WO2020062748A1 - 有机发光二极管、显示面板和显示装置 - Google Patents

有机发光二极管、显示面板和显示装置 Download PDF

Info

Publication number
WO2020062748A1
WO2020062748A1 PCT/CN2019/074153 CN2019074153W WO2020062748A1 WO 2020062748 A1 WO2020062748 A1 WO 2020062748A1 CN 2019074153 W CN2019074153 W CN 2019074153W WO 2020062748 A1 WO2020062748 A1 WO 2020062748A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
electrode
electron
organic light
Prior art date
Application number
PCT/CN2019/074153
Other languages
English (en)
French (fr)
Inventor
李维维
何麟
李梦真
田景文
李田田
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Publication of WO2020062748A1 publication Critical patent/WO2020062748A1/zh
Priority to US16/881,051 priority Critical patent/US11374191B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present application relates to the field of display technology, for example, to an organic light emitting diode, a display panel, and a display device.
  • Organic Light-Emitting Diode uses a self-luminous light-emitting mechanism, which does not require a backlight. When it is applied to a display panel and a display device, the overall thickness of the display panel and the display device is relatively thin, which is conducive to the display Lightweight design of panels and display devices. At the same time, organic light emitting diodes have the advantages of high display brightness, wide viewing angle, and fast response speed.
  • the material of the light-emitting layer with excellent performance in the organic light-emitting diode is an electron-transport-type material, but when an electron-transport-type material is used as the material of the light-emitting layer, the life of the organic light-emitting diode is short. .
  • the present application provides an organic light emitting diode, a display panel and a display device to improve the life of the organic light emitting diode.
  • the present application provides an organic light emitting diode.
  • the organic light emitting diode includes:
  • a second electrode the first electrode being disposed opposite the second electrode
  • a light emitting layer located between the first electrode and the second electrode
  • At least one barrier layer is provided between the light emitting layer and the second electrode, and at least one place between the light emitting layer and the first electrode;
  • the same barrier layer includes at least two barrier materials, and the electron mobility of at least one of the barrier materials is lower than a first preset value, and the electron mobility of at least one of the barrier materials is higher than a second A preset value, and the first preset value is lower than the second preset value.
  • the same barrier layer includes a first barrier material and a second barrier material, and the electron mobility of the first barrier material is lower than the electron mobility of the second barrier material;
  • the sum of the volumes of the first barrier material and the second barrier material is denoted as S, and the volume of the first barrier material is denoted as X, 10% ⁇ X / S ⁇ 70%.
  • the volumes of the first barrier material and the second barrier material satisfy the following relationship: 20% ⁇ X / S ⁇ 50%.
  • the at least one blocking layer includes a hole blocking layer, and the hole blocking layer is located between the light emitting layer and the second electrode;
  • the hole blocking layer includes a first hole blocking material and a second hole blocking material, and an electron mobility of the first hole blocking material is lower than an electron mobility of the second hole blocking material;
  • the sum of the volumes of the first hole blocking material and the second hole blocking material is represented as S1, and the volume of the first hole blocking material is represented as X1; 10% ⁇ X1 / S1 ⁇ 60%.
  • the volumes of the first hole blocking material and the second hole blocking material satisfy the following relationship: 20% ⁇ X1 / S1 ⁇ 50%.
  • a volume ratio of the first hole blocking material to the second hole blocking material is 1: 1.
  • the electron mobility of the first hole blocking material is expressed as B1, 1.0 ⁇ 10 -6 cm 2 /(V ⁇ s) ⁇ B1 ⁇ 1.0 ⁇ 10 -5 cm 2 / (V ⁇ s), so
  • the electron mobility of the second hole blocking material is expressed as C1, 1.0 ⁇ 10 -5 cm 2 /(V ⁇ s) ⁇ C1 ⁇ 1.0 ⁇ 10 -4 cm 2 / (V ⁇ s).
  • the at least one blocking layer includes an electron blocking layer, and the electron blocking layer is located between the light emitting layer and the first electrode;
  • the electron blocking layer includes a first electron blocking material and a second electron blocking material, and the electron mobility of the first electron blocking material is lower than the electron mobility of the second electron blocking material;
  • the electron blocking layer the sum of the volumes of the first electron blocking material and the second electron blocking material is represented as S2, and the first electron blocking material is represented as X2; 20% ⁇ X2 / S2 ⁇ 70% .
  • the volumes of the first electron blocking material and the second electron blocking material satisfy the following relationship: 30% ⁇ X2 / S2 ⁇ 60%.
  • a volume ratio of the first electron blocking material to the second electron blocking material is 1: 1.
  • the electron mobility of the first electron blocking material is expressed as B2, 1.0 ⁇ 10 -7 cm 2 /(V ⁇ s) ⁇ B2 ⁇ 1.0 ⁇ 10 -5 cm 2 / (V ⁇ s), where
  • the electron mobility of the second electron blocking material is expressed as C2, 1.0 ⁇ 10 -5 cm 2 /(V ⁇ s) ⁇ C2 ⁇ 1.0 ⁇ 10 -4 cm 2 / (V ⁇ s).
  • the organic light emitting diode further includes a first carrier function layer and a second carrier function layer;
  • the first carrier function layer is located between the light emitting layer and the first electrode, and when the blocking layer is provided between the light emitting layer and the first electrode, the first current carrier A sub-functional layer is located between the blocking layer and the first electrode;
  • the second carrier function layer is located between the light emitting layer and the second electrode, and when the blocking layer is provided between the light emitting layer and the second electrode, the second current carrier A sub-functional layer is located between the barrier layer and the second electrode.
  • the first carrier function layer includes a hole injection layer and a hole transport layer stacked in a direction in which the first electrode is directed to the light emitting layer; and the second carrier function layer includes An electron injecting layer and an electron transporting layer are stacked on the second electrode in a direction of the light emitting layer.
  • the present application also provides a display panel including a substrate and a plurality of pixel units arranged in an array on one side of the substrate;
  • At least part of the pixel units includes any one of the organic light emitting diodes provided in the present application.
  • the present application further provides a display device, which includes any one of the display panels provided by the present application.
  • FIG. 1 is a schematic structural diagram of an organic light emitting diode according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another organic light emitting diode according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of still another organic light emitting diode according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of still another organic light emitting diode according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional structure view along G1-G2 in FIG. 5;
  • FIG. 7 is a schematic structural diagram of a display device according to an embodiment of the present application.
  • the material of the light-emitting layer of the organic light-emitting diode with excellent performance is an electron-transporting type material.
  • the organic light-emitting diode further includes first electrodes (for example, the first electrode may be an anode) and first electrodes on both sides of the light-emitting layer. Two electrodes (exemplarily, the second electrode is a cathode).
  • first electrodes for example, the first electrode may be an anode
  • Two electrodes exemplarily, the second electrode is a cathode.
  • the material of the light emitting layer is a material that is biased to an electron transport type, the material of the light emitting layer is beneficial to the electron
  • an embodiment of the present application proposes an organic light emitting diode to improve the life of the organic light emitting diode.
  • FIG. 1 is a schematic structural diagram of an organic light emitting diode provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another organic light emitting diode provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of another organic light emitting diode provided by an embodiment of the present application.
  • Schematic structure of an organic light emitting diode. 1-3 the organic light emitting diode 10 includes: a first electrode 11, a second electrode 12, a light emitting layer 13, and at least one barrier layer 14 (a barrier layer 14 is shown in FIGS. 1 and 2, In FIG. 3, two barrier layers 14 are shown. In order to distinguish the two barrier layers 14, the first barrier layer 141 and the second barrier layer 142 are respectively shown in FIG.
  • the first electrode 11 and the second electrode 12 Oppositely disposed; the light emitting layer 13 is located between the first electrode 11 and the second electrode 12; a barrier layer 14 is provided at least one place between the light emitting layer 13 and the second electrode 12 and between the light emitting layer 13 and the first electrode 11 ;
  • the same barrier layer 14 includes at least two barrier materials, and the electron mobility of at least one barrier material is lower than a first preset value, and the electron mobility of at least another barrier material is higher than a second preset Value, and the first preset value is lower than the second preset value.
  • the first electrode 11 may be an anode; for example, the anode material may be indium tin oxide (ITO).
  • the second electrode 12 may be a cathode; for example, the cathode material may be a metal material, such as a conductive material with a lower work function such as aluminum (Al), gold (Au), silver (Ag), or a metal alloy including Ag .
  • the light emitting layer 13 may include a light emitting host material and a light emitting guest material, and the light emitting guest material determines the light emitting color of the organic light emitting diode 10.
  • the light-emitting guest material may be 2-tert-butyl-4- (dicyanomethylene) -6- [2- (1,1,7,7-tetramethyljulonidine-9- Base) vinyl] -4H-pyran (DCJTB), which corresponds to the light-emitting color of the organic light-emitting diode 10 is red; or, the light-emitting guest material may be N, N'-dimethylquinacridone (DMQA), which The light emitting color corresponding to the organic light emitting diode 10 is green; or, the light emitting guest material may be 4,4'-bis (9-ethyl-3-carbazolevinyl) -1,1'-biphenyl (BCzVBi), which The light emitting color corresponding to the organic light emitting diode 10
  • the materials of the first electrode 11, the second electrode 12, and the light-emitting guest material in this embodiment are merely exemplary descriptions, and are not intended to describe the first electrode 11 and the second electrode 12 in the organic light-emitting diode 10 provided in the embodiment of the present application. And the definition of materials that can be used for the light-emitting guest material. In other embodiments, the materials of the first electrode 11, the second electrode 12, and the light-emitting guest material may be provided according to the actual requirements of the organic light emitting diode 10, which is not limited in the embodiment of the present application.
  • the light emitting principle of the organic light emitting diode 10 mainly includes four processes of carrier injection, carrier transmission, carrier recombination, and exciton deexcitation light.
  • the carrier injection process when a certain voltage is applied between the first electrode 11 (taking the anode as an example) and the second electrode 12 (taking the cathode as an example) of the organic light emitting diode 10, the electrons of the cathode and the Holes are injected into the LUMO energy level and the HOMO energy level of the light emitting layer 13, respectively.
  • the carrier transport process the injected electrons and holes are transported by the electric field.
  • the carrier recombination process electrons and holes recombine in the light-emitting layer 13 by Coulomb force, and excitons are generated.
  • the exciton de-excitation light the exciton releases energy in the process of returning to the ground state.
  • Part of the released energy is absorbed by the light-emitting guest material in the light-emitting layer 13, and the light-emitting guest material changes from a stable ground state to unstable excitation. And emit light during the process of returning from the excited state to the ground state.
  • the blocking layer 14 is used to improve the efficiency of carrier (electron or hole) transport and injection into the light emitting layer 13, and block the carrier (hole or electron) from continuing to the other side.
  • the electron mobility of the blocking material used by the blocking layer 14 determines the carrier transmission efficiency, and further determines the light emitting efficiency and the lifetime of the organic light emitting diode 10.
  • the carrier transmission efficiency is high. It can be understood that more carriers can be transmitted to the light-emitting layer 13 in a certain period of time, so that organic light is emitted.
  • the light emitting efficiency of the diode 10 is high.
  • the organic light emitting diode 10 has a shorter life; when the electron mobility of the blocking material is lower than the first preset value, the carrier transmission efficiency is low, that is, the carrier current that can be transmitted to the light emitting layer 13 within a certain period of time. Fewer electrons, which results in lower luminous efficiency of the organic light emitting diode 10. At this time, since there are fewer carriers transported in the organic light emitting diode 10, the electrons damage the interface between the film layer and the adjacent film layer It is also smaller, so that the life of the organic light emitting diode 10 is longer.
  • the barrier layer 14 can be co-evaporated or pre-mixed during evaporation.
  • the co-evaporated form that is, the constituents of the barrier layer 14 are respectively deposited in the corresponding crucible, and the pre-mixed form is the barrier layer 14
  • the components are mixed and evaporated in the same crucible.
  • premixed evaporation is that it can save the number of crucibles.
  • the height relationship between the first preset value and the second preset value is relative.
  • the difference between the first preset value and the second preset value can be set according to the performance of the barrier material and the actual needs of the organic light emitting diode. This application implements Examples do not limit this.
  • At least two barrier materials are included in the same barrier layer 14, and the mobility of the at least one barrier material is lower than the first preset value, and the mobility of at least one other barrier material is higher than the second preset value.
  • the carrier transmission efficiency can be controlled, so that more carriers are transmitted to the light-emitting layer and can be effectively recombined, so that there are not too many uncombined carriers.
  • FIG. 1 shows that the organic light emitting diode 10 includes a barrier layer 14.
  • the barrier layer 14 is located between the light emitting layer 13 and the first electrode 11.
  • the barrier layer 14 includes three barrier materials, each of which is a first barrier.
  • the electron mobility of the first barrier material 14b1 is lower than the first preset value
  • the electron mobility of the second barrier material 14b2 is higher than the second preset value
  • the electron mobility of the third barrier material 14b3 may be between Between the first preset value and the second preset value.
  • FIG. 2 shows that the organic light emitting diode 10 includes a barrier layer 14.
  • the barrier layer 14 is located between the light emitting layer 13 and the first electrode 11.
  • the barrier layer 14 includes two barrier materials, which are first barriers. Material 14b1 and second barrier material 14b2.
  • the electron mobility of the first blocking material 14b1 is lower than the first preset value
  • the electron mobility of the second blocking material 14b2 is higher than the second preset value.
  • FIG. 3 shows that the organic light emitting diode 10 includes two barrier layers 14, which are respectively shown as a first barrier layer 141 and a second barrier layer 142.
  • the first barrier layer 141 is located on the light emitting layer 13 and the second electrode. Between 12, the second barrier layer 142 is located between the light-emitting layer 13 and the first electrode 11.
  • the first barrier layer 141 includes two kinds of barrier materials, which are a first sub-blocking material 141b1 and a second sub-blocking material 141b2.
  • the blocking layer 142 includes two kinds of sub-blocking materials, which are a third sub-blocking material 142b1 and a fourth sub-blocking material 142b2, respectively.
  • the electron mobility of the first sub-blocking material 141b1 and the third sub-blocking material 142b1 is lower than the first preset value, and the electron mobility of the second sub-blocking material 141b2 and the fourth sub-blocking material 142b2 is higher than the second default value.
  • the mobility of at least two kinds of blocking materials in the same blocking layer 14 can be used to control the carrier injection into the light emitting layer 13.
  • the injection amount balances the number of electrons and holes in the light-emitting layer 13, so that the electrons and holes can effectively recombine, and reduces the damage caused by the uncombined electrons to the interface between the film layer and the adjacent film layer. While ensuring that the organic light emitting diode 10 has a high light emitting efficiency, the life of the organic light emitting diode 10 is improved.
  • FIG. 1 to FIG. 3 only show the structures of three types of organic light emitting diodes 10 by way of example, but are not limited to the organic light emitting diodes 10 provided in the embodiments of the present application.
  • a blocking layer 14 may be provided only between the light emitting layer 13 and the second electrode 12, and more types of blocking materials may be provided in the blocking layer 14. The application example does not limit this.
  • the same layer of the barrier layer 14 (the first barrier layer 141 or the second barrier layer 142 in FIG. 3) includes the first barrier material 14b1 (the first sublayer in FIG. 3).
  • the electron mobility of the first blocking material 14b1 is lower than that of the second The electron mobility of the barrier material 14b2; the sum of the volumes of the first barrier material 14b1 and the second barrier material 14b2 is denoted as S, and the volume of the first barrier material 14b1 is denoted as X, where 10% ⁇ X / S ⁇ 70%.
  • the setting of the barrier layer 14 includes two kinds of barrier materials, and the light-emitting efficiency and lifetime of the organic light-emitting diode 10 can be controlled by the ratio of the two materials, and the design of the organic light-emitting diode 10 is relatively difficult.
  • the embodiment of the present application only shows by way of example the sum of the volumes of the first barrier material 14b1 and the second barrier material 14b2 as S, and the volume of the first barrier material 14b1 as X, where 10% ⁇ X / S ⁇ 70% is not a limitation on the organic light emitting diode 10 provided in the embodiment of the present application.
  • the proportion of the first blocking material 14b1 in the total volume of the blocking material may be set according to the actual requirements of the organic light emitting diode 10, for example, it may be 30% ⁇ X / S ⁇ 60%, or may be 20% ⁇ X / S ⁇ 50%, which is not limited in the embodiment of the present application.
  • FIG. 2 only exemplarily illustrates that the first barrier material 14b1 and the second barrier material 14b2 are mixed to form the same barrier layer 14, and is not a limitation on the organic light emitting diode 10 provided in the embodiment of the present application.
  • a first blocking material 14b1 may be provided to form a first sub-blocking layer
  • a second blocking material 14b2 may form a second sub-blocking layer.
  • the first sub-blocking layer and the second The self-blocking layers together constitute the barrier layer 14.
  • a second sub-blocking layer may be provided on a side of the first sub-blocking layer near the light-emitting layer 13, or a second sub-blocking layer may be provided on the first sub-blocking
  • the side of the layer far from the light-emitting layer 13 is not limited in the embodiment of the present application.
  • At least one blocking layer 14 includes a hole blocking layer 141 (ie, the first blocking layer 141 described above).
  • the hole blocking layer 141 is located between the light emitting layer 13 and the second electrode 12.
  • the hole blocking layer 141 includes a first hole blocking material 141b1 (that is, the first sub-blocking material 141b1 above) and a second hole blocking material 141b2 (that is, the second sub-blocking material 141b2 above).
  • the electron mobility of the hole blocking material 141b1 is lower than that of the second hole blocking material 141b2; in the hole blocking layer, the sum of the volumes of the first hole blocking material 141b1 and the second hole blocking material 141b2 is denoted as S1
  • the volume of the first hole blocking material 141b1 is denoted as X1; 10% ⁇ X1 / S1 ⁇ 60%.
  • the number of electrons injected into the light-emitting layer 13 can be controlled, and at the same time, it plays a role of blocking holes, so that the number of electrons and holes in the light-emitting layer 13 is balanced, so that the electrons and holes can be effectively recombined and organic Light emitting efficiency of the light emitting diode 10.
  • the damage of the electrons to the film layer is small, so that the life of the organic light emitting diode 10 can be effectively improved.
  • the proportion of the first hole blocking material 141b1 in the total volume of the hole blocking material may also be set according to the actual requirements of the organic light emitting diode 10, for example, it may be 30% ⁇ X1 / S1 ⁇ 60%, Or it may be 20% ⁇ X1 / S1 ⁇ 50%, which is not limited in the embodiment of the present application.
  • the volume ratio of the first hole blocking material 141b1 to the second hole blocking material 141b2 is 1: 1.
  • the overall performance of the hole blocking layer 141 can be better, and the organic light emitting diode 10 can be guaranteed to have a high light emitting efficiency. At the same time, the life of the organic light emitting diode 10 can be improved.
  • the range of the electron mobility B1 of the first hole blocking material 141b1 is 1.0 ⁇ 10 -6 cm 2 /(V ⁇ s) ⁇ B1 ⁇ 1.0 ⁇ 10 -5 cm 2 / (V ⁇ s)
  • the range of the electron mobility C1 of the second hole blocking material 141b2 is 1.0 ⁇ 10 -5 cm 2 /(V ⁇ s) ⁇ C1 ⁇ 1.0 ⁇ 10 -4 cm 2 / (V ⁇ s ).
  • the hole blocking layer 141 can be made of two kinds of hole blocking materials with different electron mobility, so that the quantity of electrons injected into the light-emitting layer 13 can be modulated, and the organic light-emitting diode 10 can have a high At the same time as the light emitting efficiency, the life of the organic light emitting diode 10 can be improved.
  • the specific value of the electron mobility of the first hole blocking material 141b1 and the second hole blocking material 141b2 can be set according to the actual requirements of the organic light emitting diode 10, which is not limited in the embodiment of the present application.
  • the embodiment of the present application exemplarily shows a comparison table of the light-emitting characteristics between a group of OLEDs provided by related technologies and OLEDs provided by the technical solutions of this application, see Table 1.
  • device D1 represents an organic light emitting diode provided by the related technology
  • device D2 represents another organic light emitting diode provided by the related technology
  • device D3 represents an organic light emitting diode provided by the technical solution of the present application
  • device D1, device D2, and device D3 The similarities include: the material of the first electrode is ITO with a thickness of 10 nm; the thickness of the hole injection layer is 10 nm; the thickness of the hole transport layer is 120 nm; the thickness of the electron blocking layer is 5 nm; the thickness of the light emitting layer is 20 nm The thickness of the hole blocking layer is 5 nm; the thickness of the electron transport layer is 30 nm; the thickness of the electron injection layer is 1 nm; and the material of the second electrode is a metal electrode with a thickness of 13-20 nm.
  • the difference between the device D1, the device D2, and the device D3 is that the electron mobility of the material of the hole blocking layer of the device D1 is 5.2 ⁇ 10 -6 cm 2 / (V ⁇ s); The electron mobility is 4.5 ⁇ 10 -5 cm 2 / (V ⁇ s); the hole blocking layer material of device D3 is a mixture of two hole blocking materials in device D1 and device D2, and its volume ratio is 1: 1.
  • the light emission characteristics of the three devices were tested. The required brightness was 1200 candela per square meter (cd / m 2 ). The results are shown in Table 1. Test Results.
  • Op.V represents the operating voltage in volts (V); Eff.1 represents the current efficiency in candela per amp (cd / A); Eff.2 represents the lumen efficiency, also known as photometric efficiency, in units of lumens per Watt (lm / W); CIE (x, y) represents color coordinates; Peak represents the peak position of the light emission spectrum of the organic light emitting diode 10 in nanometers (nm); LT97 represents the life of the organic light emitting diode 10 in hours ( h), which stands for constant current test at 1200 candela per square meter (cd / m 2 ), and the corresponding luminous duration when the brightness of the obtained device is attenuated to 97% of the initial brightness is the lifetime value of the device.
  • the embodiment of the present application includes two types of electron migration by providing a hole blocking layer Hole blocking materials with different rates can make device D3 have a higher luminous efficiency (relative to device D1), and at the same time, its lifetime can be improved (relative to device D2). That is, the effect of simultaneously improving the light emitting efficiency (mainly the current efficiency) and the life of the organic light emitting diode 10 is achieved.
  • the comparison between the device D1, the device D2, and the device D3 is only an exemplary description of the organic light emitting diode 10 provided in the embodiment of the present application, and is not a limitation.
  • At least one blocking layer 14 includes an electron blocking layer 142 (ie, the second blocking layer 142 above), and the electron blocking layer 142 is located between the light emitting layer 13 and the first electrode 11;
  • the electron blocking layer 142 includes a first electron blocking material 142b1 (that is, the third sub-blocking material 142b1 above) and a second electron blocking material 142b2 (that is, the fourth sub-blocking material 142b2 above).
  • the electron mobility is lower than that of the second electron blocking material 142b2; in the electron blocking layer, the sum of the volumes of the first electron blocking material 142b1 and the second electron blocking material 142b2 is denoted as S2, and the first electron blocking material 142b1 is denoted as X2; among them, 20% ⁇ X2 / S2 ⁇ 70%.
  • the number of holes injected into the light-emitting layer 13 can be controlled, and at the same time, it plays a role of blocking electrons, so that the number of electrons and holes in the light-emitting layer 13 is balanced, so that the electrons and holes can be effectively recombined and organic Light emitting efficiency of the light emitting diode 10.
  • the number of uncombined holes still essentially "electrons", but the "electrons” here are in different molecular orbitals from the above
  • the holes have less damage to the film. Therefore, the life of the organic light emitting diode 10 can be effectively improved.
  • the proportion of the first electron blocking material 142b1 in the total volume of the electron blocking material may also be set according to the actual needs of the organic light emitting diode 10, for example, it may be 30% ⁇ X2 / S2 ⁇ 60%, or may be 20% ⁇ X2 / S2 ⁇ 50%, which is not limited in the embodiment of the present application.
  • the volume ratio of the first electron blocking material 142b1 to the second electron blocking material 142b2 is 1: 1.
  • the overall performance of the electron blocking layer 142 can be better, while ensuring the organic light emitting diode 10 has a higher light emitting efficiency, the life of the organic light emitting diode 10 can be improved.
  • the value of the electron mobility B2 of the first electron blocking material 142b1 ranges from 1.0 ⁇ 10 -7 cm 2 /(V ⁇ s) ⁇ B2 ⁇ 1.0 ⁇ 10 -5 cm 2 / (V ⁇ s ),
  • the electron mobility C2 of the second electron blocking material 142b2 ranges from 1.0 ⁇ 10 -5 cm 2 /(V ⁇ s) ⁇ C2 ⁇ 1.0 ⁇ 10 -4 cm 2 / (V ⁇ s).
  • the electron blocking layer 142 can include two kinds of electron blocking materials having different electron mobility, so that the number of holes injected into the light emitting layer 13 can be modulated, and the number of electrons and holes in the light emitting layer 13 can be realized. Balanced, while ensuring that the organic light emitting diode 10 has a high light emitting efficiency, the life of the organic light emitting diode 10 can be improved.
  • the specific value of the electron mobility of the first electron blocking material 142b1 and the second electron blocking material 142b2 can be set according to the actual requirements of the organic light emitting diode 10, which is not limited in the embodiment of the present application.
  • FIG. 3 only exemplarily shows that when the at least one blocking layer 14 includes a hole blocking layer 141 and an electron blocking layer 142, the hole blocking layer 141 includes a first hole blocking material 141b1 and a second hole blocking
  • the material 141b2 and the electron blocking layer 142 include a first electron blocking material 142b1 and a second electron blocking material 142b2, but are not limited to the organic light emitting diode 10 provided in the embodiment of the present application.
  • the hole blocking layer 141 may include two or more hole blocking materials, and the electron blocking layer 142 may include one electron blocking material according to the actual needs of the organic light emitting diode 10;
  • the layer 141 includes a hole blocking material, and the electron blocking layer 142 includes two or more electron blocking materials; this embodiment is not limited thereto.
  • FIG. 4 is a schematic structural diagram of still another organic light emitting diode provided by an embodiment of the present application.
  • the organic light emitting diode 10 may further include a first carrier functional layer 15 and a second carrier functional layer 16.
  • the first carrier functional layer 15 is located between the light emitting layer 13 and the first electrode 11.
  • the first carrier functional layer 15 is located between the electron blocking layer 142 and the first electrode 11;
  • the second carrier functional layer 16 is located in the light emitting layer
  • the hole blocking layer 141 is included between the light emitting layer 13 and the second electrode 12 between the 13 and the second electrode 12, the second carrier functional layer 16 is located between the hole blocking layer 141 and the second electrode 12.
  • the first carrier function layer 15 is used to transport and inject holes into the light emitting layer 13, and may include a hole injection layer 151 and a hole transport layer 152.
  • the second carrier function layer 16 is used to transport and inject electrons into the light emitting layer 13 and may include an electron injection layer 161 and an electron transport layer 162.
  • first carrier function layer 15 and the second carrier function layer 16 may both adopt materials known to those skilled in the art, which are not described in this embodiment and are not limited.
  • FIG. 5 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • the display panel 20 includes a substrate 21 and a plurality of pixel units 22 arranged in an array on one side of the substrate 21.
  • At least a part of the pixel units 22 includes any one of the organic light emitting diodes provided in the above embodiments ( That is, the pixel unit 22 includes a sub-pixel, and at least a part of the sub-pixel may include any one of the structures of the organic light-emitting diodes provided in the foregoing embodiments). Therefore, the display panel 20 also has the beneficial effects of the above-mentioned organic light emitting diodes, which can be understood by referring to the above description, and will not be repeated here.
  • the substrate 21 may be an array substrate for driving the pixel unit 22 to emit light.
  • each pixel unit 22 may include a blue sub-pixel 221, a red sub-pixel 222, and a green sub-pixel 223; at the same time, the sub-pixels in multiple pixel units 22 are all along the column direction Y is arranged in the order of the blue sub-pixels 221, the red sub-pixels 222, and the green sub-pixels 223, which are merely exemplary illustrations of the display panel 20 provided by the embodiments of the present application, but are not limited.
  • the array arrangement of the pixel units 22 and the number of blue sub-pixels 221, red sub-pixels 222, and green sub-pixels 223 in each pixel unit 22 may be set according to the actual needs of the display panel 20. And the arrangement manner is not limited in the embodiment of the present application.
  • At least one sub-pixel in each pixel unit 22 may adopt the structure of any one of the organic light emitting diodes provided in the above embodiments.
  • the blue sub-pixel 221 may adopt the structure of any one of the organic light-emitting diodes provided in the foregoing embodiment; or the three sub-pixels may adopt the structure of any one of the organic light-emitting diodes provided in the foregoing embodiment.
  • the embodiment of the present application does not limit this, and may be set according to the actual requirements of the display panel 20.
  • FIG. 6 is a schematic cross-sectional structure view along G1-G2 in FIG. 5.
  • the three sub-pixels (including the blue sub-pixel 221, the red sub-pixel 222, and the green sub-pixel 223) in the pixel unit 22 each include a vertical direction Z (where the vertical direction Z is perpendicular to the row Direction X and column direction Y on the plane of the first electrode 11), the first carrier function layer 15, the electron blocking layer 142, the light emitting layer 13, the hole blocking layer 141, and the second carrier function Layer 16 and second electrode 12.
  • the electron blocking material in the electron blocking layer 142 and the hole blocking material in the hole blocking layer 141 in the blue sub-pixel 221, the red sub-pixel 222, and the green sub-pixel 223 can be set according to the actual needs of each sub-pixel. This embodiment of the present application does not limit this.
  • the embodiment of the present application does not limit the specific type of the display panel 20, and the technical solution proposed in the embodiment of the present application can be applied to any display panel involving electron and hole transport processes, and the exemplary display panel may be an OLED display panel 2.
  • FIG. 7 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • the display device 30 includes the display panel 20 provided in the foregoing embodiment. Therefore, the display device 30 also has the beneficial effects of the display panel 20. Therefore, the display device 30 also includes the organic light emitting diodes.
  • the beneficial effects can be understood by referring to the foregoing, and will not be repeated here.
  • the display device 30 may be a mobile phone, a tablet computer, or other electronic display devices known to those skilled in the art, which is not limited in the embodiment of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请实施例公开了一种有机发光二极管、显示面板和显示装置,该有机发光二极管包括:第一电极、第二电极、发光层和至少一层阻挡层;第一电极与第二电极相对设置;发光层位于第一电极与第二电极之间;在发光层与第二电极之间,以及发光层与第一电极之间的至少一处设置阻挡层;其中,同一层阻挡层中包括至少两种阻挡材料,且至少一种阻挡材料的电子迁移率低于第一预设值,至少另一种阻挡材料的电子迁移率高于第二预设值,且第一预设值低于第二预设值。

Description

有机发光二极管、显示面板和显示装置
本公开要求在2018年09月30日提交中国专利局、申请号为201811162436.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及显示技术领域,例如涉及一种有机发光二极管、显示面板和显示装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)利用自发光的发光机制,不需要背光源,将其应用于显示面板和显示装置时,显示面板和显示装置的整体厚度较薄,有利于实现显示面板和显示装置的轻薄化设计。同时,有机发光二极管具有显示亮度高、视角广以及响应速度快等优势。
随着有机发光二极管材料的发展,有机发光二极管中性能优异的发光层的材料为偏向电子传输型的材料,但是将偏向电子传输型的材料作为发光层的材料时,有机发光二极管的寿命较短。
发明内容
本申请提供一种有机发光二极管、显示面板和显示装置,以提高有机发光二极管的寿命。
本申请提供了一种有机发光二极管,该有机发光二极管包括:
第一电极;
第二电极,所述第一电极与所述第二电极相对设置;
发光层,所述发光层位于所述第一电极与所述第二电极之间;以及
至少一层阻挡层,在所述发光层与所述第二电极之间,以及所述发光层与所述第一电极之间的至少一处设置所述阻挡层;
其中,同一层阻挡层中包括至少两种阻挡材料,且至少一种所述阻挡材料的电子迁移率低于第一预设值,至少又一种所述阻挡材料的电子迁移率高于第二预设值,且所述第一预设值低于所述第二预设值。
进一步地,同一层阻挡层包括第一阻挡材料和第二阻挡材料,所述第一阻挡材料的电子迁移率低于所述第二阻挡材料的电子迁移率;
在同一层阻挡层中,所述第一阻挡材料与所述第二阻挡材料的体积之和表示为S,所述第一阻挡材料的体积表示为X,10%≤X/S≤70%。
进一步地,在同一层阻挡层中,所述第一阻挡材料与所述第二阻挡材料的体积满足如下关系:20%≤X/S≤50%。
进一步地,所述至少一层阻挡层包括空穴阻挡层,所述空穴阻挡层位于所述发光层与所述第二电极之间;
所述空穴阻挡层包括第一空穴阻挡材料和第二空穴阻挡材料,所述第一空穴阻挡材料的电子迁移率低于所述第二空穴阻挡材料的电子迁移率;
所述空穴阻挡层中,所述第一空穴阻挡材料与所述第二空穴阻挡材料的体积之和表示为S1,所述第一空穴阻挡材料的体积表示为X1;10%≤X1/S1≤60%。
进一步地,所述空穴阻挡层中,所述第一空穴阻挡材料与所述第二空穴阻挡材料的体积满足如下关系:20%≤X1/S1≤50%。
进一步地,所述第一空穴阻挡材料与所述第二空穴阻挡材料的体积比为1:1。
进一步地,所述第一空穴阻挡材料的电子迁移率表示为B1,1.0×10 -6cm 2/(V·s)≤B1≤1.0×10 -5cm 2/(V·s),所述第二空穴阻挡材料的电子迁移 率表示为C1,1.0×10 -5cm 2/(V·s)≤C1≤1.0×10 -4cm 2/(V·s)。
进一步地,所述至少一层阻挡层包括电子阻挡层,所述电子阻挡层位于所述发光层与所述第一电极之间;
所述电子阻挡层包括第一电子阻挡材料和第二电子阻挡材料,所述第一电子阻挡材料的电子迁移率低于所述第二电子阻挡材料的电子迁移率;
所述电子阻挡层中,所述第一电子阻挡材料和所述第二电子阻挡材料的体积之和表示为S2,所述第一电子阻挡材料表示为X2;20%≤X2/S2≤70%。
进一步地,所述电子阻挡层中,所述第一电子阻挡材料和所述第二电子阻挡材料的体积满足如下关系:30%≤X2/S2≤60%。
进一步地,所述第一电子阻挡材料与所述第二电子阻挡材料的体积比为1:1。
进一步地,所述第一电子阻挡材料的电子迁移率表示为B2,1.0×10 -7cm 2/(V·s)≤B2≤1.0×10 -5cm 2/(V·s),所述第二电子阻挡材料的电子迁移率表示为C2,1.0×10 -5cm 2/(V·s)≤C2≤1.0×10 -4cm 2/(V·s)。
进一步地,该有机发光二极管还包括第一载流子功能层和第二载流子功能层;
所述第一载流子功能层位于所述发光层与所述第一电极之间,以及当所述发光层与所述第一电极之间设置所述阻挡层时,所述第一载流子功能层位于所述阻挡层与所述第一电极之间;
所述第二载流子功能层位于所述发光层与所述第二电极之间,以及当所述发光层与所述第二电极之间设置所述阻挡层时,所述第二载流子功能层位于所述阻挡层与所述第二电极之间。
进一步地,所述第一载流子功能层包括沿所述第一电极指向所述发光层的方向层叠设置的空穴注入层和空穴传输层;所述第二载流子功能层包括沿所述 第二电极指向所述发光层的方向层叠设置的电子注入层和电子传输层。
本申请还提供了一种显示面板,该显示面板包括基板,以及位于所述基板一侧呈阵列排布的多个像素单元;
其中,至少部分所述像素单元包括本申请提供的上述任一种有机发光二极管。
本申请还提供了一种显示装置,该显示装置包括本申请提供的上述任一种显示面板。
附图说明
图1是本申请一实施例提供的一种有机发光二极管的结构示意图;
图2是本申请一实施例提供的另一种有机发光二极管的结构示意图;
图3是本申请一实施例提供的又一种有机发光二极管的结构示意图;
图4是本申请一实施例提供的又一种有机发光二极管的结构示意图;
图5是本申请一实施例提供的一种显示面板的结构示意图;
图6是沿图5中G1-G2的剖面结构示意图;
图7是本申请一实施例提供的一种显示装置的结构示意图。
具体实施方式
相关技术中,性能优异的有机发光二极管的发光层材料为偏向电子传输型的材料,有机发光二极管还包括位于发光层两侧的第一电极(示例性的,第一电极可为阳极)和第二电极(示例性的,第二电极为阴极)。当给有机发光二极管提供驱动电流时,电子由第二电极注入发光层,空穴由第一电极注入发光层,由于发光层的材料为偏向电子传输型的材料,该发光层的材料利于电子的传输, 因此到达发光层的电子的数量较多,有利于提高电子和空穴的复合效率,由此可提升有机发光二极管的电流效率。但是,当发光层中电子的数量多于空穴的数量较多时,过多的电子无法被复合,该部分无法被复合的电子继续向靠近第一电极的一侧传输,会影响发光层与第一电极之间膜层的性能以及破坏位于发光层与第一电极之间的相邻膜层之间的界面,导致有机发光二极管中发光层与第一电极之间的膜层性能衰退,以及导致发光层与第一电极之间的多个膜层中相邻膜层之间的界面被破坏,由此导致有机发光二极管的寿命下降。
针对上述问题,本申请实施例提出一种有机发光二极管,以提升有机发光二极管的寿命。
图1是本申请一实施例提供的一种有机发光二极管的结构示意图,图2是本申请一实施例提供的另一种有机发光二极管的结构示意图,图3是本申请一实施例提供的又一种有机发光二极管的结构示意图。参照图1-图3,该有机发光二极管10包括:第一电极11、第二电极12、发光层13和至少一层阻挡层14(图1和图2中示出了一层阻挡层14,图3中示出了两层阻挡层14,为了对两层阻挡层14加以区分,图3中分别以第一阻挡层141和第二阻挡层142表示);第一电极11与第二电极12相对设置;发光层13位于第一电极11与第二电极12之间;在发光层13与第二电极12之间,以及发光层13与第一电极11之间的至少一处设置阻挡层14;其中,同一层阻挡层14中包括至少两种阻挡材料,且至少一种阻挡材料的电子迁移率低于第一预设值,至少另一种阻挡材料的电子迁移率高于第二预设值,且第一预设值低于第二预设值。
其中,第一电极11可为阳极;示例性的,阳极材料可为铟锡氧化物(ITO)。其中,第二电极12可为阴极;示例性的,阴极材料可为金属材料,例如铝(Al)、金(Au)、银(Ag)或包括Ag的金属合金等功函数较低的导电材料。
其中,发光层13可包括发光主体材料和发光客体材料,且发光客体材料决定有机发光二极管10的发光颜色。示例性的,发光客体材料可为2-叔丁基-4-(二氰基亚甲基)-6-[2-(1,1,7,7-四甲基久洛尼定-9-基)乙烯基]-4H-吡喃(DCJTB),其对应有机发光二极管10的发光颜色为红色;或者,发光客体材料可为N,N'-二甲基喹吖啶酮(DMQA),其对应有机发光二极管10的发光颜色为绿色;或者,发光客体材料可为4,4'-双(9-乙基-3-咔唑乙烯基)-1,1'-联苯(BCzVBi),其对应有机发光二极管10的发光颜色为蓝色。
本实施例中的第一电极11、第二电极12以及发光客体材料的材料均仅为示例性的说明,而并非对本申请实施例提供的有机发光二极管10中第一电极11、第二电极12和发光客体材料可采用的材料的限定。在其他实施方式中,可根据有机发光二极管10的实际需求,设置第一电极11、第二电极12和发光客体材料的材料,本申请实施例对此不作限定。
有机发光二极管10的发光原理主要包括载流子注入、载流子传输、载流子复合和激子退激发光四个过程。
在载流子注入过程中,当给有机发光二极管10的第一电极11(以阳极为例)和第二电极12(以阴极为例)之间施加一定的电压时,阴极的电子和阴极的空穴分别注入到发光层13的LUMO能级和HOMO能级中。在载流子传输过程中,注入的电子和空穴在电场的作用下进行传输。在载流子复合过程中,电子和空穴通过库仑力作用在发光层13中复合,产生激子。在激子退激发光过程中,该激子在回到基态的过程中释放能量,释放的能量一部分被发光层13中的发光客体材料吸收,发光客体材料由稳定的基态变到不稳定的激发态,并且在从激发态回到基态的过程中,发出光线。
阻挡层14用于提高载流子(电子或空穴)的传输和注入到发光层13中的 效率,并阻挡载流子(空穴或电子)继续向另一侧传输。其中,阻挡层14所采用的阻挡材料的电子迁移率决定了载流子的传输效率,进而决定了有机发光二极管10的发光效率和寿命。阻挡材料的电子迁移率高于第二预设值时,载流子的传输效率较高,可以理解为一定的时间段内有较多的载流子可被传输至发光层13,从而有机发光二极管10的发光效率较高,与此同时,较多的载流子在有机发光二极管10内传输,未被复合的载流子对膜层以及相邻膜层之间的界面的破坏作用较大,有机发光二极管10的寿命较短;阻挡材料的电子迁移率低于第一预设值时,载流子的传输效率较低,即一定的时间段内可被传输至发光层13的载流子较少,从而有机发光二极管10的发光效率较低,此时,由于在有机发光二极管10内传输的载流子较少,所以电子对膜层以及相邻膜层之间的界面的破坏作用也较小,从而有机发光二极管10的寿命较长。
另外,阻挡层14在蒸镀时可以采用共蒸形式,也可以采用预混形式,共蒸形式即阻挡层14的组成成分分别置于相应的坩埚中蒸镀,预混形式即阻挡层14的组成成分混合于同一坩埚中蒸镀,采用预混蒸镀的优点在于可以节省坩埚数量。
其中,第一预设值和第二预设值的高低关系是相对而言的。在满足第一预设值低于第二预设值的前提下,第一预设值与第二预设值的差值可根据阻挡材料的性能以及有机发光二极管的实际需求设置,本申请实施例对此不作限定。
本申请实施例通过设置同一阻挡层14中包括至少两种阻挡材料,且设置至少一种阻挡材料的迁移率低于第一预设值,至少又一种阻挡材料的迁移率高于第二预设值,可控制载流子的传输效率,使得有较多的载流子传输至发光层且可有效复合,从而不会存在过多的未被复合的载流子,于此,可降低未被复合的载流子对有机发光二极管10中的膜层以及相邻膜层之间的界面的破坏作用。 从而,在保证有机发光二极管10具有较高的发光效率的同时,可有效提升有机发光二极管10的寿命。
示例性的,图1中示出了有机发光二极管10包括一层阻挡层14,阻挡层14位于发光层13与第一电极11之间,阻挡层14包括三种阻挡材料,分别为第一阻挡材料14b1、第二阻挡材料14b2和第三阻挡材料14b3。示例性的,第一阻挡材料14b1的电子迁移率低于第一预设值,第二阻挡材料14b2的电子迁移率高于第二预设值,第三阻挡材料14b3的电子迁移率可介于第一预设值和第二预设值之间。
示例性的,图2中示出了有机发光二极管10包括一层阻挡层14,阻挡层14位于发光层13与第一电极11之间,阻挡层14包括两种阻挡材料,分别为第一阻挡材料14b1和第二阻挡材料14b2。示例性的,第一阻挡材料14b1的电子迁移率低于第一预设值,第二阻挡材料14b2的电子迁移率高于第二预设值。
示例性的,图3中示出了有机发光二极管10包括两层阻挡层14,分别以第一阻挡层141和第二阻挡层142示出,第一阻挡层141位于发光层13与第二电极12之间,第二阻挡层142位于发光层13与第一电极11之间;第一阻挡层141包括两种阻挡材料,分别为第一子阻挡材料141b1和第二子阻挡材料141b2,第二阻挡层142包括两种子阻挡材料,分别为第三子阻挡材料142b1和第四子阻挡材料142b2。示例性的,第一子阻挡材料141b1和第三子阻挡材料142b1的电子迁移率低于第一预设值,第二子阻挡材料141b2和第四子阻挡材料142b2的电子迁移率高于第二预设值。
由此,上述图1-图3示出的有机发光二极管10结构中,通过对同一阻挡层14中的至少两种阻挡材料的迁移率的设置,可控制注入发光层13中的载流子的注入量,从而平衡发光层13中的电子和空穴的数量,使电子和空穴可以有效复 合,减少未被复合的电子对膜层和相邻膜层之间的界面的破坏作用,从而在保证有机发光二极管10具有较高的发光效率的同时,提升有机发光二极管10的寿命。
图1-图3仅示例性的示出了3种有机发光二极管10的结构,但并非对本申请实施例提供的有机发光二极管10的限定。在其他实施方式中,可根据有机发光二极管10的实际需求,还可以设置阻挡层14仅位于发光层13与第二电极12之间,还可以设置阻挡层14中阻挡材料为更多种,本申请实施例对此不作限定。
在一实施例中,继续参照图2或图3,同一层阻挡层14(图3中的第一阻挡层141或第二阻挡层142)包括第一阻挡材料14b1(图3中的第一子阻挡材料141b1或第三子阻挡材料142b1)和第二阻挡材料14b2(图3中的第二子阻挡材料141b2或第四子阻挡材料142b2),第一阻挡材料14b1的电子迁移率低于第二阻挡材料14b2的电子迁移率;第一阻挡材料14b1与第二阻挡材料14b2的体积之和记为S,第一阻挡材料14b1的体积记为X,其中,10%≤X/S≤70%。
其中,第一阻挡材料14b1在阻挡材料总体积中的占比越大,阻挡层14的整体的电子迁移率越低,有机发光二极管10的寿命越长;第一阻挡材料14b1在阻挡材料总体积中的占比越小,阻挡层14的整体的电子迁移率越高,有机发光二极管10的发光效率越高。通过上述比例范围设置,可以在保证有机发光二极管10具有较好的发光效率的同时,具有较长的寿命。
此外,设置阻挡层14包括两种阻挡材料,通过两种材料的比例即可实现对有机发光二极管10的发光效率和寿命的调控,有机发光二极管10的设计难度较小。
本申请实施例仅示例性的示出了所述第一阻挡材料14b1与所述第二阻挡材料14b2的体积之和记为S,第一阻挡材料14b1的体积记为X,其中,10%≤X/S ≤70%,并非对本申请实施例提供的有机发光二极管10的限定。在其他实施方式中,可以根据有机发光二极管10的实际需求,设置第一阻挡材料14b1在阻挡材料总体积中的占比,例如可为30%≤X/S≤60%,或者可为20%≤X/S≤50%,本申请实施例对此不作限定。
此外,图2中仅示例性的示出了第一阻挡材料14b1和第二阻挡材料14b2混合形成同一层阻挡层14,而并非对本申请实施例提供的有机发光二极管10的限定。在其他实施方式中,还可以根据有机发光二极管10的实际需求,设置第一阻挡材料14b1形成第一子阻挡层,第二阻挡材料14b2形成第二子阻挡层,第一子阻挡层和第二自阻挡层共同构成阻挡层14。并且,为了平衡发光层13中的电子和空穴的数量,可设置第二子阻挡层位于第一子阻挡层靠近发光层13的一侧,或者可设置第二子阻挡层位于第一子阻挡层远离发光层13的一侧,本申请实施例对此不作限定。
在一实施例中,继续参照图3,至少一层阻挡层14包括空穴阻挡层141(即上文中的第一阻挡层141),空穴阻挡层141位于发光层13与第二电极12之间;空穴阻挡层141包括第一空穴阻挡材料141b1(即上文中第一子阻挡材料141b1)和第二空穴阻挡材料141b2(即上文中的第二子阻挡材料141b2),第一空穴阻挡材料141b1的电子迁移率低于第二空穴阻挡材料141b2的电子迁移率;空穴阻挡层中,第一空穴阻挡材料141b1与第二空穴阻挡材料141b2的体积之和记为S1,第一空穴阻挡材料141b1的体积记为X1;其中,10%≤X1/S1≤60%。
如此设置,可控制注入到发光层13中的电子的数量,同时起到阻挡空穴的作用,使得发光层13中的电子和空穴的数量平衡,从而电子和空穴可有效复合,提升有机发光二极管10的发光效率。同时由于未被复合的电子数量较少,电子对膜层的损坏作用较小,从而可有效提升有机发光二极管10的寿命。
在其他实施方式中,还可以根据有机发光二极管10的实际需求,设置第一空穴阻挡材料141b1在空穴阻挡材料总体积中的占比,例如可为30%≤X1/S1≤60%,或者可为20%≤X1/S1≤50%,本申请实施例对此不作限定。
在一实施例中,第一空穴阻挡材料141b1与第二空穴阻挡材料141b2的体积比为1:1。
其中,第一空穴阻挡材料141b1越多,空穴阻挡层141的整体的电子迁移率越低,较少的电子被注入到发光层13,有机发光二极管10的寿命较长;第二空穴阻挡材料141b2越多,空穴阻挡层141的整体的电子迁移率越高,较多的电子被注入到发光层13,有机发光二极管10的发光效率越高。
通过设置第一空穴阻挡材料141b1与第二空穴阻挡材料141b2的体积比为1:1,可使空穴阻挡层141的综合性能较好,在保证有机发光二极管10具有较高的发光效率的同时,可提升有机发光二极管10的寿命。
在一实施例中,第一空穴阻挡材料141b1的电子迁移率B1的取值范围为1.0×10 -6cm 2/(V·s)≤B1≤1.0×10 -5cm 2/(V·s),所述第二空穴阻挡材料141b2的电子迁移率C1的取值范围为1.0×10 -5cm 2/(V·s)≤C1≤1.0×10 -4cm 2/(V·s)。
如此设置,可使空穴阻挡层141包括电子迁移率高低不同的两种空穴阻挡材料,从而可实现对电子注入到发光层13中的数量的调制,在保证有机发光二极管10具有较高的发光效率的同时,可提升有机发光二极管10的寿命。
第一空穴阻挡材料141b1和第二空穴阻挡材料141b2的电子迁移率的具体取值可根据有机发光二极管10的实际需求设置,本申请实施例对此不作限定。
示例性的,本申请实施例示例性的示出了一组相关技术提供的OLED与本申请技术方案提供的OLED的发光特性对比表,参见表1。
表1相关技术提供的OLED与本申请技术方案提供的OLED的发光特性对比表
器件 Op.V(V) Eff.1(cd/A) Eff.2(lm/W) CIE(x,y) Peak(nm) LT97(h)
D1 4.54 5.63 3.89 (0.1370,0.0636) 460 290
D2 4.15 7.18 5.44 (0.1378,0.0647) 460 140
D3 4.29 7.08 5.18 (0.1372,0.0648) 460 250
其中,器件D1代表相关技术提供的一种有机发光二极管,器件D2代表相关技术提供的另一种有机发光二极管,器件D3代表本申请技术方案提供的有机发光二极管,器件D1、器件D2和器件D3的相同之处包括:第一电极的材料采用ITO,厚度为10nm;空穴注入层的厚度为10nm;空穴传输层的厚度为120nm;电子阻挡层的厚度为5nm;发光层的厚度为20nm;空穴阻挡层的厚度为5nm;电子传输层的厚度为30nm;电子注入层的厚度为1nm,;第二电极的材料采用金属电极,厚度为13~20nm。器件D1、器件D2和器件D3的不同之处在于:器件D1的空穴阻挡层的材料的电子迁移率为5.2×10 -6cm 2/(V·s);器件D2的空穴阻挡层的电子迁移率为4.5×10 -5cm 2/(V·s);器件D3的空穴阻挡层材料为器件D1和器件D2中的两种空穴阻挡材料的混合物,且其体积比为1:1。在上述器件D1、器件D2和器件D3的膜层结构基础上,对三个器件的发光特性进行测试,要求亮度均为1200坎德拉每平方米(cd/m 2),得到如表1所示的测试结果。
其中,Op.V代表工作电压,单位为伏特(V);Eff.1代表电流效率,单位为坎德拉每安培(cd/A);Eff.2代表流明效率,也称光度效率,单位为流明每瓦(lm/W);CIE(x,y)代表色坐标;Peak代表有机发光二极管10的发光光谱的峰值位置,单位为纳米(nm);LT97代表有机发光二极管10的寿命,单位为小时(h),代表在1200坎德拉每平方米(cd/m 2)下进行恒流测试,得到的器件的亮度衰减至初始亮度的97%时对应的发光时长即为器件的寿命值。
由表1中给出的有机发光二极管的发光特性的对比数据可看出,器件D1的发光效率较低,器件D2的寿命较低;本申请实施例通过设置空穴阻挡层包括两 种电子迁移率高低不同的空穴阻挡材料,可使器件D3的发光效率较高(相对于器件D1而言),同时寿命得到提升(相对于器件D2而言)。即实现了同时提升有机发光二极管10的发光效率(主要指电流效率)和寿命的效果。
上述器件D1、器件D2和器件D3的对比仅为对本申请实施例提供的有机发光二极管10的示例性说明,而非限定。
在一实施例中,继续参照图3,至少一层阻挡层14包括电子阻挡层142(即上文中的第二阻挡层142),电子阻挡层142位于发光层13与第一电极11之间;电子阻挡层142包括第一电子阻挡材料142b1(即上文中的第三子阻挡材料142b1)和第二电子阻挡材料142b2(即上文中的第四子阻挡材料142b2),第一电子阻挡材料142b2的电子迁移率低于第二电子阻挡材料142b2的电子迁移率;电子阻挡层中,第一电子阻挡材料142b1和第二电子阻挡材料142b2的体积之和记为S2,第一电子阻挡材料142b1记为X2;其中,20%≤X2/S2≤70%。
如此设置,可控制注入到发光层13中的空穴的数量,同时起到阻挡电子的作用,使得发光层13中的电子和空穴的数量平衡,从而电子和空穴可有效复合,提升有机发光二极管10的发光效率。同时由于未被复合的空穴(实质上仍是“电子”,但这里的“电子”与上文中的电子位于不同的分子轨道中)数量较少,空穴对膜层的损坏作用较小,从而可有效提升有机发光二极管10的寿命。
在其他实施方式中,还可以根据有机发光二极管10的实际需求,设置第一电子阻挡材料142b1在电子阻挡材料总体积中的占比,例如可为30%≤X2/S2≤60%,或者可为20%≤X2/S2≤50%,本申请实施例对此不作限定。
在一实施例中,第一电子阻挡材料142b1与第二电子阻挡材料142b2的体积比为1:1。
其中,第一电子阻挡材料142b1越多,电子阻挡层142的整体的电子迁移 率越低,由于空穴迁移率与电子迁移率的变化趋势一致,因此,电子阻挡层142的整体的电子迁移率较低时,该电子阻挡层142的空穴迁移率也较低,此时,较少的空穴被注入到发光层13,有机发光二极管10的寿命较长;同理,第二电子阻挡材料142b2越多,电子阻挡层142的整体的空穴迁移率越高,较多的空穴被注入到发光层13,有机发光二极管10的发光效率越高。
如此设置,可使电子阻挡层142的综合性能较好,在保证有机发光二极管10具有较高的发光效率的同时,可提升有机发光二极管10的寿命。
在一实施例中,第一电子阻挡材料142b1的电子迁移率B2的取值范围为1.0×10 -7cm 2/(V·s)≤B2≤1.0×10 -5cm 2/(V·s),所述第二电子阻挡材料142b2的电子迁移率C2的取值范围为1.0×10 -5cm 2/(V·s)≤C2≤1.0×10 -4cm 2/(V·s)。
如此设置,可使电子阻挡层142包括电子迁移率高低不同的两种电子阻挡材料,从而可实现对空穴注入到发光层13中的数量的调制,实现发光层13中电子和空穴的数量平衡,在保证有机发光二极管10具有较高的发光效率的同时,可提升有机发光二极管10的寿命。
第一电子阻挡材料142b1和第二电子阻挡材料142b2的电子迁移率的具体取值可根据有机发光二极管10的实际需求设置,本申请实施例对此不作限定。
此外,图3中仅示例性的示出了至少一层阻挡层14包括空穴阻挡层141和电子阻挡层142时,空穴阻挡层141包括第一空穴阻挡材料141b1和第二空穴阻挡材料141b2,电子阻挡层142包括第一电子阻挡材料142b1和第二电子阻挡材料142b2,而并非对本申请实施例提供的有机发光二极管10的限定。在其他实施方式中,还可以根据有机发光二极管10的实际需求,设置空穴阻挡层141包括两种或多种空穴阻挡材料,电子阻挡层142包括一种电子阻挡材料;或者设置空穴阻挡层141包括一种空穴阻挡材料,电子阻挡层142包括两种或多种 电子阻挡材料;本申请实施例对此不作限定。
在一实施例中,图4是本申请一实施例提供的又一种有机发光二极管的结构示意图。参照图4,该有机发光二极管10还可包括第一载流子功能层15和第二载流子功能层16,第一载流子功能层15位于发光层13与第一电极11之间,当发光层13与第一电极11之间包括电子阻挡层142时,第一载流子功能层15位于电子阻挡层142与第一电极11之间;第二载流子功能层16位于发光层13与第二电极12之间,当发光层13与第二电极12之间包括空穴阻挡层141时,第二载流子功能层16位于空穴阻挡层141与第二电极12之间。
其中,第一载流子功能层15用于向发光层13中传输并注入空穴,可包括空穴注入层151和空穴传输层152。第二载流子功能层16用于向发光层13中传输并注入电子,可包括电子注入层161和电子传输层162。
上述第一载流子功能层15和第二载流子功能层16均可采用本领域技术人员可知的材料,本申请实施例对此不再赘述,也不作限定。
在上述实施方式的基础上,本申请实施例还提供了一种显示面板,示例性的,图5是本申请一实施例提供的一种显示面板的结构示意图。参照图5,该显示面板20包括:基板21,以及位于基板21一侧呈阵列排布的多个像素单元22;其中,至少部分像素单元22包括上述实施方式提供的任一种有机发光二极管(即,像素单元22包括子像素,至少部分子像素可以包括上述实施方式提供的任一种有机发光二极管的结构)。因此,该显示面板20也具有上述有机发光二极管所具有的有益效果,可参照上文理解,在此不再赘述。
其中,基板21可为阵列基板,用于驱动像素单元22发光。
示例性的,图5中示出了行方向X和列方向Y(图5中示出的行方向X和列方向Y所在的平面即为基板21所在的平面),且示出了呈7列4行排布的像素 单元22,每个像素单元22可包括一个蓝色子像素221、一个红色子像素222和一个绿色子像素223;同时,多个像素单元22中的子像素均沿列方向Y按照蓝色子像素221、红色子像素222和绿色子像素223的顺序排列,此均仅为对本申请实施例提供的显示面板20的示例性说明,而非限定。在其他实施方式中,可根据显示面板20的实际需求,设置像素单元22的阵列排布方式,以及每个像素单元22中蓝色子像素221、红色子像素222和绿色子像素223的个数以及排布方式,本申请实施例对此不作限定。
其中,每个像素单元22中至少一个子像素可采用上述实施方式提供的任一种有机发光二极管的结构。示例性的,蓝色子像素221可采用上述实施方式提供的任一种有机发光二极管的结构;或者,三个子像素均采用上述实施方式提供的任一种有机发光二极管的结构。本申请实施例对此不作限定,可根据显示面板20的实际需求设置。
示例性的,图6是沿图5中G1-G2的剖面结构示意图。结合图5和图6,该像素单元22中的三个子像素(包括蓝色子像素221、红色子像素222和绿色子像素223)均包括沿垂直方向Z(其中,垂直方向Z为垂直于行方向X和列方向Y所在的平面的方向)层叠设置的第一电极11、第一载流子功能层15、电子阻挡层142、发光层13、空穴阻挡层141、第二载流子功能层16和第二电极12。其中,蓝色子像素221、红色子像素222和绿色子像素223中的电子阻挡层142中的电子阻挡材料和空穴阻挡层141中的空穴阻挡材料可根据每个子像素的实际需求设置,本申请实施例对此不作限定。
另外,本申请实施例对于显示面板20的具体类型不作限定,本申请实施例提出的技术方案可以应用于任意涉及电子和空穴的传输过程的显示面板,示例性的显示面板可以为OLED显示面板、量子点发光二极管(Quantum Dot Light  Emitting Diodes,QLED)显示面板或本领域技术人员可知的其他显示面板。
本申请实施例还提供了一种显示装置。示例性的,图7是本申请一实施例提供的一种显示装置的结构示意图。参照图7,该显示装置30包括上述实施方式提供的显示面板20,因此该显示装置30也具有上述显示面板20所具有的有益效果,从而,该显示装置30也具有上述有机发光二极管所具有的有益效果,可参照上文理解,在此不再赘述。
示例性的,该显示装置30可为手机、平板电脑或本领域技术人员可知的其他电子显示设备,本申请实施例对此不作限定。
上述仅为本申请的较佳实施例及其所运用的技术原理。在不脱离本申请构思的情况下,本领域技术人员能够进行各种明显的变化、重新调整、相互结合和替代。而本申请的保护范围由所附的权利要求的保护范围决定。

Claims (15)

  1. 一种有机发光二极管,包括:
    第一电极;
    第二电极,所述第一电极与所述第二电极相对设置;
    发光层,所述发光层位于所述第一电极与所述第二电极之间;以及
    至少一层阻挡层,在所述发光层与所述第二电极之间,以及所述发光层与所述第一电极之间的至少一处设置所述阻挡层;
    其中,同一层阻挡层中包括至少两种阻挡材料,且至少一种所述阻挡材料的电子迁移率低于第一预设值,至少另一种所述阻挡材料的电子迁移率高于第二预设值,且所述第一预设值低于所述第二预设值。
  2. 根据权利要求1所述的有机发光二极管,其中,同一层阻挡层包括第一阻挡材料和第二阻挡材料,所述第一阻挡材料的电子迁移率低于所述第二阻挡材料的电子迁移率;
    在同一层阻挡层中,所述第一阻挡材料与所述第二阻挡材料的体积之和表示为S,所述第一阻挡材料的体积表示为X,10%≤X/S≤70%。
  3. 根据权利要求2所述的有机发光二极管,其中,在同一层阻挡层中,所述第一阻挡材料与所述第二阻挡材料的体积满足如下关系:20%≤X/S≤50%。
  4. 根据权利要求1所述的有机发光二极管,其中,所述至少一层阻挡层包括空穴阻挡层,所述空穴阻挡层位于所述发光层与所述第二电极之间;
    所述空穴阻挡层包括第一空穴阻挡材料和第二空穴阻挡材料,所述第一空穴阻挡材料的电子迁移率低于所述第二空穴阻挡材料的电子迁移率;
    所述空穴阻挡层中,所述第一空穴阻挡材料与所述第二空穴阻挡材料的体积之和表示为S1,所述第一空穴阻挡材料的体积表示为X1;10%≤X1/S1≤60%。
  5. 根据权利要求4所述的有机发光二极管,其中,所述空穴阻挡层中,所述第一空穴阻挡材料与所述第二空穴阻挡材料的体积满足如下关系:20%≤X1/S1≤50%。
  6. 根据权利要求4所述的有机发光二极管,其中,所述第一空穴阻挡材料与所述第二空穴阻挡材料的体积比为1:1。
  7. 根据权利要求4所述的有机发光二极管,其中,所述第一空穴阻挡材料的电子迁移率表示为B1,1.0×10 -6cm 2/(V·s)≤B1≤1.0×10 -5cm 2/(V·s),所述第二空穴阻挡材料的电子迁移率表示为C1,1.0×10 -5cm 2/(V·s)≤C1≤1.0×10 -4cm 2/(V·s)。
  8. 根据权利要求1所述的有机发光二极管,其中,所述至少一层阻挡层包括电子阻挡层,所述电子阻挡层位于所述发光层与所述第一电极之间;
    所述电子阻挡层包括第一电子阻挡材料和第二电子阻挡材料,所述第一电子阻挡材料的电子迁移率低于所述第二电子阻挡材料的电子迁移率;
    所述电子阻挡层中,所述第一电子阻挡材料和所述第二电子阻挡材料的体积之和表示为S2,所述第一电子阻挡材料表示为X2;20%≤X2/S2≤70%。
  9. 根据权利要求8所述的有机发光二极管,其中,所述电子阻挡层中,所述第一电子阻挡材料和所述第二电子阻挡材料的体积满足如下关系:30%≤X2/S2≤60%。
  10. 根据权利要求8所述的有机发光二极管,其中,所述第一电子阻挡材料与所述第二电子阻挡材料的体积比为1:1。
  11. 根据权利要求8所述的有机发光二极管,其中,所述第一电子阻挡材料的电子迁移率表示为B2,1.0×10 -7cm 2/(V·s)≤B2≤1.0×10 -5cm 2/(V·s),所述第二电子阻挡材料的电子迁移率表示为C2,1.0×10 -5cm 2/(V·s)≤C2≤1.0× 10 -4cm 2/(V·s)。
  12. 根据权利要求1所述的有机发光二极管,还包括第一载流子功能层和第二载流子功能层;
    所述第一载流子功能层位于所述发光层与所述第一电极之间,以及当所述发光层与所述第一电极之间设置所述阻挡层时,所述第一载流子功能层位于所述阻挡层与所述第一电极之间;
    所述第二载流子功能层位于所述发光层与所述第二电极之间,以及当所述发光层与所述第二电极之间设置所述阻挡层时,所述第二载流子功能层位于所述阻挡层与所述第二电极之间。
  13. 根据权利要求12所述的有机发光二极管,其中,所述第一载流子功能层包括沿所述第一电极指向所述发光层的方向层叠设置的空穴注入层和空穴传输层;所述第二载流子功能层包括沿所述第二电极指向所述发光层的方向层叠设置的电子注入层和电子传输层。
  14. 一种显示面板,包括基板,以及位于所述基板一侧呈阵列排布的多个像素单元;
    其中,至少部分所述像素单元包括权利要求1-13任一项所述的有机发光二极管。
  15. 一种显示装置,包括权利要求14所述的显示面板。
PCT/CN2019/074153 2018-09-30 2019-01-31 有机发光二极管、显示面板和显示装置 WO2020062748A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/881,051 US11374191B2 (en) 2018-09-30 2020-05-22 Organic light emitting diode, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811162436.5 2018-09-30
CN201811162436.5A CN109326735B (zh) 2018-09-30 2018-09-30 一种有机发光二极管、显示面板和显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/881,051 Continuation US11374191B2 (en) 2018-09-30 2020-05-22 Organic light emitting diode, display panel and display device

Publications (1)

Publication Number Publication Date
WO2020062748A1 true WO2020062748A1 (zh) 2020-04-02

Family

ID=65265460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074153 WO2020062748A1 (zh) 2018-09-30 2019-01-31 有机发光二极管、显示面板和显示装置

Country Status (4)

Country Link
US (1) US11374191B2 (zh)
CN (1) CN109326735B (zh)
TW (1) TWI725379B (zh)
WO (1) WO2020062748A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600629B (zh) * 2019-10-24 2022-08-12 昆山国显光电有限公司 一种显示面板和显示装置
CN115513389A (zh) * 2021-06-23 2022-12-23 京东方科技集团股份有限公司 一种蓝光发光器件、其制作方法及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
US20140191206A1 (en) * 2013-01-04 2014-07-10 Hwan-Hee Cho Organic Light-Emitting Device Having Improved Efficiency Characteristics and Organic Light-Emitting Display Apparatus Including the Same
CN106531769A (zh) * 2016-12-16 2017-03-22 上海天马有机发光显示技术有限公司 一种有机发光显示面板、电子设备及其制作方法
CN107146853A (zh) * 2017-05-03 2017-09-08 武汉华星光电技术有限公司 有机发光显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142831B2 (ja) * 2007-06-14 2013-02-13 株式会社半導体エネルギー研究所 半導体装置及びその作製方法
DE102009041289A1 (de) * 2009-09-16 2011-03-17 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
JP5825773B2 (ja) * 2010-11-05 2015-12-02 株式会社Joled 有機el表示装置およびその製造方法
CN103311448A (zh) * 2012-03-06 2013-09-18 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN103682108A (zh) * 2012-08-31 2014-03-26 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN103824956A (zh) * 2012-11-19 2014-05-28 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104934542A (zh) * 2014-03-21 2015-09-23 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104538554B (zh) * 2015-01-13 2017-01-25 北京科技大学 具有双组分混合电子传输/空穴阻挡层有机发光二极管
US20170104172A1 (en) * 2015-10-12 2017-04-13 The Regents Of The University Of Michigan Organic Light Emitting Diode Having a Mixed Blocking Layer
JP2018073914A (ja) * 2016-10-26 2018-05-10 株式会社ジャパンディスプレイ 表示装置
JP7002367B2 (ja) * 2018-03-07 2022-01-20 株式会社ジャパンディスプレイ 表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140191206A1 (en) * 2013-01-04 2014-07-10 Hwan-Hee Cho Organic Light-Emitting Device Having Improved Efficiency Characteristics and Organic Light-Emitting Display Apparatus Including the Same
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN106531769A (zh) * 2016-12-16 2017-03-22 上海天马有机发光显示技术有限公司 一种有机发光显示面板、电子设备及其制作方法
CN107146853A (zh) * 2017-05-03 2017-09-08 武汉华星光电技术有限公司 有机发光显示装置

Also Published As

Publication number Publication date
TW201921758A (zh) 2019-06-01
US20200287154A1 (en) 2020-09-10
TWI725379B (zh) 2021-04-21
CN109326735A (zh) 2019-02-12
US11374191B2 (en) 2022-06-28
CN109326735B (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
KR101073540B1 (ko) 유기 발광 장치
US10157966B2 (en) Organic light emitting display device
KR101429537B1 (ko) 유기발광소자
KR102130648B1 (ko) 백색 유기 발광 소자
KR101351417B1 (ko) 백색 유기 발광 소자
KR102126544B1 (ko) 유기 전계 발광 소자 및 유기 전계 발광 표시 장치
KR101094282B1 (ko) 유기 발광 장치
US11228022B2 (en) Display panel and display device
US10763449B2 (en) Organic light-emitting diode (OLED) display panel, fabrication method and electronic device thereof
KR20120020087A (ko) 유기전계발광소자
KR20110032589A (ko) 유기전계발광소자
KR102089329B1 (ko) 유기 발광 표시 장치
KR20120077301A (ko) 백색 유기 발광 소자
TWI693735B (zh) 有機發光二極體、顯示面板及顯示裝置
KR20140119990A (ko) 유기 발광 장치
KR102196085B1 (ko) 유기 발광 디스플레이 장치와 이의 제조 방법
CN109148710B (zh) 一种有机发光二极管和显示面板
US11374191B2 (en) Organic light emitting diode, display panel and display device
KR102009804B1 (ko) 유기 발광 다이오드 표시 장치 및 이의 제조 방법
US11515498B2 (en) Array substrate, display panel, and display apparatus
KR101777124B1 (ko) 백색 유기 발광 소자
KR20130029956A (ko) 유기 발광 표시 장치
KR101845309B1 (ko) 유기전계 발광소자
KR20220031867A (ko) 유기발광 표시장치
CN109768176B (zh) 一种有机发光二极管和显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864781

Country of ref document: EP

Kind code of ref document: A1