WO2020063386A1 - 充电管理方法、图形用户界面及相关装置 - Google Patents

充电管理方法、图形用户界面及相关装置 Download PDF

Info

Publication number
WO2020063386A1
WO2020063386A1 PCT/CN2019/105986 CN2019105986W WO2020063386A1 WO 2020063386 A1 WO2020063386 A1 WO 2020063386A1 CN 2019105986 W CN2019105986 W CN 2019105986W WO 2020063386 A1 WO2020063386 A1 WO 2020063386A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
terminal
voltage
expansion
charging
Prior art date
Application number
PCT/CN2019/105986
Other languages
English (en)
French (fr)
Inventor
陈良金
韩劲松
黄宇翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/277,498 priority Critical patent/US20220029444A1/en
Priority to EP19865142.4A priority patent/EP3840105A4/en
Publication of WO2020063386A1 publication Critical patent/WO2020063386A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a charging management method, a graphical user interface, and related devices.
  • a battery is a device capable of converting chemical energy into electrical energy, and is widely used in portable electronic equipment (such as mobile phones, tablet computers), the power field of electric cars, and the power field of aerospace, marine submarines, and the like.
  • the battery After the battery is put into use, after the high-temperature impact of charging and discharging, the thickness of the electrode sheet becomes thicker, and the oxidation reaction of the electrolytic solution decomposes to generate carbon dioxide (CO 2 ) gas. Therefore, the battery gradually expands, that is, the surface thickness increases. The battery's expansion process is almost irreversible. In some cases (for example, under high temperature, high pressure, etc.), the positive electrode of the battery will continue to oxidize to produce carbon dioxide gas, which will accelerate the expansion of the battery.
  • CO 2 carbon dioxide
  • the expansion of the battery will not only reduce the life of the battery itself, but will also damage the equipment that configures the battery after the expansion to a certain extent.
  • the expanded battery pushes up the mobile phone screen, and the entire mobile phone is deformed and cannot be used.
  • the bulging of the battery can also cause dangers such as battery leakage, fire and combustion. Therefore, how to delay the expansion of the battery and prolong the service life of the battery is an urgent problem that needs to be solved at present.
  • This application provides a charging management method, a graphical user interface, and related devices, which can reduce the rate of battery expansion and extend battery life.
  • the present application provides a charging management method, which is applied to a terminal configured with a terminal battery.
  • the method may include: charging the terminal battery; if the working parameter of the terminal battery does not satisfy the first condition, stopping charging the terminal battery when charging to the battery voltage V1; and if the working parameter of the terminal battery meets the first condition, then , Stop charging the terminal battery when charging to the battery voltage V2; V1> V2; wherein the working parameters of the terminal battery include: the working time of the terminal battery at multiple temperatures, and / or, the terminal battery under multiple battery voltages Working hours.
  • the terminal may obtain the operating parameters of the battery.
  • the terminal may obtain the working parameters of the battery after the terminal battery is put into use.
  • the working parameters of the terminal battery can reflect the health status of the terminal battery.
  • the health status of the terminal battery may include: battery temperature, battery voltage, overall expansion thickness of the battery, recent expansion thickness of the battery, or aging.
  • the operating parameters of the battery may be the operating parameters of the terminal battery from the time it is put into use, or the operating parameters of the terminal battery in the most recent period.
  • the working parameters of the battery can be recorded in a table.
  • the working time in the working parameters may refer to the time after the battery leaves the factory, or the time after the battery is configured to the terminal, or the time to charge and / or discharge the battery, which is not limited in this application.
  • the first condition may include that a swelling parameter of the terminal battery is higher than a threshold.
  • the swelling parameter can reflect the swelling thickness of the battery.
  • the terminal may obtain the expansion parameter of the terminal battery according to the operating parameters of the terminal battery. The following provides two possible ways for the terminal to obtain the expansion parameters of the terminal battery according to the operating parameters of the terminal battery:
  • the terminal obtains the overall expansion parameters of the terminal battery according to the terminal battery's operating parameters from the current operation to the current operating parameters.
  • the overall expansion parameter can reflect the overall expansion thickness of the terminal battery from the time it is put into use.
  • the terminal may obtain the overall expansion parameter of the terminal battery through a weighted calculation.
  • the terminal can obtain the overall expansion parameter of the terminal battery through Equation 1:
  • A is the overall expansion parameter of the terminal battery from being used to the current
  • T i is the i-th temperature interval
  • V j is the j-th voltage interval
  • t (T i , V j ) is the terminal's from being put into use.
  • a (T i , V j ) is the expansion coefficient when the temperature of the terminal battery is at T i and the voltage is at V j .
  • 1 ⁇ i ⁇ n, 1 ⁇ j ⁇ m, and i and j are positive integers.
  • n is the total number of divided temperature sections
  • m is the total number of divided voltage sections.
  • the threshold corresponding to the overall expansion parameter of the terminal battery is not limited to the default setting of the terminal when it leaves the factory, and may also be set by the user.
  • the first condition may be: when the overall expansion parameter of the terminal battery is higher than the first critical value.
  • the terminal obtains the recent expansion parameters of the terminal battery according to the recent operating parameters of the terminal battery.
  • the recent expansion parameter may reflect the recent expansion thickness of the terminal battery.
  • the terminal may obtain the recent expansion parameters of the terminal battery through a weighted calculation.
  • the terminal may obtain the recent expansion parameter of the terminal battery by using Equation 2:
  • Equation 2 B is the recent expansion parameter of the terminal battery, T i is the i-th temperature interval, V j is the j-th voltage interval, and t ′ (T i , V j ) is the terminal recent temperature at T i and the voltage at The duration of V j , a ′ (T i , V j ) is the expansion coefficient when the terminal battery temperature is at T i and the voltage is at V j .
  • 1 ⁇ i ⁇ n, 1 ⁇ j ⁇ m, and i and j are positive integers.
  • n is the total number of divided temperature sections
  • m is the total number of divided voltage sections.
  • the threshold corresponding to the recent expansion parameter of the terminal battery is not limited to the default setting of the terminal when it leaves the factory, and may also be set by the user.
  • the first condition may be: when the recent expansion parameter of the terminal battery is higher than the third critical value.
  • the expansion coefficient of the terminal battery may be stored in the terminal, or may be obtained by the terminal through the network.
  • the battery's expansion coefficient can be obtained by a developer through experimental tests. Understandably, R & D personnel can obtain the expansion coefficients of different types of batteries.
  • the first condition may further include: a working time of the battery under high voltage and high temperature exceeds a first value, a continuous charging / discharging time of the battery exceeds a third value, and the like.
  • the high pressure and high temperature can be set by default when the terminal leaves the factory, or can be set by the terminal or the user.
  • V1 may be an initial charging cut-off voltage or a maximum design voltage.
  • the terminal may reduce the charging cut-off voltage from V1 to V2, so as to stop charging the terminal battery when charging to the battery voltage V2.
  • the terminal may obtain the expansion parameter of the terminal battery according to the working parameter of the terminal battery, and determine the value of V2 according to the expansion parameter of the terminal battery.
  • the expansion parameter of the terminal battery is larger, it means that the expansion thickness of the terminal battery is thicker, and the value of V2 is smaller.
  • the terminal may divide multiple expansion parameter intervals, and determine V2 according to the expansion interval where the expansion parameter of the terminal battery is located.
  • the present application provides another charging management method, which is applied to a terminal configured with a terminal battery.
  • the method may include: charging the terminal battery, and stopping charging the terminal battery when the battery voltage V1 is charged; if the working parameter of the terminal battery meets the first condition, the terminal displays a prompt message; wherein the working parameter of the terminal battery includes: the terminal The operating time of the battery at multiple temperatures, and / or the operating time of the terminal battery at multiple battery voltages.
  • the terminal displays a prompt message to prompt the user of the current health status of the battery. After prompting the user with the prompt message, the user can take certain measures to protect the battery and ensure the health of the battery.
  • the working parameters of the terminal battery and the first condition are the same as those in the first aspect, and reference may be made to related descriptions.
  • the prompt information displayed by the terminal may remind the user of the health status of the battery.
  • the health status of the terminal battery may include: battery temperature, battery voltage, overall expansion thickness of the battery, recent expansion thickness of the battery, or aging.
  • the prompt information may be displayed in the form of a pop-up window on the top of the touch screen of the terminal, may also be displayed in the notification bar of the terminal, and may also be displayed in the form of a score.
  • the method of the second aspect may further include: the terminal receives a first user operation input by the user; in response to the first user operation, the terminal initiates a battery protection mode; wherein when the terminal battery is charged in the battery protection mode , When the battery voltage V2 is charged, stop charging the terminal battery, V1> V2.
  • V2 is the same as in the first aspect, and reference may be made to the related description.
  • the first user operation includes: a click operation on an opening option of the battery protection mode, and the opening option of the battery protection mode may be displayed in a battery setting interface.
  • the method of the first aspect may further include: if the working parameter of the terminal battery meets the second condition, the terminal prompts the user to replace the terminal battery.
  • the second condition may include that an expansion parameter of the terminal battery is higher than a second critical value.
  • the expansion parameter here is the overall expansion parameter of the terminal battery. The definition and acquisition method of the expansion parameter can be described in the first aspect of the first aspect.
  • the terminal may prompt the user to replace the battery in the form of a floating window, and may also prompt the user to replace the battery by means of prompt sound, vibration, indicator light flashing, pop-up window at the top of the screen, or displaying a prompt message in the notification bar. No restrictions.
  • the present application provides a graphical user interface on a terminal, the terminal having a display screen, a memory, and one or more processors for executing one or more programs stored in the memory, among them:
  • the graphical user interface displays prompt information; wherein the operating parameters of the terminal battery include: the operating time of the terminal battery at multiple temperatures, and / or, The working time of the terminal battery under multiple battery voltages.
  • the working parameters of the terminal battery and the first condition are the same as in the first aspect, and reference may be made to the related description.
  • the prompt information is displayed in the form of a pop-up window on the top of the touch screen of the terminal.
  • the present application provides a terminal, including: one or more processors, one or more memories; the one or more memories are coupled with the one or more processors, and the one or more Each memory is used to store computer program code, where the computer program code includes computer instructions, and when the one or more processors execute the computer instructions, the terminal executes the charging management method provided by the first aspect.
  • the present application provides a terminal, including: one or more processors, one or more memories; the one or more memories are coupled with the one or more processors, and the one or more Each memory stores computer program code, where the computer program code includes computer instructions, and when the one or more processors execute the computer instructions, the terminal executes the charging management method provided by the second aspect.
  • the present application provides a computer storage medium including computer instructions.
  • the terminal is caused to execute the charging management method provided by the first aspect.
  • the present application provides a computer storage medium including computer instructions, and when the computer instructions are run on a terminal, cause the terminal to execute the charging management method provided in the second aspect.
  • the expansion rate of the battery can be reduced, and the battery life can be extended.
  • Figure 1 is a schematic diagram of battery expansion
  • FIG. 7 is a schematic flowchart of implementing a restriction measure according to an overall expansion parameter of a terminal battery provided in the present application
  • FIG. 9 is a schematic flowchart of implementing a restriction measure according to a recent expansion parameter of a terminal battery provided in the present application.
  • FIG. 10 is a schematic structural diagram of a terminal provided by this application.
  • FIG. 11 is a software structural block diagram of a terminal provided by this application.
  • FIG. 12 is a schematic flowchart of hardware-driven interaction inside a terminal
  • FIG. 13 is a schematic structural diagram of a charge management device provided by this application.
  • FIG. 14 is a schematic flowchart of a charging management method provided by the present application.
  • FIG. 15 is a schematic flowchart of another charging management method provided by the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of the present application, unless otherwise stated, the meaning of "a plurality" is two or more.
  • the battery can be widely used in portable electronic equipment (such as mobile phones, tablet computers), power fields of electric vehicles, and power fields such as aerospace and marine submarines.
  • battery types may include: Lithium-ion batteries, Ni-MH batteries, Li-polymer batteries, Lead-Sealed batteries, etc. .
  • the following embodiments will take a terminal configured with a battery as an example to describe the charging management method provided in this application.
  • the terminal may be provided with a battery protection mode, and the user may enable the battery protection mode as required. After the terminal turns on the battery protection mode, the expansion rate of the battery can be reduced, and the battery life can be extended.
  • FIG. 2 illustrates a possible method for a user to activate the battery protection mode.
  • the screen of the terminal displays the interface content currently output by the system, and the interface content includes a setting interface.
  • the interface content output by the terminal is output by the terminal in response to a user operation input, which may include a user's click operation on a setting icon in the desktop displayed by the terminal.
  • the setting interface can include multiple setting options (such as flight mode, Wi-Fi, Bluetooth, personal hotspot, mobile network, battery, etc.), and users can click any one of the setting options to perform the corresponding Settings (such as turning on airplane mode, turning on Bluetooth, etc.).
  • the interface content output by the system may also include interface elements of the system sector, such as a status bar, a navigation bar, and the like.
  • the status bar may include the name of the operator (such as China Mobile), time, Wi-Fi icon, signal strength, current remaining power, Bluetooth icon, alarm clock icon, and so on.
  • the navigation bar may include a back key icon, a home screen key icon, a menu key icon, and the like.
  • the screen of the terminal displays a battery setting interface.
  • the battery setting interface may include: an on / off switch 202 of the battery protection mode, and a description of the battery protection mode.
  • the battery protection mode is turned off. The user can click the on / off switch 202 to turn on the battery protection mode.
  • the description of the battery protection mode can briefly introduce the functions of the battery protection mode to the user. For example, as shown in the drawing on the right side of FIG.
  • the description of the battery protection mode may be: the battery protection mode will extend the life of the battery, but reduce the battery life or extend the time required to fully charge the battery.
  • the description of the battery protection mode may also be: the battery protection mode reduces the actual use capacity of the battery to 80% of the actual available capacity.
  • the capacity of the battery refers to the amount of stored power of the battery.
  • the description of the battery protection mode may further include richer information, for example, specific measures taken after the terminal starts the battery protection mode.
  • the terminal After the user turns on the battery protection mode, the terminal will take certain measures to reduce the expansion rate of the battery and extend the service life of the battery.
  • the measures taken by the terminal can be any of the following:
  • the overall expansion parameter of the battery can reflect the overall expansion thickness of the battery.
  • the overall expanded thickness of the battery refers to the thickness that the battery has increased from when it is put into use.
  • the thickness of the battery is the maximum distance between the front and rear surfaces of the battery.
  • the terminal continuously records the overall battery usage.
  • the use may include any of the following situations: the battery leaves the factory, the battery is powered for the first time, or the battery is charged for the first time.
  • the terminal may obtain the overall expansion parameter of the battery according to the overall use of the battery.
  • the overall usage of the battery includes the operating time of the battery at multiple temperatures and / or multiple battery voltages from the time the battery is put into use to the present.
  • the terminal may obtain the overall expansion parameter of the battery through a weighted calculation. .
  • the limiting measures taken by the terminal according to the overall expansion parameter of the battery may include: reducing the charging cut-off voltage of the battery, and / or reducing the maximum charging current of the battery.
  • the cut-off voltage of the battery is the actual maximum value that the battery voltage can reach when the battery is charged.
  • the recent expansion parameter of the battery can reflect the recent expansion thickness of the battery.
  • the recent expansion thickness of the battery refers to the thickness that the battery has increased in the recent period.
  • the terminal may continuously record the recent usage of the battery as soon as the battery is put into use, or may start recording the recent usage of the battery after the battery protection mode is turned on.
  • the terminal may obtain the recent expansion parameters of the battery according to the recent usage of the battery.
  • the recent usage of the battery includes the length of time that the battery has recently been in various temperature intervals and / or various voltage intervals. Further, the terminal may calculate a recent expansion parameter of the battery according to the length of time that the battery has recently been in each temperature interval and / or each voltage interval.
  • the limiting measures taken by the terminal according to the recent expansion parameters of the battery may include: reducing the charge cut-off voltage of the battery, and / or reducing the maximum charging current of the battery.
  • the user can turn on the battery protection mode through the setting interface shown in FIG. 2 at any stage of using the terminal.
  • the user can turn on the battery protection mode when the terminal is first used, or turn on the battery protection mode after using the terminal for a period of time, which is not limited in this application.
  • the terminal display may display the battery power, which is used to prompt the user of the current remaining battery power.
  • the power displayed on the terminal corresponds to the battery voltage.
  • the charging cut-off voltage of the terminal is the initial charging cut-off voltage
  • the battery capacity displayed on the terminal display screen is based on the initial charging cut-off voltage and corresponds to the battery voltage. Exemplarily, referring to the second column and the second row in Table 5, when the terminal battery reaches the initial charging cut-off voltage when charging, that is, when the charging cannot be continued, the battery capacity is displayed as 100%.
  • the battery level can be displayed in the following two ways.
  • the battery capacity displayed by the terminal may be based on the initial charging cut-off voltage as a standard, corresponding to the actual battery voltage. Exemplarily, referring to the third column and the third row in Table 5, when the terminal battery is charged, when the reduced charging cut-off voltage (that is, the actual charging cut-off voltage) reaches 4.2V, the battery power is displayed as 100%. In this way, the user can be made unaware of the reduction of the charging cut-off voltage, and the user experience can be improved.
  • the battery capacity displayed on the terminal may be reduced after the charging cut-off voltage is taken as a standard, corresponding to the actual battery voltage.
  • the battery power is displayed as 95%.
  • the user may also turn off the battery protection mode as required. Specifically, the user may click the switch 202 in the on state to close the battery protection mode. After the battery protection mode is turned off, the terminal can continue to implement the restrictive measures that have been taken, and can also exit or cancel the restrictive measures that have been taken. There is no restriction here.
  • the terminal may prompt the user of the current health status of the battery.
  • the health status of the battery may include any one of the following conditions: battery temperature, battery voltage, overall expanded thickness of the battery, recent expanded thickness of the battery, or aging.
  • the terminal continuously monitors the overall / recent use of the battery.
  • the terminal may obtain the overall / recent expansion parameters of the battery according to the overall / recent usage of the battery.
  • the terminal continuously monitoring the overall / recent use of the battery means that when the terminal's battery starts to be used, the terminal starts to monitor the overall / recent use of the battery.
  • the overall usage of the battery includes the time that the battery is in various temperature intervals and / or various voltage intervals from the time the battery is put into use to the present.
  • the terminal may obtain the overall expansion parameter of the battery through a weighted calculation.
  • the recent usage of the battery includes the length of time that the battery has recently been in various temperature intervals and / or various voltage intervals.
  • the terminal may obtain the recent expansion parameter of the battery through a weighted calculation.
  • the threshold is not limited to the default setting of the terminal when it leaves the factory, and may also be set by the user.
  • the corresponding threshold when the terminal continuously monitors the overall usage of the battery, the corresponding threshold may be a first critical value. In another possible implementation manner, when the terminal continuously monitors the recent usage of the battery, the corresponding threshold may be a third critical value.
  • the terminal may periodically remind the user of the current health status of the battery. For example, the terminal may prompt the user every day at 9 PM or every Monday at 9 AM.
  • the terminal may also prompt the user of the current health status of the battery in other scenarios. For example, the user is prompted when the battery is at a high voltage and the high temperature state is longer than the first value, or when the battery is aging seriously.
  • the terminal may prompt the user of the current health status of the battery through a pop-up window.
  • a pop-up window 301 may be displayed at the top of the screen, and the pop-up window 301 is suspended to display the interface content currently output by the terminal system (such as the desktop shown in 3a of FIG. 3).
  • the terminal screen is locked, the terminal can display a pop-up window in the middle area of the screen.
  • the pop-up window displayed on the terminal may also include more detailed information, such as excessive battery temperature, excessive battery voltage, and battery aging.
  • the pop-up window 301 displayed on the top of the screen by the terminal can receive input user operations.
  • the user operations that the popup 301 may receive are described in detail below.
  • the user operation received by the pop-up window 301 may be a sliding gesture of the user's finger from the pop-up window 301 to the upper part of the screen. In response to the slide gesture, the pop-up window 301 is no longer displayed at the top of the terminal screen.
  • the prompt information in the pop-up window 301 may be displayed in the notification bar, and when the user calls up the notification bar, the prompt information may be seen.
  • the user can call up the notification bar on any interface content output by the terminal screen by swiping down from the top of the screen, or call up the notification bar by using the navigation key, which is not limited in this application.
  • the notification bar includes prompt information 302 for reminding the user of the current health status of the battery, and can also include shortcuts for date, weather, location, setting icons, and various setting options (such as WiFi, Bluetooth, personal hotspot, etc.) Enable / disable icons, screen brightness bar, and other prompt information (such as WeChat messages).
  • the prompt information 302 displayed in the notification bar may receive an input user operation (such as a click operation).
  • the terminal may display details of the health status of the battery, or may display the attached battery as shown in the right side of FIG. 2 The battery setting interface shown in the figure.
  • the user operation received by the pop-up window 301 may also be a click operation.
  • the terminal screen may display details of the health status of the battery, and may also display a battery setting interface as shown in the drawing on the right side of FIG. 2.
  • the terminal can quantify the overall / recent expansion thickness of the battery into a score, and the score can enable the user to intuitively understand the health status of the battery.
  • the higher the overall / recent expansion thickness of the battery that is, the higher the overall / recent expansion parameter of the battery, the lower the score of the battery. Therefore, the foregoing scenario (1) can also be regarded as, when the battery score is lower than the second value, prompting the user of the current health status of the battery.
  • the health status of the battery is scored in a percentage system, and the current score of the battery is 73 points.
  • the health status details of the battery may further include two options of “score details” and “optional protection measures” of the battery.
  • Users can click “Score Details” to view the battery's score trend over a period of time, and click "Optional Protection Measures” to view measures that can extend battery life.
  • Score Details to view the battery's score trend over a period of time
  • Optional Protection Measures to view measures that can extend battery life.
  • the measures include: turning on the battery protection mode, avoiding high temperature environment, avoiding long-term connection of power after the phone is fully charged (that is, avoiding floating Charge), avoid using the phone while charging, etc.
  • the default display duration of the pop-up window 301 displayed on the top of the screen by the terminal may be set in advance (for example, set to the first duration). If the pop-up window 301 does not receive an input user operation within the first duration, the pop-up window 301 is no longer displayed at the top of the terminal screen.
  • the prompt information in the pop-up window 301 may be displayed in the notification bar, and when the user calls up the notification bar, the prompt information may be seen.
  • the style of the notification bar refer to 3c in FIG. 3 and related descriptions.
  • the terminal can prompt the user of the current health status of the battery.
  • the terminal may further display a pop-up window in the middle of the screen, and the pop-up window may include information prompting the user of the current health status of the battery.
  • the pop-up window displayed in the middle of the screen may further include a switch for turning on / off the battery protection mode, and the user may directly turn on the battery protection mode through the switch in the pop-up window.
  • the terminal is not limited to the prompt information on the screen, and the terminal may also prompt the user of the current health status of the battery by means of a flashing of a signal light, a prompt sound, and the like, which is not limited in this application.
  • the user can also turn on the battery protection mode as required. Specifically, the user can turn on the battery protection mode in the battery setting interface shown in the right figure of FIG. 2.
  • the battery setting interface may be displayed by the terminal in response to a user's click operation on the battery option 401 in the drawing on the left of FIG. 2, or may be responded by the terminal to a pop-up window at the top of the screen in 3a of FIG. 3.
  • 301 is displayed by a click operation, and may also be displayed by the terminal in response to a user's click operation on the prompt information 302 in the notification bar in FIG. 3C.
  • the terminal After the user turns on the battery protection mode, the terminal will take certain measures to reduce the expansion rate of the battery and extend the service life of the battery.
  • the measures taken by the terminal can be any of the following:
  • the terminal continuously records the overall battery usage.
  • the terminal may obtain the overall expansion parameter of the battery according to the overall use of the battery.
  • the overall battery usage recorded by the terminal, how the terminal obtains the overall expansion parameters of the battery, and the limiting measures taken by the terminal are the same as in the embodiment of FIG. 2 described above, and reference may be made to related descriptions.
  • the recent expansion parameters of the battery are monitored by the terminal when the battery is put into use.
  • the terminal continuously records the recent usage of the battery.
  • the terminal may obtain the recent expansion parameters of the battery according to the recent usage of the battery.
  • the recent usage of the battery recorded by the terminal, how the terminal obtains the recent expansion parameters of the battery, and the limiting measures taken by the terminal are the same as in the embodiment of FIG. 2 described above, and reference may be made to related descriptions.
  • the terminal may prompt the user of the current health status of the battery each time the recent expansion parameter of the battery reaches a threshold.
  • the terminal may continuously monitor the overall / recent usage of the battery, obtain the overall / recent expansion parameters of the battery, and directly enable the battery protection mode for the terminal when the overall / recent expansion parameters of the battery reach a threshold.
  • the threshold value is the same as the threshold value mentioned in the above (1) scenario, and reference may be made to related descriptions.
  • the terminal when the overall / recent expansion parameter of the battery reaches the threshold, the terminal will directly take certain measures to reduce the expansion rate of the battery and prolong the service life of the battery.
  • the terminal may take limiting measures according to the overall expansion parameters of the terminal battery, or may take limiting measures based on the recent expansion parameters of the terminal battery.
  • the terminal may prompt the user that the battery protection mode is turned on.
  • the terminal may prompt the user that the battery protection mode has been enabled for the user in the form of a floating window 501 on the interface content currently output by the system.
  • the floating window 501 may further include a "View Details" option and a "Cancel” option.
  • the user may click the "View Details" option to enter the right-side drawing as shown in Figure 2 (switch 202 is on) to view the battery protection.
  • the user may also click the "Cancel” option to close the floating window 501.
  • the terminal is not limited to the floating window 501 shown in FIG. 5, and the terminal may also remind the user that the battery protection mode is turned on through a pop-up window at the top of the screen or a manner of displaying prompt information in the notification bar, a flashing of a signal light, a prompt sound, and the like.
  • the battery Because the battery's expansion process is almost irreversible, the battery will still be at a later stage of its life cycle after a period of time.
  • the later stage of the battery life cycle means that the battery, ie the remaining battery life, is shorter.
  • the battery is available means that the battery can convert chemical energy into electrical energy, and when the battery cannot convert chemical energy into electrical energy, the battery is not available.
  • the terminal may prompt the user to replace the battery.
  • the terminal may determine that the battery is at a later stage of the life cycle.
  • the second critical value may be preset by a developer according to an experiment.
  • the second critical value corresponding to different types of batteries may be the same or different.
  • the terminal may prompt the user to replace the battery in the form of a floating window 601 on the interface content currently output by the system.
  • the battery life refers to the remaining available time of the battery
  • the battery life refers to the short remaining available time of the battery.
  • the floating window 601 may further include a "view details" option and a "cancel” option.
  • the user can click the "Cancel” option to close the floating window 601.
  • the user may also click the "View Details” option, and in response to the click operation, the terminal displays an interface as shown in the drawing on the right side of FIG. 6.
  • the terminal is not limited to the floating window 601 in the drawing on the left of FIG. 6, and the terminal may also prompt the user to replace the battery through a pop-up window at the top of the screen or by displaying a prompt message in the notification bar.
  • the display interface in the figure reflects the health status of the battery when it is at a later stage of the life cycle.
  • the interface may further include one or more of the following: the estimated remaining available time of the battery, the address of the terminal after-sale point, the battery purchase channel, and the like.
  • the estimated remaining available time of the battery can be estimated by the terminal after estimating the overall expansion thickness of the battery according to the overall expansion parameter of the battery.
  • the terminal when the terminal displays the after-sale point address, it may further include a "navigation" option.
  • a navigation application such as Google Maps, Gaode Maps, etc.
  • the battery purchase channel may include an icon of an e-commerce application (eg, Taobao, Jingdong, eBay, etc.) already installed on the terminal.
  • an icon receives a user's click operation
  • the terminal may launch an e-commerce application corresponding to the icon, and the user may search for and purchase a battery in the e-commerce application.
  • the interface used by the terminal to prompt the user's health status in the late stage of the battery may further include more information, such as the specific model of the battery configured by the terminal.
  • FIG. 2 to FIG. 6 describe the human-computer interaction embodiment of the present application in detail.
  • the following will briefly introduce the causes of battery expansion.
  • the factors that affect battery expansion can include: battery voltage, battery temperature, the time the battery is at a certain voltage and temperature, and the battery's charging current. The following first introduces the impact of various impact factors on battery expansion.
  • the high temperature state of the battery may be caused by the following conditions: the current ambient temperature of the terminal is too high, or the power consumption of the terminal is too high, or the terminal is charging.
  • the high-temperature state of the battery cannot generally be adjusted automatically by the terminal.
  • the battery voltage refers to the difference between the electrode potential of the positive electrode and the electrode potential of the negative electrode, and is related to the amount of conductive particle migration between the positive and negative electrodes of the current battery.
  • the voltage of a lithium ion battery is related to the number of active lithium ions (that is, lithium ions that can move between the positive and negative electrodes of the battery).
  • active lithium ions are transferred from the positive electrode of the battery and embedded in the negative electrode.
  • the more lithium ions embedded in the negative electrode the higher the charging capacity, and the voltage between the positive and negative electrodes of the battery gradually increases.
  • the voltage between the positive and negative terminals of the battery is the fully charged battery voltage.
  • the battery voltage reflects the amount of power actually stored in the battery.
  • the unit of power stored in the battery can be milliamps / hour (mA / h).
  • the decomposition rate of the internal electrolyte of the battery to generate carbon dioxide gas is accelerated, that is, the battery expansion rate is accelerated.
  • the battery voltage is close to or equal to the maximum design voltage in the battery specification. That is, when the actual voltage of the battery is close to or equal to the maximum design voltage, it can be considered that the battery is in a high voltage state.
  • the maximum design voltage is determined by the manufacturing process and materials of the battery. The maximum safe voltage that can be theoretically reached when the battery is charged is the charging limit voltage. Therefore, different types of batteries can have different maximum design voltages. Therefore, the high-voltage state of each battery may be different.
  • the maximum design voltage of battery 1 is 4.4V
  • the maximum design voltage of battery 2 is 4.2V. Then, for battery 1, when the battery voltage is close to 4.4V, it is in a high voltage state.
  • battery 2 when the battery is It is in a high voltage state when the voltage is close to 4.2V.
  • the device's charging architecture limits the battery's cut-off voltage.
  • the charge cut-off voltage is less than or equal to the maximum design voltage of the battery.
  • the charging circuit of the device starts to gradually reduce the charging current, that is, the charging ends slowly. That is, the cut-off voltage is the actual maximum value that the battery voltage can reach when the battery is being charged.
  • the long-term high voltage of the battery may include the following situations:
  • the terminal is in a floating state.
  • floating charging means that the terminal charger is in place for a long time, that is, the terminal is connected to the power supply through the charger for a long time.
  • the terminal battery voltage is always kept close to or equal to the cut-off voltage of the charge. Because the charge cut-off voltage is close to or equal to the maximum design voltage of the battery, the battery will be in a high voltage state for a long time during floating charging.
  • the larger the charging current the greater the temperature rise of the device and the battery, that is, the battery expansion rate is promoted.
  • the actual charging current is slightly less than the maximum charging current. Therefore, limiting the maximum charging current of the battery can also reduce the expansion rate of the battery.
  • the battery itself is a complex electrochemical system, and its health status is closely related to manufacturing processes, internal active materials, electrode materials, and operating environment. Most of the currently used batteries are sealed structures, and it is impossible to know the internal conditions. Only surface data such as cell voltage, group current, equilibrium current, cell temperature, and ambient temperature can be collected. Estimate battery status and determine battery health.
  • the expansion thickness of the battery is estimated mainly through the working parameters of the battery, and then the battery is charged and controlled.
  • Reduce the battery's expansion rate by reducing the battery's charge cut-off voltage and / or reducing the maximum charge current when the battery is being charged.
  • the charge cut-off voltage of the battery by reducing the charge cut-off voltage of the battery, the actual maximum value that can be reached when the battery voltage is charged can be reduced, and the time during which the battery is in a high voltage state is relatively reduced, thereby delaying the battery expansion.
  • the overall expansion parameter of the battery can reflect the overall expansion thickness of the battery.
  • the overall expanded thickness of the battery refers to the thickness that the battery has increased from when it is put into use.
  • the thickness of the battery is the maximum distance between the front and rear surfaces of the battery.
  • the use may include any of the following situations: the battery leaves the factory, the battery is powered for the first time, or the battery is charged for the first time.
  • the terminal can continuously record the actual use of the battery from the use to the current actual use, which includes the time that the battery is at each temperature and each voltage interval.
  • Table 2 shows the battery usage on a certain day recorded by a terminal with a battery model of "ATL GC-SDC-356585-010L 1S1P 3.82V 3240mAh Li-ion".
  • ATL is the manufacturer of battery cells
  • GC-SDC-356585-010L is the cell model
  • 3.82V is the nominal voltage of the battery (also known as the nominal voltage)
  • 3240mAh is the rated capacity of the battery (nominal capacity) (also known as nominal capacity)
  • Li-ion indicates that the battery is a lithium-ion battery, which works by moving between positive and negative electrodes through lithium ions.
  • the battery voltage may fluctuate above and below the rated voltage.
  • the battery voltage during charging can be in the range of 3.2 ⁇ 4.4V.
  • Table 2 records the daily usage of the battery when users use the terminal daily.
  • the unit of temperature (T) is degrees Celsius
  • the unit of voltage (V) is volts
  • the unit of time is seconds (s).
  • the battery voltage is less than 4.2 volts
  • the battery temperature is less than 35 degrees Celsius for a total of 40395s.
  • the terminal can continuously record the usage of the battery. For example, the terminal can record the battery usage for one week, one month, or one year, and accumulate the newly acquired data and the original data in Table 2 to obtain the battery usage for one week, one month, or one year. In this way of continuous recording, if the terminal starts to record the battery usage from the time the battery is put into use, it can obtain the overall battery usage from the moment the battery is put into use.
  • Table 2 is only an example. In specific implementation, when the terminal records the battery usage, a larger number of voltage intervals and temperature intervals can be divided, and the critical values of each voltage interval and temperature interval can be different from those in Table 2. It is not limited to the form shown in Table 2. In specific implementations, the terminal may also record the battery usage in other forms, such as text, graphics, etc., which is not limited in this application.
  • the battery usage of the terminal records the actual battery usage status. Different terminals and different users may have different battery usage.
  • the terminal may store the expansion coefficient of the used battery, and may also obtain the expansion coefficient of the used battery through the network.
  • the expansion coefficient reflects the expansion rate of the battery. See Table 3.
  • Table 3 is a table of expansion coefficients obtained from a measurement of a battery of the type "ATL GC-SDC-356585-010L1S1P3.82V 3240mAh Li-ion".
  • the unit of temperature (T) is degrees Celsius
  • the unit of voltage (V) is volts
  • the unit of the defined expansion coefficient may be 1 / day.
  • the expansion coefficient can indicate the reciprocal of the number of days required for the battery to expand the first thickness under a temperature range and a voltage range. The larger the expansion coefficient, the faster the expansion rate of the battery under a certain temperature range and voltage range. For example, if the first thickness is 6% of the original thickness of the battery, the expansion coefficient in Table 3 represents the reciprocal of the number of days required for the battery to increase the thickness of the battery by 6% of the original thickness under a certain temperature range and voltage range.
  • the thickness of the battery is increased by 6% of the original thickness.
  • the number of days required is 47.6 days, and the corresponding expansion coefficient is set to 0.021.
  • the original thickness of the battery may be the thickness after the battery is manufactured.
  • the first thickness may be a maximum allowable expansion thickness determined by battery performance. After the expansion thickness of the battery exceeds the maximum allowable expansion thickness, dangers such as explosion and liquid leakage may be caused.
  • the first thickness may be an expanded thickness reserved for the battery by the terminal. After the expansion thickness of the battery exceeds the reserved expansion thickness, the terminal is damaged (for example, the case is opened by the battery, etc.).
  • Table 3 is only an example.
  • the battery's expansion coefficient table can divide a larger number of voltage intervals and temperature intervals, and the critical values of each voltage interval and temperature interval can be different from those in Table 3. It is not limited to the table form shown in Table 3.
  • the terminal may also store the battery's expansion coefficient in other forms, such as text, graphics, etc., which is not limited in this application.
  • the battery's expansion coefficient (including multiple expansion coefficients under different voltage intervals and temperature intervals) is fixed. That is, the expansion coefficient is a property of the battery itself and does not change with changes in external factors.
  • the battery's expansion coefficient is related to the battery manufacturing process. Factors affecting the battery's expansion coefficient include the battery model. When the battery model is different, the expansion coefficient is also different.
  • the battery model includes at least one of the following: the battery's rated voltage, charging voltage, rated capacity, typical capacity, battery internal resistance, shipping voltage, battery weight, cycle life, standard charging current, maximum charging current, standard discharging current, Maximum discharge current, discharge cut-off voltage, static test data, cell manufacturer, cell model, cell nominal capacity, cell typical capacity.
  • the battery's expansion coefficient can be obtained by a developer through experimental tests. Specifically, the R & D personnel can place the battery in a certain voltage and temperature range, record the time required for the battery thickness to increase by the first thickness, and obtain the battery's expansion coefficient. In this way, the expansion coefficient of the battery when it is in various voltage and temperature ranges can be obtained. Understandably, R & D personnel can obtain the expansion coefficients of different types of batteries.
  • the terminal can obtain the overall battery expansion parameters.
  • the terminal may obtain the overall expansion parameter of the battery through a weighted calculation, and the overall expansion parameter of the battery may reflect the overall expansion thickness of the battery.
  • A is the overall expansion parameter of the terminal battery from being used to the current
  • T i is the i-th temperature interval
  • V j is the j-th voltage interval
  • t (T i , V j ) is the terminal from being used to being used.
  • a (T i , V j ) is the expansion coefficient when the temperature of the terminal battery is at T i and the voltage is at V j .
  • A is a unitless parameter, the unit of t (T i , V j ) is s, and the unit of a (T i , V j ) is 1 / day.
  • 1 ⁇ i ⁇ n, 1 ⁇ j ⁇ m, and i and j are positive integers.
  • n is the total number of divided temperature sections
  • m is the total number of divided voltage sections.
  • the terminal is equipped with a battery of the type "ATL GC-SDC-356585-010L 1S1P 3.82V 3240mAh Li-ion", assuming that the battery has been in use for one year from the current use and the daily use situation Both are shown in Table 2, and the expansion coefficient of the battery is shown in Table 3.
  • the larger the value of A the thicker the overall expanded thickness of the battery. For example, when the value of A is 0, it indicates that the overall expanded thickness of the battery is 0, and when the value of A reaches 1, it indicates that the overall expanded thickness of the battery has reached the first thickness.
  • the terminal may periodically calculate the overall expansion parameter of the battery, for example, daily, weekly, or monthly.
  • the terminal can reduce the expansion rate of the battery according to a certain strategy.
  • the strategy may include: the terminal executes corresponding restriction measures according to the overall expansion parameter of the battery. Further, a plurality of expansion parameter intervals are divided, and each expansion parameter interval corresponds to a limiting measure. The terminal may confirm the interval in which the battery is in use from the current overall expansion parameter, and implement the limiting measure corresponding to the interval.
  • multiple expansion parameter interval gradients are set.
  • the plurality of expansion parameter intervals are within 0 to 1.
  • More restrictive measures can be used to reduce the expansion rate of the battery. That is, the larger the value in the expansion parameter interval, the stronger the corresponding restriction measures.
  • restrictive measures can be divided into the following three types:
  • each type of restriction measures can be subdivided into different strengths.
  • limitation (1) the more the charge cut-off voltage of the battery is lowered, the greater the intensity.
  • the charge cut-off voltage drops to 0, the battery cannot be charged, and the strength is the maximum at this time.
  • restriction measure the more the maximum charging current of the battery is reduced, the greater the strength.
  • the maximum charging current drops to 0, the battery cannot be charged, and the maximum strength is reached at this time.
  • Table 4 shows several possible overall expansion parameter intervals and corresponding limiting measures.
  • the limiting measures shown in Table 4 belong to the above (1) type, that is, the terminal reduces the battery expansion rate by reducing the charging cut-off voltage.
  • FIG. 7 is a schematic flowchart of a method for reducing the expansion rate of a battery according to the first expansion method of the terminal according to the overall expansion parameter of the battery.
  • each expansion parameter interval divided in FIG. 7 and the corresponding limiting measures are shown in Table 3.
  • FIG. 8 shows a schematic diagram of the time and battery voltage when the battery is charged before and after the charge cut-off voltage is reduced.
  • curve 1 is the charging schematic diagram when the initial charge cut-off voltage of the battery is 4.4V
  • curve 2 is the charge cut-off voltage of the battery is reduced by 200mV based on the initial charge cut-off voltage, that is, the battery's charge cut-off voltage is reduced Charging diagram at 4.2V.
  • the overall expansion parameter of the terminal battery has two critical values, which can be called the first critical value (such as 0.7 in Table 4) and the second critical value (such as 0.9 in Table 4).
  • the first critical value may be the first critical value mentioned in the scenario (1) in the embodiment of FIG. 3, that is, when the overall expansion parameter of the battery reaches the first critical value, the terminal may prompt the user of the current health status of the battery.
  • the second critical value may be the second critical value mentioned in the embodiment of FIG. 6, that is, when the overall expansion parameter of the battery reaches the second critical value, the terminal may determine that the battery is in a later stage of the life cycle and prompt the user Replacement battery.
  • the battery life or battery charging time will be reduced.
  • the overall expansion parameter of the battery is lower than the first threshold value, no restriction measures will be taken (that is, the battery cut-off voltage or the maximum charging current will not be reduced ) To ensure the user ’s experience.
  • the terminal adopts the maximum strength restriction measures to prevent the battery from exploding and leaking, and ensuring user safety.
  • the first threshold value and the second threshold value may be set in advance.
  • a suitable first threshold value and a second threshold value can be obtained experimentally by a developer.
  • the first threshold value and the second threshold value corresponding to different types of batteries may be different or the same, and there is no limitation here.
  • the limiting measure corresponding to the expansion parameter interval means that when the actual expansion parameter of the terminal is in the expansion parameter interval, using the corresponding limiting measure can relatively optimally reduce the subsequent expansion rate of the terminal battery without affecting the User experience.
  • the limiting measures corresponding to each expansion parameter interval can be determined experimentally by the R & D personnel. It can be understood that, for different types of batteries, the restriction measures corresponding to each expansion parameter interval may be the same or different, and this application does not limit them.
  • the restriction measures corresponding to each expansion parameter interval may not only belong to the same type, but may also belong to different types, that is, different types of restriction measures may be implemented in combination.
  • the terminal records the time during which the battery is at various temperatures and voltage ranges, and calculates the overall expansion parameter of the battery. Because the overall expansion parameter of the battery reflects the overall expansion thickness of the battery, corresponding limiting measures can be taken according to the overall expansion parameter of the battery, which can reduce the expansion rate of the battery and extend the battery life.
  • the terminal can implement the maximum strength restriction measures to prohibit the user from charging, which can prevent the battery from exploding and leaking, and ensure user safety.
  • the recent expansion parameters of the battery can reflect the recent expansion thickness of the battery.
  • the recent expanded thickness of a battery refers to the thickness that the battery has increased in a recent period of time.
  • the recent period may be the last day, week, ten days, month, etc.
  • the recent period of time may be determined autonomously by the terminal or may be set by a user.
  • the method for the terminal to obtain the recent expansion parameters of the battery is similar to the method for obtaining the overall battery expansion parameters by the terminal, which is described in detail below.
  • the terminal may record the actual actual usage of the battery in the near future, and the usage includes the time during which the battery has recently been at various temperatures and voltage intervals.
  • Table 5 shows a day of use of the battery recorded by a terminal with a battery model of "ATL GC-SDC-356585-010L 1S1P 3.82V 3240mAh Li-ion".
  • Table 5 records the battery usage of the terminal for one day.
  • the terminal was in a high-temperature floating charge state for most of the day.
  • the unit of temperature (T) is degrees Celsius
  • the unit of voltage (V) is volts
  • the unit of time is seconds (s).
  • the terminal can continuously record the recent usage of the battery. For example, after the terminal records the usage of the terminal on the first day, the terminal continuously records the usage of the battery on the second day, and uses the data of the second day instead of the data on the first day to obtain the latest battery usage of the last day. In this way of continuous recording, the terminal can obtain the recent usage of the battery.
  • the terminal can store the expansion coefficient of the battery used, and the expansion coefficient reflects the expansion rate of the battery.
  • the expansion coefficient of the battery can be referred to Table 3 and related descriptions, which will not be repeated here.
  • the terminal can obtain the recent expansion parameters of the battery.
  • the terminal may obtain the recent expansion parameter of the battery through a weighted calculation.
  • B is the recent expansion parameter of the terminal battery
  • T i is the i-th temperature interval
  • V j is the j-th voltage interval
  • t ′ (T i , V j ) is the terminal recent temperature at T i and the voltage at V
  • a ′ (T i , V j ) is the expansion coefficient when the terminal battery temperature is at T i and the voltage is at V j .
  • B is a unitless parameter
  • the unit of t ′ (T i , V j ) is s
  • the unit of a ′ (T i , V j ) is 1 / day.
  • 1 ⁇ i ⁇ n, 1 ⁇ j ⁇ m, and i and j are positive integers.
  • n is the total number of divided temperature sections
  • m is the total number of divided voltage sections.
  • the terminal uses a battery of the type “ATL GC-SDC-356585-010L 1S1P 3.82V 3240mAh Li-ion”.
  • Table 5 shows the battery usage in the last day
  • Table 3 shows the battery's expansion coefficient.
  • the value of A is 0, it means that the recent expansion thickness of the battery is 0, and when the value of A reaches 1, it means that the recent expansion thickness of the battery has reached the first thickness.
  • the terminal may periodically calculate a recent expansion parameter of the battery, for example, once a day or two days.
  • the terminal can reduce the expansion rate of the battery according to a certain strategy.
  • the strategy may include: the terminal executes corresponding restriction measures according to the recent expansion parameter of the battery. Further, by dividing a plurality of expansion parameter intervals, the terminal may confirm the interval in which the battery ’s recent expansion parameters are located, and implement the restriction measures corresponding to the intervals.
  • multiple expansion parameter interval gradients are set.
  • the plurality of expansion parameter intervals are within 0 to 1.
  • the critical value of the divided expansion parameter interval is relative to the first method The critical value of the expansion parameter interval is lower.
  • the restrictive measures can also be divided into three types.
  • Table 6 shows several possible near-term expansion parameter intervals and corresponding limiting measures.
  • the limiting measures shown in Table 6 belong to the (1) type, that is, reducing the battery expansion rate by reducing the charge cut-off voltage.
  • FIG. 9 is a schematic flowchart of a method of reducing the expansion rate of a battery according to the recent expansion parameter of the battery by using the second method described above. Among them, each expansion parameter interval divided in FIG. 9 and the corresponding restriction measures are shown in Table 6.
  • the recent expansion parameter of the terminal battery has a critical value, which can be called the third critical value (such as 0.049 in Table 6).
  • the third critical value may be the third critical value mentioned in the scenario (1) of the embodiment of FIG. 3, that is, when the recent expansion parameter of the battery reaches the third critical value, the terminal may prompt the user of the current health status of the battery .
  • the terminal When the battery's recent expansion parameter is lower than the third critical value, the terminal does not take restrictive measures, that is, does not reduce the charging cut-off voltage or the maximum charging current of the battery, which can guarantee the user experience.
  • the third critical value may be set in advance, for example, a suitable third critical value may be obtained by a developer through experiments. It is understandable that the third critical value corresponding to different types of batteries may be different or the same, and there is no limitation here.
  • the restriction measures corresponding to each expansion parameter interval have a certain timeliness and are not permanent.
  • the recent expansion parameters of the terminal battery can only reflect the recent expansion thickness of the battery.
  • the subsequent expansion rate of the terminal may decrease or continue to increase. Therefore, when the terminal calculates the recent expansion parameter again, the restriction measures corresponding to the recent expansion parameter may change.
  • the limiting measure corresponding to the expansion parameter interval means that when the actual expansion parameter of the terminal is in the expansion parameter interval, using the corresponding limiting measure can relatively optimally reduce the subsequent expansion rate of the terminal battery without affecting the User experience.
  • the limiting measures corresponding to each expansion parameter interval can be determined experimentally by the R & D personnel. It can be understood that, for different types of batteries, the restriction measures corresponding to each expansion parameter interval may be the same or different, and this application does not limit them.
  • the restriction measures corresponding to each expansion parameter interval may not only belong to the same type, but may also belong to different types, that is, different types of restriction measures may be implemented in combination.
  • the terminal records the length of time that the battery has been at each temperature and voltage range recently, and calculates the recent expansion parameters of the battery. Since the recent expansion parameters of the battery reflect the recent expansion thickness of the battery, corresponding limiting measures are adopted according to the recent expansion parameters of the battery, that is, dynamically matching the charging mode, which can reduce the expansion rate of the battery and extend the battery life.
  • the above two methods for reducing the expansion rate of a battery use the weighted sum of the cumulative time of the battery in different temperature intervals and different voltage intervals to quantify the expansion thickness of the battery. In different stages of battery use, the expansion thickness of the battery can be continuously monitored and corresponding limiting measures taken.
  • the first method described above reduces the expansion rate of the battery according to the overall expansion parameter of the battery, and is more suitable for controlling the expansion risk at a later stage of the battery life cycle.
  • the second method described above reduces the expansion rate of the battery according to the recent expansion parameters of the battery, and is applicable to the expansion risk control at any stage of the battery life cycle.
  • the terminal may be a portable electronic device such as a mobile phone, a tablet computer, a personal digital assistant (PDA), and a wearable device.
  • portable electronic devices include, but are not limited to, portable electronic devices equipped with iOS, android, Microsoft, or other operating systems.
  • the aforementioned portable electronic device may also be other portable electronic devices, such as a laptop computer having a touch-sensitive surface (eg, a touch panel), or the like.
  • the terminal may not be a portable electronic device, but a desktop computer with a touch-sensitive surface (such as a touch panel).
  • the terminal is provided with a display screen, which can be used to display the interface content and various types of prompt information currently output by the terminal system.
  • the interface content may include the interface of a running application and a system-level menu, etc., and may specifically be composed of the following interface elements: input-type interface elements, such as a button, a text input box, and a scroll bar , Menus, etc .; and output-type interface elements, such as windows, labels, and so on.
  • input-type interface elements such as a button, a text input box, and a scroll bar , Menus, etc .
  • output-type interface elements such as windows, labels, and so on.
  • FIG. 10 shows a possible structure of the terminal of the present application.
  • the terminal 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charge management module 140, a power management module 141, a battery 142, and an antenna 1.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the terminal 100.
  • the terminal 100 may include more or fewer components than shown, or some components may be combined, or some components may be split, or different component arrangements may be used.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image, signal processor, ISP), controller, memory, video codec, digital signal processor (DSP), baseband processor, and / or neural-network processing unit (NPU) Wait.
  • AP application processor
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • different processing units may be independent devices or integrated in one or more processors.
  • the controller may be a nerve center and a command center of the terminal 100.
  • the controller can generate operation control signals according to the instruction operation code and timing signals, and complete the control of fetching and executing instructions.
  • the processor 110 may further include a memory for storing instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory may store instructions or data that the processor 110 has just used or used cyclically. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit (inter-integrated circuit, sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver receiver / transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input / output (GPIO) interface, subscriber identity module (SIM) interface, and / Or universal serial bus (universal serial bus, USB) interface.
  • I2C integrated circuit
  • I2S integrated circuit
  • PCM pulse code modulation
  • UART universal asynchronous transceiver receiver / transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input / output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a two-way synchronous serial bus, including a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may include multiple sets of I2C buses.
  • the processor 110 may be respectively coupled to a touch sensor 180K, a charger, a flash, a camera 193, and the like through different I2C bus interfaces.
  • the processor 110 may be coupled to the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to implement the touch function of the terminal 100.
  • the I2S interface can be used for audio communication.
  • the processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through an I2S interface, so as to implement a function of receiving a call through a Bluetooth headset.
  • the PCM interface can also be used for audio communications, sampling, quantizing, and encoding analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 may also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to implement the function of receiving calls through a Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus for asynchronous communication.
  • the bus may be a two-way communication bus. It converts the data to be transferred between serial and parallel communications.
  • a UART interface is generally used to connect the processor 110 and the wireless communication module 160.
  • the processor 110 communicates with a Bluetooth module in the wireless communication module 160 through a UART interface to implement a Bluetooth function.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through a UART interface, so as to implement a function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display 194, the camera 193, and the like.
  • the MIPI interface includes a camera serial interface (CSI), a display serial interface (DSI), and the like.
  • CSI camera serial interface
  • DSI display serial interface
  • the processor 110 and the camera 193 communicate through a CSI interface to implement a shooting function of the terminal 100.
  • the processor 110 and the display screen 194 communicate through a DSI interface to implement a display function of the terminal 100.
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface may be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and the like.
  • GPIO interface can also be configured as I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the terminal 100, and can also be used to transfer data between the terminal 100 and a peripheral device. It can also be used to connect headphones and play audio through headphones. This interface can also be used to connect other terminals, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiments of the present invention is only a schematic description, and does not constitute a limitation on the structure of the terminal 100.
  • the terminal 100 may also adopt different interface connection modes or a combination of multiple interface connection modes in the foregoing embodiments.
  • Battery 142 is a chemical power source. It consists of two different components of electrochemically active electrodes, which are composed of positive and negative electrodes. The two electrodes are immersed in the electrolyte and provide electrical energy by converting the chemical energy inside.
  • the battery 142 may be a lithium-ion battery, a nickel-hydrogen battery, a lithium polymer battery, or a lead-acid battery.
  • the battery 142 is a lithium-ion battery and works by moving lithium ions between the positive electrode and the negative electrode. After the battery 142 is put into use, it will gradually expand (ie, the thickness of the battery increases), and the expansion process is almost irreversible.
  • the charging management module 140 is configured to receive a charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive the charging input of the wired charger through the USB interface 130.
  • the charging management module 140 may receive a wireless charging input through a wireless charging coil of the terminal 100. While the charging management module 140 is charging the battery 142, the terminal can also be powered by the power management module 141.
  • the charging management module 140 may be configured to implement a restriction measure corresponding to an interval in which the overall / recent expansion parameter of the battery 142 is located.
  • the restriction measures can be divided into the following three types: (1) reducing the charge cut-off voltage of the battery; (2) reducing the maximum charge current of the battery; (3) simultaneously reducing the charge cut-off voltage and the maximum charge current of the battery.
  • the power management module 141 is used to connect the battery 142, the charge management module 140 and the processor 110.
  • the power management module 141 receives inputs from the battery 142 and / or the charge management module 140, and supplies power to the processor 110, the internal memory 121, the external memory, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, number of battery cycles, battery health (leakage, impedance), and so on.
  • the power management module 141 may also be disposed in the processor 110.
  • the power management module 141 and the charge management module 140 may be provided in the same device.
  • the power management module 141 may be used to monitor the voltage of the battery 142.
  • the wireless communication function of the terminal 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, a modem processor, and a baseband processor.
  • the antenna 1 and the antenna 2 are used for transmitting and receiving electromagnetic wave signals.
  • Each antenna in the terminal 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be multiplexed to improve antenna utilization.
  • antenna 1 can be multiplexed into a diversity antenna for a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 may provide a wireless communication solution including 2G / 3G / 4G / 5G and the like applied on the terminal 100.
  • the mobile communication module 150 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), and the like.
  • the mobile communication module 150 may receive the electromagnetic wave by the antenna 1, and perform filtering, amplification, and other processing on the received electromagnetic wave, and transmit it to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor and convert it into electromagnetic wave radiation through the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is configured to modulate a low-frequency baseband signal to be transmitted into a high-frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is processed by the baseband processor and then passed to the application processor.
  • the application processor outputs a sound signal through an audio device (not limited to the speaker 170A, the receiver 170B, etc.), or displays an image or video through the display screen 194.
  • the modem processor may be a separate device.
  • the modem processor may be independent of the processor 110 and disposed in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless LAN (wireless local area networks, WLAN) (such as wireless fidelity (Wi-Fi) networks), Bluetooth (bluetooth, BT), and global navigation satellite systems applied to the terminal 100. (global navigation system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices that integrate at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive a signal to be transmitted from the processor 110, frequency-modulate it, amplify it, and convert it into electromagnetic wave radiation through the antenna 2.
  • the antenna 1 of the terminal 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the terminal 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include a global mobile communication system (GSM), a general packet radio service (GPRS), a code division multiple access (CDMA), and broadband. Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, and / or IR technology.
  • the GNSS may include a global positioning system (GPS), a global navigation satellite system (GLONASS), a beidou navigation navigation system (BDS), and a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and / or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Bertdou navigation navigation system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the terminal 100 implements a display function through a GPU, a display screen 194, and an application processor.
  • the GPU is a microprocessor for image processing and is connected to the display 194 and an application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • the processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos, and the like.
  • the display screen 194 includes a display panel.
  • the display panel can use a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active matrix organic light emitting diode active-matrix organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • emitting diodes AMOLED
  • flexible light-emitting diodes FLEDs
  • Miniled MicroLed
  • Micro-oLed quantum dot light emitting diodes
  • QLEDs quantum dot light emitting diodes
  • the terminal 100 may include one or N display screens 194, where N is a positive integer greater
  • the terminal 100 may implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, and an application processor.
  • the ISP processes the data fed back from the camera 193. For example, when taking a picture, the shutter is opened, and the light is transmitted to the light receiving element of the camera through the lens. The light signal is converted into an electrical signal, and the light receiving element of the camera passes the electrical signal to the ISP for processing and converts the image to the naked eye. ISP can also optimize the image's noise, brightness, and skin tone. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene. In some embodiments, an ISP may be provided in the camera 193.
  • the camera 193 is used to capture still images or videos.
  • An object generates an optical image through a lens and projects it onto a photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs digital image signals to the DSP for processing.
  • DSP converts digital image signals into image signals in standard RGB, YUV and other formats.
  • the terminal 100 may include one or N cameras 193, where N is a positive integer greater than 1.
  • a digital signal processor is used to process digital signals. In addition to digital image signals, it can also process other digital signals. For example, when the terminal 100 selects at a frequency point, the digital signal processor is used to perform a Fourier transform on the frequency point energy and the like.
  • Video codecs are used to compress or decompress digital video.
  • the terminal 100 may support one or more video codecs. In this way, the terminal 100 can play or record videos in multiple encoding formats, such as: moving picture expert group (MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG moving picture expert group
  • MPEG2 MPEG2, MPEG3, MPEG4, and so on.
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • applications such as intelligent cognition of the terminal 100 can be implemented, such as: image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to achieve the expansion of the storage capacity of the terminal 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. For example, save music, videos and other files on an external memory card.
  • the internal memory 121 may be used to store computer executable program code, where the executable program code includes instructions.
  • the processor 110 executes various functional applications and data processing of the terminal 100 by executing instructions stored in the internal memory 121.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.) and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the terminal 100.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one disk storage device, a flash memory device, a universal flash memory (UFS), and the like.
  • UFS universal flash memory
  • the processor 110 may be further configured to store the voltage of the battery 142 monitored by the power management module 141 and the cumulative temperature of the battery 142 monitored by the temperature sensor 180J, and store them in the internal memory 121 .
  • the processor 110 may store 142 the durations in each temperature interval and each voltage interval in the form of a table. It can be understood that, in some embodiments of the present application, the terminal 100 may be further configured with a dedicated processor for recording the voltage of the battery 142 monitored by the power management module 141 and the temperature of the battery 142 monitored by the temperature sensor 180J.
  • the internal memory 121 may also be used to store one or more of the following: the battery is in use to the current use situation or the battery's recent use situation (that is, the battery is at each temperature and the duration of each voltage interval), the battery Expansion coefficient of 142, and corresponding restriction measures for each expansion parameter interval.
  • the overall / recent usage of the battery 142, the expansion coefficient, and the corresponding restriction measures for each expansion parameter interval can be referred to the related descriptions of Tables 2 to 6, 6, 7 and 9 above, and will not be repeated here.
  • the processor 110 may also calculate the overall / recent expansion of the battery 142 according to the battery 142 stored in the memory 121 from the use to the current use situation or the recent use of the battery and the expansion coefficient of the battery 142. parameter.
  • the processor calculates the overall / recent expansion parameter of the battery 142 according to the battery 142 stored in the memory 121 from the use to the current use situation or the recent use of the battery and the expansion coefficient of the battery 142. parameter.
  • the processor may also calculate the overall / recent expansion of the battery 142 according to the battery 142 stored in the memory 121 from the use to the current use situation or the recent use of the battery and the expansion coefficient of the battery 142. parameter.
  • the processor 110 may further instruct the charge management module 140 to perform a restriction measure corresponding to the interval where the overall / recent expansion parameter of the battery 142 is located.
  • the terminal 100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, a headphone interface 170D, and an application processor. Such as music playback, recording, etc.
  • the audio module 170 is configured to convert digital audio information into an analog audio signal and output, and is also used to convert an analog audio input into a digital audio signal.
  • the audio module 170 may also be used to encode and decode audio signals.
  • the audio module 170 may be disposed in the processor 110, or some functional modules of the audio module 170 may be disposed in the processor 110.
  • the speaker 170A also called a "horn" is used to convert audio electrical signals into sound signals.
  • the terminal 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also referred to as the "handset" is used to convert audio electrical signals into sound signals.
  • the terminal 100 answers a call or a voice message, it can answer the voice by holding the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone”, “microphone”, is used to convert sound signals into electrical signals.
  • the user can make a sound through the mouth near the microphone 170C, and input a sound signal into the microphone 170C.
  • the terminal 100 may be provided with at least one microphone 170C.
  • the terminal 100 may be provided with two microphones 170C, in addition to collecting sound signals, it may also implement a noise reduction function.
  • the terminal 100 may further be provided with three, four, or more microphones 170C to achieve sound signal collection, noise reduction, identification of sound sources, and directional recording functions.
  • the headset interface 170D is used to connect a wired headset.
  • the headphone interface 170D may be a USB interface 130 or a 3.5mm open mobile terminal platform (OMTP) standard interface, a cellular telecommunications industry association (United States of America, CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association
  • the pressure sensor 180A is used to sense a pressure signal, and can convert the pressure signal into an electrical signal.
  • the pressure sensor 180A may be disposed on the display screen 194.
  • the capacitive pressure sensor may be at least two parallel plates having a conductive material. When a force is applied to the pressure sensor 180A, the capacitance between the electrodes changes.
  • the terminal 100 determines the intensity of the pressure based on the change in capacitance. When a touch operation is performed on the display screen 194, the terminal 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the terminal 100 may also calculate a touched position based on a detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but different touch operation intensities may correspond to different operation instructions. For example, when a touch operation with a touch operation intensity lower than the first pressure threshold is applied to the short message application icon, an instruction for viewing the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold is applied to the short message application icon, an instruction for creating a short message is executed.
  • the gyro sensor 180B may be used to determine a motion posture of the terminal 100.
  • the angular velocity of the terminal 100 about three axes ie, the x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization. Exemplarily, when the shutter is pressed, the gyro sensor 180B detects the angle of the terminal 100's shake, and calculates the distance that the lens module needs to compensate according to the angle, so that the lens can cancel the shake of the terminal 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the barometric pressure sensor 180C is used to measure air pressure.
  • the terminal 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C, and assists in positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the terminal 100 can detect the opening and closing of the flip leather case by using the magnetic sensor 180D.
  • the terminal 100 may detect the opening and closing of the flip according to the magnetic sensor 180D. Further, according to the opened and closed state of the holster or the opened and closed state of the flip cover, characteristics such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the terminal 100 in various directions (generally three axes).
  • the magnitude and direction of gravity can be detected when the terminal 100 is stationary. It can also be used to identify the posture of the terminal, and is used in applications such as switching between horizontal and vertical screens, and pedometers.
  • the terminal 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the terminal 100 may use a distance sensor 180F to measure a distance to achieve fast focusing.
  • the proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the terminal 100 emits infrared light outward through a light emitting diode.
  • the terminal 100 detects infrared reflected light from a nearby object using a photodiode. When sufficient reflected light is detected, it can be determined that there is an object near the terminal 100. When insufficiently reflected light is detected, the terminal 100 may determine that there is no object near the terminal 100.
  • the terminal 100 may use the proximity light sensor 180G to detect that the user is holding the terminal 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in holster mode, and the pocket mode automatically unlocks and locks the screen.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the terminal 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • Ambient light sensor 180L can also be used to automatically adjust white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the terminal 100 is in a pocket to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the terminal 100 may use the collected fingerprint characteristics to realize fingerprint unlocking, access application lock, fingerprint photographing, fingerprint answering an incoming call, and the like.
  • the temperature sensor 180J is used to detect the temperature.
  • the terminal 100 executes a temperature processing strategy using the temperature detected by the temperature sensor 180J. For example, when the temperature reported by the temperature sensor 180J exceeds the threshold, the terminal 100 executes reducing the performance of a processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the terminal 100 when the temperature is lower than another threshold, the terminal 100 heats the battery 142 to avoid the abnormal shutdown of the terminal 100 caused by the low temperature.
  • the terminal 100 when the temperature is lower than another threshold, the terminal 100 performs boosting on the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • a temperature sensor 180J may be provided around the battery 142 to monitor the temperature of the battery 142.
  • the touch sensor 180K is also called “touch panel”.
  • the touch sensor 180K may be disposed on the display screen 194.
  • the touch sensor 180K and the display screen 194 form a touch screen, which is also called a "touch screen”.
  • the touch sensor 180K is used to detect a touch operation acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • a visual output related to the touch operation may be provided through the display screen 194.
  • the touch sensor 180K may also be disposed on the surface of the terminal 100, which is different from the position where the display screen 194 is located.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can acquire a vibration signal of a human voice oscillating bone mass.
  • Bone conduction sensor 180M can also contact the human pulse and receive blood pressure beating signals.
  • the bone conduction sensor 180M may also be disposed in the earphone and combined into a bone conduction earphone.
  • the audio module 170 may analyze a voice signal based on the vibration signal of the oscillating bone mass of the vocal part obtained by the bone conduction sensor 180M to implement a voice function.
  • the application processor may analyze the heart rate information based on the blood pressure beating signal acquired by the bone conduction sensor 180M to implement a heart rate detection function.
  • the keys 190 include a power-on key, a volume key, and the like.
  • the key 190 may be a mechanical key. It can also be a touch button.
  • the terminal 100 may receive a key input, and generate a key signal input related to user settings and function control of the terminal 100.
  • the motor 191 may generate a vibration alert.
  • the motor 191 can be used for vibration alert for incoming calls, and can also be used for touch vibration feedback.
  • the touch operation applied to different applications can correspond to different vibration feedback effects.
  • Acting on touch operations in different areas of the display screen 194, the motor 191 can also correspond to different vibration feedback effects.
  • Different application scenarios (such as time reminders, receiving information, alarm clocks, games, etc.) can also correspond to different vibration feedback effects.
  • Touch vibration feedback effect can also support customization.
  • the indicator 192 can be an indicator light, which can be used to indicate the charging status, power change, and can also be used to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be contacted and separated from the terminal 100 by inserting or removing the SIM card interface 195.
  • the terminal 100 may support one or N SIM card interfaces, and N is a positive integer greater than 1.
  • SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card, etc. Multiple SIM cards can be inserted into the same SIM card interface 195 at the same time. The types of the multiple cards may be the same or different.
  • the SIM card interface 195 may also be compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the terminal 100 interacts with the network through a SIM card to implement functions such as calling and data communication.
  • the terminal 100 uses an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the terminal 100 and cannot be separated from the terminal 100.
  • the software system of the terminal 100 may adopt a layered architecture, an event-driven architecture, a micro-core architecture, a micro-service architecture, or a cloud architecture.
  • the embodiment of the present invention takes the Android system with a layered architecture as an example, and exemplifies the software structure of the terminal 100.
  • FIG. 11 is a software structural block diagram of the terminal 100 according to an embodiment of the present invention.
  • the layered architecture divides the software into several layers, each of which has a clear role and division of labor.
  • the layers communicate with each other through a software interface.
  • the Android system is divided into four layers, which are an application layer, an application framework layer, an Android runtime and a system library, and a kernel layer from top to bottom.
  • the application layer can include a series of application packages.
  • the application package may include applications such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, and SMS.
  • applications such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, and SMS.
  • the application framework layer provides an application programming interface (API) and a programming framework for applications at the application layer.
  • API application programming interface
  • the application framework layer includes some predefined functions.
  • the application framework layer may include a window manager, a content provider, a view system, a phone manager, a resource manager, a notification manager, and the like.
  • the window manager is used to manage window programs.
  • the window manager can obtain the display size, determine whether there is a status bar, lock the screen, take a screenshot, etc.
  • Content providers are used to store and retrieve data and make it accessible to applications.
  • the data may include videos, images, audio, calls made and received, browsing history and bookmarks, phone books, and so on.
  • the view system includes visual controls, such as controls that display text, controls that display pictures, and so on.
  • the view system can be used to build applications.
  • the display interface can consist of one or more views.
  • the display interface including the SMS notification icon may include a view that displays text and a view that displays pictures.
  • the phone manager is used to provide a communication function of the terminal 100. For example, management of call status (including connection, hang up, etc.).
  • the resource manager provides various resources for the application, such as localized strings, icons, pictures, layout files, video files, and so on.
  • the notification manager enables the application to display notification information in the status bar, which can be used to convey notification-type messages that can disappear automatically after a short stay without user interaction.
  • the notification manager is used to inform download completion, message reminders, etc.
  • the notification manager can also be a notification that appears in the status bar at the top of the system in the form of a chart or scroll bar text, such as a notification of an application running in the background, or a notification that appears on the screen in the form of a dialog window.
  • text messages are displayed in the status bar, a tone is emitted, the terminal vibrates, and the indicator light flashes.
  • Android Runtime includes core libraries and virtual machines. Android runtime is responsible for the scheduling and management of the Android system.
  • the core library contains two parts: one is the functional functions that the Java language needs to call, and the other is the Android core library.
  • the application layer and the application framework layer run in a virtual machine.
  • the virtual machine executes the java files of the application layer and the application framework layer as binary files.
  • Virtual machines are used to perform object lifecycle management, stack management, thread management, security and exception management, and garbage collection.
  • the system library can include multiple functional modules. For example: surface manager (media manager), media library (Media library), three-dimensional graphics processing library (for example: OpenGL ES), 2D graphics engine (for example: SGL) and so on.
  • surface manager media manager
  • media library Media library
  • Three-dimensional graphics processing library for example: OpenGL ES
  • 2D graphics engine for example: SGL
  • the Surface Manager is used to manage the display subsystem and provides a fusion of 2D and 3D layers for multiple applications.
  • the media library supports a variety of commonly used audio and video formats for playback and recording, as well as still image files.
  • the media library can support multiple audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • the 3D graphics processing library is used to implement 3D graphics drawing, image rendering, compositing, and layer processing.
  • the 2D graphics engine is a graphics engine for 2D graphics.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer contains at least a display driver, a camera driver, an audio driver, and a sensor driver.
  • the following describes the workflow of the software and hardware of the terminal 100 by way of example in conjunction with capturing a photographing scene.
  • a corresponding hardware interrupt is sent to the kernel layer.
  • the kernel layer processes touch operations into raw input events (including touch coordinates, time stamps of touch operations, and other information). Raw input events are stored at the kernel level.
  • the application framework layer obtains the original input event from the kernel layer and identifies the control corresponding to the input event. Taking the touch operation as a touch and click operation, and the control corresponding to the click operation is the control of the camera application icon as an example, the camera application calls the interface of the application framework layer to start the camera application, and then starts the camera driver by calling the kernel layer.
  • the camera 193 captures a still image or a video.
  • the method (1) for reducing the battery expansion rate is taken as an example to describe in detail the cooperation relationship of the components in the terminal 100 in this application, please refer to FIG. 12.
  • the temperature sensor 180J monitors the temperature of the battery 142
  • the power management module 141 monitors the battery voltage of the battery 142.
  • the temperature sensor 180J transmits the temperature of the battery 142 to the processor 110, and the power management module 141 transmits the battery voltage of the battery 142 to the processor 110.
  • the processor 110 accumulates and records the length of time that the battery 142 is in each temperature interval and each voltage interval.
  • the processor 110 transfers the recorded duration to the internal memory 121.
  • the internal memory 121 stores the duration of the battery 142 in each temperature interval and each voltage interval. In addition, the internal memory 121 also stores an expansion coefficient of the battery 142 and restriction measures corresponding to each expansion parameter interval.
  • the internal memory 121 may store the duration of 142 in each temperature interval and each voltage interval in the form of a table. For details, refer to the related descriptions in Tables 2 and 5 above.
  • the expansion coefficient of the battery 142 can be referred to Table 3 and related descriptions, and the restriction measures corresponding to each expansion parameter interval can be referred to Table 3 and related descriptions.
  • the processor 110 weights and calculates the overall expansion parameters of the battery 142 from being used to the current.
  • the processor 110 may calculate the overall expansion parameter of the battery 142 through Formula 1, and may refer to the foregoing description about Formula 1.
  • the processor 110 determines an expansion parameter interval in which the overall expansion parameter of the battery 142 is located, and determines a limiting measure corresponding to the expansion parameter interval.
  • the processor 110 instructs the charge management module 140 to execute the determined restriction measure.
  • the charging management module 140 executes the restriction measures determined by the processor 110.
  • FIG. 13 is a schematic structural diagram of a charge management device provided by the present application.
  • the device is applied to the terminal, which can reduce the expansion rate of the battery and extend the battery life.
  • the device includes a battery, a temperature measurement module, a voltage measurement module, an accumulation module, a memory, a control module, and a charging and discharging module.
  • the battery is used to convert the internal chemical energy to provide electric power for the terminal.
  • the temperature measurement module is used to measure the temperature of the battery.
  • the voltage measurement module is used to measure the battery voltage.
  • the accumulation module is used to record the usage of the battery.
  • the usage status of the battery includes: from the time the battery is put into use to the present, or, in the near future, the duration at various temperatures and / or voltages.
  • the accumulation module can accumulate and record the battery usage in a table.
  • the table recorded by the accumulation module may be shown in Table 2 or Table 5.
  • the accumulation module can be a software module or a hardware module.
  • the memory is used to store the battery usage accumulated by the battery accumulation module.
  • the memory may be further used for storing the expansion coefficient of the battery and limiting measures corresponding to each expansion parameter interval.
  • the expansion coefficient of the battery and the corresponding restriction measures for each expansion parameter interval can be referred to the related descriptions in Table 3, FIG. 7 and FIG. 9 described above, and will not be repeated here.
  • the control module is used to obtain the expansion parameters of the battery according to the usage of the battery stored in the memory.
  • the manner of obtaining the expansion parameter reference may be made to the foregoing description of Formula 1 or Formula 2.
  • the charging and discharging module is used to implement limiting measures corresponding to the expansion parameter interval of the battery expansion parameter.
  • limiting measures corresponding to the expansion parameter interval of the battery expansion parameter.
  • the battery, temperature measurement module, voltage measurement module, memory, control module, charging and discharging module in FIG. 13 are hardware modules.
  • FIG. 13 is a schematic flowchart of a charging management method provided by the present application.
  • the charging management method is applied to a terminal, which is configured with a battery. Expand the description below:
  • the terminal battery charging means that the terminal battery is connected to a power source, and the conductive particles inside the battery are transferred from the battery positive electrode and embedded in the negative electrode.
  • the process of charging the terminal battery is a process in which the terminal battery stores electrical energy.
  • the working parameters of the terminal battery do not satisfy the first condition, stop charging the terminal battery when charging to the battery voltage V1; if the working parameters of the terminal battery meet the first condition, stop charging to the battery voltage V2
  • the terminal battery is charged; V1> V2; wherein the working parameters of the terminal battery include: the operating time of the terminal battery at multiple temperatures, and / or the operating time of the terminal battery at multiple battery voltages.
  • the terminal may obtain the working parameters of the battery.
  • the terminal may obtain the working parameters of the battery after the terminal battery is put into use.
  • the working parameters of the terminal battery can reflect the health status of the terminal battery.
  • the health status of the terminal battery may include: battery temperature, battery voltage, overall expansion thickness of the battery, recent expansion thickness of the battery, or aging.
  • the operating parameters of the battery may be the operating parameters of the terminal battery from the time it is put into use, or the operating parameters of the terminal battery in the most recent period.
  • putting the battery into use may include: the battery leaves the factory, or the battery is charged for the first time, or the battery is discharged for the first time.
  • the most recent period can be set in advance when the terminal leaves the factory, or it can be set by the user or the terminal. For example, the most recent period can be one week, one month, one year, etc. There is no restriction here.
  • the operating parameters of the battery may include: the operating time of the terminal battery at multiple temperatures, and / or the operating time of the terminal battery at multiple battery voltages.
  • the working time may refer to the time after the battery leaves the factory, or the time after the battery is configured on the terminal, or the time to charge and / or discharge the battery, which is not limited in this application.
  • the working parameters of the battery may be recorded in a table manner.
  • the first condition may include that a swelling parameter of the terminal battery is higher than a threshold.
  • the swelling parameter can reflect the swelling thickness of the battery.
  • the terminal may obtain the expansion parameter of the terminal battery according to the operating parameters of the terminal battery.
  • the following provides two possible ways for the terminal to obtain the expansion parameters of the terminal battery according to the operating parameters of the terminal battery:
  • the terminal obtains the overall expansion parameters of the terminal battery according to the terminal battery's operating parameters from the current operation to the current operating parameters.
  • the overall expansion parameter can reflect the overall expansion thickness of the terminal battery from the time it is put into use.
  • the terminal may obtain the overall expansion parameter of the terminal battery through a weighted calculation.
  • the terminal can obtain the overall expansion parameter of the terminal battery through Equation 1:
  • A is the overall expansion parameter of the terminal battery from being used to the current
  • T i is the i-th temperature interval
  • V j is the j-th voltage interval
  • t (T i , V j ) is the terminal's from being put into use.
  • a (T i , V j ) is the expansion coefficient when the temperature of the terminal battery is at T i and the voltage is at V j .
  • 1 ⁇ i ⁇ n, 1 ⁇ j ⁇ m, and i and j are positive integers.
  • n is the total number of divided temperature sections
  • m is the total number of divided voltage sections.
  • the expansion coefficient of the terminal battery may be stored in the terminal or acquired by the terminal through a network.
  • the battery's expansion coefficient is a property of the battery itself and will not change with changes in external factors. Different types of batteries may have different expansion coefficients. In a possible implementation manner, the battery's expansion coefficient can be obtained by a developer through experimental tests. Understandably, R & D personnel can obtain the expansion coefficients of different types of batteries.
  • the threshold corresponding to the overall expansion parameter of the terminal battery is not limited to the default setting of the terminal when it leaves the factory, and may also be set by the user.
  • the threshold corresponding to the overall expansion parameter of the terminal battery is the first critical value mentioned in the foregoing description of the embodiments of FIG. 3, FIG. 5, and FIG. 7 and Table 4, and reference may be made to the related description. That is, the first condition may be: when the overall expansion parameter of the terminal battery is higher than the first critical value.
  • the terminal obtains the recent expansion parameters of the terminal battery according to the recent operating parameters of the terminal battery.
  • the recent expansion parameter may reflect the recent expansion thickness of the terminal battery.
  • the terminal may obtain the recent expansion parameters of the terminal battery through a weighted calculation.
  • the terminal may obtain the recent expansion parameter of the terminal battery by using Equation 2:
  • Equation 2 B is the recent expansion parameter of the terminal battery, T i is the i-th temperature interval, V j is the j-th voltage interval, and t ′ (T i , V j ) is the terminal recent temperature at T i and the voltage at The duration of V j , a ′ (T i , V j ) is the expansion coefficient when the terminal battery temperature is at T i and the voltage is at V j .
  • 1 ⁇ i ⁇ n, 1 ⁇ j ⁇ m, and i and j are positive integers.
  • n is the total number of divided temperature sections
  • m is the total number of divided voltage sections.
  • the expansion coefficient of the terminal battery is the same as that in the first manner, and reference may be made to related descriptions.
  • the threshold corresponding to the recent expansion parameter of the terminal battery is not limited to the default setting of the terminal when it leaves the factory, and may also be set by the user.
  • the threshold corresponding to the recent expansion parameter of the terminal battery is the third critical value mentioned in the foregoing description of the embodiments of FIG. 3, FIG. 5, and FIG. 7 and Table 4, and reference may be made to the related description. That is, the first condition may be: when the recent expansion parameter of the terminal battery is higher than the third critical value.
  • the first condition may further include: the working time of the battery under high voltage and high temperature exceeds the first value, the continuous charging / discharging time of the battery exceeds the third value, etc .
  • the high pressure and high temperature can be set by default when the terminal leaves the factory, or can be set by the terminal or the user. For example, when the difference between the actual battery voltage and the maximum design voltage is less than 200mV, it can be considered that the battery is in a high voltage state.
  • the terminal battery is stopped from being charged when the battery voltage V1 is charged; if the working parameter of the terminal battery meets the first condition, it is stopped when the battery voltage V2 is charged Charge the terminal battery; V1> V2.
  • stopping charging the terminal battery when charging to the battery voltage V1 or V2 means that when the battery voltage is V1 or V2, the conductive particles inside the battery are no longer transferred from the positive electrode of the battery and embedded in the negative electrode, and the terminal battery no longer stores further energy .
  • the terminal may reduce the charging cut-off voltage from V1 to V2, so as to stop charging the terminal battery when charging to the battery voltage V2.
  • the terminal battery When the working parameters of the terminal battery meet the first condition, the terminal battery is stopped from being charged to the battery voltage V2, compared to the situation where the terminal battery is stopped from being charged to the battery voltage V1, which reduces the actual battery charging time. Able to reach the battery voltage. That is to say, stopping charging the terminal battery when charging to the battery voltage V2 can relatively reduce the time during which the battery is in a high voltage state, thereby reducing the rate of battery expansion and delaying the battery expansion.
  • V1 may be an initial charging cut-off voltage or a maximum design voltage.
  • the terminal stops charging the terminal battery when the terminal is charged to the battery voltage V2. Because the battery expansion parameter can reflect the expansion thickness of the battery, when the battery expands to a certain thickness, it can reduce the expansion rate of the battery and delay the expansion of the battery.
  • the difference between V2 and V1 is related to the operating parameters of the terminal battery.
  • the working parameters of the terminal battery can reflect the health status of the terminal battery.
  • the difference between V2 and V1 can be increased.
  • the value of V2 can be reduced. If the working parameters of the terminal battery meet the first condition, the terminal battery is stopped from being charged when the battery voltage V2 is charged. The smaller the value of V2, the shorter the operating time of the battery under high voltage, and the slower the expansion rate of the battery.
  • the terminal may obtain the expansion parameter of the terminal battery according to the working parameter of the terminal battery, and determine the value of V2 according to the expansion parameter of the terminal battery.
  • the expansion parameter of the terminal battery is larger, it means that the expansion thickness of the terminal battery is thicker, and the value of V2 is smaller.
  • the terminal may divide multiple expansion parameter intervals, and determine V2 according to the expansion interval where the expansion parameter of the terminal battery is located.
  • V2 may be the charging cut-off voltage in the limiting measures shown in Table 4 and FIG. 7.
  • Table 6 and FIG. 9 when the terminal obtains the recent expansion parameters of the terminal battery, V2 may be the charging cut-off voltage in the limiting measures shown in Table 6 and FIG. 9.
  • FIG. 15 is a schematic flowchart of another charging management method provided by the present application.
  • the charging management method is applied to a terminal, which is configured with a battery. Expand the description below:
  • V1 may be an initial charging cut-off voltage or a maximum design voltage.
  • the working parameters of the terminal battery include: the working time of the terminal battery at multiple temperatures, and / or the terminal battery at multiple battery voltages. Working hours.
  • the working parameters and the first condition of the terminal battery are the same as those in step S302 in the embodiment in FIG. 14, and reference may be made to related descriptions.
  • the prompt information displayed by the terminal may remind the user of the health status of the battery.
  • the health status of the terminal battery may include: battery temperature, battery voltage, overall expansion thickness of the battery, recent expansion thickness of the battery, or aging.
  • the prompt information may be displayed in the form of a pop-up window on the top of the touch screen of the terminal, may also be displayed in the notification bar of the terminal, and may also be displayed in the form of a score.
  • the user can take some measures to protect the battery.
  • the measures implemented by the user may include: reducing the battery charging time, avoiding charging the terminal battery while using the terminal, and avoiding excessive power consumption of the terminal.
  • the method may further include: the terminal receives a first user operation input by the user; in response to the first user operation, the terminal initiates a battery protection mode; wherein the terminal battery is performed in the battery protection mode When charging, stop charging the terminal battery when charging to the battery voltage V2, V1> V2.
  • V2 is the same as that in the embodiment of FIG. 14, and reference may be made to related descriptions.
  • the first user operation includes: a click operation on an opening option of the battery protection mode
  • the opening option of the battery protection mode may be displayed in a battery setting interface.
  • the option for enabling the battery protection mode may be 202 in the figure.
  • the battery setting interface may be displayed by the terminal in response to a user's click operation on the battery option 401 in the drawing on the left of FIG. 2, or may be responded by the terminal to a pop-up window at the top of the screen in FIG. 3A 301 is displayed by a click operation, and may also be displayed by the terminal in response to a user's click operation on the prompt information 302 in the notification bar in FIG. 3C, which is not limited in this application.
  • the method may further include: if the working parameter of the terminal battery meets the second condition, the terminal prompts the user to replace the terminal battery.
  • the second condition may include that an expansion parameter of the terminal battery is higher than a second critical value.
  • the expansion parameter here is the overall expansion parameter of the terminal battery.
  • the second critical value may be the second critical value mentioned in the foregoing descriptions of the embodiments of FIG. 6 and FIG. 9 and Table 6, and reference may be made to the related description.
  • the terminal may prompt the user to replace the battery in the form of a floating window.
  • the terminal may also prompt the user to replace the battery by means of prompt sound, vibration, indicator light flashing, pop-up window at the top of the screen, or displaying a prompt message in the notification bar, which is not limited in this application.
  • the terminal prompts the user to replace the battery, which can prevent the user from continuously using the battery at a later stage of the life cycle, thereby preventing the battery from leaking or exploding.
  • the terminal displays a prompt message to prompt the user of the current health status of the battery. After prompting the user with the prompt message, the user can take certain measures to protect the battery and ensure the health of the battery.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk).

Abstract

一种充电管理方法、图形用户界面及相关装置,该方法可包括:根据终端电池的工作参数预估电池的膨胀厚度,如果终端电池的膨胀厚度超过阈值,则,降低电池的充电截止电压。所述方法可以降低电池的膨胀速率,延长电池寿命。

Description

充电管理方法、图形用户界面及相关装置 技术领域
本申请涉及电池技术领域,尤其涉及充电管理方法、图形用户界面及相关装置。
背景技术
电池是一种能够将化学能转化为电能的装置,广泛应用于便携式电子设备(例如手机、平板电脑)、电动汽车的动力领域以及航空航天、船舶潜艇等电力领域。
电池在投入使用后,经历充放电的高温冲击后,电极片厚度变厚,电解液氧化反应分解产生二氧化碳(CO 2)气体,因此,电池会逐渐膨胀,即表面厚度增加。电池的膨胀过程几乎是不可逆的。在一些情况下(例如高温、高压等条件下),电池正极会持续发生氧化反应产生二氧化碳气体,会加速电池的膨胀。
电池的膨胀不仅会降低电池本身的寿命,而且膨胀到一定程度后会损坏配置该电池的设备。参见图1示出的配置有锂离子电池的手机,膨胀后的电池将手机屏幕顶开,整个手机都会变形,无法使用。此外,电池的鼓胀还会造成电池漏液、起火燃烧等危险。因此,如何延缓电池的膨胀,延长电池的使用寿命,是当前亟需解决的问题。
发明内容
本申请提供了充电管理方法、图形用户界面及相关装置,可以降低电池的膨胀速率,延长电池寿命。
第一方面,本申请提供了一种充电管理方法,应用于终端,该终端配置有终端电池。该方法可包括:对终端电池进行充电;如果终端电池的工作参数不满足第一条件,则,充电至电池电压V1时停止对终端电池进行充电;如果终端电池的工作参数满足第一条件,则,充电至电池电压V2时停止对终端电池进行充电;V1>V2;其中,终端电池的工作参数包括:终端电池在多个温度下的工作时长,和/或,终端电池在多个电池电压下的工作时长。
实施第一方面的方法,如果终端电池的工作参数满足第一条件,则,充电至电池电压V2时停止对终端电池进行充电,可相对减少电池处于高压状态的时长,从而降低电池的膨胀速率,延缓电池膨胀。
在第一方面的充电管理方法中,终端可获取电池的工作参数。可选的,终端可从终端电池投入使用开始获取电池的工作参数。终端电池的工作参数可以反映终端电池的健康状况。这里,终端电池的健康状况可包括:电池温度、电池电压、电池的整体膨胀厚度、电池的近期膨胀厚度或老化等情况。
在一些实施例中,电池的工作参数可以为终端电池从投入使用到目前的工作参数,也可以为终端电池最近一段时间的工作参数。可选的,电池的工作参数可以以表格的方式记录。
这里,工作参数中的工作时长可以是指电池出厂后的时间,也可以指电池被配置到终端上之后的时间,还可以是指电池充电和/或放电的时间,本申请不做限制。
在一些实施例中,第一条件可包括:终端电池的膨胀参数高于阈值。这里,膨胀参数可 反映电池的膨胀厚度。具体的,终端可根据终端电池的工作参数获取终端电池的膨胀参数。下面提供两种可能的终端根据终端电池的工作参数获取终端电池的膨胀参数的方式:
第一种方式,终端根据终端电池从投入使用到目前的工作参数,获取终端电池的整体膨胀参数。该整体膨胀参数可反映终端电池从投入使用到目前的整体膨胀厚度。
可选的,终端可通过加权计算的方式获取终端电池的整体膨胀参数。
示例性地,终端可通过公式1获取终端电池的整体膨胀参数:
Figure PCTCN2019105986-appb-000001
在公式1中,A为终端电池从投入使用到当前的整体膨胀参数,T i为第i个温度区间,V j为第j个电压区间,t(T i,V j)为终端从投入使用到当前电池的温度处于T i且电压处于V j的时长,a(T i,V j)为终端电池的温度处于T i且电压处于V j时的膨胀系数。其中,1≤i≤n,1≤j≤m,i、j为正整数。n为划分的温度区间的总个数,m为划分的电压区间的总个数。
在上述第一种方式中,终端电池的整体膨胀参数对应的阈值不限于终端出厂时的默认设置,还可以是用户自主设置的。例如,第一条件可以是:当终端电池的整体膨胀参数高于第一临界值。
第二种方式,终端根据终端电池近期的工作参数,获取终端电池的近期膨胀参数。该近期膨胀参数可反映终端电池的近期膨胀厚度。
可选的,终端可通过加权计算的方式获取终端电池的近期膨胀参数。
示例性地,终端可通过公式2获取终端电池的近期膨胀参数:
Figure PCTCN2019105986-appb-000002
在公式2中,B为终端电池近期膨胀参数,T i为第i个温度区间,V j为第j个电压区间,t′(T i,V j)为终端近期温度处于T i且电压处于V j的时长,a′(T i,V j)为终端电池温度处于T i且电压处于V j时的膨胀系数。其中,1≤i≤n,1≤j≤m,i、j为正整数。n为划分的温度区间的总个数,m为划分的电压区间的总个数。
在上述第二种方式中,终端电池的近期膨胀参数对应的阈值不限于终端出厂时的默认设置,还可以是用户自主设置的。例如,第一条件可以是:当终端电池的近期膨胀参数高于第三临界值。
在上述两种根据终端电池的工作参数获取终端电池的膨胀参数方式中,终端电池的膨胀系数可以存储在终端中,也可以由终端通过网络获取。在一种可能的实施方式中,电池的膨胀系数可由研发人员通过实验测试获取。可理解的,研发人员可分别获取不同型号电池的膨胀系数。在一些实施例中,第一条件还可包括:电池在高压且高温下的工作时长超过第一值、电池连续充电/放电时长超过第三值等。其中,高压、高温可以在终端出厂时默认设置,也可以由终端或用户自主设置。
在可选实施方式中,V1可以为初始充电截止电压或者最大设计电压。
在一种可能的实现方式中,如果终端电池的工作参数满足第一条件,终端可将充电截止电压由V1降低为V2,从而实现充电至电池电压V2时停止对终端电池进行充电。
在一种可能的实施方式中,终端可根据终端电池的工作参数获取终端电池的膨胀参数,并根据终端电池的膨胀参数确定V2的值。当终端电池的膨胀参数越大时,表示终端电池的膨胀厚度越厚,V2的值越小。可选的,终端可划分多个膨胀参数区间,并根据终端电池的膨胀参数所在的膨胀区间确定V2。
第二方面,本申请提供了另一种充电管理方法,应用于终端,该终端配置有终端电池。该方法可包括:对终端电池进行充电,充电至电池电压V1时停止对终端电池进行充电;如果终端电池的工作参数满足第一条件,终端显示提示信息;其中,终端电池的工作参数包括:终端电池在多个温度下的工作时长,和/或,终端电池在多个电池电压下的工作时长。
实施第二方面的方法,如果终端电池的工作参数满足第一条件,终端显示提示信息,可提示用户电池当前的健康状况。通过提示信息提示用户之后,用户可以采取一定的措施来保护电池,可保证电池健康。
在第二方面的方法中,终端电池的工作参数以及第一条件和上述第一方面中相同,可参照相关描述。
具体的,终端电池的工作参数满足第一条件时,终端显示的提示信息可以提示用户电池的健康状况。这里,终端电池的健康状况可包括:电池温度、电池电压、电池的整体膨胀厚度、电池的近期膨胀厚度或老化等情况。
示例性地,提示信息可以在终端的触摸屏顶部以弹窗的形式显示,还可以在终端的通知栏中显示,还可以通过分数的形式显示。
在一些实施例中,第二方面的方法还可包括:终端接收用户输入的第一用户操作;响应第一用户操作,终端启动电池保护模式;其中,在电池保护模式下对终端电池进行充电时,充电至电池电压V2时停止对终端电池进行充电,V1>V2。
这里,V2的值和第一方面中相同,可参照相关描述。
在一种可能的实施方式中,第一用户操作包括:作用于电池保护模式的开启选项的点击操作,电池保护模式的开启选项可以显示在电池设置界面中。
在一些实施例中,第一方面的方法还可包括:如果终端电池的工作参数满足第二条件,终端提示用户更换终端电池。
在一种可能的实施方式中,第二条件可包括:终端电池的膨胀参数高于第二临界值。这里的膨胀参数为终端电池的整体膨胀参数,该膨胀参数的定义以及获取方式可第一方面的第一种方式的相关描述。
示例性地,终端可以悬浮窗的形式提示用户更换电池,还可通过提示音、振动、指示灯闪烁、屏幕顶部的弹窗或者在通知栏中显示提示信息等方式,提示用户更换电池,本申请不做限制。
第三方面,本申请提供了一种终端上的图形用户界面,所述终端具有显示屏、存储器和用以执行存储于所述存储器中的一个或一个以上程序的一个或一个以上的处理器,其中:
如果所述终端电池的工作参数满足第一条件,所述图形用户界面显示提示信息;其中,所述终端电池的工作参数包括:所述终端电池在多个温度下的工作时长,和/或,所述终端电池在多个电池电压下的工作时长。
这里,终端电池的工作参数以及第一条件和第一方面中相同,可参照相关描述。
在一些实施例中,提示信息在所述终端的触摸屏顶部以弹窗的形式显示。
第四方面,本申请提供了一种终端,包括:一个或多个处理器、一个或多个存储器;所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,所述终端执行如第一方面提供的充电管理方法。
第五方面,本申请提供了一种终端,包括:一个或多个处理器、一个或多个存储器;所 述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,所述终端执行如第二方面提供的充电管理方法。
第六方面,本申请提供了一种计算机存储介质,包括计算机指令,当所述计算机指令在终端上运行时,使得所述终端执行如第一方面提供的充电管理方法。
第七方面,本申请提供了一种计算机存储介质,包括计算机指令,当所述计算机指令在终端上运行时,使得所述终端执行如第二方面提供的充电管理方法。
实施本申请,可以降低电池的膨胀速率,延长电池寿命。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是电池膨胀示意图;
图2-图6为本申请提供的人机交互示意图;
图7为本申请提供的根据终端电池的整体膨胀参数执行限制措施的流程示意图;
图8为本申请提供的充电示意图;
图9为本申请提供的根据终端电池的近期膨胀参数执行限制措施的流程示意图;
图10为本申请提供的终端的结构示意图;
图11为本申请提供的终端的软件结构框图;
图12为终端内部的硬件驱动交互的流程示意图;
图13为本申请提供的充电管理装置的结构示意图;
图14为本申请提供的一种充电管理方法的流程示意图;
图15为本申请提供的另一种充电管理方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请中,电池可广泛应用于便携式电子设备(例如手机、平板电脑)、电动汽车的动力领域以及航空航天、船舶潜艇等电力领域。本申请中,电池类型可包括:锂离子电池(Lithium-ion battery)、镍氢电池(Ni-MH battery)、锂聚合物电池(Li-polymer battery)、铅酸电池(Lead-Sealed battery)等。以下实施例将以配置有电池的终端为例,对本申请提供的充电管理方法进行说明。
为了便于理解本申请,首先介绍本申请的一些人机交互实施例。
在本申请的一些实施例中,终端可以设置有电池保护模式,用户可以根据需要开启该电 池保护模式。终端开启电池保护模式之后,可降低电池的膨胀速率,延长电池的使用寿命。
示例性地,图2示出了一种可能的用户开启电池保护模式的方法。如图2左侧附图所示,终端的屏幕显示系统当前输出的界面内容,该界面内容包括设置界面。在一些实施例中,终端输出的界面内容由终端响应于输入的用户操作输出,该用户操作可以包括用户对终端显示的桌面中的设置图标的点击操作。如图2左侧附图所示,该设置界面可包括多个设置选项(例如飞行模式、Wi-Fi、蓝牙、个人热点、移动网络、电池等),用户可点击任意一个设置选项进行相应的设置(例如开启飞行模式、开启蓝牙等)。
在一些实施例中,不限于设置界面,系统输出的界面内容还可以包括系统界别的界面元素,例如状态栏、导航栏等。其中,状态栏中可以包括运营商的名称(例如中国移动)、时间、Wi-Fi图标、信号强度、当前的剩余电量、蓝牙图标、闹钟图标等。导航栏中可以包括后退键图标、主屏幕键图标和菜单键图标等。
如图2右侧附图所示,响应于用户对设置界面中的选项电池201的点击操作,终端的屏幕显示电池的设置界面。如图2右侧附图所示,电池设置界面可包括:电池保护模式的开启/关闭开关202,以及,关于电池保护模式的说明。在图2右侧附图中,电池保护模式处于关闭状态,用户可点击开启/关闭开关202,开启电池保护模式。其中,电池保护模式的说明可以向用户简单介绍电池保护模式的功能。例如,如图2右侧附图所示,电池保护模式的说明可以为:电池保护模式将延长电池的使用寿命,但降低电池的续航时间或延长电池的充满电所需时间。又例如,电池保护模式的说明还可以为:电池保护模式会将电池的实际使用容量降低为实际可用容量的80%。这里,电池的容量是指电池存储电量的大小。在一些可能的实施方式中,电池保护模式的说明还可以包括更加丰富的信息,例如终端开启电池保护模式后采取的具体措施等。
在用户开启电池保护模式之后,终端将采取一定的措施降低电池的膨胀速率,延长电池的使用寿命。这里,终端采取的措施可以是以下任意一种:
(1)依据终端电池的整体膨胀参数采取对应的限制措施。
这里,电池的整体膨胀参数可反映电池的整体膨胀厚度。具体的,电池的整体膨胀厚度是指,电池从投入使用到当前增加的厚度。这里,电池的厚度为电池前后表面之间的最大距离。
这里,电池一投入使用,终端即开始持续记录电池的整体使用情况。这里,投入使用可包括以下任意一种情况:电池出厂、电池首次供电或电池首次充电等。在一些实施例中,终端可根据电池的整体使用情况获取电池的整体膨胀参数。在一些实施例中,电池的整体使用情况包括电池从投入使用到目前,在多个温度和/或多个电池电压下的工作时长。在一些实施例中,终端可通过加权计算的方式获取电池的整体膨胀参数。。
在一些实施例中,终端依据电池的整体膨胀参数采取的限制措施可包括:降低电池的充电截止电压,和/或,降低电池的最大充电电流。这里,电池的充电截止电压是电池充电时电池电压所能达到的实际最大值。
(2)依据终端电池的近期膨胀参数采取对应的限制措施。
这里,电池的近期膨胀参数可反映电池的近期膨胀厚度。具体的,电池的近期膨胀厚度是指,电池最近一段时间增加的厚度。
这里,终端可以在电池一开始投入使用即持续记录电池的近期使用情况,也可以在开启电池保护模式之后开始记录电池的近期使用情况。在一些实施例中,终端可根据电池的近期 使用情况获取电池的近期膨胀参数。在一些实施例中,电池的近期使用情况包括电池近期处于各个温度区间和/或各个电压区间的时长。进一步地,终端可根据电池近期处于各个温度区间和/或各个电压区间的时长,计算得到电池的近期膨胀参数。
在一些实施例中,终端依据电池的近期膨胀参数采取的限制措施可包括:降低电池的充电截止电压,和/或,降低电池的最大充电电流。
(3)直接采取任意类型的限制措施,即直接降低电池的充电截止电压和/或最大充电电流。可理解的,用户可以在使用终端的任意阶段通过图2所示的设置界面开启电池保护模式。例如,用户可在一开始使用终端时即开启电池保护模式,也可以在使用终端一段时间后开启电池保护模式,本申请不做限制。
在一些实施例中,终端显示屏可显示电池电量,用于提示用户当前电池剩余电量。终端显示的电量和电池电压相对应。在终端的充电截止电压为初始充电截止电压时,终端显示屏显示的电池电量以初始充电截止电压为标准,和电池电压相对应。示例性地,参见表5中的第2列第2行,终端电池充电时达到初始充电截止电压,即无法继续充电时,电池电量显示为100%。
在开启电池保护模式后,若终端采取的限制措施为降低充电截止电压,可通过以下两种方式显示电池电量。在一种可能的实施方式中,在降低充电截止电压之后,终端显示的电池电量可以初始充电截止电压为标准,和实际电池电压相对应。示例性地,参见表5中的第3列第3行,终端电池充电时,达到降低后的充电截止电压(即实际的充电截止电压)4.2V时,电池电量显示为100%。通过这种方式,可以使用户对充电截止电压的降低无感知,提高用户体验。在另一种可能的实施方式中,在降低充电截止电压之后,终端显示的电池电量可以降低后的充电截止电压为标准,和实际电池电压相对应。示例性地,参见表5中的第2列第3行,终端电池充电时,达到降低后的充电截止电压(即实际的充电截止电压)4.2V时,电池电量显示为95%。
电池电压 充电截止电压=4.4V 充电截止电压=4.2V 充电截止电压=4.2V
4.4V 100%    
4.2V 95% 95% 100%
4.0V 90% 90% 95%
3.8V 86% 86% 90%
表1终端显示的电池电量
进一步地,在一些可选实施例中,用户按照图2所示的方法开启电池保护模式之后,还可以根据需要关闭电池保护模式。具体的,用户可点击处于开启状态的开关202,关闭电池保护模式。关闭电池保护模式之后,终端可以继续执行已采取的限制措施,也可以退出或取消已采取的限制措施,这里不做限制。
在本申请的一些实施例中,终端可以提示用户电池当前的健康状况。这里,电池的健康状况可包括以下任意一项:电池温度、电池电压、电池的整体膨胀厚度、电池的近期膨胀厚度或老化等情况。
下面介绍可能的终端提示用户电池当前的健康状况的场景。
(1)在电池的整体/近期膨胀参数达到阈值时,提示用户电池当前的健康状况。
具体的,终端持续监控电池的整体/近期使用情况。在一些实施例中,终端可根据电池的整体/近期使用情况获取电池的整体/近期膨胀参数。这里,终端持续监控电池的整体/近期使用情况是指,在终端电池开始投入使用时,终端即开始监控电池的整体/近期使用情况。
在一些实施例中,电池的整体使用情况包括电池从投入使用到目前,处于各个温度区间和/或各个电压区间的时长。在一些实施例中,终端可通过加权计算的方式获取电池的整体膨胀参数。
在一些实施例中,电池的近期使用情况包括电池近期处于各个温度区间和/或各个电压区间的时长。在一些实施例中,终端可通过加权计算的方式获取电池的近期膨胀参数。
其中,阈值不限于终端出厂时的默认设置,还可以是用户自主设置的。在一种可能的实施方式中,当终端持续监控电池的整体使用情况时,对应的阈值可以为第一临界值。在另一种可能的实施方式中,当终端持续监控电池的近期使用情况时,对应的阈值可以为第三临界值。
(2)定时提示用户电池当前的健康状况。
具体的,终端可定时提示用户电池当前的健康状况。例如,终端可每天晚上9点或每周一上午9点提示用户。
不限于上述两种场景,终端还可在其他场景下提示用户电池当前的健康状况。例如,当电池处于高电压且高温状态的时长高于第一值时,或者,电池老化情况严重时,提示用户。
本申请中,终端提示用户电池当前的健康状况的方式有多种,下面详细描述。
在一些实施例中,终端可以通过弹窗提示用户电池当前的健康状况。示例性地,参见图3的3a,在终端屏幕解除锁定时,可在屏幕顶部显示弹窗301,该弹窗301悬浮显示在终端系统当前输出的界面内容(如图3的3a所示的桌面)之上。在终端屏幕锁定时,终端可在屏幕中间区域显示弹窗。这里,不限于3a中弹窗301包括的内容,具体实现中,终端显示的弹窗还可包括更加详细的信息,例如电池温度过高、电池电压过高、电池的老化情况等。
这里,终端在屏幕顶部显示的弹窗301可以接收输入的用户操作。下面详细介绍弹窗301可能接收的用户操作。
在一种可能的实施方式中,弹窗301接收的用户操作可以为用户手指从弹窗301向屏幕上方的滑动手势,响应于该滑动手势,终端屏幕的顶端不再显示该弹窗301。
可选的,终端屏幕的顶端不再显示该弹窗301后,该弹窗301内的提示信息可以在通知栏中显示,当用户调出通知栏时,可以看到该提示信息。
这里,用户可以在终端屏幕输出的任意界面内容上,通过从屏幕顶端向下滑动的手势调出通知栏,也可以通过导航键调出通知栏,本申请不做限制。示例性地,参见图3的3c,其示出了一种可能的通知栏的样式。如3c所示,通知栏中包括用于提示用户电池当前的健康状况的提示信息302,还可包括日期、天气、地点、设置图标、各个设置选项(例如WiFi、蓝牙、个人热点等)的快捷启动/关闭图标、屏幕亮度条以及其他提示信息(例如微信消息)等。在一些实施例中,通知栏中显示的提示信息302可以接收输入的用户操作(例如点击操作),响应于该用户操作,终端可显示电池的健康状况详情,也可以显示如图2右侧附图所示的电池设置界面。
在另一种可能的实施方式中,弹窗301接收的该用户操作还可以为点击操作。响应于该点击操作,终端屏幕可显示电池的健康状况详情,也可以显示如图2右侧附图所示的电池设置界面。
示例性地,参见图3的3b,其示出了一种可能的电池的健康状况详情。具体的,终端可以将电池的整体/近期膨胀厚度量化为分数,通过分数可以使用户直观地了解电池的健康状况。其中,当电池的整体/近期膨胀厚度越高时,即电池的整体/近期膨胀参数越高时,电池的得分越低。因此,上述第(1)种场景也可以看作是,当电池得分低于第二值时,提示用户电池当前的健康状况。在图3的3b中,电池的健康状况打分采用百分制,电池当前的得分为73分。
在一些实施例中,电池的健康状况详情中还可包括电池的“得分详情”和“可选保护措施”两个选项。用户可点击“得分详情”查看一段时间内电池的得分趋势,可点击“可选保护措施”查看可延长电池寿命的措施。示例性地,参见图4左侧附图,其示出了一种可能的电池近期得分趋势。示例性地,参见图4右侧附图,其示出了一些可能的延长电池寿命的措施,该措施包括:开启电池保护模式、避免高温环境、避免手机充满电后长期连接电源(即避免浮充)、避免边充电边使用手机等。
在一些实施例中,在图3的3a中,终端在屏幕顶部显示的弹窗301的默认显示时长可以预先设置(例如设置为第一时长)。若该弹窗301在第一时长内没有接收到输入的用户操作,则终端屏幕的顶端不再显示该弹窗301。可选的,终端屏幕的顶端不再显示该弹窗301后,该弹窗301内的提示信息可以在通知栏中显示,当用户调出通知栏时,可以看到该提示信息。这里,通知栏的样式可参照图3中的3c以及相关描述。
通过图3及图4实施例所示的方法,终端可以提示用户电池当前的健康状况。
可理解的,不限于图3中3a所示的通过屏幕顶部的弹窗301提示用户电池当前的健康状况的方式,本申请还可通过其他方式提示用户。例如,在一些可能的实施例中,终端还可在屏幕中部显示弹窗,该弹窗可包括提示用户电池当前的健康状况的信息。进一步地,该显示在屏幕中部的弹窗还可包括开启/关闭电池保护模式的开关,用户可直接通过弹窗中的开关开启电池保护模式。不限于屏幕上的提示信息,终端还可通过信号灯闪烁、提示音等方式,提示用户电池当前的健康状况,本申请不做限制。
在一些实施例中,用户通过终端的提示获知电池当前的健康状况之后,还可根据需求开启电池保护模式。具体的,用户可在如图2右侧附图的电池设置界面中开启电池保护模式。这里,该电池设置界面可以由终端响应于用户对图2的左侧附图中的电池选项401的点击操作而显示,也可以由终端响应于用户对图3的3a中的屏幕顶部的弹窗301的点击操作而显示,还可以由终端响应于用户对图3的3c中通知栏中的提示信息302的点击操作而显示。
在用户开启电池保护模式后,终端将采取一定的措施降低电池的膨胀速率,延长电池的使用寿命。这里,终端采取的措施可以是以下任意一种:
(a)依据终端电池的整体膨胀参数采取限制措施。
这里,电池一投入使用,终端即开始持续记录电池的整体使用情况。在一些实施例中,终端可根据电池的整体使用情况获取电池的整体膨胀参数。这里,终端记录的电池的整体使用情况、终端如何获取电池的整体膨胀参数,以及终端采取的限制措施和上述图2实施例中相同,可参照相关描述。
(b)依据终端电池的近期膨胀参数采取限制措施。
这里,电池的近期膨胀参数由终端在电池开始投入使用时即开始监控。这里,电池一投入使用,终端即开始持续记录电池的近期使用情况。在一些实施例中,终端可根据电池的近期使用情况获取电池的近期膨胀参数。这里,终端记录的电池的近期使用情况、终端如何获取电池的近期膨胀参数,以及终端采取的限制措施和上述图2实施例中相同,可参照相关描 述。
由于终端电池的近期膨胀参数和电池在当前使用阶段的具体情况相关,在电池的使用过程中,电池的近期膨胀参数可能会多次达到阈值。因此,在上述第(1)种场景下,终端可在每次电池的近期膨胀参数达到阈值时,提示用户电池当前的健康状况。
在本申请的一些实施例中,终端可以持续监控电池的整体/近期使用情况,获取电池的整体/近期膨胀参数,并在电池的整体/近期膨胀参数达到阈值时,直接为终端开启电池保护模式。这里,阈值和上述第(1)种场景中提及的阈值相同,可参照相关描述。
也就是说,在电池的整体/近期膨胀参数达到阈值时,终端将直接采取一定的措施降低电池的膨胀速率,延长电池的使用寿命。这里,终端可以依据终端电池的整体膨胀参数采取限制措施,也可以依据终端电池的近期膨胀参数采取限制措施。
进一步地,终端为终端开启电池保护模式之后,可以提示用户已开启电池保护模式。示例性地,参见图5,终端可以在系统当前输出的界面内容上以悬浮窗501的形式提示用户已为其开启电池保护模式。在一些实施例中,该悬浮窗501还可包括“查看详情”选项和“取消”选项,用户可点击“查看详情”选项进入如图2的右侧附图(开关202开启),查看电池保护模式的简单介绍,以了解电池保护模式。在一些实施例中,用户还可点击“取消”选项关闭悬浮窗501。这里,不限于图5所示的悬浮窗501,终端还可通过屏幕顶部的弹窗或者在通知栏中显示提示信息的方式、信号灯闪烁、提示音等方式,提示用户已开启电池保护模式。
由于电池的膨胀过程几乎是不可逆的,因此,一段时间后,电池仍然会处于生命周期的较晚阶段。电池生命周期的较晚阶段是指,电池即电池剩余可用时长较短。这里,电池可用是指电池可以将化学能转换为电能,当电池不能将化学能转换为电能时,该电池不可用。在本申请的一些实施例中,在电池处于生命周期的较晚阶段时,终端可以提示用户更换电池。
在可选实施例中,当电池的整体膨胀参数大于第二临界值时,终端可判断电池处于生命周期的较晚阶段。这里,第二临界值可以是研发人员根据实验预先设定的。不同型号的电池对应的第二临界值可以相同,也可以不同。
示例性地,参见图6左侧附图,其示出了一种可能的终端提示用户更换电池的方式。如图6左侧附图所示,终端可以在系统当前输出的界面内容上以悬浮窗601的形式提示用户更换电池。在图6左侧附图所示的悬浮窗601中,电池寿命指电池剩余可用时长,电池寿命将尽是指电池的剩余可用时长较短。
在一些实施例中,该悬浮窗601还可包括“查看详情”选项和“取消”选项。用户可点击“取消”选项关闭悬浮窗601。在一些实施例中,用户还可点击“查看详情”选项,响应于该点击操作,终端显示如图6右侧附图所示的界面。这里,不限于图6左侧附图中的悬浮窗601,终端还可通过屏幕顶部的弹窗或者在通知栏中显示提示信息的方式,提示用户更换电池。
参见图6右侧附图,图中的显示界面反映了电池处于生命周期的较晚阶段时的健康状况。在一些可能的实施方式中,该界面还可包括以下一项或多项:电池的预计剩余可用时长、终端售后点地址、电池购买渠道等。其中,电池的预计剩余可用时长可由终端根据电池的整体膨胀参数估算电池的整体膨胀厚度之后,估算得到。
在一些实施例中,终端显示售后点地址时,还可包括“导航”选项。当该“导航”选项 接收到用户的点击操作时,终端屏幕可开启导航应用(例如Google地图、高德地图等),并在导航应用中显示当前位置到售后点地址的导航路线。
在一些实施例中,电池购买渠道可包括终端已安装的电商应用的图标(例如淘宝、京东、eBay等)。当某个图标接收到用户的点击操作时,终端可开启该图标对应的电商应用,用户可在该电商应用中搜索并购买电池。
不限于图6右侧附图所示的界面元素,具体实现中,终端用于提示用户电池晚期时的健康状况的界面还可以包括更多的信息,例如该终端配置的电池的具体型号等。
上述图2-图6实施例详细描述了本申请的人机交互实施例,为了更好地理解本申请提供的充电管理方法,下面简单介绍造成电池膨胀的原因。
电池膨胀的影响因子主要可包括:电池电压、电池温度、电池处于某个电压和某个温度时的时长、电池的充电电流等。下面首先介绍各个影响因子对电池膨胀的影响。
其中,温度越高,电池内部由于氧化反应产生二氧化碳气体的速度越快,即电池膨胀速率越快。电池的高温状态主要可由以下情况造成:终端当前所处的环境温度过高,或者,终端的功耗过高,或者,终端正在充电。电池的高温状态一般不能由终端自动进行调节。
其中,电池电压是指正极的电极电势与负极的电极电势之差,和当前电池正负极之间导电粒子迁移量相关。以锂离子电池举例说明,锂离子电池的电压和活性锂离子(即能够在电池正负极之间移动的锂离子)的数量相关。具体的,锂离子电池在充电时,活性锂离子由电池正极转移并嵌入到负极,嵌入负极的锂离子越多,充电容量越高,电池正负极之间的电压逐渐升高,充电结束后,电池正负极之间的电压即为满充的电池电压。也就是说,电池电压反映了电池实际存储的电量的大小,这里,电池存储的电量的单位可以为毫安/时(mA/h)。
电池处于高压状态时,电池内部电解液分解产生二氧化碳气体的速度加快,即电池膨胀速率加快。这里,电池处于高压状态是指:电池电压接近或等于电池规格书中的最大设计电压。即,当电池的实际电压接近或等于最大设计电压时,可看作该电池处于高压状态。这里,最大设计电压是由电池本身的制造工艺与材料决定的,电池充电时理论能达到的最大安全电压为该充电限制电压。因此,不同型号的电池,可以有不同的最大设计电压。因此,每个电池的高压状态可能不同。举例说明,电池1的最大设计电压为4.4V,电池2的最大设计电压为4.2V,那么,对于电池1来说,当电池电压接近4.4V时处于高压状态,对于电池2来说,当电池电压接近4.2V时处于高压状态。
为了保护电池,设备的充电架构对电池有充电截止电压限制。一般情况下,充电截止电压小于或等于电池的最大设计电压。电池充电时,在电池电压达到充电截止电压,未达到最大设计电压之时,设备的充电电路开始逐渐降低充电电流,即缓慢结束充电。也就是说,充电截止电压为电池充电时电池电压所能达到的实际最大值。
电池长期处于高压状态下,会加速电池膨胀速率。电池长时间处于高压可包括以下情况:终端处于浮充状态。这里,浮充是指终端充电器长时间在位,即终端长时间通过充电器连接电源。浮充时,终端的电池电压总是保持接近或等于充电截止电压。由于充电截止电压接近或等于电池的最大设计电压,因此,浮充时电池会长期处于高压状态。
其中,充电电流越大,设备和电池的温升越大,即促进电池膨胀速率。电池充电时,实际的充电电流略小于最大充电电流。因此,限制电池的最大充电电流,也能够降低电池的膨胀速率。
电池本身是一个复杂的电化学体系,其健康状态与制造工艺、内部活性物质、电极材料、运行环境等因素都息息相关。目前使用的电池大多是密封结构,无法得知内部的情况,只能采集到表面数据,如单体电压、组电流、均衡电流、单体温度、环境温度等数据,一般只能通过上述数据来预估电池情况、判断电池健康状态。
本申请中,主要通过通过电池的工作参数估算电池的膨胀厚度,进而对电池进行充电管控。通过降低电池的充电截止电压和/或降低电池充电时的最大充电电流,来降低电池的膨胀速率。其中,通过降低电池的充电截止电压,可以降低电池电压充电时能达到的实际最大值,相对减少电池处于高压状态的时长,以此延缓电池膨胀。
下面描述两种可能的降低电池膨胀速率的方法:
(一)依据电池的整体膨胀参数,来降低电池的膨胀速率。
电池的整体膨胀参数可反映电池的整体膨胀厚度。具体的,电池的整体膨胀厚度是指,电池从投入使用到当前增加的厚度。这里,电池的厚度为电池前后表面之间的最大距离。这里,投入使用可包括以下任意一种情况:电池出厂、电池首次供电或电池首次充电等。
下面详细描述终端获取电池整体膨胀参数的方法。
在第(一)种方法中,终端可持续记录电池从投入使用到当前的实际使用情况,该使用情况包括电池处于各个温度以及各个电压区间的时长。
参见表2,表2示出了电池型号为“ATL GC-SDC-356585-010L 1S1P 3.82V 3240mAh Li-ion”的终端记录的电池某一天的使用情况。其中,ATL为电池电芯的制造商,GC-SDC-356585-010L为电芯型号,3.82V为电池的额定电压(nominal voltage)(也可称为标称电压),3240mAh为电池的额定容量(nominal capacity)(也可称为标称容量),Li-ion表示该电池为锂离子电池,通过锂离子在正负极之间移动工作。这里,电池充电时,电池电压可以在额定电压上下浮动。例如,当额定电压为3.82V时,充电时的电池电压可以在3.2~4.4V的范围内。
Figure PCTCN2019105986-appb-000003
表2终端电池一天的使用时长统计表
表2记录了用户日常使用终端时,电池一天的使用情况。可选的,在表2中,温度(T)的单位为摄氏度,电压(V)的单位为伏特,时长的单位为秒(s)。举例说明,参见表2的第2行第2列,终端在一天之中,电池电压小于4.2伏特,且电池温度低于35摄氏度的时长共有40395s。
这里,终端可持续记录电池的使用情况。例如,终端可持续一周、一个月或一年记录电池的使用情况,将新获取的数据和表2中原有的数据进行累计,得到电池一周、一个月或一年的使用情况。通过这样持续记录的方式,若终端从电池投入使用时即开始记录电池的使用情况,则可获取电池从投入使用到当前的整体使用情况。
表2仅为示例,具体实现中,终端记录电池使用情况时,可以划分更多数量的电压区间 及温度区间,并且各个电压区间以及温度区间的临界值可以和表2中不同。不限于表2示出的表格形式,具体实现中,终端还可通过其他形式记录电池的使用情况,例如文本、图形等,本申请不做限制。
可理解的,终端电池的使用情况记录电池的实际使用状态,不同的终端、不同的用户对应的电池使用情况可以不同。
本申请中,终端可存储所使用电池的膨胀系数,也可通过网络获取所使用电池的膨胀系数。该膨胀系数反映了电池的膨胀速率。参见表3,表3是型号为“ATL GC-SDC-356585-010L1S1P 3.82V 3240mAh Li-ion”的电池一种测量得到的的膨胀系数表。
Figure PCTCN2019105986-appb-000004
表3终端电池的膨胀系数表
可选的,在表3中,温度(T)的单位为摄氏度,电压(V)的单位为伏特,定义的膨胀系数的单位可以为1/天。膨胀系数可以表示电池在对应某温度区间及电压区间下,电池膨胀了第一厚度所需天数的倒数。膨胀系数越大,电池在对应某温度区间及电压区间下的膨胀速率越快。举例说明,第一厚度为电池原厚度的6%,则表3中的膨胀系数表示电池在对应某温度区间以及电压区间下,电池厚度增加了原厚度的6%所需天数的倒数。例如,参见表3的第3行第6列,终端的电池电压处于4.35伏特≤V﹤4.4伏特,且电池温度处于35摄氏度≤T﹤38摄氏度时,该电池的厚度增加原厚度的6%,需要的天数为47.6天,则对应的膨胀系数定为0.021。其中,电池的原厚度可以为电池制造完成后的厚度。
在一种可选的实施方式中,该第一厚度可以是电池性能决定的最大允许膨胀厚度。在电池的膨胀厚度超过该最大允许膨胀厚度后,可能造成爆炸、漏液等危险。在另一种可选的实施方式中,该第一厚度可以为终端预留给电池的膨胀厚度。在电池的膨胀厚度超过预留的膨胀厚度后,终端被损害(例如外壳被电池顶开等)。
表3仅为示例,具体实现中,电池的膨胀系数表可以划分更多数量的电压区间及温度区间,并且各个电压区间以及温度区间的临界值可以和表3中不同。不限于表3示出的表格形式,具体实现中,终端还可通过其他形式存储电池的膨胀系数,例如文本、图形等,本申请不做限制。
可理解的,电池制造完成后,电池的膨胀系数(包括不同电压区间及温度区间下的多个膨胀系数)即固定。即,膨胀系数属于电池本身的属性,不会随着外界因素的改变而变化。电池的膨胀系数和电池的制造过程相关,影响电池膨胀系数的因素包括电池型号,电池型号不同时,膨胀系数也不同。其中,电池型号包括以下至少一项:电池的额定电压、充电电压、额定容量、典型容量、电池内阻、出货电压、电池重量、循环寿命、标准充电电流、最大充电电流、标准放电电流、最大放电电流、放电截止电压、静电测试数据、电芯制造商、电芯型号、电芯标称容量、电芯典型容量。
在一种可能的实施方式中,电池的膨胀系数可由研发人员通过实验测试获取。具体的,研发人员可将电池置于某个电压及温度区间内,记录电池厚度增加第一厚度所需的时间,以此获取电池的膨胀系数。通过这样的方式,可获取电池处于各个电压及温度区间时的膨胀系数。可理解的,研发人员可分别获取不同型号电池的膨胀系数。
基于上述终端记录的电池从投入使用到当前的整体使用情况,以及,电池的膨胀系数,终端可获取电池的整体膨胀参数。
在一些实施例中,终端可通过加权计算的方式获取电池的整体膨胀参数,通过电池的整体膨胀参数可反映电池的整体膨胀厚度。参见公式1,A为终端电池从投入使用到当前的整体膨胀参数,T i为第i个温度区间,V j为第j个电压区间,t(T i,V j)为终端从投入使用到当前电池的温度处于T i且电压处于V j的时长,a(T i,V j)为终端电池的温度处于T i且电压处于V j时的膨胀系数。可选的,A是无单位参数,t(T i,V j)的单位为s,a(T i,V j)的单位为1/天。其中,1≤i≤n,1≤j≤m,i、j为正整数。n为划分的温度区间的总个数,m为划分的电压区间的总个数。
Figure PCTCN2019105986-appb-000005
具体举例来说,终端配置有型号为“ATL GC-SDC-356585-010L 1S1P 3.82V 3240mAh Li-ion”的电池,假设该电池从投入使用到目前的使用时间为一年,且每天的使用情况都如表2,该电池的膨胀系数如表3。根据公式1可计算出该电池使用一年后的膨胀参数A,A=(40395*0.001+536*0.002+16753*0.002+…+8227*0.005+55*0.010+495*0.007)/(24*3600)*365=0.584。
可理解的,A的值越大,表示电池的整体膨胀厚度越厚。例如,当A的值为0时,表示电池的整体膨胀厚度为0,当A的值达到1时,表明电池的整体膨胀厚度达到第一厚度。
在一种可能的实施方式中,终端可周期性计算电池的整体膨胀参数,例如,每天、每周或每月计算一次。
在获取到电池从投入使用到当前的整体膨胀参数后,终端可根据一定的策略来降低电池的膨胀速率。在本申请的一些实施例中,该策略可包括:终端根据电池的整体膨胀参数,执行对应的限制措施。进一步地,划分多个膨胀参数区间,每个膨胀参数区间对应有限制措施,终端可确认电池从投入使用到当前的整体膨胀参数所处的区间,并执行和该区间对应的限制措施。
其中,多个膨胀参数区间梯度设置。在一些实施例中,该多个膨胀参数区间在0~1之内。
本申请中,电池的整体膨胀参数A越大,表示电池的整体膨胀厚度越厚,则电池的实际情况越差,可以使用更大力度的限制措施来降低电池的膨胀速率。即,膨胀参数区间中的数值越大,对应的限制措施越强。
本申请中,限制措施可分为以下三种类型:
(1)降低电池的充电截止电压;
(2)降低电池的最大充电电流;
(3)同时降低电池的充电截止电压和最大充电电流。
可理解的,降低电池的充电截止电压将降低电池的续航时间,降低电池的最大充电电流 将延长电池的充电时间。
其中,每种类型的限制措施都可细分为不同的力度。例如,在上述第(1)种限制措施中,电池的充电截止电压降低得越多,力度越大。当充电截止电压降为0时,电池无法充电,此时力度最大。又例如,在上述第(2)种限制措施中,电池的最大充电电流降低得越多,力度越大。当最大充电电流降为0时,电池无法充电,此时力度最大。
参见表4,表4示出了几种可能的整体膨胀参数区间以及对应的限制措施。其中,表4示出的限制措施属于上述第(1)种类型,即终端通过降低充电截止电压的方式降低电池膨胀速率。
膨胀参数区间 限制措施
0≤A﹤0.7
0.7≤A﹤0.8 充电截止电压=初始充电截止电压-50mV
0.8≤A﹤0.85 充电截止电压=初始充电截止电压-100mV
0.85≤A﹤0.9 充电截止电压=初始充电截止电压-200mV
0.9≤A﹤1 充电截止电压=0V
表4各个膨胀参数区间对应的限制措施
参见图7,图7为终端使用上述第(一)种方法,即依据电池的整体膨胀参数,来降低电池的膨胀速率的流程示意图。其中,图7中划分的各个膨胀参数区间以及分别对应的限制措施如表3。
这里,在降低充电截止电压之后,电池充电至实际能够达到的最大电压所需的时间缩短。示例性地,参见图8,图8示出了充电截止电压降低前后,电池充电时的时间和电池电压的示意图。如图8所示,曲线1为电池的初始充电截止电压为4.4V时的充电示意图,曲线2为电池的充电截止电压在初始充电截止电压的基础上降低了200mV,即电池的充电截止电压降低为4.2V时的充电示意图。
由表4及图7可以看出,终端电池的整体膨胀参数具有两个临界值,可称为第一临界值(如表4中的0.7)和第二临界值(如表4中的0.9)。其中,当电池的整体膨胀参数低于第一临界值时,终端不采取限制措施,当电池的整体膨胀参数超过第二临界值时,终端采取最大力度的限制措施。这里,第一临界值可以为图3实施例第(1)种场景中提到的第一临界值,即当电池的整体膨胀参数达到第一临界值时,终端可提示用户电池当前的健康状况。这里,第二临界值可以为图6实施例中提到的第二临界值,即当电池的整体膨胀参数达到第二临界值时,终端可判断电池处于生命周期的较晚阶段,并提示用户更换电池。
由于采取限制措施后,会降低电池的续航时间或延长电池的充电时间,当电池的整体膨胀参数低于第一临界值时,不采取限制措施(即不降低电池的充电截止电压或最大充电电流),可以保障用户的使用体验。当电池的整体膨胀参数超过第二临界值时,终端采取最大力度的限制措施,可以防止电池爆炸、漏液等,保证用户安全。
这里,第一临界值和第二临界值可以预先设置。例如,可以由研发人员通过实验获取合适的第一临界值和第二临界值。可理解的,不同型号的电池对应的的第一临界值和第二临界值可以不同,也可以相同,这里不做限制。
在一些实施例中,和膨胀参数区间对应的限制措施是指,终端的实际膨胀参数处于该膨胀参数区间时,使用该对应的限制措施可以相对最佳地降低终端电池后续的膨胀速率且不影响用户的使用体验。这里,和各个膨胀参数区间对应的限制措施可以由研发人员经过实验确 定。可理解的,对于不同型号的电池,各个膨胀参数区间对应的限制措施可以相同,也可以不同,本申请不做限制。
在一些实施例中,各个膨胀参数区间对应的限制措施不仅仅可以属于同一类型,还可以属于不同类型,即不同类型的限制措施可以交叉结合实施。
上述第(一)种方法,终端记录电池在使用过程中处于各个温度以及各个电压区间的时长,计算电池的整体膨胀参数。由于电池的整体膨胀参数反映电池的整体膨胀厚度,因此,根据电池的整体膨胀参数采取对应的限制措施,可以降低电池的膨胀速率,延长电池寿命。
此外,当电池的生命周期快要结束时,即电池膨胀参数达到第二临界值时,终端可以执行最大力度的限制措施,禁止用户充电,可防止电池爆炸、漏液等,保证用户安全。
(二)依据电池近期的膨胀参数,来降低电池的膨胀速率。
电池的近期膨胀参数可反映电池的近期膨胀厚度。具体的,电池近期的膨胀厚度是指,电池在最近一段时间内增加的厚度。该最近一段时间可以为最近一天、一周、十天、一个月等。在可选实施例中,该最近一段时间可以由终端自主确定,也可以由用户设置。
终端获取电池近期膨胀参数的方法和上述终端获取电池整体膨胀参数的方法类似,下面详细描述。
在第(二)种方法中,终端可记录电池近期的实际使用情况,该使用情况包括电池近期处于各个温度以及各个电压区间的时长。参见表5,表5示出了电池型号为“ATL GC-SDC-356585-010L 1S1P 3.82V 3240mAh Li-ion”的终端记录的电池一天的使用情况。
Figure PCTCN2019105986-appb-000006
表5终端电池一天的使用时长统计表
表5记录了终端电池一天的使用情况,该终端在近一天的大部分时间处于高温浮充状态。其中,温度(T)的单位为摄氏度,电压(V)的单位为伏特,时长的单位为秒(s)。
这里,终端可以持续记录电池的近期使用情况。例如,终端记录终端第一天的使用情况之后,持续记录电池第二天的使用情况,并使用第二天的数据替代第一天的数据,得到最新的近一天的电池使用情况。通过这样持续记录的方式,终端可获取电池的近期使用情况。
和第(一)种方法中相同,终端可存储所使用电池的膨胀系数,该膨胀系数反映了电池的膨胀速率。电池的膨胀系数可参见表3以及相关描述,这里不再赘述。
基于上述终端记录的电池近期的实际使用情况,以及,终端存储的电池的膨胀系数,终端可获取电池近期的膨胀参数。
在一些实施例中,终端可通过加权计算的方式获取电池的近期膨胀参数。参见公式2,B为终端电池近期膨胀参数,T i为第i个温度区间,V j为第j个电压区间,t′(T i,V j)为终端近期 温度处于T i且电压处于V j的时长,a′(T i,V j)为终端电池温度处于T i且电压处于V j时的膨胀系数。可选的,B为无单位参数,t′(T i,V j)的单位为s,a′(T i,V j)的单位为1/天。其中,1≤i≤n,1≤j≤m,i、j为正整数。n为划分的温度区间的总个数,m为划分的电压区间的总个数。
Figure PCTCN2019105986-appb-000007
具体举例来说,终端使用型号为“ATL GC-SDC-356585-010L 1S1P 3.82V 3240mAh Li-ion”的电池,该电池最近一天的使用情况如表5,该电池的膨胀系数如表3。根据公式2可计算出该电池近一天的膨胀参数B,B=(9915*0.001+4158*0.002+7435*0.006+…+22*0.035+8280*0.066+6598*0.081)/(24*3600)*365=0.0164。
可理解的,B的值越大,表示电池的近期膨胀厚度越厚。例如,当A的值为0时,表示电池的近期膨胀厚度为0,当A的值达到1时,表明电池的近期膨胀厚度达到第一厚度。
在一种可能的实施方式中,终端可周期性地计算电池的近期膨胀参数,例如,一天或两天计算一次。
在获取到电池近期的膨胀参数后,终端可根据一定的策略来降低电池的膨胀速率。在本申请的一些实施例中,该策略可包括:终端根据电池的近期膨胀参数,执行对应的限制措施。进一步地,划分多个膨胀参数区间,终端可确认电池近期的膨胀参数所处的区间,并执行和该区间对应的限制措施。
其中,多个膨胀参数区间梯度设置。在一些实施例中,该多个膨胀参数区间在0~1之内。在一些实施例中,和第(一)种方法相比,由于第(二)种方法中获取的是电池近期的膨胀参数,因此,划分的膨胀参数区间的临界值相对第(一)种方法中的膨胀参数区间的临界值要低。
本申请中,电池近期的膨胀参数B越大,表示电池的近期膨胀厚度越厚,则电池近期的实际情况越差,可以使用更大力度的限制措施来降低电池的膨胀速率。即,膨胀参数区间中的数值越大,对应的限制措施越强。
这里,和上述第(一)种方法相同,限制措施也可分为三种类型,可参照第(一)种方法的相关描述,在此不赘述。
参见表6,表6示出了几种可能的近期膨胀参数区间以及对应的限制措施。其中,表6示出的限制措施属于第(1)种类型,即通过降低充电截止电压的方式降低电池膨胀速率。
膨胀参数区间 限制措施
0≤B﹤0.049
0.049≤B﹤0.07 充电截止电压=初始充电截止电压-50mV
0.07≤B﹤0.105 充电截止电压=初始充电截止电压-100mV
B≥0.105 充电截止电压=初始充电截止电压-200mV
表6各个膨胀参数区间对应的限制措施
参见图9,图9为终端使用上述第(二)种方法,即依据电池的近期膨胀参数,来降低电池的膨胀速率的流程示意图。其中,图9中划分的各个膨胀参数区间以及分别对应的限制措施如表6。
由表4及图9可以看出,终端电池的近期膨胀参数具有一个临界值,可称为第三临界值(如表6中的0.049)。这里,第三临界值可以为图3实施例第(1)种场景中提到的第三临界 值,即当电池的近期膨胀参数达到第三临界值时,终端可提示用户电池当前的健康状况。
当电池的近期膨胀参数低于第三临界值时,终端不采取限制措施,即不降低电池的充电截止电压或最大充电电流,可以保障用户的使用体验。第三临界值可以预先设置,例如可以由研发人员经过实验获取合适的第三临界值。可理解的,不同型号的电池对应的的第三临界值可以不同,也可以相同,这里不做限制。
这里,每个膨胀参数区间对应的限制措施都具有一定的时效性,并不是永久生效。具体的,终端电池的近期膨胀参数仅能反映电池近期的膨胀厚度,随着电池的使用以及限制措施的执行,终端后续的膨胀速率可能降低,也可能继续提高。因此,当终端再次计算得到近期膨胀参数时,该近期膨胀参数对应的限制措施可能发生变化。
在一些实施例中,和膨胀参数区间对应的限制措施是指,终端的实际膨胀参数处于该膨胀参数区间时,使用该对应的限制措施可以相对最佳地降低终端电池后续的膨胀速率且不影响用户的使用体验。这里,和各个膨胀参数区间对应的限制措施可以由研发人员经过实验确定。可理解的,对于不同型号的电池,各个膨胀参数区间对应的限制措施可以相同,也可以不同,本申请不做限制。
在一些实施例中,各个膨胀参数区间对应的限制措施不仅仅可以属于同一类型,还可以属于不同类型,即不同类型的限制措施可以交叉结合实施。
上述第(二)种方法,终端记录电池近期处于各个温度以及各个电压区间的时长,计算电池的近期膨胀参数。由于电池的近期膨胀参数反映电池的近期膨胀厚度,因此,根据电池的近期膨胀参数采取对应的限制措施,即动态匹配充电模式,可以降低电池的膨胀速率,延长电池寿命。
上述两种降低电池膨胀速率的方法,利用电池在不同温度区间、不同电压区间的累积时间的加权和,量化了电池的膨胀厚度。在电池的不同使用阶段,可持续监控电池的膨胀厚度,并采取对应的限制措施。其中,上述第(一)种方法依据电池的整体膨胀参数降低电池的膨胀速率,更加适用于电池生命周期的较晚阶段的膨胀风险控制。其中,上述第(二)种方法依据电池的近期膨胀参数降低电池的膨胀速率,适用于电池生命周期的任意阶段的膨胀风险控制。
下面介绍本申请提供的终端的一种实现方式。
本申请中,终端可以为手机、平板电脑、个人数字助理(personal digital assistant,PDA)、可穿戴设备等便携式电子设备。便携式电子设备的示例性实施例包括但不限于搭载iOS、android、microsoft或者其他操作系统的便携式电子设备。上述便携式电子设备也可以是其他便携式电子设备,诸如具有触敏表面(例如触控面板)的膝上型计算机(laptop)等。还应当理解的是,在本申请其他一些实施例中,终端也可以不是便携式电子设备,而是具有触敏表面(例如触控面板)的台式计算机。
本申请中,终端配置有显示屏,可用于显示终端系统当前输出的界面内容以及各类提示信息。该界面内容可包括正在运行的应用程序的界面以及系统级别菜单等,具体可由下述界面元素组成:输入型界面元素,例如按键(button),文本输入框(text),滑动条(scroll Bar),菜单(menu)等等;以及输出型界面元素,例如视窗(window),标签(label)等等。该提示信息可参照图4-图9实施例的相关描述。
图10示出了本申请的终端一种可能的结构。
如图所示,终端100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对终端100的具体限定。在本申请另一些实施例中,终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是终端100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现终端100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频 模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现终端100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现终端100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为终端100充电,也可以用于终端100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他终端,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对终端100的结构限定。在本申请另一些实施例中,终端100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
电池142是一种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在电解质中,通过转换其内部的化学能来提供电能。本申请中,电池142可以为锂离子电池、镍氢电池、锂聚合物电池或铅酸电池等。在本申请的一些实施例中,电池142为锂离子电池,依靠锂离子在正极和负极之间移动来工作。电池142投入使用后,便会逐渐膨胀(即电池厚度增加),并且该膨胀过程几乎是不可逆的。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过终端100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为终端供电。在本申请的一些实施例中,充电管理模块140可用于执行和电池142的整体/近期膨胀参数所在区间对应的限制措施。这里,限制措施可分为以下三种类型:(1)降低电池的充电截止电压;(2)降低电池的最大充电电流;(3)同时降低电池的充电截止电压和最大充电电流。这里,关于电池142的膨胀参数区间以及具体的限制措施,可参照前文第(一)种及第(二)种方法的相关描述。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监 测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。在本申请的一些实施例中,电源管理模块141可用于监测电池142的电压。
终端100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在终端100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统 (quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
终端100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,终端100可以包括1个或N个显示屏194,N为大于1的正整数。
终端100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,终端100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当终端100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。终端100可以支持一种或多种视频编解码器。这样,终端100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现终端100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展终端100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行终端100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储终端100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储 器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
在本申请的一些实施例中,处理器110还可用于将电源管理模块141监测到的电池142的电压、温度传感器180J监测到的电池142的温度累积记录,并将其存储至内部存储器121中。可选的,处理器110可以表格的形式存储的142处于各个温度区间及各个电压区间的时长。可理解的,在本申请的一些实施例中,终端100还可配置专用处理器,用于记录电源管理模块141监测到的电池142的电压、温度传感器180J监测到的电池142的温度。
在本申请中,内部存储器121还可以用于存储以下一项或多项:电池从投入使用到当前的使用情况或者电池近期的使用情况(即电池处于各个温度以及各个电压区间的时长)、电池142的膨胀系数、各个膨胀参数区间分别对应的限制措施。这里,电池142的整体/近期使用情况、膨胀系数以及各个膨胀参数区间分别对应的限制措施,可参照前文表2-表6、图7及图9的相关描述,在此不赘述。
在本申请的一些实施例中,处理器110还可根据存储器121存储的电池142从投入使用到当前的使用情况或者电池近期的使用情况和电池142的膨胀系数,计算电池142的整体/近期膨胀参数。这里,处理器计算电池142的整体/近期膨胀参数的具体方式可参照前文第(一)种方法和第(二)种方法的相关描述。
在本申请的一些实施例中,处理器110计算电池142的整体/近期膨胀参数之后,还可指示充电管理模块140执行和电池142的整体/近期膨胀参数所在区间对应的限制措施。
终端100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。终端100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当终端100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。终端100可以设置至少一个麦克风170C。在另一些实施例中,终端100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,终端100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动终端平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。终端100根据电 容的变化确定压力的强度。当有触摸操作作用于显示屏194,终端100根据压力传感器180A检测所述触摸操作强度。终端100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定终端100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定终端100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测终端100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消终端100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,终端100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。终端100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当终端100是翻盖机时,终端100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测终端100在各个方向上(一般为三轴)加速度的大小。当终端100静止时可检测出重力的大小及方向。还可以用于识别终端姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。终端100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,终端100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。终端100通过发光二极管向外发射红外光。终端100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定终端100附近有物体。当检测到不充分的反射光时,终端100可以确定终端100附近没有物体。终端100可以利用接近光传感器180G检测用户手持终端100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。终端100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测终端100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。终端100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,终端100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,终端100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,终端100对电池142加热,以避免低温导致终端100异常关机。在其他一些实施例中,当温度低于又一阈值时,终端100对电池142的输出电压执行升压,以避免低温导致的异常关机。在本申请的一些实施例中,电池142周围可以设置有温度传感器180J,用于监测电池142的温度。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸 传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于终端100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。终端100可以接收按键输入,产生与终端100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和终端100的接触和分离。终端100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。终端100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,终端100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在终端100中,不能和终端100分离。
终端100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本发明实施例以分层架构的Android系统为例,示例性说明终端100的软件结构。
图11是本发明实施例的终端100的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)和系统库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图11所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图11所示,应用程序框架层可以包括窗口管理器,内容提供器,视图系统,电话管理器,资源管理器,通知管理器等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏, 锁定屏幕,截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供终端100的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,终端振动,指示灯闪烁等。
Android Runtime包括核心库和虚拟机。Android runtime负责安卓系统的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是安卓的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
系统库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),2D图形引擎(例如:SGL)等。
表面管理器用于对显示子系统进行管理,并且为多个应用程序提供了2D和3D图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现三维图形绘图,图像渲染,合成,和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动。
下面结合捕获拍照场景,示例性说明终端100软件以及硬件的工作流程。
当触摸传感器180K接收到触摸操作,相应的硬件中断被发给内核层。内核层将触摸操作加工成原始输入事件(包括触摸坐标,触摸操作的时间戳等信息)。原始输入事件被存储在内核层。应用程序框架层从内核层获取原始输入事件,识别该输入事件所对应的控件。以该触摸操作是触摸单击操作,该单击操作所对应的控件为相机应用图标的控件为例,相机应用调用应用框架层的接口,启动相机应用,进而通过调用内核层启动摄像头驱动,通过摄像头193捕获静态图像或视频。
下面以上述第(一)种降低电池膨胀速率的方法为例,详细说明终端100中的各个部件在本申请中的协作关系,请参考图12。
1.从电池142投入使用开始,温度传感器180J监测电池142的温度,电源管理模块141监测电池142的电池电压。
2、温度传感器180J将监测到的电池142的温度传递给处理器110,电源管理模块141将监测到的电池142的电池电压传递给处理器110。
3.处理器110累积记录电池142处于各个温度区间及各个电压区间的时长。
4、处理器110将记录的时长传递给内部存储器121。
5.内部存储器121存储电池142处于各个温度区间及各个电压区间的时长。此外,内部存储器121中还存储有电池142的膨胀系数以及,各个膨胀参数区间对应的限制措施。
可选的,内部存储器121可以通过表格的形式存储的142处于各个温度区间及各个电压区间的时长,具体可参照前文表2及表5的相关描述。
可选的,电池142的膨胀系数可参照表3及相关描述,各个膨胀参数区间对应的限制措施可参照表3及相关描述。
6.处理器110加权计算电池142从投入使用到当前的整体膨胀参数。
具体的,处理器110可通过公式1计算电池142的整体膨胀参数,可参照前文关于公式1的相关描述。
7.处理器110确定电池142的整体膨胀参数所在的膨胀参数区间,确定和该膨胀参数区间对应的限制措施。
8、处理器110指示充电管理模块140执行该确定的限制措施。
9、充电管理模块140执行处理器110确定的限制措施。
具体的,充电管理模块140执行的限制措施可参照前文第(一)种方法中的相关描述,在此不赘述。
可理解的,使用上述第(二)种方法降低电池膨胀速率时,终端100中的各个部件在本申请中的协作关系和图12类似,在此不赘述。
参见图13,图13为本申请提供的一种充电管理装置的结构示意图。该装置应用于终端,可降低电池的膨胀速率,延长电池寿命。
如图13所示,该装置包括:电池、温度测量模块、电压测量模块、累计模块、存储器、控制模块、充电和放电模块。
其中,电池用于转换其内部的化学能来为终端提供电能。
温度测量模块用于测量电池的温度。
电压测量模块用于测量电池电压。
累计模块用于将累计记录电池的使用情况。在一些实施例中,电池的使用情况包括:电池从投入使用到当前,或者,近期,在各个温度和/或各个电压下的时长。在可选实施例中,累计模块可通过表格的方式累计记录电池的使用情况。示例性地,累计模块记录的表格可如表2或表5所示。累计模块可以是软件模块,也可以是硬件模块。
存储器用于存储电池累计模块累计记录的电池的使用情况。在一些实施例中,存储器还可用于存储电池的膨胀系数、以及各个膨胀参数区间分别对应的限制措施。这里,电池的膨胀系数以及各个膨胀参数区间分别对应的限制措施,可参照前文表3、图7及图9的相关描述,在此不赘述。
控制模块用于根据存储器存储的电池的使用情况,获取电池的膨胀参数。这里,获取膨胀参数的方式可参照前文公式1或公式2的相关描述。
充电和放电模块用于执行电池膨胀参数所在的膨胀参数区间对应的限制措施。这里,关 于电池的膨胀参数区间以及具体的限制措施,可参照前文表4或表6的相关描述。
在一些实施例中,图13中的电池、温度测量模块、电压测量模块、存储器、控制模块、充电和放电模块为硬件模块。
基于前述的人机交互实施例以及图10实施例描述的终端100,下面介绍本申请提供的充电管理方法。
参见图13,图13是本申请提供的一种充电管理方法的流程示意图。该充电管理方法应用于终端,该终端配置有电池。下面展开描述:
S301、对终端电池进行充电。
具体的,终端电池充电是指,终端电池连接电源,电池内部的导电粒子由电池正极转移并嵌入负极。对终端电池进行充电的过程,是终端电池存储电能的过程。
S302、如果终端电池的工作参数不满足第一条件,则,充电至电池电压V1时停止对终端电池进行充电;如果终端电池的工作参数满足第一条件,则,充电至电池电压V2时停止对终端电池进行充电;V1>V2;其中,终端电池的工作参数包括:终端电池在多个温度下的工作时长,和/或,终端电池在多个电池电压下的工作时长。
具体的,终端可获取电池的工作参数。可选的,终端可从终端电池投入使用开始获取电池的工作参数。终端电池的工作参数可以反映终端电池的健康状况。这里,终端电池的健康状况可包括:电池温度、电池电压、电池的整体膨胀厚度、电池的近期膨胀厚度或老化等情况。
在一些实施例中,电池的工作参数可以为终端电池从投入使用到目前的工作参数,也可以为终端电池最近一段时间的工作参数。其中,电池投入使用可包括:电池出厂,或者,电池首次充电,或者,电池首次放电。最近一段时间可以在终端出厂时预先设置,也可以由用户或终端自主设置。例如,最近一段时间可以为一周、一个月、一年等,这里不做限制。
在一些实施例中,电池的工作参数可包括:终端电池在多个温度下的工作时长,和/或,终端电池在多个电池电压下的工作时长。这里,工作时长可以是指电池出厂后的时间,也可以指电池被配置到终端上之后的时间,还可以是指电池充电和/或放电的时间,本申请不做限制。示例性地,参考表2或表5,电池的工作参数可以以表格的方式记录。
在一些实施例中,第一条件可包括:终端电池的膨胀参数高于阈值。这里,膨胀参数可反映电池的膨胀厚度。
具体的,终端可根据终端电池的工作参数获取终端电池的膨胀参数。下面提供两种可能的终端根据终端电池的工作参数获取终端电池的膨胀参数的方式:
第一种方式,终端根据终端电池从投入使用到目前的工作参数,获取终端电池的整体膨胀参数。该整体膨胀参数可反映终端电池从投入使用到目前的整体膨胀厚度。
可选的,终端可通过加权计算的方式获取终端电池的整体膨胀参数。
示例性地,终端可通过公式1获取终端电池的整体膨胀参数:
Figure PCTCN2019105986-appb-000008
在公式1中,A为终端电池从投入使用到当前的整体膨胀参数,T i为第i个温度区间,V j为第j个电压区间,t(T i,V j)为终端从投入使用到当前电池的温度处于T i且电压处于V j的时长, a(T i,V j)为终端电池的温度处于T i且电压处于V j时的膨胀系数。其中,1≤i≤n,1≤j≤m,i、j为正整数。n为划分的温度区间的总个数,m为划分的电压区间的总个数。
其中,终端电池的膨胀系数可以存储在终端中,也可以由终端通过网络获取。示例性地,终端电池的膨胀系数可参照前文表3以及相关描述。电池的膨胀系数属于电池本身的属性,不会随着外界因素的改变而变化。不同型号的电池,对应的膨胀系数可能不同。在一种可能的实施方式中,电池的膨胀系数可由研发人员通过实验测试获取。可理解的,研发人员可分别获取不同型号电池的膨胀系数。
在上述第一种方式中,终端电池的整体膨胀参数对应的阈值不限于终端出厂时的默认设置,还可以是用户自主设置的。在一种具体的实现方式中,终端电池的整体膨胀参数对应的阈值为上述图3、图5、图7实施例以及表4的相关描述中提及的第一临界值,可参照相关描述。也就是说,第一条件可以是:当终端电池的整体膨胀参数高于第一临界值。
第二种方式,终端根据终端电池近期的工作参数,获取终端电池的近期膨胀参数。该近期膨胀参数可反映终端电池的近期膨胀厚度。
可选的,终端可通过加权计算的方式获取终端电池的近期膨胀参数。
示例性地,终端可通过公式2获取终端电池的近期膨胀参数:
Figure PCTCN2019105986-appb-000009
在公式2中,B为终端电池近期膨胀参数,T i为第i个温度区间,V j为第j个电压区间,t′(T i,V j)为终端近期温度处于T i且电压处于V j的时长,a′(T i,V j)为终端电池温度处于T i且电压处于V j时的膨胀系数。其中,1≤i≤n,1≤j≤m,i、j为正整数。n为划分的温度区间的总个数,m为划分的电压区间的总个数。
其中,终端电池的膨胀系数和上述第一种方式中相同,可参照相关描述。
在上述第二种方式中,终端电池的近期膨胀参数对应的阈值不限于终端出厂时的默认设置,还可以是用户自主设置的。在一种具体的实现方式中,终端电池的近期膨胀参数对应的阈值为上述图3、图5、图7实施例以及表4的相关描述中提及的第三临界值,可参照相关描述。也就是说,第一条件可以是:当终端电池的近期膨胀参数高于第三临界值。
不限于上述实施例提及的第一条件,在一些实施例中,第一条件还可包括:电池在高压且高温下的工作时长超过第一值、电池连续充电/放电时长超过第三值等。其中,高压、高温可以在终端出厂时默认设置,也可以由终端或用户自主设置。例如,当实际的电池电压和最大设计电压之间的差值小于200mV时,可看作电池处于高压状态。
具体的,如果终端电池的工作参数不满足第一条件,则,充电至电池电压V1时停止对终端电池进行充电;如果终端电池的工作参数满足第一条件,则,充电至电池电压V2时停止对终端电池进行充电;V1>V2。
这里,充电至电池电压V1或V2时停止对终端电池进行充电是指,当电池电压为V1或V2时,电池内部的导电粒子不再由电池正极转移并嵌入负极,终端电池不再进一步存储电能。在一种可能的实现方式中,如果终端电池的工作参数满足第一条件,终端可将充电截止电压由V1降低为V2,从而实现充电至电池电压V2时停止对终端电池进行充电。
在终端电池的工作参数满足第一条件时,充电至电池电压V2时就停止对终端电池进行充电,相对于充电至电池电压V1时停止对终端电池进行充电的情况,降低了终端电池充电 时实际能够达到的电池电压。也就是说,充电至电池电压V2时就停止对终端电池进行充电,可相对减少电池处于高压状态的时长,从而降低电池的膨胀速率,延缓电池膨胀。
在可选实施方式中,V1可以为初始充电截止电压或者最大设计电压。
在可选实施方式中,在第一条件为电池膨胀参数达到阈值时,终端充电至电池电压V2时就停止对终端电池进行充电。由于电池膨胀参数可以反映电池的膨胀厚度,因此,能够在电池膨胀到一定厚度时,降低电池的膨胀速率,延缓电池膨胀。
在可选实施例中,V2和V1之间的差值和终端电池的工作参数相关。
终端电池的工作参数可以反映终端电池的健康状况,当终端电池的健康状况变差时,可以加大V2和V1之间的差值。在一种可能的方式中,当终端电池的健康状况变差时,可减小V2的值。如果终端电池的工作参数满足第一条件,则充电至电池电压V2时停止对终端电池进行充电,那么V2的值越小,电池在高压状态下的工作时长越短,电池的膨胀速率越慢。
在一种可能的实施方式中,终端可根据终端电池的工作参数获取终端电池的膨胀参数,并根据终端电池的膨胀参数确定V2的值。当终端电池的膨胀参数越大时,表示终端电池的膨胀厚度越厚,V2的值越小。可选的,终端可划分多个膨胀参数区间,并根据终端电池的膨胀参数所在的膨胀区间确定V2。示例性地,参考表4及图7,当终端获取终端电池的整体膨胀参数时,V2可以为表4及图7所示限制措施中的充电截止电压。示例性地,参考表6及图9,当终端获取终端电池的近期膨胀参数时,V2可以为表6及图9所示限制措施中的充电截止电压。
通过图14所示的充电管理方法,如果终端电池的工作参数满足第一条件,则,充电至电池电压V2时停止对终端电池进行充电,可相对减少电池处于高压状态的时长,从而降低电池的膨胀速率,延缓电池膨胀。
参见图15,图15是本申请提供的另一种充电管理方法的流程示意图。该充电管理方法应用于终端,该终端配置有电池。下面展开描述:
S401、对终端电池进行充电,充电至电池电压V1时停止对终端电池进行充电。
具体的,对终端电池进行充电和停止充电和上述图14实施例中相同,可参照相关描述。在可选实施方式中,V1可以为初始充电截止电压或者最大设计电压。
S402、如果终端电池的工作参数满足第一条件,终端显示提示信息;其中,终端电池的工作参数包括:终端电池在多个温度下的工作时长,和/或,终端电池在多个电池电压下的工作时长。
具体的,终端电池的工作参数以及第一条件和上述图14实施例中的步骤S302相同,可参照相关描述。
具体的,终端电池的工作参数满足第一条件时,终端显示的提示信息可以提示用户电池的健康状况。这里,终端电池的健康状况可包括:电池温度、电池电压、电池的整体膨胀厚度、电池的近期膨胀厚度或老化等情况。
示例性地,参考图3的3a-3c,提示信息可以在终端的触摸屏顶部以弹窗的形式显示,还可以在终端的通知栏中显示,还可以通过分数的形式显示。
终端显示提示信息后,用户可执行一些措施来保护电池。可选的,用户执行的措施可包括:减少电池的浮充时间、避免边使用终端边对终端电池进行充电、避免终端功耗过高等。
在一些实施例中,在步骤S402之后,该方法还可包括:终端接收用户输入的第一用户操作;响应第一用户操作,终端启动电池保护模式;其中,在电池保护模式下对终端电池进行充电时,充电至电池电压V2时停止对终端电池进行充电,V1>V2。
这里,V2的值和图14实施例中相同,可参照相关描述。
在一种可能的实施方式中,第一用户操作包括:作用于电池保护模式的开启选项的点击操作,电池保护模式的开启选项可以显示在电池设置界面中。例如,参考图2右侧附图的电池设置界面,电池保护模式的开启选项可以为图中的202。这里,该电池设置界面可以由终端响应于用户对图2的左侧附图中的电池选项401的点击操作而显示,也可以由终端响应于用户对图3的3a中的屏幕顶部的弹窗301的点击操作而显示,还可以由终端响应于用户对图3的3c中通知栏中的提示信息302的点击操作而显示,本申请不做限制。
在一些实施例中,在步骤S402之后,该方法还可包括:如果终端电池的工作参数满足第二条件,终端提示用户更换终端电池。
在一种可能的实施方式中,第二条件可包括:终端电池的膨胀参数高于第二临界值。这里的膨胀参数为终端电池的整体膨胀参数,该膨胀参数的定义以及获取方式可参照图14实施例中的第一种方式的相关描述。这里,第二临界值可以为上述图6、图9实施例以及表6的相关描述中提及的第二临界值,可参照相关描述。
示例性地,参考图6左侧附图,终端可以悬浮窗的形式提示用户更换电池。不限于图6左侧附图,终端还可通过提示音、振动、指示灯闪烁、屏幕顶部的弹窗或者在通知栏中显示提示信息等方式,提示用户更换电池,本申请不做限制。通过上述方式,如果终端电池的工作参数满足第二条件,终端提示用户更换电池,可以避免用户持续使用处于生命周期的较晚阶段的电池,从而避免电池发生漏液、爆炸等情况。
通过图15所示的充电管理方法,如果终端电池的工作参数满足第一条件,终端显示提示信息,可提示用户电池当前的健康状况。通过提示信息提示用户之后,用户可以采取一定的措施来保护电池,可保证电池健康。
本申请的各实施方式可以任意进行组合,以实现不同的技术效果。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。
总之,以上所述仅为本发明技术方案的实施例而已,并非用于限定本发明的保护范围。凡根据本发明的揭露,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种充电管理方法,所述方法应用于终端,所述终端配置有终端电池,其特征在于,包括:
    对所述终端电池进行充电;
    如果所述终端电池的工作参数不满足第一条件,则,充电至电池电压V1时停止对所述终端电池进行充电;
    如果所述终端电池的工作参数满足所述第一条件,则,充电至电池电压V2时停止对所述终端电池进行充电;V1>V2;
    其中,所述终端电池的工作参数包括:所述终端电池在多个温度下的工作时长,和/或,所述终端电池在多个电池电压下的工作时长。
  2. 一种充电管理方法,所述方法应用于终端,所述终端配置有终端电池,其特征在于,包括:
    对所述终端电池进行充电,充电至电池电压V1时停止对所述终端电池进行充电;
    如果所述终端电池的工作参数满足第一条件,所述终端显示提示信息;
    其中,所述终端电池的工作参数包括:所述终端电池在多个温度下的工作时长,和/或,所述终端电池在多个电池电压下的工作时长。
  3. 根据权利要求2所述的方法,其特征在于,
    所述提示信息在所述终端的触摸屏顶部以弹窗的形式显示。
  4. 根据权利要求2或3所述的方法,其特征在于,所述终端显示提示信息之后,所述方法还包括:
    所述终端接收用户输入的第一用户操作;
    响应所述第一用户操作,所述终端启动电池保护模式;其中,在所述电池保护模式下对所述终端电池进行充电时,充电至电池电压V2时停止对所述终端电池进行充电,V1>V2。
  5. 根据权利要求4所述的方法,其特征在于,所述第一用户操作包括:作用于电池保护模式的开启选项的点击操作,所述电池保护模式的开启选项显示在电池设置界面中。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,所述方法还包括:如果所述终端电池的工作参数满足第二条件,所述终端提示用户更换所述终端电池。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述终端电池的工作参数包括:所述终端电池从投入使用到目前的工作参数,或者,所述终端电池最近一段时间的工作参数。
  8. 根据权利要求1或4所述的方法,其特征在于,V2和V1之间的差值和所述终端电池的工作参数相关。
  9. 一种终端,其特征在于,包括:一个或多个处理器、一个或多个存储器;
    所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,所述终端执行如权利要求1-8任一项所述的充电管理方法。
  10. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在终端上运行时,使得所述终端执行如权利要求1-8任一项所述的充电管理方法。
PCT/CN2019/105986 2018-09-30 2019-09-16 充电管理方法、图形用户界面及相关装置 WO2020063386A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/277,498 US20220029444A1 (en) 2018-09-30 2019-09-16 Charging Management Method, Graphical User Interface, and Related Apparatus
EP19865142.4A EP3840105A4 (en) 2018-09-30 2019-09-16 CHARGE MANAGEMENT PROCESS, GRAPHIC USER INTERFACE AND ASSOCIATED DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811162909.1 2018-09-30
CN201811162909.1A CN110970959B (zh) 2018-09-30 2018-09-30 充电管理方法、图形用户界面及相关装置

Publications (1)

Publication Number Publication Date
WO2020063386A1 true WO2020063386A1 (zh) 2020-04-02

Family

ID=69949993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105986 WO2020063386A1 (zh) 2018-09-30 2019-09-16 充电管理方法、图形用户界面及相关装置

Country Status (4)

Country Link
US (1) US20220029444A1 (zh)
EP (1) EP3840105A4 (zh)
CN (1) CN110970959B (zh)
WO (1) WO2020063386A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508449B (zh) * 2020-05-29 2022-03-18 京东方科技集团股份有限公司 电压供给电路、显示驱动电路、显示装置和显示驱动方法
CN111817405B (zh) * 2020-08-06 2021-10-26 珠海市鑫和电器有限公司 一种医用智能充电电路
WO2022267029A1 (zh) * 2021-06-25 2022-12-29 宁德新能源科技有限公司 电化学装置管理方法、电子设备、充电装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070075678A1 (en) * 2002-12-20 2007-04-05 Andrew Sung On Ng Life cycle extending batteries and battery charging means, method and apparatus
CN104037462A (zh) * 2013-03-08 2014-09-10 华硕电脑股份有限公司 电池模块及过充电保护方法
CN104750597A (zh) * 2015-04-16 2015-07-01 小米科技有限责任公司 低电量时的用户引导方法及装置
CN106207291A (zh) * 2016-07-12 2016-12-07 宁德新能源科技有限公司 一种充电方法、装置及电池系统
CN106451640A (zh) * 2016-10-31 2017-02-22 维沃移动通信有限公司 一种充电方法及移动终端
CN108336431A (zh) * 2017-01-19 2018-07-27 宁德时代新能源科技股份有限公司 电池模组的充电控制方法、装置和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125186B2 (en) * 2008-06-16 2012-02-28 Steve Carkner Graphic state of charge indicator for a battery charging system and method of use
US9595742B2 (en) * 2009-03-27 2017-03-14 Schneider Electric It Corporation System and method for replacing a battery in an uninterruptible power supply
WO2013058079A1 (ja) * 2011-10-17 2013-04-25 住友電気工業株式会社 溶融塩電池の稼働方法
KR101893957B1 (ko) * 2013-08-19 2018-08-31 삼성에스디아이 주식회사 배터리 팩, 배터리 팩을 포함하는 장치, 및 배터리 팩의 관리 방법
CN103985917B (zh) * 2014-06-09 2017-05-10 河南顺之航能源科技有限公司 一种锂电池低温充放电方法
KR102267626B1 (ko) * 2014-11-20 2021-06-22 삼성전자주식회사 전자 장치 및 전자 장치에서의 배터리 관리 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070075678A1 (en) * 2002-12-20 2007-04-05 Andrew Sung On Ng Life cycle extending batteries and battery charging means, method and apparatus
CN104037462A (zh) * 2013-03-08 2014-09-10 华硕电脑股份有限公司 电池模块及过充电保护方法
CN104750597A (zh) * 2015-04-16 2015-07-01 小米科技有限责任公司 低电量时的用户引导方法及装置
CN106207291A (zh) * 2016-07-12 2016-12-07 宁德新能源科技有限公司 一种充电方法、装置及电池系统
CN106451640A (zh) * 2016-10-31 2017-02-22 维沃移动通信有限公司 一种充电方法及移动终端
CN108336431A (zh) * 2017-01-19 2018-07-27 宁德时代新能源科技股份有限公司 电池模组的充电控制方法、装置和系统

Also Published As

Publication number Publication date
US20220029444A1 (en) 2022-01-27
CN110970959A (zh) 2020-04-07
EP3840105A1 (en) 2021-06-23
EP3840105A4 (en) 2021-10-20
CN110970959B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
AU2019385366B2 (en) Voice control method and electronic device
EP3840104B1 (en) Optional terminal charging method, graphical user interface and electronic device
CN112789651B (zh) 一种应用于终端的频率调整方法、装置及电子设备
WO2020073288A1 (zh) 一种触发电子设备执行功能的方法及电子设备
CN111416407A (zh) 无线充电方法及电子设备
WO2020063386A1 (zh) 充电管理方法、图形用户界面及相关装置
WO2021052070A1 (zh) 一种帧率识别方法及电子设备
CN113704205B (zh) 日志存储的方法、芯片、电子设备和可读存储介质
EP3964932A1 (en) Learning-based keyword search method, and electronic device
WO2021052139A1 (zh) 手势输入方法及电子设备
CN110687998A (zh) 一种应用管理方法及装置
WO2021190314A1 (zh) 触控屏的滑动响应控制方法及装置、电子设备
CN114828098B (zh) 数据传输方法和电子设备
WO2021155709A1 (zh) 一种充电控制方法及电子设备
CN115695640A (zh) 一种防关机保护方法及电子设备
CN113467821A (zh) 应用程序的修复方法、装置、设备及可读存储介质
CN113918003A (zh) 检测皮肤接触屏幕时长的方法、装置及电子设备
CN115513571B (zh) 电池温度的控制方法和终端设备
CN117013660B (zh) 一种充电图标显示方法及电子设备
WO2024012346A1 (zh) 任务迁移的方法、电子设备和系统
CN116723384B (zh) 进程的控制方法、电子设备及可读存储介质
WO2023237087A1 (zh) 易孕期的预测方法、装置和电子设备
RU2775835C1 (ru) Способ беспроводной зарядки и электронное устройство
CN116069580A (zh) 处理器运行调控方法、电子设备和存储介质
CN117687814A (zh) 异常处理方法、系统以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019865142

Country of ref document: EP

Effective date: 20210315

NENP Non-entry into the national phase

Ref country code: DE