WO2020061897A1 - 双摆轮轴向结构磁能减速机 - Google Patents

双摆轮轴向结构磁能减速机 Download PDF

Info

Publication number
WO2020061897A1
WO2020061897A1 PCT/CN2018/107933 CN2018107933W WO2020061897A1 WO 2020061897 A1 WO2020061897 A1 WO 2020061897A1 CN 2018107933 W CN2018107933 W CN 2018107933W WO 2020061897 A1 WO2020061897 A1 WO 2020061897A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
bearing
shaft
magnetic steel
outer rotating
Prior art date
Application number
PCT/CN2018/107933
Other languages
English (en)
French (fr)
Inventor
张天洪
李渊
黄勇军
Original Assignee
深圳超磁机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳超磁机器人科技有限公司 filed Critical 深圳超磁机器人科技有限公司
Priority to PCT/CN2018/107933 priority Critical patent/WO2020061897A1/zh
Publication of WO2020061897A1 publication Critical patent/WO2020061897A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type

Definitions

  • the present invention relates to the technical field of mechanical transmission, and in particular, to a dual-balance-wheel axial structure magnetic energy reducer.
  • the traditional mechanical structure reducer is mainly driven by gear meshing. It has disadvantages such as large friction loss, rapid development of mechanical fatigue, large noise, strong vibration, etc., and does not have overload protection capability.
  • the technical problem to be solved by the present invention is to provide a dual-balance-wheel axial structure magnetic energy reducer with low friction loss, slow development of mechanical fatigue, low noise, weak vibration, and overload protection capability.
  • a dual balance wheel axial structure magnetic energy reducer includes a fixed support shaft, an eccentric shaft, an input shaft, a pin support frame, a first inner swing iron core, a second inner swing iron core, an outer rotation iron core, and is disposed outside Outer rotating magnetic steel distributed in a circular array on both side walls of the rotating iron core, the first inner rotating magnetic steel disposed in a circular array on the front side wall surface of the first inner pendulum iron core, disposed on the rear side of the second inner swing iron core A second outer rotating magnetic steel distributed in a circular array on the wall surface and more than 3 limit pins;
  • the outer rotating magnetic steel on the rear side wall surface of the outer rotating iron core faces the first inner rotating magnetic steel, and the outer rotating magnetic steel on the front side wall surface of the outer rotating iron core faces the second outer rotating magnetic steel;
  • a pin support frame is fixed on a fixed support shaft
  • the outer peripheral side of the eccentric shaft is provided with two first eccentric rings and a second eccentric ring that are symmetrically distributed with each other at 180 °.
  • Two inner pendulum iron cores are sleeved on the outside of the second eccentric ring through a second bearing;
  • the disk surface of the first pendulum iron core is provided with first toggle holes distributed in a circular array
  • the disk surface of the second pendulum iron core is provided with second toggle holes distributed in a circular array. Displayed in a circle and fixedly connected to the disk surface of the pin support frame, the outer diameter of the limiting pin is smaller than the inner diameter of the first toggle hole and the second toggle hole, Each limit pin passes through a first toggle hole and a second toggle hole in turn;
  • the input shaft is a hollow shaft of the motor, and the input shaft rotation is provided outside the fixed support shaft, and the eccentric shaft rotation is provided outside the fixed support shaft; the input shaft drives the eccentric shaft to rotate through a rotation connection structure;
  • the first and second inner pendulum iron cores are driven to rotate and swing for one cycle, due to the limitation of the limit pins, the first and second inner pendulum iron cores can only swing and cannot be fixed around.
  • the supporting shaft completes the revolution;
  • the outer rotation iron core is fixedly supported due to the magnetic force of the first inner rotation magnetic steel, the second outer rotation magnetic steel, and the outer rotation magnetic steel.
  • the shaft revolves.
  • a third bearing and a fourth bearing are provided on an outer side of the fixed support shaft;
  • the second end of the input shaft is rotatably disposed outside the fixed support shaft through a third bearing;
  • the inside of the input shaft close to the first end is rotatably disposed on the outside of the fixed support shaft through a fourth bearing.
  • a fifth bearing and a sixth bearing are further included;
  • the first end of the eccentric shaft is rotatably disposed outside the fixed support shaft through a fifth bearing;
  • the second end of the eccentric shaft is rotatably disposed outside the fixed support shaft through a sixth bearing.
  • the second end of the input shaft is sleeved outside the first end of the eccentric shaft
  • the wall of the second end of the input shaft is provided with a first pin slot
  • the wall of the second end of the eccentric shaft is provided with a second pin slot
  • the first pin slot and the second pin slot are connected by a pin key
  • the pin key, the first pin groove and the second pin groove constitute a rotation connection structure.
  • it further comprises a deceleration bracket, a seventh bearing, a deceleration front bracket and an eighth bearing;
  • the inside of the seventh bearing is sleeved on the outer peripheral surface of the pin support frame, and the bracket is sleeved on the outer ring of the seventh bearing after deceleration;
  • the inner side of the eighth bearing is sleeved on the outer circumference near the front end of the fixed support shaft, and the inner ring of the deceleration front bracket is sleeved on the outer ring of the eighth bearing.
  • the deceleration bracket is located on the rear side of the first swing-out iron core, and the deceleration front bracket is located on the front side of the second swing-out iron core;
  • the post-deceleration bracket is sequentially connected with the post-deceleration bracket, the outer turning iron core and the pre-deceleration bracket by bolts.
  • it further comprises a ninth bearing and a first end cover of the motor;
  • the inner ring of the ninth bearing is sleeved on the outside of the second end of the input shaft, and the outer ring of the ninth bearing is sleeved on the motor On the inner ring of the first end cap;
  • the first end cover of the motor is fixedly connected to the pin support frame by bolts.
  • a part of the inner side of the seventh bearing is sleeved on the outer ring of the first end cover of the motor.
  • it further comprises a motor stator core, a motor second end cover and a motor magnetic steel;
  • the second end cover of the motor is fixedly connected to the right end of the outer side of the fixed support shaft, and the stator core of the motor is disposed between the first end cover of the motor and the second end cover of the motor;
  • the first end cover of the motor, the stator core of the motor and the second end cover of the motor are fixedly connected by a long bolt;
  • the outer ring of the input shaft is provided with a motor magnet, which is located inside the stator core of the motor.
  • the first end cover of the motor is a front end cover of the motor
  • the second end cover of the motor is a rear end cover of the motor
  • the second end cap of the motor may be a front end cap of the motor, and the first end cap of the motor may be a rear end cap of the motor.
  • the outer turning iron core is located between the first inner pendulum iron core and the second inner pendulum iron core; a first thrust bearing is provided between the outer turning iron core and the first inner pendulum iron core, and the outer turning iron A second thrust bearing is provided between the core and the second pendulum iron core.
  • a double balance wheel axial structure magnetic energy reducer comprising a fixed support shaft, an eccentric shaft, an input shaft, a pin support frame, a first inner pendulum iron core, a second inner pendulum iron core, Outer rotating iron core, outer rotating magnetic steel arranged on a circumferential array on both side walls of the outer rotating iron core, first inner rotating magnetic steel arranged on a front side wall surface of the first inner pendulum iron core in a circular array, and disposed on the first
  • the outer rotating magnetic steel on the rear side wall surface of the outer rotating iron core faces the first inner rotating steel,
  • the outer rotating magnetic steel on the front side wall surface of the outer rotating iron core faces the second outer rotating magnetic steel;
  • the pin support frame is fixed on the fixed support shaft;
  • the outer peripheral side of the eccentric shaft is provided with two first eccentricities which are symmetrically distributed with each other
  • the disk surface of the second inner pendulum core is provided with second toggle holes distributed in a circular array.
  • the limit pins are fixedly connected to the disk surface of the pin support frame in a circular display, and the outer diameter of the limit pins is smaller than the first toggle.
  • the inner diameter of the hole and the second toggle hole, each limit pin in turn Pass a first toggle hole and a second toggle hole;
  • the input shaft is a hollow shaft of the motor, the input shaft rotation is set outside the fixed support shaft, and the eccentric shaft is set outside the fixed support shaft; the input shaft is rotated by
  • the connecting structure drives the eccentric shaft to rotate; when the eccentric shaft rotates, the first inner pendulum iron core and the second inner pendulum iron core are driven to rotate and swing for one period.
  • the first inner pendulum iron core and the second inner pendulum Due to the limitation of the limit pin, the first inner pendulum iron core and the second inner pendulum The pendulum iron core can only swing, and cannot complete the revolution around the fixed support shaft.
  • the first inner magnetic steel, the second outer magnetic steel, and the outer magnetic The magnetic force of steel makes the outer iron core revolve around the fixed support shaft.
  • the input shaft rotates due to the magnetic force of the same repulsion and opposite attraction of the first inner magnetic steel, the second outer magnetic steel and the outer magnetic steel.
  • the outer iron core revolves around the fixed support shaft, and the outer iron core rotates a distance of two pieces of magnetic steel to achieve deceleration.
  • Internal magnetic steel and external magnetic steel are used to transmit power, with small friction loss, slow development of mechanical fatigue, low noise and vibration, and overload protection.
  • the friction loss is small, the mechanical fatigue is slow, the reliability is greatly improved, the life is greatly extended, the running accuracy is high, the long-term running accuracy is small, the noise and vibration are low, and it has overload protection.
  • FIG. 1 is a schematic structural view of a perspective view of a double balance wheel axial structure magnetic energy reducer according to the present invention.
  • FIG. 2 is a schematic structural view of another perspective of a dual balance wheel axial structure magnetic energy reducer according to the present invention.
  • FIG. 3 is a cross-sectional view of a double balance wheel axial structure magnetic energy reducer according to the present invention.
  • FIG. 4 is an exploded view of a double balance wheel axial structure magnetic energy reducer according to the present invention.
  • FIG. 5 is a perspective view of a three-dimensional structure of an eccentric shaft, an input shaft, and a rotation connection structure of a dual balance wheel axial structure magnetic energy reducer according to the present invention.
  • FIG. 6 is a perspective view of a three-dimensional structure of a pin supporting frame of a double balance wheel axial structure magnetic energy reducer according to the present invention.
  • FIG. 7 is a perspective view of a three-dimensional structure of an outer rotating iron core of a dual-balance axial structure magnetic energy reducer according to the present invention.
  • FIG. 8 is a schematic perspective view of a three-dimensional structure of a first inner pendulum iron core of a dual balance wheel axial structure magnetic energy reducer according to the present invention.
  • FIG. 9 is a three-dimensional schematic diagram of a second inner pendulum iron core of a dual balance wheel axial structure magnetic energy reducer according to the present invention.
  • the present invention provides a double balance wheel axial structure magnetic energy reducer.
  • a dual balance wheel axial structure magnetic energy reducer includes a fixed support shaft 1, an eccentric shaft 2, an input shaft 3, a pin support frame 4, a first inner swing iron core 51, a second inner swing iron core 52, and an outer Rotating iron core 6, outer rotating magnetic steel 61 arranged in a circular array on both side walls of the outer rotating iron core 6, first inner rotating magnetic steel 511 in a circular array arranged on the front side wall surface of the first inner pendulum core 51 2, arranged on the rear side wall surface of the second inner pendulum iron core 52 in a circular array of the second outer rotating magnetic steel 521 and 3 or more limit pins 7;
  • the outer rotating magnetic steel 61 on the rear side wall surface of the outer rotating iron core 6 faces the first inner rotating magnetic steel 511, and the outer rotating magnetic steel 61 on the front side wall surface of the outer rotating iron core 6 faces the second outer rotating magnetic steel 521. ;
  • the pin support frame 4 is fixed on the fixed support shaft 1;
  • the outer peripheral side of the eccentric shaft 2 is provided with two first eccentric rings 21 and second eccentric rings 22 which are symmetrically distributed with each other at 180 °, and the first inner pendulum iron core 51 is sleeved on the first eccentric through the first bearing 91.
  • the second inner pendulum core 52 is sleeved on the outside of the second eccentric ring 22 through a second bearing 92;
  • the disk surface of the first inner pendulum core 51 is provided with first toggle holes 512 distributed in a circular array
  • the disk surface of the second pendulum iron core 52 is provided with second toggle holes 522 distributed in a circular array.
  • the limit pin 7 is fixedly connected to the disk surface of the pin support 4 in a circular display.
  • the outer diameter of the limit pin 7 is smaller than the first toggle hole 512 and the first The inner diameter of two toggle holes 522, each limit pin 7 passes through a first toggle hole 512 and a second toggle hole 522 in turn;
  • the input shaft 3 is a hollow shaft of the motor.
  • the input shaft 3 is rotatably disposed outside the fixed support shaft 1, and the eccentric shaft 2 is rotatably disposed outside the fixed support shaft 1.
  • the input shaft 3 drives the eccentric shaft 2 to rotate through a rotation connection structure. ;
  • a third bearing 93 and a fourth bearing 94 are provided on the outside of the fixed support shaft 1;
  • the second end of the input shaft 3 is rotatably disposed outside the fixed support shaft 1 through a third bearing 93;
  • the inner side of the input shaft 3 near the first end is rotatably disposed on the outer side of the fixed support shaft 1 through a fourth bearing 94.
  • This embodiment further includes a fifth bearing 95 and a sixth bearing 96;
  • the first end of the eccentric shaft 2 is rotatably disposed outside the fixed support shaft 1 through a fifth bearing 95;
  • the second end of the eccentric shaft 2 is rotatably disposed outside the fixed support shaft 1 through a sixth bearing 96.
  • the second end of the input shaft 3 is sleeved outside the first end of the eccentric shaft 2;
  • the wall of the second end of the input shaft 3 is provided with a first pin groove 31, and the wall of the second end of the eccentric shaft 2 is provided with a second pin groove 23, and the first pin groove 31 and the second pin are connected by a pin key.
  • the pin key, the first pin groove 31, and the second pin groove 23 constitute a rotation connection structure.
  • this embodiment further includes a rear deceleration bracket 02, a seventh bearing 97, a front deceleration bracket 03, and an eighth bearing 98.
  • the inside of the seventh bearing 97 is sleeved on the outer peripheral surface of the pin support frame 4, and the deceleration bracket 02 is sleeved on the outer ring of the seventh bearing 97;
  • the inner side of the eighth bearing 98 is sleeved on the outer circumference of the fixed support shaft 1 near the front end, and the inner ring of the deceleration front bracket 03 is sleeved on the outer ring of the eighth bearing 98.
  • the deceleration bracket 02 is located on the rear side of the first inner swing iron core 51, and the deceleration front bracket 03 is located on the front side of the second inner swing iron core 52; [0073]
  • the post-deceleration bracket 02 is connected to the post-deceleration bracket 02, the outer turning iron core 6 and the pre-deceleration bracket 03 in this order by bolts.
  • this embodiment also includes a ninth bearing 99 and a motor first end cover 05;
  • the inner ring of the ninth bearing 99 is sleeved outside the second end of the input shaft 3, and the outer ring of the ninth bearing 99 is sleeved on the inner ring of the first end cover 05 of the motor;
  • the motor first end cover 05 is fixed to the pin support bracket 4 by bolts.
  • a part of the inside of the seventh bearing 97 is sleeved on the outer ring of the first end cover 05 of the motor.
  • This embodiment further includes a motor stator iron core 06, a motor second end cover 07, and a motor magnetic steel 08;
  • the second motor end cover 07 is fixedly connected to the right end of the outer side of the fixed support shaft 1, and the motor stator iron core 06 is disposed between the first motor end cover 05 and the second motor end cover 07;
  • the motor first end cover 05, the motor stator core 06 and the motor second end cover 07 are fixedly connected by a long bolt;
  • the outer ring of the input shaft 3 is provided with a motor magnet 08, which is located inside the motor stator core 06.
  • the outer turning iron core 6 is located between the first inner pendulum iron core 51 and the second inner pendulum iron core 52;
  • a thrust bearing 091 is provided with a second thrust bearing 092 between the outer rotating iron core 6 and the second inner pendulum iron core 52.
  • the traditional mechanical structure reducer is mainly driven by gear meshing. There are disadvantageous factors such as friction loss, mechanical fatigue, noise vibration, etc., and the maintenance is cumbersome, and it does not have overload protection capabilities.
  • the conventional axial magnetic field gear reducer based on magnetic field modulation technology First, in theory, the number of magnet core poles (tooths) that play the role of magnetic field modulation must meet the constraint conditions, which causes the magnetic gear to operate and transmit. At any time, more than half of the permanent magnet poles are in an idle, uncoupled state, and the coupling area of the permanent magnet poles is theoretically lower than 50%. Second, from a structural point of view, the existence of the tuning core must inevitably make the The magnetic gear has two air gaps, which will consume a large amount of magnetomotive force of the permanent magnet, which will cause the magnetic flux of the permanent magnet in the coupled working state to be reduced, thereby affecting the magnitude of the transmitted torque.
  • the existence of the adjusted magnetic core makes the air gap magnetic resistance Alternating with the magnetic potential, it causes the periodic pulsation of torque, which not only affects the transmission accuracy, but also has a large mechanical torque on the magnet core, and its structural strength is also the main factor affecting its life.
  • P2 paired permanent magnets are distributed on the front surface of the first inner pendulum core 51
  • P2 paired permanent magnets are distributed on the rear surface of the second inner pendulum core 52
  • both sides of the outer core 6 are turned outward
  • P1 paired permanent magnets on the surface 0 ⁇ P1-P2 ⁇ 3
  • PK P2 is a positive integer.
  • the rotation of the input shaft 3 is passed
  • the structure of the mandrel 2 is converted into the rotation and revolution of the first inner pendulum iron core 51 and the second inner pendulum iron core 52. Due to the limiting effect of the limit pin 7, the first inner pendulum iron core 51 and the second inner pendulum iron core
  • the 52 only swings and does not revolve, plus the principle that the N and S poles of the permanent magnet are coupled with the same polarity and attract the opposite, so that the outer core 4 rotates.
  • the input shaft 3 rotates once, and the outer core turns. 4Turn the distance of 2 pieces of magnetic steel to reduce the speed and realize the power transmission with no mechanical contact and friction.
  • the left and right sides in the cross-sectional view of FIG. 3 are described as “left” and “right”; in the figure, the left side is the second end cover of the motor and the right side is the first end cover of the motor.
  • the present invention is not limited to the above embodiments, and the technical solutions of the foregoing embodiments of the present invention can be cross-combined with each other to form a new technical solution.
  • any technical solution formed by equivalent replacements falls within the requirements of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本发明涉及一种双摆轮轴向结构磁能减速机,销钉支撑架固定在固定支撑轴上;输入转轴转动设置在固定支撑轴的外侧,输入转轴驱动偏心轴转动;偏心轴转动时,输入转轴转动一圈,第一内摆铁芯和第二内摆铁芯转动和摆动一个周期,由于限位销钉的限制作用,第一内摆铁芯和第二内摆铁芯只能摆动,不能绕固定支撑轴完成公转;第一内摆铁芯和第二内摆铁芯摆动过程中,由于第一内转磁钢、第二外转磁钢和外转磁钢的磁力作用,外转铁芯绕固定支撑轴公转,外转磁钢带动外转铁芯绕固定支撑轴公转两片磁钢的距离,实现减速传递,相对于机械式减速机来说,摩擦损耗小,机械疲劳发展慢,可靠性高、寿命长,运行精度高,噪音震动低,具有过载保护能力。

Description

双摆轮轴向结构磁能减速机 技术领域
[0001] 本发明涉及机械传动技术领域, 具体涉及一种双摆轮轴向结构磁能减速机。
背景技术
[0002] 传统机械结构减速机主要由齿轮啮合传动, 存在摩擦损耗大、 机械疲劳发展快 、 噪音大、 震动强等不利因素, 不具有过载保护能力。
发明概述
技术问题
问题的解决方案
技术解决方案
[0003] 本发明要解决的技术问题是: 提供一种双摆轮轴向结构磁能减速机, 摩擦损耗 小, 机械疲劳发展慢, 噪音低、 震动弱、 具有过载保护能力。
[0004] 一种双摆轮轴向结构磁能减速机, 包括固定支撑轴、 偏心轴、 输入转轴、 销钉 支撑架、 第一内摆铁芯、 第二内摆铁芯、 外转铁芯、 设置在外转铁芯两侧壁面 呈圆周阵列分布的外转磁钢、 设置在第一内摆铁芯前侧壁面的呈圆周阵列分布 的第一内转磁钢、 设置在第二内摆铁芯后侧壁面的呈圆周阵列分布的第二外转 磁钢和 3个以上的限位销钉;
[0005] 外转铁芯后侧壁面的外转磁钢对着第一内转磁钢, 外转铁芯前侧壁面的外转磁 钢对着第二外转磁钢;
[0006] 销钉支撑架固定在固定支撑轴上;
[0007] 偏心轴的外周侧设置有两个相互呈 180°对称分布的第一偏心环和第二偏心环, 第一内摆铁芯通过第一轴承套接在第一偏心环的外侧, 第二内摆铁芯通过第二 轴承套接在第二偏心环的外侧;
[0008] 第一内摆铁芯的盘面上设置有呈圆周阵列分布的第一拨动孔, 第二内摆铁芯的 盘面上设置有呈圆周阵列分布的第二拨动孔, 限位销钉呈圆周陈列固定连接在 销钉支撑架的盘面上, 限位销钉的外径小于第一拨动孔和第二拨动孔的内径, 每个限位销钉依次穿过一个第一拨动孔和一个第二拨动孔;
[0009] 输入转轴为电机的空心转轴, 输入转轴转动设置在固定支撑轴的外侧, 偏心轴 转动设置在固定支撑轴的外侧; 输入转轴通过转动连接结构驱动偏心轴转动; [0010] 偏心轴转动时, 驱动第一内摆铁芯和第二内摆铁芯转动和摆动一周期, 由于限 位销钉的限制作用, 第一内摆铁芯和第二内摆铁芯只能摆动, 不能绕固定支撑 轴完成公转;
[0011] 第一内摆铁芯和第二内摆铁芯摆动过程中, 由于第一内转磁钢、 第二外转磁钢 和外转磁钢的磁力作用, 外转铁芯绕固定支撑轴公转。
[0012] 优选的, 固定支撑轴的外侧设置有第三轴承和第四轴承;
[0013] 输入转轴第二端通过第三轴承转动设置在固定支撑轴的外侧;
[0014] 输入转轴接近第一端的内侧通过第四轴承转动设置在固定支撑轴的外侧。
[0015] 优选的, 还包括第五轴承和第六轴承;
[0016] 偏心轴的第一端通过第五轴承转动设置在固定支撑轴的外侧;
[0017] 偏心轴的第二端通过第六轴承转动设置在固定支撑轴的外侧。
[0018] 优选的, 输入转轴的第二端套接在偏心轴的第一端的外侧;
[0019] 输入转轴的第二端的壁体设置有第一销槽, 偏心轴的第二端的壁体设置有第二 销槽, 通过销键连接第一销槽和第二销槽;
[0020] 销键、 第一销槽和第二销槽构成转动连接结构。
[0021] 优选的, 还包括减速后支架、 第七轴承、 减速前支架和第八轴承;
[0022] 第七轴承的内侧套接在销钉支撑架的外周面上, 减速后支架套接在第七轴承的 外圈上;
[0023] 第八轴承的内侧套接在固定支撑轴的接近前端的外圆周上, 减速前支架的内圈 套接在第八轴承的外圈上。
[0024] 优选的, 减速后支架位于第一内摆铁芯的后侧, 减速前支架位于第二内摆铁芯 的前侧;
[0025] 减速后支架通过螺栓依次连接减速后支架、 外转铁芯和减速前支架。
[0026] 优选的, 还包括第九轴承和电机第一端盖;
[0027] 第九轴承的内圈套接在输入转轴的第二端的外侧, 第九轴承的外圈套接在电机 第一端盖的内圈上;
[0028] 电机第一端盖通过螺栓固定连接销钉支撑架。
[0029] 优选的, 第七轴承的部分内侧套接在电机第一端盖的外圈上。
[0030] 优选的, 还包括电机定子铁芯、 电机第二端盖和电机磁钢;
[0031] 电机第二端盖固定连接在固定支撑轴的外侧的右端部, 电机定子铁芯设置于电 机第一端盖和电机第二端盖之间;
[0032] 通过长螺栓固定连接电机第一端盖、 电机定子铁芯和电机第二端盖;
[0033] 输入转轴的外圈设置电机磁钢, 电机磁钢位于电机定子铁芯的内侧。
[0034] 在一个实施例中, 电机第一端盖为电机前端盖, 电机第二端盖为电机后端盖。
在其他的实施例中, 也可以是电机第二端盖为电机前端盖, 电机第一端盖为电 机后端盖。
[0035] 优选的, 外转铁芯位于第一内摆铁芯和第二内摆铁芯之间; 外转铁芯与第一内 摆铁芯之间设置有第一推力轴承, 外转铁芯与第二内摆铁芯之间设置有第二推 力轴承。
发明的有益效果
有益效果
[0036] 本发明的有益效果是: 一种双摆轮轴向结构磁能减速机, 包括固定支撑轴、 偏 心轴、 输入转轴、 销钉支撑架、 第一内摆铁芯、 第二内摆铁芯、 外转铁芯、 设 置在外转铁芯两侧壁面呈圆周阵列分布的外转磁钢、 设置在第一内摆铁芯前侧 壁面的呈圆周阵列分布的第一内转磁钢、 设置在第二内摆铁芯后侧壁面的呈圆 周阵列分布的第二外转磁钢和 3个以上的限位销钉; 外转铁芯后侧壁面的外转磁 钢对着第一内转磁钢, 外转铁芯前侧壁面的外转磁钢对着第二外转磁钢; 销钉 支撑架固定在固定支撑轴上; 偏心轴的外周侧设置有两个相互呈 180°对称分布的 第一偏心环和第二偏心环, 第一内摆铁芯通过第一轴承套接在第一偏心环的外 侧, 第二内摆铁芯通过第二轴承套接在第二偏心环的外侧; 第一内摆铁芯的盘 面上设置有呈圆周阵列分布的第一拨动孔, 第二内摆铁芯的盘面上设置有呈圆 周阵列分布的第二拨动孔, 限位销钉呈圆周陈列固定连接在销钉支撑架的盘面 上, 限位销钉的外径小于第一拨动孔和第二拨动孔的内径, 每个限位销钉依次 穿过一个第一拨动孔和一个第二拨动孔; 输入转轴为电机的空心转轴, 输入转 轴转动设置在固定支撑轴的外侧, 偏心轴转动设置在固定支撑轴的外侧; 输入 转轴通过转动连接结构驱动偏心轴转动; 偏心轴转动时, 驱动第一内摆铁芯和 第二内摆铁芯转动和摆动一个周期, 由于限位销钉的限制作用, 第一内摆铁芯 和第二内摆铁芯只能摆动, 不能绕固定支撑轴完成公转; 第一内摆铁芯和第二 内摆铁芯摆动过程中, 由于第一内转磁钢、 第二外转磁钢和外转磁钢的磁力作 用, 外转铁芯绕固定支撑轴公转。 第一内摆铁芯和第二内摆铁芯摆动过程中, 由于第一内转磁钢、 第二外转磁钢和外转磁钢的同性相斥异性相吸的磁力作用 , 输入转轴转动一圈, 外转铁芯绕固定支撑轴公转, 外转铁芯转动两片磁钢的 距离, 实现减速。 采用内磁钢和外磁钢传递动力, 摩擦损耗小, 机械疲劳发展 慢, 噪音震动低, 具有过载保护能力。 相对于机械式减速机来说, 摩擦损耗小 , 机械疲劳发展慢, 可靠性大大提高、 寿命大大延长, 运行精度高, 长时间运 转精度降低很小, 噪音震动低, 具有过载保护能力。
对附图的简要说明
附图说明
[0037] 下面结合附图对本发明的双摆轮轴向结构磁能减速机作进一步说明。
[0038] 图 1是本发明一种双摆轮轴向结构磁能减速机的一个视角的结构示意图。
[0039] 图 2是本发明一种双摆轮轴向结构磁能减速机的另一个视角的结构示意图。
[0040] 图 3是本发明一种双摆轮轴向结构磁能减速机的剖视图。
[0041] 图 4是本发明一种双摆轮轴向结构磁能减速机的爆炸图。
[0042] 图 5是本发明一种双摆轮轴向结构磁能减速机的偏心轴、 输入转轴、 转动连接 结构的立体结构示意图。
[0043] 图 6是本发明一种双摆轮轴向结构磁能减速机的销钉支撑架的立体结构示意图
[0044] 图 7是本发明一种双摆轮轴向结构磁能减速机的外转铁芯的立体结构示意图。
[0045] 图 8是本发明一种双摆轮轴向结构磁能减速机的第一内摆铁芯的立体结构示意 图。
[0046] 图 9是本发明一种双摆轮轴向结构磁能减速机的第二内摆铁芯的立体结构示意 图
[0047]
[0048] 图中:
[0049] 1-固定支撑轴; 2 -偏心轴; 21-第一偏心环; 22 -第二偏心环; 23 -第二销槽; 3_ 输入转轴; 31 -第一销槽; 4 -销钉支撑架; 51 -第一内摆铁芯; 511-第一内转磁钢 ; 512 -第一拨动孔; 52 -第二内摆铁芯; 521 -第二外转磁钢; 522 -第二拨动孔; 6- 外转铁芯; 61 -外转磁钢; 7 -限位销钉; 91 -第一轴承; 92 -第二轴承; 93 -第三轴 承; 94 -第四轴承; 95 -第五轴承; 96 -第六轴承; 97 -第七轴承; 98 -第八轴承; 99 -第九轴承; 02 -减速后支架; 03 -减速前支架; 05 -电机第一端盖; 06 -电机定子铁 芯; 07 -电机第二端盖; 08 -电机磁钢; 091 -第一推力轴承; 092 -第二推力轴承。 发明实施例
本发明的实施方式
[0050] 下面结合附图 1~9并通过具体实施方式来进一步说明本发明的技术方案。
[0051] 本发明提供了一种双摆轮轴向结构磁能减速机。
[0052] 一种双摆轮轴向结构磁能减速机, 包括固定支撑轴 1、 偏心轴 2、 输入转轴 3、 销钉支撑架 4、 第一内摆铁芯 51、 第二内摆铁芯 52、 外转铁芯 6、 设置在外转铁 芯 6两侧壁面呈圆周阵列分布的外转磁钢 61、 设置在第一内摆铁芯 51前侧壁面的 呈圆周阵列分布的第一内转磁钢 511、 设置在第二内摆铁芯 52后侧壁面的呈圆周 阵列分布的第二外转磁钢 521和 3个以上的限位销钉 7 ;
[0053] 外转铁芯 6后侧壁面的外转磁钢 61对着第一内转磁钢 511, 外转铁芯 6前侧壁面 的外转磁钢 61对着第二外转磁钢 521 ;
[0054] 销钉支撑架 4固定在固定支撑轴 1上;
[0055] 偏心轴 2的外周侧设置有两个相互呈 180°对称分布的第一偏心环 21和第二偏心 环 22, 第一内摆铁芯 51通过第一轴承 91套接在第一偏心环 21的外侧, 第二内摆 铁芯 52通过第二轴承 92套接在第二偏心环 22的外侧;
[0056] 第一内摆铁芯 51的盘面上设置有呈圆周阵列分布的第一拨动孔 512, 第二内摆 铁芯 52的盘面上设置有呈圆周阵列分布的第二拨动孔 522, 限位销钉 7呈圆周陈 列固定连接在销钉支撑架 4的盘面上, 限位销钉 7的外径小于第一拨动孔 512和第 二拨动孔 522的内径, 每个限位销钉 7依次穿过一个第一拨动孔 512和一个第二拨 动孔 522;
[0057] 输入转轴 3为电机的空心转轴, 输入转轴 3转动设置在固定支撑轴 1的外侧, 偏 心轴 2转动设置在固定支撑轴 1的外侧; 输入转轴 3通过转动连接结构驱动偏心轴 2转动;
[0058] 偏心轴 2转动时, 驱动第一内摆铁芯 51和第二内摆铁芯 52转动和摆动一个周期 , 由于限位销钉 7的限制作用, 第一内摆铁芯 51和第二内摆铁芯 52只能摆动, 不 能绕固定支撑轴 1完成公转;
[0059] 第一内摆铁芯 51和第二内摆铁芯 52摆动过程中, 由于第一内转磁钢 511、 第二 外转磁钢 521和外转磁钢 61的磁力作用, 外转铁芯 6绕固定支撑轴 1公转。
[0060] 本实施例中, 固定支撑轴 1的外侧设置有第三轴承 93和第四轴承 94;
[0061] 输入转轴 3第二端通过第三轴承 93转动设置在固定支撑轴 1的外侧;
[0062] 输入转轴 3接近第一端的内侧通过第四轴承 94转动设置在固定支撑轴 1的外侧。
[0063] 本实施例中, 还包括第五轴承 95和第六轴承 96;
[0064] 偏心轴 2的第一端通过第五轴承 95转动设置在固定支撑轴 1的外侧;
[0065] 偏心轴 2的第二端通过第六轴承 96转动设置在固定支撑轴 1的外侧。
[0066] 本实施例中, 输入转轴 3的第二端套接在偏心轴 2的第一端的外侧;
[0067] 输入转轴 3的第二端的壁体设置有第一销槽 31, 偏心轴 2的第二端的壁体设置有 第二销槽 23 , 通过销键连接第一销槽 31和第二销槽 23 ;
[0068] 销键、 第一销槽 31和第二销槽 23构成转动连接结构。
[0069] 本实施例中, 还包括减速后支架 02、 第七轴承 97、 减速前支架 03和第八轴承 98
[0070] 第七轴承 97的内侧套接在销钉支撑架 4的外周面上, 减速后支架 02套接在第七 轴承 97的外圈上;
[0071] 第八轴承 98的内侧套接在固定支撑轴 1的接近前端的外圆周上, 减速前支架 03 的内圈套接在第八轴承 98的外圈上。
[0072] 本实施例中, 减速后支架 02位于第一内摆铁芯 51的后侧, 减速前支架 03位于第 二内摆铁芯 52的前侧; [0073] 减速后支架 02通过螺栓依次连接减速后支架 02、 外转铁芯 6和减速前支架 03。
[0074] 本实施例中, 还包括第九轴承 99和电机第一端盖 05 ;
[0075] 第九轴承 99的内圈套接在输入转轴 3的第二端的外侧, 第九轴承 99的外圈套接 在电机第一端盖 05的内圈上;
[0076] 电机第一端盖 05通过螺栓固定连接销钉支撑架 4。
[0077] 本实施例中, 第七轴承 97的部分内侧套接在电机第一端盖 05的外圈上。
[0078] 本实施例中, 还包括电机定子铁芯 06、 电机第二端盖 07和电机磁钢 08 ;
[0079] 电机第二端盖 07固定连接在固定支撑轴 1的外侧的右端部, 电机定子铁芯 06设 置于电机第一端盖 05和电机第二端盖 07之间;
[0080] 通过长螺栓固定连接电机第一端盖 05、 电机定子铁芯 06和电机第二端盖 07 ;
[0081] 输入转轴 3的外圈设置电机磁钢 08, 电机磁钢 08位于电机定子铁芯 06的内侧。
[0082] 本实施例中, 外转铁芯 6位于第一内摆铁芯 51和第二内摆铁芯 52之间; 外转铁 芯 6与第一内摆铁芯 51之间设置有第一推力轴承 091, 外转铁芯 6与第二内摆铁芯 52之间设置有第二推力轴承 092。
[0083] 传统机械结构减速机主要由齿轮啮合传动, 存在摩擦损耗、 机械疲劳、 噪音震 动等不利因素, 且维护繁琐, 不具有过载保护能力。
[0084] 常规技术的基于磁场调制技术的轴向磁场磁齿轮减速机: 第一, 理论上, 起磁 场调制作用的调磁铁芯极 (齿) 数必须满足约束条件, 从而导致磁性齿轮在运 转传动的任意时刻都有一半以上的永磁体磁极处于闲置的非耦合状态, 永磁体 异极性磁极的耦合面积理论上就低于 50% ; 第二, 从结构上看, 调磁铁芯的存在 必然使磁性齿轮具有两个气隙, 将消耗永磁体的大量磁动势, 导致处于耦合工 作状态的永磁体磁通量降低, 从而影响所传递的扭矩大小; 第三, 调磁铁芯的 存在使得气隙磁阻与磁势交变, 导致扭矩周期性脉动, 不仅影响传动精度, 而 且调磁铁芯所受的机械扭矩大, 其结构强度也是影响其寿命的主要因素。
[0085] 本发明中: 第一内摆铁芯 51前表面分布有 P2对极永磁体, 第二内摆铁芯 52的后 表面分布有 P2对极永磁体, 外转铁芯 6的两侧表表面各分布有 P1对极永磁体, 0 < P1-P2<3 , PK P2为正整数。 外转磁钢 61与第一内转磁钢 511和第二外转磁钢 5 21之间存在气隙, 借鉴少齿差行星齿轮传动的原理, 将输入转轴 3的自转通过偏 心轴 2结构转换为第一内摆铁芯 51和第二内摆铁芯 52的转动和公转, 由于限位销 钉 7的限位作用, 第一内摆铁芯 51和第二内摆铁芯 52的只摆动不公转, 加上永磁 材料 N极与 S极异极性耦合同性相吸异性相斥的原理来实现外圈铁芯 4的自转, 输 入转轴 3转动一圈, 外转铁芯 4转动 2片磁钢的距离, 起到减速的作用, 实现无机 械接触、 无摩擦的动力变速传动。
[0086] 本发明中, 以图 3剖视图中的左右为“左”、 “右”进行方位上的描述; 该图中, 左侧为电机第二端盖、 右侧为电机第一端盖。
[0087] 对本领域的技术人员来说, 可根据以上描述的技术方案以及构思, 做出其它各 种相应的改变以及形变, 而所有的这些改变以及形变都应该属于本发明权利要 求的保护范围之内。
[0088] 需要说明的是: 以上的实施例仅仅是本发明一部分实施例, 而不是全部的实施 例。 实施例和所附权利要求书中所使用的单数形式的“第一”、 “第二”、 “一种”、
“”和“该”也旨在包括多数形式, 除非上下文清楚地表示其他含义。 “第一”和“第 二”只是为了说明的方便, 不表示有先后顺序之分。
[0089] 本发明的不局限于上述实施例, 本发明的上述各个实施例的技术方案彼此可以 交叉组合形成新的技术方案, 另外凡采用等同替换形成的技术方案, 均落在本 发明要求的保护范围内。
[0090]

Claims

权利要求书
[权利要求 1] 一种双摆轮轴向结构磁能减速机, 其特征在于, 包括固定支撑轴 a ) 、 偏心轴 (2) 、 输入转轴 (3) 、 销钉支撑架 (4) 、 第一内摆铁 芯 (51) 第二内摆铁芯 (52) 外转铁芯 (6) 设置在外转铁芯
(6) 两侧壁面呈圆周阵列分布的外转磁钢 (61) 设置在第一内摆 铁芯 (51) 前侧壁面的呈圆周阵列分布的第一内转磁钢 (511) 设 置在第二内摆铁芯 (52) 后侧壁面的呈圆周阵列分布的第二外转磁钢
(521) 和 3个以上的限位销钉 (7) ;
所述外转铁芯 (6) 后侧壁面的外转磁钢 (61) 对着所述第一内转磁 钢 (511) 所述外转铁芯 (6) 前侧壁面的外转磁钢 (61) 对着所述 第二外转磁钢 (521) ;
所述销钉支撑架 (4) 固定在所述固定支撑轴 (1) 上;
所述偏心轴 (2) 的外周侧设置有两个相互呈 180°对称分布的第一偏 心环 (21) 和第二偏心环 (22) 所述第一内摆铁芯 (51) 通过第一 轴承 (91) 套接在所述第一偏心环 (21) 的外侧, 所述第二内摆铁芯 (52) 通过第二轴承 (92) 套接在所述第二偏心环 (22) 的外侧; 所述第一内摆铁芯 (51) 的盘面上设置有呈圆周阵列分布的第一拨动 孔 (512) 所述第二内摆铁芯 (52) 的盘面上设置有呈圆周阵列分 布的第二拨动孔 (522) 所述限位销钉 (7) 呈圆周陈列固定连接在 所述销钉支撑架 (4) 的盘面上, 所述限位销钉 (7) 的外径小于所述 第一拨动孔 (512) 和第二拨动孔 (522) 的内径, 每个所述限位销钉
(7) 依次穿过一个所述第一拨动孔 (512) 和一个所述第二拨动孔 ( 522) ;
所述输入转轴 (3) 为电机的空心转轴, 所述输入转轴 (3) 转动设置 在所述固定支撑轴 (1) 的外侧, 所述偏心轴 (2) 转动设置在所述固 定支撑轴 (1) 的外侧; 所述输入转轴 (3) 通过转动连接结构驱动所 述偏心轴 (2) 转动;
所述偏心轴 (2) 转动时, 驱动所述第一内摆铁芯 (51) 和第二内摆 铁芯 (52) 转动和摆动一个周期, 由于所述限位销钉 (7) 的限制作 用, 所述第一内摆铁芯 (51) 和第二内摆铁芯 (52) 只能摆动, 不能 绕所述固定支撑轴 (1) 完成公转;
所述第一内摆铁芯 (51) 和第二内摆铁芯 (52) 摆动过程中, 由于所 述第一内转磁钢 (511) 、 第二外转磁钢 (521) 和外转磁钢 (61) 的 磁力作用, 所述外转铁芯 (6) 绕所述固定支撑轴 (1) 公转。
[权利要求 2] 如权利要求 1所述双摆轮轴向结构磁能减速机, 其特征在于, 所述固 定支撑轴 (1) 的外侧设置有第三轴承 (93) 和第四轴承 (94) ; 所述输入转轴 (3) 第二端通过所述第三轴承 (93) 转动设置在所述 固定支撑轴 (1) 的外侧;
所述输入转轴 (3) 接近第一端的内侧通过第四轴承 (94) 转动设置 在所述固定支撑轴 (1) 的外侧。
[权利要求 3] 如权利要求 2所述双摆轮轴向结构磁能减速机, 其特征在于, 还包括 第五轴承 (95) 和第六轴承 (96) ;
所述偏心轴 (2) 的第一端通过所述第五轴承 (95) 转动设置在所述 固定支撑轴 (1) 的外侧;
所述偏心轴 (2) 的第二端通过所述第六轴承 (96) 转动设置在所述 固定支撑轴 (1) 的外侧。
[权利要求 4] 如权利要求 3所述双摆轮轴向结构磁能减速机, 其特征在于, 所述输 入转轴 (3) 的第二端套接在所述偏心轴 (2) 的第一端的外侧; 所述输入转轴 (3) 的第二端的壁体设置有第一销槽 (31) , 所述偏 心轴 (2) 的第二端的壁体设置有第二销槽 (23) , 通过销键连接所 述第一销槽 (31) 和第二销槽 (23) ;
所述销键、 第一销槽 (31) 和第二销槽 (23) 构成转动连接结构。
[权利要求 5] 如权利要求 4所述双摆轮轴向结构磁能减速机, 其特征在于, 还包括 减速后支架 (02) 、 第七轴承 (97) 、 减速前支架 (03) 和第八轴承 (98) ;
所述第七轴承 (97) 的内侧套接在所述销钉支撑架 (4) 的外周面上 , 所述减速后支架 (02) 套接在所述第七轴承 (97) 的外圈上;
所述第八轴承 (98) 的内侧套接在所述固定支撑轴 (1) 的接近前端 的外圆周上, 所述减速前支架 (03) 的内圈套接在所述第八轴承 (98 ) 的外圈上。
[权利要求 6] 如权利要求 5所述双摆轮轴向结构磁能减速机, 其特征在于, 所述减 速后支架 (02) 位于所述第一内摆铁芯 (51) 的后侧, 所述减速前支 架 (03) 位于所述第二内摆铁芯 (52) 的前侧;
所述减速后支架 (02) 通过螺栓依次连接减速后支架 (02) 、 外转铁 芯 (6) 和减速前支架 (03) 。
[权利要求 7] 如权利要求 1所述双摆轮轴向结构磁能减速机, 其特征在于, 所述外 转铁芯 (6) 位于所述第一内摆铁芯 (51) 和第二内摆铁芯 (52) 之 间; 所述外转铁芯 (6) 与所述第一内摆铁芯 (51) 之间设置有第一 推力轴承 (091) , 所述外转铁芯 (6) 与所述第二内摆铁芯 (52) 之 间设置有第二推力轴承 (092) 。
PCT/CN2018/107933 2018-09-27 2018-09-27 双摆轮轴向结构磁能减速机 WO2020061897A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107933 WO2020061897A1 (zh) 2018-09-27 2018-09-27 双摆轮轴向结构磁能减速机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107933 WO2020061897A1 (zh) 2018-09-27 2018-09-27 双摆轮轴向结构磁能减速机

Publications (1)

Publication Number Publication Date
WO2020061897A1 true WO2020061897A1 (zh) 2020-04-02

Family

ID=69953238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107933 WO2020061897A1 (zh) 2018-09-27 2018-09-27 双摆轮轴向结构磁能减速机

Country Status (1)

Country Link
WO (1) WO2020061897A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199562A (zh) * 2018-03-22 2018-06-22 大连交通大学 一种同轴双端输出的集成式永磁传动装置
CN108566040A (zh) * 2018-06-08 2018-09-21 深圳超磁机器人科技有限公司 一种嵌入式外转电机减速一体机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199562A (zh) * 2018-03-22 2018-06-22 大连交通大学 一种同轴双端输出的集成式永磁传动装置
CN108566040A (zh) * 2018-06-08 2018-09-21 深圳超磁机器人科技有限公司 一种嵌入式外转电机减速一体机

Similar Documents

Publication Publication Date Title
JP2008175199A5 (zh)
KR20150091225A (ko) 기어 감속 장치, 세탁기 및 세탁 방법
TW201402974A (zh) 球帶面磁性耦合傳動機構及其應用
CN102447376A (zh) 磁性齿轮及磁性传动装置
WO2020061897A1 (zh) 双摆轮轴向结构磁能减速机
CN110336451A (zh) 一种复合式偏心磁力谐波齿轮传动装置
CN208885903U (zh) 一种双摆轮轴向结构磁能减速机
CN109424701A (zh) 减速器和带有减速器的电动机
CN106411011B (zh) 水内冷电机转子
TW201305440A (zh) 磁動力旋轉動力源
CN208782710U (zh) 一种双摆轮径向结构磁能减速机
WO2020061896A1 (zh) 双摆轮径向结构磁能减速机
WO2012029168A1 (ja) 円盤型同軸反転式発電機及び該円盤型同軸反転式発電機を用いた風力発電装置
CN110971073A (zh) 一种永磁减速传动的电机
CN109067139B (zh) 一种摆轮轴向结构磁能减速机
CN202091389U (zh) 转销式联轴器
CN207939391U (zh) 一种同轴摆线式永磁齿轮传动装置
WO2020061895A1 (zh) 摆轮径向结构磁能减速机
CN109039013B (zh) 一种双摆轮径向结构磁能减速机
TWI452825B (zh) 整合外轉式直流無刷馬達的同心式磁性齒輪減速機
CN209620151U (zh) 一种电机直驱式行走机构及大型挖掘机
CN114069999A (zh) 一种并轴式双转子永磁同步电机结构
WO2020061894A1 (zh) 摆轮轴向结构磁能减速机
CN202280810U (zh) 少极差偏心盘形磁齿轮的行星轮平衡对称布置新结构
TWI505610B (zh) 具減速機構之交流馬達

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934558

Country of ref document: EP

Kind code of ref document: A1