取SMF列表,然后从SMF列表中的目标备用SMF的SMF配置参数中,获取所述目标备用SMF的SMF故障指示回调地址或N4接口信息;
    或,所述NF从所述备用SMF信息中获取备用SMF的实例化标识,并通过所述备用SMF的实例化标识从NRF获取目标备用SMF的SMF配置参数,然后从所述SMF配置参数获取所述目标备用SMF的SMF故障指示回调地址或N4接口信息。
  12. 一种用户设备PDU会话重建方法,包括:
    备用SMF接收NF在确定主用SMF发生故障时,所发送的SMF故障通知消息,其中,所述NF为与SMF产生信令交互的NF;
    所述备用SMF触发PDU会话的释放并重激活。
  13. 如权利要求12所述的PDU会话重建方法,其中,所述备用SMF接收NF在确定主用SMF发生故障时,所发送的SMF故障通知消息的步骤包括:
    所述备用SMF接收NF在确定主用SMF发生故障时,通过所述备用SMF的SMF故障指示回调地址所发送的SMF故障通知消息;
    或,在所述NF为UPF时,所述备用SMF接收所述UPF在确定主用SMF发生故障时,通过所述备用SMF的N4接口所发送的SMF 故障通知消息。
  14. 如权利要求12所述的PDU会话重建方法,其中,所述备用SMF触发PDU会话的释放并重激活的步骤包括:
    所述备用SMF基于所述SMF故障通知消息以及PDU会话标识构造PDU会话释放并重激活请求,然后通过接入管理功能AMF发送至UE,以触发PDU会话的释放并重激活;
    或,所述备用SMF向AMF发送SMF故障指示以及PDU会话标识,以使所述AMF根据所述SMF故障指示以及所述PDU会话标识构造PDU会话释放并重激活请求而发送至UE,以触发PDU会话的释放并重激活;
    或,所述备用SMF通过AMF向UE发送SMF故障指示以及PDU会话标识,以触发PDU会话的释放并重激活。
  15. 如权利要求12所述的PDU会话重建方法,其中,所述SMF故障通知消息携带以下至少之一:故障SMF的SMF标识、N4会话失效指示、UE标识;所述故障SMF为发生故障的所述主用SMF。
  16. 如权利要求12至15中任一项所述的PDU会话重建方法,其中,在所述备用SMF触发PDU会话的释放并重激活的步骤之前,还包括以下至少之一:
    所述备用SMF使用所述SMF故障通知消息中所携带的故障SMF的SMF标识、UE标识,从UDM或UDSF中获取SMF的PDU会话上下文信息;所述故障SMF为发生故障的所述主用SMF;
    所述备用SMF使用所述SMF故障通知消息中所携带的UE标识,从UDM或UDSF中获取UE的AMF上下文信息;
    所述备用SMF从UPF获取AMF的实例化标识,并通过所述AMF的实例化标识从NRF获取AMF配置参数。
  17. 一种PDU会话重建方法,包括:
    UE接收备用SMF在确定主用SMF故障时,通过AMF发送的SMF故障指示以及PDU会话标识;
    所述UE释放并重激活PDU会话。
  18. 一种PDU会话重建方法,包括:
    主用SMF在PDU会话创建时,确定与所述主用SMF产生信令交互的NF;
    所述主用SMF向所述NF发送所述主用SMF的备用SMF信息,其中,所述备用SMF信息用于所述NF在确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息。
  19. 如权利要求18所述的PDU会话重建方法,其中,在所述NF为UPF时,所述主用SMF向所述NF发送所述主用SMF的备用SMF信息的步骤包括:
    所述主用SMF向所述UPF发送N4连接建立请求、或N4连接变更请求、或N4会话建立请求、或N4会话变更请求时,携带所述主用SMF的备用SMF信息。
  20. 一种PDU会话重建方法,包括:
    NF获取主用会话管理功能SMF的备用SMF信息,其中,所述NF为与SMF产生信令交互的NF;
    所述NF在确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息;
    所述备用SMF在接收到所述SMF故障通知消息时,触发PDU会话的释放并重激活;
    UE释放并重激活PDU会话。
  21. 如权利要求20所述的PDU会话重建方法,其中,在NF获取主用会话管理功能SMF的备用SMF信息的步骤之前,所述方法还包括:
    所述主用SMF在PDU会话创建时,确定与所述主用SMF产生信令交互的所述NF;
    所述主用SMF向所述NF发送所述主用SMF的备用SMF信息;
    所述NF获取主用会话管理功能SMF的备用SMF信息包括:
    所述NF获取在PDU会话创建时,所述主用SMF发送的所述主用SMF的备用SMF信息。
  22. 一种PDU会话重建装置,应用于与SMF产生信令交互的NF,包括:
    获取模块,被配置成获取主用会话管理功能SMF的备用SMF信息;
    第一发送模块,被配置成在确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息,其中,所述SMF故障通知消息用于指示所述备用SMF触发PDU会话的释放并重激活。
  23. 一种PDU会话重建装置,应用于备用SMF,包括:
    第一接收模块,被配置成接收NF在确定主用SMF发生故障时,所发送的SMF故障通知消息;所述NF为与SMF产生信令交互的NF;
    触发模块,被配置成触发PDU会话的释放并重激活。
  24. 一种PDU会话重建装置,应用于UE,包括:
    第二接收模块,被配置成接收备用SMF在确定主用SMF故障时,通过AMF发送的SMF故障指示以及PDU会话标识;
    重建模块,被配置成释放并重激活PDU会话。
  25. 一种PDU会话重建装置,应用于主用SMF,包括:
    选择模块,被配置成在PDU会话创建时,确定与所述主用SMF产生信令交互的NF;
    第二发送模块,被配置成向所述NF发送所述主用SMF的备用SMF信息;所述备用SMF信息用于所述NF在确定所述主用SMF发 生故障时,向备用SMF发送SMF故障通知消息。
  26. 一种PDU会话重建系统,包括:NF、备用SMF和UE,所述NF为与SMF产生信令交互的NF;
    所述NF,被配置成获取主用会话管理功能SMF的备用SMF信息,并在确定所述主用SMF发生故障时,向备用SMF发送SMF故障通知消息;
    所述备用SMF,被配置成接收NF在确定主用SMF发生故障时,所发送的SMF故障通知消息,然后触发PDU会话的释放并重激活;
    所述UE,被配置成释放并重激活PDU会话。
  27. 如权利要求26所述的PDU会话重建系统,还包括:主用SMF,被配置成在PDU会话创建时,确定与所述主用SMF产生信令交互的所述NF,并向所述NF发送所述主用SMF的备用SMF信息;
    所述NF还被配置成获取在PDU会话创建时,所述主用SMF发送的所述主用SMF的备用SMF信息。
  28. 一种NF,包括第一处理器、第一存储器和第一通信总线;
    所述第一通信总线被配置成实现所述第一处理器和第一存储器之间的连接通信;
    所述第一处理器用被配置成执行所述第一存储器中存储的一个或者多个程序,以实现如权利要求1至11中任一项所述的PDU会话重建方法的步骤。
  29. 一种备用SMF,包括第二处理器、第二存储器和第二通信总线;
    所述第二通信总线被配置成实现所述第二处理器和第二存储器之间的连接通信;
    所述第二处理被配置成于执行所述第二存储器中存储的一个或者多个程序,以实现如权利要求12至16任一项所述的PDU会话重建方 法的步骤。
  30. 一种UE,包括第三处理器、第三存储器和第三通信总线;
    所述第三通信总线被配置成实现所述第三处理器和第三存储器之间的连接通信;
    所述第三处理被配置成于执行所述第三存储器中存储的一个或者多个程序,以实现如权利要求17所述的PDU会话重建方法的步骤。
  31. 一种主用SMF,包括第四处理器、第四存储器和第四通信总线;
    所述第四通信总线被配置成实现所述第四处理器和第四存储器之间的连接通信;
    所述第四处理器被配置成执行所述第四存储器中存储的一个或者多个程序,以实现如权利要求18或19所述的PDU会话重建方法的步骤。
  32. 一种PDU会话重建系统,包括第五处理器、第五存储器和第五通信总线;
    所述第五通信总线被配置成实现所述第五处理器和第五存储器之间的连接通信;
    所述第五处理被配置成于执行所述第五存储器中存储的一个或者多个程序,以实现如权利要求20或21所述的PDU会话重建方法的步骤。
  33. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至11中任一项所述的PDU会话重建方法的步骤,和/或以实现如权利要求12至16中任一项所述的PDU会话重建方法的步骤,和/或以实现如权利要求17所述的PDU会话重建方法的步骤,和/或以实现如权利要求18或19所述的PDU会话重建 方法的步骤,和/或以实现如权利要求20或21所述的PDU会话重建方法的步骤。
PCT/CN2019/106353 2018-09-27 2019-09-18 一种pdu会话重建方法、装置、系统及存储介质 WO2020063412A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811133261.5 2018-09-27
CN201811133261.5A CN110958718B (zh) 2018-09-27 2018-09-27 一种pdu会话重建方法、装置、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2020063412A1 true WO2020063412A1 (zh) 2020-04-02

Family

ID=69951019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106353 WO2020063412A1 (zh) 2018-09-27 2019-09-18 一种pdu会话重建方法、装置、系统及存储介质

Country Status (2)

Country Link
CN (1) CN110958718B (zh)
WO (1) WO2020063412A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022212158A1 (en) * 2021-03-31 2022-10-06 Cisco Technology, Inc. Techniques to provide resiliency and overload control for access and mobility management functions

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497734B (zh) * 2020-04-08 2023-04-07 大唐移动通信设备有限公司 Upf配置的方法、upf选择的方法及设备
CN115460635A (zh) * 2021-06-08 2022-12-09 中国移动通信集团重庆有限公司 故障检测方法、装置、设备及计算机存储介质
CN113692006B (zh) * 2021-08-24 2022-05-13 北京云智软通信息技术有限公司 通信管理方法、接入网单元及通信系统
CN115915495A (zh) * 2021-08-27 2023-04-04 华为技术有限公司 会话重建的方法、装置和系统
CN114051047B (zh) * 2021-10-29 2023-06-09 恒安嘉新(北京)科技股份公司 一种会话消息的备份方法、装置、网络设备和存储介质
CN114666854B (zh) * 2022-01-27 2023-10-20 安科讯(福建)科技有限公司 一种pdu会话信息的恢复方法及终端
WO2023185800A1 (en) * 2022-03-29 2023-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for processing smf set mismatch
CN115022876A (zh) * 2022-05-30 2022-09-06 中国电信股份有限公司 用户签约数据更新方法、装置和系统
CN115243400B (zh) * 2022-08-04 2023-05-05 广州爱浦路网络技术有限公司 一种业务会话重建方法、装置及网元
CN118234053A (zh) * 2022-12-12 2024-06-21 中兴通讯股份有限公司 语音业务的建立方法、网络设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170339609A1 (en) * 2016-05-17 2017-11-23 Lg Electronics Inc. Method and apparatus for determining pdu session identity in wireless communication system
CN108323245A (zh) * 2017-06-19 2018-07-24 华为技术有限公司 一种注册及会话建立的方法、终端和amf实体
CN108462735A (zh) * 2017-02-21 2018-08-28 华为技术有限公司 一种选择会话管理功能实体的方法、装置和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10334468B2 (en) * 2015-10-05 2019-06-25 Cisco Technology, Inc. Scalable control plane
US10728952B2 (en) * 2017-01-09 2020-07-28 Huawei Technologies Co., Ltd. System and methods for session management
CN108347336B (zh) * 2017-01-24 2021-06-15 华为技术有限公司 一种策略控制会话处理方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170339609A1 (en) * 2016-05-17 2017-11-23 Lg Electronics Inc. Method and apparatus for determining pdu session identity in wireless communication system
CN108462735A (zh) * 2017-02-21 2018-08-28 华为技术有限公司 一种选择会话管理功能实体的方法、装置和系统
CN108323245A (zh) * 2017-06-19 2018-07-24 华为技术有限公司 一种注册及会话建立的方法、终端和amf实体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022212158A1 (en) * 2021-03-31 2022-10-06 Cisco Technology, Inc. Techniques to provide resiliency and overload control for access and mobility management functions
US11653194B2 (en) 2021-03-31 2023-05-16 Cisco Technology, Inc. Techniques to provide resiliency and overload control for access and mobility management functions

Also Published As

Publication number Publication date
CN110958718B (zh) 2023-09-26
CN110958718A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2020063412A1 (zh) 一种pdu会话重建方法、装置、系统及存储介质
CN110536330B (zh) 一种ue迁移方法、装置、系统及存储介质
AU2022201754B2 (en) Message and system for application function influence on traffic routing
CN110958719B (zh) Ue迁移方法、nrf、备用smf、系统及存储介质
CN109792458B (zh) 用于用户面路径选择的方法和系统
JP7556915B2 (ja) 通信方法、通信装置、および通信システム
JP2021518075A (ja) サービス加入方法および装置
WO2018076972A1 (zh) 一种故障切换方法、装置及系统
WO2017173259A1 (en) Methods and next generation exposure function for service exposure with network slicing
US11108636B2 (en) Integrity verification for managing network configurations
US20130136032A1 (en) Method and apparatus for managing communications of a physical network entity
JP7250955B2 (ja) セッション処理方法、通信装置、および通信システム
KR20210142719A (ko) 이벤트 통지 방법, 장치 및 저장매체
WO2019134649A1 (zh) 一种控制面资源迁移的实现方法、装置及网络功能实体
WO2012071695A1 (zh) 节点故障处理方法、系统及相关设备
US20220225459A1 (en) Communication network component and method for handling a service request
JP7357682B2 (ja) サーバコンピュータ、アプリケーションを提供するための方法、移動通信ネットワーク、及びサーバコンピュータへのアクセスを提供するための方法
KR102465325B1 (ko) 5g 망에서의 단말 기반 동적 네트워크 정책 제어 방법, 그리고 이를 제공하는 단말 및 네트워크 시스템
US20220019380A1 (en) Methods providing network service restoration context and related service instance sets and storage resource nodes
US20240292298A1 (en) Method, device, and system for core network node re-allocation in wireless network
JP2024527666A (ja) 通信障害を防ぐ方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19864618

Country of ref document: EP

Kind code of ref document: A1