WO2020063004A1 - Procédé de traitement de surface de matériaux composites, et composition de revêtement et son procédé de préparation - Google Patents

Procédé de traitement de surface de matériaux composites, et composition de revêtement et son procédé de préparation Download PDF

Info

Publication number
WO2020063004A1
WO2020063004A1 PCT/CN2019/094353 CN2019094353W WO2020063004A1 WO 2020063004 A1 WO2020063004 A1 WO 2020063004A1 CN 2019094353 W CN2019094353 W CN 2019094353W WO 2020063004 A1 WO2020063004 A1 WO 2020063004A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
diisocyanate
composite material
polyamine resin
group
Prior art date
Application number
PCT/CN2019/094353
Other languages
English (en)
Inventor
Lichao LIU
Deheng LI
Hongxia PAN
Jiaxi XU
Xuechun REN
Xuesan WANG
Leilei RUI
Xudong Jia
Junfeng Guo
Original Assignee
Nippon Paint (China) Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint (China) Co., Ltd filed Critical Nippon Paint (China) Co., Ltd
Publication of WO2020063004A1 publication Critical patent/WO2020063004A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G14/00Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00
    • C08G14/02Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes
    • C08G14/04Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols
    • C08G14/06Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols and monomers containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3821Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/60Polyamides or polyester-amides
    • C08G18/603Polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/34Condensation polymers of aldehydes or ketones with monomers covered by at least two of the groups C08L61/04, C08L61/18 and C08L61/20
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/43Thickening agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/02Polyureas

Definitions

  • the present application relates to the technical field of surface painting of composite materials, and particularly to a coating composition for surface pretreatment of composite materials, especially fiber reinforced composite materials, and preparation method and use of the coating composition on the surface of composite materials.
  • the fiber reinforced composite material has the advantages of light weight, easy forming, strong rigidity, high degree of freedom in shape design, corrosion resistance, stable size and performance, and being readily sprayable. These have created favorable conditions for the use of fiber reinforced composite materials in the automotive industry.
  • US2010086737 discloses the use of a surface smoothing film equivalent to 100-800 grams per square meter coated on a composite material for suppressing the fiber replication effect to achieve the surface flatness and durability requirements for the composite material.
  • U.S. Patent No. US2016075105 describes the use of a metal layer having Class A surface to treat the surface of a laminated composite material, to effect the use of the composite material in automotive exterior ornaments.
  • the present application is intended to solve the problem of fiber textures on the surface of the fiber reinforced composite material by providing a new coating composition as a coating in the surface pretreatment of the composite material, so that the composite material has a surface meeting the painting requirement of the Class A surface, and can be used in subsequent continuous and mass painting.
  • a first object of the present invention is to provide a method for surface treatment of a composite material, particularly a method for surface treatment of a fiber reinforced composite material, such that the composite material, especially the fiber reinforced composite material meets the painting requirement of Class A surface, thus obtaining a composite material/fiber reinforced composite material applicable to the continuous and mass painting of vehicles.
  • a method for surface treatment of a composite material comprises: coating at least one coating composition on at least one surface of a composite material, where the coating composition comprises at least a polyamine resin and at least a curing agent having an isocyanate group.
  • the polyamine resin has at least two or more amino groups selected from one or more of a primary amino group and a secondary amino group.
  • the composite material treated by the treatment method can be used to produce the automotive body or automotive exterior parts.
  • the surface of the automotive body or automotive exterior parts meets the painting requirements of Class A surface.
  • the coating composition is coated by spraying onto at least one surface of the composite material.
  • the coating composition is coated by in-mold painting onto at least one surface of the composite material.
  • the composite material is a fiber reinforced composite material.
  • the fiber reinforced composite material is glass fiber reinforced composite material (e.g. Glass Fiber Reinforced Polymer/Plastics, GFRP) and a carbon fiber reinforced composite material (e.g. Carbon Fiber Reinforced Polymer/Plastics, CFRP) .
  • glass fiber reinforced composite material e.g. Glass Fiber Reinforced Polymer/Plastics, GFRP
  • carbon fiber reinforced composite material e.g. Carbon Fiber Reinforced Polymer/Plastics, CFRP
  • the fiber reinforced composite material is a carbon fiber reinforced composite material.
  • a method for surface treatment of a fiber reinforced composite material comprises: coating at least one coating composition on at least one surface of a fiber reinforced composite material, where the coating composition comprises at least a polyamine resin and at least a curing agent having an isocyanate group.
  • the polyamine resin has at least two or more amino groups selected from one or more of a primary amino group and a secondary amino group.
  • a coating composition which has the properties of low-temperature fast-curing and high cross-linking density.
  • the polyamine resin used in the coating composition of the present application can fully wet and level the surface of the fiber reinforced composite material, thus improving the ability of the coating composition to solve the fiber textures caused by the surface anisotropy of the fiber reinforced composite material, and ameliorating other defects on the surface of the composite material.
  • the coating formed by the coating composition after low-temperature curing has high hardness and good toughness, and can effectively suppress the fiber replication effect caused by the volume change of the matrix resin in the composite material.
  • a coating composition for surface treatment of a composite material.
  • the coating composition comprises at least a polyamine resin and at least a curing agent having an isocyanate group.
  • the polyamine resin has at least two or more amino groups selected from one or more of a primary amino group and a secondary amino group.
  • the composite material treated with the coating composition can be used to prepare the automotive body or automotive exterior parts.
  • the surface of the automotive body or automotive exterior parts meets the painting requirements of Class A surface.
  • the polyamine resin is at least one selected from the group consisting of a primary amine-based polyamine resin and a primary amine modified polyamine resin having at least two or more amino groups.
  • the primary amine-based polyamine resin is at least one selected from the group consisting of ethylenediamine, isophoronediamine, tetramethylenediamine, hexamethylenediamine, dodecamethylenediamine, m-xylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine.
  • the primary amine modified polyamine resin is at least one selected from the group consisting of a polyether modified polyamine resin, an epoxy modified polyamine resin, a carbonyl modified polyamine resin, a phenolic modified polyamine resin, and a polyaspartate polyamine resin.
  • the polyether modified polyamine resin includes polyamine resins modified with polyethers of various structures, for example, but not limited to JEFFAMINE D-230, JEFFAMINE D-2000, JEFFAMINE D-4000, or JEFFAMINE T-3000 commercially available from Huntsman.
  • the epoxy modified polyamine resin includes, but is not limited to, for example, at least one selected from the group consisting of an adduct of an epoxy resin with an amine, an adduct of a glycidyl ether with an amine, and an adduct of an alkylene oxide and an amine.
  • the carbonyl modified polyamine resin includes, but is not limited to, for example, ketoimine-based polyamine materials formed by reacting ethylenediamine or diethylenetriamine with acetone, butanone, or methyl isobutyl ketone.
  • the phenolic modified polyamine resin includes, but is not limited to, for example, polyamine resins formed by ethylenediamine, hexamethylenediamine, diethylenetriamine, or metaphenylenediamine modified by formaldehyde, p-hydroxybenzaldehyde, phenol or octylphenol.
  • the polyaspartate polyamine resin is a secondary amine-based polyamine resin having a sterically hindered group, for example, but not limited to, at least one selected from the group consisting of Desmophen NH1220, Desmophen NH1420, and Desmophen NH1520, commercially available from Bayer Material Science, and F220, F420, F520, F525, and F524 commercially available from Zhuhai Feiyang New Material Co., Ltd.
  • the curing agent is at least one selected from the group consisting of a dimer, a trimer and a polymer of an aliphatic isocyanate monomer, an alicyclic isocyanate monomer, an aromatic isocyanate monomer or a hybrid isocyanate. That is, the curing agent may be at least one selected from the group consisting of a dimer, a trimer, and a polymer of an aliphatic isocyanate monomers, at least one selected from the group consisting of an alicyclic isocyanate monomer, or at least one selected from the group consisting of a dimer, a trimer, and a polymer of an aromatic isocyanate monomer.
  • the aliphatic isocyanate monomer is at least one selected from the group consisting of tetramethylene 1, 4-diisocyanate, hexamethylene 1, 6-diisocyanate, 2, 2, 4-trimethylhexane 1, 6-diisocyanate, ethylene diisocyanate, and 1, 12-dodecane diisocyanate.
  • the alicyclic isocyanate monomer is at least one selected from the group consisting of isophorone diisocyanate, cyclobutane 1, 3-diisocyanate, cyclohexane 1, 3-diisocyanate, cyclohexane 1, 4-diisocyanate, methylcyclohexyl diisocyanate, 4, 4'-methylene dicyclohexyl diisocyanate, and hydrogenated diphenylmethane diisocyanate.
  • the aromatic isocyanate monomer is at least one selected from the group consisting of toluene 2, 4-diisocyanate, toluene 2, 6-diisocyanate, diphenylmethane 4, 4'-diisocyanate, diphenylmethane 2, 4'-diisocyanate, p-phenylene diisocyanate, biphenyl diisocyanate, 3, 3'-dimethyl-4, 4'-diphenylene diisocyanate, and hexahydrophenylene 1, 3-diisocyanate.
  • the dimeric, trimeric and polymeric curing agents of aliphatic, alicyclic, aromatic and hybrid isocyanates include, but are not limited to, for example, Desmodur N 3300, Desmodur N 3390, Desmodur N 3600, Desmodur N 3900 and Desmodur Z 4470 commercially available from Bayer Material Science or HDT-90, HDT-100 and HDT-LV commercially available from Rodia Group.
  • the coating composition further comprises at least one solvent selected from the group consisting of toluene, xylene, isopropanol, n-butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, diethylene glycol methyl ether, propylene glycol methyl ether, propylene glycol butyl ether, dipropylene glycol dimethyl ether, dipropylene glycol ethyl ether, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, dipropylene glycol methyl ether, ethylene glycol butyl ether acetate, ethylene glycol ethyl ether acetate, isophorone, diacetone alcohol, ethyl acetate, ethylene glycol ethyl ether, propylene glycol ethyl ether, and diethylene glycol butyl acetate,
  • the solvent is used to dissolve the polyamine resin and the curing agent, respectively.
  • the solvent is a combined solvent, for example, but not limited to, a combined solvent of butyl acetate and methyl ethyl ketone in admixture, where the weight ratio of butyl acetate to methyl ethyl ketone ranges from 1: 2 to 2: 1, for example, 1: 1, 1: 1.5, and 1.5: 1.
  • the coating composition further comprises at least one auxiliary agent selected from the group consisting of a substrate wetting agent, a leveling agent, an antifoaming agent, a thickener, a rheological additive, a pigment dispersant, and a photostabilizer.
  • auxiliary agent selected from the group consisting of a substrate wetting agent, a leveling agent, an antifoaming agent, a thickener, a rheological additive, a pigment dispersant, and a photostabilizer.
  • the solid particles in the coating composition have a diameter of 10 ⁇ m or less.
  • the coating composition has a viscosity in the range of 100 to 20000 mPa ⁇ s at 23°C.
  • a method for preparing the coating composition comprises mixing the polyamine resin (and an auxiliary agent if applicable) with at least a first solvent to obtain a component I; mixing the curing agent with at least a second solvent to obtain a component II; and then mixing the component I and the component II uniformly to obtain the coating composition.
  • the weight ratio of the component I to the component II ranges from 1: 20 to 20: 1.
  • the content in percentages by weight of the polyamine resin in the component I is from 45%to 95%.
  • the component I has a viscosity in the range of 100 to 20000 mPa ⁇ sat 23°C.
  • the content in percentages by weight of the curing agent in the component II is 40-100%.
  • the first solvent and the second solvent are the same or different solvents, and are at least one independently selected from the group consisting of toluene, xylene, isopropanol, n-butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, diethylene glycol methyl ether, propylene glycol methyl ether, propylene glycol butyl ether, dipropylene glycol dimethyl ether, dipropylene glycol ethyl ether, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, dipropylene glycol methyl ether, ethylene glycol butyl ether acetate, ethylene glycol ethyl ether acetate, isophorone, diacetone alcohol, ethyl acetate, ethylene glycol ethyl ether, propylene glycol ethyl
  • the first solvent and the second solvent are the same solvent.
  • both the first solvent and the second solvent are a combined solvent, for example, but not limited to, a combined solvent of butyl acetate and methyl ethyl ketone in admixture, where the weight ratio of butyl acetate to methyl ethyl ketone ranges from 1: 2 to 2: 1, for example, 1: 1, 1: 1.5, and 1.5: 1.
  • a coating composition in the surface treatment of a composite material, in particular a fiber reinforced composite material, is provided.
  • the coating composition is coated as a pretreatment coating onto at least one surface of a composite material, particularly a fiber reinforced composite material.
  • the coating composition can solve the problem of fiber textures on the surface of the composite material and particularly the fiber reinforced composite material, so that the composite material has a surface meeting the painting requirement of the Class A surface, and can be used in subsequent continuous and mass painting.
  • the coating composition can be coated on the surface of the fiber reinforced composite material surface by at least one of air spray, airless spray or in-line electrostatic spray.
  • the coating composition can also be applied to the surface of the composite material by in-mold painting. At least one coating is formed on the surface of the composite material.
  • the coating composition of the present application can fully wet and level the surface of the fiber reinforced composite material by using the polyamine resin and a suitable solvent (especially a combined solvent) , thus improving the ability of the coating composition to solve the fiber textures caused by the surface anisotropy of the fiber reinforced composite material, and ameliorating other defects on the surface of the composite material. Meanwhile, a suitable curing agent and solvent are used in the coating composition described in the present application, such that the coating composition has the characteristics of low-temperature fast curing and high crosslinking density.
  • the coating formed by the coating composition of the present application after low-temperature curing has high hardness and good toughness, and can effectively suppress the fiber replication effect caused by the volume change of the matrix resin in the fiber reinforced composite material.
  • a polyamine resin and an isocyanate group-containing curing agent are used, which enables the fiber reinforced composite material to meet the painting requirements of the Class A surface, and the coating composition also has high adhesion, good water resistance, stone crash protection, anti-impact toughness, weather resistance, chemical resistance and other characteristics.
  • the coating composition described in the present application can be coated on a component of a composite material having surface textures by air spraying, airless spraying, in-line electrostatic spray or in-mold painting, the surface of the coated component is allowed to reach the painting requirements of the Class A surface.
  • the coating composition described in the present application is applied to a fiber reinforced composite material, the surface properties of the fiber reinforced composite material can satisfy the process requirements of high-efficiency painting of automobile parts or vehicle.
  • Fig. 1 is a cross-sectional view of an existing fiber reinforced composite material
  • Fig. 2 is a cross-sectional view of a fiber reinforced composite material according to an embodiment of the present application.
  • a coating composition 1 which comprises a polyamine resin and an isocyanate group-containing curing agent.
  • the polyamine resin is a polyaspartate resin, for example, Desmophen NH1220 available from Bayer Material Science
  • the isocyanate group-containing curing agent is an aliphatic isocyanate curing agent, for example, Desmodur N 3390 available from Bayer Material Science.
  • the coating composition further comprises a solvent and an auxiliary agent, and the auxiliary agent includes a substrate wetting agent, a pigment dispersant, fumed silica, a pigment and filler, a photostabilizer, and an UV absorber.
  • the solvent is a combined solvent of butyl acetate and methyl ethyl ketone in admixture, where the weight ratio of butyl acetate to methyl ethyl ketone ranges from 1: 2 to 2: 1, for example, 1: 1, 1: 1.5, and 1.5: 1.
  • a method for preparing the coating composition is specifically as follows.
  • a polyaspartate resin A, butyl acetate, butyl acetate, methyl ethyl ketone, a pigment and filler, a dispersant, and a fumed silica thickener are sequentially added to a primary container, mixed uniformly by dispersing for 20-30 min by using a high-speed disperser with stirring at a speed of 1500-2000 rpm.
  • the uniformly mixed materials are transferred to a grinding machine and ground, and the grinding endpoint of the material is controlled by the fineness of the slurry, where the discharge fineness of the material is 10 ⁇ m or less.
  • a commercially available substrate wetting agent, a commercially available photostabilizer, and a commercially available UV absorber are added to the slurry obtained in the step (2) , and dispersed at a high speed to mix the coating uniformly, so as to obtain a component I.
  • the viscosity of the component I is adjusted with methyl acetate and methyl ethyl ketone, and the component I is stirred for 15 min before each viscosity measurement.
  • the component I has a viscosity in the range of 100 to 20000 mPa ⁇ s at 23°C.
  • the component I and the component II are uniformly mixed at a weight ratio of 1: 20 to 20: 1 by stirring, adjusted to the applicable viscosity, sprayed onto the composite material CFRP-1 with fiber textures, and cured for 30 min at room temperature. The extent of the texture on the surface of the composite material after spraying the coating is visually observed after painting.
  • a coating composition 2 which comprises a polyamine resin and an isocyanate group-containing curing agent.
  • the polyamine resin is a polyaspartate resin, for example, F420 available from Zhuhai Feiyang New Material Co., Ltd.
  • the isocyanate group-containing curing agent is an aliphatic isocyanate group-containing curing agent, for example, Desmodur N 3390 available from Bayer Material Science.
  • the coating composition further comprises a solvent and an auxiliary agent, and the auxiliary agent includes a substrate wetting agent, a pigment dispersant, fumed silica, a pigment and filler, a photostabilizer, and an UV absorber.
  • the solvent is a combined solvent of butyl acetate and methyl ethyl ketone in admixture, where the weight ratio of butyl acetate to methyl ethyl ketone ranges from 1: 2 to 2: 1, for example, 1: 1, 1: 1.5, and 1.5: 1.
  • a method for preparing the coating composition 2 is the same as that in Example 1. The extent of the texture on the surface of the composite material after spraying the coating is visually observed after painting.
  • a coating composition 3 which comprises a polyamine resin and an isocyanate group-containing curing agent.
  • the polyamine resin is a polyaspartate resin, for example, Desmophen NH1420 available from Bayer Material Science
  • the isocyanate group-containing curing agent is an aliphatic isocyanate group-containing curing agent, for example, Desmodur N 3900 available from Bayer Material Science.
  • the coating composition further comprises a solvent and an auxiliary agent, and the auxiliary agent includes a substrate wetting agent, a pigment dispersant, fumed silica, a pigment and filler, a photostabilizer, and an UV absorber.
  • the solvent is a combined solvent of butyl acetate and methyl ethyl ketone in admixture, where the weight ratio of butyl acetate to methyl ethyl ketone ranges from 1: 2 to 2: 1, for example, 1: 1, 1: 1.5, and 1.5: 1.
  • a method for preparing the coating composition 3 is the same as that in Example 1. The extent of the texture on the surface of the composite material after spraying the coating is visually observed after painting.
  • the coating composition 1 is coated on the composite materials CFRP-1 and CFRP-2, respectively.
  • the coating composition 1 is coated on the composite materials CFRP-1 and CFRP-2 by spraying, and the coating is controlled to have a thickness of 0.3 mm, and cured at room temperature for 30 min. The extent of the texture on the surface of the composite material after spraying the coating is visually observed after painting.
  • the pretreatment coating composition 1 prepared by the method described above and the control two-component polyurethane varnish coating marketed under the trademark CLEARCOAT 859-0-411 by NIPPON PAINT are used.
  • a 0.3 mm-thick coating is formed on the composite material CFRP-1 with the CLEARCOAT 859-0-411 two-component polyurethane varnish, and cured at 80°C for 30 min. The extent of surface texture of the composite material is visually observed after the coating is sprayed.
  • the evaluation criteria are: 0: no surface texture is observed at all; 1: surface texture is substantially not observed; 2: slight surface texture is observed; 3: obvious surface texture is observed; and 4: very conspicuous surface texture is observed.
  • the test results shown in Table 2 are obtained.
  • the coating composition of the present application is enabled to have the properties of high solid content and low viscosity and can fully wet and level the surface of the fiber reinforced composite material by using the low-molecular-weight polyamine resin and a suitable solvent (especially a combined solvent) in the coating composition, thus improving the ability of the coating composition to solve the fiber textures caused by the surface anisotropy of the fiber reinforced composite material, and ameliorating other defects on the surface of the composite material.
  • a suitable curing agent and solvent are used in the coating composition described in the present application, such that the coating composition has the characteristics of low-temperature fast curing and high crosslinking density.
  • the coating formed by the coating composition of the present application after low-temperature curing has high hardness and good toughness, and can effectively suppress the fiber replication effect caused by the volume change of the matrix resin in the fiber reinforced composite material.
  • a polyamine resin and an isocyanate group-containing curing agent are used, which enables the fiber reinforced composite material to meet the painting requirements of the Class A surface, and the coating composition also has high adhesion, good water resistance, stone crash protection, anti-impact toughness, weather resistance, chemical resistance and other characteristics.
  • the coating composition described in the present application has the properties of high solid content and low viscosity, and can be coated on a component of a composite material having surface textures by air spraying, airless spraying, in-line electrostatic spray or in-mold painting, the surface of the coated component is allowed to reach the painting requirements of the Class A surface.
  • the coating composition described in the present application is applied to a fiber reinforced composite material, the surface properties of the fiber reinforced composite material can satisfy the process requirements of high-efficiency painting of automobile parts or vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)

Abstract

L'invention concerne un procédé de traitement de surface d'un matériau composite et une composition de revêtement. La composition de revêtement comprend au moins une résine polyamine et au moins un agent de durcissement ayant un groupe isocyanate. La résine polyamine a au moins deux groupes amino choisis parmi un groupe amino primaire et/ou un groupe amino secondaire.
PCT/CN2019/094353 2018-09-28 2019-07-02 Procédé de traitement de surface de matériaux composites, et composition de revêtement et son procédé de préparation WO2020063004A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811139633.5 2018-09-28
CN201811139633.5A CN110964422A (zh) 2018-09-28 2018-09-28 复合材料表面的处理方法与涂层组合物,及涂层组合物的制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020063004A1 true WO2020063004A1 (fr) 2020-04-02

Family

ID=69949977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094353 WO2020063004A1 (fr) 2018-09-28 2019-07-02 Procédé de traitement de surface de matériaux composites, et composition de revêtement et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN110964422A (fr)
WO (1) WO2020063004A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930143A (zh) * 2020-07-13 2022-01-14 立邦涂料(中国)有限公司 高固含有色透明涂层组合物、制备方法及其应用
CN112831263A (zh) * 2021-02-22 2021-05-25 郁维铭 一种双组份水性汽车罩光清漆及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090220795A1 (en) * 2008-02-29 2009-09-03 Ppg Industries Ohio, Inc. Composites comprising a multi-layer coating system
US20130244520A1 (en) * 2010-08-16 2013-09-19 Bayer Intellectual Property Gmbh Fiber composite component and a process for the production thereof
US20140121299A1 (en) * 2011-07-04 2014-05-01 Dow Global Technologies Llc Adducts as tougheners in thermosettable epoxy systems
US20150284608A1 (en) * 2012-11-12 2015-10-08 Sika Technology Ag Amine composition for a crash-resistant 2k epoxy adhesive
US20180079710A1 (en) * 2015-03-23 2018-03-22 Sika Technology Ag Amine for rapid-curing epoxy resin compositions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19822842A1 (de) * 1998-05-22 1999-11-25 Bayer Ag 2K-PUR-Korrosionsschutz-Decklack
JP3629167B2 (ja) * 1999-06-25 2005-03-16 日華化学株式会社 二液型水性アクリル−ウレタン組成物、該組成物を含有してなる接着剤及び塗工剤
MX2007002429A (es) * 2004-09-02 2007-05-04 Ppg Ind Ohio Inc Revestimiento de varios componentes que incluye una capa de revestimiento de poliurea.
CN105331270B (zh) * 2015-12-02 2018-04-06 立邦涂料(中国)有限公司 一种阳离子微凝胶、制备方法及其用途
CN107513341B (zh) * 2017-08-22 2020-01-10 北京碧海舟腐蚀防护工业股份有限公司 快干高固体聚脲涂料、其制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090220795A1 (en) * 2008-02-29 2009-09-03 Ppg Industries Ohio, Inc. Composites comprising a multi-layer coating system
US20130244520A1 (en) * 2010-08-16 2013-09-19 Bayer Intellectual Property Gmbh Fiber composite component and a process for the production thereof
US20140121299A1 (en) * 2011-07-04 2014-05-01 Dow Global Technologies Llc Adducts as tougheners in thermosettable epoxy systems
US20150284608A1 (en) * 2012-11-12 2015-10-08 Sika Technology Ag Amine composition for a crash-resistant 2k epoxy adhesive
US20180079710A1 (en) * 2015-03-23 2018-03-22 Sika Technology Ag Amine for rapid-curing epoxy resin compositions

Also Published As

Publication number Publication date
CN110964422A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
CN105820737B (zh) 一种性能优异的汽车用水性双组份中涂漆及其制备方法
CN109777263B (zh) 一种超低voc高固含水性环氧涂料及其制备方法和应用
KR101998601B1 (ko) 분사 및 롤링 도포용 폴리우레아 수지 도막 방수재
CN110003763B (zh) 双组分水性环氧树脂漆
CN110669419A (zh) 一种水性丙烯酸聚氨酯涂料及其制备方法
CN111087906B (zh) 一种用于镀锌板材的水性双组分聚氨酯漆及其制备方法
CN109722157B (zh) 一种安全型水性双组份高光面漆及其制备方法
WO2020063004A1 (fr) Procédé de traitement de surface de matériaux composites, et composition de revêtement et son procédé de préparation
CN109135534A (zh) 一种高触变性水性双组分高光汽车面漆及其制备方法
CN114369389B (zh) 一种哑光uv油墨及其制备方法
CN113045972A (zh) 聚脲涂料
CN110643265A (zh) 一种可淋涂和浸涂的水性环氧涂料及其制备方法
CN110791187B (zh) 一种水性有机杂化防腐涂层及其制备方法
KR101902881B1 (ko) 2액형 폴리우레탄 겔코트 도료 및 이를 이용한 폴리우레탄 겔코트막 형성방법
CN111171700B (zh) 一种防腐涂层及其涂装工艺
CN108148494B (zh) 一种城轨及动车车体用双组份水性丙烯酸聚氨酯自修复高光清漆及其制备方法
CN111440510B (zh) 一种汽车修补用快干水性双组份中涂漆及其制备方法
CN105219211A (zh) 一种高性能薄涂型水性环氧地坪涂料及其制备方法
JP6680448B1 (ja) 複層塗膜形成方法
CN114989707A (zh) 聚脲涂料
CN113480929A (zh) 一种底面合一聚氨酯涂料及其制备方法
CN113755087A (zh) 一种高韧弹性双组份聚氨酯涂料及其应用
CN104130691B (zh) 一种溶剂型双组份弹性聚酯/聚氨酯抗风沙火车涂料及其制备方法
CN113045989A (zh) 轨道交通用高韧性快干水性中涂漆及其制备方法
CN112824471B (zh) 高耐候透明涂层组合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866129

Country of ref document: EP

Kind code of ref document: A1