WO2020062888A1 - 一种造纸行业产生的反渗透浓水在融雪剂中的应用 - Google Patents

一种造纸行业产生的反渗透浓水在融雪剂中的应用 Download PDF

Info

Publication number
WO2020062888A1
WO2020062888A1 PCT/CN2019/086822 CN2019086822W WO2020062888A1 WO 2020062888 A1 WO2020062888 A1 WO 2020062888A1 CN 2019086822 W CN2019086822 W CN 2019086822W WO 2020062888 A1 WO2020062888 A1 WO 2020062888A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
water
snow melting
mass
concentrated
Prior art date
Application number
PCT/CN2019/086822
Other languages
English (en)
French (fr)
Inventor
吴朝军
张建华
姜海强
王东
李书平
李荣刚
于冬梅
Original Assignee
淄博永丰环保科技有限公司
齐鲁工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淄博永丰环保科技有限公司, 齐鲁工业大学 filed Critical 淄博永丰环保科技有限公司
Publication of WO2020062888A1 publication Critical patent/WO2020062888A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • C09K3/185Thawing materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry

Definitions

  • the invention relates to the technical field of drainage and reuse of papermaking industry, in particular to the application of concentrated osmosis water produced in the papermaking industry to a snow melting agent.
  • the papermaking reverse osmosis concentrated water is rich in bio-degradable organic matter. Its CODcr (about 1000mg / L) concentration is higher than that of other industrial concentrated water (100-300mg / L). It also contains sulfate ion, chloride ion, calcium ion, Reverse osmosis concentrated water with high CODcr and high salinity, such as sodium ions, aluminum ions, iron ions, and magnesium ions, is extremely difficult to handle. At present, technologies such as reflux, sea drainage, deep well injection, spray irrigation, and distillation concentration are mainly used at home and abroad.
  • CN108395876A discloses a composite snow melting agent and a preparation method thereof.
  • the mass ratio of the composite snow melting agent is: 78-93 parts of a compound salt, 12-23 parts of a corrosion inhibitor, and 2-4 parts of a plant nutrient; Obtained by concentrated brine extraction.
  • the preparation method of the composite snow melting agent includes: (1) concentrating the reverse osmosis concentrated brine to a near-saturated state; (2) spray drying the concentrated brine obtained in the step (1) to obtain a composite salt; (3) in the composite salt Add corrosion inhibitors and plant nutrients.
  • the invention realizes the efficient and economical resource utilization of the reverse osmosis concentrated brine, and the compound snow melting agent can quickly and effectively melt snow and ice, greatly reducing the metal corrosion of the road surface and the surface and the pollution of the green vegetation environment by the ordinary snow melting agent,
  • the production process is simple and feasible, and has the advantages of turning waste into treasure, environmental protection and energy saving.
  • this process is only suitable for reverse osmosis concentrated brine with low CODcr content. Because high CODcr content is high in organic matter, high organic content has a large impact on the performance of snow melting agent, poor snow melting effect, and serious environmental pollution. Therefore, this process is not Suitable for high CODcr content produced by the paper industry.
  • the present application discloses the application of concentrated osmosis water in snow melting agents.
  • the invention is achieved by the following measures:
  • the concentrated reverse osmosis water is a high-concentration wastewater obtained after a reverse osmosis membrane treatment of papermaking wastewater.
  • the flocculant used in the flocculation is polyaluminum chloride with a content of 26% aluminum chloride, and polyaluminum chloride with a content of 30% aluminum chloride and polyaluminum chloride with a content of 35% aluminum chloride.
  • the coagulant used in flocculation has molecular weights of 8 million, 10 million, 12 million and 1800.
  • 10,000 APAM is a mixture obtained by mixing according to a mass ratio of 1: 1: 1: 1, and the amount is 0.01-1.0 times, preferably 0.05 times, the mass of CODcr in concentrated osmosis reverse osmosis water.
  • the oxidant used in the oxidation is obtained by mixing potassium persulfate, sodium persulfate, ammonium persulfate and sodium bisulfite according to a mass ratio of 1: 1: 1: 1.5, and the amount is the mass of CODcr in the original reverse osmosis concentrated water. 0.1-10 times, preferably 5 times.
  • the co-precipitating agent used in the co-precipitation is composed of calcium oxide and sodium metaaluminate according to a mass ratio of 3: 1, and the amount is 0.1-10 times, preferably 5 times, the mass of CODcr in the original reverse osmosis concentrated water.
  • the activator consists of glacial acetic acid, nitric acid, hydrochloric acid, a surfactant dodecyl glycoside, a defoamer polydimethylsiloxane, and a corrosion inhibitor according to a mass ratio of 1: 1: 1: 0.00005: 0.00005: 0.0005.
  • the composition is used in an amount of 0.01-1.0 times, preferably 0.2 times, the absolute dry precipitate obtained in the co-precipitation, wherein the corrosion inhibitor is composed of sodium gluconate and sodium borate according to a mass ratio of 1: 1.
  • the co-precipitating agent is added after the reverse osmosis concentrated water is oxidized.
  • the speed was 350 rpm, filtered, and the precipitate was dried to dryness.
  • the relative snow melting capacity of the snow melting agent is greater than 100%.
  • the technical solution provided by the present invention firstly, by means of electric neutralization destabilization and adsorption bridging of flocculant and coagulant, organic matter in a part of colloidal range in concentrated water is removed, and then a high-level oxidation aid is added, and the generated free radical is used Further oxidatively degrade small molecule organics in concentrated water, and simultaneously add a coprecipitating agent to precipitate and adsorb organic and inorganic substances in concentrated water, and activate the coprecipitate with an activator to prepare a snow melting agent. After using this process, the relative snow melting capacity of the prepared snow melting agent can reach more than 100%.
  • the snow melting agent test solution in the low temperature incubator is taken out, quickly poured into a beaker containing ice cubes, and then returned to the low temperature incubator at -15 ⁇ 1 ° C. Remove the beaker after 0.5h, immediately pour the liquid in it, and quickly weigh the beaker and the remaining ice mass at room temperature.
  • the relative snow melting and ice melting capacity is calculated by w 1 and calculated according to the following formula:
  • m 0 the value of the beaker and ice mass without the snow melting agent test solution, the unit is gram (g);
  • m 1 The value of the beaker and ice mass after pouring out the test solution and melting ice, the unit is gram (g);
  • m 2 the value of the beaker and ice mass without calcium chloride dihydrate solution, the unit is gram (g);
  • m 3 the value of the beaker and ice mass after pouring out the calcium chloride dihydrate solution and the melted ice, the unit is gram (g).
  • the process of the present invention is used to treat concentrated reverse osmosis water of papermaking, the process is simple, and the chemicals used are clean and environmentally friendly.
  • the present invention mainly uses flocculants and advanced oxidants to flocculate and degrade some organic matters in concentrated water, and further precipitates and adsorbs organic matters and inorganic matters in concentrated water by co-precipitating agent.
  • the co-precipitate is activated with an activator to obtain high melting snow. Snow-melting agent with ice capacity.
  • This method solves the problem of post-treatment and application of concentrated reverse osmosis water for papermaking.
  • the relative snow melting and ice melting capacity of the prepared snow melting agent can reach more than 100%, which is a good way to reuse and solve environmental problems.
  • Two birds with one stone, has good industrial utilization value;
  • FIG. 1 is a process flow chart of preparing a snow melting agent with high snow melting capacity and ice melting ability by using papermaking reverse osmosis concentrated water.
  • processing agents used in the following examples are as follows:
  • the flocculant used in the flocculation is polyaluminum chloride with 26% aluminum chloride content, polyaluminum chloride with 30% aluminum chloride content and polyaluminum chloride with 35% aluminum chloride content according to the mass ratio of 1: 1: 1 Compound of mixed composition, the dosage is 1-6 times, preferably 4 times, the mass of CODcr in concentrated osmosis water.
  • APAM used in flocculation is APAM with molecular weight of 8 million, 10 million, 12 million and 18 million. The ratio is a mixture of 1: 1 and 1: 1, and the amount used is 0.01-1.0 times, preferably 0.05 times, the mass of CODcr in concentrated osmosis reverse osmosis water.
  • the oxidant used in the oxidation is obtained by mixing potassium persulfate, sodium persulfate, ammonium persulfate and sodium bisulfite according to a mass ratio of 1: 1: 1: 1.5, and the amount is 0.1-10 times the mass of the original CODcr in concentrated RO water. , Preferably 5 times.
  • the co-precipitating agent used in the co-precipitation is composed of calcium oxide and sodium metaaluminate according to a mass ratio of 3: 1, and the amount is 0.1-10 times, preferably 5 times, the mass of CODcr in the original reverse osmosis concentrated water.
  • the activator is composed of glacial acetic acid, nitric acid, hydrochloric acid, surfactant dodecyl glycoside, antifoaming agent polydimethylsiloxane, and corrosion inhibitor in a mass ratio of 1: 1: 1: 1: 0.00005: 0.00005: 0.0005.
  • the absolute dry precipitate obtained in the precipitation is 0.01-1.0 times, preferably 0.2 times, wherein the corrosion inhibitor is composed of sodium gluconate and sodium borate in a mass ratio of 1: 1.
  • the process of the present invention is used to treat concentrated papermaking reverse osmosis water with high CODcr content (1355mg / L),
  • flocculant 4 times of CODcr
  • T 30 ⁇ 2 °C
  • coagulant 0.05 times of CODcr
  • the snow melting agent prepared through the above steps measured a relative snow melting capacity of 125%.
  • the process flow chart is shown in Figure 1.
  • flocculant 4 times of CODcr
  • T 30 ⁇ 2 °C
  • coagulant 0.05 times of CODcr
  • the snow melting agent prepared through the above steps measured a relative snow melting capacity of 130%.
  • the prepared snow melting agent has a relative snow melting capacity of 105%.
  • the prepared snow melting agent has a relative snow melting capacity of 116%.
  • the prepared snow melting agent has a relative snow melting capacity of 108%.
  • the relative snow melting capacity of the prepared snow melting agent was 120%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种造纸行业产生的反渗透浓水在融雪剂中的应用,其中反渗透浓水经过絮凝、氧化、共沉淀和活化后,用于制作融雪剂。此方法解决了造纸反渗透浓水的后处理及应用问题,制备出融雪剂的相对融雪化冰能力可达到100%以上。

Description

一种造纸行业产生的反渗透浓水在融雪剂中的应用 技术领域
本发明涉及造纸行业排水再利用技术领域,特别涉及一种造纸行业产生的反渗透浓水在融雪剂中的应用。
背景技术
近年来,国家对环保要求越来越高,对造纸企业的吨产品排水量要求严格,甚至要做到接近零排放,提高水的回用率成为当今的研究热点。一般废水处理方法的回用水指标不能达到造纸工业的用水标准,而超滤-反渗透双膜法处理后的回水完全能达到造纸工业用水标准,越来越多的造纸企业采用此双膜法来处理造纸废水以达到节约清水的目的,虽然双膜回水可完全取代清水用于造纸生产各工段中去,但双膜处理后浓水的处理成为难点,尤其是反渗透浓水的处理。
造纸反渗透浓水中富含生物不可降解的有机物,其CODcr(约1000mg/L)浓度高于其它工业浓水的CODcr(100-300mg/L),还含有硫酸根离子、氯离子、钙离子、钠离子、铝离子、铁离子和镁离子等,高CODcr和高盐度的反渗透浓水极难处理,目前国内外主要采用回流、排海、深井注射、喷灌和蒸馏浓缩等技术。回流易堵塞超滤和反渗透膜,降低膜的寿命;蒸馏浓缩面临超疏水膜的制备和选择困难;排海与深井注射会进一步污染环境;喷灌会对植物的生长和土质特性造成影响。有些研究者试图通过正渗透(forward osmosis)和膜蒸馏(membrane distillation)技术对反渗透浓水进行部分回收,但因其能耗高或对膜质量要求过高,应用前景不容乐观。目前,对造纸反渗透浓水的高CODcr和高盐度脱除问题始终未能探讨出较佳的技术方案。
CN108395876A公开了一种复合融雪剂及其制备方法,复合融雪剂的质量配比为:复合盐78-93份,缓蚀剂12-23份,植物营养剂2-4份;复合盐由反渗透浓盐水提取获得。复合融雪剂的制备方法包括:(1)将反渗透浓盐水浓缩至接近饱和状态;(2)对步骤(1)浓缩得到的浓盐水进行喷雾干燥,得到复合盐;(3)在复合盐中加入缓蚀剂和植物营养剂。本发明实现了对反渗透浓盐水高效经济的资源化利用,而且这种复合融雪剂能够快速有效地融化冰雪,大大降低了普通融雪剂对路面及表面的金属腐蚀以及对绿化植被环境的污染,生产过程简单可行,具有变废为宝、环保节能的优点。但这种工艺只适合低CODcr含量的反渗透浓盐水,由于CODcr含量高即为有机物含量高,高有机物含量对融雪剂的性能影响大,融雪效果差,对环境污染严重,因此,此工艺不适合高CODcr含量的造纸行业产生的反渗透浓水。
发明内容
为了解决以上现有技术中对造纸产生的反渗透水的后处理及重复使用中存在的高CODcr和高盐度脱除问题,本申请公开了反渗透浓水在融雪剂中的应用。
本发明是通过以下措施实现的:
一种造纸行业产生的反渗透浓水经过絮凝、氧化、共沉淀和活化后,在融雪剂中的应用,所述反渗透浓水为造纸废水经过反渗透膜处理后得到的高浓度废水。
所述的应用,絮凝中用到的絮凝剂为26%氧化氯铝含量的聚合氯化铝、30%氧化氯铝含量都聚合氯化铝与35%氧化氯铝含量的聚合氯化铝按照质量比1:1:1混合组成的化合物,用量为反渗透浓水中CODcr质量的1-6倍,优选4倍;絮凝中用到的助凝剂为分子量为800万、1000万、1200万和1800万的APAM按照质量比为1:1:1:1混合得到的混合物,用量为反渗透浓水中CODcr质量的0.01-1.0倍,优选0.05倍。
所述的应用,氧化中用到的氧化剂由过硫酸钾、过硫酸钠、过硫酸铵和亚硫酸氢钠按照质量比1:1:1:1.5混合得到,用量为原反渗透浓水中CODcr质量的0.1-10倍,优选5倍。
所述的应用,共沉淀中使用的共沉淀剂由氧化钙和偏铝酸钠按照质量比为3:1组成,用量为原反渗透浓水中CODcr质量的0.1-10倍,优选5倍。
所述的应用,活化剂由冰醋酸、硝酸、盐酸、表面活性剂十二烷基糖苷、消泡剂聚二甲硅氧烷和缓蚀剂按照质量比1:1:1:0.00005:0.00005:0.0005组成,用量为共沉淀中得到的绝干沉淀物的0.01-1.0倍,优选0.2倍,其中缓蚀剂为葡萄糖酸钠和硼酸钠按照质量比1:1组成。
所述的应用,絮凝阶段,首先添加絮凝剂,搅拌速度为250-500rpm,T=30±2℃,时间2-60min,优选T=30±2℃,保温时间30分钟,搅拌速度为350rpm,再添加助凝剂,搅拌速度为20-100rpm,T=30±2℃,时间2-30min,优选搅拌速度为20-100rpm,T=30±2℃,保温时间30分钟,搅拌速度为80rpm,将絮凝后的反渗透浓水用滤纸过滤,得滤液。
所述的应用,氧化阶段工艺为:将絮凝阶段得到的滤液添加氧化剂,搅拌速度为250-500rpm,T=30±2℃,pH=3.0±1.0,时间2-120min,优选pH=3.0±1.0,T=30±2℃,保温时间60分钟,搅拌速度为350rpm。
所述的应用,反渗透浓水经过氧化后添加共沉淀剂,搅拌速度为250-500rpm,T=30±2℃,时间30-120min,优选T=30±2℃,保温时间60分钟,搅拌速度为350rpm,过滤,沉淀烘至绝干。
所述的应用,取共沉淀后的绝干沉淀物,添加活化剂,总固形物浓度控制为30%,搅拌速度为250-500rpm,T=40±2℃,时间30-120min.,优选T=40±2℃,保温时间60分钟,搅拌速度为350rpm,过滤得滤液,用于制备融雪剂。
所述的应用,融雪剂的相对融雪化冰能力大于100%。
本发明提供的技术方案:首先借助于絮凝剂及助凝剂的电中和脱稳和吸附架桥脱除浓水中的部分胶体范围内的有机物,然后添加高级氧化助剂,利用产生的自由基进一步氧化降解浓水中的小分子有机物,同时添加共沉淀剂进行沉淀吸附浓水中的有机物和无机物,用活化剂对共沉淀物进行活化处理,制备融雪剂。采用此工艺处理后,制备出融雪剂的相对融雪化冰能力可达到100%以上。
融雪剂融雪化冰能力的测定参照GB/T 23851-2017标准中II型融雪剂融雪化冰能力的测定方法,具体步骤如下:
a)取两个50mL相同直径和高度的烧杯,加入15.00mL水,置于-15±1℃的低温恒温箱中冷冻3h,制备成冰块备用。
b)分别移取25.00mL融雪剂试验溶液(质量百分比为29%)和二水氯化钙标准溶液(29%),于两个50mL烧杯中,置于-15±1℃的低温恒温箱中,3h后备用。
c)从低温恒温箱中取出带有冰块的烧杯,擦干外壁上的水和冰,室温下迅速称量,精确到0.1g。
d)低温恒温箱中的融雪剂试验溶液取出,迅速倒入盛有冰块的烧杯中,然后放回-15±1℃的低温恒温箱中。0.5h后取出该烧杯,立即倾倒其中液体,室温下迅速称量烧杯和剩余冰块质量。
e)二水氯化钙溶液的操作步骤同融雪剂试验溶液的操作步骤。
相对融雪化冰能力以w 1计,按下式进行计算:
w 1=[(m 0-m 1)/(m 2-m 3)]×100%
其中:m 0——未加入融雪剂试验溶液的烧杯和冰块质量的数值,单位为克(g);
m 1——倒出融雪剂试验溶液和融化的冰后,烧杯和冰块质量的数值,单位为克(g);
m 2——未加入二水氯化钙溶液的烧杯和冰块质量的数值,单位为克(g);
m 3——倒出二水氯化钙溶液和融化的冰后,烧杯和冰块质量的数值,单位为克(g)。
综上所述,采用本发明所述工艺处理造纸反渗透浓水,工艺流程简单,所用化学品清洁环保。本发明主要通过絮凝剂和高级氧化剂来絮凝降解浓水中部分有机物,再通过共沉淀剂进一步沉淀吸附浓水中的有机物和无机物,用活化剂对共沉淀物进行活化处理,从而得到了高融雪化冰能力的融雪剂。
本发明的有益效果:
(1)此方法解决了造纸反渗透浓水的后处理及应用问题,制备出融雪剂的相对融雪化冰能力可达到100%以上,是一种很好的重利用途径,同时解决了环境问题,一举两得,具有很好的工业利用价值;
(2)采用本发明所述工艺处理造纸反渗透浓水,工艺流程简单,所用化学品清洁环保。
附图说明
图1是造纸反渗透浓水制备高融雪化冰能力融雪剂的工艺流程图。
具体实施方式
为了更好的理解本发明,下面结合具体实例来进一步说明,但本发明所适用范围并不局限于本实例所记载的范围。
下述各实施例中使用到的各种处理剂种类如下:
絮凝中用到的絮凝剂为26%氧化氯铝含量的聚合氯化铝、30%氧化氯铝含量都聚合氯化铝与35%氧化氯铝含量的聚合氯化铝按照质量比1:1:1混合组成的化合物,用量为反渗透浓水中CODcr质量的1-6倍,优选4倍;絮凝中用到的助凝剂为分子量为800万、1000万、1200万和1800万的APAM按照质量比为1:1:1:1混合得到的混合物,用量为反渗透浓水中CODcr质量的0.01-1.0倍,优选0.05倍。
氧化中用到的氧化剂由过硫酸钾、过硫酸钠、过硫酸铵和亚硫酸氢钠按照质量比1:1:1:1.5混合得到,用量为原反渗透浓水中CODcr质量的0.1-10倍,优选5倍。
共沉淀中使用的共沉淀剂由氧化钙和偏铝酸钠按照质量比为3:1组成,用量为原反渗透浓水中CODcr质量的0.1-10倍,优选5倍。
活化剂由冰醋酸、硝酸、盐酸、表面活性剂十二烷基糖苷、消泡剂聚二甲硅氧烷和缓蚀剂按照质量比1:1:1:0.00005:0.00005:0.0005组成,用量为共沉淀中得到的绝干沉淀物的0.01-1.0倍,优选0.2倍,其中缓蚀剂为葡萄糖酸钠和硼酸钠按照质量比1:1组成。
实施例1:
采用本发明工艺处理高CODcr含量(1355mg/L)的造纸反渗透浓水,
步骤一:取700mL造纸反渗透浓水加入1000mL三口瓶中,添加絮凝剂(CODcr的4倍)3.79g,T=30±2℃,保温时间30分钟,搅拌速度为350rpm,再添加助凝剂(CODcr的0.05倍)47mg,搅拌速度为20-100rpm,T=30±2℃,保温时间30分钟,搅拌速度为80rpm,将絮凝后的反渗透浓水用中速定量滤纸过滤,用蒸馏水稀释滤液至700mL备用。
步骤二:将步骤一中700mL滤液加入1000mL三口瓶中,添加高级氧化剂(CODcr的5倍)4.74g,pH=3.0±1.0,T=30±2℃,保温时间60分钟,搅拌速度为350rpm,高级 氧化后即刻添加共沉淀剂(CODcr的5倍)4.74g,T=30±2℃,保温时间60分钟,搅拌速度为350rpm,反应后经中速定量滤纸过滤,沉淀烘至绝干备用。
步骤三:称取上述烘干后的共沉淀物50g加入250mL三口瓶中,添加活化剂(共沉淀物绝干质量的0.2倍)10g,T=40±2℃,保温时间60分钟,搅拌速度为350rpm。通过上述步骤制备的融雪剂测得相对融雪化冰能力为125%。工艺流程图如图1。
实施例2:
采用本发明工艺处理低CODcr含量(920mg/L)的造纸反渗透浓水,
步骤一:取700mL造纸反渗透浓水加入1000mL三口瓶中,添加絮凝剂(CODcr的4倍)2.58g,T=30±2℃,保温时间30分钟,搅拌速度为350rpm,再添加助凝剂(CODcr的0.05倍)32mg,搅拌速度为20-100rpm,T=30±2℃,保温时间30分钟,搅拌速度为80rpm,将絮凝后的反渗透浓水用中速定量滤纸过滤,用蒸馏水稀释滤液至700mL备用。
步骤二:将步骤一中700mL滤液加入1000mL三口瓶中,添加高级氧化剂(CODcr的5倍)3.22g,pH=3.0±1.0,T=30±2℃,保温时间60分钟,搅拌速度为350rpm,高级氧化后即刻添加共沉淀剂(CODcr的5倍)3.22g,T=30±2℃,保温时间60分钟,搅拌速度为350rpm,反应后经中速定量滤纸过滤,沉淀烘至绝干备用。
步骤三:称取上述烘干后的共沉淀物50g加入250mL三口瓶中,添加活化剂(共沉淀物绝干质量的0.2倍)10g,T=40±2℃,保温时间60分钟,搅拌速度为350rpm。通过上述步骤制备的融雪剂测得相对融雪化冰能力为130%。
实施例3:
与实施例1相比,添加活化剂0.5g,T=40±2℃,保温时间60分钟,搅拌速度为350rpm,其余同实施例1操作相同。制备的融雪剂测得相对融雪化冰能力为105%。
实施例4:
与实施例1相比,添加活化剂50g,T=40±2℃,保温时间60分钟,搅拌速度为350rpm,其余同实施例1操作相同。制备的融雪剂测得相对融雪化冰能力为116%。
实施例5:
与实施例2相比,添加活化剂0.5g,T=40±2℃,保温时间60分钟,搅拌速度为350rpm,其余同实施例2操作相同。制备的融雪剂测得相对融雪化冰能力为108%。
实施例6:
与实施例2相比,添加活化剂50g,T=40±2℃,保温时间60分钟,搅拌速度为350rpm,其余同实施例2操作相同。制备的融雪剂测得相对融雪化冰能力为120%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受实施例的限制,其 它任何未背离本发明的精神实质与原理下所做的改变、修饰、组合、替代、简化均应为等效替换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种造纸行业产生的反渗透浓水经过絮凝、氧化、共沉淀和活化后,在融雪剂中的应用,所述反渗透浓水为造纸废水经过反渗透膜处理后得到的高浓度废水。
  2. 根据权利要求1所述的应用,其特征在于絮凝中用到的絮凝剂为26%氧化氯铝含量的聚合氯化铝、30%氧化氯铝含量都聚合氯化铝与35%氧化氯铝含量的聚合氯化铝按照质量比1:1:1混合组成的化合物,用量为反渗透浓水中CODcr质量的1-6倍;絮凝中用到的助凝剂为分子量为800万、1000万、1200万和1800万的APAM按照质量比为1:1:1:1混合得到的混合物,用量为反渗透浓水中CODcr质量的0.01-1.0倍。
  3. 根据权利要求1所述的应用,其特征在于氧化中用到的氧化剂由过硫酸钾、过硫酸钠、过硫酸铵和亚硫酸氢钠按照质量比1:1:1:1.5混合得到,用量为原反渗透浓水中CODcr质量的0.1-10倍。
  4. 根据权利要求1所述的应用,其特征在于共沉淀中使用的共沉淀剂由氧化钙和偏铝酸钠按照质量比为3:1组成,用量为原反渗透浓水中CODcr质量的0.1-10倍。
  5. 根据权利要求1所述的应用,其特征在于活化剂由冰醋酸、硝酸、盐酸、表面活性剂十二烷基糖苷、消泡剂聚二甲硅氧烷和缓蚀剂按照质量比1:1:1:0.00005:0.00005:0.0005组成,用量为共沉淀中得到的绝干沉淀物的0.01-1.0倍,其中缓蚀剂为葡萄糖酸钠和硼酸钠按照质量比1:1组成。
  6. 根据权利要求1所述的应用,其特征在于絮凝阶段,首先添加絮凝剂,搅拌速度为250-500rpm,T=30±2℃,时间2-60min,再添加助凝剂,搅拌速度为20-100rpm,T=30±2℃,时间2-30min,将絮凝后的反渗透浓水用滤纸过滤,得滤液。
  7. 根据权利要求1所述的应用,其特征在于氧化阶段工艺为:将絮凝阶段得到的滤液添加氧化剂,搅拌速度为250-500rpm,T=30±2℃,pH=3.0±1.0,时间2-120min。
  8. 根据权利要求1所述的应用,其特征在于反渗透浓水经过氧化后添加共沉淀剂,搅拌速度为250-500rpm,T=30±2℃,时间30-120min,过滤,沉淀烘至绝干。
  9. 根据权利要求1所述的应用,其特征在于取共沉淀后的绝干沉淀物,添加活化剂,总固形物浓度控制为30%,搅拌速度为250-500rpm,T=40±2℃,时间30-120min.,过滤得滤液,用于制备融雪剂。
  10. 根据权利要求1所述的应用,其特征在于融雪剂的相对融雪化冰能力大于100%。
PCT/CN2019/086822 2018-09-29 2019-05-14 一种造纸行业产生的反渗透浓水在融雪剂中的应用 WO2020062888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811148842.6 2018-09-29
CN201811148842.6A CN109231549B (zh) 2018-09-29 2018-09-29 一种造纸行业产生的反渗透浓水在融雪剂中的应用

Publications (1)

Publication Number Publication Date
WO2020062888A1 true WO2020062888A1 (zh) 2020-04-02

Family

ID=65054711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086822 WO2020062888A1 (zh) 2018-09-29 2019-05-14 一种造纸行业产生的反渗透浓水在融雪剂中的应用

Country Status (2)

Country Link
CN (1) CN109231549B (zh)
WO (1) WO2020062888A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231549B (zh) * 2018-09-29 2021-07-23 淄博永丰环保科技有限公司 一种造纸行业产生的反渗透浓水在融雪剂中的应用
CN114230081B (zh) * 2021-12-24 2024-04-16 华能辛店发电有限公司 脱硫废水用于制备融雪剂并用于风机叶片化冰的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462806A (zh) * 2008-12-31 2009-06-24 大连理工大学 一种提高海水淡化淡水收率及浓海水回收利用的方法
JP2012024720A (ja) * 2010-07-26 2012-02-09 Masaki Igawa 融雪剤リサイクルシステム
CN205011538U (zh) * 2015-04-19 2016-02-03 上海东硕环保科技有限公司 一种低能耗煤化工浓盐水分质结晶组合装置
CN207567027U (zh) * 2017-11-22 2018-07-03 中石化石油工程技术服务有限公司 页岩气田产出水的综合处理系统
CN108395876A (zh) * 2018-02-02 2018-08-14 深圳市铁汉生态环境股份有限公司 一种复合融雪剂及其制备方法
CN108503111A (zh) * 2017-02-28 2018-09-07 山东润博生物科技有限公司 一种2,4-二氯苯氧乙酸的生产废液中工业盐的回收方法
CN109231549A (zh) * 2018-09-29 2019-01-18 淄博永丰环保科技有限公司 一种造纸行业产生的反渗透浓水在融雪剂中的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2680044A1 (en) * 2007-03-07 2008-09-12 Nihon Cellulose Co., Ltd. Disposal process for sulfide-free black liquors
CN101045546A (zh) * 2007-04-28 2007-10-03 沈阳化工股份有限公司 一种氯化钙融雪剂的生产方法
CN104804710B (zh) * 2015-04-14 2016-08-24 沈阳化工大学 一种复合型无盐环保的除冰除雪剂及其制备方法
CN105152414A (zh) * 2015-10-03 2015-12-16 中国轻工业长沙工程有限公司 一种反渗透浓水净化处理工艺
CN105174641A (zh) * 2015-10-10 2015-12-23 博瑞德(南京)净化技术有限公司 一种化工ro浓水的处理工艺
CN106746131A (zh) * 2017-01-23 2017-05-31 上海中耀环保实业有限公司 一种有机废水反渗透浓水氧化及脱盐方法和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462806A (zh) * 2008-12-31 2009-06-24 大连理工大学 一种提高海水淡化淡水收率及浓海水回收利用的方法
JP2012024720A (ja) * 2010-07-26 2012-02-09 Masaki Igawa 融雪剤リサイクルシステム
CN205011538U (zh) * 2015-04-19 2016-02-03 上海东硕环保科技有限公司 一种低能耗煤化工浓盐水分质结晶组合装置
CN108503111A (zh) * 2017-02-28 2018-09-07 山东润博生物科技有限公司 一种2,4-二氯苯氧乙酸的生产废液中工业盐的回收方法
CN207567027U (zh) * 2017-11-22 2018-07-03 中石化石油工程技术服务有限公司 页岩气田产出水的综合处理系统
CN108395876A (zh) * 2018-02-02 2018-08-14 深圳市铁汉生态环境股份有限公司 一种复合融雪剂及其制备方法
CN109231549A (zh) * 2018-09-29 2019-01-18 淄博永丰环保科技有限公司 一种造纸行业产生的反渗透浓水在融雪剂中的应用

Also Published As

Publication number Publication date
CN109231549A (zh) 2019-01-18
CN109231549B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN100497193C (zh) 用于含油废水处理的高分子复合絮凝剂及其制作方法
WO2017133514A1 (zh) 脱硫废水软化处理装置及方法
WO2017133513A1 (zh) 一种脱硫废水软化处理装置及方法
CN105439358A (zh) 一种脱硫废水零排放的方法与装置
CN103145313B (zh) 适用于污泥焚烧处置的污泥调理剂及调理方法
CN101172724A (zh) 一种工业循环水排污水的处理方法
CN110272158A (zh) 一种高盐分、高有机物和高硬度废水处理方法
CN102976458A (zh) 复配精制硅藻土污水脱磷处理药剂
WO2020062888A1 (zh) 一种造纸行业产生的反渗透浓水在融雪剂中的应用
CN104986916A (zh) 一种造纸涂布废水处理工艺
CN104973680A (zh) 一种高效多用污水处理剂及利用其处理污水的方法
CN205653287U (zh) 脱硫废水零排放处理的装置
CN103359815A (zh) 一种用于治理污浊水或污染水的新型高效环保凝聚剂
CN109650599A (zh) 一种非膜法垃圾渗滤液纳滤浓缩液处理工艺方法
CN1762847A (zh) 清除水域中蓝藻的方法
CN106430808B (zh) 一种蓝湿皮革加工废水处理工艺
CN103011462B (zh) 重复利用电厂中水石灰软化法处理循环补充水的废渣的装置及方法
CN105481178A (zh) 一种具软化处理的垃圾渗滤液处理工艺
CN105753122B (zh) 一种环保性高效复合絮凝剂
CN209259867U (zh) 高盐水处理系统
CN108017196B (zh) 一种酸析氧化絮凝沉淀的废水深度处理工艺
CN206751583U (zh) 基于离子选择性电渗析技术的脱硫废水零排放系统
CN206901925U (zh) 新型脱硫废水处理的装置
CN110304755A (zh) 一种含电解锰渣的废水处理方法及其处理系统
CN108328888A (zh) 一种利用粉煤灰对污泥处理的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865085

Country of ref document: EP

Kind code of ref document: A1