WO2023217200A2 - 3d led显示屏及3d影像系统 - Google Patents

3d led显示屏及3d影像系统 Download PDF

Info

Publication number
WO2023217200A2
WO2023217200A2 PCT/CN2023/093348 CN2023093348W WO2023217200A2 WO 2023217200 A2 WO2023217200 A2 WO 2023217200A2 CN 2023093348 W CN2023093348 W CN 2023093348W WO 2023217200 A2 WO2023217200 A2 WO 2023217200A2
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing layer
layer
led
led display
linear
Prior art date
Application number
PCT/CN2023/093348
Other languages
English (en)
French (fr)
Other versions
WO2023217200A3 (zh
Inventor
周永业
李艳龙
Original Assignee
深圳市时代华影科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市时代华影科技股份有限公司 filed Critical 深圳市时代华影科技股份有限公司
Publication of WO2023217200A2 publication Critical patent/WO2023217200A2/zh
Publication of WO2023217200A3 publication Critical patent/WO2023217200A3/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing

Definitions

  • This application belongs to the field of 3D display, and in particular relates to a 3D LED display screen and a 3D imaging system.
  • the viewing principle of 3D movies is that the human left eye and right eye respectively receive the left eye image and right eye image played in frame sequence, and then the left eye image and right eye image are synthesized through the brain to produce a 3D effect.
  • the left eye and right eye need to receive images through 3D glasses, so that the left eye image can only be received by the left eye, and the right eye image can only be received by the right eye.
  • the LED display screen 1 is provided with a pixel array composed of LED pixel points 11.
  • the left lens and the right lens of the 3D glasses are switched in frame order to receive the image light emitted by the LED pixel points 11.
  • both the left lens and the right lens include a first polarizing layer 21, a liquid crystal layer 22 and a second polarizing layer 23 arranged in sequence.
  • the primary problem is that LED cinema screens have strict grayscale requirements, especially the first-level "light” brightness, which cannot be too high, such as 0.005 nit. Without increasing the gray scale level in the LED drive circuit, doubling the overall screen brightness will also double the "Qihui" brightness, which will not meet the requirements of a movie screen. If the gray scale level of the driving circuit is increased for this purpose, the cost of the driving circuit will increase significantly, which is not conducive to the product's cost performance. Therefore, in system design, it is difficult to balance the brightness design parameters in 2D and 3D display modes.
  • the principle is to use polarizers in alternate rows, columns, or dots on the pixel array of the LED display to divide the pixels on the LED display into left-eye image groups and right-eye image groups, and use polarized (passive) 3D
  • the disadvantage of using glasses to view 3D images displayed on an LED display is that the resolution is sacrificed by 50%, and each eye can only see half of the physical pixels on the LED display. If you want to achieve full image resolution, you need to double the pixels, which will almost double the cost of the entire LED display, and the cost performance will be significantly reduced.
  • the technical problem to be solved by the embodiments of this application is how to improve the light efficiency of active 3D LED display while balancing the brightness design parameters in 2D and 3D display modes.
  • an embodiment of the present application is implemented as follows: a 3D LED display screen, the 3D LED display screen is used in conjunction with active 3D glasses, and the active 3D glasses face the 3D One side of the LED display screen has a first polarizing layer that can modulate the incident light to have a first polarization state;
  • the 3D LED display screen includes an LED pixel array.
  • a polarizing layer is provided in the light emitting direction of the LED pixel array. The polarizing layer is used to absorb the light emitted by all LED pixels in the LED pixel array. All is polarized into light having a first polarization state.
  • Embodiments of the present application also provide a 3D imaging system, including:
  • Active 3D glasses used in conjunction with the 3D LED display screen, and the side of the active 3D glasses facing the 3D LED display screen has a first light source that can modulate the incident light to have a first polarization state.
  • Polarizing layer used in conjunction with the 3D LED display screen, and the side of the active 3D glasses facing the 3D LED display screen has a first light source that can modulate the incident light to have a first polarization state.
  • Polarizing layer used in conjunction with the 3D LED display screen, and the side of the active 3D glasses facing the 3D LED display screen has a first light source that can modulate the incident light to have a first polarization state.
  • Polarizing layer used in conjunction with the 3D LED display screen, and the side of the active 3D glasses facing the 3D LED display screen has a first light source that can modulate the incident light to have a first polarization state.
  • the 3D LED display screen provided by the embodiment of the present application is provided with a polarizing layer.
  • the polarizing layer can uniformly polarize the light emitted by all pixel points. Since the polarization process will absorb about half of the light efficiency, Therefore, it is equivalent to the screen brightness when the display is used to display 2D images relative to the luminous brightness of the pixels being halved. At the same time, the light efficiency calculation base when used to display 3D images is also halved. In this way, the 3D active glasses themselves As long as the light efficiency remains unchanged, the cumulative light efficiency of the entire process from the 3D LED display to the 3D active glasses will be doubled.
  • the brightness of the screen used to display 2D images is halved, it can be compensated by increasing the original luminous brightness of the LED pixels. This way, while balancing the brightness design parameters of 2D and 3D display modes, it can also improve the brightness. Improve the light efficiency of active 3D LED displays.
  • Figure 1 is a light path diagram of an active 3D LED display screen provided by the existing technology
  • Figure 2 is a calculation chart of the light efficiency of the active 3D LED display in 3D display mode shown in Figure 1;
  • Figure 3 is a calculation chart of the light efficiency in the corresponding 3D display mode when the brightness of the 2D display mode in Figure 2 is doubled;
  • Figure 4 is a light path diagram of an active 3D LED display screen provided by the first embodiment of the present application.
  • Figure 5 is a calculation chart of the light efficiency of the active 3D LED display in 3D display mode shown in Figure 4;
  • Figure 6 is a schematic diagram of the "inner circular polarizer structure" of the 3D LED display screen 41 provided by the first embodiment of the present application;
  • Figure 7 is a diagram of the angular correspondence between the absorption axis of each polarizing layer and the liquid crystal layer when linear polarization technology is used in the 3D imaging system provided by the second embodiment of the present application;
  • FIG. 8 is a diagram of the angular correspondence between the absorption axis of each polarizing layer and the liquid crystal layer when circular polarization technology is used in the 3D imaging system provided by the second embodiment of the present application.
  • FIG. 4 a light path diagram of an active 3D LED display screen 41 provided by the first embodiment of the present application is shown.
  • the 3D LED display screen 41 is used in a cinema in a completely dark environment and needs to be used in conjunction with active 3D glasses 42 , and the side of the active 3D glasses 42 facing the 3D LED display screen 41 has a first polarizing layer 421 that can modulate the incident light to have a first polarization state.
  • the active 3D glasses are generally shutter-type liquid crystal glasses, and structurally include a first polarizing layer 421, a TN mode liquid crystal cell 422, and a second linear polarizing layer 423.
  • the 3D LED display screen 41 includes an LED pixel array 411.
  • a polarizing layer 412 is provided in the light emitting direction of the LED pixel array 411.
  • the polarizing layer 412 is used to absorb all the light emitted by all the LED pixels in the LED pixel array 411. Be biased towards light having the first polarization state.
  • the polarizing layer 412 disposed in the light emitting direction of the LED pixel array 411 does not need to distinguish the positions of the pixels, that is, all pixels face the same polarizing layer, so the cost is very low.
  • the function of the polarizing layer 412 is to filter the light emitted from the pixel points into a first polarization state in advance. This process is called "polarization".
  • the first polarization state can be linear polarization such as P light or S light. state, it can also be a circularly polarized state such as left-handed or right-handed.
  • the audience needs to wear active 3D glasses 42 when viewing the 3D images displayed on the 3D LED display screen 41 , and the active 3D glasses 42 face the polarization performance of the first polarizing layer 421 of the 3D LED display screen 41 and the polarizing layer 412
  • the polarization properties are the same.
  • This combination can achieve the brightness of 3D images seen by the audience. Compared with the brightness of 2D images when viewing 2D images without wearing active 3D glasses42, the light efficiency is increased from 16% to more than 30%, which greatly improves the experience of watching 3D images.
  • the efficiency calculation process is shown in Figure 5.
  • the original luminous brightness of the pixels in the 3D LED display screen 41 is 666 nit, and after being polarized by the polarizing layer 412, it becomes 299.7 nit.
  • the polarizing layer 412 is a 3D LED display As part of the screen 41, the audience directly experiences the brightness of the image through the light emitted by the polarizing layer 412. Therefore, 299.7nit is the brightness parameter in the 2D display mode. The light efficiency of the 3D display mode should also be based on 299.7nit. to calculate.
  • the first polarizing layer 421 functions as a "polarizer” and basically allows 95% of the light to pass through.
  • the light deflected from the polarizing layer 412 sequentially passes through the first polarizing layer 421 with a light efficiency of 95%, the liquid crystal layer in the TN mode liquid crystal cell 422 with a light efficiency of 95%, and the second line with a light efficiency of 95%.
  • the first polarizing layer 421 in the active 3D glasses 42 mentioned above can modulate the incident light to have a first polarization state. It is only emphasized that the first polarizing layer 421 has this performance. In fact, in 3D In the display mode, since the polarizing layer 412 has already polarized all the light emitted by all the LED pixels in the LED pixel array 411 into light with the first polarization state, the role of the first polarizing layer 421 is more reflected in: "Profiling".
  • the above-mentioned pixels can be LED chips directly welded on the PCB board using the COB process, or they can be LED packages, such as LED packages packaged by ChipLED or LED packages packaged by TOPLED.
  • the base of the ChipLED package can be selected.
  • Planar insulating substrate material, the encapsulation material is made of transparent materials such as epoxy resin or silicone to encapsulate the LED.
  • the base of the TOPLED encapsulation can be an insulating material formed by injection molding.
  • the base has a depression for installing the LED lamp beads.
  • Use transparent packaging materials such as epoxy resin or silicone to encapsulate the LED lamp beads in the recessed position.
  • the 3D LED display screen 41 includes a bracket 413 covering the LED pixel array 411 , and a polarizing layer 412 is provided on the bracket 413 .
  • the size of the pixel array of the 3D LED display screen 41 shown in Figure 4 is not limited and can be adjusted according to the production process, transportation requirements, and installation methods. Multiple 3D LED display screens 41 can also be used to splice into a display screen of any size. .
  • the first polarization state may be a linear polarization state or a circular polarization state, as described below.
  • Both the polarizing layer 412 and the first polarizing layer 421 are linear polarizing layers, and the absorption axis of the polarizing layer 412 is parallel to the absorption axis of the first polarizing layer 421 .
  • a Fresnel optical reflective layer 414 As an embodiment, as shown in FIG. 6 , a Fresnel optical reflective layer 414 , a quarter-wavelength retardation film 415 , and a polarizing layer 412 are provided in sequence in the light emitting direction of the LED pixel array 411 .
  • a Fresnel lens structure 4141 is formed on the Fresnel optical reflective layer 414.
  • the Fresnel lens structure 4141 is a plurality of concentric circular zigzag grooves arranged from small to large in size, and the Fresnel optical reflective layer
  • the other side of 414 opposite to the Fresnel lens structure 4141 is a non-smooth rough surface structure. The combination of the two can enhance the diffusion effect of light and improve the fullness of the LED pixel light-emitting point.
  • the structure shown in Figure 6 forms an inner circular polarizer structure, which can prevent the reflection of incident light from the environment.
  • the principle is: the surface of the Fresnel lens structure 4141 can produce a light reflection effect.
  • the circular polarizer structure formed with the quarter-wave retardation film 415 is incident on the Fresnel lens structure 4141, after reflection, the circular polarization state of the reflected light will become orthogonal to the polarization state of the circular polarizer structure, so the reflection Light will be absorbed when passing through the circular polarizer structure formed by the polarizing layer 412 and the quarter-wave retardation film 415, thereby further reducing light reflection.
  • the LED pixel point includes a mounting base, the mounting base has a recessed position, the surface of the recessed position is a reflective surface, and the LED lamp beads are packaged in the recessed position. Since the surface of the recess is a reflective surface, the downward or sideways light emitted by the LED lamp beads will be emitted, which to a certain extent makes up for the light loss of the structure shown in Figure 6.
  • the mounting base with the above-mentioned recessed reflective surface can be made of white material to form a "white body LED lamp bead".
  • the above-mentioned polarizing layer 412 is an absorptive linearly polarizing layer, and a reflective linearly polarizing layer is attached to the inside of the absorptive linearly polarizing layer.
  • the absorption axis of the reflective linearly polarizing layer is consistent with the absorption axis of the absorptive linearly polarizing layer.
  • the absorption axis is parallel, which is used to improve the overall light efficiency.
  • “the inside of the absorptive linear polarizing layer” refers to the side facing away from the active 3D glasses 42, that is, the side of the absorptive linear polarizing layer that receives the light emitted by the LED pixel array during normal use.
  • the side facing the active 3D glasses 42 can be called the "outer side”.
  • Both the polarizing layer 412 and the first polarizing layer 421 are circular polarizing layers.
  • the first polarizing layer 421 includes a first linear polarizing layer and a first quarter-wave retardation film, and the first quarter-wave retardation film faces the 3D LED display screen 41;
  • the polarizing layer 412 includes a linear polarizing layer and a quarter-wave retardation film arranged in sequence along the light emitting direction of the 3D LED screen.
  • the quarter-wave retardation film is located on the light emitting side of the linear polarizing layer.
  • the absorption axis of the first linear polarizing layer is orthogonal to the absorption axis of the linear polarizing layer.
  • the linearly polarizing layer in the polarizing layer 412 can be an absorptive linearly polarizing layer; a reflective linearly polarizing layer or another quarter-wavelength retardation film is also attached to the light incident side of the absorptive linearly polarizing layer.
  • the absorption axis of the reflective linear polarizing layer is parallel to the absorption axis of the absorbing linear polarizing layer, for improving the overall light efficiency.
  • the second embodiment of the present application also provides a 3D imaging system, including:
  • the active 3D glasses 42 shown in Figure 4 are used in conjunction with the 3D LED display screen 41, and the side of the active 3D glasses 42 facing the 3D LED display screen 41 has a feature that can modulate the incident light to have a first polarization state.
  • the first polarizing layer 421 is used in conjunction with the 3D LED display screen 41, and the side of the active 3D glasses 42 facing the 3D LED display screen 41.
  • the left and right lenses of the active 3D glasses 42 each include a first polarizing layer 421 , a TN mode liquid crystal cell 422 , and a second linear polarizing layer 423 arranged in sequence.
  • the drive circuit controls the TN mode liquid crystal cells 422 in the two lenses to be turned on alternately according to the frame sequence, so that the left lens receives the left eye image and the right lens receives the right eye image.
  • the first polarizing layer 421 may be a linear polarizing layer or a circular polarizing layer.
  • the polarizing layer 412 also needs to be a linear polarizing layer.
  • the first polarizing layer 421 includes a first linear polarizing layer, and the optical angle corresponding relationship of each part is as shown in Figure 7 Show.
  • the absorption axis angle of the first linear polarizing layer is the same as the absorption axis angle of the polarizing layer 412, and the absorption axis of the second linear polarizing layer 423 is perpendicular to the absorption axis of the first polarizing layer 421;
  • the liquid crystal cell 422 has a The first alignment layer adjacent to the linear polarizing layer and the second alignment layer adjacent to the second linear polarizing layer 423.
  • the rubbing direction of the first alignment layer is perpendicular to the rubbing direction of the second alignment layer.
  • the optical angle relationship between the layer and the two linearly polarizing layers can be specifically as follows: the rubbing direction of the first alignment layer shown in Modes 2 and 3 in Figure 7 is parallel to the absorption axis of the first linearly polarizing layer, and the rubbing direction of the second orientation layer is parallel to the absorption axis of the first linearly polarizing layer.
  • the rubbing direction is also parallel to the absorption axis of the second linearly polarizing layer 423.
  • the rubbing direction of the first alignment layer shown in Mode 1 and Mode 4 in Figure 7 is perpendicular to the absorption axis of the first linearly polarizing layer, and the second orientation The rubbing direction of the layer is also perpendicular to the absorption axis of the second linearly polarizing layer 423 .
  • the polarizing layer 412 When the first polarizing layer 421 is a circularly polarizing layer, the polarizing layer 412 also needs to be a circularly polarizing layer, and the first polarizing layer 421 and the polarizing layer 412 are both left-hand circularly polarizing layers or right-hand circularly polarizing layers at the same time. layer, the optical angle correspondence of each part is shown in Figure 8.
  • the first polarizing layer 421 includes a first linear polarizing layer and a first quarter-wavelength retardation film; the absorption axis of the second linear polarizing layer 423 is perpendicular to the absorption axis of the first linear polarizing layer; the liquid crystal cell 422 has a The first alignment layer adjacent to the first linear polarizing layer and the second alignment layer adjacent to the second linear polarizing layer 423. The rubbing direction of the first alignment layer is perpendicular to the rubbing direction of the second alignment layer.
  • the optical angle relationship between the alignment layer and the two linearly polarizing layers can be specifically such that the rubbing direction of the first alignment layer shown in Modes 2, 3, 6 and 7 in Figure 8 is parallel to the absorption axis of the first linearly polarizing layer. , and the rubbing direction of the second alignment layer is also parallel to the absorption axis of the second linear polarizing layer 423, or the rubbing direction of the first alignment layer shown in Mode 1, Mode 4, Mode 5 and Mode 8 in FIG.
  • the absorption axis of the linear polarizing layer is perpendicular, and the rubbing direction of the second alignment layer is also perpendicular to the absorption axis of the second linear polarizing layer 423 .
  • the absorption axis angle of the first linearly polarizing layer is the same as the absorption axis angle of the linearly polarizing layer in the polarizing layer 412
  • the retardation axis of the first quarter-wave retardation film is equal to a quarter of the linearly polarizing layer in the polarizing layer 412 .
  • One of the angles between the retardation axes of the one-wavelength retardation film is 45°, and the other angle is 135°. This is mainly due to the fact that one quarter of the first quarter-wavelength retardation film and the polarizing layer 412 are The directions of the wavelength retardation films are all outward, and the light emitting direction of one of them is equivalent to the light incoming direction of the other. Therefore, the angles of the two quarter-wave retardation films need to be set in a mirror image.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请适用于3D显示领域,提供了一种3D LED显示屏及3D影像系统。该3D LED显示屏用于与主动式3D眼镜配合使用,该3D LED显示屏上设置有起偏偏光层,该起偏偏光层可对所有像素点所发出的光统一进行起偏,由于起偏过程会吸收约一半的光效率,相当于该显示屏用于显示2D影像时的屏幕亮度相对于像素点的发光亮度减半,同时用于显示3D影像时的光效率计算基数也减半,这样在3D主动式眼镜本身的光效率不变的情况下,从3D LED显示屏发光到3D主动式眼镜收光的整个过程的累计光效率会提升一倍。而用于显示2D影像时的屏幕亮度虽然减半,又可以从提高LED像素点的原发光亮度来进行弥补,在兼顾平衡2D与3D显示模式时的亮度设计参数的同时,也提高了主动式3D LED显示的光效率。

Description

3D LED显示屏及3D影像系统
本申请要求于2022年5月12日提交至国家知识产权局中国专利局、申请号为202210515357.8、申请名称为“3D LED显示屏及3D影像系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于3D显示领域,尤其涉及一种3D LED显示屏及3D影像系统。
背景技术
3D电影的观影原理,是由人的左眼、右眼分别接收按照帧顺序播放的左眼影像、右眼影像,再经过大脑将左眼影像、右眼影像予以合成,产生3D效果。观影时,左眼、右眼需通过3D眼镜来接收影像,以使左眼影像只能被左眼接收,右眼影像只能被右眼接收。
随着LED显示技术的发展,LED显示屏越来越多地进入到室内高清显示领域,如何利用LED屏实现3D显示也逐渐引起关注。现有的3D LED显示屏主要有如下两种方式:
第一,主动式3D LED显示屏。如图1所示,LED显示屏1上设置有由LED像素点11组成的像素阵列,3D眼镜的左镜片、右镜片按照帧顺序被开关以接收LED像素点11发出的影像光线。其中,左镜片和右镜片均包括依次设置的第一偏光层21、液晶层22和第二偏光层23。
这种方式具有结构简单和成本较低的优点,而缺点则在于光效率低,假设显示2D影像时的屏幕亮度X为 300nit,则根据图2所示的图表可以看出,LED显示屏1所发出的光线依次经过光效率为45%的第一偏光层21、光效率为95%的液晶层22、光效率为95%的第二偏光层23,并考虑时分开关窗口的45%的光效率之后,最终到达观众3D眼镜上的累计光效率约为18%,即,观众通过3D眼镜能感受到的亮度Y为300nit*18%= 54.8 nit,如此低的光效率会影响3D电影的观看体验。
为了能把3D亮度提高一倍,其中一个选择是把LED显示屏1设计的原始亮度提高一倍(相当于“硬推高亮度”),这可以通过提高驱动电流、使用更高发光效率的LED发光芯片或者采用反光效率更高的LED灯珠封装这三种方法实现。但是这种“硬推高亮度”的做法又会有以下问题:
1、首要问题是在LED电影院屏幕,有严格的灰阶要求,尤其是第一级“启辉”亮度,不能太高,比如 0.005 nit。在不提高LED驱动电路里面的灰阶等级情况下,把总体屏幕亮度提高一倍,就会同时把 “启辉”亮度也提高了一倍,这样就达不到电影屏幕的要求。如果为此而提高驱动电路的灰阶等级,那么驱动电路的成本会大幅度上涨,不利于产品性价比。因此在系统设计上,很难平衡2D与3D显示模式时的亮度设计参数。
2、而同时,对于电影院的应用,如果把 LED 显示屏1的2D显示模式的亮度硬推到 600 nit,如图3所示,虽然在3D显示模式下观众能感受到的亮度可以提高一倍到109.7nit,但这属于一种没有价值的浪费,因为在电影院内关灯看电影的时候,周围是全黑的环境,LED 显示屏1的亮度过高毫无意义,在电影院实际使用的场景里,不会调到如此高的亮度来观影。
所以,把LED电影院屏幕亮度简单的硬推高一倍,来提高3D放映时候的亮度,不是一个好的办法。
。原理是在LED显示屏的像素阵列上使用隔行、或隔列、或隔点的偏光片,把LED显示屏上面的像素点分成左眼图像组及右眼图像组,配合偏光式(被动式)3D眼镜观看LED显示屏所显示出来的3D影像,缺点是分辨率被牺牲50%,每边眼睛只能看到LED显示屏上物理像素点的一半。如果要做到完整的图像分辨率,就要增加一倍的像素点,把整个LED显示屏的成本增加几乎一倍,性价比明显降低。
技术问题
本申请实施例所要解决的技术问题为如何在平衡2D与3D显示模式时的亮度设计参数的前提下,还能提高主动式3D LED显示的光效率。
技术解决方案
为解决上述技术问题,本申请实施例是这样实现的,一种3D LED显示屏,所述3D LED显示屏用于与主动式3D眼镜配合使用,且所述主动式3 D眼镜朝向所述3D LED显示屏的一侧具有可将入射光调制为具有第一偏振态的第一偏光层;
所述3D LED显示屏包括LED像素阵列,所述LED像素阵列的出光方向上设有起偏偏光层,所述起偏偏光层用于将所述LED像素阵列中所有LED像素点所发出的光全部起偏为具有第一偏振态的光。
本申请实施例还提供了一种3D影像系统,包括:
如上所述的3D LED显示屏;
主动式3D眼镜,用于与所述3D LED显示屏配合使用,且所述主动式3   D眼镜朝向所述3D LED显示屏的一侧具有可将入射光调制为具有第一偏振态的第一偏光层。
有益效果
本申请实施例所提供的3D LED显示屏上设置有起偏偏光层,该起偏偏光层可对所有像素点所发出的光统一进行起偏,由于起偏过程会吸收约一半的光效率,因此相当于该显示屏用于显示2D影像时的屏幕亮度相对于像素点的发光亮度减半了,同时用于显示3D影像时的光效率计算基数也减半,这样在3D主动式眼镜本身的光效率不变的情况下,从3D LED显示屏发光到3D主动式眼镜收光的整个过程的累计光效率会提升一倍。而用于显示2D影像时的屏幕亮度虽然减半,又可以从提高LED像素点的原发光亮度来进行弥补,这样就在兼顾平衡2D与3D显示模式时的亮度设计参数的同时,也提高了主动式3D LED显示的光效率。
附图说明
图1是现有技术提供的主动式3D LED显示屏的光路图;
图2是图1所示主动式3D LED显示屏的在3D显示模式下的光效率计算图表;
图3是将图2中的2D显示模式的亮度提高一倍时,对应的3D显示模式下的光效率计算图表;
图4是本申请第一实施例提供的主动式3D LED显示屏的光路图;
图5是图4所示主动式3D LED显示屏的在3D显示模式下的光效率计算图表;
图6是本申请第一实施例提供的3D LED显示屏41具有的“内圆偏光片结构”示意图;
图7是本申请第二实施例提供的3D影像系统中当采用线偏光技术时,各偏光层的吸收轴、液晶层之间的角度对应关系图表;
图8是本申请第二实施例提供的3D影像系统中当采用圆偏光技术时,各偏光层的吸收轴、液晶层之间的角度对应关系图表。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参照图4,示出了本申请第一实施例提供的主动式3D LED显示屏41的光路图,该3D LED显示屏41应用于全黑环境的电影院中且需要与主动式3D眼镜42配合使用,且主动式3     D眼镜42朝向3D LED显示屏41的一侧具有可将入射光调制为具有第一偏振态的第一偏光层421。该主动式3D眼镜一般为快门式液晶眼镜,从结构上包括第一偏光层421、TN模式的液晶盒422、第二线偏光层423。
3D LED显示屏41包括LED像素阵列411,LED像素阵列411的出光方向上设有起偏偏光层412,起偏偏光层412用于将LED像素阵列411中所有LED像素点所发出的光全部起偏为具有所述第一偏振态的光。
本实施例中,设置在LED像素阵列411出光方向上的起偏偏光层412不用区分像素点的位置,即所有像素点面对的都是相同的偏光层,所以成本非常低。起偏偏光层412的作用是预先把从像素点发出的光,先过滤成第一偏振态,此过程称为“起偏”,第一偏振态可以是P光或S光之类的线偏振态,也可以是左旋或右旋之类的圆偏振态。
然后,观众观看3D LED显示屏41上显示的3D影像时需要佩戴主动式3D眼镜42,而主动式3D眼镜42朝向3D LED显示屏41的第一偏光层421的偏振性能与起偏偏光层412的偏振性能相同。这样配合起来,就达成观众看到的3D影像亮度,对比不用戴主动式3D眼镜42时观看2D图像的亮度,光效率从16% 提升到30% 以上,大大提升了观看3D影像的体验,光效率的计算过程如图5所示。
参照图5,3D LED显示屏41中的像素点原发光亮度为666nit,经过起偏偏光层412起偏之后变成了299.7nit,需要说明的是,由于起偏偏光层412为3D LED显示屏41的一部分,观众是直接通过起偏偏光层412发出的光线来感受影像亮度的,因此299.7nit即为2D显示模式下的亮度参数,3D显示模式的光效率也应当以此299.7nit为基准来计算。
由于起偏偏光层412已经预先进行了起偏,因此第一偏光层421的作用相当于“检偏”,基本上,95%的光线都能通过。
由起偏偏光层412起偏出的光线依次经过光效率为95%的第一偏光层421、光效率为95%的TN模式的液晶盒422中的液晶层、光效率为95%的第二线偏光层423,并考虑时分开关窗口的45%的光效率之后,最终到达观众3D眼镜上的累计光效率约为39%,即,观众通过3D眼镜能感受到的亮度Y为299.7nit*39%= 115.7 nit,与图3相比,光效和亮度均提升了约一倍。
需要说明的是,上文所说的主动式3D眼镜42中的第一偏光层421可将入射光调制为具有第一偏振态,只是强调第一偏光层421具备这种性能,实际上在3D显示模式下,由于起偏偏光层412已经预先将LED像素阵列411中所有LED像素点所发出的光全部起偏为具有第一偏振态的光,因此第一偏光层421的作用更多体现为“检偏”。
上述像素点可以是采用COB工艺直接焊接在PCB板上的LED芯片,也可以是LED封装体,例如采用ChipLED封装的LED封装体或TOPLED封装的LED封装体,其中,ChipLED封装的基座可以选用平面状的绝缘衬底材料,封装物则选用环氧树脂或硅胶等透明材料将LED进行封装,TOPLED封装的基座可以为注塑形成的绝缘材料,该基座具有用于安装LED灯珠的凹陷位,选用环氧树脂或硅胶等透明封装材料将LED灯珠封装在该凹陷位上。
如图4所示,3D LED显示屏41包括罩设在所述LED像素阵列411上的支架413,起偏偏光层412设置在支架413上。
图4所示的3D LED显示屏41的像素阵列的大小不限,可以根据生产工艺、运输要求、安装方式来调整,还可以采用多个3D LED显示屏41来拼接成任意尺寸大小的显示屏。
如上文所述,第一偏振态可以是线偏振态,也可以是圆偏振态,分述如下。
对于线偏振态的情况。起偏偏光层412和第一偏光层421均为线偏光层,起偏偏光层412的吸收轴与第一偏光层421的吸收轴平行。
作为一个实施例,如图6所示,LED像素阵列411的出光方向上依次设有菲涅尔光学反射层414、四分之一波长延迟膜415、起偏偏光层412。其中,菲涅尔光学反射层414上形成有菲涅尔透镜结构4141,菲涅尔透镜结构4141为多个按照尺寸从小到大排布的同心圆锯齿型凹槽,并且菲涅尔光学反射层414上与菲涅尔透镜结构4141相对的另一面为非光滑的粗糙面结构,二者配合下可增强光线的扩散效果,提高LED像素发光点的饱满度。
图6所示的结构形成了对内圆偏光片结构,可以防止环境入射光的反射,其原理是:菲涅尔透镜结构4141表面可产生光反射效果,当环境光透过起偏偏光层412和四分之一波长延迟膜415形成的圆偏光片结构入射到菲涅尔透镜结构4141时,经过反射,反射光的圆偏振态会变成与圆偏光片结构的偏振态正交,所以反射光在透过起偏偏光层412和四分之一波长延迟膜415形成的圆偏光片结构时会被吸收,从而进一步减少反光。
进一步地,作为上述实施例的补充,可以搭配使用“反光LED灯珠”来提升对比度。具体地,LED像素点包括安装基座,所述安装基座具有一凹陷位,所述凹陷位的表面为反光面,所述凹陷位中封装有LED灯珠。由于凹陷位的表面为反光面,因此LED灯珠发出来朝下或侧向的光都会被发射出去,在一定程度上弥补了图6所示结构损失的光。
作为一种示例,具有上述反光面凹陷位的安装基座可以采用白色材料制成,形成“白体LED灯珠”。
另外,上述起偏偏光层412为吸收型线偏光层,该吸收型线偏光层的内侧还贴附有反射型线偏光层,反射型线偏光层的吸收轴与所述吸收型线偏光层的吸收轴平行,用于提高整体光效率。其中,“吸收型线偏光层的内侧”是指其背向主动式3D眼镜42的一侧,即吸收型线偏光层在正常使用时LED像素阵列所发出光的入光的一侧,与此对应,其面向主动式3D眼镜42的一侧可称为“外侧”。
对于圆偏振态的情况。起偏偏光层412和第一偏光层421均为圆偏光层。
第一偏光层421包括第一线偏光层和第一四分之一波长延迟膜,所述第一四分之一波长延迟膜朝向所述3D LED显示屏41;
起偏偏光层412沿3D LED屏的出光方向上包括依次排列的线偏光层和四分之一波长延迟膜,所述四分之一波长延迟膜位于所述线偏光层的出光侧。
所述第一线偏光层的吸收轴与所述线偏光层的吸收轴正交。
具体地,起偏偏光层412中的线偏光层可采用吸收型线偏光层;该吸收型线偏光层的入光侧还贴附有反射型线偏光层或另一个四分之一波长延迟膜,所述反射型线偏光层的吸收轴与所述吸收型线偏光层的吸收轴平行,用于提高整体光效率。
本申请第二实施例还提供了一种3D影像系统,包括:
如第一实施例所述的3D LED显示屏41;
图4所示的主动式3D眼镜42,用于与3D LED显示屏41配合使用,且主动式3 D眼镜42朝向3D LED显示屏41的一侧具有可将入射光调制为具有第一偏振态的第一偏光层421。
如图4所示,主动式3D眼镜42的左、右两个镜片均包括依次设置的第一偏光层421、TN模式的液晶盒422、第二线偏光层423。在使用时,由驱动电路根据帧顺序控制两个镜片中的TN模式的液晶盒422交替导通,以使左镜片接收左眼影像、右镜片接收右眼影像。其中,第一偏光层421可以是线偏光层,也可以是圆偏光层。
当第一偏光层421为线偏光层时,起偏偏光层412也需要为线偏光层,具体地,第一偏光层421包括第一线偏光层,各部分的光学角度对应关系如图7所示。并且第一线偏光层的吸收轴角度与所述起偏偏光层412的吸收轴角度相同,第二线偏光层423的吸收轴与第一偏光层421的吸收轴垂直;液晶盒422中具有与第一线偏光层临近的第一取向层、与第二线偏光层423临近的第二取向层,第一取向层的摩擦方向与第二取向层的摩擦方向垂直,对于第一、第二两个取向层与两个线偏光层的光学角度关系,具体可以是图7中方式2和方式3所示的第一取向层的摩擦方向与第一线偏光层的吸收轴平行、而第二取向层的摩擦方向与第二线偏光层423的吸收轴也平行,也可以是图7中方式1和方式4所示的第一取向层的摩擦方向与第一线偏光层的吸收轴垂直、而第二取向层的摩擦方向与第二线偏光层423的吸收轴也垂直。
当第一偏光层421为圆偏光层时,起偏偏光层412也需要为圆偏光层,且第一偏光层421和起偏偏光层412均同时为左旋圆偏光层或者同时为右旋圆偏光层,各部分的光学角度对应关系如图8所示。具体地,第一偏光层421包括第一线偏光层和第一四分之一波长延迟膜;第二线偏光层423的吸收轴与第一线偏光层的吸收轴垂直;液晶盒422中具有与第一线偏光层临近的第一取向层、与第二线偏光层423临近的第二取向层,第一取向层的摩擦方向与第二取向层的摩擦方向垂直,对于第一、第二两个取向层与两个线偏光层的光学角度关系,具体可以是图8中方式2、方式3、方式6和方式7所示的第一取向层的摩擦方向与第一线偏光层的吸收轴平行、而第二取向层的摩擦方向与第二线偏光层423的吸收轴也平行,也可以是图8中方式1、方式4、方式5和方式8所示的第一取向层的摩擦方向与第一线偏光层的吸收轴垂直、而第二取向层的摩擦方向与第二线偏光层423的吸收轴也垂直。另外,第一线偏光层吸收轴角度与起偏偏光层412中的线偏光层的吸收轴角度相同,第一四分之一波长延迟膜的延迟轴与起偏偏光层412中的四分之一波长延迟膜的延迟轴二者中的一个角度为45°,另一个角度为135°,这主要是考虑到第一四分之一波长延迟膜与起偏偏光层412中的四分之一波长延迟膜的方向都是向外,其中一个的出光方向相当于另一个的入光方向,因此这两个四分之一波长延迟膜的角度需要呈镜像方式设置。
主动式3D眼镜42的其他特性在上文第一实施例中已有描述的不再赘述。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (15)

  1. 一种主动式3D LED显示屏,其特征在于,所述3D LED显示屏应用于全黑环境的电影院中且用于与主动式3D眼镜配合使用;
    所述3D LED显示屏包括LED像素阵列,所述LED像素阵列的出光方向上设有起偏偏光层,所述起偏偏光层用于将所述LED像素阵列中所有LED像素点所发出的光全部起偏为具有第一偏振态的光,使得显示3D影像时的光效率计算基数减半,以提升主动式3D LED显示的光效率。
  2. 如权利要求1所述的3D LED显示屏,其特征在于,所述起偏偏光层为线偏光层。
  3. 如权利要求2所述的3D LED显示屏,其特征在于,所述LED像素阵列的出光方向上依次设有菲涅尔光学反射层、四分之一波长延迟膜、所述起偏偏光层。
  4. 如权利要求3所述的3D LED显示屏,其特征在于,所述LED像素点包括安装基座,所述安装基座具有一凹陷位,所述凹陷位的表面为反光面;所述凹陷位中封装有LED灯珠。
  5. 如权利要求2或3所述的3D LED显示屏,其特征在于,所述起偏偏光层为吸收型线偏光层;
    所述吸收型线偏光层的入光侧还贴附有反射型线偏光层,所述反射型线偏光层的吸收轴与所述吸收型线偏光层的吸收轴平行。
  6. 如权利要求1所述的3D LED显示屏,其特征在于,所述起偏偏光层为圆偏光层;
    所述起偏偏光层包括线偏光层和四分之一波长延迟膜,所述四分之一波长延迟膜位于所述线偏光层的出光侧。
  7. 如权利要求6所述的3D LED显示屏,其特征在于,所述起偏偏光层中的线偏光层为吸收型线偏光层;
    在所述吸收型线偏光层的入光侧还贴附有反射型线偏光层或另一个四分之一波长延迟膜,所述反射型线偏光层的吸收轴与所述吸收型线偏光层的吸收轴平行。
  8. 如权利要求1所述的3D LED显示屏,其特征在于,所述3D LED显示屏包括罩设在所述LED像素阵列上的支架,所述起偏偏光层设置在所述支架上。
  9. 一种3D影像系统,其特征在于,包括:
    3D LED显示屏;
    主动式3D眼镜,用于与所述3D LED显示屏配合使用,且所述主动式3   D眼镜朝向所述3D LED显示屏的一侧具有可将入射光调制为具有第一偏振态的第一偏光层;
    所述3D LED显示屏应用于全黑环境的电影院中,包括LED像素阵列,所述LED像素阵列的出光方向上设有起偏偏光层,所述起偏偏光层用于将所述LED像素阵列中所有LED像素点所发出的光全部起偏为具有第一偏振态的光,使得显示3D影像时的光效率计算基数减半,以提升主动式3D LED显示的光效率。
  10. 如权利要求9所述的3D影像系统,其特征在于,所述起偏偏光层为线偏光层。
  11. 如权利要求10所述的3D影像系统,其特征在于,所述LED像素阵列的出光方向上依次设有菲涅尔光学反射层、四分之一波长延迟膜、所述起偏偏光层。
  12. 如权利要求11所述的3D影像系统,其特征在于,所述LED像素点包括安装基座,所述安装基座具有一凹陷位,所述凹陷位的表面为反光面;所述凹陷位中封装有LED灯珠。
  13. 如权利要求10或11所述的3D影像系统,其特征在于,所述起偏偏光层为吸收型线偏光层;
    所述吸收型线偏光层的入光侧还贴附有反射型线偏光层,所述反射型线偏光层的吸收轴与所述吸收型线偏光层的吸收轴平行。
  14. 如权利要求9所述的3D影像系统,其特征在于,所述起偏偏光层为圆偏光层;
    所述起偏偏光层包括线偏光层和四分之一波长延迟膜,所述四分之一波长延迟膜位于所述线偏光层的出光侧;
    所述起偏偏光层中的线偏光层为吸收型线偏光层;
    在所述吸收型线偏光层的入光侧还贴附有反射型线偏光层或另一个四分之一波长延迟膜,所述反射型线偏光层的吸收轴与所述吸收型线偏光层的吸收轴平行。
  15. 如权利要求9所述的3D影像系统,其特征在于,所述主动式3D眼镜的两个镜片均包括依次设置的所述第一偏光层、TN模式的液晶盒、第二线偏光层;所述第一偏光层为线偏光层或圆偏光层;
    当所述第一偏光层为线偏光层时,所述起偏偏光层为线偏光层;所述第一偏光层包括第一线偏光层,所述第二线偏光层的吸收轴与所述第一线偏光层的吸收轴垂直;所述液晶盒中具有与所述第一线偏光层临近的第一取向层、与所述第二线偏光层临近的第二取向层,所述第一取向层的摩擦方向与所述第二取向层的摩擦方向垂直;所述第一线偏光层的吸收轴角度与所述所述起偏偏光层的吸收轴角度相同;
    当所述第一偏光层为圆偏光层时,所述起偏偏光层为圆偏光层,且所述第一偏光层和所述起偏偏光层均同时为左旋圆偏光层或者同时为右旋圆偏光层;所述第一偏光层包括第一线偏光层和第一四分之一波长延迟膜;所述第二线偏光层的吸收轴与所述第一线偏光层的吸收轴垂直;所述液晶盒中具有与所述第一线偏光层临近的第一取向层、与所述第二线偏光层临近的第二取向层,所述第一取向层的摩擦方向与所述第二取向层的摩擦方向垂直;所述第一线偏光层吸收轴角度与所述起偏偏光层中的线偏光层的吸收轴角度相同,所述第一四分之一波长延迟膜的延迟轴与所述起偏偏光层中的四分之一波长延迟膜的延迟轴二者中的一个角度为45°,另一个角度为135°。
PCT/CN2023/093348 2022-05-12 2023-05-10 3d led显示屏及3d影像系统 WO2023217200A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210515357.8 2022-05-12
CN202210515357.8A CN114627775A (zh) 2022-05-12 2022-05-12 3d led显示屏及3d影像系统

Publications (2)

Publication Number Publication Date
WO2023217200A2 true WO2023217200A2 (zh) 2023-11-16
WO2023217200A3 WO2023217200A3 (zh) 2023-12-28

Family

ID=81906913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093348 WO2023217200A2 (zh) 2022-05-12 2023-05-10 3d led显示屏及3d影像系统

Country Status (2)

Country Link
CN (1) CN114627775A (zh)
WO (1) WO2023217200A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114627775A (zh) * 2022-05-12 2022-06-14 深圳市时代华影科技股份有限公司 3d led显示屏及3d影像系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500764A4 (en) * 2009-11-13 2013-04-17 Sharp Kk 3D VIDEO DETECTION SYSTEM, VIDEO DISPLAY DEVICE AND ACTIVE PANELS FOR THIS
CN202182977U (zh) * 2011-07-21 2012-04-04 信利半导体有限公司 一种3d显示系统
CN202886786U (zh) * 2012-10-31 2013-04-17 句容骏成电子有限公司 一种3d眼镜液晶显示器
CN203025370U (zh) * 2012-12-27 2013-06-26 深圳市时代华影科技开发有限公司 一种复合式线偏振器件及复合式圆偏振器件
CN213070459U (zh) * 2020-09-28 2021-04-27 深圳市时代华影科技股份有限公司 一种led屏像素结构、led显示模组及led显示屏
CN114627775A (zh) * 2022-05-12 2022-06-14 深圳市时代华影科技股份有限公司 3d led显示屏及3d影像系统

Also Published As

Publication number Publication date
WO2023217200A3 (zh) 2023-12-28
CN114627775A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
US11003066B2 (en) Projection display unit and direct-view display unit
US7233441B2 (en) Stereoscopic display
US20230038591A1 (en) Near-eye display device
US9316845B2 (en) Illumination unit and display unit
CN107703638B (zh) 图像显示系统
WO2012005036A1 (ja) アクティブシャッターメガネ及び立体映像認識ユニット
WO2023217200A2 (zh) 3d led显示屏及3d影像系统
WO2022237077A1 (zh) 近眼显示装置
CN110969955A (zh) Led显示屏
WO2023155312A1 (zh) 一种偏光式指向背光裸眼3d显示系统
WO2011124117A1 (zh) 立体显示装置
US20230238367A1 (en) Led display pixel structure, led display module, and led display screen
WO2020063158A1 (zh) Led显示屏
US9134541B2 (en) Stereoscopic display system with active switchable retarder
JP2020170067A (ja) 虚像表示装置
US20230236422A1 (en) Near-eye display device
CN110989191B (zh) 集成式显示面板及其制作方法、显示装置
WO2020238993A1 (zh) 立体显示装置及其制造方法
CN110275309B (zh) 偏振微透镜结构、显示装置及其驱动方法
WO2020169088A1 (en) Display device and electronic apparatus
JP7167282B1 (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光源装置
JP7165792B1 (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光源装置
CN215117146U (zh) 投影装置及显示系统
JP2011197026A (ja) 透過型スクリーンおよび背面投射型表示装置
EP3671332B1 (en) Display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802969

Country of ref document: EP

Kind code of ref document: A2