WO2020061894A1 - 摆轮轴向结构磁能减速机 - Google Patents

摆轮轴向结构磁能减速机 Download PDF

Info

Publication number
WO2020061894A1
WO2020061894A1 PCT/CN2018/107928 CN2018107928W WO2020061894A1 WO 2020061894 A1 WO2020061894 A1 WO 2020061894A1 CN 2018107928 W CN2018107928 W CN 2018107928W WO 2020061894 A1 WO2020061894 A1 WO 2020061894A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
output
eccentric
magnetic
disk
Prior art date
Application number
PCT/CN2018/107928
Other languages
English (en)
French (fr)
Inventor
张天洪
李渊
黄勇军
Original Assignee
深圳超磁机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳超磁机器人科技有限公司 filed Critical 深圳超磁机器人科技有限公司
Priority to PCT/CN2018/107928 priority Critical patent/WO2020061894A1/zh
Publication of WO2020061894A1 publication Critical patent/WO2020061894A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type

Definitions

  • the present invention relates to the technical field of mechanical transmission, and in particular, to a magnetic energy reducer with an axial structure of a balance wheel.
  • the traditional mechanical structure reducer is mainly driven by gear meshing. It has disadvantages such as large friction loss, rapid development of mechanical fatigue, large noise, strong vibration, etc., and does not have overload protection capability.
  • the technical problem to be solved by the present invention is to provide a magnetic energy reducer with an axial structure of a balance wheel, which has small friction loss, slow development of mechanical fatigue, low noise, and overload protection capability.
  • a magnetic energy reducer with an axial structure of a balance wheel comprising a rotating shaft, an eccentric wheel, an eccentric swing disk, a left-side disk core, an output turntable and a pin;
  • the eccentric wheel is sleeved on the outside of the rotating shaft, and the eccentric swing disk is rotatably disposed on the outside of the eccentric wheel;
  • the disk surface of the eccentric wobble plate is provided with toggle holes distributed in a circular array, the number of pins is more than three, the pins are fixed on the disk surface of the output turntable, and each pin is located in a toggle hole hole.
  • the outer diameter is smaller than the inner diameter of the toggle hole;
  • the left side of the eccentric wobble plate is bonded with more than 4 pieces of right magnetic steel distributed in a circular array, and the right side of the left disk core is bonded with more than 4 pieces of left magnetic steel distributed in a circular array.
  • the right magnetic steel is opposite to the left magnetic steel; the magnetic poles on the same side of the right magnetic steel are spaced apart from the N and S poles, and the magnetic poles on the same side of the left magnetic steel are spaced apart from the N and S poles;
  • the output turntable is arranged on the rotating shaft through a bearing rotation
  • the left disc iron core is fixed, and when the rotating shaft rotates one turn, the eccentric wheel is driven to rotate, and the eccentric wheel drives the eccentric swing disc to swing for one cycle;
  • two pieces of right-side magnetic steel two The faces are N and S poles respectively, and the N and S poles on the same side of two adjacent right-side magnetic steels are arranged adjacent to each other.
  • the N pole and S grade are arranged adjacent to each other on the same side of the left magnetic steel, and the two adjacent left magnetic steels form a virtual tooth);
  • the toggle hole rotates the pin to revolve around the axis of the rotation axis, and the pin drives the output dial to Out-of-steering output concentric torque.
  • it further comprises a pin bearing, the pin bearing is assembled at the toggle hole, the inner ring of the pin bearing is assembled with the toggle hole, the inner diameter of the inner ring of the pin bearing is greater than the outer diameter of the pin; The inner ring of the bearing toggles the pin.
  • it further comprises an output disk seat and an output bearing, the output disk seat is sleeved on the rotating shaft, the inner side of the output bearing is sleeved on the outside of the output disk seat, and the outside of the output bearing is sleeved on the inside of the output dial.
  • the number of output bearings is more than one.
  • the output bearings are two output bearings arranged side by side.
  • a second thrust bearing is provided between the eccentric swing disk and the left disk iron core, and the second thrust bearing is located outside the right magnetic steel and the left magnetic steel.
  • the method further includes a first rotation bearing and a second rotation bearing.
  • the inside of the first rotation bearing and the second rotation bearing is sleeved with an eccentric, and the outside of the first rotation bearing and the second rotation bearing is sleeved with an eccentric swing.
  • the first rotary bearing and the second rotary bearing are arranged side by side; or, the first rotary bearing and the second rotary bearing are replaced by one or more rotary bearings.
  • it further comprises a motor end cover, a first annular array hole is provided on the left end surface of the left disk iron core, a second annular array hole is provided on the motor end cover, and the motor end cover and the left disk iron are provided.
  • the cores are connected through the second circular array hole and the first circular array hole.
  • the rotating shaft passes through the middle of the motor end cover, and the rotating shaft also serves as the output shaft of the motor.
  • it further includes a thrust bearing, and the left half of the rotating shaft is provided with a first annular step;
  • the sleeve of the thrust bearing is connected to the rotating shaft
  • the left side of the thrust bearing abuts the right side of the first annular step and at the same time on the center plane of the motor end cover, and the right side of the thrust bearing abuts the left side of the eccentric.
  • it further includes a bearing gland and a fastening bolt, and a threaded hole is provided in the middle of the right end of the rotating shaft;
  • the fastening bolt fastens the bearing gland at the right end of the shaft
  • the right side wall surface of the output tray seat abuts against the bearing gland.
  • the left half of the output tray seat is provided with a third annular step;
  • a magnetic energy reducer with an axial structure of a balance wheel comprising a rotating shaft, an eccentric wheel, an eccentric oscillating disc, a left-side disc core, an output turntable and a pin;
  • the swing disk is sleeved on the outside of the eccentric wheel;
  • the disk surface of the eccentric swing disk is provided with toggle holes distributed in a circular array, the number of pins is more than 3, and the pins are fixed on the disk surface of the output turntable, and each pin is located on a dial Inside the moving hole, the outer diameter of the pin is smaller than the inside diameter of the toggle hole;
  • the left side of the eccentric swing disk is bonded with more than 4 pieces of right magnetic steel distributed in a circular array, and the right side of the left disk core is bonded.
  • the right magnetic steel is opposite to the left magnetic steel; the output turntable is set on the shaft; the left disk iron core is fixed.
  • the wheel drives the eccentric oscillating disk to swing; due to the interaction between the right magnetic steel and the left magnetic steel, the eccentric oscillating disk will rotate the distance of the two pieces of right magnetic steel about the axis of the rotation axis during the swing process;
  • the toggle hole rotates the pin to revolve around the axis of the rotating shaft, and the pin drives the output turntable to output concentric torque from outside the steering.
  • the right magnetic steel and the left magnetic steel are used to transmit power, with small friction loss, slow development of mechanical fatigue, low noise, and overload protection.
  • the eccentric oscillating disc and the left-side disc iron core are installed through an eccentric wheel. There is an air gap between the eccentric oscillating disc and the left-side disc iron core. Drawing on the principle of planetary gear transmission with little tooth difference, the rotation of the rotating shaft is passed through the eccentric wheel structure The revolution of the left-side disc core (when the left-side disc core is fixed, the eccentric wobble disc revolves while revolving), plus the principle of attracting and repulsing the opposite pole phase of the permanent magnet material to realize the rotation of the eccentric wobble disc. The concentric torque is output through the output turntable to play a decelerating role, and achieve the beneficial effects of the invention of a non-mechanical contact and frictionless power transmission transmission transmission
  • the present invention adopts the corresponding interaction between magnetic steels to transmit power, no friction loss, no mechanical fatigue, low noise, overload protection ability, not easy to damage, compared with mechanical reduction gears, reliability and long life Increased.
  • FIG. 1 is a schematic structural view of a first angle of view of an axial structure magnetic energy reducer of the present invention.
  • FIG. 2 is a schematic structural view of a second perspective of a magnetic energy reducer with an axial structure of a balance wheel according to the present invention.
  • FIG. 3 is a schematic structural view of a third perspective of a balancer axial structure magnetic energy reducer according to the present invention, without a motor end cover installed.
  • FIG. 4 is a cross-sectional view taken along the line A-A in FIG. 3 of a magnetic energy reducer having an axial structure of a balance wheel according to the present invention.
  • FIG. 5 is an exploded view of an axial structure magnetic energy reducer of the present invention.
  • FIG. 6 is a perspective view of a three-dimensional structure of a rotating shaft of a magnetic energy reducer having an axial structure of a balance wheel according to the present invention.
  • FIG. 7 is a perspective view of a three-dimensional structure of an eccentric oscillating disk of an axial structure magnetic energy reducer of the present invention.
  • FIG. 8 is a perspective view of the eccentric oscillating disk of a magnetic energy reducer with an axial structure of a balance wheel according to another aspect of the present invention.
  • FIG. 9 is a perspective view of a three-dimensional structure of a left-side disc core of a magnetic energy reducer having an axial structure of a balance wheel according to the present invention.
  • FIG. 10 is a schematic perspective view of a three-dimensional structure of an output disk seat of an axial structure magnetic energy reducer of the present invention.
  • FIG. 11 is a perspective view of a three-dimensional structure of an output turntable of an axial structure magnetic energy reducer of the present invention.
  • the present invention provides a magnetic energy reducer with an axial structure of a balance wheel.
  • a magnetic energy reducer with an axial structure of a balance wheel comprising a rotating shaft 1, an eccentric wheel 2, an eccentric swing disk 3, a left-side disk core 4, an output turntable 5 and a pin 6;
  • the eccentric wheel 2 is sleeved on the outside of the rotating shaft 1, and the eccentric swing disk 3 is rotatably disposed on the outside of the eccentric wheel 2;
  • the dial surface of the eccentric wobble disk 3 is provided with toggle holes 31 distributed in a circular array, the number of pins 6 is more than three, the pins 6 are fixed on the disk surface of the output turntable 5, and each pin 6 is located on a dial.
  • the outer diameter of the pin 6 is smaller than the inner diameter of the toggle hole 31;
  • the left side of the eccentric wobble disk 3 is bonded with more than 4 pieces of the right magnetic steel 7 distributed in a circular array, and the right side of the left disk core 4 is bonded with more than 4 pieces in a circular array distributed to the left Magnetic steel 8, right magnetic steel 7 is opposite to left magnetic steel 8; magnetic poles N and S poles on the same side of right magnetic steel 7 are spaced apart, and magnetic poles N on the same side of left magnetic steel 8 And S pole interval setting;
  • the output dial 5 is rotatably disposed on the rotating shaft 1;
  • the left-side disc core 4 is fixed, and when the rotating shaft 1 rotates one turn, the eccentric wheel 2 is driven to rotate, and the eccentric wheel 2 drives the eccentric swing disc 3 to swing for one cycle;
  • the left magnetic steel 8 interacts.
  • the toggle hole 31 dials the pin 6 to revolve around the axis of the rotation shaft 1.
  • the pin 6 drives The output dial 5 outputs concentric torque from outside the steering.
  • the right magnetic steel 7 and the left magnetic steel 8 are used to transmit power, with small friction loss, slow development of mechanical fatigue, low noise, and overload protection capability.
  • the eccentric oscillating disc 3 and the left side disc core 4 are installed through the eccentric wheel 2. There is an air gap between the eccentric oscillating disc 3 and the left side disc core 4, referring to the principle of planetary gear transmission with small tooth difference, the rotating shaft 1
  • the rotation of the eccentric wheel 2 is converted into the left-side disc core 4 (the left-side disc core 4 is fixed, and the eccentric swing disc 3 is swung and revolved at the same time).
  • the principle of coupled phase attraction is used to realize the rotation of the eccentric wobble disc 3, and the concentric torque is output through the output turntable 5, which plays a decelerating role and realizes a non-mechanical contact and frictionless power variable speed transmission.
  • a pin bearing 91 is further included, the pin bearing 91 is assembled at the toggle hole 31, the inner ring of the pin bearing 91 is assembled with the toggle hole 31, and the inner diameter of the inner ring of the pin bearing 91 Larger than the outer diameter of the pin 6; the inner ring of the pin bearing 91 toggles the pin 6.
  • a pin key 05 is further included, the pin 1 and the eccentric 2 are provided with a pin key groove, and the pin key 05 is assembled into a pin In the keyway, the assembly of the eccentric wheel 2 and the rotating shaft 1 is realized.
  • This embodiment further includes an output disk base 10 and an output bearing 92.
  • the output disk base 10 is sleeved on the rotating shaft 1.
  • the inside of the output bearing 92 is sleeved on the outside of the output disk base 10 and the outside of the output bearing 92. Socketed on the inside of the output dial 5.
  • the number of the output bearings 92 is two, and the two output bearings 92 are arranged side by side.
  • a second thrust bearing 08 may be disposed between the eccentric wobble disc 3 and the left-side disc core 4.
  • the second thrust bearing 08 is located outside the right magnetic steel 7 and the left magnetic steel 8.
  • this embodiment further includes a first rotation bearing 93 and a second rotation bearing 94, and the inside of the first rotation bearing 93 and the second rotation bearing 94 is sleeved with the eccentric 2, the first rotation bearing 93 and the second rotation
  • the outer side of the bearing 94 is sleeved on the inner side of the eccentric wobble disk 3, and the first rotary bearing 93 and the second rotary bearing 94 are arranged side by side; or, the first rotary bearing 93 and the second rotary bearing 94 are replaced by one rotary bearing.
  • a motor end cover 04 a left end face of the left disc core 4 is provided with a first annular array hole 41, a motor end cover 04 is provided with a second ring array hole 041, a motor The end cover 04 and the left disk core 4 are connected through a second annular array hole 041 and a first annular array hole 41.
  • the rotating shaft 1 passes through the middle of the motor end cover 04, and the rotating shaft 1 also serves as an output shaft of the motor.
  • This embodiment further includes a first thrust bearing 01, and the left half of the rotating shaft 1 is provided with a first annular step 1 1;
  • the first thrust bearing 01 is sleeved on the rotating shaft 1;
  • the left side of the first thrust bearing 01 abuts the right side of the first annular step 11, and at the same time abuts on the center plane of the motor end cover 04 (the main source of stopping force).
  • the right side faces the left side of the eccentric wheel 2.
  • a spacer 09 is provided between the right side surface of the first thrust bearing 01 and the left side surface of the eccentric wheel 2.
  • it further includes a bearing gland 02 and a fastening bolt 03, and a middle portion of a right end portion of the rotating shaft 1 is provided with a threaded hole;
  • the fastening bolt 03 fastens the bearing gland 02 to the right end of the rotating shaft 1;
  • the left half of the output tray base 10 is provided with a third annular step 101; [0069] The left wall surface of the inner ring of the left output bearing 92 abuts the right wall surface of the third annular step 101; the right wall surface of the inner ring of the right output bearing 92 abuts the left side of the bearing gland 02 Wall surface.
  • the reducer of the traditional mechanical structure is mainly driven by gear meshing.
  • There are disadvantages such as friction loss, mechanical fatigue, noise vibration, etc., and the maintenance cycle is short and tedious, and it does not have overload protection capability.
  • the conventional axial magnetic field gear reducer based on magnetic field modulation technology First, in theory, the number of magnet cores (tooths) that play a role in magnetic field modulation must meet the constraint conditions, which results in the magnetic gear being driven in operation. At any time, more than half of the permanent magnet poles are in an idle, uncoupled state, and the coupling area of the permanent magnet poles is theoretically lower than 50%. Second, from the structural point of view, the existence of the tuned magnetic core inevitably makes the magnetic The gear has two air gaps, which will consume a large amount of magnetomotive force of the permanent magnets, resulting in a decrease in the magnetic flux of the permanent magnets in the coupled working state, thereby affecting the magnitude of the transmitted torque.
  • the existence of the adjusted magnetic core makes the air gap magnetic resistance and The alternation of magnetic potential causes periodic torque pulsation, which not only affects the transmission accuracy, but also the mechanical torque to which the magnet core is subjected, and its structural strength is also the main factor affecting its life.
  • P1 pair of permanent magnets are distributed on the inner surface of the eccentric wobble disk 3
  • P2 pair of permanent magnets are distributed on the outer surface of the left disk core 4, 0 ⁇ P1-P2 ⁇ 3, PI, P2 Is a positive integer.
  • the eccentric oscillating disc 3 and the left side disc core 4 are installed through the eccentric wheel 2. There is an air gap between the eccentric oscillating disc 3 and the left side disc core 4.
  • the rotation of the rotating shaft 1 is passed
  • the structure of the eccentric wheel 2 is converted to the revolution of the left disc core 4 (when the left disc core 4 is fixed, the eccentric swing disc 3 swings while revolving), plus the permanent magnet material, the N pole and the S pole are of the same polarity and opposite phase.
  • the principle of suction is used to realize the rotation of the eccentric wobble disc 3, and the concentric torque is output via the output turntable 5, which plays a role of deceleration and realizes a power-variable transmission without mechanical contact and friction.
  • the rotating shaft 1 doubles as an output shaft of the motor.

Abstract

一种摆轮轴向结构磁能减速机,包括偏心摆动盘、偏心轮和转轴;偏心摆动盘设置有拨动孔,每个固定在输出转盘的盘面上的销钉位于一个拨动孔的孔内;偏心摆动盘的左侧面贴合成圆周阵列分布的右侧磁钢,左侧盘铁芯分布左侧磁钢;输出转盘转动设置在转轴上;左侧盘铁芯固定,转轴带动偏心轮转动,偏心轮通过轴承带动偏心摆动盘摆动;由于磁钢的相互作用,偏心摆动盘摆动过程中会绕转轴的轴线转动;拨动孔拨动销钉绕转轴的轴线公转,销钉带动输出转盘自转向外输出同心转矩,采用对应磁钢间的相互作用传递动力,无摩擦损耗,无机械疲劳,噪音低,具有过载保护能力,不易损坏,相对于机械式减速齿轮来说,可靠性和寿命大幅度提升。

Description

摆轮轴向结构磁能减速机 技术领域
[0001] 本发明涉及机械传动技术领域, 具体涉及一种摆轮轴向结构磁能减速机。
背景技术
[0002] 传统机械结构减速机主要由齿轮啮合传动, 存在摩擦损耗大、 机械疲劳发展快 、 噪音大、 震动强等不利因素, 不具有过载保护能力。
发明概述
技术问题
问题的解决方案
技术解决方案
[0003] 本发明要解决的技术问题是: 提供一种摆轮轴向结构磁能减速机, 摩擦损耗小 , 机械疲劳发展慢, 噪音低, 具有过载保护能力。
[0004] 一种摆轮轴向结构磁能减速机, 包括转轴、 偏心轮、 偏心摆动盘、 左侧盘铁芯 、 输出转盘和销钉;
[0005] 偏心轮套接在转轴外侧, 偏心摆动盘转动设置在偏心轮的外侧;
[0006] 偏心摆动盘的盘面上设置有呈圆周阵列分布的拨动孔, 销钉的数量在 3个以上 , 销钉固定在输出转盘的盘面上, 每个销钉位于一个拨动孔孔内, 销钉的外径 小于拨动孔的内径;
[0007] 偏心摆动盘的左侧面贴合有 4片以上成圆周阵列分布的右侧磁钢, 左侧盘铁芯 的右侧面贴合有 4片以上成圆周阵列分布左侧磁钢, 右侧磁钢与左侧磁钢相对设 置; 右侧磁钢的同一侧面的磁极为 N极和 S极间隔设置, 左侧磁钢的同一侧面的 磁极为 N极和 S极间隔设置;
[0008] 输出转盘通过轴承转动设置在转轴上;
[0009] 左侧盘铁芯固定, 转轴转动一圈时, 带动偏心轮转动, 偏心轮带动偏心摆动盘 摆动一个周期; 偏心摆动盘摆动的同时由于右侧磁钢和左侧磁钢相互作用, 偏 心摆动盘摆动过程中会绕转轴的轴线转动两片右侧磁钢 (磁钢沿转轴方向的两 个面分别为 N极和 S极, 相邻的两个右侧磁钢的同一面 N极和 S极相邻设置, 相邻 的两个右侧磁钢构成一个虚拟齿, 相邻的两个左侧磁钢的同一面 N极和 S级相邻 设置, 相邻的两个左侧磁钢构成一个虚拟齿) 的距离; 拨动孔拨动销钉绕转轴 的轴线公转, 销钉带动输出转盘自转向外输出同心转矩。
[0010] 优选的, 还包括销轴轴承, 销轴轴承装配在拨动孔处, 销轴轴承的内圈与拨动 孔装配, 销轴轴承的内圈的内径大于销钉的外径; 销轴轴承的内圈拨动销钉。
[0011] 优选的, 还包括输出盘座和输出轴承, 输出盘座套接在转轴上, 输出轴承的内 侧套接在输出盘座的外侧, 输出轴承的外侧套接在输出转盘的内侧。
[0012] 优选的, 输出轴承的数量为一个以上。
[0013] 优选的, 输出轴承为 2个输出轴承并排设置。
[0014] 优选的, 偏心摆动盘和左侧盘铁芯之间设置有第二推力轴承, 第二推力轴承位 于右侧磁钢和左侧磁钢的外侧。
[0015] 优选的, 还包括第一转动轴承和第二转动轴承, 第一转动轴承和第二转动轴承 的内侧套接偏心轮, 第一转动轴承和第二转动轴承的外侧套接在偏心摆动盘的 内侧, 第一转动轴承和第二转动轴承并排设置; 或, 第一转动轴承和第二转动 轴承被一个或多个转动轴承替代。
[0016] 优选的, 还包括电机端盖, 左侧盘铁芯的左侧端面的设置有第一环形阵列孔, 电机端盖上设置有第二环形阵列孔, 电机端盖与左侧盘铁芯通过第二环形阵列 孔和第一环形阵列孔连接。
[0017] 优选的, 转轴从电机端盖的中部穿过, 转轴兼做电机的输出轴。
[0018] 优选的, 还包括推力轴承, 转轴的左半部分设置有第一环形台阶;
[0019] 推力轴承的套接在转轴上;
[0020] 推力轴承的左侧面抵住第一环形台阶的右侧面, 同时抵在电机端盖中心平面上 , 推力轴承的右侧面抵住偏心轮的左侧面。 优选的, 还包括轴承压盖和紧固螺 栓, 转轴的右侧端部的中部设置有螺纹孔;
[0021] 输出盘座的左侧壁面抵住偏心轮的右侧壁面;
[0022] 紧固螺栓将轴承压盖紧固在转轴的右端;
[0023] 输出盘座的右侧壁面抵住轴承压盖。 [0024] 优选的, 输出盘座的左半部分设置有第三环形台阶;
[0025] 左侧的输出轴承的内圈的左侧壁面抵住第三环形台阶的右侧壁面; 右侧的输出 轴承的内圈的右侧壁面抵住轴承压盖的左侧壁面。
[0026] 本发明的有益效果是: 一种摆轮轴向结构磁能减速机, 包括转轴、 偏心轮、 偏 心摆动盘、 左侧盘铁芯、 输出转盘和销钉; 偏心轮转动设置在转轴外侧, 偏心 摆动盘套接在偏心轮的外侧; 偏心摆动盘的盘面上设置有呈圆周阵列分布的拨 动孔, 销钉的数量在 3个以上, 销钉固定在输出转盘的盘面上, 每个销钉位于一 个拨动孔孔内, 销钉的外径小于拨动孔的内径; 偏心摆动盘的左侧面贴合有 4片 以上成圆周阵列分布的右侧磁钢, 左侧盘铁芯的右侧面贴合有 4片以上成圆周阵 列分布左侧磁钢, 右侧磁钢与左侧磁钢相对设置; 输出转盘转动设置在转轴上 ; 左侧盘铁芯固定, 转轴转动时, 带动偏心轮转动, 偏心轮带动偏心摆动盘摆 动; 由于右侧磁钢和左侧磁钢相互作用, 偏心摆动盘摆动过程中会绕转轴的轴 线转动两片右侧磁钢的距离; 拨动孔拨动销钉绕转轴的轴线公转, 销钉带动输 出转盘自转向外输出同心转矩。 采用右侧磁钢和左侧磁钢传递动力, 摩擦损耗 小, 机械疲劳发展慢, 噪音低, 具有过载保护能力。
[0027] 偏心摆动盘和左侧盘铁芯通过偏心轮安装, 偏心摆动盘和左侧盘铁芯之间存在 气隙, 借鉴少齿差行星齿轮传动的原理, 将转轴的自转通过偏心轮结构转换为 左侧盘铁芯 (左侧盘铁芯固定时, 偏心摆动盘摆动的同时公转) 的公转, 加上 永磁材料异极相吸引、 同极相排斥的原理来实现偏心摆动盘的自转, 经输出转 盘输出同心转矩, 起到减速的作用, 实现无机械接触、 无摩擦的动力变速传动 发明的有益效果
有益效果
[0028] 本发明采用对应磁钢间的相互作用传递动力, 无摩擦损耗, 无机械疲劳, 噪音 低, 具有过载保护能力, 不易损坏, 相对于于机械式减速齿轮来说, 可靠性和 寿命大幅度提升。
对附图的简要说明
附图说明 [0029] 下面结合附图对本发明的摆轮轴向结构磁能减速机作进一步说明。
[0030] 图 1是本发明一种摆轮轴向结构磁能减速机的第一个视角的结构示意图。
[0031] 图 2是本发明一种摆轮轴向结构磁能减速机的第二个视角的结构示意图。
[0032] 图 3是本发明一种摆轮轴向结构磁能减速机的第三个视角的结构示意图, 没有 安装电机端盖。
[0033] 图 4是本发明一种摆轮轴向结构磁能减速机的图 3的 A-A向的剖视图。
[0034] 图 5是本发明一种摆轮轴向结构磁能减速机的爆炸图。
[0035] 图 6是本发明一种摆轮轴向结构磁能减速机的转轴的立体结构示意图。
[0036] 图 7是本发明一种摆轮轴向结构磁能减速机的偏心摆动盘的一个视角的立体结 构示意图。
[0037] 图 8是本发明一种摆轮轴向结构磁能减速机的偏心摆动盘的另一个视角的立体 结构示意图。
[0038] 图 9是本发明一种摆轮轴向结构磁能减速机的左侧盘铁芯的立体结构示意图。
[0039] 图 10是本发明一种摆轮轴向结构磁能减速机的输出盘座的一个视角的的立体结 构示意图。
[0040] 图 11是本发明一种摆轮轴向结构磁能减速机的输出转盘的一个视角的的立体结 构示意图。
[0041] 图中:
[0042] 1-转轴; 11-第一环形台阶; 2 -偏心轮; 3 -偏心摆动盘; 31 -拨动孔; 32 -第二环 形台阶; 4 -左侧盘铁芯; 41 -第一环形阵列孔; 5 -输出转盘; 6 -销钉; 7 -右侧磁钢 ; 8 -左侧磁钢; 91 -销轴轴承; 92 -输出轴承; 93 -第一转动轴承; 94 -第二转动轴 承; 10-输出盘座; 101-第三环形台阶; 01-第一推力轴承; 02 -轴承压盖; 03 -紧 固螺栓; 04 -电机端盖; 041 -第二环形阵列孔; 05 -销键; 08 -第二推力轴承; 09- 垫片。
发明实施例
本发明的实施方式
[0043] 下面结合附图 1~11并通过具体实施方式来进一步说明本发明的技术方案。
[0044] 本发明提供了一种摆轮轴向结构磁能减速机。 [0045] 一种摆轮轴向结构磁能减速机, 包括转轴 1、 偏心轮 2、 偏心摆动盘 3、 左侧盘 铁芯 4、 输出转盘 5和销钉 6;
[0046] 偏心轮 2套接在转轴 1外侧, 偏心摆动盘 3转动设置在偏心轮 2的外侧;
[0047] 偏心摆动盘 3的盘面上设置有呈圆周阵列分布的拨动孔 31, 销钉 6的数量在 3个 以上, 销钉 6固定在输出转盘 5的盘面上, 每个销钉 6位于一个拨动孔 31孔内, 销 钉 6的外径小于拨动孔 31的内径;
[0048] 偏心摆动盘 3的左侧面贴合有 4片以上成圆周阵列分布的右侧磁钢 7 , 左侧盘铁 芯 4的右侧面贴合有 4片以上成圆周阵列分布左侧磁钢 8 , 右侧磁钢 7与左侧磁钢 8 相对设置; 右侧磁钢 7的同一侧面的磁极为 N极和 S极间隔设置, 左侧磁钢 8的同 一侧面的磁极为 N极和 S极间隔设置;
[0049] 输出转盘 5转动设置在转轴 1上;
[0050] 左侧盘铁芯 4固定, 转轴 1转动一圈时, 带动偏心轮 2转动, 偏心轮 2带动偏心摆 动盘 3摆动一个周期; 偏心摆动盘 3摆动的同时由于右侧磁钢 7和左侧磁钢 8相互 作用, 偏心摆动盘 3摆动过程中会绕转轴 1的轴线转动两片右侧磁钢 7的距离; 拨 动孔 31拨动销钉 6绕转轴 1的轴线公转, 销钉 6带动输出转盘 5自转向外输出同心 转矩。
[0051] 采用右侧磁钢 7和左侧磁钢 8传递动力, 摩擦损耗小, 机械疲劳发展慢, 噪音低 , 具有过载保护能力。
[0052] 偏心摆动盘 3和左侧盘铁芯 4通过偏心轮 2安装, 偏心摆动盘 3和左侧盘铁芯 4之 间存在气隙, 借鉴少齿差行星齿轮传动的原理, 将转轴 1的自转通过偏心轮 2结 构转换为左侧盘铁芯 4 (左侧盘铁芯 4固定时, 偏心摆动盘 3摆动的同时公转) 的 公转, 加上永磁材料 N极与 S极异极性耦合相吸引的原理来实现偏心摆动盘 3的自 转, 经输出转盘 5输出同心转矩, 起到减速的作用, 实现无机械接触、 无摩擦的 动力变速传动。
[0053] 本实施例中, 还包括销轴轴承 91, 销轴轴承 91装配在拨动孔 31处, 销轴轴承 91 的内圈与拨动孔 31装配, 销轴轴承 91的内圈的内径大于销钉 6的外径; 销轴轴承 91的内圈拨动销钉 6。
[0054] 本实施例中, 还包括销键 05, 转轴 1和偏心轮 2设置有销键槽, 销键 05装配入销 键槽中, 实现偏心轮 2与转轴 1的装配。
[0055] 本实施例中, 还包括输出盘座 10和输出轴承 92, 输出盘座 10套接在转轴 1上, 输出轴承 92的内侧套接在输出盘座 10的外侧, 输出轴承 92的外侧套接在输出转 盘 5的内侧。
[0056] 本实施例中, 输出轴承 92的数量为 2个, 2个输出轴承 92并排设置。
[0057] 本实施例中, 偏心摆动盘 3和左侧盘铁芯 4之间可以设置有第二推力轴承 08, 第 二推力轴承 08位于右侧磁钢 7和左侧磁钢 8的外侧。
[0058] 本实施例中, 还包括第一转动轴承 93和第二转动轴承 94, 第一转动轴承 93和第 二转动轴承 94的内侧套接偏心轮 2, 第一转动轴承 93和第二转动轴承 94的外侧套 接在偏心摆动盘 3的内侧, 第一转动轴承 93和第二转动轴承 94并排设置; 或, 第 一转动轴承 93和第二转动轴承 94被一个转动轴承替代。
[0059] 本实施例中, 还包括电机端盖 04, 左侧盘铁芯 4的左侧端面的设置有第一环形 阵列孔 41, 电机端盖 04上设置有第二环形阵列孔 041, 电机端盖 04与左侧盘铁芯 4通过第二环形阵列孔 041和第一环形阵列孔 41连接。
[0060] 本实施例中, 转轴 1从电机端盖 04的中部穿过, 转轴 1兼做电机的输出轴。
[0061] 本实施例中, 还包括第一推力轴承 01, 转轴 1的左半部分设置有第一环形台阶 1 1 ;
[0062] 第一推力轴承 01的套接在转轴 1上;
[0063] 第一推力轴承 01的左侧面抵住第一环形台阶 11的右侧面, 同时抵住电机端盖 04 的中心平面上 (止挡力的主要来源) , 第一推力轴承 01的右侧面抵住偏心轮 2的 左侧面。
[0064] 本实施例中, 第一推力轴承 01的右侧面和偏心轮 2的左侧面之间设置有垫片 09 。 本实施例中, 还包括轴承压盖 02和紧固螺栓 03 , 转轴 1的右侧端部的中部设置 有螺纹孔;
[0065] 输出盘座 10的左侧壁面抵住偏心轮 2的右侧壁面;
[0066] 紧固螺栓 03将轴承压盖 02紧固在转轴 1的右端;
[0067] 输出盘座 10的右侧壁面抵住轴承压盖 02。
[0068] 本实施例中, 输出盘座 10的左半部分设置有第三环形台阶 101 ; [0069] 左侧的输出轴承 92的内圈的左侧壁面抵住第三环形台阶 101的右侧壁面; 右侧 的输出轴承 92的内圈的右侧壁面抵住轴承压盖 02的左侧壁面。
[0070] 传统机械结构减速机主要由齿轮啮合传动, 存在摩擦损耗、 机械疲劳、 噪音震 动等不利因素, 且维护周期短而繁琐, 不具有过载保护能力。
[0071] 常规技术的基于磁场调制技术的轴向磁场磁齿轮减速机: 第一, 理论上, 起磁 场调制作用的调磁铁芯 (齿) 数必须满足约束条件, 从而导致磁性齿轮在运转 传动的任意时刻都有一半以上的永磁体磁极处于闲置的非耦合状态, 永磁体异 极性磁极的耦合面积理论上就低于 50% ; 第二, 从结构上看, 调磁铁芯的存在必 然使磁性齿轮具有两个气隙, 将消耗永磁体的大量磁动势, 导致处于耦合工作 状态的永磁体磁通量降低, 从而影响所传递的扭矩大小; 第三, 调磁铁芯的存 在使得气隙磁阻与磁势交变, 导致扭矩周期性脉动, 不仅影响传动精度, 而且 调磁铁芯所受的机械扭矩大, 其结构强度也是影响其寿命的主要因素。
[0072] 本发明中: 偏心摆动盘 3的内表面分布有 P1对极永磁体, 左侧盘铁芯 4的外表面 分布有 P2对极永磁体, 0 < P1-P2^3, PI、 P2为正整数。 偏心摆动盘 3和左侧盘铁 芯 4通过偏心轮 2安装, 偏心摆动盘 3和左侧盘铁芯 4之间存在气隙, 借鉴少齿差 行星齿轮传动的原理, 将转轴 1的自转通过偏心轮 2结构转换为左侧盘铁芯 4 (左 侧盘铁芯 4固定时, 偏心摆动盘 3摆动的同时公转) 的公转, 加上永磁材料 N极与 S极同性相斥、 异性相吸的原理来实现偏心摆动盘 3的自转, 经输出转盘 5输出同 心转矩, 起到减速的作用, 实现无机械接触、 无摩擦的动力变速传动。
[0073] 本发明中, 转轴 1兼做电机的输出轴。
[0074] 本发明中, 以剖视图中的左右为“左”、 “右”进行方位上的描述。
[0075] 对本领域的技术人员来说, 可根据以上描述的技术方案以及构思, 做出其它各 种相应的改变以及形变, 而所有的这些改变以及形变都应该属于本发明权利要 求的保护范围之内。
[0076] 需要说明的是: 以上的实施例仅仅是本发明一部分实施例, 而不是全部的实施 例。 实施例和所附权利要求书中所使用的单数形式的“第一”、 “第二”、 “一种”、
“”和“该”也旨在包括多数形式, 除非上下文清楚地表示其他含义。 “第一”和“第 二”只是为了说明的方便, 不表示有先后顺序之分。 [0077] 本发明的不局限于上述实施例, 本发明的上述各个实施例的技术方案彼此可以 交叉组合形成新的技术方案, 另外凡采用等同替换形成的技术方案, 均落在本 发明要求的保护范围内。
[0078]

Claims

权利要求书
[权利要求 i] 一种摆轮轴向结构磁能减速机, 其特征在于, 包括转轴 a) 、 偏心 轮 (2) 、 偏心摆动盘 (3) 、 左侧盘铁芯 (4) 、 输出转盘 (5) 和销 钉 ⑹ ;
所述偏心轮 (2) 套接在所述转轴 (1) 外侧, 所述偏心摆动盘 (3) 转动设置在所述偏心轮 (2) 的外侧;
所述偏心摆动盘 (3) 的盘面上设置有呈圆周阵列分布的拨动孔 (31 ) , 所述销钉 (6) 的数量在 3个以上, 所述销钉 (6) 固定在所述输 出转盘 (5) 的盘面上, 每个所述销钉 (6) 位于一个所述拨动孔 (31 ) 孔内, 所述销钉 (6) 的外径小于所述拨动孔 (31) 的内径; 所述偏心摆动盘 (3) 的左侧面贴合有 4片以上成圆周阵列分布的右侧 磁钢 (7) , 所述左侧盘铁芯 (4) 的右侧面贴合有 4片以上成圆周阵 列分布左侧磁钢 (8) , 所述右侧磁钢 (7) 的同一侧面的磁极为 N极 和 S极间隔设置, 所述左侧磁钢 (8) 的同一侧面的磁极为 N极和 S极 间隔设置, 所述右侧磁钢 (7) 与所述左侧磁钢 (8) 相对设置; 所述输出转盘 (5) 转动设置在所述转轴 (1) 上; 所述左侧盘铁芯 (4) 固定, 所述转轴 (1) 转动时, 带动所述偏心轮 (2) 转动, 所述偏心轮 (2) 带动所述偏心摆动盘 (3) 摆动; 所述 偏心摆动盘 (3) 摆动的同时由于右侧磁钢 (7) 和左侧磁钢 (8) 相 互作用, 所述偏心摆动盘 (3) 摆动过程中会绕所述转轴 (1) 的轴线 转动两片右侧磁钢 (7) 的距离; 所述拨动孔 (31) 拨动所述销钉 (6 ) 绕所述转轴 (1) 的轴线公转, 所述销钉 (6) 带动所述输出转盘 ( 5) 自转向外输出同心转矩。
[权利要求 2] 如权利要求 1所述摆轮轴向结构磁能减速机, 其特征在于, 还包括销 轴轴承 (91) , 所述销轴轴承 (91) 装配在所述拨动孔 (31) 处, 所 述销轴轴承 (91) 的内圈与拨动孔 (31) 装配, 所述销轴轴承 (91) 的内圈的内径大于所述销钉 (6) 的外径; 所述销轴轴承 (91) 的内 圈拨动所述销钉 (6) 。
[权利要求 3] 如权利要求 1所述摆轮轴向结构磁能减速机, 其特征在于, 还包括输 出盘座 (10) 和输出轴承 (92) , 所述输出盘座 (10) 套接在所述转 轴 (1) 上, 所述输出轴承 (92) 的内侧套接在所述输出盘座 (10) 的外侧, 所述输出轴承 (92) 的外侧套接在所述输出转盘 (5) 的内 侧。
[权利要求 4] 如权利要求 3所述摆轮轴向结构磁能减速机, 其特征在于, 所述输出 轴承 (92) 的数量为 2个, 2个所述输出轴承 (92) 并排设置; 所述偏心摆动盘 (3) 和左侧盘铁芯 (4) 之间设置有第二推力轴承 ( 08) , 所述第二推力轴承 (08) 位于所述右侧磁钢 (7) 和左侧磁钢 (8) 的外侧; 或,
所述输出轴承 (92) 被一个或多个转动轴承替代。
[权利要求 5] 如权利要求 4所述摆轮轴向结构磁能减速机, 其特征在于, 还包括第 一转动轴承 (93) 和第二转动轴承 (94) , 所述第一转动轴承 (93) 和第二转动轴承 (94) 的内侧套接所述偏心轮 (2) , 所述第一转动 轴承 (93) 和第二转动轴承 (94) 的外侧套接在所述偏心摆动盘 (3 ) 的内侧, 所述第一转动轴承 (93) 和第二转动轴承 (94) 并排设置 ; 或,
所述第一转动轴承 (93) 和第二转动轴承 (94) 被一个或多个转动轴 承替代。
[权利要求 6] 如权利要求 5所述摆轮轴向结构磁能减速机, 其特征在于, 还包括电 机端盖 (04) , 所述左侧盘铁芯 (4) 的左侧端面的设置有第一环形 阵列孔 (41) , 所述电机端盖 (04) 上设置有第二环形阵列孔 (041 ) , 所述电机端盖 (04) 与所述左侧盘铁芯 (4) 通过所述第二环形 阵列孔 (041) 和第一环形阵列孔 (41) 连接。
[权利要求 7] 如权利要求 6所述摆轮轴向结构磁能减速机, 其特征在于, 所述转轴 (1) 从所述电机端盖 (04) 的中部穿过, 所述转轴 (1) 兼做电机的 输出轴。
[权利要求 8] 如权利要求 6所述摆轮轴向结构磁能减速机, 其特征在于, 还包括第 一推力轴承 (01) , 所述转轴 (1) 的左半部分设置有第一环形台阶 (11) ;
所述第一推力轴承 (01) 的套接在所述转轴 (1) 上;
所述第一推力轴承 (01) 的左侧面抵住所述第一环形台阶 (11) 的右 侧面, 同时抵住在电机端盖 (04) 的中心平面, 所述第一推力轴承 ( 01) 的右侧面抵住所述偏心轮 (2) 的左侧面。
[权利要求 9] 如权利要求 8所述摆轮轴向结构磁能减速机, 其特征在于, 还包括轴 承压盖 (02) 和紧固螺栓 (03) , 所述转轴 (1) 的右侧端部的中部 设置有螺纹孔; 所述输出盘座 (10) 的左侧壁面抵住所述偏心轮 (2) 的右侧壁面; 所述紧固螺栓 (03) 将所述轴承压盖 (02) 紧固在所述转轴 (1) 的 右端;
所述输出盘座 (10) 的右侧壁面抵住所述轴承压盖 (02) 。
[权利要求 10] 如权利要求 9所述摆轮轴向结构磁能减速机, 其特征在于, 所述输出 盘座 (10) 的左半部分设置有第三环形台阶 (101) ;
左侧的所述输出轴承 (92) 的内圈的左侧壁面抵住所述第三环形台阶 (101) 的右侧壁面; 右侧的所述输出轴承 (92) 的内圈的右侧壁面 抵住所述轴承压盖 (02) 的左侧壁面。
PCT/CN2018/107928 2018-09-27 2018-09-27 摆轮轴向结构磁能减速机 WO2020061894A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107928 WO2020061894A1 (zh) 2018-09-27 2018-09-27 摆轮轴向结构磁能减速机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107928 WO2020061894A1 (zh) 2018-09-27 2018-09-27 摆轮轴向结构磁能减速机

Publications (1)

Publication Number Publication Date
WO2020061894A1 true WO2020061894A1 (zh) 2020-04-02

Family

ID=69952800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107928 WO2020061894A1 (zh) 2018-09-27 2018-09-27 摆轮轴向结构磁能减速机

Country Status (1)

Country Link
WO (1) WO2020061894A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662557A (ja) * 1992-07-31 1994-03-04 Minebea Co Ltd 多相ハイブリッド型ステッピングモータ
CN102996752A (zh) * 2011-09-19 2013-03-27 余虹锦 新型横向磁场的少极差磁性传动偏心盘形齿轮副
CN104506015A (zh) * 2014-11-19 2015-04-08 南方科技大学 一种磁性传动装置
CN206874754U (zh) * 2017-04-21 2018-01-12 杭州星河传动机械研究院有限公司 一种摆轮滚套式减速机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662557A (ja) * 1992-07-31 1994-03-04 Minebea Co Ltd 多相ハイブリッド型ステッピングモータ
CN102996752A (zh) * 2011-09-19 2013-03-27 余虹锦 新型横向磁场的少极差磁性传动偏心盘形齿轮副
CN104506015A (zh) * 2014-11-19 2015-04-08 南方科技大学 一种磁性传动装置
CN206874754U (zh) * 2017-04-21 2018-01-12 杭州星河传动机械研究院有限公司 一种摆轮滚套式减速机

Similar Documents

Publication Publication Date Title
JP5137915B2 (ja) 磁気ギヤおよびそれを搭載した車両
US2677967A (en) Vibrating mechanism
JP2012180934A (ja) 磁気駆動装置
TW201402974A (zh) 球帶面磁性耦合傳動機構及其應用
EP1932228A1 (en) Compact axial flux motor drive
BRPI0900747B1 (pt) Variador de velocidade magnético orbital
CN103904860A (zh) 一种端面固定的同轴套筒式永磁涡流联轴器
WO2020061894A1 (zh) 摆轮轴向结构磁能减速机
CN208885903U (zh) 一种双摆轮轴向结构磁能减速机
CN109067139B (zh) 一种摆轮轴向结构磁能减速机
CN110971073A (zh) 一种永磁减速传动的电机
WO2020061895A1 (zh) 摆轮径向结构磁能减速机
CN208782710U (zh) 一种双摆轮径向结构磁能减速机
KR101801419B1 (ko) 균형식 구조를 가진 편심형 다이내믹 매스를 가진 기계식 속도 가변기
WO2020061897A1 (zh) 双摆轮轴向结构磁能减速机
WO2020061896A1 (zh) 双摆轮径向结构磁能减速机
CN208691120U (zh) 一种摆轮轴向结构磁能减速机
US20180248463A1 (en) Magnetic Gear Device
JPH08336274A (ja) 磁気ねじ伝達装置
CN108988609B (zh) 一种摆轮径向结构磁能减速机
CN109039013B (zh) 一种双摆轮径向结构磁能减速机
CN109058422A (zh) 一种双摆轮轴向结构磁能减速机
JP2005114163A (ja) 磁気式遊星歯車装置
CN111207157A (zh) 一种磁性同步器以及变速器
CN211151731U (zh) 一种永磁减速传动的电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934772

Country of ref document: EP

Kind code of ref document: A1