WO2020063158A1 - Led显示屏 - Google Patents

Led显示屏 Download PDF

Info

Publication number
WO2020063158A1
WO2020063158A1 PCT/CN2019/100487 CN2019100487W WO2020063158A1 WO 2020063158 A1 WO2020063158 A1 WO 2020063158A1 CN 2019100487 W CN2019100487 W CN 2019100487W WO 2020063158 A1 WO2020063158 A1 WO 2020063158A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led
hollow
display screen
matrix
Prior art date
Application number
PCT/CN2019/100487
Other languages
English (en)
French (fr)
Inventor
李士杰
胡飞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020063158A1 publication Critical patent/WO2020063158A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • the present invention relates to the field of display, and more particularly, to an LED display screen.
  • LED display screens have the advantages of high brightness, high contrast, and energy saving. As related technologies continue to mature, their application areas and scales continue to grow. Some manufacturers have successively introduced LED matrix displays to present high-quality images, such as Samsung's Cinema LEDScreen and Sony's Crystal display.
  • the large LED screen display has gradually entered the field of high-quality video projection, and with the continuous maturity of the technology, it can gradually meet the needs of indoor displays of more than 100 inches and cinema viewing. It is expected that the application scenarios of LED large screen display will continue to expand.
  • each pixel can be clearly observed in the entire screen, which affects the viewing effect. This is caused by the low light fill rate and large pitch of the LED.
  • the light on each LED lamp bead (equivalent to one pixel) is too concentrated on the LED lamp beads located at the center.
  • the distance between adjacent LEDs is too large compared to the LED lamp beads themselves, which makes the pixel's light fill rate very low, which results in a bad grainy viewing experience when viewing.
  • FIG. 1 is a schematic diagram showing a pixelization distribution of light intensity of a one-dimensional LED array.
  • (a) of FIG. 1 for a pixel, since the brightness is concentrated in the central region, the peak luminous intensity is projected onto the retina of the human eye, thereby causing discomfort to the human eye. Reducing the LED pitch below the human eye's resolution can alleviate the pixelated viewing experience to a certain extent, but it will greatly increase the cost of the product; and increasing the LED light emitting area not only increases energy consumption, but also increases packaging Difficulty.
  • arranging an optical diffusion film in front of the LED array can effectively average the light intensity distribution in each pixel area, but due to interference from adjacent LED light sources, a single pixel under the optical diffusion film The space will contain the information of the adjacent LED light source, thereby reducing the clarity of the display.
  • the R & D team placed a shading frame between the LED array and the optical diffusion film.
  • the light-shielding frame is completely in contact with the substrate, the light-shielding frame will be deformed under the influence of thermal effects and mechanical disturbances, and these problems greatly affect the viewer's feeling.
  • the shading frame significantly increases the weight of the LED display.
  • an object of the present invention is to provide an LED display screen capable of preventing deformation of the matrix shading frame and preventing the optical diffusion film from being affected by environmental vibrations by improving the structure of the matrix shading frame.
  • the present invention provides an LED display screen, which includes: an LED array including a plurality of LED light emitting units disposed on a substrate; and a matrix shading frame disposed on an output light path of the LED array. It comprises a plurality of hollow light-shielding grids arranged in a matrix form, the hollow light-shielding grids have light absorption properties; wherein the hollow light-shielding grids correspond to the LED light-emitting units one-to-one, and the hollow light-shielding grids are in An orthographic projection on the substrate surrounds its corresponding LED light emitting unit, and at least a part of the hollow shading grid is disposed at a distance from the substrate.
  • the position of the LED light emitting unit on the substrate corresponds to the center of its corresponding hollow shading grid.
  • the height l of the hollow shading grid satisfies the following formula:
  • h is the vertical distance from the light exit of the hollow light-shielding grid to the surface of the LED light-emitting unit
  • p is the distance between the centers of adjacent LED light-emitting units
  • d is the side wall of the hollow light-shielding grid
  • the thickness, e is the length of the LED light emitting unit.
  • the thickness of the side wall of the hollow shading grid is gradually reduced away from the substrate.
  • the LED display screen further includes an optical diffusion film disposed on a light-exiting side of the matrix light-shielding frame.
  • the presence of the optical diffusion film enables the "object" imaged into the human eye to be converted into a passive light-emitting optical diffusion film, which is conducive to eliminating the graininess of the LED light-emitting unit directly emitting light.
  • the matrix light-shielding frame and the substrate are fixedly connected through a connection structure therebetween.
  • the connection structure includes a plurality of pillar-shaped members provided at the bottom of the side wall of the hollow shading grid, and the matrix shading frame and the substrate are fixedly connected through the plurality of pillar-shaped members.
  • the bottom of the hollow light-shielding grid can have a larger area to set up a columnar member, and at the same time can prevent the connection structure from emitting light to the LED. Occlusion of light normally emitted by the unit.
  • the pillar-shaped member is integrally formed with the hollow shading grid as a part of the matrix shading frame; in another embodiment, the pillar-shaped member is integrally formed with the substrate.
  • the substrate includes a plurality of dimples or through holes corresponding to the plurality of pillar-shaped members on a one-to-one basis, and the pillar-shaped member is partially disposed in the dimples or through-holes.
  • connection structure is disposed at a cross point position of the matrix shading frame.
  • connection structure is made of transparent material.
  • connection structure of transparent material covers the entire substrate, and separates the matrix shading frame from the substrate.
  • the matrix shading frame is formed by splicing a plurality of sub-matrix shading frames, and each of the sub-matrix shading frames is fixedly connected to the substrate through a connection structure.
  • This technical solution avoids structural deformation and stress deformation caused by the matrix shading frame being too large.
  • the sub-matrix shading frame is respectively connected to the substrate through a connection structure, which can ensure the stability of the overall structure and the flatness of the light-emitting side of the LED display screen.
  • the LED display screen further includes a polarizing plate, which is disposed on the light path through which the light emitted by the LED array passes, and includes an alternating array of first polarization regions and a second polarization region array. The light passes through the first polarization region to form a first polarized light, and passes through the second polarization region to form a second polarized light.
  • a polarizing plate which is disposed on the light path through which the light emitted by the LED array passes, and includes an alternating array of first polarization regions and a second polarization region array. The light passes through the first polarization region to form a first polarized light, and passes through the second polarization region to form a second polarized light.
  • the LED display screen of the present invention by suspending a matrix light-shielding frame including a hollow light-shielding grid with light absorption properties above the LED array, on the one hand, the direct contact between the hollow light-shielding grid and the substrate on which the LED array is located can be prevented, and the matrix can be prevented.
  • the light-shielding frame is deformed due to thermal effects and mechanical disturbances; on the other hand, the light emitted by the LED light-emitting unit corresponding to the hollow light-shielding grid is limited to one pixel unit, even if the LED light-emitting unit has a large angle of light through the hollow light
  • the gap between the grid and the substrate leaks to the pixel unit next door, and will be partially or completely absorbed by the hollow light-shielding grid to reduce or avoid leakage from the LED display, thereby ensuring the display effect of the LED display.
  • FIG. 1 is a schematic diagram showing a pixelization distribution of light intensity of a one-dimensional LED array.
  • FIG. 2 is a simulated illuminance distribution diagram of an LED array having an optical diffusion film but without a matrix light-shielding frame.
  • FIG. 3 is an illuminance distribution diagram of a simulated LED array having an optical diffusion film and a matrix shading frame.
  • FIG. 4 is an exploded view of the overall structure of the LED display screen of the present invention.
  • FIG. 5 is a sectional view showing an LED display screen according to an embodiment of the present invention.
  • FIG. 6 is a sectional view showing an LED display screen according to another embodiment of the present invention.
  • FIG. 7 is a sectional view showing an LED display screen according to another embodiment of the present invention.
  • FIG. 8 is a bottom view of the matrix shading frame of the LED display screen in the embodiment shown in FIG. 7.
  • FIG. 9 is a sectional view showing an LED display screen according to another embodiment of the present invention.
  • FIG. 10 is an exploded view of the overall structure of an LED display screen according to another embodiment of the present invention.
  • the LED display screen includes an LED light emitting unit, and the emitted light of the LED light emitting unit is Lambertian distributed light, and its emission angle can reach 180 °.
  • the LED array is used as the light source of the LED display, when a single or multiple LED light-emitting chips correspond to one display pixel, adjacent LED light-emitting chips will generate light crosstalk, resulting in a pixel mixed with light from other pixels during display. Leading to artifacts. For example, when a pixel is a black image area, adjacent bright pixels may diffuse light, resulting in the pixel failing to appear black, which reduces the image display quality.
  • the LED rectangular shading frame has a hollow structure composed of a plurality of hollow shading grids, and each hollow shading grid can surround one LED light emitting unit. The light emitted by the LED light emitting unit is emitted through the hollow portion of the center of the hollow light-shielding grid, and the light incident on the side wall of the hollow light-shielding grid is blocked.
  • an optical diffusion film is added on the exit side of the LED display screen.
  • the human eye can see the object because the object is imaged on the retina through the eye.
  • the human eye directly images the LED light emitting unit array of the LED display screen onto the retina. Due to the low fill rate and large pitch of the LED, the low fill rate of the light emitting area in the pixel unit is caused. Even if the light of each LED light emitting unit overlaps, the picture imaged to the human eye is still not separated from the LED light emitting unit. Array of facts. Therefore, especially when viewed from a close distance, the LED display screen of this technical solution has a very obvious graininess.
  • an optical diffusion film in front of the LED array to effectively average the light intensity distribution in each pixel area.
  • the optical diffusion film changes the light distribution of the light emitted by the LED light emitting unit again, making the optical diffusion film a "passive light source".
  • the human eye images the optical diffusion film with image information onto the retina, instead of imaging the separated LED array. Therefore, as long as the filling rate of each image pixel corresponding to the optical diffusion film is sufficiently high, the graininess of image display can be eliminated.
  • This optical diffusion film generally uses transparent polycarbonate (PC) and polyethylene terephthalate (PET) as the substrate.
  • PC polycarbonate
  • PET polyethylene terephthalate
  • the diffusion angle of the optical diffusion film should be greater than 10 °. The larger the diffusion angle, the better the shielding effect of the optical diffusion film. An optical diffusion film of 50 ° or more is preferred.
  • the diffusion angle of the optical diffusion film can be obtained by making parallel light beams incident on the optical diffusion film and measuring the angle range of the emitted light. Specifically, the light cone angle of the light cone that is not less than half the light intensity of the light beam at the center of the emitted light is: A diffusion angle of the optical diffusion film.
  • optical diffusion film is particularly suitable for application scenarios where LED displays are viewed at a short distance.
  • FIG. 2 is a simulated illuminance distribution diagram of an LED array having an optical diffusion film but without a matrix light-shielding frame. Detailed description will be given below with reference to FIG. 2.
  • the lower graph in each group is for a group of LED light sources (three) arranged in the horizontal direction. The horizontal axis represents the center of the LED light source as the origin. The position of each LED light source (reference) is the illuminance corresponding to that position.
  • the unit illumination distribution after the optical diffusion film is still concentrated in the center region, and as h gradually increases, the pixel concentrated display effect weakens.
  • the unit illuminance distribution on the optical diffusion film is basically even, which indicates that the optical diffusion film helps to improve the LED Smooth display of the array.
  • the color and brightness of each pixel combine the information of the surrounding pixels, which affects the sharpness and contrast of the final displayed image.
  • FIG. 3 is an illuminance distribution diagram of a simulated LED array having an optical diffusion film and a matrix shading frame.
  • the vertical axis is the illumination variance. As the value of h increases, the variance of the illumination decreases exponentially, which means that the illumination distribution becomes more and more uniform. It can be seen in combination with the illuminance distribution diagrams of FIG. 2 and FIG. 3 that by using a combination of a light-shielding frame and an optical diffusion film, the illuminance distribution in a unit pixel space can be made uniform, and crosstalk of light emitted from adjacent LEDs can be avoided.
  • the present invention aims to improve the reliability of the matrix shading frame under the premise that there is no crosstalk between adjacent LED light emitting units.
  • the LED display screen 100 includes a substrate 10, an LED array 20, a matrix shading frame 30, and an optical diffusion film 40.
  • the LED array 20 includes a plurality of LED light emitting units disposed on the substrate 10.
  • the matrix shading frame 30 is disposed on the exit light path of the LED array 20 and includes a plurality of hollow shading grids arranged in a matrix form.
  • the hollow shading grids correspond to the LED light-emitting units one by one, and the hollow shading grids are on the substrate 10.
  • the orthographic projection surrounds its corresponding LED light emitting unit.
  • the optical diffusion film 40 is disposed on the light exit side of the matrix light-shielding frame 30.
  • the optical diffusion film 40 may not be required, for example, in an LED advertising display application scene viewed from a distance. Due to the long distance, the retina of the human eye cannot distinguish the distance between adjacent LED light emitting units. However, in high-quality consumer-grade application scenarios (such as living rooms and cinemas), an optical diffusion film should be provided to improve the pixel fill rate of LED display screens and make the illumination distribution of pixel outgoing light more uniform, reducing eye irritation. Pain.
  • FIG. 5 is a partial cross-sectional view illustrating an LED display screen according to an embodiment of the present invention, including a substrate 10, an optical diffusion film 40, an LED array, and a matrix shading frame.
  • the LED array includes an LED light-emitting unit 2
  • the matrix light-shielding frame includes a hollow light-shielding grid 3
  • the LED light-emitting unit 2 corresponds to the hollow light-shielding grid 3.
  • the hollow light-shielding grid 3 is disposed at a distance from the substrate 10. That is, the vertical distance h (equivalent to the distance from the optical diffusion film to the surface of the LED light emitting unit) of the light emitting port of the hollow light-shielding grid to the surface of the LED light-emitting unit is greater than the height l of the hollow light-shielding grid.
  • the hollow light-shielding grid 3 is suspended with respect to the substrate 10. This prevents the hollow shading grid from directly contacting the substrate, and avoids the impact of the vibration and heat of the substrate on the hollow shading grid.
  • the hollow light-shielding grid is made of a material with light absorption properties, so that the side-leakage light is absorbed when it enters the sidewall of the hollow light-shielding grid.
  • the hollow light-shielding grid may be composed of a light-absorbing material as a whole, or a structure in which a light-absorbing material layer is sprayed / plated on the surface of any framework material.
  • this technical solution is also beneficial to reducing the material cost of the matrix shading frame and the overall weight of the LED display screen.
  • the distance h between the LED light emitting unit and the optical diffusion film needs to be sufficiently large.
  • it means a matrix shading frame or hollow shading.
  • the height of the grid is large enough.
  • the technical solution of this embodiment can achieve the function of preventing crosstalk with a thinner matrix shading frame at the same h.
  • the position of the LED light-emitting unit 2 on the substrate 10 corresponds to the center of its corresponding hollow light-shielding grid 3.
  • the matrix shading frame is aligned with the LED array on the substrate such that the center of each hollow shading grid is aligned with the center of the LED light emitting unit. It can be understood that the position of the LED light emitting unit can also deviate from the center of the hollow shading grid
  • the LED light-emitting unit 2 is a light source module of one pixel unit of the LED display screen, and may include multiple LED chips (for example, including RGB three-color LED chips). The arrangement of the multiple LED chips is not repeated here.
  • a range of the height l of the hollow light-shielding grid is derived.
  • p is the distance between the centers of adjacent LED light emitting units
  • e is the chip length
  • d is the thickness of the side wall of the hollow shading grid
  • h is the light exit from the hollow shading grid to the LED
  • the vertical distance of the surface of the light-emitting unit is the critical height of the hollow shading grid.
  • FIG. 6 is a partial cross-sectional view of an LED display screen according to another embodiment of the present invention.
  • the thickness of the side wall of the hollow shading grid is gradually reduced away from the substrate.
  • the hollow-out light-shielding grid includes a minimum thickness d and a maximum thickness D.
  • the critical height L ′ of the hollow shading grid is obtained as
  • the LED display screen according to the embodiment shown in FIG. 6 can also prevent the matrix shading frame from being affected by internal air disturbances or other mechanical disturbances, so that surface deformation is difficult to occur, and the optical diffusion fixed on the matrix shading frame is prevented.
  • the membrane is not susceptible to environmental shocks.
  • the LED display screen according to the embodiment of the present invention further includes a connection structure, and the matrix light-shielding frame 30 and the substrate 10 are fixedly connected through the connection structure therebetween.
  • FIG. 7 is a sectional view of an LED display screen according to another embodiment of the present invention.
  • the LED display screen includes a substrate 10, an LED array 20, a matrix shading frame 30, and an optical diffusion film 40.
  • a connection structure 50 is further provided between the matrix light-shielding frame 30 and the substrate 10.
  • connection structure 50 includes a plurality of pillar-shaped members, such as 50a and 50b, disposed at the bottom of the side wall of the hollow shading grid.
  • the matrix shading frame 30 and the substrate 10 are fixedly connected through the plurality of pillar-shaped members.
  • FIG. 8 is a bottom view of the matrix shading frame of the LED display screen in the embodiment shown in FIG. 7.
  • the connection structure is disposed at the intersection point of the matrix light-shielding frame, which can reduce the blocking of the normal outgoing light of the LED light-emitting unit.
  • connection structure may be integrally formed with the hollow light-shielding grid as a part of the matrix light-shielding frame; in another embodiment, the pillar-shaped member is integrally formed with the substrate.
  • the connection structure may also be a structure independent of the matrix shading frame and the substrate.
  • connection structure and the hollow light-shielding grid are integrally formed, and can be implemented by segment injection molding.
  • the connection structure is the same as the main material of the hollow light-shielding grid.
  • the connection structure may be made of transparent material.
  • the substrate 10 further includes a plurality of pits such as 10a and 10b.
  • the pits correspond to the pillar members 50a, 50b and the like of the connection structure, and the pillar members are partially disposed in the recesses. This structure greatly improves the structural installation accuracy and structural stability.
  • the pits of the substrate may also be replaced by through holes, which will not be repeated here.
  • FIG. 9 is a sectional view of an LED display screen according to another embodiment of the present invention.
  • the LED display screen includes a substrate 10, an LED array 20, a matrix shading frame 30, an optical diffusion film 40, and a connection structure 50 '.
  • the connection structure in this embodiment is disposed between the substrate 10 and the matrix light-shielding frame 30.
  • the connection structure 50 'of this embodiment is a board made of transparent material and covers the entire substrate. 10.
  • the LED display screen may be an entire display screen, or may be formed by splicing a plurality of sub-LED display screens.
  • the substrate 10, the LED array 20, the matrix light-shielding frame 30, and the optical diffusion film 40 can be obtained by splicing.
  • the matrix light-shielding frame is formed by splicing a plurality of sub-matrix light-shielding frames, and each sub-matrix light-shielding frame is fixedly connected to the substrate through a connection structure.
  • This technical solution avoids structural deformation and stress deformation caused by the matrix shading frame being too large.
  • the sub-matrix shading frame is respectively connected to the substrate through a connection structure, which can ensure the stability of the overall structure and the flatness of the light emitting side of the LED display screen.
  • FIG. 10 is an exploded view of the overall structure of an LED display screen according to another embodiment of the present invention.
  • the LED display screen includes a substrate 10, an LED array 20, a matrix shading frame 30, an optical diffusion film 40, and a polarizing plate 60. Different from the embodiment shown in FIG. 4, this embodiment adds a polarizer 60 disposed on the optical path through which the light emitted by the LED array passes.
  • the polarizing plate 60 includes an array of first and second polarization regions 61 and 62 arranged alternately. Light emitted by the LED array passes through the first polarization region 61 to form a first polarized light, and passes through the second polarization region 62 to form a second polarized light. polarized light.
  • the polarizing plate 60 is disposed between the matrix light-shielding frame 30 and the optical diffusion film 40.
  • the polarizer may be disposed on a side of the optical diffusion film away from the LED array.
  • the polarizer may be further disposed on a surface of the transparent substrate near the LED array.
  • first polarization regions and the second polarization regions are alternately arranged in a stripe shape.
  • first polarization region and the second polarization region may be similar to a black and white lattice of chess, and are alternately arranged in the horizontal and vertical directions, respectively.
  • a polarizing plate 60 is added, so that the light emitted from the LED array can form an image of two polarization states, thereby achieving 3D display.
  • the matrix light-shielding frame with light absorption properties is suspended above the LED array, and the optical diffusion film is fixed on the matrix light-shielding frame, so that the matrix light-shielding frame can avoid thermal effects. And mechanical disturbance to deform and prevent the optical diffusion film from being affected by environmental vibrations, while increasing the beneficial effect of light absorption, thereby improving the visual effect of the LED display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

一种LED显示器,包括:LED阵列(20),包括设置在基板(10)上的多个LED发光单元(2);矩阵遮光架(30),设置在LED阵列(20)的出射光路径上,包括排列成矩阵形式的多个镂空遮光栅格(3),镂空遮光栅格(3)具有吸光属性;其中,镂空遮光栅格(3)与LED发光单元(2)一一对应,且镂空遮光栅格(3)在基板(10)上的正投影包围对应的LED发光单元(2),至少部分镂空遮光栅格(3)与基板(10)间隔设置。通过将包含具有吸光属性的镂空遮光栅格(3)的矩阵遮光架(30)悬置在LED阵列(20)上方,一方面避免了矩阵遮光架(30)因热效应和机械扰动而产生的形变和老化,一方面避免了像素单元的光串扰,提高了LED显示屏的显示效果。

Description

LED显示屏 技术领域
本发明涉及显示领域,更具体地,涉及一种LED显示屏。
背景技术
LED显示屏幕具有高亮度、高对比度、节能等优点,随着相关技术不断成熟,其应用领域和规模不断增长。一些厂商相继推出了LED矩阵显示屏用以呈现高质量影像,例如三星的Cinema LED Screen和索尼的Crystal显示屏。LED大屏幕显示已经逐渐进入高质量视频放映领域,并且随着技术的不断成熟,逐步可以满足100寸以上室内显示乃至院线观影的需求,可以预料到LED大屏幕显示的应用场景会不断地扩大。
然而,目前LED大屏幕显示还存在一些问题。LED显示屏在放映高清影像时,整个画面可以清楚地观察到每个像素点,影响了观影效果。这是LED的低光线填充率和大间距共同导致的。例如,由于LED灯珠的发光强度很高,对于通过集合LED灯珠而形成的显示屏而言,每一LED灯珠(相当于一像素)上的光线过于集中在位于中心处的LED灯珠上,而相邻的LED的间距相对于LED灯珠本身太大,使得像素的光线填充率很低,造成观看时颗粒感明显的不良观影体验。
图1是示出了一维LED阵列的光强像素化分布示意图。如图1的(a)所示,对于像素点而言,由于亮度集中在中心区域,峰值发光强度会投射到人眼视网膜上,从而造成人眼不适。减小LED间距到人眼分辨尺寸之下可以在一定程度上缓解像素化的观影体验,但是会极大地增加了产品成本;而增大LED发光面积不仅增加了能耗,也增加了封装的难度。
如图1的(b)所示,在LED阵列前布置光学扩散膜,可以有效地平均每个像素区域内的光强分布,但是由于相邻LED发光源的干扰,光学扩散膜下的单个像素空间上将包含了相邻LED发光源信息,从而降低显示的清晰度。为避免像素串扰,研发人员在LED阵列和光学扩散膜之间布置遮光架。然而,由于遮光架与基板完全接触,因此在热效应和机 械扰动的影响下,遮光架会形变,这些问题在很大程度上影响了观看者的感受。而且,遮光架明显增加了LED显示屏的重量。
发明内容
因而,本发明的目的是提供一种能够通过改进矩阵遮光架结构而避免矩阵遮光架发生形变并防止光学扩散膜受环境震动影响的LED显示屏。
为了解决上述问题,本发明提供了一LED显示屏,其包括:LED阵列,其包括设置在基板上的多个LED发光单元;矩阵遮光架,其设置在所述LED阵列的出射光路径上,包括排列成矩阵形式的多个镂空遮光栅格,所述镂空遮光栅格具有吸光属性;其中,所述镂空遮光栅格与所述LED发光单元一一对应,且所述镂空遮光栅格在所述基板上的正投影包围其对应的LED发光单元,至少部分所述镂空遮光栅格与所述基板间隔设置。
在一个实施方式中,所述LED发光单元在所述基板上的位置对应于其相应镂空遮光栅格的中心。
在一个实施方式中,所述镂空遮光栅格的高度l满足以下公式:
Figure PCTCN2019100487-appb-000001
其中,h为所述镂空遮光栅格的出光口到所述LED发光单元的表面的垂直距离,p为相邻LED发光单元的中心之间的距离,d为所述镂空遮光栅格的侧壁的厚度,e为所述LED发光单元长度。该技术方案确保了经镂空遮光栅格与基板的间隔侧漏的光能够完全被隔壁的具有吸光属性的镂空遮光栅格吸收,从而提高图像显示的准确性和提高显示对比度。
在一个实施方式中,所述镂空遮光栅格的侧壁的厚度远离所述基板逐渐减小。该技术方案一方面使得矩阵遮光架通过注塑拔模成型的工艺更加容易实现,另一方使得矩阵遮光架的出光侧(即远离LED阵列一侧)具有更大的光填充比。
在一个实施方式中,LED显示屏还包括光学扩散膜,设置于所述矩阵遮光架的出光侧。光学扩散膜的存在使得成像到人眼的“物”转换为被动发光的光学扩散膜,有利于消除LED发光单元直接发光的颗粒感。
在一个进一步的实施方式中,所述矩阵遮光架与所述基板通过其之 间的连接结构固定连接。
在一个实施方式中,所述连接结构包括设置在所述镂空遮光栅格的侧壁底部的多个立柱形构件,所述矩阵遮光架与所述基板通过所述多个立柱形构件固定连接。尤其地,在镂空遮光栅格的侧壁的厚度远离所述基板逐渐减小的技术方案中,镂空遮光栅格的底部能够有更大的面积设置立柱形构件,能够同时避免连接结构对LED发光单元正常发射的光的遮挡。
在一个实施方式中,立柱形构件与镂空遮光栅格一体成型,作为矩阵遮光架的一部分;在另一个实施方式中,立柱形构件与基板一体成型。
在一个实施方式中,所述基板包括与所述多个立柱形构件一一对应的多个凹坑或通孔,所述立柱形构件部分设置于所述凹坑或通孔内。该技术方案有利于矩阵遮光架与基板的固定安装,提高结构安装的精度。
在一个实施方式中,所述连接结构设置于所述矩阵遮光架的交叉点位置。
在一个实施方式中,所述连接结构为透明材质。
在一个实施方式中,透明材质的连接结构覆盖整个基板,将所述矩阵遮光架与所述基板隔开。
在一个实施方式中,矩阵遮光架由多个子矩阵遮光架拼接而成,各所述子矩阵遮光架分别通过连接结构与所述基板固定连接。该技术方案避免了矩阵遮光架过大而导致的结构形变、应力形变,同时,子矩阵遮光架分别与基板通过连接结构连接,能够确保整体结构的稳定性和LED显示屏出光侧的平整度。
在一个实施方式中,LED显示屏还包括偏振片,设置在所述LED阵列发出的光线所经过的光路上,包括交替排列的第一偏振区和第二偏振区阵列,所述LED阵列发出的光线经过第一偏振区形成第一偏振光,经过第二偏振区形成第二偏振光。
根据本发明的LED显示屏,通过将包含具有吸光属性的镂空遮光栅格的矩阵遮光架悬置在LED阵列上方,一方面避免了镂空遮光栅格与LED阵列所在的基板直接接触,可以防止矩阵遮光架因热效应和机械扰动而发生形变;另一方面使得与镂空遮光栅格一一对应的LED发光单元发出的光被限制在一个像素单元内,即使LED发光单元有大角度的光通 过镂空遮光栅格与基板之间的间隔侧漏到隔壁像素单元,也会被镂空遮光栅格部分或全部吸收而减少或避免从LED显示屏泄漏,保证LED显示屏的显示效果。
附图说明
图1是示出了一维LED阵列的光强像素化分布示意图。
图2是对具有光学扩散膜但未安装矩阵遮光架的LED阵列进行仿真的照度分布图。
图3是对具有光学扩散膜和矩阵遮光架的LED阵列进行仿真的照度分布图。
图4为本发明LED显示屏的整体结构爆炸图。
图5是示出了本发明的实施例的LED显示屏的断面图。
图6是示出了本发明的另一实施例的LED显示屏的断面图。
图7是示出了本发明的另一实施例的LED显示屏的断面图。
图8为图7所示实施例中LED显示屏的矩阵遮光架的仰视图。
图9是示出了本发明的又一实施例的LED显示屏的断面图。
图10为本发明另一实施例的LED显示屏的整体结构爆炸图。
具体实施方式
LED显示屏包括LED发光单元,LED发光单元的出射光为朗伯分布的光,其发射角度可达180°。当将LED阵列作为LED显示屏的发光源,使得单颗或多颗LED发光芯片对应一个显示像素时,相邻的LED发光芯片会产生光串扰,导致一个像素在显示时混有其他像素的光,导致产生伪影。例如,当一个像素为黑色图像区域时,相邻的亮像素可能会有光扩散过来,导致该像素未能呈现为黑色,降低了图像显示质量。
为解决该问题,在LED阵列的出射光路上设置矩阵遮光架,对相邻的像素单元进行分割,从而避免光串扰。具体地,根据本发明的实施例的LED矩形遮光架具有由多个镂空遮光栅格构成的镂空结构,每个镂空遮光栅格能够包围一个LED发光单元。LED发光单元发出的光经过镂空 遮光栅格的中心镂空部出射,而入射到镂空遮光栅格的侧壁的光被阻挡。
为进一步提高显示效果,在LED显示屏的出射侧增加了光学扩散膜。
人眼能够看到物体,是由于物体通过眼睛成像到视网膜上。普通LED阵列在放映时,人眼直接将LED显示屏幕的LED发光单元阵列成像到视网膜上。由于LED的低填充率和大间距,导致了像素单元内发光区域的低填充率,即使各LED发光单元的光发生交叠,仍然不影响成像到人眼的画面是由彼此分离的LED发光单元阵列组成的事实。因此,尤其在近距离观看的时候,这种技术方案的LED显示屏具有十分明显的颗粒感。
为此,我们在LED阵列前布置光学扩散膜来有效地平均每个像素区域内的光强分布。当LED显示屏幕中设置了光学扩散膜后,光学扩散膜将LED发光单元发出的光重新改变了光分布,使得光学扩散膜成为一个“被动发光源”。此时,人眼将带有图像信息的光学扩散膜成像到视网膜上,而非对分离的LED阵列进行成像。因此,只要使得光学扩散膜对应的各个图像像素的填充率足够高,即可消除图像显示的颗粒感。
这种光学扩散膜一般采用透明的聚碳酸酯(PC)、聚对酞酸乙二酯(PET)作为基材,可以选择包括添加了体散射粒子的体光学扩散膜,比如二氧化硅、二氧化钛等无机颗粒或者采用丙烯酸树脂、环氧系树脂制成的有机颗粒;或者可以通过在透明基材表面加工具备光学扩散作用的微结构来形成光学扩散膜。光学扩散膜的扩散角度应大于10°以上,扩散角度越大,光学扩散膜的遮蔽效果越好,优选50°以上的光学扩散膜。其中,光学扩散膜的扩散角度可以通过使平行光束入射到光学扩散膜,测量出射光的角度范围得到,具体地,出射光的不小于出射光中心光束光强一半的光锥的光锥角为该光学扩散膜的扩散角度。
增加光学扩散膜尤其适合较近距离观看LED显示屏的应用场景。
为了更好的说明矩阵遮光架消除像素间串扰的功能,分别对未安装和安装有矩阵遮光架的LED阵列的发光效果进行仿真。图2是对具有光学扩散膜但未安装矩阵遮光架的LED阵列进行仿真的照度分布图。下面将参照图2进行具体说明。
具体地,选择以下参数进行光学仿真:p=2.1mm,e=0.2mm,光学扩散膜的扩散角度为15°,其中,p为相邻LED发光单元的中心之间的距 离,e为芯片长度。图2的三组图,从左至右分别对应于h=1mm、h=1.5mm和h=2mm时,光学扩散膜的照度分布情况,其中,h为光学扩散膜到LED发光单元的表面的垂直距离。其中,截取光学扩散膜上3*3个像素区域,每组图中的下方的曲线图是针对横向上排列的一组LED光源(三个)的,横轴表示以处于中心的LED光源为原点(基准)的各LED光源的位置,纵轴为该位置对应的照度。
如图2的左一图所示,当h=1mm时,通过光学扩散膜后单位照度分布依然集中在中心区域,随着h逐渐增大,像素集中显示效果减弱。如图2的左二图和左三图所示,当光学扩散膜距离LED阵列的距离增加至h=2mm时,光学扩散膜上单位照度分布基本平均,这表明光学扩散膜有助于提升LED阵列的平滑显示效果。但是可以从图中看出,LED光源之间存在互相串扰,最终各个像素的颜色和亮度综合了周围像素的信息,从而影响了最终显示图像的锐度和对比度。
为了避免相邻LED光源之间的串扰,在LED阵列和光学扩散膜之间增设矩阵遮光架,其中光学扩散膜设置在矩阵遮光架上方。图3是对具有光学扩散膜和矩阵遮光架的LED阵列进行仿真的照度分布图。
图3的(a)和(b)分别示出了h=2mm和h=5mm时,增设的矩阵遮光架对光串扰的抑制作用。对比图3的(a)和(b)可以看出,在h=2mm时,由于遮光架未完全屏蔽相邻LED光源大角度光照的影响,所以单像素空间上照度分布依然不均匀,而当h=5mm时,则可得到均匀的照度分布。图3的(c)示出了h=1、2、3、4、5mm时的单元像素空间(即一镂空遮光栅格)照度分布方差,横轴为光学扩散膜距LED阵列的距离h,纵轴为照度方差。随着h值增加,照度方差呈指数级下降,意味着照度分布越来越均匀。结合图2和图3的照度分布图可以看出,通过组合使用遮光架和光学扩散膜,可以使单元像素空间内的照度分布均匀,并且避免来自相邻LED发光的光的串扰。
但是,由于通常遮光架与基板接触,因此在热效应和机械扰动的影响下,遮光架会形变,从而使画质劣化。为此,本发明旨在满足相邻LED发光单元无串扰的前提下,改善矩阵遮光架的可靠性。
下面,将参照附图详细说明根据本发明的LED显示屏。
请参见图4,为本发明LED显示屏的整体结构爆炸图。LED显示屏100包括基板10、LED阵列20、矩阵遮光架30和光学扩散膜40。其中,LED阵列20包括设置在基板10上的多个LED发光单元。矩阵遮光架30设置在LED阵列20的出射光路径上,包括排列呈矩阵形式的多个镂空遮光栅格,镂空遮光栅格与LED发光单元一一对应,且镂空遮光栅格在基板10上的正投影包围其对应的LED发光单元。光学扩散膜40设置于矩阵遮光架30的出光侧。
可以理解,在本发明的一些实施方式中,可以不需要光学扩散膜40,例如在远距离观看的LED广告显示牌应用场景中。由于远距离,人眼视网膜无法分别出相邻LED发光单元的间距。但是在高质量的消费级应用场景中(如客厅、影厅),应设置光学扩散膜,以提高LED显示屏的像素填充率,并使像素出射光的照度分布更加均匀,减少对眼的刺痛感。
接下来,结合附图对LED显示屏的像素单元细节结构进行描述。
图5是示出了根据本发明的实施例的LED显示屏的部分断面图,包括基板10、光学扩散膜40、LED阵列和矩阵遮光架。其中,LED阵列包括LED发光单元2,矩阵遮光架包括镂空遮光栅格3,LED发光单元2与镂空遮光栅格3相对应。
在本实施例中,镂空遮光栅格3与基板10间隔设置。即,镂空遮光栅格的出光口到LED发光单元的表面的垂直距离h(等于光学扩散膜到LED发光单元表面的距离)大于镂空遮光栅格的高度l。镂空遮光栅格3相对于基板10悬空设置。这避免了镂空遮光栅格与基板直接接触,避免了基板的震动、发热对镂空遮光栅格的影响。
在本实施例中,由于镂空遮光栅格的悬空,LED发光单元2隔壁的LED发光单元出射的大角度光将通过镂空遮光栅格与基板10之间的间距侧漏到LED发光单元2所在的像素单元。为了防止这部分侧漏光从镂空遮光栅格3的出光口出射,镂空遮光栅格采用具有吸光属性的材料制造,从而使得侧漏光在入射到镂空遮光栅格的侧壁时被吸收。镂空遮光栅格既可以是整体由吸光材料构成,也可以是通过在任意骨架材料表面喷涂/镀制吸光材料层的结构。
本技术方案除了上述提到的防止基板影响和防止光串扰的作用外, 还有利于降低矩阵遮光架的材料成本和LED显示屏的总体重量。根据前文描述,当LED阵列确定的情况下,为了实现较好的照度分布均匀性,需要LED发光单元与光学扩散膜的距离h足够大,那么在原技术方案中,意味着矩阵遮光架或镂空遮光栅格的高度足够大。本实施例的技术方案能够在相同的h下,以更薄的矩阵遮光架实现了防串扰的功能。
在本实施例中,LED发光单元2在基板10上的位置对应于其相应的镂空遮光栅格3的中心。矩阵遮光架与基板上的LED阵列排列成每个镂空遮光栅格的中心和LED发光单元的中心对齐。可以理解,LED发光单元的位置也可以偏离镂空遮光栅格的中心
LED发光单元2为LED显示屏的一个像素单元的光源模组,可以包括多个LED芯片(如包括RGB三色LED芯片),该多个LED芯片的排列方式此处不再赘述。
为了使得悬空放置的镂空遮光栅格获得与原非悬空方案相同的遮光效果,对镂空遮光栅格的尺寸进行进一步研究,具体如下。
根据图5所示的极限情况(即,来自相邻LED发光单元的光刚好不直接入射到光学扩散膜102的情况)来推导镂空遮光栅格的高度l的范围。请参见图5,其中,p为相邻LED发光单元的中心之间的距离,e为芯片长度,d为镂空遮光栅格的侧壁厚度,h为镂空遮光栅格的出光口到所述LED发光单元的表面的垂直距离(等于光学扩散膜到LED发光单元表面的距离),L为镂空遮光栅格的临界高度。
根据相似三角形原理,
Figure PCTCN2019100487-appb-000002
那么,镂空遮光栅格的临界高度L为
Figure PCTCN2019100487-appb-000003
为了使来自相邻LED发光单元的光不会彼此串扰,只要使得遮光架的高度l>L,就可获得防止光串扰的效果,即
Figure PCTCN2019100487-appb-000004
请参见图6,为本发明另一实施例的LED显示屏的部分断面图。与图5所示的实施例不同的是,本实施例中,镂空遮光栅格的侧壁厚度远离基板逐渐减小。这种构造的优点在于能够提高矩阵遮光架的机械强度,降低制备难度,增加出光口面积,从而提高像素填充率。
本实施例中,其他器件的描述和标号参见图5所示实施例中的描述,此处不再赘述。本实施例的标记与图5实施例的不同之处在于,镂空遮光栅格包括最小厚度d和最大厚度D。
同样对图6所示的临界情况进行分析,研究使得相邻LED发光单元的光不泄漏的镂空遮光栅格的最小高度L’,根据相似三角形原理矩阵遮光架的最小高度L’满足以下关系式:
Figure PCTCN2019100487-appb-000005
得到镂空遮光栅格的临界高度L’为
Figure PCTCN2019100487-appb-000006
同样,为了使来自相邻LED发光单元的光不会彼此串扰,只要使得遮光架的高度l>L’,就可获得防止光串扰的效果。
将图5和图6的L和L’的公式进行比较发现,当d、p、e、h相同时,L>L’,因此,当取d为镂空遮光栅格的最小厚度时,只要使得使l>L,即可保证不存在光串扰。
综上可知,根据图6所示的实施例的LED显示屏同样也可以防止矩阵遮光架受到内部空气扰动或其他机械扰动影响,从而不易发生表面变形,并且使固定在矩阵遮光架上的光学扩散膜不易受到环境震动的影响。
为了将矩阵遮光架固定地悬置在LED阵列上方,根据本发明的实施例的LED显示屏进一步包括连接结构,矩阵遮光架30与基板10通过其之间的连接结构固定连接。
请参见图7,为本发明的另一实施例的LED显示屏的断面图。LED显示屏包括基板10、LED阵列20、矩阵遮光架30和光学扩散膜40。此外,本实施例中,还包括设置于所述矩阵遮光架30与基板10之间的连接结构50。
如图所示,连接结构50包括设置在镂空遮光栅格的侧壁底部的多个立柱形构件,如50a、50b,矩阵遮光架30与基板10通过该多个立柱形构件固定连接。
请参见图8,为图7所示实施例中LED显示屏的矩阵遮光架的仰视图。在本实施例中,连接结构设置于矩阵遮光架的交叉点位置,能够减少对LED发光单元的正常出射光的阻挡。
连接结构可以与镂空遮光栅格一体成型,作为矩阵遮光架的一部分;在另一个实施方式中,立柱形构件与基板一体成型。连接结构还可以是独立于矩阵遮光架和基板的结构。
在本实施例中,连接结构与镂空遮光栅格一体成型,可以用分段注塑成型的方式实现,连接结构与镂空遮光栅格的主要材料相同。在本发明的一个变形实施方式中,连接结构也可以为透明材质。
在本实施例中,基板10上进一步包括10a、10b等多个凹坑,该凹坑与连接结构的立柱形构件50a、50b等一一对应,且立柱形构件部分设置于凹坑内。该结构使得结构安装精度、结构稳定性大大提高。
在本发明的其他实施方式中,基板的凹坑也可以替换为通孔,此处不再赘述。
请参见图9,为本发明又一实施例的LED显示屏的断面图。LED显示屏包括基板10、LED阵列20、矩阵遮光架30、光学扩散膜40和连接结构50’。本实施例中的连接结构设置于基板10与矩阵遮光架30之间,与图7所示的实施例不同之处在于,本实施例的连接结构50’为一透明材质的板,覆盖整个基板10。该连接结构50’不会对LED发光单元的光产生明显阻挡,矩阵遮光架30在光学上仍然相对于基板10悬空,且避免了与基板10直接接触。
在本发明中,LED显示屏可以为一整块显示屏,也可以由多个子LED显示屏拼接而成。其中,基板10、LED阵列20、矩阵遮光架30和光学扩散膜40都可以通过拼接得到。
具体地,在本发明的一个实施例中,矩阵遮光架由多个子矩阵遮光架拼接而成,各子矩阵遮光架分别通过连接结构与基板固定连接。该技术方案避免了矩阵遮光架过大而导致的结构形变、应力形变,同时,子 矩阵遮光架分别与基板通过连接结构连接,能够确保整体结构的稳定性和LED显示屏出光侧的平整度。
请参见图10,为本发明另一实施例的LED显示屏的整体结构爆炸图。LED显示屏包括基板10、LED阵列20、矩阵遮光架30、光学扩散膜40和偏振片60。与图4所示实施例不同的是,本实施例增加了设置在LED阵列发出的光线所经过的光路上的偏振片60。
其中,偏振片60包括交替排列的第一偏振区61和第二偏振区62阵列,LED阵列发出的光线经过第一偏振区61后形成第一偏振光,经过第二偏振区62后形成第二偏振光。
在本实施例中,偏振片60设置在矩阵遮光架30与光学扩散膜40之间。在其他实施方式中,偏振片还可以设置在光学扩散膜远离LED阵列的一侧。为了保护偏振片,防止其磨损,还可以进一步将偏振片设置在一透明基板的靠近LED阵列的表面上。
在本实施例中,第一偏振区和第二偏振区呈条形交替排列。在其他实施方式中,第一偏振区和第二偏振区也可以类似于国际象棋的黑白格子,沿横向和纵向分别交替排列。
本实施例通过增加了偏振片60,使得LED阵列发出的光能够形成两种偏振态的图像,从而实现3D显示。
综上所述,采用根据本发明的LED显示屏,通过将具有吸光属性的矩阵遮光架悬置在LED阵列上方,并使光学扩散膜固定在矩阵遮光架上,能够避免矩阵遮光架发生因热效应和机械扰动而形变并防止光学扩散膜受环境震动影响,同时增加了吸光的有益效果,从而提高了LED显示的视觉效果。
尽管在上面已经参照附图说明了根据本发明的LED显示屏,但是本发明不限于此,且本领域技术人员应理解,在不偏离本发明随附权利要求书限定的主旨或范围的情况下,可以做出各种改变、组合、次组合以及变型。

Claims (12)

  1. 一种LED显示屏,其特征在于,包括:
    LED阵列,其包括设置在基板上的多个LED发光单元;
    矩阵遮光架,其设置在所述LED阵列的出射光路径上,包括排列成矩阵形式的多个镂空遮光栅格,所述镂空遮光栅格具有吸光属性;
    其中,所述镂空遮光栅格与所述LED发光单元一一对应,且所述镂空遮光栅格在所述基板上的正投影包围其对应的LED发光单元,至少部分所述镂空遮光栅格与所述基板间隔设置。
  2. 根据权利要求1所述的LED显示屏,其特征在于,所述LED发光单元在所述基板上的位置对应于其相应镂空遮光栅格的中心。
  3. 根据权利要求1所述的LED显示屏,其特征在于,
    所述镂空遮光栅格的高度l满足以下公式:
    Figure PCTCN2019100487-appb-100001
    其中,h为所述镂空遮光栅格的出光口到所述LED发光单元的表面的垂直距离,p为相邻LED发光单元的中心之间的距离,d为所述镂空遮光栅格的侧壁的最小厚度,e为所述LED发光单元长度。
  4. 根据权利要求1所述的LED显示屏,其特征在于,所述镂空遮光栅格的侧壁的厚度远离所述基板逐渐减小。
  5. 根据权利要求1所述的LED显示屏,其特征在于,还包括光学扩散膜,设置于所述矩阵遮光架的出光侧。
  6. 根据权利要求1~5中任一项所述的LED显示屏,其特征在于,所述矩阵遮光架与所述基板通过其之间的连接结构固定连接。
  7. 根据权利要求6所述的LED显示屏,其特征在于,所述连接结构包括设置在所述镂空遮光栅格的侧壁底部的多个立柱形构件,所述矩阵遮光架与所述基板通过所述多个立柱形构件固定连接。
  8. 根据权利要求7所述的LED显示屏,其特征在于,所述基板包括与所述多个立柱形构件一一对应的多个凹坑或通孔,所述立柱形构件部分设置于所述凹坑或通孔内。
  9. 根据权利要求7所述的LED显示屏,其特征在于,所述连接结构 设置于所述矩阵遮光架的交叉点位置。
  10. 根据权利要求6所述的LED显示屏,其特征在于,所述连接结构为透明材质。
  11. 根据权利要求6所述的LED显示屏,其特征在于,矩阵遮光架由多个子矩阵遮光架拼接而成,各所述子矩阵遮光架分别通过连接结构与所述基板固定连接。
  12. 根据权利要求1所示的LED显示屏,其特征在于,还包括偏振片,设置在所述LED阵列发出的光线所经过的光路上,包括交替排列的第一偏振区和第二偏振区阵列,所述LED阵列发出的光线经过第一偏振区形成第一偏振光,经过第二偏振区形成第二偏振光。
PCT/CN2019/100487 2018-09-28 2019-08-14 Led显示屏 WO2020063158A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811136814.2 2018-09-28
CN201811136814.2A CN110969951B (zh) 2018-09-28 2018-09-28 Led显示屏

Publications (1)

Publication Number Publication Date
WO2020063158A1 true WO2020063158A1 (zh) 2020-04-02

Family

ID=69949562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100487 WO2020063158A1 (zh) 2018-09-28 2019-08-14 Led显示屏

Country Status (2)

Country Link
CN (1) CN110969951B (zh)
WO (1) WO2020063158A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112991966B (zh) * 2020-04-26 2022-11-29 重庆康佳光电技术研究院有限公司 一种显示背板、显示装置和显示背板制作方法
CN112349214A (zh) * 2020-10-27 2021-02-09 合肥鑫晟光电科技有限公司 一种微led面板、其制作方法及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599238A (zh) * 2009-07-15 2009-12-09 总装备部工程设计研究总院 Led像素点均匀扩散的透光面罩
CN202855217U (zh) * 2012-10-22 2013-04-03 深圳市皓明佳科技有限公司 一种防水散热型led显示模组
CN203179432U (zh) * 2013-04-17 2013-09-04 长春希达电子技术有限公司 具有高画面填充比的全彩led显示模块
CN103972262A (zh) * 2013-11-19 2014-08-06 厦门天马微电子有限公司 一种有机发光显示装置及其制造方法
CN105206188A (zh) * 2015-10-15 2015-12-30 厦门科安技术开发有限公司 Led显示屏消除摩尔纹的扩光成像装置
WO2017184686A1 (en) * 2016-04-19 2017-10-26 The Penn State Research Foundation Gap-free microdisplay based on iii-nitride led arrays

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887666B (zh) * 2010-05-31 2012-07-04 广东威创视讯科技股份有限公司 一种led显示装置
CN104575307A (zh) * 2014-12-23 2015-04-29 深圳市奥拓电子股份有限公司 一种无摩尔纹的led显示屏
CN104680947A (zh) * 2015-02-15 2015-06-03 北京环宇蓝博科技有限公司 Led屏幕消除莫尔条纹并提高填充系数的装置及方法
CN105161012A (zh) * 2015-08-28 2015-12-16 厦门科安技术开发有限公司 Led显示屏消除摩尔纹混色面罩
CN105933696A (zh) * 2016-05-20 2016-09-07 深圳市奥拓电子股份有限公司 一种被动式圆偏振3d led显示屏模组、显示设备及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599238A (zh) * 2009-07-15 2009-12-09 总装备部工程设计研究总院 Led像素点均匀扩散的透光面罩
CN202855217U (zh) * 2012-10-22 2013-04-03 深圳市皓明佳科技有限公司 一种防水散热型led显示模组
CN203179432U (zh) * 2013-04-17 2013-09-04 长春希达电子技术有限公司 具有高画面填充比的全彩led显示模块
CN103972262A (zh) * 2013-11-19 2014-08-06 厦门天马微电子有限公司 一种有机发光显示装置及其制造方法
CN105206188A (zh) * 2015-10-15 2015-12-30 厦门科安技术开发有限公司 Led显示屏消除摩尔纹的扩光成像装置
WO2017184686A1 (en) * 2016-04-19 2017-10-26 The Penn State Research Foundation Gap-free microdisplay based on iii-nitride led arrays

Also Published As

Publication number Publication date
CN110969951B (zh) 2021-07-23
CN110969951A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
US9423535B1 (en) LED display screen covers and LED displays
US8950884B2 (en) Backlight and display
US8373630B2 (en) Display device
WO2020063704A1 (zh) Led显示屏
WO2017002307A1 (ja) バックライト装置および液晶表示装置
WO2017002308A1 (ja) バックライト装置および液晶表示装置
JP2010107753A (ja) 液晶表示装置
JP2013104917A (ja) 光源デバイスおよび表示装置、ならびに電子機器
WO2021184324A1 (zh) 显示装置及其显示方法
US11056081B2 (en) Display panel and display device
WO2016197519A1 (zh) 视角扩大膜及包括其的广视角薄膜晶体管液晶显示装置
JP2013044899A (ja) 液晶表示装置
WO2020063702A1 (zh) Led显示屏
WO2020063158A1 (zh) Led显示屏
US20170314762A1 (en) LED Display Screen Covers and LED Displays
WO2021129797A1 (zh) 基于液体散射层的集成成像3d显示装置
CN109633981A (zh) 支撑结构、背光单元和显示面板
WO2020151604A1 (zh) Led显示屏
CN111969010B (zh) 一种显示面板及显示装置
US20220005988A1 (en) Led display screen
JP2014115576A (ja) 表示装置
WO2023217200A2 (zh) 3d led显示屏及3d影像系统
JP2018503876A (ja) ディスプレイ装置
JP2020170067A (ja) 虚像表示装置
WO2020063705A1 (zh) Led显示屏幕

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866938

Country of ref document: EP

Kind code of ref document: A1