WO2011124117A1 - 立体显示装置 - Google Patents
立体显示装置 Download PDFInfo
- Publication number
- WO2011124117A1 WO2011124117A1 PCT/CN2011/072373 CN2011072373W WO2011124117A1 WO 2011124117 A1 WO2011124117 A1 WO 2011124117A1 CN 2011072373 W CN2011072373 W CN 2011072373W WO 2011124117 A1 WO2011124117 A1 WO 2011124117A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- polarizing
- display device
- stereoscopic display
- light
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/22—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
- G02B30/25—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
Definitions
- the present invention relates to a display device, and more particularly to a stereoscopic display device. Background technique
- Display devices have gradually become one of the indispensable items in the lives of ordinary people.
- the current display device is also booming in the simulation of three-dimensional display (three dimensional display) technology.
- three-dimensional display three dimensional display
- stereoscopic display devices using liquid crystals as light valves are also the main development areas of manufacturers.
- the current three-dimensional liquid crystal display mode can be basically divided into two types, one is the way the human eye is naked, and the other is the way the user is equipped with glasses.
- the liquid crystal stereoscopic display device uses a human eye to view the stereoscopic effect, it is necessary to further provide a light shielding layer on the display surface of the liquid crystal display panel and cooperate with the refraction of the lens to apply the left eye pixel on the liquid crystal display panel.
- the output screen is transmitted to the left eye of the user, and the image output by the right eye pixel on the liquid crystal display panel is transmitted to the right eye of the user, so that the user's eyes can respectively receive the binocular paral lax (binocular paral lax) ) different images, which in turn form a stereoscopic image.
- the stereoscopic display effect is greatly reduced when the user moves the position when viewing or when the plurality of users simultaneously view it.
- the liquid crystal molecules in the liquid crystal stereoscopic display device have a slow reaction speed, so the left eye image and the right are displayed in turn.
- the liquid crystal molecules are too late to be positioned, and the phenomenon of residual image or three-dimensional effect is poor.
- the present invention can be implemented by the following technical solutions.
- a stereoscopic display device cooperates with a polarizing glasses, and includes an adjacent first pixel and a second pixel.
- the first pixel includes a first light emitting component and a first polarizing component
- the second The pixel includes a second light emitting component and a second polarizing component.
- the first light emitting component or the second light emitting component is a light emitting diode or an organic light emitting diode
- the stereoscopic display device can be, for example, a curved stereoscopic display device.
- the first polarizing component and the second polarizing component are respectively disposed on the first light emitting component and the second light emitting component.
- the first polarizing component and the second polarizing component are disposed on a transparent substrate, and a light shielding matrix layer is disposed on the transparent substrate.
- the first polarizing component and the second polarizing component are disposed on the same polarizer. In an embodiment of the invention, the first polarizing component and the second polarizing component are disposed on different polarizers. In an embodiment of the invention, the first polarizing component and the second polarizing component are linear polarization components, and respectively generate left-handed circular polarization and right-handed circular polarization when the light passes through the first polarizing component and the second polarizing component, respectively.
- the present invention since the stereoscopic display device of the present invention is used in combination with polarized glasses, that is, the user must wear polarized glasses to view the stereoscopic display device, the present invention does not need to additionally provide a lens on the display device to refract light to the person. The left eye and the right eye, and the user can see an excellent stereoscopic image while moving. Further, since the stereoscopic display device of the present invention is used in combination with polarized glasses, the user does not need to purchase the shutter glasses, thereby saving the user's cost. Further, the stereoscopic display device of the present invention uses a self-luminous display technology instead of a liquid crystal display technology, so that the present invention has no problem of slow liquid crystal response, thereby improving display quality and product competitiveness.
- the present invention provides different polarizing components in at least two adjacent pixels, so that light passes through the polarizing component to generate different polarizations, wherein one pixel presents a right eye image and the adjacent other pixel presents a left eye image.
- the right eye image and the left eye image are generated by adjacent pixels, and the user can view the stereoscopic image through the wearing of the polarized glasses.
- FIG. 1 is a schematic view of a stereoscopic display device in accordance with a preferred embodiment of the present invention
- FIGS. 2 to 5 are schematic views of different manners of a stereoscopic display device in accordance with a preferred embodiment of the present invention.
- a stereoscopic display device 1 cooperates with a polarizing glasses, that is, when a user wants to view a stereoscopic image displayed by the stereoscopic display device 1, a polarizing lens is required.
- the present invention does not limit the shape and type of the polarized glasses.
- a polarizer can be applied, but the polarizing directions of the left and right eye polarizing lenses are different.
- the stereoscopic display device 1 can be, for example, an outdoor billboard, an advertising billboard, a traffic sign, a large billboard, a stereoscopic television, or a stereoscopic display.
- the stereoscopic display device 1 includes an adjacent first pixel P1 and a second pixel P2, and only four pixels are shown in Fig. 1 as an example.
- the stereoscopic display device 1 includes a plurality of pixels, and the pixels are arranged in an array, and the pixels include a first pixel P1 and a second pixel P2, and the first pixel P1 and the second pixel shown in FIG.
- the relative position of the pixel P2 is merely illustrative and not limiting.
- the first pixel P1 of the present embodiment is adjacent to the left and right of the second pixel P2.
- the first pixel P1 and the second pixel P2 may also be adjacent to each other or diagonally adjacent to each other.
- the first pixel P1 includes a first light emitting component 11 and a first polarizing component 12, and the second pixel P2 includes a second light emitting component 21 and a second polarizing component 22.
- the first illuminating component 11 or the second illuminating component 21 is a light emitting diode or an organic light emitting diode, and may be in the form of a chip or a package.
- the first light-emitting component 11 and the second light-emitting component 21 are all exemplified by the light-emitting diode chip. Compared with liquid crystals, light-emitting diodes have a faster reaction rate and thus provide higher quality stereo images.
- the light-emitting diode can also be applied to a curved display device in accordance with the flexibility of the substrate or the change of the surface shape, so that the stereoscopic display device 1 of the embodiment becomes a curved stereoscopic display device, and even provides a ring image, thereby increasing Product applicability; and this is not known by the known liquid crystal stereoscopic display device and plasma stereoscopic display device.
- the first pixel P1 and the second pixel P2 may further include a plurality of light-emitting components 11 and 21, where the pixels P1 and P2 are respectively exemplified by three light-emitting diodes, wherein the three light-emitting diodes respectively emit red light. Blue light and green light, mixed to emit white light, or other colored light.
- the light pole The color of the color light emitted by the tube can be adjusted according to actual needs.
- each pixel can further include a yellow light emitting diode, or the light emitting diode can be the same color and become a monochrome stereoscopic display device.
- a control chip (not shown) may be disposed in each pixel to control the brightness of each of the light-emitting components 11, 21.
- the stereoscopic display device further includes a substrate B.
- the first light-emitting component 11 and the second light-emitting component 21 are disposed on the substrate B, for example, by wire bonding, flip ip-chip bonding, Surface mount technology (SMT) or coating is provided on the substrate B.
- SMT Surface mount technology
- the present invention does not limit the shape and type of the substrate B, and the material thereof may include, for example, glass, plastic, metal, resin or ceramic, which may be transparent or opaque.
- the substrate B of the present embodiment is exemplified by a circuit board.
- the first light-emitting component 11 and the second light-emitting component 21 are light-emitting diode chips and are disposed on the substrate B by flip-chip bonding.
- the polarizing components 12, 22 are respectively disposed on the light emitting components 11, 21, and the light emitted by the first light emitting component 11 and the second light emitting component 21 passes through the first polarizing component 12 and the second polarized light, respectively.
- a different polarization is produced.
- the different polarizations may be different in the polarization direction or different in the polarization state.
- the polarizing components 12, 22 can be, for example, small polarizers that are respectively cut from two large polarizers, and are bonded to the light-emitting components 11, 21, for example, printed, coated, sprayed or bonded to the light-emitting components 11, 21 On the surface of the package, or indirectly on the package.
- the polarizing components 12, 22 are combined with the package by using a bonding or other arrangement.
- the sizes of the first polarizing component 12 and the second polarizing component 22 are substantially equal to the pixel sizes corresponding to the first lighting component 11 and the second lighting component 21, respectively.
- a metal such as tin can be used to form a retaining wall (not shown) as a boundary for dispensing.
- the polarizing elements 12, 22 can be, for example, linearly polarized components whose polarization directions are substantially perpendicular to each other.
- the light emitted by the light-emitting components 11, 21 generates left-hand circular polarization and right-hand circular polarization through the polarizing components 12, 22, respectively, so that adjacent to the stereoscopic display device 1
- the light emitted by the pixels P1 and P2 has different polarizations (all the pixels of the stereoscopic display device 1 can have only two kinds of polarizations to be viewed by the left eye and the right eye, respectively).
- the viewer's left eye receives only one of the polarized images
- the right eye receives only one of the polarized images (eg, the polarized and polarized component of the left eye of the polarized glasses 12)
- the polarization is the same; the polarization of the right eye of the polarizing glasses is the same as the polarization of the polarizing component 22, and thus forms a standing in the viewer's brain due to persistence of vision.
- the light to be circularly polarized can be achieved, for example, by a linear polarizing plate plus a quarter wavelength retarder (also referred to as a quarter wave retarder). Of course, this is only one way. It is known that other ways to achieve left-handed circular polarization and right-handed circularly polarized light can be applied to the present invention, and will not be described herein.
- the polarizing components 12, 22 can be implemented in other ways besides the light-emitting components 11, 21, and several variations are exemplified below.
- the polarizing components 12 and 22 are respectively disposed on different polarizers PL1 and PL2, and corresponding pixels P1 and P2 are disposed, so that the polarized lights distributed on the polarizers PL1 and PL2 are polarized.
- the components 12, 22 each have a checkerboard shape, and the polarizing elements 12, 22 of the polarizers PL1, PL2 are complementary to each other.
- the light emitted by the light-emitting components 11, 21 may sequentially pass through the polarizers PL1, PL2, or the polarizers PL2, PL1 in which the polarizing components 22, 12 are located, in the polarizing elements 12, 22.
- the polarizers PL1 and PL2 can be directly formed into a partial region as shown in FIG. 2 to have a light-rotating property, or a whole film can be made to have a light-rotating property, and the region which does not need to have a polarizing property can be eliminated.
- the polarizing elements 12, 22 may be respectively attached to different glass substrates to form polarizers PL1, PL2, and the polarizing regions of the chessboard are formed on the polarizers PL1, PL2, respectively (the polarizers PL1, PL2 in Fig. 2 only) Take two polarized areas as an example).
- the stereoscopic display device 1b of the embodiment shown in FIG. 3 includes a polarizer PL3, and the plurality of first polarizing components 12 and the plurality of second polarizing components 22 are integrally formed on different regions of the polarizer PL3, and respectively It is set corresponding to each pixel P1, P2.
- the first polarizing component 12 and the second polarizing component 22 can be attached to different regions on a glass substrate, and are respectively disposed corresponding to the pixels P1 and P2 to form a polarizer PL3 o.
- the stereoscopic display device 1c of a variation as shown in FIG. 4 may further include a quarter wavelength retarder 15.
- a quarter wavelength retarder 15 When the light is emitted by the first light-emitting component 11 and sequentially passes through the first polarizing component 12 and the quarter-wave plate 15 of the polarizer PL3, the light becomes a circularly polarized light, for example, left-handed circularly polarized light; After the second light-emitting component 21 emits and sequentially passes through the second polarizing element 22 of the polarizer PL3 and the quarter-wave plate 15, the light will obtain another circularly polarized light, such as right-handed circularly polarized light. In this way, a stereoscopic image can be produced by cooperating with the polarized glasses having different circular polarization states of the two eyes worn by the user.
- the first polarizing element 12 and the second polarizing element 22 are disposed on a transparent substrate 14 and are respectively disposed corresponding to the pixels P1 and P2.
- a light-shielding matrix layer BM may be disposed on the transparent substrate 14 to avoid light mixing through the pixels, thereby improving display contrast and display quality.
- the light shielding matrix layer BM is composed of strips in the lateral direction and the longitudinal direction. And formed between the pixels.
- the light shielding matrix layer BM may be disposed on the light transmissive substrate, for example, by lamination or coating.
- the present invention since the stereoscopic display device of the present invention is used in combination with polarized glasses, that is, the user must wear polarized glasses to view the stereoscopic display device, the present invention does not need to additionally provide a lens on the display device to refract light to the person. The left eye and the right eye, and the user can see an excellent stereoscopic image while moving. Further, since the stereoscopic display device of the present invention is used in combination with polarized glasses, the user does not need to purchase the shutter glasses, thereby saving the user's cost. Further, the stereoscopic display device of the present invention uses a self-luminous display technology instead of a liquid crystal display technology, so that the present invention has no problem of slow liquid crystal response, thereby improving display quality and product competitiveness.
- the present invention provides different polarizing components in at least two adjacent pixels, so that light passes through the polarizing component to generate different polarizations, wherein one pixel presents a right eye image and the adjacent other pixel presents a left eye image.
- the right eye image and the left eye image are generated by adjacent pixels, and the user can view the stereoscopic image through the wearing of the polarized glasses.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Description
立体显示装置 技术领域
本发明关于一种显示装置, 特别关于一种立体显示装置。 背景技术
显示装置在一般人的生活中, 已逐渐成为不可或缺的用品之一。 而现行的 显示装置除了朝高画质、 高分辨率方面进步之外, 也在仿真立体空间的立体显 示 (又称三维显示, three dimensional display) 技术方面上蓬勃发展。 其中, 由于液晶显示技术的成熟与普及, 以液晶作为光阀的立体显示装置亦是制造商 主要发展领域之 1 。 而现行的液晶立体显示方式基本可分为两种, 其一是人眼 裸视的方式, 其二则是使用者配载眼镜的方式。
液晶立体显示装置若利用人眼裸视的方式来呈现立体感, 大都必须在液晶 显示面板的显示面之上再设置一遮光层并配合透镜的折射, 以将液晶显示面板 上的左眼画素所输出的画面传送至使用者的左眼, 并将液晶显示面板上右眼画 素所输出的画面传送至使用者的右眼, 使得使用者的两眼可分别接受到具有两 眼视差 (binocular paral lax ) 的不同影像, 进而形成立体影像。 然而, 由于 经过遮光层与透镜配合后射出光线的光路径是一定且无法调整, 故当使用者观 看时移动位置或是在多个使用者同时观看的情况时, 立体显示效果就大幅下降。
另一方式, 使用者若配戴快门眼镜 (shutter glasses ) 的方式来观看液晶 立体显示装置时, 则会因为液晶立体显示装置内液晶分子的反应速度较慢, 因 此在轮流显示左眼影像与右眼影像时, 液晶分子来不及到定位, 而呈现残影或 三维效果不佳的现象。
因此, 如何设计一种能呈现较佳立体显示效果的立体显示装置, 已成为重 要课题之一。 发明内容
本发明的目的是提供一种能呈现较佳立体显示效果的立体显示装置。
本发明可采用以下技术方案来实现的。
依据本发明的一种立体显示装置与一偏光眼镜配合, 并包括相邻的一第一 画素及一第二画素, 第一画素包括一第一发光组件以及一第一偏光组件, 第二
画素包括一第二发光组件以及一第二偏光组件。 当第一发光组件与第二发光组 件所发出的光线分别穿过第一偏光组件与第二偏光组件后, 产生不同的偏振。
在本发明的一实施例中, 第一发光组件或第二发光组件是一发光二极管或 一有机发光二极管, 并且立体显示装置可例如是一曲面立体显示装置。
在本发明的一实施例中, 第一偏光组件及第二偏光组件分别设置在第一发 光组件及第二发光组件。
在本发明的一实施例中, 第一偏光组件与第二偏光组件设置在一透光基板, 且透光基板上设置一遮光矩阵层。
在本发明的一实施例中, 第一偏光组件与第二偏光组件设置在同一偏光片。 在本发明的一实施例中, 第一偏光组件与第二偏光组件设置在不同偏光片。 在本发明的一实施例中, 第一偏光组件与第二偏光组件是线偏振组件, 当 光线分别经过第一偏光组件与第二偏光组件时分别产生左旋圆偏振及右旋圆偏 振。
承上所述, 由于本发明的立体显示装置与偏光眼镜配合使用, 也就是使用 者必需配戴偏光眼镜来观看立体显示装置, 故本发明不需在显示装置上额外设 置透镜将光线折射至人的左眼与右眼, 且使用者在观看时移动亦能看到优良的 立体影像。 另外, 本发明的立体显示装置与偏光眼镜配合使用, 故使用者不须 购买快门眼镜, 因而可节省使用者的花费。 另外, 本发明的立体显示装置使用 自发光显示技术, 而非使用液晶显示技术, 故本发明并无液晶反应慢的问题, 进而提升显示质量及产品竞争力。
此外, 本发明在至少两个相邻的画素设置不同的偏光组件, 使光线穿过偏 光组件后产生不同的偏振, 其中一画素呈现右眼影像, 相邻的另一画素则呈现 左眼影像。 藉此, 右眼影像和左眼影像由相邻的画素产生, 使用者即能通过偏 光眼镜的配戴而观赏到立体影像。
附图说明
图 1是本发明优选实施例的一种立体显示装置的示意图; 以及
图 2至图 5是依据本发明优选实施例的立体显示装置具有不同变化态样的 示意图。
主要元件符号说明:
I、 la〜ld: 立体显示装置
I I、 21: 发光组件
12、 22: 偏光组件
15: 四分之一波片
A: 区域
B: 基板
BM: 遮光矩阵层
C: 封装胶体
Pl、 P2 : 画素
PL1〜PL4: 偏光片 具体实施方式
以下将参照相关图式, 说明依本发明优选实施例的一种立体显示装置, 其 中相同的元件将以相同的元件符号加以说明。
请参照图 1所示, 本发明优选实施例的一种立体显示装置 1与一偏光眼镜 配合, 即当使用者欲观看立体显示装置 1所显示的立体影像时, 需配戴偏光眼 镜。 本发明不限制偏光眼镜的形状、 种类, 其偏光技术可例如应用偏光片, 惟 左右眼偏光镜片的偏光方向要不相同。 立体显示装置 1可例如是户外广告牌、 广告广告牌、 交通号志、 大型广告牌、 立体电视、 或立体显示器等。
立体显示装置 1包括相邻的一第一画素 P1及一第二画素 P2 ,在图 1中仅显 示四个画素为例。 实际上, 立体显示装置 1包括多个画素, 且所述画素呈数组 设置, 而所述画素中包括了第一画素 P1与第二画素 P2 , 而图 1所示的第一画素 P1与第二画素 P2的相对位置仅是举例说明, 并不具限制性。本实施例的第一画 素 P1与第二画素 P2左右相邻, 当然, 第一画素 P1与第二画素 P2亦可上下相 邻、 或对角线相邻。
第一画素 P1包括一第一发光组件 11以及一第一偏光组件 12, 第二画素 P2 包括一第二发光组件 21以及一第二偏光组件 22。 其中, 第一发光组件 11或第 二发光组件 21是一发光二极管或一有机发光二极管, 且可以是芯片或封装体的 型式。 在此, 第一发光组件 11及第二发光组件 21皆以发光二极管芯片为例。 发光二极管与液晶相比, 点灭的反应速度更快因而能提供更高质量的立体影像。 此外, 配合基板的可挠性, 或表面形状的改变, 发光二极管亦可应用在曲面的 显示装置, 使得本实施例的立体显示装置 1成为曲面立体显示装置, 甚至可提 供环场影像, 进而增加产品应用性; 而这是公知液晶立体显示装置及电浆立体 显示装置所无法达到的。
另外, 第一画素 P1及第二画素 P2亦可包括多个发光组件 11、 21, 在此, 画素 Pl、 P2以各包括三个发光二极管为例, 其中三个发光二极管可分别发出红 光、 蓝光及绿光, 以混合发出白光, 或其它色光。 当然这仅是举例, 发光二极
管所出的色光颜色可依实际需求而调整, 例如各画素可更包括黄光的发光二极 管, 或者所述发光二极管可以是同一颜色, 而成为单色的立体显示装置。 另外, 各画素内亦可设置一控制芯片 (图中未显示) 以分别控制各发光组件 11、 21的 亮度。
另外, 立体显示装置更包括一基板 B, 第一发光组件 11及第二发光组件 21 设置在基板 B上,可例如通过引线结合(wire bonding),倒装式结合(fl ip-chip bonding )、 表面安装技术 ( surface mount technology, SMT ) 或涂布而设置在 基板 B上。 本发明不限制基板 B的形状及种类, 其材质可例如包括玻璃、 塑料、 金属、 树脂或陶瓷, 其可透光或不透光。 本实施例的基板 B以电路板为例, 第 一发光组件 11及第二发光组件 21是发光二极管芯片并通过倒装式结合设置在 基板 B。
在本实施例中, 偏光组件 12、 22分别设置在发光组件 11、 21之上, 且第 一发光组件 11与第二发光组件 21所发出的光线分别穿过第一偏光组件 12与第 二偏光组件 22后, 产生不同的偏振 (polarization)。 在此, 不同偏振可以是 偏振方向 (polarization direction) 不同或是偏振态 (polarization state ) 不同。 偏光组件 12、 22可例如是分别由两大片偏光片栽切下来的小片偏光片, 并结合在发光组件 11、 21之上,例如是印刷、涂布、喷涂或贴合在发光组件 11、 21的封装体表面上, 或间接设置在封装体上。 换句话说, 发光组件 11、 21被一 封装体 C (例如是硅胶、 环氧树脂、 透镜或灯杯) 覆盖封装后, 偏光组件 12、 22再利用贴合或其它设置方式而结合在封装体表面上,其中,第一偏光组件 12、 第二偏光组件 22的尺寸实质上分别等于第一发光组件 11与第二发光组件 21所 对应的画素尺寸。 当然, 为了点胶方便, 在各画素 Pl、 P2的周围, 可利用锡等 金属来形成挡墙 (图中未显示), 以作为点胶的边界。
偏光组件 12、 22可例如是线偏振组件, 其偏振方向 (polarization direction) 实质上相互垂直。 或者, 发光组件 11、 21所发出的光线经过偏光 组件 12、 22分别产生左旋圆偏振 ( left-hand circular polarization) 及右 方 圆偏振 (right-hand circular polarization) , 这样, 立体显示装置 1中相 邻的画素 Pl、 P2所发出的光线便具有不同的偏振(立体显示装置 1的所有画素 大致上可只有二种偏振, 以分别给左眼及右眼观看)。 再配合观看者所配戴的偏 光眼镜, 可让观看者的左眼只接收其中一种偏振画面, 而右眼只接收另一种偏 振画面 (例如是, 偏光眼镜左眼的偏振与偏光组件 12的偏振相同; 偏光眼镜右 眼的偏振与偏光组件 22的偏振相同), 进而在观看者脑中因视觉暂留而形成立
体影像。 其中, 欲形成圆偏振的光线, 可例如通过一线偏振片加上四分之一波 长延长组件 (quarter wavelength retarder, 又称四分之一波板) 来达到, 当 然, 这仅是其中一种方式, 习知具有其它方式来达到左旋圆偏振及右旋圆偏振 的光线均可适用于本发明, 在此不再赘述。
在本实施例中, 偏光组件 12、 22除了可设置在发光组件 11、 21之外, 亦 可有其它方式来实现, 以下举例说明几种变化态样。
如图 2所示的一变化态样的立体显示装置 la, 偏光组件 12、 22分别设置在 不同偏光片 PL1、 PL2上, 且对应画素 Pl、 P2设置, 使得分布在偏光片 PL1、 PL2 的偏光组件 12、 22分别呈现棋盘状, 且偏光片 PL1、 PL2的偏光组件 12、 22区 域相互为互补。 发光组件 11、 21所发出的光线可依序经过偏光组件 12、 22所 在的偏光片 PL1、 PL2、 或依序经过偏光组件 22、 12所在的偏光片 PL2、 PL1。 偏光片 PL1、 PL2可直接制成如图 2所示的局部区域具有偏旋光性、 或是先制成 整片皆具有偏旋光性, 再将不需具偏旋光性的区域消除其偏旋光性。 或者, 偏 光组件 12、 22可分别贴合在不同玻璃基板上而形成偏光片 PL1、 PL2, 而分别在 偏光片 PL1、 PL2上形成棋格盘的偏光区域 (图 2中偏光片 PL1、 PL2只分别画 出二个偏光区域为例)。
如图 3所示的一变化态样的立体显示装置 lb包括一偏光片 PL3, 多个第一 偏光组件 12与多个第二偏光组件 22—体成型在偏光片 PL3上的不同区域, 并 分别与各画素 Pl、 P2对应设置。 或者, 第一偏光组件 12与第二偏光组件 22可 贴合在一玻璃基板上的不同区域, 并分别与画素 Pl、 P2对应设置而形成偏光片 PL3 o
另外, 如图 4所示的一变化态样的立体显示装置 lc可更包括一四分之一波 片 (quarter wavelength retarder) 15。 当光线由第一发光组件 11发出并依 序经过偏光片 PL3的第一偏光组件 12以及四分之一波片 15后, 光线变成一圆 偏振光, 例如是左旋圆偏振光; 当光线由第二发光组件 21发出并依序经过偏光 片 PL3的第二偏光组件 22以及四分之一波片 15后, 光线会得到另一圆偏振光, 例如是右旋圆偏振光。 如此, 再配合使用者所配戴的二只眼具有不同圆偏振态 的偏光眼镜, 即能产生立体影像。
如图 5所示的一变化态样的立体显示装置 Id,第一偏光组件 12与第二偏光 组件 22设置在一透光基板 14, 并分别与画素 Pl、 P2对应设置。 另外, 透光基 板 14上可设置一遮光矩阵层 BM用以避免透出所述画素的光线产生混光, 进而 提升显示对比及显示质量。 在此, 遮光矩阵层 BM由横向及纵向的条状物构成,
并形成在画素之间。 遮光矩阵层 BM可例如通过贴合或涂布方式设置在透光基板
14上。
综上所述, 由于本发明的立体显示装置与偏光眼镜配合使用, 也就是使用 者必需配戴偏光眼镜来观看立体显示装置, 故本发明不需在显示装置上额外设 置透镜将光线折射至人的左眼与右眼, 且使用者在观看时移动亦能看到优良的 立体影像。 另外, 本发明的立体显示装置与偏光眼镜配合使用, 故使用者不须 购买快门眼镜, 因而可节省使用者的花费。 另外, 本发明的立体显示装置使用 自发光显示技术, 而非使用液晶显示技术, 故本发明并无液晶反应慢的问题, 进而提升显示质量及产品竞争力。
此外, 本发明在至少两个相邻的画素设置不同的偏光组件, 使光线穿过偏 光组件后产生不同的偏振, 其中一画素呈现右眼影像, 相邻的另一画素则呈现 左眼影像。 藉此, 右眼影像和左眼影像由相邻的画素产生, 使用者即能通过偏 光眼镜的配戴而观赏到立体影像。
以上所述仅是举例性, 而非限制性。 任何未脱离本发明的精神与范畴, 而 对其进行的等效修改或变更, 均应包括在权利要求所限定的范围内。
Claims
1、 一种立体显示装置, 与一偏光眼镜配合, 其特征在于, 所述立体显示装 置包括相邻的一第一画素及一第二画素, 所述第一画素包括一第一发光组件以 及一第一偏光组件, 所述第二画素包括一第二发光组件以及一第二偏光组件, 当所述第一发光组件与所述第二发光组件所发出的光线分别穿过所述第一偏光 组件与所述第二偏光组件后, 产生不同的偏振。
2、 根据权利要求 1所述的立体显示装置, 其特征在于, 所述第一发光组件 或所述第二发光组件是一发光二极管或一有机发光二极管。
3、 根据权利要求 1所述的立体显示装置, 其特征在于, 所述第一偏光组件 及所述第二偏光组件分别设置在所述第一发光组件及所述第二发光组件。
4、 根据权利要求 1所述的立体显示装置, 其特征在于, 所述第一偏光组件 与所述第二偏光组件设置在一透光基板。
5、 根据权利要求 1所述的立体显示装置, 其特征在于, 所述第一偏光组件 与所述第二偏光组件是一体成型在同一偏光片。
6、 根据权利要求 1所述的立体显示装置, 其特征在于, 所述第一偏光组件 与所述第二偏光组件是线偏振组件。
7、 根据权利要求 6所述的立体显示装置, 其特征在于, 所述第一偏光组件 与所述第二偏光组件的偏振方向实质上相互垂直。
8、 根据权利要求 1所述的立体显示装置, 其特征在于, 当光线分别经过所 述第一偏光组件与所述第二偏光组件时分别产生左旋圆偏振及右旋圆偏振。
9、 根据权利要求 1所述的立体显示装置, 其特征在于, 其是一曲面立体显 示装置。
10、 根据权利要求 1所述的立体显示装置, 其特征在于, 所述第一偏光组 件结合在所述第一发光组件, 所述第二偏光组件贴合在所述第二发光组件。
11、 根据权利要求 1所述的立体显示装置, 其特征在于, 所述第一偏光组 件结合在所述第一发光组件的一封装体上, 所述第二偏光组件贴合在所述第二 发光组件的一封装体上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010141899.0 | 2010-04-06 | ||
CN2010101418990A CN102213838A (zh) | 2010-04-06 | 2010-04-06 | 立体显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011124117A1 true WO2011124117A1 (zh) | 2011-10-13 |
Family
ID=44745215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/072373 WO2011124117A1 (zh) | 2010-04-06 | 2011-04-01 | 立体显示装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102213838A (zh) |
WO (1) | WO2011124117A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018044732A1 (en) | 2016-09-01 | 2018-03-08 | 3D Live | Stereoscopic display apparatus employing light emitting diodes with polarizing film/lens materials |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105742331B (zh) | 2016-03-24 | 2019-03-26 | 深圳市华星光电技术有限公司 | 3d显示面板及3d显示装置 |
CN105911709A (zh) * | 2016-06-22 | 2016-08-31 | 深圳市华星光电技术有限公司 | 3d微发光二极管显示装置 |
CN108010940A (zh) * | 2017-11-14 | 2018-05-08 | 南京中电熊猫液晶显示科技有限公司 | 一种有机发光二极管面板、三维显示装置及面板制造方法 |
CN110286497B (zh) * | 2019-07-01 | 2021-02-19 | 宁波维真显示科技股份有限公司 | 平面嵌入式led-3d模组的制备方法 |
US11600753B2 (en) * | 2020-11-18 | 2023-03-07 | Sct Ltd. | Passive three-dimensional LED display and method for fabrication thereof |
CN112558320B (zh) * | 2020-12-23 | 2022-12-09 | 维沃移动通信有限公司 | 显示面板和显示设备 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200601893A (en) * | 2004-06-30 | 2006-01-01 | Ind Tech Res Inst | Organic electroluminescent stereoscopic image display apparatus |
KR20070119870A (ko) * | 2006-06-16 | 2007-12-21 | (주)동방데이타테크놀러지 | 입체영상의 표출이 가능한 led 전광판 |
CN101183177A (zh) * | 2007-12-13 | 2008-05-21 | 友达光电股份有限公司 | 立体显示器及其制作方法 |
CN101196615A (zh) * | 2006-12-06 | 2008-06-11 | 万双 | 偏振光栅立体显示器 |
WO2010008208A2 (ko) * | 2008-07-17 | 2010-01-21 | 주식회사 파버나인코리아 | 유기 발광 다이오드 입체영상 표시장치 |
CN101872073A (zh) * | 2009-04-24 | 2010-10-27 | 财团法人工业技术研究院 | 立体显示装置 |
CN201622392U (zh) * | 2009-11-20 | 2010-11-03 | 中国科学技术大学 | 用于立体显示的发光二极管偏振薄膜显示屏 |
CN101938665A (zh) * | 2009-06-26 | 2011-01-05 | 住友化学株式会社 | 立体显示装置 |
CN101988990A (zh) * | 2009-07-31 | 2011-03-23 | 乐金显示有限公司 | 3d图像显示装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2231754A (en) * | 1989-05-16 | 1990-11-21 | Stephen Paul Robert Vincent | Three dimensional display system |
US5537144A (en) * | 1990-06-11 | 1996-07-16 | Revfo, Inc. | Electro-optical display system for visually displaying polarized spatially multiplexed images of 3-D objects for use in stereoscopically viewing the same with high image quality and resolution |
CN100594737C (zh) * | 2007-05-25 | 2010-03-17 | 向亚峰 | 立体图像显示方法与系统 |
US20080304151A1 (en) * | 2007-06-08 | 2008-12-11 | Arisawa Mfg. Co., Ltd. | Stereoscopic image display |
JP5248062B2 (ja) * | 2007-08-24 | 2013-07-31 | 株式会社東芝 | 指向性バックライト、表示装置及び立体画像表示装置 |
CN101408679B (zh) * | 2008-11-14 | 2010-09-29 | 友达光电股份有限公司 | 立体显示装置及立体画面显示方法 |
-
2010
- 2010-04-06 CN CN2010101418990A patent/CN102213838A/zh active Pending
-
2011
- 2011-04-01 WO PCT/CN2011/072373 patent/WO2011124117A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200601893A (en) * | 2004-06-30 | 2006-01-01 | Ind Tech Res Inst | Organic electroluminescent stereoscopic image display apparatus |
KR20070119870A (ko) * | 2006-06-16 | 2007-12-21 | (주)동방데이타테크놀러지 | 입체영상의 표출이 가능한 led 전광판 |
CN101196615A (zh) * | 2006-12-06 | 2008-06-11 | 万双 | 偏振光栅立体显示器 |
CN101183177A (zh) * | 2007-12-13 | 2008-05-21 | 友达光电股份有限公司 | 立体显示器及其制作方法 |
WO2010008208A2 (ko) * | 2008-07-17 | 2010-01-21 | 주식회사 파버나인코리아 | 유기 발광 다이오드 입체영상 표시장치 |
CN101872073A (zh) * | 2009-04-24 | 2010-10-27 | 财团法人工业技术研究院 | 立体显示装置 |
CN101938665A (zh) * | 2009-06-26 | 2011-01-05 | 住友化学株式会社 | 立体显示装置 |
CN101988990A (zh) * | 2009-07-31 | 2011-03-23 | 乐金显示有限公司 | 3d图像显示装置 |
CN201622392U (zh) * | 2009-11-20 | 2010-11-03 | 中国科学技术大学 | 用于立体显示的发光二极管偏振薄膜显示屏 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018044732A1 (en) | 2016-09-01 | 2018-03-08 | 3D Live | Stereoscopic display apparatus employing light emitting diodes with polarizing film/lens materials |
EP3507979A4 (en) * | 2016-09-01 | 2020-05-27 | 3D Live, Inc. | STEREOSCOPIC DISPLAY DEVICE USING LIGHT-EMITTING DIODES WITH POLARIZATION FILM / LENS MATERIALS |
US11307434B2 (en) | 2016-09-01 | 2022-04-19 | 3D Live, Inc. | Stereoscopic display apparatus employing light emitting diodes with polarizing film/lens materials |
US11327334B2 (en) | 2016-09-01 | 2022-05-10 | 3D Live, Inc. | Methods of manufacturing a stereoscopic display system |
Also Published As
Publication number | Publication date |
---|---|
CN102213838A (zh) | 2011-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11582440B2 (en) | Display apparatus, head-mounted display apparatus, image display method, and image display system | |
US9285597B2 (en) | Light source device and stereoscopic display | |
WO2011124117A1 (zh) | 立体显示装置 | |
US8564740B2 (en) | Directional backlight with reduced crosstalk | |
CN106353920B (zh) | 显示面板以及使用该显示面板的显示装置 | |
US20040062040A1 (en) | Device for producing an image | |
US20140036529A1 (en) | Light source device, display unit, and electronic apparatus | |
US10379399B2 (en) | Display device and backlight unit included therein | |
WO2022237077A1 (zh) | 近眼显示装置 | |
JP2004118205A (ja) | 波長変換発光デバイスを用いるカラーlcdのバックライト | |
CN106324890A (zh) | 显示装置 | |
EP3523695B1 (en) | Backlight unit and display apparatus including the same | |
WO2017118224A1 (zh) | 视角定向光源装置及显示装置 | |
JP2005196147A (ja) | 2次元及び3次元映像を選択的に表示できるディスプレイ | |
KR20170000147A (ko) | 디스플레이 어셈블리 및 디스플레이 어셈블리를 이용하는 디스플레이 장치 | |
JP2012009154A (ja) | 照明装置および表示装置 | |
WO2021127277A1 (en) | Polarizing edge coupled light in backlight | |
KR20170094809A (ko) | 표시 장치 | |
KR20170008655A (ko) | 디스플레이 장치 및 그에 포함되는 백 라이트 유닛 | |
JP6713498B2 (ja) | 表示装置 | |
KR20240134388A (ko) | 머리-장착 디스플레이 시스템들에 대한 콤팩트한 광학부 | |
TWM526692U (zh) | 裸眼3d顯示像素單元及具有2d/3d模式同時間不同區顯示或全屏相互切換功能的顯示裝置 | |
CN104251421A (zh) | 背光模组、显示装置及其显示方法 | |
CN1748169A (zh) | 可切换显示设备 | |
US10690926B1 (en) | Near-eye augmented reality device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11765035 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11765035 Country of ref document: EP Kind code of ref document: A1 |