WO2020061896A1 - 双摆轮径向结构磁能减速机 - Google Patents

双摆轮径向结构磁能减速机 Download PDF

Info

Publication number
WO2020061896A1
WO2020061896A1 PCT/CN2018/107932 CN2018107932W WO2020061896A1 WO 2020061896 A1 WO2020061896 A1 WO 2020061896A1 CN 2018107932 W CN2018107932 W CN 2018107932W WO 2020061896 A1 WO2020061896 A1 WO 2020061896A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
shaft
bearing
fixed support
magnetic steel
Prior art date
Application number
PCT/CN2018/107932
Other languages
English (en)
French (fr)
Inventor
张天洪
李渊
黄勇军
Original Assignee
深圳超磁机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳超磁机器人科技有限公司 filed Critical 深圳超磁机器人科技有限公司
Priority to PCT/CN2018/107932 priority Critical patent/WO2020061896A1/zh
Publication of WO2020061896A1 publication Critical patent/WO2020061896A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type

Definitions

  • the present invention relates to the technical field of mechanical transmission, and in particular, to a double balance wheel radial structure magnetic energy reducer.
  • the traditional mechanical structure reducer is mainly driven by gear meshing. It has disadvantages such as large friction loss, rapid development of mechanical fatigue, large noise, strong vibration, etc., and does not have overload protection capability.
  • the technical problem to be solved by the present invention is to provide a double balance wheel radial structure magnetic energy reducer with small friction loss, slow development of mechanical fatigue, low noise, weak vibration, and overload protection capability.
  • a double balance wheel radial structure magnetic energy reducer includes a fixed support shaft, an eccentric shaft, an input shaft, a pin support frame, a first inner swing iron core, a second inner swing iron core, an outer rotation iron core, and a device.
  • the outer rotating magnetic steel distributed in a circular array on the inner side of the outer rotating iron core, the first inner rotating magnetic steel distributed in a circular array on the outer side of the first inner pendulum iron core, and the outer rotating magnetic steel on the outer side of the second inner pendulum iron core.
  • the inner side of the outer magnetic steel faces the outer sides of the first inner magnetic steel and the second outer magnetic steel;
  • a pin support frame is fixed on a fixed support shaft
  • the outer peripheral side of the eccentric shaft is provided with two first eccentric rings and a second eccentric ring which are symmetrically distributed with each other at 180 °, and the first inner pendulum iron core is sleeved on the outside of the first eccentric ring through a first bearing.
  • Two inner pendulum iron cores are sleeved on the outside of the second eccentric ring through a second bearing;
  • the disk surface of the first pendulum iron core is provided with first toggle holes distributed in a circular array
  • the disk surface of the second pendulum iron core is provided with second toggle holes distributed in a circular array.
  • the outer diameter of the limit pin is smaller than the inner diameter of the first and second toggle holes, and each limit pin passes through a first toggle hole and a Second toggle hole
  • the input shaft is a hollow shaft of the motor, and the input shaft rotation is provided outside the fixed support shaft, and the eccentric shaft rotation is provided outside the fixed support shaft; the input shaft drives the eccentric shaft to rotate through a rotation connection structure; [0010] the eccentric shaft rotates
  • the first and second inner pendulum iron cores can only oscillate due to the limitation of the limit pins, and cannot rotate around the fixed support shaft. Revolution
  • the outer rotation iron core is fixedly supported due to the magnetic force of the first inner rotation magnetic steel, the second outer rotation magnetic steel, and the outer rotation magnetic steel.
  • the shaft revolves.
  • the magnetic poles on the same surface of two adjacent pieces of outer magnetic steel are different, the magnetic poles on the same surface of two adjacent pieces of first internal magnetic steel are different, and the adjacent two pieces of second external magnetic steel are different.
  • the magnetic poles on the same side of the steel are different; when the input shaft rotates one turn, the first inner pendulum iron core and the second inner pendulum iron core swing during the swing process.
  • the steel will generate the magnetic effect of attracting the opposite sex and attracting the same sex, driving the outer rotating magnetic steel to drive the outer rotating iron core to revolve the distance of two pieces of magnetic steel around the fixed support shaft, thereby achieving deceleration transmission.
  • a third bearing and a fourth bearing are provided on an outer side of the fixed support shaft;
  • the first end of the input shaft is rotatably disposed outside the fixed support shaft through a third bearing;
  • the inside of the input shaft close to the second end is rotatably disposed on the outside of the fixed support shaft through a fourth bearing.
  • it further comprises a fifth bearing, a sixth bearing and an eccentric shaft bracket;
  • the second end of the eccentric shaft is rotatably disposed outside the fixed support shaft through a fifth bearing;
  • the first end of the eccentric shaft is assembled inside the eccentric shaft bracket.
  • the eccentric shaft bracket is rotatably disposed outside the fixed support shaft through a sixth bearing.
  • the eccentric shaft is a hollow shaft structure. The inside of the eccentric shaft and the outside of the fixed support shaft. There is a gap between them.
  • the second end of the input shaft is sleeved outside the second end of the eccentric shaft;
  • the wall of the second end of the input shaft is provided with a first key groove
  • the wall of the second end of the eccentric shaft is provided with a second key groove, and the first key groove and the second key groove are connected by a key
  • the key, the first key groove and the second key groove constitute a rotation connection structure.
  • it further comprises an outer iron core bracket and a seventh bearing;
  • the inner side of the seventh bearing is sleeved near the left end of the fixed support shaft, and the outer iron core bracket is sleeved on the outer ring of the seventh bearing;
  • the outer ring of the outer iron core bracket is fixedly connected to the inner ring of the outer rotating iron core by bolts.
  • a first limit ring is disposed between the sixth bearing and the seventh bearing, and the first limit ring is sleeved on the fixed support shaft on the right side of the seventh bearing.
  • it further comprises an eighth bearing.
  • the inner ring of the eighth bearing is sleeved on the outer ring of the pin support frame, and the outer ring of the eighth bearing is sleeved on the inner ring on the right end of the outer rotor core.
  • a second stop ring is disposed between the first and second inner swing iron cores, and the inner diameter of the second stop ring is larger than that of the first and second inner swing iron cores. Inner diameter.
  • it further comprises a ninth bearing and a motor front end cover;
  • the inner ring of the ninth bearing is sleeved outside the second end of the input shaft, and the outer ring of the ninth bearing is sleeved on the inner ring of the front end cover of the motor;
  • the motor front end cover is fixedly connected to the pin support frame by bolts.
  • it further comprises a motor stator core, a motor rear end cover and a motor magnetic steel;
  • the motor rear end cover is fixedly connected to the outer right end of the fixed support shaft, and the motor stator core is disposed between the motor front end cover and the motor rear end cover;
  • the motor front end cover, the motor stator core and the motor back end cover are fixedly connected by a long bolt;
  • the outer ring of the input shaft is provided with a motor magnetic steel, which is located inside the stator core of the motor.
  • a dual balance wheel radial structure magnetic energy reducer comprising a fixed support shaft, an eccentric shaft, an input shaft, a pin support frame, a first inner pendulum iron core, and a second inner pendulum iron core , Outer rotating iron core, Outer rotating magnetic steel arranged in a circular array arranged inside the Outer rotating iron core, First inner rotating magnetic steel arranged in a circular array arranged outside the first inner pendulum iron core, arranged in a second inner
  • the pin support frame is fixed on the fixed support shaft; the first eccentric ring and the second eccentric ring are symmetrically distributed at 180 ° with each other on the outer peripheral side of the eccentric shaft, and the first inner pendulum core is sleeved on the first bearing Outside the first eccentric ring, the second inner pendulum iron
  • the inner surface of the two pendulum iron cores is arranged in a circular array.
  • the second toggle hole, the limit pin is fixedly connected to the disk surface of the pin support frame in a circular display, and the outer diameter of the limit pin is smaller than the first toggle hole and the second toggle
  • the inner diameter of the hole, each limit pin passes through a first toggle hole and a second toggle hole in turn;
  • the input shaft is a hollow shaft of the motor, the input shaft is set to rotate outside the fixed support shaft, and the eccentric shaft is set to The outer side of the fixed support shaft is fixed; the input shaft drives the eccentric shaft to rotate through the rotation connection structure; when the eccentric shaft rotates, the first and second inner pendulum iron cores are driven to rotate and swing.
  • the first The inner pendulum iron core and the second inner pendulum iron core can only swing and cannot revolve around the fixed support shaft.
  • the magnetic force of the same-sex repulsion and the opposite-steel magnetism of the magnetized steel and the magnetized steel is reversed.
  • the input shaft rotates once, the outer iron core revolves around the fixed support shaft, and the outer iron core rotates the distance between the two magnetic steels to achieve deceleration.
  • Internal magnetic steel and external magnetic steel are used to transmit power, with small friction loss, slow development of mechanical fatigue, low noise and vibration, and overload protection. Compared with the mechanical reducer, the friction loss is small, the mechanical fatigue is slow, the reliability is greatly improved, the life is greatly extended, the running accuracy is high, the long-term running accuracy is small, the noise and vibration are low, and it has overload protection.
  • FIG. 1 is a schematic structural view of a perspective view of a double balance wheel radial structure magnetic energy reducer according to the present invention.
  • FIG. 2 is a schematic structural view of another perspective of a double balance wheel radial structure magnetic energy reducer according to the present invention.
  • FIG. 3 is a sectional view of a double balance wheel radial structure magnetic energy reducer according to the present invention.
  • FIG. 4 is an exploded view of a double balance wheel radial structure magnetic energy reducer according to the present invention.
  • FIG. 5 is a perspective view of a three-dimensional structure of an eccentric shaft of a double-balance radial structure magnetic energy reducer according to the present invention.
  • FIG. 6 is a perspective view of a three-dimensional structure of an eccentric shaft, an input shaft, and a rotational connection structure of a dual balance wheel radial structure magnetic energy reducer according to the present invention.
  • FIG. 7 is a perspective view of a three-dimensional structure of a first inner pendulum core of a dual-balance radial structure magnetic energy reducer according to the present invention.
  • FIG. 8 is a perspective view of a three-dimensional structure of a second inner pendulum iron core of a dual-balance radial structure magnetic energy reducer according to the present invention.
  • FIG. 9 is a perspective view of a three-dimensional structure of a pin supporting frame of a dual-balance radial structure magnetic energy reducer according to the present invention.
  • the present invention provides a double balance wheel radial structure magnetic energy reducer.
  • a double balance wheel radial structure magnetic energy reducer includes a fixed support shaft 1, an eccentric shaft 2, an input shaft 3, a pin support frame 4, a first inner swing iron core 51, a second inner swing iron core 52, Outer rotating iron core 6, outer rotating magnetic steel 61 arranged in a circular array arranged inside the outer rotating iron core 6, first inner rotating magnetic steel 51 1 arranged in a circular array arranged outside the first inner pendulum iron core 51, A second outer rotating magnetic steel 521 and two or more limiting pins 7 arranged in a circular array and arranged outside the second inner pendulum iron core 52;
  • the inside of the outer magnetic steel 61 faces the outer sides of the first inner magnetic steel 511 and the second outer magnetic steel 521;
  • the pin support frame 4 is fixed on the motor front cover 05 (the motor front cover 5 is fixed on the fixed support shaft 1);
  • the outer peripheral side of the eccentric shaft 2 is provided with two first eccentric rings 21 and a second eccentric ring 22 which are symmetrically distributed with each other at 180 °, and the first inner pendulum iron core 51 is sleeved on the first eccentric through the first bearing 91.
  • the second inner pendulum core 52 is sleeved on the outside of the second eccentric ring 22 through a second bearing 92;
  • the disk surface of the first inner pendulum core 51 is provided with first toggle holes 512 distributed in a circular array
  • the disk surface of the second pendulum iron core 52 is provided with second toggle holes 522 distributed in a circular array.
  • the limit pin 7 is fixedly connected to the disk surface of the pin support 4 in a circular display.
  • the outer diameter of the limit pin 7 is smaller than the first toggle hole 512 and the first The inner diameter of two toggle holes 522, each limit pin 7 passes through a first toggle hole 512 and a second toggle hole 522 in turn;
  • the input shaft 3 is a hollow shaft of the motor, the input shaft 3 is rotatably disposed outside the fixed support shaft 1, the eccentric shaft 2 is a hollow shaft, and the eccentric shaft 2 is rotatably disposed outside the fixed support shaft 1.
  • the input shaft 3 is rotated by rotation.
  • the connecting structure 8 drives the eccentric shaft 2 to rotate;
  • the magnetic poles on the same surface of two adjacent pieces of outer magnetic steel 61 are different, the magnetic poles on the same surface of two adjacent pieces of first internal magnetic steel 511 are different, and the two adjacent pieces of The magnetic poles on the same surface of the two outer rotating magnetic steels 521 are different.
  • the first inner swinging iron core 51 and the second inner swinging iron core 52 oscillate for one cycle.
  • the first inner rotating magnetic steel 511 and the second outer rotating magnetic steel 521 will generate the magnetic force of the same-sex repulsion and opposite attracting, and drive the outer rotating magnetic steel 61 to drive the outer rotating iron core 6 to revolve around the fixed support shaft 1 revolution of 2 pieces of magnetic Distance to achieve deceleration transmission.
  • the inner magnetic steel and the outer magnetic steel are used to transmit power, with small friction loss, slow development of mechanical fatigue, low noise and vibration, and overload protection capability.
  • the friction loss is small, the mechanical fatigue is slow, the reliability is greatly improved, the life is greatly extended, the running accuracy is high, the long-term running accuracy is small, the noise and vibration are low, and it has overload protection capabilities.
  • the structure of the eccentric shaft 2 for the rice is provided with two first eccentric rings 21 and a second eccentric ring 22 which are symmetrically distributed with each other at 180 °.
  • the eccentric shaft 2 can achieve self-balance during centrifugal force during rotation. To improve mechanical stability and reduce the effect of shear stress on the fixed support shaft 1.
  • a third bearing 93 and a fourth bearing 94 are provided on the outside of the fixed support shaft 1;
  • the first end of the input shaft 3 is rotatably disposed outside the fixed support shaft 1 through a third bearing 93;
  • the inner side of the input shaft 3 near the second end is rotatably provided on the outer side of the fixed support shaft 1 through a fourth bearing 94.
  • a fifth bearing 95, a sixth bearing 96 and an eccentric shaft bracket 01 are further included;
  • the second end of the eccentric shaft 2 is rotatably disposed outside the fixed support shaft 1 through a fifth bearing 95;
  • the first end of the eccentric shaft 2 is assembled inside the eccentric shaft bracket 01.
  • the eccentric shaft bracket 01 is rotatably disposed outside the fixed support shaft 1 through a sixth bearing 96.
  • the eccentric shaft 2 is a hollow shaft structure. A gap is provided between the inside and the outside of the fixed support shaft 1.
  • the second end of the input shaft 3 is sleeved on the outside of the second end of the eccentric shaft 2;
  • the wall of the second end of the input shaft 3 is provided with a first key groove 31, and the wall of the second end of the eccentric shaft 2 is provided with a second key groove 23, and the first key groove 31 is connected by a pin key (not shown in the figure). And the second keyway 23;
  • the key, the first keyway 31 and the second keyway 23 constitute a rotary connection structure 8.
  • this embodiment also includes an outer iron core bracket 02 and a seventh bearing 97;
  • the inside of the seventh bearing 97 is sleeved at a position near the left end of the fixed support shaft 1, and the outer iron core bracket 02 is sleeved on the outer ring of the seventh bearing 97;
  • the outer ring of the outer iron core bracket 02 is fixedly connected to the inner ring of the outer rotating iron core 6 by bolts.
  • the outer iron core bracket 02 can also be called the front bracket.
  • the left side of the cross-sectional view is the front direction of the motor, and the right side is the rear direction of the motor.
  • a first limit ring 03 is disposed between the sixth bearing 96 and the seventh bearing 97, and the first limit ring 03 is sleeved on the fixed support shaft 1 on the right side of the seventh bearing 97.
  • it further includes an eighth bearing 98.
  • the inner ring of the eighth bearing 98 is sleeved on the outer ring of the pin support frame 4.
  • the outer ring of the eighth bearing 98 is sleeved on the right end of the outer rotating iron core 6. Inner circle.
  • a second limit ring 04 is disposed between the first inner swing iron core 51 and the second inner swing iron core 52.
  • the inner diameter of the second limit ring 04 is larger than the first inner swing iron core 51.
  • this embodiment also includes a ninth bearing 99 and a motor front cover 05;
  • the inner ring of the ninth bearing 99 is sleeved outside the second end of the input shaft 3, and the outer ring of the ninth bearing 99 is sleeved on the inner ring of the motor front end cover 05;
  • the motor front cover 05 is fixed to the pin support bracket 4 by bolts.
  • This embodiment further includes a motor stator core 06, a motor rear end cover 07, and a motor magnetic steel 08;
  • the motor rear end cover 07 is fixedly connected to the right end of the outer side of the fixed support shaft 1, and the motor stator iron core 06 is disposed between the motor front end cover 05 and the motor rear end cover 07;
  • the motor front end cover 05, the motor stator core 06 and the motor back end cover 07 are fixedly connected by a long bolt;
  • the outer ring of the input shaft 3 is provided with a motor magnetic steel 08, which is located inside the motor stator core 06. ( These are the contents of the structure of the drive motor, which need not be written in the body of the patent, and not in the claims)
  • the traditional mechanical structure reducer is mainly driven by gear meshing, which has disadvantages such as friction loss, mechanical fatigue, noise vibration, etc., and has tedious maintenance and does not have overload protection capability.
  • the conventional axial magnetic field gear reducer based on magnetic field modulation technology First, theoretically, the number of magnet cores (tooths) that play the role of magnetic field modulation must meet the constraint conditions, which causes the magnetic gear to run during transmission. At any time, more than half of the permanent magnet poles are in an idle, uncoupled state, and the coupling area of the permanent magnet poles is theoretically lower than 50%. Second, from the structural point of view, the existence of the tuned magnetic core inevitably makes the magnetic The gear pair has two air gaps, which will consume a large amount of magnetomotive force of the permanent magnets, which will cause the magnetic flux of the permanent magnets in the coupled working state to decrease, thereby affecting the magnitude of the transmitted torque.
  • the existence of the adjusted magnetic core makes the air gap magnetic resistance Alternating with the magnetic potential, it causes the periodic pulsation of torque, which not only affects the transmission accuracy, but also has a large mechanical torque on the magnet core, and its structural strength is also the main factor affecting its life.
  • P2 paired permanent magnets are distributed on the outer surfaces of the first and second inner swing iron cores 51 and 52, and P1 paired permanent magnets are distributed on the inner surface of the outer rotating iron core 6, ⁇ P1-P2 ⁇ 3, PI and P2 are positive integers.
  • the rotation of the input shaft 3 is converted into the eccentric shaft 2 structure into
  • the rotation and revolution of the first pendulum iron core 51 and the second pendulum iron core 52 are not caused by the swing of the first and second pendulum iron core 51 and the second pendulum iron core 52 due to the limiting effect of the limit pin 7.
  • the principle of the opposite polarity coupling of the N pole and S pole of the permanent magnet material is the same-sex repulsion and opposite-sink attraction to realize the rotation of the outer core 4, the input shaft 3 rotates once, and the outer core 4 rotates 2 pieces of magnetic steel. Distance to play the role of deceleration, to achieve non-mechanical contact and friction-free power transmission
  • the present invention is not limited to the above-mentioned embodiments.
  • the technical solutions of the foregoing embodiments of the present invention can be cross-combined with each other to form a new technical solution.
  • any technical solution formed by equivalent replacements falls within the requirements of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本发明涉及一种双摆轮径向结构磁能减速机,输入转轴为空心轴,输入转轴和偏心轴转动设置在固定支撑轴的外侧;输入转轴通过转动连接结构驱动偏心轴转动;偏心轴转动时,驱动第一内摆铁芯和第二内摆铁芯转动和摆动,由于限位销钉的限制作用,第一内摆铁芯和第二内摆铁芯只能摆动,不能绕固定支撑轴公转;第一内摆铁芯和第二内摆铁芯摆动过程中,由于第一内转磁钢、第二外转磁钢和外转磁钢的磁力作用,输入转轴转动一圈,外转磁钢带动外转铁芯绕固定支撑轴公转两片磁钢的距离,实现减速传递,相对于机械式减速机来说,摩擦损耗小,机械疲劳发展慢,可靠性高、寿命长,运行精度高,噪音震动低,具有过载保护能力。

Description

说明书 发明名称:双摆轮径向结构磁能减速机 技术领域
[0001] 本发明涉及机械传动技术领域, 具体涉及一种双摆轮径向结构磁能减速机。
背景技术
[0002] 传统机械结构减速机主要由齿轮啮合传动, 存在摩擦损耗大、 机械疲劳发展快 、 噪音大、 震动强等不利因素, 不具有过载保护能力。
发明概述
技术问题
问题的解决方案
技术解决方案
[0003] 本发明要解决的技术问题是: 提供一种双摆轮径向结构磁能减速机, 摩擦损耗 小, 机械疲劳发展慢, 噪音低、 震动弱、 具有过载保护能力。
[0004] 一种双摆轮径向结构磁能减速机, 包括固定支撑轴、 偏心轴、 输入转轴、 销钉 支撑架、 第一内摆铁芯、 第二内摆铁芯、 外转铁芯、 设置在外转铁芯内侧的呈 圆周阵列分布的外转磁钢、 设置在第一内摆铁芯外侧的呈圆周阵列分布的第一 内转磁钢、 设置在第二内摆铁芯外侧的呈圆周阵列分布的第二外转磁钢和 2个以 上的限位销钉;
[0005] 外转磁钢的内侧面对着第一内转磁钢和第二外转磁钢的外侧面;
[0006] 销钉支撑架固定在固定支撑轴上;
[0007] 偏心轴的外周侧设置有两个相互呈 180°对称分布的第一偏心环和第二偏心环, 第一内摆铁芯通过第一轴承套接在第一偏心环的外侧, 第二内摆铁芯通过第二 轴承套接在第二偏心环的外侧;
[0008] 第一内摆铁芯的盘面上设置有呈圆周阵列分布的第一拨动孔, 第二内摆铁芯的 盘面上设置有呈圆周阵列分布的第二拨动孔, 限位销钉呈圆周陈列固定连接在 销钉支撑架的盘面上, 限位销钉的外径小于第一拨动孔和第二拨动孔的内径, 每个限位销钉依次穿过一个第一拨动孔和一个第二拨动孔; [0009] 输入转轴为电机的空心转轴, 输入转轴转动设置在固定支撑轴的外侧, 偏心轴 转动设置在固定支撑轴的外侧; 输入转轴通过转动连接结构驱动偏心轴转动; [0010] 偏心轴转动时, 驱动第一内摆铁芯和第二内摆铁芯转动和摆动, 由于限位销钉 的限制作用, 第一内摆铁芯和第二内摆铁芯只能摆动, 不能绕固定支撑轴公转
[0011] 第一内摆铁芯和第二内摆铁芯摆动过程中, 由于第一内转磁钢、 第二外转磁钢 和外转磁钢的磁力作用, 外转铁芯绕固定支撑轴公转。
[0012] 优选的, 相邻的两片外转磁钢的同一面的磁极不同, 相邻的两片第一内转磁钢 的同一面的磁极不同, 相邻的两片第二外转磁钢的同一面的磁极不同; 输入转 轴转动一圈时, 第一内摆铁芯和第二内摆铁芯在摆动过程中, 外转磁钢与第一 内转磁钢和第二外转磁钢会产生同性相斥异性相吸的磁力作用, 驱动外转磁钢 带动外转铁芯绕固定支撑轴公转 2片磁钢的距离, 从而实现减速传动。
[0013] 优选的, 固定支撑轴的外侧设置有第三轴承和第四轴承;
[0014] 输入转轴第一端通过第三轴承转动设置在固定支撑轴的外侧;
[0015] 输入转轴接近第二端的内侧通过第四轴承转动设置在固定支撑轴的外侧。
[0016] 优选的, 还包括第五轴承、 第六轴承和偏心轴支架;
[0017] 偏心轴的第二端通过第五轴承转动设置在固定支撑轴的外侧;
[0018] 偏心轴的第一端装配在偏心轴支架的内侧, 偏心轴支架通过第六轴承转动设置 在固定支撑轴的外侧, 偏心轴为空心轴结构, 偏心轴的内侧与固定支撑轴的外 侧之间设置有间隙。
[0019] 优选的, 输入转轴的第二端套接在偏心轴的第二端的外侧;
[0020] 输入转轴的第二端的壁体设置有第一键槽, 偏心轴的第二端的壁体设置有第二 键槽, 通过键连接第一键槽和第二键槽;
[0021] 键、 第一键槽和第二键槽构成转动连接结构。
[0022] 优选的, 还包括外铁芯支架和第七轴承;
[0023] 第七轴承的内侧套接在固定支撑轴的接近左端的位置, 外铁芯支架套接在第七 轴承的外圈上;
[0024] 外铁芯支架的外圈通过螺栓固定连接在外转铁芯的内圈。 [0025] 优选的, 第六轴承和第七轴承之间设置有第一限位圈, 第一限位圈套接在第七 轴承右侧的固定支撑轴上。
[0026] 优选的, 还包括第八轴承, 第八轴承的内圈套接在销钉支撑架的外圈上, 第八 轴承的外圈套接在外转铁芯的右端部的内圈。
[0027] 优选的, 第一内摆铁芯和第二内摆铁芯之间设置有第二限位圈, 第二限位圈的 内径大于第一内摆铁芯和第二内摆铁芯的内径。
[0028] 优选的, 还包括第九轴承和电机前端盖;
[0029] 第九轴承的内圈套接在输入转轴的第二端的外侧, 第九轴承的外圈套接在电机 前端盖的内圈上;
[0030] 电机前端盖通过螺栓固定连接销钉支撑架。
[0031] 优选的, 还包括电机定子铁芯、 电机后端盖和电机磁钢;
[0032] 电机后端盖固定连接在固定支撑轴的外侧的右端部, 电机定子铁芯设置于电机 前端盖和电机后端盖之间;
[0033] 通过长螺栓固定连接电机前端盖、 电机定子铁芯和电机后端盖;
[0034] 输入转轴的外圈设置电机磁钢, 电机磁钢位于电机定子铁芯的内侧。
发明的有益效果
有益效果
[0035] 本发明的有益效果是: 一种双摆轮径向结构磁能减速机, 包括固定支撑轴、 偏 心轴、 输入转轴、 销钉支撑架、 第一内摆铁芯、 第二内摆铁芯、 外转铁芯、 设 置在外转铁芯内侧的呈圆周阵列分布的外转磁钢、 设置在第一内摆铁芯外侧的 呈圆周阵列分布的第一内转磁钢、 设置在第二内摆铁芯外侧的呈圆周阵列分布 的第二外转磁钢和 3个以上的限位销钉; 外转磁钢的内侧面对着第一内转磁钢和 第二外转磁钢的外侧面; 销钉支撑架固定在固定支撑轴上; 偏心轴的外周侧设 置有两个相互呈 180°对称分布的第一偏心环和第二偏心环, 第一内摆铁芯通过第 一轴承套接在第一偏心环的外侧, 第二内摆铁芯通过第二轴承套接在第二偏心 环的外侧; 第一内摆铁芯的盘面上设置有呈圆周阵列分布的第一拨动孔, 第二 内摆铁芯的盘面上设置有呈圆周阵列分布的第二拨动孔, 限位销钉呈圆周陈列 固定连接在销钉支撑架的盘面上, 限位销钉的外径小于第一拨动孔和第二拨动 孔的内径, 每个限位销钉依次穿过一个第一拨动孔和一个第二拨动孔; 输入转 轴为电机的空心转轴, 输入转轴转动设置在固定支撑轴的外侧, 偏心轴转动设 置在固定支撑轴的外侧; 输入转轴通过转动连接结构驱动偏心轴转动; 偏心轴 转动时, 驱动第一内摆铁芯和第二内摆铁芯转动和摆动, 由于限位销钉的限制 作用, 第一内摆铁芯和第二内摆铁芯只能摆动, 不能绕固定支撑轴公转; 第一 内摆铁芯和第二内摆铁芯摆动过程中, 由于第一内转磁钢、 第二外转磁钢和外 转磁钢的同性相斥异性相吸的磁力作用, 输入转轴转动一圈, 外转铁芯绕固定 支撑轴公转, 外转铁芯转动两片磁钢的距离, 实现减速。 采用内磁钢和外磁钢 传递动力, 摩擦损耗小, 机械疲劳发展慢, 噪音震动低, 具有过载保护能力。 相对于机械式减速机来说, 摩擦损耗小, 机械疲劳发展慢, 可靠性大大提高、 寿命大大延长, 运行精度高, 长时间运转精度降低很小, 噪音震动低, 具有过 载保护能力。
对附图的简要说明
附图说明
[0036] 下面结合附图对本发明的双摆轮径向结构磁能减速机作进一步说明。
[0037] 图 1是本发明一种双摆轮径向结构磁能减速机的一个视角的结构示意图。
[0038] 图 2是本发明一种双摆轮径向结构磁能减速机的另一个视角的结构示意图。
[0039] 图 3是本发明一种双摆轮径向结构磁能减速机的剖视图。
[0040] 图 4是本发明一种双摆轮径向结构磁能减速机的爆炸图。
[0041] 图 5是本发明一种双摆轮径向结构磁能减速机的偏心轴的立体结构示意图。
[0042] 图 6是本发明一种双摆轮径向结构磁能减速机的偏心轴、 输入转轴、 转动连接 结构的立体结构示意图。
[0043] 图 7是本发明一种双摆轮径向结构磁能减速机的第一内摆铁芯的立体结构示意 图。
[0044] 图 8是本发明一种双摆轮径向结构磁能减速机的第二内摆铁芯的立体结构示意 图。
[0045] 图 9是本发明一种双摆轮径向结构磁能减速机的销钉支撑架的立体结构示意图 [0046]
[0047] 图中:
[0048] 1-固定支撑轴; 2 -偏心轴; 21-第一偏心环; 22 -第二偏心环; 23 -第二键槽; 3_ 输入转轴; 31 -第一键槽; 4 -销钉支撑架; 51 -第一内摆铁芯; 511-第一内转磁钢 ; 512 -第一拨动孔; 52 -第二内摆铁芯; 521 -第二外转磁钢; 522 -第二拨动孔; 6- 外转铁芯; 61 -外转磁钢; 7 -限位销钉; 8 -转动连接结构; 91 -第一轴承; 92 -第二 轴承; 93 -第三轴承; 94 -第四轴承; 95 -第五轴承; 96 -第六轴承; 97 -第七轴承; 98 -第八轴承; 99 -第九轴承; 01 -偏心轴支架; 02 -外铁芯支架; 03 -第一限位圈; 04 -第二限位圈; 05 -电机前端盖; ; (这项标识号综合成 1个 06
指给电机即可, 05是电机前端盖与减速机连接件是需要单独标识出来的, 所以 要保留)
发明实施例
本发明的实施方式
[0049] 下面结合附图 1~9并通过具体实施方式来进一步说明本发明的技术方案。
[0050] 本发明提供了一种双摆轮径向结构磁能减速机。
[0051] 一种双摆轮径向结构磁能减速机, 包括固定支撑轴 1、 偏心轴 2、 输入转轴 3、 销钉支撑架 4、 第一内摆铁芯 51、 第二内摆铁芯 52、 外转铁芯 6、 设置在外转铁 芯 6内侧的呈圆周阵列分布的外转磁钢 61、 设置在第一内摆铁芯 51外侧的呈圆周 阵列分布的第一内转磁钢 51 1、 设置在第二内摆铁芯 52外侧的呈圆周阵列分布的 第二外转磁钢 521和 2个以上的限位销钉 7 ;
[0052] 外转磁钢 61的内侧面对着第一内转磁钢 511和第二外转磁钢 521的外侧面;
[0053] 销钉支撑架 4固定在电机前端盖 05 (电机前端盖 5固定在固定支撑轴 1上) 上;
[0054] 偏心轴 2的外周侧设置有两个相互呈 180°对称分布的第一偏心环 21和第二偏心 环 22, 第一内摆铁芯 51通过第一轴承 91套接在第一偏心环 21的外侧, 第二内摆 铁芯 52通过第二轴承 92套接在第二偏心环 22的外侧;
[0055] 第一内摆铁芯 51的盘面上设置有呈圆周阵列分布的第一拨动孔 512, 第二内摆 铁芯 52的盘面上设置有呈圆周阵列分布的第二拨动孔 522, 限位销钉 7呈圆周陈 列固定连接在销钉支撑架 4的盘面上, 限位销钉 7的外径小于第一拨动孔 512和第 二拨动孔 522的内径, 每个限位销钉 7依次穿过一个第一拨动孔 512和一个第二拨 动孔 522;
[0056] 输入转轴 3为电机的空心转轴, 输入转轴 3转动设置在固定支撑轴 1的外侧, 偏 心轴 2为空心轴, 偏心轴 2转动设置在固定支撑轴 1的外侧; 输入转轴 3通过转动 连接结构 8驱动偏心轴 2转动;
[0057] 偏心轴 2转动时, 驱动第一内摆铁芯 51和第二内摆铁芯 52转动和摆动, 由于限 位销钉 7的限制作用, 第一内摆铁芯 51和第二内摆铁芯 52只能摆动, 不能绕固定 支撑轴 1公转;
[0058] 第一内摆铁芯 51和第二内摆铁芯 52摆动过程中, 由于第一内转磁钢 511、 第二 外转磁钢 521和外转磁钢 61的磁力作用, 外转铁芯 6绕固定支撑轴 1公转。
[0059] 本实施例中, 相邻的两片外转磁钢 61的同一面的磁极不同, 相邻的两片第一内 转磁钢 511的同一面的磁极不同, 相邻的两片第二外转磁钢 521的同一面的磁极 不同; 输入转轴 3转动一圈时, 第一内摆铁芯 51和第二内摆铁芯 52在摆动一周期 的过程中, 外转磁钢 61与第一内转磁钢 511和第二外转磁钢 521会产生同性相斥 异性相吸的磁力作用, 驱动外转磁钢 61带动外转铁芯 6绕固定支撑轴 1公转 2片磁 钢的距离, 从而实现减速传动。
[0060] 采用内磁钢和外磁钢传递动力, 摩擦损耗小, 机械疲劳发展慢, 噪音震动低, 具有过载保护能力。 相对于机械式减速机来说, 摩擦损耗小, 机械疲劳发展慢 , 可靠性大大提高、 寿命大大延长, 运行精度高, 长时间运转精度降低很小, 噪音震动低, 具有过载保护能力。
[0061] 米用偏心轴 2的外周侧设置两个相互呈 180°对称分布的第一偏心环 21和第二偏 心环 22的结构, 是的偏心轴 2在转动过程中, 离心力能够实现自平衡, 提高机械 稳定性, 减小对固定支撑轴 1的切应力作用。
[0062] 本实施例中, 固定支撑轴 1的外侧设置有第三轴承 93和第四轴承 94;
[0063] 输入转轴 3第一端通过第三轴承 93转动设置在固定支撑轴 1的外侧;
[0064] 输入转轴 3接近第二端的内侧通过第四轴承 94转动设置在固定支撑轴 1的外侧。
[0065] 本实施例中, 还包括第五轴承 95、 第六轴承 96和偏心轴支架 01 ;
[0066] 偏心轴 2的第二端通过第五轴承 95转动设置在固定支撑轴 1的外侧; [0067] 偏心轴 2的第一端装配在偏心轴支架 01的内侧, 偏心轴支架 01通过第六轴承 96 转动设置在固定支撑轴 1的外侧, 偏心轴 2为空心轴结构, 偏心轴 2的内侧与固定 支撑轴 1的外侧之间设置有间隙。
[0068] 本实施例中, 输入转轴 3的第二端套接在偏心轴 2的第二端的外侧;
[0069] 输入转轴 3的第二端的壁体设置有第一键槽 31, 偏心轴 2的第二端的壁体设置有 第二键槽 23 , 通过销键 (图中未示出) 连接第一键槽 31和第二键槽 23 ;
[0070] 键、 第一键槽 31和第二键槽 23构成转动连接结构 8。
[0071] 本实施例中, 还包括外铁芯支架 02和第七轴承 97 ;
[0072] 第七轴承 97的内侧套接在固定支撑轴 1的接近左端的位置, 外铁芯支架 02套接 在第七轴承 97的外圈上;
[0073] 外铁芯支架 02的外圈通过螺栓固定连接在外转铁芯 6的内圈。 外铁芯支架 02也 可以叫前支架。
[0074] 本实施例中以剖视图的左侧为电机的前方向, 右侧为电机的后方向。
[0075] 本实施例中, 第六轴承 96和第七轴承 97之间设置有第一限位圈 03 , 第一限位圈 03套接在第七轴承 97右侧的固定支撑轴 1上。
[0076] 本实施例中, 还包括第八轴承 98, 第八轴承 98的内圈套接在销钉支撑架 4的外 圈上, 第八轴承 98的外圈套接在外转铁芯 6的右端部的内圈。
[0077] 本实施例中, 第一内摆铁芯 51和第二内摆铁芯 52之间设置有第二限位圈 04, 第 二限位圈 04的内径大于第一内摆铁芯 51和第二内摆铁芯 52的外径。
[0078] 本实施例中, 还包括第九轴承 99和电机前端盖 05 ;
[0079] 第九轴承 99的内圈套接在输入转轴 3的第二端的外侧, 第九轴承 99的外圈套接 在电机前端盖 05的内圈上;
[0080] 电机前端盖 05通过螺栓固定连接销钉支撑架 4。
[0081] 本实施例中, 还包括电机定子铁芯 06、 电机后端盖 07和电机磁钢 08 ;
[0082] 电机后端盖 07固定连接在固定支撑轴 1的外侧的右端部, 电机定子铁芯 06设置 于电机前端盖 05和电机后端盖 07之间;
[0083] 通过长螺栓固定连接电机前端盖 05、 电机定子铁芯 06和电机后端盖 07 ;
[0084] 输入转轴 3的外圈设置电机磁钢 08, 电机磁钢 08位于电机定子铁芯 06的内侧。 ( 这些都是驱动电机结构的内容可以不用写在专利正文的吧, 不写进权利要求就 行了)
[0085]
[0086] 传统机械结构减速机主要由齿轮啮合传动, 存在摩擦损耗、 机械疲劳、 噪音震 动等不利因素, 且维护繁琐, 不具有过载保护能力。
[0087] 常规技术的基于磁场调制技术的轴向磁场磁齿轮减速机: 第一, 理论上, 起磁 场调制作用的调磁铁芯 (齿) 数必须满足约束条件, 从而导致磁性齿轮在运转 传动的任意时刻都有一半以上的永磁体磁极处于闲置的非耦合状态, 永磁体异 极性磁极的耦合面积理论上就低于 50% ; 第二, 从结构上看, 调磁铁芯的存在必 然使磁性齿轮副具有两个气隙, 将消耗永磁体的大量磁动势, 导致处于耦合工 作状态的永磁体磁通量降低, 从而影响所传递的扭矩大小; 第三, 调磁铁芯的 存在使得气隙磁阻与磁势交变, 导致扭矩周期性脉动, 不仅影响传动精度, 而 且调磁铁芯所受的机械扭矩大, 其结构强度也是影响其寿命的主要因素。
[0088] 本发明中: 第一内摆铁芯 51和第二内摆铁芯 52的外表面分布有 P2对极永磁体, 外转铁芯 6的内表面分布有 P1对极永磁体, 0 < P1-P2^3, PI、 P2为正整数。 外转 磁钢 61与第一内转磁钢 511和第二外转磁钢 521之间存在气隙, 借鉴少齿差行星 齿轮传动的原理, 将输入转轴 3的自转通过偏心轴 2结构转换为第一内摆铁芯 51 和第二内摆铁芯 52的转动和公转, 由于限位销钉 7的限位作用, 第一内摆铁芯 51 和第二内摆铁芯 52的只摆动不公转, 加上永磁材料 N极与 S极异极性耦合同性相 斥异性相吸的原理来实现外圈铁芯 4的自转, 输入转轴 3转动一圈, 外转铁芯 4转 动 2片磁钢的距离, 起到减速的作用, 实现无机械接触、 无摩擦的动力变速传动
[0089] 本发明中, 以图 3剖视图中的左右为“左”、 “右”进行方位上的描述。
[0090] 对本领域的技术人员来说, 可根据以上描述的技术方案以及构思, 做出其它各 种相应的改变以及形变, 而所有的这些改变以及形变都应该属于本发明权利要 求的保护范围之内。
[0091] 需要说明的是: 以上的实施例仅仅是本发明一部分实施例, 而不是全部的实施 例。 实施例和所附权利要求书中所使用的单数形式的“第一”、 “第二”、 “一种”、 “”和“该”也旨在包括多数形式, 除非上下文清楚地表示其他含义。 “第一”和“第 二”只是为了说明的方便, 不表示有先后顺序之分。
[0092] 本发明的不局限于上述实施例, 本发明的上述各个实施例的技术方案彼此可以 交叉组合形成新的技术方案, 另外凡采用等同替换形成的技术方案, 均落在本 发明要求的保护范围内。
[0093]

Claims

权利要求书
[权利要求 1] 一种双摆轮径向结构磁能减速机, 其特征在于, 包括固定支撑轴 a ) 、 偏心轴 (2) 、 输入转轴 (3) 、 销钉支撑架 (4) 、 第一内摆铁 芯 (51) 第二内摆铁芯 (52) 外转铁芯 (6) 设置在外转铁芯
(6) 内侧的呈圆周阵列分布的外转磁钢 (61) 设置在第一内摆铁 芯 (51) 外侧的呈圆周阵列分布的第一内转磁钢 (511) 设置在第 二内摆铁芯 (52) 外侧的呈圆周阵列分布的第二外转磁钢 (521) 和 3个以上的限位销钉 (7) ;
所述外转磁钢 (61) 的内侧面对着第一内转磁钢 (511) 和第二外转 磁钢 (521) 的外侧面;
所述销钉支撑架 (4) 固定在所述固定支撑轴 (1) 上;
所述偏心轴 (2) 的外周侧设置有两个相互呈 180°对称分布的第一偏 心环 (21) 和第二偏心环 (22) 所述第一内摆铁芯 (51) 通过第一 轴承 (91) 套接在所述第一偏心环 (21) 的外侧, 所述第二内摆铁芯 (52) 通过第二轴承 (92) 套接在所述第二偏心环 (22) 的外侧; 所述第一内摆铁芯 (51) 的盘面上设置有呈圆周阵列分布的第一拨动 孔 (512) 所述第二内摆铁芯 (52) 的盘面上设置有呈圆周阵列分 布的第二拨动孔 (522) 所述限位销钉 (7) 呈圆周陈列固定连接在 所述销钉支撑架 (4) 的盘面上, 所述限位销钉 (7) 的外径小于所述 第一拨动孔 (512) 和第二拨动孔 (522) 的内径, 每个所述限位销钉
(7) 依次穿过一个所述第一拨动孔 (512) 和一个所述第二拨动孔 ( 522) ;
所述输入转轴 (3) 为电机的空心转轴, 所述输入转轴 (3) 转动设置 在所述固定支撑轴 (1) 的外侧, 所述偏心轴 (2) 转动设置在所述固 定支撑轴 (1) 的外侧; 所述输入转轴 (3) 通过转动连接结构 (8) 驱动所述偏心轴 (2) 转动;
所述偏心轴 (2) 转动时, 驱动所述第一内摆铁芯 (51) 和第二内摆 铁芯 (52) 转动和摆动, 由于所述限位销钉 (7) 的限制作用, 所述 第一内摆铁芯 (51) 和第二内摆铁芯 (52) 只能摆动, 不能绕所述固 定支撑轴 (1) 公转;
所述第一内摆铁芯 (51) 和第二内摆铁芯 (52) 摆动过程中, 由于所 述第一内转磁钢 (511) 、 第二外转磁钢 (521) 和外转磁钢 (61) 的 磁力作用, 所述外转铁芯 (6) 绕所述固定支撑轴 (1) 公转。
[权利要求 2] 如权利要求 1所述双摆轮径向结构磁能减速机, 其特征在于, 所述固 定支撑轴 (1) 的外侧设置有第三轴承 (93) 和第四轴承 (94) ; 所述输入转轴 (3) 第一端通过所述第三轴承 (93) 转动设置在所述 固定支撑轴 (1) 的外侧;
所述输入转轴 (3) 接近第二端的内侧通过第四轴承 (94) 转动设置 在所述固定支撑轴 (1) 的外侧。
[权利要求 3] 如权利要求 2所述双摆轮径向结构磁能减速机, 其特征在于, 还包括 第五轴承 (95) 、 第六轴承 (96) 和偏心轴支架 (01) ;
所述偏心轴 (2) 的第二端通过所述第五轴承 (95) 转动设置在所述 固定支撑轴 (1) 的外侧;
所述偏心轴 (2) 的第一端装配在所述偏心轴支架 (01) 的内侧, 所 述偏心轴支架 (01) 通过所述第六轴承 (96) 转动设置在所述固定支 撑轴 (1) 的外侧, 所述偏心轴 (2) 为空心轴结构, 所述偏心轴 (2 ) 的内侧与所述固定支撑轴 (1) 的外侧之间设置有间隙。
[权利要求 4] 如权利要求 3所述双摆轮径向结构磁能减速机, 其特征在于, 所述输 入转轴 (3) 的第二端套接在所述偏心轴 (2) 的第二端的外侧; 所述输入转轴 (3) 的第二端的壁体设置有第一键槽 (31) , 所述偏 心轴 (2) 的第二端的壁体设置有第二键槽 (23) , 通过键连接所述 第一键槽 (31) 和第二键槽 (23) ;
所述键、 第一键槽 (31) 和第二键槽 (23) 构成转动连接结构 (8)
[权利要求 5] 如权利要求 4所述双摆轮径向结构磁能减速机, 其特征在于, 还包括 外铁芯支架 (02) 和第七轴承 (97) ; 所述第七轴承 (97) 的内侧套接在所述固定支撑轴 (1) 的接近左端 的位置, 所述外铁芯支架 (02) 套接在所述第七轴承 (97) 的外圈上 所述外铁芯支架 (02) 的外圈通过螺栓固定连接在所述外转铁芯 (6 ) 的内圈。
[权利要求 6] 如权利要求 5所述双摆轮径向结构磁能减速机, 其特征在于, 所述第 六轴承 (96) 和第七轴承 (97) 之间设置有第一限位圈 (03) , 所述 第一限位圈 (03) 套接在所述第七轴承 (97) 右侧的所述固定支撑轴 ⑴ 上。
[权利要求 7] 如权利要求 5所述双摆轮径向结构磁能减速机, 其特征在于, 还包括 第八轴承 (98) , 所述第八轴承 (98) 的内圈套接在所述销钉支撑架 (4) 的外圈上, 所述第八轴承 (98) 的外圈套接在所述外转铁芯 (6 ) 的右端部的内圈。
[权利要求 8] 如权利要求 7所述双摆轮径向结构磁能减速机, 其特征在于, 所述第 一内摆铁芯 (51) 和第二内摆铁芯 (52) 之间设置有第二限位圈 (04 ) , 所述第二限位圈 (04) 的内径大于所述第一内摆铁芯 (51) 和第 二内摆铁芯 (52) 的内径。
PCT/CN2018/107932 2018-09-27 2018-09-27 双摆轮径向结构磁能减速机 WO2020061896A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107932 WO2020061896A1 (zh) 2018-09-27 2018-09-27 双摆轮径向结构磁能减速机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107932 WO2020061896A1 (zh) 2018-09-27 2018-09-27 双摆轮径向结构磁能减速机

Publications (1)

Publication Number Publication Date
WO2020061896A1 true WO2020061896A1 (zh) 2020-04-02

Family

ID=69950877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107932 WO2020061896A1 (zh) 2018-09-27 2018-09-27 双摆轮径向结构磁能减速机

Country Status (1)

Country Link
WO (1) WO2020061896A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250358A (ja) * 2008-04-07 2009-10-29 Sumitomo Heavy Ind Ltd 磁気歯車減速機
CN106949197A (zh) * 2017-04-21 2017-07-14 杭州星河传动机械研究院有限公司 一种摆轮滚套式减速机
CN108566040A (zh) * 2018-06-08 2018-09-21 深圳超磁机器人科技有限公司 一种嵌入式外转电机减速一体机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250358A (ja) * 2008-04-07 2009-10-29 Sumitomo Heavy Ind Ltd 磁気歯車減速機
CN106949197A (zh) * 2017-04-21 2017-07-14 杭州星河传动机械研究院有限公司 一种摆轮滚套式减速机
CN108566040A (zh) * 2018-06-08 2018-09-21 深圳超磁机器人科技有限公司 一种嵌入式外转电机减速一体机

Similar Documents

Publication Publication Date Title
JP2008175199A5 (zh)
JP2008535462A (ja) 磁気駆動装置
TW201402974A (zh) 球帶面磁性耦合傳動機構及其應用
CN102447376A (zh) 磁性齿轮及磁性传动装置
CN103904860B (zh) 一种端面固定的同轴套筒式永磁涡流联轴器
WO2020061896A1 (zh) 双摆轮径向结构磁能减速机
CN208885903U (zh) 一种双摆轮轴向结构磁能减速机
CN106411011B (zh) 水内冷电机转子
CN110971073A (zh) 一种永磁减速传动的电机
CN109424701A (zh) 减速器和带有减速器的电动机
CN208782710U (zh) 一种双摆轮径向结构磁能减速机
CN208433896U (zh) 一种自对中型永磁联轴器
CN109067139B (zh) 一种摆轮轴向结构磁能减速机
CN107332429B (zh) 一种磁力耦合传动装置
WO2020061897A1 (zh) 双摆轮轴向结构磁能减速机
TW201351852A (zh) 內具偏置發電機之外迴轉式發電裝置
CN109039013B (zh) 一种双摆轮径向结构磁能减速机
CN209620151U (zh) 一种电机直驱式行走机构及大型挖掘机
CN114069999A (zh) 一种并轴式双转子永磁同步电机结构
WO2020061895A1 (zh) 摆轮径向结构磁能减速机
CN202280810U (zh) 少极差偏心盘形磁齿轮的行星轮平衡对称布置新结构
WO2020061894A1 (zh) 摆轮轴向结构磁能减速机
CN108060550A (zh) 洗衣筒机构、洗衣机及洗衣机驱动方法
CN207812109U (zh) 洗衣筒机构及具有其的洗衣机
TWI571563B (zh) 流體發電裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18935896

Country of ref document: EP

Kind code of ref document: A1