WO2020062851A1 - 用于制动的磁性极靴材料及烧结方法 - Google Patents

用于制动的磁性极靴材料及烧结方法 Download PDF

Info

Publication number
WO2020062851A1
WO2020062851A1 PCT/CN2019/084406 CN2019084406W WO2020062851A1 WO 2020062851 A1 WO2020062851 A1 WO 2020062851A1 CN 2019084406 W CN2019084406 W CN 2019084406W WO 2020062851 A1 WO2020062851 A1 WO 2020062851A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
pole shoe
braking
parts
powder
Prior art date
Application number
PCT/CN2019/084406
Other languages
English (en)
French (fr)
Inventor
王春官
熊翔
盛德稳
Original Assignee
海安县鹰球粉末冶金有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海安县鹰球粉末冶金有限公司 filed Critical 海安县鹰球粉末冶金有限公司
Publication of WO2020062851A1 publication Critical patent/WO2020062851A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H7/00Brakes with braking members co-operating with the track
    • B61H7/02Scotch blocks, skids, or like track-engaging shoes
    • B61H7/04Scotch blocks, skids, or like track-engaging shoes attached to railway vehicles
    • B61H7/06Skids
    • B61H7/08Skids electromagnetically operated
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0214Using a mixture of prealloyed powders or a master alloy comprising P or a phosphorus compound
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention relates to the technical field of rail transit, in particular to a magnetic pole shoe material for braking and a sintering method, and particularly to a high-temperature sintering method of powder metallurgy magnetic pole shoe for rail vehicles and a material corresponding to the magnetic pole shoe. Involved in the corresponding performance testing, making samples, application evaluation and other aspects.
  • Magnetic rail braking is a new type of braking technology developed in recent decades. Compared with traditional braking methods, it has the characteristics of not being affected by wheel and rail adhesion conditions. It can reduce the braking distance and improve driving safety. .
  • a magnetic track brake is installed on a rail vehicle as an emergency braking device, which aims to increase the braking force and reduce the braking distance. Therefore, the larger the braking force of the magnetic track brake, the better.
  • the rapid development of China's railways has made world-renowned achievements. Whether in terms of technical strength or operational experience, China's high-speed rail has reached the international advanced level, and has become the benchmark for China's latest technology to enter overseas.
  • Magnetic rail brake is the main component in the braking system of rail transit, which provides a strong guarantee for the safe operation of vehicles.
  • the magnetic pole shoe is the core component of the magnetic track brake.
  • the electromagnetic magnetic track brake device uses at least one electromagnet with a horseshoe-shaped magnetic core to interact with the track to generate a suction force.
  • the magnetic pole shoe under the electromagnet and the track are under the effect of the above suction force.
  • it generates sliding friction braking force that decelerates or stops the rail vehicle.
  • the conditions of use are extremely harsh. It must have good magnetic permeability, strong impact resistance, a high coefficient of friction with steel, and no resistance to friction with steel. The steel caused great damage.
  • powder metallurgy is an industrial technology for preparing metal powders or using metal powders (or a mixture of metal powders and non-metal powders) as raw materials, after forming and sintering, to obtain metal materials, composite materials, and various types of products.
  • powder metallurgy technology has been widely used in transportation, machinery, electronics, aerospace, weapons, biology, new energy, information and nuclear industries, and has become one of the most dynamic branches of new materials science. Powder metallurgy technology has a series of advantages such as significant energy saving, material saving, excellent performance, high product accuracy and good stability, which is very suitable for mass production.
  • the present invention provides a magnetic pole shoe material and a sintering method for braking, which effectively avoids the defects that the magnetic pole shoe product has unstable performance, high manufacturing cost, and difficulty in meeting market demands in the prior art.
  • the present invention provides a solution for a magnetic pole shoe material and a sintering method for braking, as follows:
  • a magnetic pole shoe material for braking includes: iron phosphate powder as a base powder;
  • the weight parts of Fe element in the iron phosphate powder is 98.15-98.35 parts, the weight parts of P element in the iron phosphate powder is 0.55-0.65 parts, and the weight parts of Si element in the iron phosphate powder is 0.4. -0.5 copies;
  • the magnetic pole shoe material for braking also includes paraffin as a lubricant, and the weight of the paraffin is 0.7 part by weight.
  • the steps of the sintering method of the magnetic pole shoe material for braking are as follows:
  • Step 1 ball mill mixture
  • Step 2 Press forming
  • Step 3 High temperature sintering and hardening.
  • the method of the ball milling mixture includes selecting iron phosphate powder as a base powder, wherein the weight of Fe element in the phosphorus iron powder is 98.15-98.35 parts, and the weight of P element in the iron phosphate powder is 0.55- 0.65 parts and parts by weight of the Si element in the iron phosphate powder is 0.4-0.5 parts; paraffin wax is added as a lubricant to the iron phosphate powder and then ball-milled and mixed, and the weight parts of the paraffin wax are 0.7 parts After the ball milling, the mixed powder is obtained as a soft magnetic alloy material.
  • the ball mill mixing is performed by using a three-dimensional motion mixer and a ball mill to achieve the purpose of ball mill mixing.
  • the rotation speed of the ball mill is 12 rpm, and the mixing time of the ball mill is 45 minutes.
  • the mixed powder as the soft magnetic alloy material is placed in a mold and pressed by a warm die to form a compact.
  • the temperature of the mold during the warm-mold pressing is 110 ° C-130 ° C, and the compaction density of the compact is 7.1-7.2g / cm3; the mold uses a mold of a hard alloy material.
  • the green compact is first degreased to degrease the lubricant; the degreased green compact is performed below the melting point temperature of the Fe element, the melting point temperature of the P element, or the melting point temperature of the Si element.
  • a sintered body as the magnetic pole shoe for braking is obtained after a high-temperature sintering process.
  • the high-temperature sintering treatment is performed in a reducing atmosphere.
  • the high-temperature sintering device uses a pusher furnace for powder metallurgy.
  • the maximum thickness of the sintered body of the magnetic pole shoe for braking can reach 35mm.
  • the sintering speed of the high-temperature sintering process is 600 seconds / boat;
  • the reducing atmosphere is an ammonia decomposition gas
  • the reducing atmosphere is a mixture of ammonia decomposition gas and nitrogen, and the ammonia decomposition gas and nitrogen in the mixture are mixed in an arbitrary ratio.
  • the sintered body of the magnetic pole piece used for braking has a magnetic field strength of 15000A / m.
  • the magnetic induction field strength can reach 1.913B / T; the density of the sintered body of the magnetic pole shoe for braking can reach 7.2g / cm3, and the sintered body of the magnetic pole shoe for braking can be punched out Work is greater than 5J.
  • the sintered body of the magnetic pole shoe for braking includes a block structure 1, which includes two branches of a left and right mirror image, and an upper part of the front wall of the block structure is provided with two left and right mirror image names.
  • Positioning holes 2, on the front wall of the block structure and below the positioning holes 2 are waist-hole-like openings 3, the waist-hole-like openings 3 are left-right mirror-image nominal structures;
  • the length is 89mm, and the height of the block structure 1 is 118mm;
  • each positioning hole 2 includes two circular holes, and the diameter of the circular hole at the front end is larger than the diameter of the other circular hole;
  • Each section includes a lower end 4, a middle section 5, and an upper end 6 connected in order from bottom to top.
  • the upper end 6 is a rectangular parallelepiped structure with a positioning hole 2.
  • the front end of the upper end 6 is rounded. Corner treatment, the height of the upper end 6 is 35mm, and the width of the upper end 6 is 66mm;
  • the middle section 5 is a rectangular parallelepiped structure, the middle section 5 and the lower end 4 are connected by an arc-shaped transition section 7, the lower end 4 is a rectangular parallelepiped structure, and the width of the lower end is 26.5 mm.
  • the addition of trace elements in the components of the soft magnetic alloy material is precisely controlled.
  • the microstructure of the material is precisely controlled, and the process parameters such as material performance are improved.
  • the magnetic permeability and friction performance can realize the production method of magnetic pole shoes with high performance, high magnetic permeability and high friction resistance.
  • the magnetic pole shoe has stable performance and low manufacturing cost, and can meet market demand.
  • FIG. 1 is an overall flowchart of a sintering method of the present invention.
  • Fig. 2 is a front view of a sintered body as a magnetic pole shoe for braking according to the present invention.
  • Fig. 3 is a sectional view taken along the line A-A in Fig. 2.
  • the magnetic pole shoe material for braking includes: iron phosphate powder as a base powder;
  • the weight part of Fe element in the iron phosphate powder is 98.15-98.35 parts, the weight part of P element in the iron phosphate powder is 0.55-0.65 parts, and the weight part of the Si element in the iron phosphate powder is 0.4-0.5 parts;
  • the magnetic pole shoe material for braking also includes paraffin as a lubricant, and the weight of the paraffin is 0.7 part by weight.
  • Step 1 ball mill mixture
  • Step 2 Press forming
  • Step 3 High temperature sintering and hardening.
  • the method of ball milling mixture includes selecting iron phosphate powder as the base powder, the weight parts of Fe element in the iron phosphate powder is 98.15-98.35 parts, the weight parts of P element in the iron phosphate powder is 0.55-0.65 parts, and the iron phosphate powder
  • the weight fraction of the Si element is 0.4-0.5 parts; and paraffin wax is added as a lubricant to the phosphorous iron powder, followed by ball milling and mixing, and the weight fraction of the paraffin is 0.7 parts. powder.
  • Ball milling mixing is carried out by using a three-dimensional motion mixer and ball milling, that is, the iron phosphate powder added with paraffin as a lubricant is put into the three-dimensional motion mixer for mixing, and a ball mill is added to the three-dimensional motion mixer. To grind the iron phosphate powder added with paraffin as a lubricant, so as to achieve the purpose of ball milling and mixing.
  • the speed of the ball mill was 12 rpm, and the mixing time of the ball mill was 45 minutes.
  • Press molding is to form a green compact after placing the mixed powder as a soft magnetic alloy material in a mold and pressing and forming with a warm mold.
  • the temperature of the mold during warm-mold pressing is 110 ° C-130 ° C, and the compaction density of the compact is 7.1-7.2g / cm3; the mold is a mold made of a hard alloy material.
  • the compact For high temperature sintering and hardening, the compact is first degreased to degrease the lubricant, that is, the compact is heated and degreased in a degumming furnace, and the heating and degreasing temperature is 59-62 degrees;
  • a sintered body that is a magnetic pole shoe for braking is obtained by performing a high-temperature sintering treatment below the melting point temperature of the P element or the melting point temperature of the Si element.
  • the high-temperature sintering process is performed in a reducing atmosphere.
  • the high-temperature sintering device uses a pusher furnace for powder metallurgy; the maximum thickness of the sintered body of the magnetic pole shoe used for braking can reach 35mm; The sintering speed is 600 seconds / boat;
  • the reducing atmosphere is an ammonia decomposition gas
  • the reducing atmosphere is a mixture of ammonia decomposition gas and nitrogen.
  • the ammonia decomposition gas and nitrogen in the mixture are mixed at any ratio.
  • the sintered body of the magnetic pole piece used for braking has a magnetic field strength of 15000A / m.
  • the magnetic field strength can reach 1.913B / T; the density of the sintered body of the magnetic pole shoe used for braking can reach 7.2g / cm3, and the punching work of the sintered body of the magnetic pole shoe used for braking is greater than 5J.
  • the following are specific examples of the invention.
  • a magnetic pole shoe material for braking includes: iron phosphate powder as a base powder;
  • Step 1 ball mill mixture
  • Step 2 Press forming
  • the method of ball-milling mixture includes selecting iron phosphate powder as the base powder, 98.15 parts by weight of Fe element in the iron phosphate powder, 0.55 parts by weight of P element in the iron phosphate powder, and Si element in the iron phosphate powder.
  • the parts by weight are 0.4 parts; and paraffin wax as a lubricant is added to the phosphorous iron powder, followed by ball milling and mixing.
  • the parts by weight of the paraffin are 0.7 parts, and the mixed powder is obtained as a soft magnetic alloy material after ball milling and mixing.
  • the speed of the ball mill was 12 rpm, and the mixing time of the ball mill was 45 minutes.
  • Press molding is to form a green compact after placing the mixed powder as a soft magnetic alloy material in a mold and pressing and forming with a warm mold.
  • the temperature of the mold during the warm-mold pressing is 110 ° C, and the compaction density of the compact is 7.1 g / cm3; the mold uses a mold of a hard alloy material.
  • the compact For high-temperature sintering and hardening, first degreasing the compact to degrease the lubricant, that is, the compact is heated and degreased in a degumming furnace, and the heating and degreasing temperature is 59 degrees; then the degreased compact is at a temperature of 1120 degrees.
  • a high-temperature sintering process was performed next to obtain a sintered body as a magnetic pole shoe for braking.
  • the reducing atmosphere is ammonia decomposition gas.
  • Table 1 also includes the application number "201410254133.1” commonly used in the prior art, and the application date is “2014-06 -10 "and the corresponding index of the magnetic pole shoe with patent name” Pole Shoe for Magnetic Rail Brake with Open Slot ”):
  • Example 1 It can be known from Table 1 that various performances of the magnetic pole shoe for braking obtained in Example 1 can meet the requirements of use and exceed the corresponding performance of the magnetic pole shoe of the prior art.
  • Magnetic pole shoe material for braking includes: iron powder as base powder;
  • the weight part of Fe element in the iron phosphate powder is 98.25 parts, the weight part of P element in the iron phosphate powder is 0.60 part, and the weight part of Si element in the iron phosphate powder is 0.45 part;
  • the magnetic pole shoe material for braking also includes paraffin as a lubricant, and the weight of the paraffin is 0.7 part by weight.
  • Step 1 ball mill mixture
  • Step 2 Press forming
  • Step 3 High temperature sintering and hardening.
  • the method of ball-milling mixture includes selecting iron phosphate powder as the base powder, 98.25 parts by weight of Fe element in the iron phosphate powder, 0.60 parts by weight of P element in the iron phosphate powder, and Si element in the iron phosphate powder.
  • the parts by weight are 0.45 parts; and paraffin wax is added to the phosphorous iron powder as a lubricant, followed by ball milling and mixing.
  • the parts by weight of the paraffin are 0.7 parts, and the mixed powder is obtained as a soft magnetic alloy material after ball milling and mixing.
  • Ball milling mixing is carried out by using a three-dimensional motion mixer and a ball mill, that is, the iron phosphate powder added with paraffin as a lubricant is mixed into the three-dimensional motion mixer, and a ball mill is added to the three-dimensional motion mixer To grind the iron phosphate powder added with paraffin as a lubricant, so as to achieve the purpose of ball milling and mixing.
  • the speed of the ball mill was 12 rpm, and the mixing time of the ball mill was 45 minutes.
  • Press molding is to form a green compact after placing the mixed powder as a soft magnetic alloy material in a mold and pressing and forming with a warm mold.
  • the temperature of the mold during warm-mold pressing is 120 ° C, and the compaction density of the compact is 7.15 g / cm3; the mold is a mold made of a hard alloy material.
  • the high-temperature sintering process is performed in a reducing atmosphere.
  • the high-temperature sintering device uses a pusher furnace for powder metallurgy; the sintering speed of the high-temperature sintering process is 600 seconds / boat;
  • the reducing atmosphere is ammonia decomposition gas.
  • Table 2 also includes the application number “201410254133.1” and the application date “2014-06 -10 "and the corresponding index of the magnetic pole shoe with patent name” Pole Shoe for Magnetic Rail Brake with Open Slot ”):
  • Example 2 From Table 2, it can be known that various performances of the magnetic pole shoe for braking obtained in Example 2 can meet the requirements of use and exceed the corresponding performance of the magnetic pole shoe of the prior art.
  • Magnetic pole shoe material for braking includes: iron powder as base powder;
  • the weight parts of Fe element in the iron phosphate powder is 98.35 parts, the weight parts of P element in the iron phosphate powder is 0.65 parts, and the weight parts of Si element in the iron phosphate powder is 0.5 part;
  • the magnetic pole shoe material for braking also includes paraffin as a lubricant, and the weight of the paraffin is 0.7 part by weight.
  • Step 1 ball mill mixture
  • Step 2 Press forming
  • Step 3 High temperature sintering and hardening.
  • the method of ball milling mixture includes selecting iron phosphate powder as the base powder, the weight of Fe element in the phosphorus iron powder is 98.35 parts, the weight of P element in the iron phosphate powder is 0.65 parts, and the content of the Si element in the iron phosphate powder is The parts by weight are 0.5 parts; and paraffin wax as a lubricant is added to the phosphorous iron powder, followed by ball milling and mixing. The parts by weight of the paraffin are 0.7 parts, and the mixed powder is obtained as a soft magnetic alloy material after ball milling and mixing.
  • Ball milling mixing is carried out by using a three-dimensional motion mixer and ball milling, that is, the iron phosphate powder added with paraffin as a lubricant is put into the three-dimensional motion mixer for mixing, and a ball mill is added to the three-dimensional motion mixer. To grind the iron phosphate powder added with paraffin as a lubricant, so as to achieve the purpose of ball milling and mixing.
  • the speed of the ball mill was 12 rpm, and the mixing time of the ball mill was 45 minutes.
  • Press molding is to form a green compact after placing the mixed powder as a soft magnetic alloy material in a mold and pressing and forming with a warm mold.
  • the temperature of the mold during warm-mold pressing is 130 ° C, and the compaction density of the compact is 7.2 g / cm3; the mold is a mold made of a hard alloy material.
  • degreasing is performed first to degrease the lubricant, that is, the compact is heated and degreased in a degumming furnace, and the heating and degreasing temperature is 62 degrees; then the degreased compact is at a temperature of 1260 degrees A high-temperature sintering process was performed next to obtain a sintered body as a magnetic pole shoe for braking.
  • the high temperature sintering process is performed in a reducing atmosphere.
  • the high temperature sintering device uses a pusher furnace for powder metallurgy; the sintering speed of the high temperature sintering process is 600 seconds / boat;
  • the reducing atmosphere is ammonia decomposition gas.
  • Table 3 also includes the application number "201410254133.1” commonly used in the prior art, and the application date is “2014-06 -10 "and the corresponding index of the magnetic pole shoe with patent name” Pole Shoe for Magnetic Rail Brake with Open Slot ”):
  • Example 3 From Table 3, it can be known that various properties of the magnetic pole piece used for braking obtained in Example 3 can meet the requirements of use and exceed the corresponding performance of the magnetic pole piece of the prior art.
  • Example 1 It can be known from Example 1, Example 2 and Example 3 that the sintering temperature has a great influence on various properties, the temperature is increased, the performance is significantly improved, and it exceeds the corresponding performance of the prior art magnetic pole shoe.
  • Magnetic pole shoe material for braking includes: iron powder as base powder;
  • the weight parts of Fe element in the iron phosphate powder is 98.35 parts, the weight parts of P element in the iron phosphate powder is 0.65 parts, and the weight parts of Si element in the iron phosphate powder is 0.5 part;
  • the magnetic pole shoe material for braking also includes paraffin as a lubricant, and the weight of the paraffin is 0.7 part by weight.
  • Step 1 ball mill mixture
  • Step 2 Press forming
  • Step 3 High temperature sintering and hardening.
  • the method of ball milling mixture includes selecting iron phosphate powder as the base powder, the weight of Fe element in the phosphorus iron powder is 98.35 parts, the weight of P element in the iron phosphate powder is 0.65 parts, and the content of the Si element in the iron phosphate powder is The parts by weight are 0.5 parts; and paraffin wax as a lubricant is added to the phosphorous iron powder, followed by ball milling and mixing. The parts by weight of the paraffin are 0.7 parts, and the mixed powder is obtained as a soft magnetic alloy material after ball milling and mixing.
  • Ball milling mixing is carried out by using a three-dimensional motion mixer and ball milling, that is, the iron phosphate powder added with paraffin as a lubricant is put into the three-dimensional motion mixer for mixing, and a ball mill is added to the three-dimensional motion mixer. To grind the iron phosphate powder added with paraffin as a lubricant, so as to achieve the purpose of ball milling and mixing.
  • the speed of the ball mill was 12 rpm, and the mixing time of the ball mill was 45 minutes.
  • Press molding is to form a green compact after placing the mixed powder as a soft magnetic alloy material in a mold and pressing and forming with a warm mold.
  • the temperature of the mold during warm-mold pressing is 130 ° C, and the compaction density of the compact is 7.2 g / cm3; the mold is a mold made of a hard alloy material.
  • degreasing is performed first to degrease the lubricant, that is, the compact is heated and degreased in a degumming furnace, and the heating and degreasing temperature is 62 degrees; then the degreased compact is at a temperature of 1260 degrees.
  • a high-temperature sintering process was performed next to obtain a sintered body as a magnetic pole shoe for braking.
  • the high-temperature sintering process is performed in a reducing atmosphere.
  • the high-temperature sintering device uses a pusher furnace for powder metallurgy; the sintering speed of the high-temperature sintering process is 600 seconds / boat;
  • the reducing atmosphere is a mixture of ammonia decomposed gas and nitrogen, and the ammonia decomposed gas in the mixture has the same parts by weight as nitrogen.
  • Table 4 also includes the application number "201410254133.1” commonly used in the prior art, and the application date is “2014-06 -10 "and the corresponding index of the magnetic pole shoe with patent name” Pole Shoe for Magnetic Rail Brake with Open Slot ”):
  • Example 4 From Table 4, it can be known that the performance of the magnetic pole shoe for braking obtained in Example 4 can meet the requirements for use and exceed the corresponding performance of the magnetic pole shoe of the prior art.
  • Example 3 Compared with the other indicators of this embodiment and other conditions are the same as in Example 3, it can be seen that when using ammonia decomposition gas and nitrogen mixed gas as the reducing atmosphere, the mechanical properties of the material are slightly higher than using ammonia decomposition gas alone, but the friction coefficient , Saturation magnetization, density decreased.
  • the sintered body of the magnetic pole shoe for braking includes a block structure 1, which includes two branches of a left and right mirror image.
  • the upper part of the front wall of the block structure is provided with two through-type mirrors
  • Positioning hole 2 on the front wall of the block structure and below the positioning hole 2 is a waist hole-like opening 3, which is a left-right mirror-image nominal structure;
  • the length of the block structure 1 is 89 mm, and the block
  • the height of the structure 1 is 118mm;
  • each positioning hole 2 includes two circular holes, and the diameter of the circular hole at the front end is larger than the diameter of the other circular hole;
  • Each branch includes a lower end 4, a middle section 5 and an upper end 6 connected in order from bottom to top.
  • the upper end 6 is a rectangular parallelepiped structure with a positioning hole 2.
  • the top of the front end of the upper end 6 is rounded.
  • the height is 35mm, and the width of the upper end 6 is 66mm;
  • the middle section 5 is a rectangular parallelepiped structure, and the middle section 5 and the lower end 4 are connected by an arc-shaped transition section 7.
  • the lower end 4 is a rectangular parallelepiped structure, and the width of the lower end is 26.5mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种用于制动的磁性极靴材料,包括:作为基粉的磷铁粉,所述磷铁粉中Fe元素的重量份数为98.15-98.35份、P元素的重量份数为0.55-0.65份以及Si元素的重量份数为0.4-0.5份,所述用于制动的磁性极靴材料还包括作为润滑剂的石蜡,所述石蜡的重量份数为0.7份。以及一种用于制动的磁性极靴材料的烧结方法,包括步骤:球磨混料,压制成形,高温烧结硬化,该方法有效避免了磁性极靴产品性能不稳定、制造成本高、难以满足市场需求的缺陷。

Description

用于制动的磁性极靴材料及烧结方法 技术领域
本发明涉及轨道交通技术领域,具体涉及一种用于制动的磁性极靴材料及烧结方法,尤其涉及一种轨道车辆用粉末冶金磁性极靴高温烧结方式及其磁性极靴对应的材料,也涉及到了对应的性能测试,制作样件、应用评估这样的多个方面的内容。
背景技术
磁轨制动是近几十年发展起来的一种新型制动技术,相比传统的制动形式,具有不受轮轨粘着条件影响的特点,可较好地减少制动距离,提高行车安全。目前,磁轨制动器作为一种紧急制动装置安装于轨道车辆上,旨在提高制动力,降低制动距离,因此,磁轨制动器的制动力越大越好。另外近年来,我国铁路飞速发展,取得了举世瞩目的成就。中国高铁不论是在技术实力还是运营经验方面,都已经走在了国际前沿水平,已成为中国最新科技大幅进军海外的标杆。作为绿色环保的交通方式,越来越多的地方政府规划将现代轨道车辆应用于中小城市干线交通和大城市的支线交通,预计未来五年仅国内就有约4000列现代轨道车辆及装备的市场需求。
制动技术是轨道交通车辆的关键技术,它直接关系到轨道交通列车能否安全、高效、可靠的运行。磁轨制动器是轨道交通制动系统中的主要部件,为车辆的安全运行提供强有力的保障。磁性极靴是磁轨制动器的核心部件,电磁式磁轨制动装置使用至少一个具有马蹄形磁芯的电磁铁与轨道相互作用产生吸力,电磁铁下部的磁性极靴与轨道在上述吸力的作用下进而产生使轨道车辆减速或停车的滑动摩擦制动力,使用条件极为苛刻,必须具有良好的导磁性,很强的抗冲击性,与钢具有较高的摩擦系数,同时在与钢摩擦时不能对钢产生大的损伤。
目前,国内外在磁性极靴的生产加工方面主要采用钢材机加工和球墨铸铁铸造的方式生产,其生产工艺复杂、成本高、加工周期长、生产效率低,远远满足不了市场的需求,在实际运用中也存在着性能不稳定及可靠性差等诸多问题。但在实际运用中存在产品性能不稳定、制造成本高,难以满足市场需求。
另外,粉末冶金是制取金属粉末或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制取金属材料、复合材料以及各种类型制品的工业技术。目前,粉末冶金技术已被广泛应用于交通、机械、电子、航空航天、兵器、生物、新能源、信息和核工业等领域,成为新材料科学中最具发展活力的分支之一。粉末冶金技术具备显著节能、省材、性能优异、产品精度高且稳定性好等一系列优点,非常适合于大批量生产。另外,部分用传统铸造方法和机械加工方法无法制备的材料和复杂零件也可用粉末冶金技术制造,因而备受工业界的重视。由此研制新一代轨道车辆用的粉末冶金制动材料与磁性极靴制造关键技术已成为粉末冶金制品向高效、节能、环保方向发展的必然趋势。
发明内容
为解决上述问题,本发明提供了一种用于制动的磁性极靴材料及烧结方法,有效避免了现有技术中磁性极靴产品性能不稳定、制造成本高,难以满足市场需求的缺陷。
为了克服现有技术中的不足,本发明提供了一种用于制动的磁性极靴材料及烧结方法的 解决方案,具体如下:
一种用于制动的磁性极靴材料,所述用于制动的磁性极靴材料包括:作为基粉的磷铁粉;
所述磷铁粉中Fe元素的重量份数为98.15-98.35份、所述磷铁粉中P元素的重量份数为0.55-0.65份以及所述磷铁粉中Si元素的重量份数为0.4-0.5份;
所述用于制动的磁性极靴材料还包括作为润滑剂的石蜡,所述石蜡的重量份数为0.7份。
所述用于制动的磁性极靴材料的烧结方法的步骤如下:
步骤1:球磨混料;
步骤2:压制成形;
步骤3:高温烧结硬化。
所述球磨混料的方式包括选取作为基粉的磷铁粉,所述磷铁粉中Fe元素的重量份数为98.15-98.35份、所述磷铁粉中P元素的重量份数为0.55-0.65份以及所述磷铁粉中Si元素的重量份数为0.4-0.5份;再往所述磷铁粉中添加作为润滑剂的石蜡后进行球磨混合,所述石蜡的重量份数为0.7份,球磨混合后得到作为软磁合金材料的混合粉。
所述球磨混合是采用三维运动混料机加球磨进行混合的,以此达到球磨混合的目的。
所述球磨机的转速为12转/分钟,所述球磨混合的时间为45分钟。
所述压制成形是将所述作为软磁合金材料的混合粉置于模具中采用温模压制成形后形成压坯。
所述温模压制成形时的模具温度为110℃-130℃,所述压坯的压坯密度为7.1-7.2g/cm3;所述模具采用硬质合金材料的模具。
所述高温烧结硬化是先把所述压坯进行脱脂来将润滑剂脱净;再把脱脂后的所述压坯在Fe元素的熔点温度、P元素的熔点温度或者Si元素的熔点温度以下进行高温烧结处理后得到作为所述用于制动的磁性极靴的烧结体。
所述高温烧结处理是在还原气氛中进行的,该高温烧结处理的装置采用的是用于粉末冶金的推杆炉;所述用于制动的磁性极靴的烧结体的最大厚度能够达到35mm;所述高温烧结处理的烧结速度为600秒/舟;
所述还原气氛为氨分解气,所述还原气氛为氨分解气与氮气的混合物,该混合物中的氨分解气与氮气以任意比例混合。
所述用于制动的磁性极靴的烧结体在磁场强度为15000A/m的条件下,
所述磁感应场强度能达到1.913B/T;所述用于制动的磁性极靴的烧结体的密度能达到7.2g/cm3,所述用于制动的磁性极靴的烧结体的冲出功大于5J。
所述用于制动的磁性极靴的烧结体包括块状结构1,该块状结构包括左右镜像対称的两个分部,所述块状结构的正面壁的上部开有左右镜像対称的两个定位孔2,所述块状结构的正面壁上且处在定位孔2下方的是腰孔状的开口3,该腰孔状的开口3为左右镜像対称结构;所述块状结构1的长度为89mm,所述块状结构1的高度为118mm;每个定位孔2均包括两个圆孔,处在前端的那个圆孔的直径要大于另一个圆孔的直径;
每个分部均包括自下而上顺序相连的下端4、中段5和上端6,所述上端6为长方体状结构且带有一个所述定位孔2,所述上端6的前端顶部作了圆角处理,所述上端6的高度为 35mm,所述上端6的宽度为66mm;
所述中段5为长方体状结构,所述中段5与所述下端4之间通过圆弧状过渡段7连接,所述下端4为长方体结构,所述下端的宽度为26.5mm。
本发明的有益效果为:
这样精确控制软磁合金材料成份中微量元素的添加,通过温压成形技术、脱脂除碳、高温烧结等多项具有创造性的技术,精确控制材料微观组织,改善提高材料性能等工艺参数,提高材料的导磁性能及摩擦性能,能够实现具有高性能、高磁导率、高摩阻性能的磁性极靴的生产途径。该磁性极靴产品性能稳定、制造成本低,能够满足市场需求。
附图说明
图1为本发明的烧结方法的整体流程图。
图2为本发明的作为用于制动的磁性极靴的烧结体的正视图。
图3为图2中的A-A向剖视图。
具体实施方式
下面将结合附图和实施例对本发明做进一步地说明。
如图1-图3所示,本发明的用于制动的磁性极靴材料,用于制动的磁性极靴材料包括:作为基粉的磷铁粉;
磷铁粉中Fe元素的重量份数为98.15-98.35份、磷铁粉中P元素的重量份数为0.55-0.65份以及磷铁粉中Si元素的重量份数为0.4-0.5份;
用于制动的磁性极靴材料还包括作为润滑剂的石蜡,石蜡的重量份数为0.7份。
用于制动的磁性极靴材料的烧结方法的步骤如下:
步骤1:球磨混料;
步骤2:压制成形;
步骤3:高温烧结硬化。
球磨混料的方式包括选取作为基粉的磷铁粉,磷铁粉中Fe元素的重量份数为98.15-98.35份、磷铁粉中P元素的重量份数为0.55-0.65份以及磷铁粉中Si元素的重量份数为0.4-0.5份;再往磷铁粉中添加作为润滑剂的石蜡后进行球磨混合,石蜡的重量份数为0.7份,球磨混合后得到作为软磁合金材料的混合粉。
球磨混合是采用三维运动混料机加球磨进行混合的,也就是把添加了作为润滑剂的石蜡的磷铁粉放入三维运动混料机进行混料,同时在三维运动混料机中加入球磨机来对添加了作为润滑剂的石蜡的磷铁粉进行研磨,以此达到球磨混合的目的。
球磨机的转速为12转/分钟,球磨混合的时间为45分钟。
压制成形是将作为软磁合金材料的混合粉置于模具中采用温模压制成形后形成压坯。
温模压制成形时的模具温度为110℃-130℃,压坯的压坯密度为7.1-7.2g/cm3;模具采用硬质合金材料的模具。
高温烧结硬化是先把压坯进行脱脂来将润滑剂脱净,就是把压坯在脱胶炉中进行加热脱脂,加热脱脂的温度为59-62度;再把脱脂后的压坯在Fe元素的熔点温度、P元素的熔点温度或者Si元素的熔点温度以下进行高温烧结处理后得到作为用于制动的磁性极靴的烧结体。
高温烧结处理是在还原气氛中进行的,该高温烧结处理的装置采用的是用于粉末冶金的推杆炉;用于制动的磁性极靴的烧结体的最大厚度能够达到35mm;高温烧结处理的烧结速度为600秒/舟;
还原气氛为氨分解气,还原气氛为氨分解气与氮气的混合物,该混合物中的氨分解气与氮气以任意比例混合。
用于制动的磁性极靴的烧结体在磁场强度为15000A/m的条件下,
磁感应场强度能达到1.913B/T;用于制动的磁性极靴的烧结体的密度能达到7.2g/cm3,用于制动的磁性极靴的烧结体的冲出功大于5J。以下是针对该发明的具体实施例。
实施例1:
如图1所示,用于制动的磁性极靴材料,用于制动的磁性极靴材料包括:作为基粉的磷铁粉;
磷铁粉中Fe元素的重量份数为98.15份、磷铁粉中P元素的重量份数为0.55份以及磷铁粉中Si元素的重量份数为0.4份;
用于制动的磁性极靴材料还包括作为润滑剂的石蜡,石蜡的重量份数为0.7份。
用于制动的磁性极靴材料的烧结方法的步骤如下:
步骤1:球磨混料;
步骤2:压制成形;
步骤3:高温烧结硬化。
球磨混料的方式包括选取作为基粉的磷铁粉,磷铁粉中Fe元素的重量份数为98.15份、磷铁粉中P元素的重量份数为0.55份以及磷铁粉中Si元素的重量份数为0.4份;再往磷铁粉中添加作为润滑剂的石蜡后进行球磨混合,石蜡的重量份数为0.7份,球磨混合后得到作为软磁合金材料的混合粉。
球磨混合是采用三维运动混料机加球磨进行混合的,也就是把添加了作为润滑剂的石蜡的磷铁粉放入三维运动混料机进行混料,同时在三维运动混料机中加入球磨机来对添加了作为润滑剂的石蜡的磷铁粉进行研磨,以此达到球磨混合的目的。
球磨机的转速为12转/分钟,球磨混合的时间为45分钟。
压制成形是将作为软磁合金材料的混合粉置于模具中采用温模压制成形后形成压坯。
温模压制成形时的模具温度为110℃,压坯的压坯密度为7.1g/cm3;模具采用硬质合金材料的模具。
高温烧结硬化是先把压坯进行脱脂来将润滑剂脱净,就是把压坯在脱胶炉中进行加热脱脂,加热脱脂的温度为59度;再把脱脂后的压坯在1120度的温度条件下进行高温烧结处理后得到作为用于制动的磁性极靴的烧结体。
高温烧结处理是在还原气氛中进行的,该高温烧结处理的装置采用的是用于粉末冶金的推杆炉;高温烧结处理的烧结速度为600秒/舟;
还原气氛为氨分解气。
本实施例得到的用于制动的磁性极靴的试验结果得到的指标见表1(表1中还带有现有技术中常用的如申请号为“201410254133.1”、申请日为“2014-06-10”以及专利名称为“带有 开口槽的磁轨制动器用极靴”的磁性极靴的对应指标):
表1
Figure PCTCN2019084406-appb-000001
从表1可知实施例1得到的用于制动的磁性极靴的各项性能能够满足使用要求并超过现有技术的磁性极靴的对应性能。
实施例2:
用于制动的磁性极靴材料,用于制动的磁性极靴材料包括:作为基粉的磷铁粉;
磷铁粉中Fe元素的重量份数为98.25份、磷铁粉中P元素的重量份数为0.60份以及磷铁粉中Si元素的重量份数为0.45份;
用于制动的磁性极靴材料还包括作为润滑剂的石蜡,石蜡的重量份数为0.7份。
用于制动的磁性极靴材料的烧结方法的步骤如下:
步骤1:球磨混料;
步骤2:压制成形;
步骤3:高温烧结硬化。
球磨混料的方式包括选取作为基粉的磷铁粉,磷铁粉中Fe元素的重量份数为98.25份、磷铁粉中P元素的重量份数为0.60份以及磷铁粉中Si元素的重量份数为0.45份;再往磷铁粉中添加作为润滑剂的石蜡后进行球磨混合,石蜡的重量份数为0.7份,球磨混合后得到作为软磁合金材料的混合粉。
球磨混合是采用三维运动混料机加球磨进行混合的,也就是把添加了作为润滑剂的石蜡的磷铁粉放入三维运动混料机进行混料,同时在三维运动混料机中加入球磨机来对添加了作为润滑剂的石蜡的磷铁粉进行研磨,以此达到球磨混合的目的。
球磨机的转速为12转/分钟,球磨混合的时间为45分钟。
压制成形是将作为软磁合金材料的混合粉置于模具中采用温模压制成形后形成压坯。
温模压制成形时的模具温度为120℃,压坯的压坯密度为7.15g/cm3;模具采用硬质合金材料的模具。
高温烧结硬化是先把压坯进行脱脂来将润滑剂脱净,就是把压坯在脱胶炉中进行加热脱脂,加热脱脂的温度为60度;再把脱脂后的压坯在1200度的条件下进行高温烧结处理后得到作为用于制动的磁性极靴的烧结体。
高温烧结处理是在还原气氛中进行的,该高温烧结处理的装置采用的是用于粉末冶金的推杆炉;高温烧结处理的烧结速度为600秒/舟;
还原气氛为氨分解气。
本实施例得到的用于制动的磁性极靴的试验结果得到的指标见表2(表2中还带有现有技术中常用的如申请号为“201410254133.1”、申请日为“2014-06-10”以及专利名称为“带有开口槽的磁轨制动器用极靴”的磁性极靴的对应指标):
表2
Figure PCTCN2019084406-appb-000002
从表2可知实施例2得到的用于制动的磁性极靴的各项性能能够满足使用要求并超过现有技术的磁性极靴的对应性能。
实施例3:
用于制动的磁性极靴材料,用于制动的磁性极靴材料包括:作为基粉的磷铁粉;
磷铁粉中Fe元素的重量份数为98.35份、磷铁粉中P元素的重量份数为0.65份以及磷铁粉中Si元素的重量份数为0.5份;
用于制动的磁性极靴材料还包括作为润滑剂的石蜡,石蜡的重量份数为0.7份。
用于制动的磁性极靴材料的烧结方法的步骤如下:
步骤1:球磨混料;
步骤2:压制成形;
步骤3:高温烧结硬化。
球磨混料的方式包括选取作为基粉的磷铁粉,磷铁粉中Fe元素的重量份数为98.35份、磷铁粉中P元素的重量份数为0.65份以及磷铁粉中Si元素的重量份数为0.5份;再往磷铁粉中添加作为润滑剂的石蜡后进行球磨混合,石蜡的重量份数为0.7份,球磨混合后得到作为软磁合金材料的混合粉。
球磨混合是采用三维运动混料机加球磨进行混合的,也就是把添加了作为润滑剂的石蜡的磷铁粉放入三维运动混料机进行混料,同时在三维运动混料机中加入球磨机来对添加了作为润滑剂的石蜡的磷铁粉进行研磨,以此达到球磨混合的目的。
球磨机的转速为12转/分钟,球磨混合的时间为45分钟。
压制成形是将作为软磁合金材料的混合粉置于模具中采用温模压制成形后形成压坯。
温模压制成形时的模具温度为130℃,压坯的压坯密度为7.2g/cm3;模具采用硬质合金材料的模具。
高温烧结硬化是先把压坯进行脱脂来将润滑剂脱净,就是把压坯在脱胶炉中进行加热脱脂,加热脱脂的温度为62度;再把脱脂后的压坯在1260度的温度条件下进行高温烧结处理后得到作为用于制动的磁性极靴的烧结体。
高温烧结处理是在还原气氛中进行的,该高温烧结处理的装置采用的是用于粉末冶金的 推杆炉;高温烧结处理的烧结速度为600秒/舟;
还原气氛为氨分解气。
本实施例得到的用于制动的磁性极靴的试验结果得到的指标见表3(表3中还带有现有技术中常用的如申请号为“201410254133.1”、申请日为“2014-06-10”以及专利名称为“带有开口槽的磁轨制动器用极靴”的磁性极靴的对应指标):
表3
Figure PCTCN2019084406-appb-000003
从表3可知实施例3得到的用于制动的磁性极靴的各项性能能够满足使用要求并超过现有技术的磁性极靴的对应性能。
从实施例1、实施例2和实施例3可知,烧结温度对各项性能影响较大,温度提高,性能有明显的提升,并超过现有技术的磁性极靴的对应性能。
实施例4
用于制动的磁性极靴材料,用于制动的磁性极靴材料包括:作为基粉的磷铁粉;
磷铁粉中Fe元素的重量份数为98.35份、磷铁粉中P元素的重量份数为0.65份以及磷铁粉中Si元素的重量份数为0.5份;
用于制动的磁性极靴材料还包括作为润滑剂的石蜡,石蜡的重量份数为0.7份。
用于制动的磁性极靴材料的烧结方法的步骤如下:
步骤1:球磨混料;
步骤2:压制成形;
步骤3:高温烧结硬化。
球磨混料的方式包括选取作为基粉的磷铁粉,磷铁粉中Fe元素的重量份数为98.35份、磷铁粉中P元素的重量份数为0.65份以及磷铁粉中Si元素的重量份数为0.5份;再往磷铁粉中添加作为润滑剂的石蜡后进行球磨混合,石蜡的重量份数为0.7份,球磨混合后得到作为软磁合金材料的混合粉。
球磨混合是采用三维运动混料机加球磨进行混合的,也就是把添加了作为润滑剂的石蜡的磷铁粉放入三维运动混料机进行混料,同时在三维运动混料机中加入球磨机来对添加了作为润滑剂的石蜡的磷铁粉进行研磨,以此达到球磨混合的目的。
球磨机的转速为12转/分钟,球磨混合的时间为45分钟。
压制成形是将作为软磁合金材料的混合粉置于模具中采用温模压制成形后形成压坯。
温模压制成形时的模具温度为130℃,压坯的压坯密度为7.2g/cm3;模具采用硬质合金材料的模具。
高温烧结硬化是先把压坯进行脱脂来将润滑剂脱净,就是把压坯在脱胶炉中进行加热脱脂,加热脱脂的温度为62度;再把脱脂后的压坯在1260度的温度条件下进行高温烧结处理后得到作为用于制动的磁性极靴的烧结体。
高温烧结处理是在还原气氛中进行的,该高温烧结处理的装置采用的是用于粉末冶金的推杆炉;高温烧结处理的烧结速度为600秒/舟;
还原气氛为氨分解气与氮气的混合物,该混合物中的氨分解气与氮气重量份数相同。
本实施例得到的用于制动的磁性极靴的试验结果得到的指标见表4(表4中还带有现有技术中常用的如申请号为“201410254133.1”、申请日为“2014-06-10”以及专利名称为“带有开口槽的磁轨制动器用极靴”的磁性极靴的对应指标):
表4
Figure PCTCN2019084406-appb-000004
从表4可知实施例4得到的用于制动的磁性极靴的各项性能能够满足使用要求并超过现有技术的磁性极靴的对应性能。
该实施例与其它各项条件都与实施例3一样的指标相比,可知:使用氨分解气和氮气混合气体作为还原气氛时,材料机械性能比单纯采用氨分解气略高一些,但摩擦系数、饱和磁化强度、密度有所下降。
另外用于制动的磁性极靴的烧结体包括块状结构1,该块状结构包括左右镜像対称的两个分部,块状结构的正面壁的上部开有左右镜像対称的两个贯通式定位孔2,块状结构的正面壁上且处在定位孔2下方的是腰孔状的开口3,该腰孔状的开口3为左右镜像対称结构;块状结构1的长度为89mm,块状结构1的高度为118mm;每个定位孔2均包括两个圆孔,处在前端的那个圆孔的直径要大于另一个圆孔的直径;
每个分部均包括自下而上顺序相连的下端4、中段5和上端6,上端6为长方体状结构且带有一个定位孔2,上端6的前端顶部作了圆角处理,上端6的高度为35mm,上端6的宽度为66mm;
中段5为长方体状结构,中段5与下端4之间通过圆弧状过渡段7连接,下端4为长方体结构,下端的宽度为26.5mm。
以上以用实施例说明的方式对本发明作了描述,本领域的技术人员应当理解,本公开不限于以上描述的实施例,在不偏离本发明的范围的情况下,可以做出各种变化、改变和替换。

Claims (10)

  1. 一种用于制动的磁性极靴材料,其特征在于,所述用于制动的磁性极靴材料包括:作为基粉的磷铁粉;
    所述磷铁粉中Fe元素的重量份数为98.15-98.35份、所述磷铁粉中P元素的重量份数为0.55-0.65份以及所述磷铁粉中Si元素的重量份数为0.4-0.5份;
    所述用于制动的磁性极靴材料还包括作为润滑剂的石蜡,所述石蜡的重量份数为0.7份。
  2. 根据权利要求1所述的用于制动的磁性极靴材料的烧结方法,其特征在于,步骤如下:
    步骤1:球磨混料;
    步骤2:压制成形;
    步骤3:高温烧结硬化。
  3. 根据权利要求2所述的用于制动的磁性极靴材料的烧结方法,其特征在于,所述球磨混料的方式包括选取作为基粉的磷铁粉,所述磷铁粉中Fe元素的重量份数为98.15-98.35份、所述磷铁粉中P元素的重量份数为0.55-0.65份以及所述磷铁粉中Si元素的重量份数为0.4-0.5份;再往所述磷铁粉中添加作为润滑剂的石蜡后进行球磨混合,所述石蜡的重量份数为0.7份,球磨混合后得到作为软磁合金材料的混合粉。
  4. 根据权利要求3所述的用于制动的磁性极靴材料的烧结方法,其特征在于,所述球磨混合是采用三维运动混料机加球磨进行混合的,以此达到球磨混合的目的。
  5. 根据权利要求4所述的用于制动的磁性极靴材料的烧结方法,其特征在于,所述球磨机的转速为12转/分钟,所述球磨混合的时间为45分钟。
  6. 根据权利要求2所述的用于制动的磁性极靴材料的烧结方法,其特征在于,所述压制成形是将所述作为软磁合金材料的混合粉置于模具中采用温模压制成形后形成压坯。
  7. 根据权利要求6所述的用于制动的磁性极靴材料的烧结方法,其特征在于,所述温模压制成形时的模具温度为110℃-130℃,所述压坯的压坯密度为7.1-7.2g/cm3;所述模具采用硬质合金材料的模具。
  8. 根据权利要求2所述的用于制动的磁性极靴材料的烧结方法,其特征在于,所述高温烧结硬化是先把所述压坯进行脱脂来将润滑剂脱净;再把脱脂后的所述压坯在Fe元素的熔点温度、P元素的熔点温度或者Si元素的熔点温度以下进行高温烧结处理后得到作为所述用于制动的磁性极靴的烧结体;
    所述高温烧结处理是在还原气氛中进行的,该高温烧结处理的装置采用的是用于粉末冶金的推杆炉;所述用于制动的磁性极靴的烧结体的最大厚度能够达到35mm;所述高温烧结处理的烧结速度为600秒/舟;
    所述还原气氛为氨分解气,所述还原气氛为氨分解气与氮气的混合物,该混合物中的氨 分解气与氮气以任意比例混合。
  9. 根据权利要求2所述的用于制动的磁性极靴材料的烧结方法,其特征在于,所述用于制动的磁性极靴的烧结体在磁场强度为15000A/m的条件下,所述磁感应场强度能达到1.913B/T;所述用于制动的磁性极靴的烧结体的密度能达到7.2g/cm3,所述用于制动的磁性极靴的烧结体的冲出功大于5J。
  10. 根据权利要求2所述的用于制动的磁性极靴材料的烧结方法,其特征在于,所述用于制动的磁性极靴的烧结体包括块状结构,该块状结构包括左右镜像対称的两个分部,所述块状结构的正面壁的上部开有左右镜像対称的两个定位孔,所述块状结构的正面壁上且处在定位孔下方的是腰孔状的开口,该腰孔状的开口为左右镜像対称结构;所述块状结构的长度为89mm,所述块状结构的高度为118mm;每个定位孔均包括两个圆孔,处在前端的那个圆孔的直径要大于另一个圆孔的直径;
    每个分部均包括自下而上顺序相连的下端、中段和上端,所述上端为长方体状结构且带有一个所述定位孔,所述上端的前端顶部作了圆角处理,所述上端的高度为35mm,所述上端的宽度为66mm;
    所述中段为长方体状结构,所述中段与所述下端之间通过圆弧状过渡段连接,所述下端为长方体结构,所述下端的宽度为26.5mm
PCT/CN2019/084406 2018-09-26 2019-04-25 用于制动的磁性极靴材料及烧结方法 WO2020062851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811122005.6A CN109093125B (zh) 2018-09-26 2018-09-26 用于制动的磁性极靴材料及烧结方法
CN201811122005.6 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020062851A1 true WO2020062851A1 (zh) 2020-04-02

Family

ID=64867745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084406 WO2020062851A1 (zh) 2018-09-26 2019-04-25 用于制动的磁性极靴材料及烧结方法

Country Status (2)

Country Link
CN (1) CN109093125B (zh)
WO (1) WO2020062851A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109093125B (zh) * 2018-09-26 2020-09-29 海安县鹰球粉末冶金有限公司 用于制动的磁性极靴材料及烧结方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1178882A (ja) * 1997-04-28 1999-03-23 Alliedsignal Bremsbelag Gmbh 磁気レールブレーキ用焼結材料
CN102896318A (zh) * 2012-10-26 2013-01-30 湘潭长电汽车电器有限公司 粉末冶金法制备发电机爪极的方法及用该方法生产的爪极
CN104962821A (zh) * 2015-05-26 2015-10-07 北京科技大学 一种针式打印机轭铁座材料及轭铁座零件加工方法
CN107142414A (zh) * 2017-04-17 2017-09-08 上海兴罗特种密封件有限公司 一种导磁体粉末冶金材料及其应用
CN107650942A (zh) * 2017-10-11 2018-02-02 中车青岛四方车辆研究所有限公司 磁轨制动器及磁悬浮列车
CN109093125A (zh) * 2018-09-26 2018-12-28 海安县鹰球粉末冶金有限公司 用于制动的磁性极靴材料及烧结方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253301A (ja) * 1985-04-30 1986-11-11 Daido Steel Co Ltd 粉末冶金用合金鋼粉末及びその製造方法
CN105665715B (zh) * 2016-04-15 2020-07-03 厦门理工学院 采用粉末冶金工艺制备的铁硅系软磁合金及方法
CN107326264B (zh) * 2017-07-05 2019-02-15 北京科技大学 一种铁硅磷软磁复合材料的制备工艺
CN107256752B (zh) * 2017-07-05 2019-01-22 北京科技大学 一种烧结铁粉基软磁复合材料的制备方法
CN107971494A (zh) * 2017-12-18 2018-05-01 中南大学 一种粉末热压烧结制备Fe-6.5%Si软磁材料薄带材的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1178882A (ja) * 1997-04-28 1999-03-23 Alliedsignal Bremsbelag Gmbh 磁気レールブレーキ用焼結材料
CN102896318A (zh) * 2012-10-26 2013-01-30 湘潭长电汽车电器有限公司 粉末冶金法制备发电机爪极的方法及用该方法生产的爪极
CN104962821A (zh) * 2015-05-26 2015-10-07 北京科技大学 一种针式打印机轭铁座材料及轭铁座零件加工方法
CN107142414A (zh) * 2017-04-17 2017-09-08 上海兴罗特种密封件有限公司 一种导磁体粉末冶金材料及其应用
CN107650942A (zh) * 2017-10-11 2018-02-02 中车青岛四方车辆研究所有限公司 磁轨制动器及磁悬浮列车
CN109093125A (zh) * 2018-09-26 2018-12-28 海安县鹰球粉末冶金有限公司 用于制动的磁性极靴材料及烧结方法

Also Published As

Publication number Publication date
CN109093125A (zh) 2018-12-28
CN109093125B (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
CN104384504B (zh) 一种铜基粉末冶金摩擦材料及其制备方法
CN103406532B (zh) 一种汽车轴类部件粉末冶金材料及其制备方法
CN104384503B (zh) 一种铁铜基粉末冶金减摩材料及其制备方法
CN103008667B (zh) 一种高密度铁基粉末冶金零件的制备方法
KR20090102687A (ko) 압분자심용 철기 연자성 분말 및 그 제조 방법 및 압분자심
CN102560183A (zh) 用于轨道交通车辆制动系统的制动闸片的摩擦材料、制备方法及用途
CN103415899B (zh) 压粉磁心用铁基软磁性粉末以及该压粉磁心用铁基软磁性粉末的制造方法以及压粉磁心
CN104325130B (zh) 一种防腐蚀铜基粉末冶金材料及其制备方法
CN103602902B (zh) 一种粉末冶金耐压复合金属材料及其制备方法
CN104399967A (zh) 一种铜基粉末冶金减摩材料及其制备方法
CN102994882A (zh) 一种粉末冶金法兰制备方法
CN104384501A (zh) 一种铁基粉末冶金摩擦材料及其制备方法
CN102002622A (zh) 制动Fe-Cu-Al-SiC复合摩擦材料的制备方法
CN103014507A (zh) 一种粉末冶金法兰及制备方法
CN103537672A (zh) 一种粉末冶金汽车发动机连杆及其制备方法
WO2020062851A1 (zh) 用于制动的磁性极靴材料及烧结方法
CN103540868A (zh) 一种粉末冶金离合器摩擦体及其制备方法
CN103537691A (zh) 一种铁基粉末冶金合金及其制备方法
CN104372234A (zh) 高耐磨型钛铜镍硅合金复合材料及其制备方法
CN103602927B (zh) 一种无铅轴承钢及其制备方法
JP5513922B2 (ja) 圧粉磁心用鉄基軟磁性粉末およびその圧粉磁心用鉄基軟磁性粉末の製造方法並びに圧粉磁心
CN104384495A (zh) 一种铜基粉末冶金材料及其制备方法
EP2446984A1 (en) Powder metallurgical material, production method and application thereof
KR101146957B1 (ko) 표면 치밀성 및 표면 경도가 높은 Fe기 소결합금 및 그제조 방법
CN102994881A (zh) 一种粉末冶金法兰

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865046

Country of ref document: EP

Kind code of ref document: A1