WO2020062157A1 - 一种可折叠触控模组、触摸屏及终端设备 - Google Patents

一种可折叠触控模组、触摸屏及终端设备 Download PDF

Info

Publication number
WO2020062157A1
WO2020062157A1 PCT/CN2018/108705 CN2018108705W WO2020062157A1 WO 2020062157 A1 WO2020062157 A1 WO 2020062157A1 CN 2018108705 W CN2018108705 W CN 2018108705W WO 2020062157 A1 WO2020062157 A1 WO 2020062157A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
transparent conductive
pattern
touch module
transparent
Prior art date
Application number
PCT/CN2018/108705
Other languages
English (en)
French (fr)
Inventor
曾西平
林仪珊
李晓明
Original Assignee
深圳市华科创智技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华科创智技术有限公司 filed Critical 深圳市华科创智技术有限公司
Publication of WO2020062157A1 publication Critical patent/WO2020062157A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to the technical field of touch screens, and in particular, to a foldable touch module, a touch screen, and a terminal device.
  • ITO Indium tin oxide
  • ITO has the brittleness of ceramics. When the strain is 3%, ITO will crack and break, and its electrical conductivity will drop sharply or even break, so it cannot meet the development of wearable devices, flexible electronic devices, foldable smartphones, etc demand.
  • silver nanowires are considered to have the most potential to replace ITO as the core material of next-generation touch technology due to their good conductivity and bendability.
  • a silver nanowire is usually coated on a substrate such as transparent PET (poly (ethylene terephthalate)) or glass to form a transparent conductive film.
  • PET substrates are obtained by transesterification of dimethyl terephthalate with ethylene glycol or by esterification of terephthalic acid with ethylene glycol, followed by polycondensation.
  • Is a crystalline saturated polyester is a milky white or light yellow, highly crystalline polymer. After repeated bending, it is easy to break, and it cannot meet the requirements of folding touch.
  • Patent Publication No. CN102999217A discloses a frameless touch screen.
  • the original vertical and horizontal staggered transmitting electrode lines and receiving electrode lines of the touch screen are changed to be diagonally staggered.
  • the wires are drawn from the upper and lower sides of the effective detection area of the touch screen, and there is no need to occupy space for wiring on the left and right sides of the effective detection area of the touch screen, thereby achieving no borders on the left and right sides of the touch screen.
  • the design of no wiring on the left and right sides cannot meet the bending effect required by a foldable touch screen.
  • the present invention provides a foldable touch module, a touch screen and a terminal device using the foldable touch module, and discloses a material and a wiring method capable of achieving multiple bending of the foldable touch screen.
  • a foldable touch module includes a first transparent conductive film and a second transparent conductive film with two layers above and below, and a transparent and bendable optical adhesive in the middle.
  • the first transparent conductive film and the second transparent conductive film are Silver nanowires are coated on a transparent polyimide film.
  • a first pattern is obtained by laser etching on a first transparent conductive film, and a second pattern is obtained by laser etching on a second transparent conductive film; the first transparent conductive Bending regions are provided at corresponding positions of the film and the second transparent conductive film, and the first pattern and the second pattern in the bending region are respectively drawn from the upper and lower edges of the first transparent conductive film and the second transparent conductive film.
  • first pattern on the first transparent conductive film is drawn from the upper and lower edges of the first transparent conductive film; the second pattern on the second transparent conductive film is drawn from the upper and lower edges of the second transparent conductive film.
  • first pattern and the second pattern are diagonally arranged.
  • an included angle between the first pattern and the upper and lower edges of the first transparent conductive film is 5-85 °; an included angle between the second pattern and the upper and lower edges of the second transparent conductive film is 5-85 °. .
  • the angle between the first pattern and the upper and lower edges of the first transparent conductive film is 18-72 °; the angle between the second pattern and the upper and lower edges of the second transparent conductive film is 18-72 °.
  • the direction of the first pattern is parallel to the diagonal direction of the first transparent conductive film; the direction of the second pattern is parallel to the diagonal direction of the second transparent conductive film.
  • the lead wires drawn from the upper and lower edges of the first transparent conductive film and the second transparent conductive film are connected to the touch chip using a Flexible Printed Circuit (FPC) link, respectively.
  • FPC Flexible Printed Circuit
  • the thickness of the polyimide film in the first transparent conductive film is 30-80 ⁇ m; the thickness of the polyimide film in the second transparent conductive film is 10-30 ⁇ m; the first transparent conductive film and the second transparent film
  • the thickness of the silver nanowires in the conductive film is 50-200nm; the thickness of the optical glue is 30-100 ⁇ m.
  • the present invention also provides a touch screen.
  • the touch screen includes the above-mentioned foldable touch module and a display panel which is stacked with the foldable touch module.
  • the present invention also provides a terminal device, which includes the touch screen described above.
  • the foldable touch module of the present invention applies a silver nanowire having good conductivity and bendability to a polyimide film having high hardness and excellent flexibility to make a transparent conductive film, and
  • the pattern is obtained by laser etching; the first transparent conductive film and the second transparent conductive film of the upper and lower layers are bonded by a bendable optical adhesive; and the first pattern and the second pattern located at the bending area are respectively separated from the first transparent conductive film Lead lines on the upper and lower edges of the second transparent conductive film, so that no conductive silver paste traces need to be printed on the left and right sides of the bending area, which can effectively prevent the wire from breaking or falling off during the bending process, making the touch module excellent.
  • the bending performance can achieve more than 200,000 bendings, meeting the needs of foldable smartphones and flexible electronic devices.
  • FIG. 1 is a schematic structural diagram of a foldable touch module according to the present invention.
  • FIG. 2 is a plan view of a first embodiment of a foldable touch module according to the present invention.
  • FIG. 3 is a top view of a second embodiment of a foldable touch module according to the present invention.
  • FIG. 4 is a top view of a third embodiment of the foldable touch module of the present invention.
  • 1-first transparent conductive film 2-second transparent conductive film, 3-optical glue, 4-silver nanowire, 5-polyimide film, 6-bend area.
  • a foldable touch module includes a first transparent conductive film 1 and a second transparent conductive film 2 on the upper and lower layers, and a transparent and bendable optical adhesive 3 in the middle;
  • a transparent conductive film 1 and a second transparent conductive film 2 are made by coating silver nanowires 4 on a transparent polyimide film 5.
  • the first transparent conductive film 1 is laser-etched to obtain a first pattern.
  • a second pattern is obtained on the two transparent conductive films 2 by laser etching.
  • Corresponding positions of the first transparent conductive film 1 and the second transparent conductive film 2 are provided with a bending region 6, and the first pattern and the second pattern in the bending region 6 are provided.
  • the patterns are drawn from the upper and lower edges of the first transparent conductive film 1 and the second transparent conductive film 2, respectively.
  • Polyimide is one of the organic polymer materials with the best comprehensive performance. It is resistant to high temperature and can be used for a long time in the temperature range -200 °C ⁇ 300 °C. It has no obvious melting point and has high insulation performance.
  • a colorless transparent polyimide PI, Polyimide
  • PI has high hardness and excellent flexibility.
  • Silver nanowires have good electrical conductivity and bendability.
  • Silver nanowire films are transparent conductive films with low resistance, good light transmission, good bendability, and bendability. Compared with indium tin oxide, they are more flexible. good. Therefore, the silver nanowires having good conductivity and bendability are coated on a polyimide substrate having high hardness and excellent flexibility, so that the touch module can obtain excellent bendability.
  • a protective layer is also coated on the surface of the conductive layer to protect the transparent conductive film. Effect to make its conductive performance more stable.
  • touch driving electrodes and touch sensing electrodes that are arranged alternately horizontally and vertically, and have lead wires on the left and right sides of the conductive film.
  • Silver paste or copper plating is required to achieve frame routing. . This wiring method is prone to break or fall off after repeated bending.
  • a silver nanowire having good conductivity and bendability is coated on a polyimide film having high hardness and excellent flexibility to form a transparent conductive film, and a pattern is obtained by laser etching.
  • the first pattern and the second pattern located in the bending area are respectively drawn from the upper and lower edges of the first transparent conductive film and the second transparent conductive film, so that there is no need to print conductive silver paste wiring on the left and right sides of the bending area, which can effectively prevent During the bending process, the wire material breaks or falls off, which makes the touch module have excellent bendability.
  • the parallel line structures shown in FIGS. 2 to 4 are a first pattern and a second pattern viewed at a macro angle; at a micro angle, the first pattern and the second pattern are silver nanowires randomly on the conductive film
  • the granular structure is distributed and shattered by laser etching.
  • the granular silver nanowires are not connected to form an open circuit. Signals are generated after touch to determine the contact position, and then the detection of each position on the entire touch screen is achieved.
  • the bending area 6 has no conductive silver paste, and the wiring directly from the upper and lower edges of the conductive film can make the edges of the bending area and the There is no other wiring in the vertical direction, which can prevent the wire from breaking or falling off during the bending process, which is beneficial to improve the bending ability of the touch module.
  • the first pattern on the first transparent conductive film 1 is drawn from the upper and lower edges of the first transparent conductive film 1; the second pattern on the second transparent conductive film 2 is from the second transparent conductive film
  • the upper and lower edges of 2 lead out. That is, based on the routing of the bending area from the upper and lower edges of the conductive film, the pattern in the entire conductive film area is routed from the upper and lower edges, which further improves the overall bending performance of the touch module and reduces the touch screen.
  • the occupied area of the frame is conducive to achieving a comprehensive screen structure.
  • the first pattern and the second pattern are diagonally arranged.
  • Conventional touch screens transmit signals through the vertical transmitting electrodes and horizontal receiving electrodes.
  • the transmitting and receiving channels are arranged horizontally and vertically. This makes it necessary to set conductive silver paste around the edges of the conductive film to connect the channels.
  • the conductive silver paste on the left and right sides, especially the conductive silver paste on both sides of the bending area, will seriously affect the folding effect of the touch module.
  • the first pattern and the second pattern are diagonally arranged to facilitate direct extraction from the upper and lower edges, eliminating the need to apply silver paste on both sides of the conductive film for conductive communication, so that the left and right edges of the transparent conductive film and the There are no other wires in the vertical direction, which can effectively prevent the wire from breaking or falling off during the bending process.
  • the angle between the first pattern and the upper and lower edges of the first transparent conductive film is 5-85 °; the angle between the second pattern and the upper and lower edges of the second transparent conductive film is 5-85 °.
  • the angle between the pattern and the upper and lower edges of the transparent conductive film is 18-72 °, and may be 18 °, 30 °, 40 °, 45 °, 50 °, 60 °, 72 °.
  • the direction of the first pattern is parallel to the diagonal direction of the first transparent conductive film; the direction of the second pattern is parallel to the diagonal direction of the second transparent conductive film.
  • angle and parallelism mentioned above are the relationship between the pattern and the conductive film as viewed from a macro perspective, and each pattern has an irregular structure from a micro perspective.
  • the lead-out lines drawn from the upper and lower edges of the first transparent conductive film and the second transparent conductive film are connected to the touch chip using FPC (Flexible Printed Circuit) links, respectively.
  • FPC Flexible Printed Circuit
  • the thickness of the polyimide film in the first transparent conductive film is 30-80 ⁇ m; the thickness of the polyimide film in the second transparent conductive film is 10-30 ⁇ m; the first transparent conductive film and the second transparent
  • the thickness of the silver nanowires in the conductive film is 50-200nm; the thickness of the optical glue is 30-100 ⁇ m.
  • the present invention also provides a touch screen.
  • the touch screen includes the above-mentioned foldable touch module and a display panel which is stacked with the foldable touch module.
  • the present invention also provides a terminal device, which includes the touch screen described above.
  • the terminal device is a mobile phone, a computer, a television, or the like.
  • a foldable touch module as shown in FIG. 2, includes a first transparent conductive film and a second transparent conductive film of upper and lower layers, and a transparent and bendable optical adhesive in the middle; the first transparent conductive film and the first
  • the two transparent conductive films are made by coating silver nanowires and a protective layer on a transparent polyimide film.
  • a first pattern is obtained by laser etching on the first transparent conductive film, and a laser etching is performed on the second transparent conductive film.
  • a second pattern is obtained; the first pattern and the second pattern are diagonally arranged, the angle between the first pattern and the upper and lower edges of the first transparent conductive film is 45 °, and the angle between the second pattern and the upper and lower edges of the second transparent conductive film The angle is 45 °; bending areas are provided at the corresponding positions of the first transparent conductive film and the second transparent conductive film, and the first pattern and the second pattern in the bending area are respectively from the first transparent conductive film and the second transparent conductive film.
  • the upper and lower edges of the film are led out, and the first and second patterns in the non-bent area are led to the upper and lower edges by conductive silver paste coated on both sides of the transparent conductive film; the lead-out wires are connected by FPC and the touch chip, respectively Connected.
  • a foldable touch module as shown in FIG. 3, includes a first transparent conductive film and a second transparent conductive film of upper and lower layers, and a transparent and bendable optical adhesive in the middle; the first transparent conductive film and the first
  • the two transparent conductive films are made by coating silver nanowires and a protective layer on a transparent polyimide film.
  • a first pattern is obtained by laser etching on the first transparent conductive film, and a laser etching is performed on the second transparent conductive film.
  • a second pattern is obtained; the first pattern and the second pattern are diagonally arranged, the direction of the first pattern is parallel to the diagonal direction of the first transparent conductive film, and the direction of the second pattern is parallel to the diagonal of the second transparent conductive film Line direction; the first pattern and the second pattern are respectively led out from the upper and lower edges of the first transparent conductive film and the second transparent conductive film; and the lead-out lines are connected to the touch chip by an FPC link, respectively.
  • a foldable touch module as shown in FIG. 4, includes a first transparent conductive film and a second transparent conductive film of upper and lower layers, and a transparent and bendable optical adhesive in the middle; the first transparent conductive film and the first
  • the two transparent conductive films are made by coating silver nanowires and a protective layer on a transparent polyimide film.
  • a first pattern is obtained by laser etching on the first transparent conductive film, and a laser etching is performed on the second transparent conductive film.
  • a second pattern is obtained; the first pattern and the second pattern are diagonally arranged, the angle between the first pattern and the upper and lower edges of the first transparent conductive film is 18 °, and the angle between the second pattern and the upper and lower edges of the second transparent conductive film The angle is 18 °; the first pattern and the second pattern are led from the upper and lower edges of the first transparent conductive film and the second transparent conductive film, respectively; the lead-out lines are connected to the touch chip by FPC links, respectively.
  • a foldable touch module includes a first transparent conductive film and a second transparent conductive film with two layers above and below, and a transparent and bendable optical adhesive in the middle.
  • the first transparent conductive film and the second transparent conductive film are The silver nanowire and the protective layer are coated on a transparent polyimide film, a first pattern is obtained by laser etching on the first transparent conductive film, and a second pattern is obtained by laser etching on the second transparent conductive film;
  • a pattern and a second pattern are diagonally arranged, and the angle between the first pattern and the upper and lower edges of the first transparent conductive film is 72 °, and the angle between the second pattern and the upper and lower edges of the second transparent conductive film is 72 °;
  • a pattern and a second pattern are respectively led out from the upper and lower edges of the first transparent conductive film and the second transparent conductive film; the lead-out lines are respectively connected with the FPC link and the touch chip.
  • a foldable touch module includes a first transparent conductive film and a second transparent conductive film with two layers above and below, and a transparent and bendable optical adhesive in the middle.
  • the first transparent conductive film and the second transparent conductive film are The silver nanowire and the protective layer are coated on a transparent polyimide film, a first pattern is obtained by laser etching on the first transparent conductive film, and a second pattern is obtained by laser etching on the second transparent conductive film;
  • a pattern and a second pattern are diagonally arranged, and the angle between the first pattern and the upper and lower edges of the first transparent conductive film is 5 °, and the angle between the second pattern and the upper and lower edges of the second transparent conductive film is 5 °;
  • a pattern and a second pattern are respectively led out from the upper and lower edges of the first transparent conductive film and the second transparent conductive film; the lead-out lines are respectively connected with the FPC link and the touch chip.
  • a foldable touch module includes a first transparent conductive film and a second transparent conductive film with two layers above and below, and a transparent and bendable optical adhesive in the middle.
  • the first transparent conductive film and the second transparent conductive film are The silver nanowire and the protective layer are coated on a transparent polyimide film, a first pattern is obtained by laser etching on the first transparent conductive film, and a second pattern is obtained by laser etching on the second transparent conductive film;
  • a pattern and a second pattern are diagonally arranged, and the angle between the first pattern and the upper and lower edges of the first transparent conductive film is 85 °, and the angle between the second pattern and the upper and lower edges of the second transparent conductive film is 85 °;
  • a pattern and a second pattern are respectively led out from the upper and lower edges of the first transparent conductive film and the second transparent conductive film; the lead-out lines are respectively connected with the FPC link and the touch chip.
  • a foldable touch module includes a first transparent conductive film and a second transparent conductive film with two layers above and below, and a transparent and bendable optical adhesive in the middle.
  • the first transparent conductive film and the second transparent conductive film are The silver nanowire and the protective layer are coated on a transparent polyimide film, a first pattern is obtained by laser etching on the first transparent conductive film, and a second pattern is obtained by laser etching on the second transparent conductive film;
  • a pattern and a second pattern are diagonally arranged, and the angle between the first pattern and the upper and lower edges of the first transparent conductive film is 26.6 °, and the angle between the second pattern and the upper and lower edges of the second transparent conductive film is 26.6 °;
  • a pattern and a second pattern are respectively led out from the upper and lower edges of the first transparent conductive film and the second transparent conductive film; the lead-out lines are respectively connected with the FPC link and the touch chip.
  • a touch module includes a first transparent conductive film and a second transparent conductive film, and a transparent flexible optical adhesive in the middle.
  • the first transparent conductive film and the second transparent conductive film are made of indium oxide.
  • Tin and a protective layer are coated on a transparent PET (poly (ethylene terephthalate)) film.
  • a first pattern is obtained by laser etching on a first transparent conductive film, and a second pattern is obtained by laser etching on a second transparent conductive film.
  • the first pattern and the second pattern are staggered horizontally and vertically, and conductive silver paste leads are coated around the edges of the transparent conductive film, and the lead-out wires are connected with the FPC link and the touch chip, respectively.
  • a touch module includes a first transparent conductive film and a second transparent conductive film, and a transparent flexible optical adhesive in the middle.
  • the first transparent conductive film and the second transparent conductive film are made of indium oxide.
  • Tin and a protective layer are coated on a transparent polyimide film, a first pattern is obtained by laser etching on a first transparent conductive film, and a second pattern is obtained by laser etching on a second transparent conductive film; the first pattern
  • the second pattern and the second pattern are arranged alternately horizontally and vertically, and conductive silver paste leads are coated on the edges of the transparent conductive film, and the lead-out wires are connected to the touch chip by FPC links.
  • a touch module includes a first transparent conductive film and a second transparent conductive film, and a transparent flexible optical adhesive in the middle.
  • the first transparent conductive film and the second transparent conductive film are made of indium oxide.
  • Tin and a protective layer are coated on a transparent PET film, a first pattern is obtained by laser etching on a first transparent conductive film, and a second pattern is obtained by laser etching on a second transparent conductive film; the first pattern and the second The patterns are diagonally arranged, and the angle between the first pattern and the upper and lower edges of the first transparent conductive film is 26.6 °, and the angle between the second pattern and the upper and lower edges of the second transparent conductive film is 26.6 °; the first pattern and the second The patterns are respectively drawn from the upper and lower edge traces of the first transparent conductive film and the second transparent conductive film; the lead-out lines are connected to the touch chip by FPC links, respectively.
  • a touch module includes a first transparent conductive film and a second transparent conductive film, and a transparent flexible optical adhesive in the middle.
  • the first transparent conductive film and the second transparent conductive film are made of indium oxide.
  • Tin and a protective layer are coated on a transparent polyimide film, a first pattern is obtained by laser etching on a first transparent conductive film, and a second pattern is obtained by laser etching on a second transparent conductive film; the first pattern And the second pattern are diagonally arranged, the angle between the first pattern and the upper and lower edges of the first transparent conductive film is 26.6 °, and the angle between the second pattern and the upper and lower edges of the second transparent conductive film is 26.6 °; the first pattern And the second pattern are respectively drawn from the upper and lower edges of the first transparent conductive film and the second transparent conductive film;
  • a touch module includes a first transparent conductive film, a second transparent conductive film, and a transparent flexible optical adhesive in the middle.
  • the first transparent conductive film and the second transparent conductive film are made of silver nanometers.
  • the wire and the protective layer are made by coating on a transparent PET film.
  • a first pattern is obtained by laser etching on the first transparent conductive film, and a second pattern is obtained by laser etching on the second transparent conductive film; the first pattern and the second The pattern is arranged staggered horizontally and vertically, and conductive silver paste leads are coated on the edges of the transparent conductive film, and the lead-out wires are connected by FPC links and touch chips, respectively.
  • a touch module includes a first transparent conductive film, a second transparent conductive film, and a transparent flexible optical adhesive in the middle.
  • the first transparent conductive film and the second transparent conductive film are made of silver nanometers.
  • the wire and the protective layer are coated on a transparent polyimide film.
  • a first pattern is obtained by laser etching on the first transparent conductive film, and a second pattern is obtained by laser etching on the second transparent conductive film.
  • the first pattern The second pattern and the second pattern are arranged alternately horizontally and vertically, and conductive silver paste leads are coated on the edges of the transparent conductive film, and the lead-out wires are connected to the touch chip by FPC links.
  • a touch module includes a first transparent conductive film, a second transparent conductive film, and a transparent flexible optical adhesive in the middle.
  • the first transparent conductive film and the second transparent conductive film are made of silver nanometers.
  • the wire and the protective layer are made by coating on a transparent PET film.
  • a first pattern is obtained by laser etching on the first transparent conductive film, and a second pattern is obtained by laser etching on the second transparent conductive film;
  • the first pattern and the second The patterns are diagonally arranged, and the angle between the first pattern and the upper and lower edges of the first transparent conductive film is 26.6 °, and the angle between the second pattern and the upper and lower edges of the second transparent conductive film is 26.6 °;
  • the first pattern and the second The patterns are respectively drawn from the upper and lower edge traces of the first transparent conductive film and the second transparent conductive film; the lead-out lines are connected to the touch chip by FPC links, respectively.
  • the repeater bending machine model XHS-ZW-03A produced by Shenzhen Xinhengsen Instrument Equipment Co., Ltd. was used to test the touch module manufactured in each embodiment and comparative example.
  • the test conditions were: One end of the group is clamped by a splint. One end of the splint is a half-rounded corner with a radius of 1mm, and the other end is clamped on the crank shaft.
  • the module is repeatedly bent by the motor, and the bending frequency is once per second. Record the number of bending times and the resistance change rate of different modules. The results are shown in Table 1.
  • the embodiment 1-7 of the present invention As can be seen from Table 1, with the increase of the number of windings, in the embodiment 1-7 of the present invention, silver nanowires were coated on the polyimide film and the way of routing from the upper and lower edges of the conductive film was achieved in the bending area.
  • the obtained touch module has the smallest resistance change rate during the continuous bending process, and the resistance change rate is less than 15% after being subjected to nearly 200,000 bending times, and has excellent bendability and foldability.
  • the touch module made of a single polyimide substrate or silver nanowire electrode wire and the touch module obtained by changing the wiring method to achieve a cross-layout are relatively poor. Therefore, the foldable touch module manufactured by the embodiments of the present invention can be widely used in the fields of foldable touch screens, flexible electronic devices, wearable devices and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Manufacture Of Switches (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

触摸屏技术领域的一种可折叠触控模组、触摸屏及终端设备。现有的触控模组经多次弯折,易出现断裂或脱离现象,难以应用于可折叠手机等设备上,因此提供一种可折叠触控模组,包括上下两层图案化的透明导电膜(1)、(2),以及中间的透明可弯折的光学胶(3);导电膜(1)、(2)是将银纳米线(4)涂布在聚酰亚胺薄膜(5)上制成的,图案通过激光蚀刻得到;在导电膜(1)、(2)上设有弯折区域(6),弯折区域(6)内的图案从透明导电膜(1)、(2)的上下边缘走线引出。将具有良好导电性和可弯折性的银纳米线(4)涂布在具有高硬度和极佳柔韧性的聚酰亚胺薄膜(5)上制成透明导电膜(1)、(2),弯折区域(6)左右两侧无需印刷导电银浆走线,可有效防止弯折过程中出现线材断裂或者脱落等现象,使得该触控模组具有优异的可弯折性能。

Description

一种可折叠触控模组、触摸屏及终端设备
本公开基于申请号为201811123274.4,申请日为2018年9月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及触摸屏技术领域,尤其涉及一种可折叠触控模组、触摸屏及终端设备。
背景技术
目前,电容触摸屏是人机交互的主要方式,去年的全球出货量已经大于30亿件。氧化铟锡(ITO,Indium tin oxide)是电容触摸屏的主要材料。不过,制备ITO薄膜的磁控溅射工艺,需要高温、高真空,原料的利用率低,且耗时耗能;再加上其核心材料-铟是稀有元素,使得ITO薄膜的价格不断增长。另外,ITO具有陶瓷的脆性,在应变为3%时,ITO就会开裂和破碎,其导电性会急剧下降甚至断开,因而无法满足可穿戴设备、柔性电子器件、可折叠智能手机等的发展需求。
近年来,银纳米线由于具有良好的导电性和可弯折性,被认为是最具有潜力替代ITO成为下一代触控技术的核心材料。现有技术中,多通过将银纳米线涂布在透明PET(poly(ethylene terephthalate))或者玻璃等基材上形成透明导电薄膜。常用的PET基材,是对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,属于结晶型饱和聚酯,为乳白色或浅黄色、高度结晶的聚合物。经多次弯折后,容易出现断裂,无法满足需要折叠触控的要求。
从走线角度,现有触控传感器需要四周刷银浆或者镀铜后蚀刻实现边框走线,但这种走线方式经过多次反复弯折后,容易出现断裂或者脱落,难以应用于未来可折叠手机等设备上。公开号为CN102999217A的专利公开了一种无边 框触摸屏,将触摸屏原来纵向和横向交错布置的发射电极线和接收电极线改为斜向交错布置,将原来从触摸屏有效检测区左右两边引出线改为从触摸屏有效检测区上下两边引出线,不需要在触摸屏有效检测区左右两边占用空间走线,实现了触摸屏左右两边无边框。但仅通过左右两边无走线的设计并不能满足可折叠触摸屏所需的弯折效果。
发明内容
针对上述技术问题,本发明提供一种可折叠触控模组以及应用该可折叠触控模组的触摸屏及终端设备,公开一种可实现可折叠触摸屏多次弯曲的材料以及走线方式。
本发明采用以下技术方案:
一种可折叠触控模组,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将银纳米线涂布在透明的聚酰亚胺薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一透明导电膜和第二透明导电膜的对应位置上设置有弯折区域,弯折区域内的第一图案和第二图案分别从第一透明导电膜和第二透明导电膜的上下边缘走线引出。
进一步的,第一透明导电膜上的第一图案从第一透明导电膜的上下边缘引出;第二透明导电膜上的第二图案从第二透明导电膜的上下边缘引出。
进一步的,第一图案和第二图案斜向交叉设置。
进一步的,第一图案与第一透明导电膜的上下边缘的夹角为5-85°;第二图案与第二透明导电膜的上下边缘的夹角为5-85°。。
进一步的,第一图案与第一透明导电膜的上下边缘的夹角为18-72°;第二图案与第二透明导电膜的上下边缘的夹角为18-72°。
进一步的,第一图案的方向平行于第一透明导电膜的对角线方向;第二图案的方向平行于第二透明导电膜的对角线方向。
进一步的,从第一透明导电膜和第二透明导电膜的上下边缘引出的引出线分别用FPC(Flexible Printed Circuit)链接和触控芯片相连。
进一步的,第一透明导电膜中的聚酰亚胺薄膜的厚度为30-80μm;第二透明 导电膜中的聚酰亚胺薄膜的厚度为10-30μm;第一透明导电膜和第二透明导电膜中的银纳米线的厚度为50-200nm;光学胶的厚度为30-100μm。
本发明还提供一种触摸屏,该触摸屏包括上述可折叠触控模组和与该可折叠触控模组层叠设置的显示面板。
本发明还提供一种终端设备,该终端设备包括上述触摸屏。
本发明的可折叠触控模组,将具有良好导电性和可弯折性的银纳米线涂布在具有高硬度和极佳柔韧性的聚酰亚胺薄膜上制成透明导电膜,并通过激光蚀刻得到图案;上下两层的第一透明导电膜和第二透明导电膜通过可弯折的光学胶粘合;同时位于弯折区域的第一图案和第二图案分别从第一透明导电膜和第二透明导电膜的上下边缘引出线,使得弯折区域左右两侧无需印刷导电银浆走线,可有效防止弯折过程中出现线材断裂或者脱落等现象,使得该触控模组具有优异的可弯折性能,可实现20万次以上的弯折,满足可折叠智能手机以及柔性电子器件等的需求。
附图说明
为了更清楚的说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见的,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1为本发明的可折叠触控模组的结构示意图;
图2为本发明的可折叠触控模组的第一种实施例的俯视图;
图3为本发明的可折叠触控模组的第二种实施例的俯视图;
图4为本发明的可折叠触控模组的第三种实施例的俯视图;
图中,1-第一透明导电膜,2-第二透明导电膜,3-光学胶,4-银纳米线,5-聚酰亚胺薄膜,6-弯折区域。
具体实施方式
下面将结合本发明中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的 实施例。基于本发明中的实施例,本领域普通的技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明的保护范围。
一种可折叠触控模组,如图1、图2所示,包括上下两层的第一透明导电膜1和第二透明导电膜2,以及中间的透明可弯折的光学胶3;第一透明导电膜1和第二透明导电膜2是将银纳米线4涂布在透明的聚酰亚胺薄膜5上制成的,第一透明导电膜1上通过激光蚀刻得到第一图案,第二透明导电膜2上通过激光蚀刻得到第二图案;第一透明导电膜1和第二透明导电膜2的对应位置上设置有弯折区域6,弯折区域6内的第一图案和第二图案分别从第一透明导电膜1和第二透明导电膜2的上下边缘走线引出。
聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温,可在温度范围-200℃~300℃长期使用,无明显熔点,具有高绝缘性能。通过降低分子内和分子间作用力减少电荷转移络合物的形成,或者引入不对称结构,可以制备无色透明聚酰亚胺(PI,Polyimide),PI具有高硬度和极佳的柔韧性。
银纳米线具有良好的导电性和可弯折性,银纳米线薄膜为电阻低、透光性好、绕曲性好、可弯折的透明导电薄膜,与氧化铟锡相比弯折性更佳。因此,将具有良好导电性和可弯折性的银纳米线涂布在具有高硬度和极佳柔韧性的聚酰亚胺基材上,使得该触控模组获得优异的可弯折性能。
优选的,在透明导电膜制备中,在将银纳米线涂布在聚酰亚胺薄膜表面形成导电层的基础上,还在导电层表面涂布一层保护层,对透明导电膜起到保护作用,使其导电性能更加稳定。
现有的触控模组多为分别横向和纵向交错布置的触控驱动电极和触控感应电极,在导电薄膜左右两侧具有引出线,需要刷银浆或者镀铜后蚀刻来实现边框走线。这种走线方式在经过反复弯折后容易出现断裂或者脱落。本发明实施例中,将具有良好导电性和可弯折性的银纳米线涂布在具有高硬度和极佳柔韧性的聚酰亚胺薄膜上制成透明导电膜,并通过激光蚀刻得到图案;位于弯折区域的第一图案和第二图案分别从第一透明导电膜和第二透明导电膜的上下边缘引出线,使得弯折区域左右两侧无需印刷导电银浆走线,可有效防止弯折过程中出现线材断裂或者脱落等现象,使得该触控模组具有优异的可弯折性能。
更具体的,图2至图4中显示的平行线结构是在宏观角度上观察的第一图 案和第二图案;在微观角度,第一图案和第二图案是银纳米线在导电膜上随机分布并被激光蚀刻打碎成的颗粒状结构,颗粒状的银纳米线之间不导通形成断路,通过触控之后产生信号来确定接触位置,进而实现对整个触摸屏上各个位置的检测。
对于可折叠触控模组,对其折叠性能有影响的区域主要集中在弯折区域内,弯折区域6无导电银浆、直接从导电膜的上下边缘走线可以使得弯折区域的边缘及垂直方向无任何其他走线,可防止在弯折过程中出现线材断裂或脱落现象,有利于提高触控模组的弯折能力。
更具体的,如图3所示,第一透明导电膜1上的第一图案从第一透明导电膜1的上下边缘引出;第二透明导电膜2上的第二图案从第二透明导电膜2的上下边缘引出。即在弯折区域从导电膜上下边缘走线的基础上,实现整个导电膜区域内的图案均从上下边缘走线引出,进一步的提高了触控模组整体的弯折性能并减小了触摸屏边框的占用面积,利于实现全面屏结构。
具体的,第一图案和第二图案斜向交叉设置。常规的触摸屏为通过纵向的发射电极发射信号、横向的接收电极接收信号,发射和接收通道沿水平和竖直方向布置,这就使得在导电膜四周边缘均需设置导电银浆来将各个通道连接至柔性电路板。左右两侧的导电银浆尤其是弯折区域两侧的导电银浆,会严重影响触控模组的折叠效果。本发明实施例中,将第一图案和第二图案斜向交叉设置,便于直接从上下边缘引出,省去在导电膜两侧涂银浆来导电连通的环节,使得透明导电膜的左右边缘及垂直方向无其他走线,可有效防止弯折过程中出现线材断裂或脱落等现象。
具体的,第一图案与第一透明导电膜的上下边缘的夹角为5-85°;第二图案与第二透明导电膜的上下边缘的夹角为5-85°。优选的,图案与透明导电膜的上下边缘的夹角为18-72°,可以为18°、30°、40°、45°、50°、60°、72°。
更具体的,第一图案的方向平行于第一透明导电膜的对角线方向;第二图案的方向平行于第二透明导电膜的对角线方向。
值得注意的是,以上提到的夹角和平行均是从宏观角度看到的图案与导电膜之间的关系,在微观角度上各个图案均是不规则结构的。
具体的,从第一透明导电膜和第二透明导电膜的上下边缘引出的引出线分 别用FPC(Flexible Printed Circuit)链接和触控芯片相连。
具体的,第一透明导电膜中的聚酰亚胺薄膜的厚度为30-80μm;第二透明导电膜中的聚酰亚胺薄膜的厚度为10-30μm;第一透明导电膜和第二透明导电膜中的银纳米线的厚度为50-200nm;光学胶的厚度为30-100μm。
本发明还提供一种触摸屏,该触摸屏包括上述可折叠触控模组和与该可折叠触控模组层叠设置的显示面板。
本发明还提供一种终端设备,该终端设备包括上述触摸屏。具体的,该终端设备为手机、电脑、电视等。
为了便于理解本发明的可折叠触控模组以及其耐弯折性能,下面结合具体实施例以及对比例对本发明作进一步的描述。
实施例1
一种可折叠触控模组,如图2所示,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将银纳米线及保护层涂布在透明的聚酰亚胺薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和第二图案斜向交叉设置,第一图案与第一透明导电膜的上下边缘的夹角为45°,第二图案与第二透明导电膜的上下边缘的夹角为45°;第一透明导电膜和第二透明导电膜的对应位置上设置有弯折区域,弯折区域内的第一图案和第二图案分别从第一透明导电膜和第二透明导电膜的上下边缘走线引出,非弯折区域内的第一图案和第二图案通过在透明导电膜两侧涂布的导电银浆来引线至上下边缘;引出线分别用FPC链接和触控芯片相连。
实施例2
一种可折叠触控模组,如图3所示,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将银纳米线及保护层涂布在透明的聚酰亚胺薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和第二图案斜向交叉设置,第一图案的方向平行于第一透明导电膜的对角线方向,第二图案的方向平行于第二透明导电膜的对角线方向;第一图案和第二图案分别从第一透明导电膜和第二透明导电膜的上下边缘走线 引出;引出线分别用FPC链接和触控芯片相连。
实施例3
一种可折叠触控模组,如图4所示,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将银纳米线及保护层涂布在透明的聚酰亚胺薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和第二图案斜向交叉设置,第一图案与第一透明导电膜的上下边缘的夹角为18°,第二图案与第二透明导电膜的上下边缘的夹角为18°;第一图案和第二图案分别从第一透明导电膜和第二透明导电膜的上下边缘走线引出;引出线分别用FPC链接和触控芯片相连。
实施例4
一种可折叠触控模组,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将银纳米线及保护层涂布在透明的聚酰亚胺薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和第二图案斜向交叉设置,第一图案与第一透明导电膜的上下边缘的夹角为72°,第二图案与第二透明导电膜的上下边缘的夹角为72°;第一图案和第二图案分别从第一透明导电膜和第二透明导电膜的上下边缘走线引出;引出线分别用FPC链接和触控芯片相连。
实施例5
一种可折叠触控模组,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将银纳米线及保护层涂布在透明的聚酰亚胺薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和第二图案斜向交叉设置,第一图案与第一透明导电膜的上下边缘的夹角为5°,第二图案与第二透明导电膜的上下边缘的夹角为5°;第一图案和第二图案分别从第一透明导电膜和第二透明导电膜的上下边缘走线引出;引出线分别用FPC链接和触控芯片相连。
实施例6
一种可折叠触控模组,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将银纳米线及保护层涂布在透明的聚酰亚胺薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和第二图案斜向交叉设置,第一图案与第一透明导电膜的上下边缘的夹角为85°,第二图案与第二透明导电膜的上下边缘的夹角为85°;第一图案和第二图案分别从第一透明导电膜和第二透明导电膜的上下边缘走线引出;引出线分别用FPC链接和触控芯片相连。
实施例7
一种可折叠触控模组,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将银纳米线及保护层涂布在透明的聚酰亚胺薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和第二图案斜向交叉设置,第一图案与第一透明导电膜的上下边缘的夹角为26.6°,第二图案与第二透明导电膜的上下边缘的夹角为26.6°;第一图案和第二图案分别从第一透明导电膜和第二透明导电膜的上下边缘走线引出;引出线分别用FPC链接和触控芯片相连。
对比例1
一种触控模组,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将氧化铟锡及保护层涂布在透明的PET(poly(ethylene terephthalate))薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和第二图案横向和纵向交错布置,透明导电膜四周边缘涂布导电银浆引线,引出线分别用FPC链接和触控芯片相连。
对比例2
一种触控模组,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将氧化铟锡及保护层涂布在透明的聚酰亚胺薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和 第二图案横向和纵向交错布置,透明导电膜四周边缘涂布导电银浆引线,引出线分别用FPC链接和触控芯片相连。
对比例3
一种触控模组,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将氧化铟锡及保护层涂布在透明的PET薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和第二图案斜向交叉设置,第一图案与第一透明导电膜的上下边缘的夹角为26.6°,第二图案与第二透明导电膜的上下边缘的夹角为26.6°;第一图案和第二图案分别从第一透明导电膜和第二透明导电膜的上下边缘走线引出;引出线分别用FPC链接和触控芯片相连。
对比例4
一种触控模组,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将氧化铟锡及保护层涂布在透明的聚酰亚胺薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和第二图案斜向交叉设置,第一图案与第一透明导电膜的上下边缘的夹角为26.6°,第二图案与第二透明导电膜的上下边缘的夹角为26.6°;第一图案和第二图案分别从第一透明导电膜和第二透明导电膜的上下边缘走线引出;引出线分别用FPC链接和触控芯片相连。
对比例5
一种触控模组,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将银纳米线及保护层涂布在透明的PET薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和第二图案横向和纵向交错布置,透明导电膜四周边缘涂布导电银浆引线,引出线分别用FPC链接和触控芯片相连。
对比例6
一种触控模组,包括上下两层的第一透明导电膜和第二透明导电膜,以及 中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将银纳米线及保护层涂布在透明的聚酰亚胺薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和第二图案横向和纵向交错布置,透明导电膜四周边缘涂布导电银浆引线,引出线分别用FPC链接和触控芯片相连。
对比例7
一种触控模组,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;第一透明导电膜和第二透明导电膜是将银纳米线及保护层涂布在透明的PET薄膜上制成的,第一透明导电膜上通过激光蚀刻得到第一图案,第二透明导电膜上通过激光蚀刻得到第二图案;第一图案和第二图案斜向交叉设置,第一图案与第一透明导电膜的上下边缘的夹角为26.6°,第二图案与第二透明导电膜的上下边缘的夹角为26.6°;第一图案和第二图案分别从第一透明导电膜和第二透明导电膜的上下边缘走线引出;引出线分别用FPC链接和触控芯片相连。
将实施例1-7和对比例1-7中制得的触控模组进行弯折性能测试,来验证不同走线方式以及不同材料对模组弯折性能的影响,具体试验过程如下:
采用深圳市鑫恒森仪器设备有限公司生产的型号为XHS-ZW-03A的反复弯折机对各实施例和对比例制得的触控模组进行测试,试验条件为:将待测试的模组一端用夹板夹住,夹板一端是半径为1mm的半圆角,另一端夹在曲柄轴上,在电机带动下,模组进行反复弯折,弯折频率为每秒一次。记录不同模组的弯折次数以及电阻变化率。结果如表1所示。
表1不同触控模组的弯折对比测试结果
Figure PCTCN2018108705-appb-000001
Figure PCTCN2018108705-appb-000002
由表1可知,随着绕曲次数的增加,本发明实施例1-7中以银纳米线涂布在聚酰亚胺薄膜上并在弯折区域实现从导电膜上下边缘走线的方式制得的触控模组在不断弯折过程中的电阻变化率最小,在经受近20万次的弯折后电阻变化率在15%以内,具有优异的可弯曲、可折叠性能。对比例中单一采用聚酰亚胺基材或银纳米线电极线制得的触控模组以及单一改变走线方式实现交叉布置得到的触控模组的耐弯折能力均相对较差。因此,本发明实施例制得的可折叠触控模组可被广泛应用在可折叠触摸屏、柔性电子器件、可穿戴设备等领域。
以上借助具体实施例对本发明做了进一步描述,但是应该理解的是,这里具体的描述,不应理解为对本发明的实质和范围的限定,本领域内的普通技术人员在阅读本说明书后对上述实施例做出的各种修改,都属于本发明所保护的范围。

Claims (10)

  1. 一种可折叠触控模组,其特征在于,包括上下两层的第一透明导电膜和第二透明导电膜,以及中间的透明可弯折的光学胶;所述第一透明导电膜和第二透明导电膜是将银纳米线涂布在透明的聚酰亚胺薄膜上制成的,所述第一透明导电膜上通过激光蚀刻得到第一图案,所述第二透明导电膜上通过激光蚀刻得到第二图案;
    所述第一透明导电膜和第二透明导电膜的对应位置上设置有弯折区域,所述弯折区域内的第一图案和第二图案分别从所述第一透明导电膜和第二透明导电膜的上下边缘走线引出。
  2. 根据权利要求1所述的可折叠触控模组,其特征在于,所述第一透明导电膜上的第一图案从所述第一透明导电膜的上下边缘引出;所述第二透明导电膜上的第二图案从所述第二透明导电膜的上下边缘引出。
  3. 根据权利要求1或2所述的可折叠触控模组,其特征在于,所述第一图案和第二图案斜向交叉设置。
  4. 根据权利要求1-3中任一项所述的可折叠触控模组,其特征在于,所述第一图案与所述第一透明导电膜的上下边缘的夹角为5-85°;所述第二图案与所述第二透明导电膜的上下边缘的夹角为5-85°。
  5. 根据权利要求4所述的可折叠触控模组,其特征在于,所述第一图案与所述第一透明导电膜的上下边缘的夹角为18-72°;所述第二图案与所述第二透明导电膜的上下边缘的夹角为18-72°。
  6. 根据权利要求1-3中任一项所述的可折叠触控模组,其特征在于,所述第一图案的方向平行于所述第一透明导电膜的对角线方向;所述第二图案的方向平行于所述第二透明导电膜的对角线方向。
  7. 根据权利要求1-6中任一项所述的可折叠触控模组,其特征在于,从所述第一透明导电膜和第二透明导电膜的上下边缘引出的引出线分别用FPC链接和触控芯片相连。
  8. 根据权利要求1-7中任一项所述的可折叠触控模组,其特征在于,所述第一透明导电膜中的聚酰亚胺薄膜的厚度为30-80μm;所述第二透明导电膜中的聚酰亚胺薄膜的厚度为10-30μm;所述第一透明导电膜和第二透明导电膜中的银纳 米线的厚度为50-200nm;所述光学胶的厚度为30-100μm。
  9. 一种触摸屏,其特征在于,包括如权利要求1-8中任一项所述的可折叠触控模组和与所述可折叠触控模组层叠设置的显示面板。
  10. 一种终端设备,其特征在于,包括如权利要求9所述的触摸屏。
PCT/CN2018/108705 2018-09-26 2018-09-29 一种可折叠触控模组、触摸屏及终端设备 WO2020062157A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811123274 2018-09-26
CN201811123274.4 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020062157A1 true WO2020062157A1 (zh) 2020-04-02

Family

ID=65052278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108705 WO2020062157A1 (zh) 2018-09-26 2018-09-29 一种可折叠触控模组、触摸屏及终端设备

Country Status (2)

Country Link
CN (2) CN109240545A (zh)
WO (1) WO2020062157A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020062157A1 (zh) * 2018-09-26 2020-04-02 深圳市华科创智技术有限公司 一种可折叠触控模组、触摸屏及终端设备
CN113260962A (zh) * 2019-01-23 2021-08-13 深圳市柔宇科技股份有限公司 触摸屏、柔性显示面板及柔性显示装置
CN109947299A (zh) * 2019-04-17 2019-06-28 盈天实业(深圳)有限公司 可折叠的膜层结构及其制备方法、触控模组和触控屏
CN110321034A (zh) * 2019-06-29 2019-10-11 深圳市华科创智技术有限公司 一种可维修电容屏
CN111782086B (zh) * 2020-07-10 2022-05-06 业成科技(成都)有限公司 触控面板及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204143398U (zh) * 2014-05-30 2015-02-04 和鑫光电股份有限公司 可挠式触控感应模组及其显示装置
US20150220185A1 (en) * 2014-02-05 2015-08-06 Lg Innotek Co., Ltd. Touch panel
CN105224116A (zh) * 2014-06-12 2016-01-06 宸鸿科技(厦门)有限公司 一种触控面板
CN106201095A (zh) * 2016-07-18 2016-12-07 信利光电股份有限公司 基于聚酰亚胺的纳米银触控模组及其制作方法、电子设备
CN106201088A (zh) * 2016-07-13 2016-12-07 信利光电股份有限公司 一种柔性基板和触摸屏的制造方法
CN106547407A (zh) * 2016-11-08 2017-03-29 武汉华星光电技术有限公司 可弯折柔性触摸屏及柔性触摸显示屏
CN107589866A (zh) * 2017-08-22 2018-01-16 南昌欧菲光科技有限公司 柔性触控传感器及触控面板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404994B (zh) * 2009-12-14 2013-08-11 Wintek Corp 觸控面板
CN102999217A (zh) * 2012-11-29 2013-03-27 广东欧珀移动通信有限公司 无边框触摸屏及触摸屏终端设备
TW201430661A (zh) * 2013-01-24 2014-08-01 Wintek Corp 觸控面板
KR102322228B1 (ko) * 2014-11-20 2021-11-08 삼성디스플레이 주식회사 터치스크린 패널 및 이의 제조 방법
WO2020062157A1 (zh) * 2018-09-26 2020-04-02 深圳市华科创智技术有限公司 一种可折叠触控模组、触摸屏及终端设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150220185A1 (en) * 2014-02-05 2015-08-06 Lg Innotek Co., Ltd. Touch panel
CN204143398U (zh) * 2014-05-30 2015-02-04 和鑫光电股份有限公司 可挠式触控感应模组及其显示装置
CN105224116A (zh) * 2014-06-12 2016-01-06 宸鸿科技(厦门)有限公司 一种触控面板
CN106201088A (zh) * 2016-07-13 2016-12-07 信利光电股份有限公司 一种柔性基板和触摸屏的制造方法
CN106201095A (zh) * 2016-07-18 2016-12-07 信利光电股份有限公司 基于聚酰亚胺的纳米银触控模组及其制作方法、电子设备
CN106547407A (zh) * 2016-11-08 2017-03-29 武汉华星光电技术有限公司 可弯折柔性触摸屏及柔性触摸显示屏
CN107589866A (zh) * 2017-08-22 2018-01-16 南昌欧菲光科技有限公司 柔性触控传感器及触控面板

Also Published As

Publication number Publication date
CN209281362U (zh) 2019-08-20
CN109240545A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020062157A1 (zh) 一种可折叠触控模组、触摸屏及终端设备
CN108920010B (zh) 一种触摸屏及oled显示面板
US10001889B2 (en) Mesh electrode, sensing device, and electrode layer
CN107275337A (zh) 显示装置
CN109062442B (zh) 有机发光显示面板和显示装置
WO2020029371A1 (zh) 一种触摸屏及oled显示面板
CN106249979A (zh) 触控电极结构以及触控显示装置
US8947399B2 (en) Dual-substrate capacitive touch panel
KR20100080469A (ko) 정전용량 방식 터치 패널
CN106155388A (zh) 触控面板以及触控显示面板
CN110161740B (zh) 一种显示面板及其制作方法、显示装置
CN110568681B (zh) 显示面板及液晶显示器
WO2014153854A1 (zh) 触控显示屏及触控显示装置
TW201241845A (en) Single side touch panel structure and manufacturing method thereof
TWM379118U (en) Projective capacitive touch panel
CN102262469A (zh) 触控面板、触控显示面板及触控面板的制作方法
CN104281292A (zh) 触控面板及其制造方法
TW202001524A (zh) 觸控面板之金屬網格觸控電極
KR20160078919A (ko) 위치 입력 장치가 부착된 표시 장치 및 그 제조 방법
CN105511685B (zh) 金属网电磁触控感应器、触控模组及触控电子装置
CN207541604U (zh) 触摸屏及触控显示器
TW202016708A (zh) 觸控顯示面板及其製造方法
CN106098705B (zh) 可挠式像素阵列基板及可挠式显示面板
CN105677103A (zh) 一种可绕性触控面板的制备方法
TWM375251U (en) Color capacitance touch panel with crosslinking structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18935351

Country of ref document: EP

Kind code of ref document: A1