WO2020062569A1 - 偏光结构及显示装置 - Google Patents

偏光结构及显示装置 Download PDF

Info

Publication number
WO2020062569A1
WO2020062569A1 PCT/CN2018/119296 CN2018119296W WO2020062569A1 WO 2020062569 A1 WO2020062569 A1 WO 2020062569A1 CN 2018119296 W CN2018119296 W CN 2018119296W WO 2020062569 A1 WO2020062569 A1 WO 2020062569A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing
refractive index
light
compensation film
Prior art date
Application number
PCT/CN2018/119296
Other languages
English (en)
French (fr)
Inventor
康志聪
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Publication of WO2020062569A1 publication Critical patent/WO2020062569A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present application relates to the field of display, and in particular to a polarizing structure and a display device.
  • the display device is generally composed of a backlight module and a display panel placed on the backlight module.
  • the backlight module provides incident light for the display panel.
  • the incident light is usually concentrated and incident on the display panel. Therefore, when viewing the display screen in the frontal direction, It can obtain better display image quality, but when viewing the display screen in the side view direction, the image quality is poor and the color cast is more serious, which makes the viewing angle of normal display smaller.
  • a polarizing structure is provided according to various embodiments of the present application.
  • a polarizing structure includes:
  • a phase compensation film having a light incident surface and a light exit surface opposite to the light incident surface
  • a polarizing film provided on the light emitting surface of the phase compensation film
  • a supporting film provided on the polarizing film having a first refractive index, a plurality of grooves formed on a side of the supporting film facing away from the polarizing film;
  • An optical compensation film is formed with a plurality of convex structures matching the shape and size of the groove, and the width of each of the convex structures is smaller than or close to the wavelength of incident light, and the optical compensation film is attached to the support.
  • the optical compensation film has a second refractive index, and the first refractive index is greater than the second refractive index.
  • the display panel includes a polarizing structure
  • the polarizing structure includes a polarizing film and a supporting film stacked on the polarizing film to support and protect the polarizing film.
  • the film surface is flat and perpendicular to the normal incident light. Most of the incident light is emitted perpendicularly when it enters the polarized structure vertically, that is, most of the light energy is concentrated in the positive viewing angle, which results in a better quality of the viewing angle of the display panel and better quality of the side viewing angle. difference.
  • a groove is formed on the supporting film of the polarizing structure, and an optical compensation film is stacked on the supporting film.
  • the optical compensation film is formed with a plurality of convex structures matching the grooves, and the optical compensation film is formed. It is in close contact with the supporting film without gaps. Each raised structure is received in the corresponding groove.
  • the supporting film has a first refractive index
  • the optical compensation film has a second refractive index
  • the first refractive index is greater than the second refractive index, that is, light.
  • a plurality of convex structures are formed on the side where the optical compensation film is in contact with the support film, and the width of each convex structure is smaller than or close to the wavelength of the incident light.
  • the structure is equivalent to a grating, and the light incident on each convex structure will be diffracted, thereby changing the propagation path of the light, diverging the vertically incident light to the side viewing angle, and improving the image quality of the side viewing angle.
  • a width of each of the protruding structures is greater than or equal to 300 nm and less than or equal to 1000 nm.
  • each of the convex structures is an elongated convex structure, and the elongated convex structures are arranged side by side.
  • each of the convex structures is arranged in a two-dimensional matrix array, and the length and width of each of the convex structures are both smaller than or close to the wavelength of incident light.
  • the polarizing film has a transmission axis
  • the optical compensation film is a single optical axis liquid crystal film
  • the optical axis of the liquid crystal film is perpendicular to the transmission axis
  • the second refractive index is The normal refractive index of the liquid crystal film.
  • the single-optical axis liquid crystal film is a single-optical axis A-compensation film, and the single-optical axis A-compensation film is filled with nematic liquid crystal, and the optical axes of the nematic liquid crystal are parallel On the light incident surface and perpendicular to the transmission axis, the second refractive index is a normal refractive index of the A-compensation film.
  • the single-optical axis liquid crystal film is a single-optical axis C-compensation film
  • the single-optical axis C-compensation film is filled with a dish-shaped liquid crystal, and an optical axis of the dish-shaped liquid crystal is perpendicular to the substrate.
  • the light incident surface is perpendicular to the transmission axis
  • the second refractive index is a normal refractive index of the C-compensation film.
  • the optical compensation film is located on the top layer of the polarizing structure and the optical compensation film is doped with resin particles having anti-glare function.
  • the support film includes a triacetyl cellulose support film.
  • the support film includes a polyethylene terephthalate support film.
  • the support film includes a polymethyl methacrylate support film.
  • the polarizing film includes a polyvinyl alcohol film.
  • the center-to-center distance between the adjacent protruding structures is less than or equal to 10 ⁇ m.
  • the first refractive index is greater than 1.0 and less than 2.5.
  • the second refractive index is greater than 1.0 and less than 2.5.
  • a difference between the first refractive index and the second refractive index is greater than 0.01 and less than 1.5.
  • another polarizing structure is provided.
  • a polarizing structure includes:
  • a phase compensation film having a light incident surface and a light exit surface opposite to the light incident surface
  • a polarizing film provided on the light emitting surface of the phase compensation film
  • a supporting film provided on the polarizing film having a first refractive index, a plurality of grooves formed on a side of the supporting film facing away from the polarizing film;
  • An optical compensation film is formed with a plurality of convex structures that match the shape and size of the grooves.
  • Each of the convex structures is arranged in a two-dimensional matrix array, and the length and width of each of the convex structures are less than or Close to the wavelength of incident light, the optical compensation film is attached to the support film, and each of the convex structures is received in a corresponding groove.
  • the optical compensation film has a second refractive index. A refractive index is greater than the second refractive index, the optical compensation film is located on a top layer of the polarizing structure, and the optical compensation film is doped with resin particles having anti-glare function.
  • the above-mentioned polarizing structure can deflect most of the light incident perpendicularly to the display panel to various side viewing angles in the two-dimensional plane, and distribute the energy of the positive viewing angle to the side viewing angle, thereby improving the image quality of the side viewing angle. Reduce the effect of light reflection on image quality without increasing product thickness.
  • a display device is provided according to various embodiments of the present application.
  • a display device includes:
  • a backlight module configured to provide a light source
  • a display panel is placed on one side of the backlight module and is set as a display screen
  • the display panel includes a polarizing structure, and the polarizing structure includes:
  • a phase compensation film having a light incident surface and a light exit surface opposite to the light incident surface
  • a polarizing film provided on the light emitting surface of the phase compensation film
  • a supporting film provided on the polarizing film having a first refractive index, a plurality of grooves formed on a side of the supporting film facing away from the polarizing film;
  • An optical compensation film is formed with a plurality of convex structures matching the shape and size of the groove, and the width of each of the convex structures is smaller than or close to the wavelength of incident light, and the optical compensation film is attached to the support.
  • the optical compensation film has a second refractive index, and the first refractive index is greater than the second refractive index.
  • the display panel of the above display device includes a polarizing structure, which can deflect the light perpendicularly incident on the display panel to the side viewing angle and distribute the energy of the positive viewing angle to the side viewing angle, thereby improving the image quality of the side viewing angle.
  • the display panel is a liquid crystal display panel.
  • an included angle between a divergence direction of the incident light generated by the backlight module and a direction perpendicular to the display panel is less than 30 °.
  • Figure 1 is an exploded view of a polarized structure
  • FIG. 2 is a schematic diagram of diffraction of incident light by a polarizing structure
  • 3a is a three-dimensional structural view of an optical compensation film in an embodiment
  • 3b is a schematic perspective view of an optical compensation film in another embodiment
  • 4a is a partial cross-sectional view of a polarizing structure in an embodiment
  • FIG. 4b is a positional relationship diagram between the penetration of the polarizing film and the optical axis of the optical compensation film in FIG. 4a;
  • 5a is a partial cross-sectional view of a polarizing structure in another embodiment
  • 5b is a positional relationship diagram of the polarizing film and the optical axis of the optical compensation film in FIG. 5a;
  • FIG. 6 is a schematic structural diagram of a display device according to an embodiment
  • FIG. 7 is a schematic structural diagram of a display panel according to an embodiment.
  • the polarizing structure includes a phase compensation film 100, a polarizing film 200, a support film 300, and an optical compensation film 400 stacked in this order.
  • the phase compensation film 100 has a light incident surface 100A and a light output.
  • the surface 100B and the light incident surface 100A are surfaces that receive incident light.
  • the light enters the phase compensation film 100 from the light incident surface 100A, and is phase-compensated by the phase compensation film 100 and is emitted from the light emitting surface 100B.
  • the phase delay phenomenon occurs after the light is processed. The phase delay will seriously affect the image quality.
  • the phase compensation film 100 is provided to perform phase compensation before the light exits the display panel, which can avoid the effect of phase delay on the image quality.
  • the phase compensation film 100 may be an A-film or a C-film or a combination of an A-film and a C-film.
  • the phase-compensated light passes through the polarizing film 200, and the polarizing film 200 polarizes the incident light. Only the light whose electric field direction is parallel to the polarization axis of the polarizing film 200 can penetrate the polarizing film 200, that is, the light emitted from the polarizing film 200. The direction of the electric field is parallel to the transmission axis of the polarizing film 200.
  • the polarizing film 200 is a polyvinyl alcohol film.
  • the polyvinyl alcohol film has high transparency, high elongation performance, and has a polarizing effect on light.
  • the support film 300 may be a triacetate cellulose (TAC) support film, a polyethylene terephthalate (PET) support film, or a polymethyl methacrylate (PMMA) ) Supporting film.
  • TAC triacetate cellulose
  • PET polyethylene terephthalate
  • PMMA polymethyl methacrylate
  • Convex structures 401 that match the shape and size of the grooves 301, each of the convex structures 401 can be embedded in the corresponding grooves 301, the width of each of the convex structures 401 is less than or close to the wavelength of the incident light, and the optical compensation film 400 is attached
  • the supporting film 300 is attached to the supporting film 300, and each of the protruding structures 401 is completely received in the corresponding groove 301, that is, the supporting film 300 and the optical compensation film 400 are closely adhered without a gap.
  • the supporting film 300 has a first refractive index n1
  • the optical compensation film 400 has a second refractive index n2.
  • the first refractive index n1 is larger than the second refractive index n2.
  • each convex structure 401 When light penetrates the supporting film 300 and enters the optical compensation film 400, the light is emitted from the light. The process of dense into photophosgene. Because the width of each convex structure 401 is smaller than or close to the wavelength of incident light, when the incident light propagates to the convex structure 401, because the width of each convex structure 401 is smaller than or close to the wavelength, the convex structure 401 is equivalent to A grating, where light can be diffracted at the raised structure 401.
  • the solution is provided by setting a supporting film 300 and an optical compensation film 400 with different refractive indexes and optically compensating
  • a convex structure 401 is formed on the side of the film 400 that is in contact with the support film 300.
  • a grating is formed by the convex structure 401.
  • each protruding structure 401 is X, and the value range of X may be 300 nm ⁇ X ⁇ 1000 nm.
  • the protruding structure 401 is Diffraction occurs, that is, the light propagation path changes, and the light deviates from the original perpendicular incidence direction and diverges to the side. Therefore, more light enters the side and improves the image quality of the side viewing angle. It can be understood that the larger the difference between the first refractive index n1 and the second refractive index n2 is, the more obvious the diffraction phenomenon is, and the easier it is to distribute the frontal light type energy to a large viewing angle.
  • the value range of the first refractive index n1 is 1.0 ⁇ n1 ⁇ 2.5
  • the value range of the second refractive index n2 is 1.0 ⁇ n2 ⁇ 2.5.
  • the value range of m can be 0.01 ⁇ m ⁇ 1.5.
  • each of the convex structures 401 is an elongated convex structure, and each of the elongated convex structures 401 can be arranged side by side.
  • the width of the lifting structure 401 is smaller than or close to the wavelength of the incident light.
  • each convex structure 401 may also be arranged in a two-dimensional matrix array, and the width (X direction) and length (Y direction) of each convex structure 401 are both smaller than or close to the wavelength of incident light. Because in the display device, most of the light generated by the backlight module is concentrated and incident on the display panel vertically.
  • each layer of the polarizing structure is flat and perpendicular to the normal incident light, the normal incident light will not pass through the polarizing plate. Changing its propagation direction, that is, when the light is incident perpendicularly, it still emits vertically, causing the light to be concentrated at the front view angle, so that the display quality of the front view direction is better, and the side view angle is poor due to the weak light.
  • each convex structure 401 can diffract normal incident light, and the light deviates from the original normal incident direction and diverges to the side, so more light enters the side Side to improve the quality of the side view angle.
  • each convex structure 401 is a rectangular parallelepiped protrusion. In other embodiments, each convex structure 401 may also be another type of convex structure. The size of each convex structure 401 can make incident light Diffraction is sufficient.
  • the center-to-center distance between adjacent convex structures 401 is less than or equal to 10 ⁇ m, that is, less than the opening width of a general pixel, that is, each pixel opening corresponds to at least one convex structure 401 that deflects the pixel light.
  • the polarizing film 200 has an absorption axis and a transmission axis. Polarized light having an electric field direction parallel to the transmission axis can pass through the polarizing film 200, that is, the direction of the electric field of the linearly polarized light passing through the polarizing film 200 is parallel to the transmission axis.
  • the optical compensation film 400 should be made of a light-transmitting transparent or translucent material and have the function of optical compensation. The optical compensation may specifically be phase compensation.
  • the optical compensation film 400 may be a single optical axis liquid crystal film. The single optical axis liquid crystal film is filled with liquid crystal molecules and the optical axes of the liquid crystal molecules are parallel, so that the liquid crystal film has a single optical axis characteristic.
  • the axial direction is the optical axis direction of the internal liquid crystal molecules, and the optical axis of the single optical axis liquid crystal film is perpendicular to the transmission axis of the polarizing film 200.
  • liquid crystal is a birefringent material, usually, when light enters the liquid crystal, it is refracted into two rays of normal light and abnormal light.
  • the refractive index of normal light is the normal refractive index
  • the refractive index of abnormal light is the abnormal refractive index
  • the direction of abnormal refraction is parallel to the optical axis of the liquid crystal.
  • the normal refraction direction is the direction in which the optical electric field is perpendicular to the optical axis of the liquid crystal.
  • the direction of the abnormal refraction is perpendicular to the normal refraction direction. That is, the electric field of the incident light is refracted in the liquid crystal to be parallel to the optical axis. Components (abnormal refraction) and components perpendicular to the optical axis (normal refraction).
  • the electric field direction of the linearly polarized light transmitted through the polarizing film 200 is parallel to the transmission axis of the polarizing film 200, and since the optical axis of the optical compensation film 400 is perpendicular to the transmission axis, that is, the electric field direction of the linearly polarized light It is perpendicular to the optical axis of the optical compensation film 400, and linearly polarized light only undergoes normal refraction in the optical compensation film 400. Therefore, the normal refractive index of the liquid crystal is taken as the second refractive index of the optical compensation film 400, which is smaller than the support film 300. Of refractive index.
  • the optical compensation film 400 is a single optical axis A-compensation film, and the single optical axis A-compensation film may be filled with a nematic liquid crystal 402, and the nematic liquid crystal 402 is In the long rod-shaped liquid crystal, the optical axis 403 of the nematic liquid crystal 402 is parallel to the light incident surface and perpendicular to the transmission axis 201 of the polarizing film 200.
  • the abnormal refraction direction of the nematic liquid crystal 402 is the direction of the optical electric field and the nematic liquid crystal.
  • optical axis 403 is parallel to, namely the column direction of the optical field of the polarizing film transmission axis of the liquid crystal refractive anomalous 402 200 201 perpendicular to the corresponding extraordinary refractive index n1 e; a nematic phase of the liquid crystal 402 is properly refract
  • the direction of the optical electric field is perpendicular to the optical axis 403 of the nematic liquid crystal 402, that is, the direction of the normally refracted optical electric field of the nematic liquid crystal 402 is parallel to the transmission axis 201 of the polarizing film 200, and the corresponding normal refractive index is n1 o .
  • the optical compensation film 400 when linearly polarized light passing through the polarizing film 200 enters the optical compensation film 400, the electric field of the linearly polarized light is refracted into components parallel to the optical axis (abnormal refraction) and components perpendicular to the optical axis (normal refraction). .
  • the optical axis 403 of the nematic liquid crystal 402 since the optical axis 403 of the nematic liquid crystal 402 is perpendicular to the transmission axis 201 of the polarizing film 200, if the light incident surface is parallel to the X and Y directions in FIG. 4b, the optical axis of the nematic liquid crystal 403 may be in the X direction in FIG.
  • the transmission axis 201 of the polarizing film 200 is in the Y direction in FIG. 4b.
  • the optical axis 403 of the nematic liquid crystal may be in the Y direction in FIG. 4b.
  • the penetration axis 201 of the film 200 is in the X direction in FIG. 4b, and it is sufficient that the optical axis 403 is parallel to the light incident surface and perpendicular to the penetration axis.
  • the electric field direction of the linearly polarized light transmitted through the polarizing film 200 is parallel to the Y direction and perpendicular to the optical axis 403 of the nematic liquid crystal.
  • the second refractive index is the normal refractive index of the optical compensation film 400.
  • the optical compensation film 400 is a single optical axis C-compensation film, and the single optical axis C-compensation film may be filled with a disc-shaped liquid crystal 404 and an optical axis of the disc-shaped liquid crystal 404.
  • 405 is perpendicular to the light incident surface and perpendicular to the transmission axis 201 of the polarizing film 200.
  • the abnormal refraction direction of the dish-shaped liquid crystal 404 is a direction in which the direction of the optical field is parallel to the optical axis 405 of the dish-shaped liquid crystal 404, that is, the dish-shaped liquid crystal 404 is abnormally refracted.
  • normal direction refractive smectic liquid crystal 404 is an optical axis direction of discotic liquid crystal optical field 404 perpendicular to the direction 405, i.e., The direction of the normal-refracted light electric field of the dish-shaped liquid crystal 404 is parallel to the transmission axis 201 of the polarizing film 200, and the corresponding normal refractive index is n1 o .
  • the single optical axis C-compensation film is a negative single Optical axis C-compensation film.
  • the single optical axis C-compensation film is a positive single optical axis C-compensation film.
  • the optical axis 405 of the dish-shaped liquid crystal 404 is perpendicular to the transmission axis 201 of the polarizing film 200, for example, the optical axis 405 of the dish-shaped liquid crystal may be in the Z direction in FIG. 5b, and the transmission axis of the polarizing film 200 201 is in the Y direction in FIG. 5b. In other embodiments, the transmission axis 201 of the polarizing film 200 may be in any direction of the XY plane in FIG.
  • the optical axis 405 is perpendicular to the transmission axis 201.
  • the direction of the electric field of the linearly polarized light transmitted through the polarizing film 200 is parallel to the Y direction and perpendicular to the optical axis 405 of the dish-shaped liquid crystal 404.
  • the second refractive index is the normal refractive index of the optical compensation film 400.
  • the refractive index is smaller than the supporting film 300.
  • the single optical axis C-compensation film is a positive single optical axis C-compensation film.
  • the top layer of the polarizing structure is also covered with an anti-reflection film, but the anti-reflection film also has a certain thickness, and adding an anti-reflection film is not conducive to the thin design of the product.
  • the optical compensation film 400 is located on the topmost layer of the polarizing structure. As shown in FIGS. 4a and 5a, the optical compensation film 400 may be doped with resin particles 406 having anti-glare function. Under the circumstances, the light reflection phenomenon of the display panel can be reduced, the user experience can be improved, and the thin design of the product can be facilitated.
  • the polarizing structure further includes a pressure-sensitive adhesive layer stacked on the light incident surface of the phase compensation film 100, and the polarizing structure can be pasted on the glass substrate through the pressure-sensitive adhesive layer.
  • the polarizing structure includes a phase compensation film 100, a polarizing film 200, a support film 300, and an optical compensation film 400 stacked in this order.
  • the phase compensation film 100 It has a light-entering surface 100A and a light-exiting surface 100B; the phase-compensated light passes through the polarizing film 200; the polarizing film 200 polarizes the incident light, and only the light whose electric field direction is parallel to the transmission axis of the polarizing film 200 can pass through the polarized light Film 200; a plurality of grooves 301 are formed on the side of the support film 300 facing away from the polarizing film 200, and the support film 300 has a first refractive index n1; a groove formed on the side of the support film 300 is covered with an optical compensation film 400 for optical compensation A plurality of convex structures 401 matching the shape and size of the grooves 301 are formed on the film 400
  • Each convex structure 401 is arranged in a two-dimensional matrix array, and the length and width of each convex structure 401 are less than or close to incident light. Wavelength, each convex structure 401401 can be just embedded in the corresponding groove 301, the optical compensation film 400 has a second refractive index n2, the first refractive index n1 is greater than the second refractive index n2; the optical compensation film 400 is located in a polarized structure Anti-dazzle doped functional resin particles in the top layer 400 and the optical compensation film. Since the supporting film 300 has a first refractive index n1 and the optical compensation film 400 has a second refractive index n2, the first refractive index n1 is greater than the second refractive index n2.
  • each convex structure 401 When light penetrates the supporting film 300 and enters the optical compensation film 400, The process of entering the light dense into the light density is because the width of each convex structure 401 is smaller than or close to the wavelength of the incident light. When the incident light propagates to the convex structure 401, the width of each convex structure 401 is less than or Close to the wavelength, the convex structure 401 is equivalent to a grating. Light can be diffracted at the convex structure 401 to deflect the light, so that the light energy of the normal viewing angle is distributed to the large viewing angle, and the image quality of the side viewing angle is improved.
  • the convex structures 401 are arranged in a two-dimensional matrix array, light rays are diffracted at various angles in the two-dimensional plane, so that the image quality of each side viewing angle in the two-dimensional plane is improved. Since the optical compensation film 400 is located on the top layer of the polarizing structure and the anti-glare resin particles are doped in the optical compensation film 400, the light reflection phenomenon of the display panel can be reduced without increasing the thickness of the polarizing plate.
  • the present application also discloses a display device.
  • the display device includes a backlight module 2 and a display panel 1 disposed on one side of the backlight module 2.
  • the display panel 1 is configured as a display screen, and the display panel 1 includes the foregoing.
  • the backlight module 2 is configured to provide a light source, and the light source generates incident light that is incident on the display panel 1 in a concentrated manner.
  • the divergent direction of the incident light is at a small angle with the direction perpendicular to the display panel 1, and the small angle ⁇ may be less than 30 °. Most of the light received by the display panel 1 is normal incident light.
  • the support film 300 and the optical compensation film 400 exist in the display panel 1 and the contact surface of the optical compensation film 400 and the support film 300 has a convex structure 401, Diffraction at the lifting structure 401 can deflect the vertically incident light, thereby allocating the energy of the positive viewing angle to the side viewing angle and improving the image quality of the side viewing angle.
  • the structure of the polarizing plate in the display panel 1 has been described above, and is not repeated here.
  • the light source in the backlight module 20 includes an edge-type light source 2A and a light guide plate 2B opposite to the edge-type light source 2A.
  • the upper and lower surfaces of the light guide plate 2B are provided with long V-shaped grooves.
  • the side wall is parallel to the side-type light source, and the length direction of the V-shaped groove on the upper surface of the light guide plate and the length direction of the V-shaped groove on the lower surface are perpendicular to each other.
  • the display panel may be a liquid crystal display panel.
  • the liquid crystal display panel includes an upper polarizing plate 10, a lower polarizing plate 30, and a liquid crystal layer sandwiched between the upper and lower polarizing plates. 20.
  • the liquid crystal layer 20 includes a substrate and liquid crystal molecules sandwiched between the substrate. The incident light becomes linearly polarized light after passing through the lower polarizing plate, and the liquid crystal layer 20 can reverse the polarization direction of the linearly polarized light, so that the linearly polarized light can pass through the upper polarizing plate, thereby displaying a picture on the display panel.
  • the display panel may also be an organic light-emitting diode (OLED) display panel, a quantum dot light emitting diode (QLED) display panel, or a curved display panel, and the above-mentioned polarizing structure is included.
  • OLED organic light-emitting diode
  • QLED quantum dot light emitting diode

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种偏光结构和显示装置,包括依次叠设的相位补偿膜(100)、偏光膜(200)、支撑膜(300)和光学补偿膜(400),其中,支撑膜(300)的折射率大于光学补偿膜(400)的折射率,支撑膜(300)上形成有多个凹槽(301),光学补偿膜(400)上形成有与凹槽(301)相匹配的凸起结构(401)且各凸起结构(401)容纳于相应凹槽(301),各凸起结构(401)的宽度小于或接近入射光的波长。

Description

偏光结构及显示装置
相关申请
本申请要求于2018年9月30日提交中国专利局的,申请号为201811163320.3、申请名称为“偏光结构及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示领域,特别是涉及一种偏光结构及显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
随着显示技术的发展,显示装置因具有高画质、省电、机身薄等优点被广泛应用于这种电子产品中,其中,画质的好坏是影响消费者体验的最主要的因素。显示装置一般由背光模组和置于背光模组上的显示面板构成,背光模组为显示面板提供入射光,该入射光通常是集中垂直入射至显示面板,因此在正视方向观看显示屏时,能获取较好的显示画质,但是在侧视方向观看显示屏时,画质较差,色偏比较严重,使得正常显示的视角较小。
发明内容
根据本申请的各种实施例提供一种偏光结构。
一种偏光结构,包括:
相位补偿膜,具有入光面和与所述入光面相对的出光面;
偏光膜,设于所述相位补偿膜的所述出光面上;
支撑膜,设于所述偏光膜上,所述支撑膜具有第一折射率,所述支撑膜背离所述偏光膜的一面形成有多个凹槽;以及
光学补偿膜,形成有多个与所述凹槽形状和尺寸相匹配的凸起结构,各所述凸起结构的宽度小于或接近入射光的波长,所述光学补偿膜贴合于所述支撑膜上,且各所述凸起结构容纳于相应所述凹槽内,所述光学补偿膜具有第二折射率,所述第一折射率大于所述第二折射率。
由于在显示装置中,大部分光线是垂直入射至显示面板,显示面板包含偏光结构,偏光结构包括偏光膜和叠设于偏光膜上以支撑保护偏光膜的支撑膜,若偏光结构中的各层膜表面平整且与垂直入射光相互垂直,大部分入射光垂直入射至偏光结构时仍然垂直射出,即大部分光能量集中在正视角,导致显示面板正视角画质较好而侧视角画质较差。而本方案中,在偏光结构的支撑膜上形成有凹槽,同时在支撑膜上叠设一层光学补偿膜,光学补偿膜形成有多个与凹槽相匹配的凸起结构,光学补偿膜与支撑膜紧密贴合无间隙,各凸起结构容纳于相应凹槽内,支撑膜具有第一折射率,光学补偿膜具有第二折射率,且第一折射率大于第二折射率,即光垂直入射至显示面板时,穿透支撑膜并入射至光学补偿膜的过程,是从光密质进入光疏质的过程。同时,在光学补偿膜与支撑膜接触的一面形成有多个凸起结构,各凸起结构的宽度小于或接近入射光的波长,当入射光从光密质进入光疏质时,该凸起结构相当于一光栅,入射至各凸起结构处的光线会发生衍射,从而改变光线的传播路径,使垂直入射光发散到侧视角,提高侧视角的画质。
在其中一个实施例中,各所述凸起结构的宽度大于或等于300nm,且小于或等于1000nm。
在其中一个实施例中,各所述凸起结构为长条形凸起结构,且所述长条形凸起结构并排设置。
在其中一个实施例中,各所述凸起结构呈二维矩阵阵列排列,且各所述凸起结构的长度和宽度均小于或接近入射光的波长。
在其中一个实施例中,所述偏光膜具有穿透轴,所述光学补偿膜为单光轴液晶薄膜,所述液晶薄膜的光轴与所述穿透轴垂直,所述第二折射率为所述液晶薄膜的正常折射率。
在其中一个实施例中,所述单光轴液晶薄膜为单光轴A-补偿膜,所述单光轴A-补偿膜内填充有向列相液晶,所述向列相液晶的光轴平行于所述入光面且垂直于所述穿透轴,所述第二折射率为所述A-补偿膜的正常折射率。
在其中一个实施例中,所述单光轴液晶薄膜为单光轴C-补偿膜,所述单光轴C-补偿膜内填充有碟状液晶,所述碟状液晶的光轴垂直于所述入光面且垂直于所述穿透轴,所述第二折射率为所述C-补偿膜的正常折射率。
在其中一个实施例中,所述光学补偿膜位于所述偏光结构的顶层且所述光学补偿膜内掺杂有抗炫功能的树酯颗粒。
在其中一个实施例中,所述支撑膜包括三醋酸纤维素支撑膜。
在其中一个实施例中,所述支撑膜包括聚对苯二甲酸乙二醇酯支撑膜。
在其中一个实施例中,所述支撑膜包括聚甲基丙烯酸甲酯支撑膜。
在其中一个实施例中,所述偏光膜包括聚乙烯醇膜。
在其中一个实施例中,相邻所述凸起结构的中心间距小于或等于10μm。
在其中一个实施例中,所述第一折射率大于1.0且小于2.5。
在其中一个实施例中,所述第二折射率大于1.0且小于2.5。
在其中一个实施例中,所述第一折射率与第二折射率的差值大于0.01且小于1.5。
根据本申请的各种实施例提供另一种偏光结构。
一种偏光结构,包括:
相位补偿膜,具有入光面和与所述入光面相对的出光面;
偏光膜,设于所述相位补偿膜的所述出光面上;
支撑膜,设于所述偏光膜上,所述支撑膜具有第一折射率,所述支撑膜背离所述偏光膜的一面形成有多个凹槽;以及
光学补偿膜,形成有多个与所述凹槽形状和尺寸相匹配的凸起结构,各所述凸起结构呈二维矩阵阵列排列,且各所述凸起结构的长度和宽度均小于或接近入射光的波长,所述光学补偿膜贴合于所述支撑膜上,且各所述凸起结构容纳于相应所述凹槽内,所述光学补偿膜具有第二折射率,所述第一折射率大于所述第二折射率,所述光学补偿膜位于所述偏光结构的顶层且所述 光学补偿膜内掺杂有抗炫功能的树酯颗粒。
上述偏光结构,一方面可以使大部分垂直入射至显示面板的光线向二维平面内的各个侧视角偏转,将正视角能量分配到侧视角,从而提高侧视角的画质;另一方面可以在不增加产品厚度的前提下减弱光线反射对画质的影响。
根据本申请的各种实施例提供一种显示装置。
一种显示装置,包括:
背光模组,设置为提供光源;以及
显示面板,置于所述背光模组一侧,设置为显示画面;
其中,所述显示面板包含偏光结构,所述偏光结构包括:
相位补偿膜,具有入光面和与所述入光面相对的出光面;
偏光膜,设于所述相位补偿膜的所述出光面上;
支撑膜,设于所述偏光膜上,所述支撑膜具有第一折射率,所述支撑膜背离所述偏光膜的一面形成有多个凹槽;以及
光学补偿膜,形成有多个与所述凹槽形状和尺寸相匹配的凸起结构,各所述凸起结构的宽度小于或接近入射光的波长,所述光学补偿膜贴合于所述支撑膜上,且各所述凸起结构容纳于相应所述凹槽内,所述光学补偿膜具有第二折射率,所述第一折射率大于所述第二折射率。
上述显示装置的显示面板包含有偏光结构,可以使背光模组垂直入射至显示面板的光线向侧视角偏转,将正视角能量分配到侧视角,从而提高侧视角的画质。
在其中一个实施例中,所述显示面板为液晶显示面板。
在其中一个实施例中,所述背光模组产生的入射光的发散方向与垂直于所述显示面板的方向的夹角小于30°。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一副或多副附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为偏光结构爆炸图;
图2为偏光结构对入射光的衍射示意图;
图3a为一实施例中光学补偿膜的立体结构图;
图3b为另一实施例中光学补偿膜的立体示意图;
图4a为一实施例中偏光结构局部剖视图;
图4b为图4a中偏光膜的穿透抽与光学补偿膜的光轴的位置关系图;
图5a为另一实施例中偏光结构局部剖视图;
图5b为图5a中偏光膜的穿透抽与光学补偿膜的光轴的位置关系图;
图6为一实施例中显示装置结构示意图;
图7为一实施例中显示面板结构示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的首选实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
为了彻底理解本申请,将在下列的描述中提出详细步骤以及结构,以便阐释本申请提出的技术方案。本申请的较佳实施例详细描述如下,然而除了 这些详细描述外,本申请还可以具有其他实施方式。
在一实施例中,如图1所示,偏光结构包括依次叠设的相位补偿膜100、偏光膜200、支撑膜300和光学补偿膜400,其中,相位补偿膜100具有入光面100A和出光面100B,入光面100A为接收入射光的一面,光线从入光面100A进入相位补偿膜100,通过相位补偿膜100进行相位补偿后从出光面100B射出。在显示器中,光线经过处理后会出现相位延迟的现象,相位延迟会严重影响画质,设置相位补偿膜100,在光线射出显示面板前进行相位补偿,可避免相位延迟对画质的影响。在一实施例中,相位补偿膜100可为A-膜或C-膜或A-膜和C-膜的组合。经过相位补偿后的光线经过偏光膜200,偏光膜200对入射光进行偏振处理,只有电场方向与偏光膜200的穿透轴平行的光线可穿透偏光膜200,即从偏光膜200射出的光线的电场方向与偏光膜200的穿透轴平行。在一实施例中,偏光膜200为聚乙烯醇膜,聚乙烯醇膜具有高透明、高延展性能并且对光线具有偏振作用。由于偏光膜200具有极强的亲水性,需要在偏光膜200表面设置支撑膜300以支撑并保护偏光膜200的物理特性。在一实施例中,支撑膜300可为三醋酸纤维素(TAC)支撑膜,也可为聚对苯二甲酸乙二醇酯(PET)支撑膜,还可为聚甲基丙烯酸甲酯(PMMA)支撑膜。在本方案中,支撑膜300背离偏光膜200的一面形成有多个凹槽301,同时在支撑膜300形成有凹槽301的一面覆盖一层光学补偿膜400,光学补偿膜400上形成有多个与凹槽301形状和尺寸相匹配的凸起结构401,各凸起结构401可刚好嵌入相应凹槽301内,各凸起结构401的宽度小于或接近入射光的波长,光学补偿膜400贴合于支撑膜300上,且各凸起结构401完全容纳于相应凹槽301内,即支撑膜300与光学补偿膜400之间紧密贴合无间隙。支撑膜300具有第一折射率n1,光学补偿膜400具有第二折射率n2,第一折射率n1大于第二折射率n2,当光穿透支撑膜300进入光学补偿膜400时,是从光密质进入光疏质的过程。又由于各凸起结构401的宽度小于或接近入射光的波长,当入射光传播至该凸起结构401处时,由于各凸起结构401的宽度小于或接近波长,该凸起结构401相当于一光栅, 光线在该凸起结构401处可发生衍射。
在显示装置中,由于绝大部分光线是垂直入射至偏光板中,即绝大部分光线垂直于入光面100A,本方案通过设置不同折射率的支撑膜300和光学补偿膜400并在光学补偿膜400上与支撑膜300接触的一面形成凸起结构401,通过凸起结构401形成光栅,入射光从支撑膜300垂直入射至光学补偿膜400时,会在各凸起结构401处发生衍射,改变垂直入射光的传播路径,使光线发生偏转,从而使正视角光型能量分配到大视角,提高侧视角的画质。
结合图2所示,各凸起结构401的宽度为X,X的取值范围可为300nm≤X≤1000nm,当光线垂直穿透支撑膜300进入光学补偿膜400时,在凸起结构401处发生衍射,即光线传播路径发生改变,光线偏离原来垂直入射方向,向侧边发散,因此会有更多的光线射入侧边,提高侧视角度的画质。可以理解的,第一折射率n1与第二折射率n2的差异越大,衍射现象越明显,越容易将正视光型能量分配到大视角。在一实施例中,第一折射率n1的取值范围为1.0<n1<2.5,第二折射率n2的取值范围为1.0<n2<2.5。在一实施例中,若m=n1-n2,m的取值范围可为0.01<m<1.5。
如图3a所示,光学补偿膜400上形成有多个凸起结构401,各凸起结构401为长条形凸起结构,各长条形凸起结构401可并排设置,各长条形凸起结构401的宽度小于或接近入射光的波长。如图3b所示,各凸起结构401也可呈二维矩阵阵列排列,各凸起结构401的宽度(X方向)和长度(Y方向)均小于或接近入射光的波长。由于在显示装置中,背光模组生成的光线大部分是集中垂直入射至显示面板,若偏光结构中各层膜的表面平整且与垂直入射光相互垂直,垂直入射光穿透偏光板时不会改变其传播方向,即光线垂直入射时仍然垂直射出,造成光线集中在正视角度,使得正视方向的显示画质较好,而侧视角度由于光线较弱,侧视角度的画质较差。在本方案中,由于设有多个凸起结构401,各凸起结构401可以使垂直入射光线产生衍射,光线偏离原来垂直入射方向,向侧边发散,因此会有更多的光线射入侧边,提高侧视角度的画质。当各凸起结构401为长条形凸起结构且并排排列时,仅 在一维方向(X方向)发生衍射,使光线发散到各凸起结构401的两侧;当各凸起结构401呈二维矩形阵列排列时,由于各凸起结构401的长度和宽度均小于或接近入射光的波长,会在二维平面(X方向和Y方向)内发生衍射。在一些实施例中,各凸起结构401为长方体凸起,在其他的实施例中,各凸起结构401也可为其他形态的凸起结构,各凸起结构401的尺寸能使入射的光线发生衍射即可。在一实施例中,相邻凸起结构401的中心间距小于或等于10μm,即小于一般像素的开口宽度,即满足每个像素开口对应有至少一个凸起结构401对该像素光线进行偏转。
偏光膜200具有吸收轴和穿透轴,电场方向与穿透轴平行的偏振光能通过偏光膜200,即通过偏光膜200的线偏振光的电场方向与穿透轴平行。在本方案中,光学补偿膜400应为可透光的透明或半透明材料制成且具有光学补偿的功能,光学补偿具体可为相位补偿。在一实施例中,光学补偿膜400可为单光轴液晶薄膜,单光轴液晶薄膜内填充有液晶分子且各液晶分子的光轴平行,使液晶薄膜呈单光轴特性,液晶薄膜的光轴方向即为内部液晶分子的光轴方向,且单光轴液晶薄膜的光轴与偏光膜200的穿透轴垂直。由于液晶为双折射材料,通常,光线进入液晶时会折射成正常光和反常光两条光线,其中,正常光的折射率为正常折射率,反常光的折射率为反常折射率,反常折射方向为光电场方向与液晶光轴平行的方向,正常折射方向为光电场与液晶光轴垂直的方向,反常折射方向与正常折射方向垂直,即入射光的电场在液晶内被折射成与光轴平行的分量(反常折射)和与光轴垂直的分量(正常折射)。在本实施例中,透过偏光膜200的线偏振光的电场方向与偏光膜200的穿透轴平行,而由于光学补偿膜400的光轴与穿透轴垂直,即线偏振光的电场方向与光学补偿膜400的光轴垂直,线偏振光在光学补偿膜400内只发生正常折射,因此取液晶的正常折射率作为光学补偿膜400的第二折射率,该正常折射率小于支撑膜300的折射率。
在一实施例中,如图4a与图4b所示,光学补偿膜400为单光轴A-补偿膜,单光轴A-补偿膜内部可填充向列相液晶402,向列相液晶402为长条棒 状型液晶,向列相液晶402的光轴403与入光面平行且垂直于偏光膜200的穿透轴201,向列相液晶402的反常折射方向为光电场方向与向列相液晶402的光轴403平行的方向,即向列相液晶402反常折射的光电场方向与偏光膜200的穿透轴201垂直,对应的反常折射率为n1 e;向列相液晶402的正常折射方向为光电场方向与向列相液晶402的光轴403垂直的方向,即向列相液晶402的正常折射的光电场方向与偏光膜200的穿透轴201平行,对应的正常折射率为n1 o。通常情况下,透过偏光膜200的线偏振光进入光学补偿膜400时,线偏振光的电场会被折射为与光轴平行的分量(反常折射)和与光轴垂直的分量(正常折射)。在本实施例中,由于向列相液晶402的光轴403与偏光膜200的穿透轴201垂直,如入光面与图4b中的X方向和Y方向平行,向列相液晶的光轴403可处于图4b中的X方向,偏光膜200的穿透轴201处于图4b中的Y方向,在其他实施例中,向列相液晶的光轴403可处于图4b中的Y方向,偏光膜200的穿透轴201处于图4b中的X方向,满足光轴403平行于入光面且与穿透轴垂直即可。在本实施例中,透过偏光膜200的线偏振光的电场方向平行于Y方向,与向列相液晶的光轴403垂直,线偏振光入射至光学补偿膜400时,由于电场方向与光轴403垂直,在光学补偿膜400中只出现正常折射的分量,即只会在光学补偿膜400中发生正常折射现象,因此第二折射率为光学补偿膜400的正常折射率。
在一实施例中,如图5a和图5b所示,光学补偿膜400为单光轴C-补偿膜,单光轴C-补偿膜内部可填充碟状液晶404,碟状液晶404的光轴405与入光面垂直且垂直于偏光膜200的穿透轴201,碟状液晶404的反常折射方向为光电场方向与碟状液晶404的光轴405平行的方向,即碟状液晶404反常折射的光电场方向与偏光膜200的穿透轴201垂直,对应的反常折射率为n1 e;碟状液晶404的正常折射方向为光电场方向与碟状液晶404的光轴405垂直的方向,即碟状液晶404的正常折射的光电场方向与偏光膜200的穿透轴201平行,对应的正常折射率为n1 o,当n1 e<n1 o时,单光轴C-补偿膜为负型单光轴C-补偿膜,当n1 e>n1 o时,单光轴C-补偿膜为正型单光轴C-补 偿膜。在本实施例中,由于碟状液晶404的光轴405与偏光膜200的穿透轴201垂直,如碟状液晶的光轴405可处于图5b中的Z方向,偏光膜200的穿透轴201处于图5b中的Y方向,在其他实施例中,偏光膜200的穿透轴201可处于图4b中的XY平面的任意方向,满足光轴405与穿透轴201垂直即可。在本实施例中,透过偏光膜200的线偏振光的电场方向平行于Y方向,与碟状液晶404的光轴405垂直,线偏振光入射至光学补偿膜400时,由于电场方向与光轴403垂直,在光学补偿膜400中只出现正常折射的分量,即只会在光学补偿膜400中发生正常折射现象,因此第二折射率为光学补偿膜400的正常折射率,该正常折射率小于支撑膜300的折射率,在一实施例中,单光轴C-补偿膜为正型单光轴C-补偿膜。
为了减弱观看画面时显示面板对光的反射作用,通常在偏光结构的最顶层还覆盖一层抗反射薄膜,但是抗反射薄膜也具有一定的厚度,增加抗反射薄膜不利于产品的薄型化设计。在一实施例中,光学补偿膜400位于偏光结构的最顶层,如图4a和5a所示,光学补偿膜400内可掺杂具有抗炫功能的树酯颗粒406,在不增加偏光板厚度的情况下可减小显示面板光反射现象,提升用户体验,且有利于产品的薄型化设计。在一实施例中,偏光结构还包括叠设于相位补偿膜100入光面的压敏胶层,偏光结构通过压敏胶层可粘贴在玻璃基板上。
本申请还公开另一种偏光结构,结合图1和图3b所示,偏光结构包括依次叠设的相位补偿膜100、偏光膜200、支撑膜300和光学补偿膜400;其中,相位补偿膜100具有入光面100A和出光面100B;经过相位补偿后的光线经过偏光膜200;偏光膜200对入射光进行偏振处理,只有电场方向与偏光膜200的穿透轴平行的光线可穿透偏偏光膜200;支撑膜300背离偏光膜200的一面形成有多个凹槽301,支撑膜300具有第一折射率n1;在支撑膜300形成有凹槽的一面覆盖一层光学补偿膜400,光学补偿膜400上形成有多个与凹槽301形状和尺寸相匹配的凸起结构401,各凸起结构401呈二维矩阵阵列排列,且各凸起结构401的长度和宽度均小于或接近入射光的波长,各凸 起结构401401可刚好嵌入相应凹槽301内,光学补偿膜400具有第二折射率n2,第一折射率n1大于第二折射率n2;光学补偿膜400位于偏光结构的顶层且光学补偿膜400内掺杂有抗炫功能的树酯颗粒。由于支撑膜300具有第一折射率n1,光学补偿膜400具有第二折射率n2,第一折射率n1大于第二折射率n2,当光穿透支撑膜300进入光学补偿膜400时,是从光密质进入光疏质的过程,又由于各凸起结构401的宽度小于或接近入射光的波长,当入射光传播至该凸起结构401处时,由于各凸起结构401的宽度小于或接近波长,该凸起结构401相当于一光栅,光线在该凸起结构401处可发生衍射,使光线发生偏转,从而使正视角光型能量分配到大视角,提高侧视角的画质。同时,由于各凸起结构401呈二维矩阵阵列排列,使得光线在二维平面内的各个角度发生衍射,使得二维平面内的各个侧视角的画质均得到提升。由于光学补偿膜400位于偏光结构的顶层且光学补偿膜400内掺杂有抗炫功能的树酯颗粒,可以在不增加偏光板厚度的情况下可减小显示面板光反射现象。
本申请还公开一种显示装置,如图6所示,包括背光模组2以及置于背光模组2一侧的显示面板1,显示面板1设置为显示画面,其中,显示面板1包含上文介绍的偏光结构。背光模组2设置为提供光源,光源生成入射光,该入射光集中入射至显示面板1,入射光的发散方向与垂直于显示面板1的方向呈小角度,该小角度θ可小于30°。显示面板1接收到的大部分光为垂直入射光,由于显示面板1内存在支撑膜300和光学补偿膜400且光学补偿膜400与支撑膜300的接触面形成有凸起结构401,在凸各起结构401处通过衍射可以将垂直入射光进行偏转,从而将正视角能量分配到侧视角,提高侧视角的画质。显示面板1中的偏光板的结构已在上文介绍,此处不再赘述。其中,背光模组20中光源包括侧入式光源2A和与侧入式光源2A相对的导光板2B,导光板2B的上下表面均设有长条V型槽,导光板下表面V型槽的侧壁与侧入式光源平行,导光板上表面的V型槽的长度方向与下表面的V型槽的长度方向相互垂直。
在一实施例中,如图7所示,显示面板可为液晶显示面板,该液晶显示 面板包含上偏光板10、下偏光板30以及夹设在上偏光板和下偏光板之间的液晶层20,液晶层20包括基板和夹设于基板之间的液晶分子。入射光经过下偏光板后变为线偏振光,液晶层20可扭转线偏振光的偏振方向,使线偏振光从上偏光板中通过,从而在显示面板上显示画面。其他实施例中,显示面板也可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板、量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)显示面板或者曲面显示面板,以及包含上述偏光结构的其他显示面板。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种偏光结构,包括:
    相位补偿膜,具有入光面和与所述入光面相对的出光面;
    偏光膜,设于所述相位补偿膜的所述出光面上;
    支撑膜,设于所述偏光膜上,所述支撑膜具有第一折射率,所述支撑膜背离所述偏光膜的一面形成有多个凹槽;以及
    光学补偿膜,形成有多个与所述凹槽形状和尺寸相匹配的凸起结构,各所述凸起结构的宽度小于或接近入射光的波长,所述光学补偿膜贴合于所述支撑膜上,且各所述凸起结构容纳于相应所述凹槽内,所述光学补偿膜具有第二折射率,所述第一折射率大于所述第二折射率。
  2. 如权利要求1所述的偏光结构,其中,各所述凸起结构的宽度大于或等于300nm,且小于或等于1000nm。
  3. 如权利要求1所述的偏光结构,其中,各所述凸起结构为长条形凸起结构,且所述长条形凸起结构并排设置。
  4. 如权利要求1所述的偏光结构,其中,各所述凸起结构呈二维矩阵阵列排列,且各所述凸起结构的长度和宽度均小于或接近入射光的波长。
  5. 如权利要求1所述的偏光结构,其中,所述偏光膜具有穿透轴,所述光学补偿膜为单光轴液晶薄膜,所述液晶薄膜的光轴与所述穿透轴垂直,所述第二折射率为所述液晶薄膜的正常折射率。
  6. 如权利要求5所述的偏光结构,其中,所述单光轴液晶薄膜为单光轴A-补偿膜,所述单光轴A-补偿膜内填充有向列相液晶,所述向列相液晶的光轴平行于所述入光面且垂直于所述穿透轴,所述第二折射率为所述A-补偿膜的正常折射率。
  7. 如权利要求5所述的偏光结构,其中,所述单光轴液晶薄膜为单光轴C-补偿膜,所述单光轴C-补偿膜内填充有碟状液晶,所述碟状液晶的光轴垂直于所述入光面且垂直于所述穿透轴,所述第二折射率为所述C-补偿膜的正 常折射率。
  8. 如权利要求1所述的偏光结构,其中,所述光学补偿膜位于所述偏光结构的顶层且所述光学补偿膜内掺杂有抗炫功能的树酯颗粒。
  9. 如权利要求1所述的偏光结构,其中,所述支撑膜包括三醋酸纤维素支撑膜。
  10. 如权利要求1所述的偏光结构,其中,所述支撑膜包括聚对苯二甲酸乙二醇酯支撑膜。
  11. 如权利要求1所述的偏光结构,其中,所述支撑膜包括聚甲基丙烯酸甲酯支撑膜。
  12. 如权利要求1所述的偏光结构,其中,所述偏光膜包括聚乙烯醇膜。
  13. 如权利要求1所述的偏光结构,其中,相邻所述凸起结构的中心间距小于或等于10μm。
  14. 如权利要求1所述的偏光结构,其中,所述第一折射率大于1.0且小于2.5。
  15. 如权利要求1所述的偏光结构,其中,所述第二折射率大于1.0且小于2.5。
  16. 如权利要求1所述的偏光结构,其中,所述第一折射率与第二折射率的差值大于0.01且小于1.5。
  17. 一种偏光结构,包括:
    相位补偿膜,具有入光面和与所述入光面相对的出光面;
    偏光膜,设于所述相位补偿膜的所述出光面上;
    支撑膜,设于所述偏光膜上,所述支撑膜具有第一折射率,所述支撑膜背离所述偏光膜的一面形成有多个凹槽;以及
    光学补偿膜,形成有多个与所述凹槽形状和尺寸相匹配的凸起结构,各所述凸起结构呈二维矩阵阵列排列,且各所述凸起结构的长度和宽度均小于或接近入射光的波长,所述光学补偿膜贴合于所述支撑膜上,且各所述凸起结构容纳于相应所述凹槽内,所述光学补偿膜具有第二折射率,所述第一折射率大于所述第二折射率,所述光学补偿膜位于所述偏光结构的顶层且所述光学补偿膜内掺杂有抗炫功能的树酯颗粒。
  18. 一种显示装置,包括:
    背光模组,设置为提供光源;以及
    显示面板,置于所述背光模组一侧,设置为显示画面;
    其中,所述显示面板包含偏光结构,所述偏光结构包括:
    相位补偿膜,具有入光面和与所述入光面相对的出光面;
    偏光膜,设于所述相位补偿膜的所述出光面上;
    支撑膜,设于所述偏光膜上,所述支撑膜具有第一折射率,所述支撑膜背离所述偏光膜的一面形成有多个凹槽;以及
    光学补偿膜,形成有多个与所述凹槽形状和尺寸相匹配的凸起结构,各所述凸起结构的宽度小于或接近入射光的波长,所述光学补偿膜贴合于所述支撑膜上,且各所述凸起结构容纳于相应所述凹槽内,所述光学补偿膜具有第二折射率,所述第一折射率大于所述第二折射率。
  19. 如权利要求18所述的显示装置,其中,所述显示面板为液晶显示面板。
  20. 如权利要求18所述的显示装置,其中,所述背光模组产生的入射光的发散方向与垂直于所述显示面板的方向的夹角小于30°。
PCT/CN2018/119296 2018-09-30 2018-12-05 偏光结构及显示装置 WO2020062569A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811163320.3A CN109164532A (zh) 2018-09-30 2018-09-30 偏光结构及显示装置
CN201811163320.3 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020062569A1 true WO2020062569A1 (zh) 2020-04-02

Family

ID=64877295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119296 WO2020062569A1 (zh) 2018-09-30 2018-12-05 偏光结构及显示装置

Country Status (2)

Country Link
CN (1) CN109164532A (zh)
WO (1) WO2020062569A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630884B (zh) * 2020-12-22 2023-09-08 联合微电子中心有限责任公司 用于光学相控阵的波导光栅天线阵列及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158778A (zh) * 2007-11-14 2008-04-09 友达光电(苏州)有限公司 广视角膜与应用该广视角膜的液晶显示装置
CN201314990Y (zh) * 2008-12-19 2009-09-23 上海纽发利商贸有限公司 广视角镜片及利用广视角镜片的偏光板和液晶显示装置
JP2013205752A (ja) * 2012-03-29 2013-10-07 Dainippon Printing Co Ltd 光拡散フィルム、偏光板、及び液晶表示装置
CN104808278A (zh) * 2015-05-18 2015-07-29 京东方科技集团股份有限公司 偏光片及其制作方法以及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258772A (ja) * 1999-03-10 2000-09-22 Nippon Mitsubishi Oil Corp 液晶表示装置
KR100682230B1 (ko) * 2004-11-12 2007-02-12 주식회사 엘지화학 수직 배향 액정표시장치
US20070195251A1 (en) * 2006-02-22 2007-08-23 Toppoly Optoelectronics Corp. Systems for displaying images involving alignment liquid crystal displays
CN105629563B (zh) * 2011-01-21 2019-01-18 群创光电股份有限公司 背光模块与液晶显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158778A (zh) * 2007-11-14 2008-04-09 友达光电(苏州)有限公司 广视角膜与应用该广视角膜的液晶显示装置
CN201314990Y (zh) * 2008-12-19 2009-09-23 上海纽发利商贸有限公司 广视角镜片及利用广视角镜片的偏光板和液晶显示装置
JP2013205752A (ja) * 2012-03-29 2013-10-07 Dainippon Printing Co Ltd 光拡散フィルム、偏光板、及び液晶表示装置
CN104808278A (zh) * 2015-05-18 2015-07-29 京东方科技集团股份有限公司 偏光片及其制作方法以及显示装置

Also Published As

Publication number Publication date
CN109164532A (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
US9261731B2 (en) Liquid crystal display apparatus
WO2020062584A1 (zh) 偏光结构及显示装置
US9261640B2 (en) Liquid crystal display apparatus
WO2020062563A1 (zh) 偏光结构及显示装置
US11209694B2 (en) Polarizing structure and display device
WO2020062593A1 (zh) 偏光结构及显示装置
WO2020062565A1 (zh) 偏光结构及显示装置
WO2020062559A1 (zh) 偏光结构及显示装置
WO2020062591A1 (zh) 偏光板及显示装置
WO2020062558A1 (zh) 偏光结构及显示装置
WO2020062587A1 (zh) 偏光板及显示装置
WO2020062577A1 (zh) 偏光片和显示装置
US9638955B2 (en) Liquid crystal display device and polarizing plate with a condensing element
WO2020062578A1 (zh) 偏光结构及显示装置
US20180067360A1 (en) Optical member
WO2020062568A1 (zh) 偏光结构及显示装置
WO2020062561A1 (zh) 偏光结构及显示装置
WO2020062592A1 (zh) 偏光板及显示装置
WO2020062560A1 (zh) 偏光结构及显示装置
WO2020062588A1 (zh) 偏光板及显示装置
WO2020062569A1 (zh) 偏光结构及显示装置
WO2020062562A1 (zh) 偏光结构及显示装置
WO2020062594A1 (zh) 偏光板及显示装置
JP7361683B2 (ja) 液晶表示装置
JP2003270445A (ja) 導光板、液晶表示装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18935520

Country of ref document: EP

Kind code of ref document: A1