WO2020059858A1 - Hydroculture cultivation agent and hydroculture method using hydroculture cultivation agent - Google Patents

Hydroculture cultivation agent and hydroculture method using hydroculture cultivation agent Download PDF

Info

Publication number
WO2020059858A1
WO2020059858A1 PCT/JP2019/037036 JP2019037036W WO2020059858A1 WO 2020059858 A1 WO2020059858 A1 WO 2020059858A1 JP 2019037036 W JP2019037036 W JP 2019037036W WO 2020059858 A1 WO2020059858 A1 WO 2020059858A1
Authority
WO
WIPO (PCT)
Prior art keywords
cultivation
cnf
fertilizer
agent
hydroculture
Prior art date
Application number
PCT/JP2019/037036
Other languages
French (fr)
Japanese (ja)
Inventor
永田 健二
Original Assignee
中越パルプ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中越パルプ工業株式会社 filed Critical 中越パルプ工業株式会社
Priority to JP2019571568A priority Critical patent/JP6693003B1/en
Publication of WO2020059858A1 publication Critical patent/WO2020059858A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention can increase the yield by using cellulose nanofibers together with fertilizer components in nutrient cultivation, and can suppress the growth of bacteria during cultivation, prevent decay, off-flavor, etc., and cultivate.
  • the present invention relates to a hydroponic cultivation agent capable of maintaining an environment and a hydroponic cultivation method using the hydroponic cultivation agent.
  • issues in agricultural production include promoting plant growth and increasing the yield per unit area, improving production efficiency and increasing the overall yield, plants that are resistant to pathogenic bacteria, pests, or climate change. And the like.
  • In order to increase the yield it is necessary to prepare a fertilizer, shorten the cultivation period, and increase the plant cultivation efficiency and turnover.
  • the shorter the cultivation period the less the possibility of damage by pathogenic bacteria and pests.
  • Shortening the cultivation period of a plant in this way involves a growth promoting effect, and it is an issue how to improve the conventional cultivation method to promote the growth or cultivate a high quality crop. I have.
  • CNFs cellulose nanofibers
  • CNF cellulose nanofibers
  • CNF is considered to be a fibrous substance made of cellulose having a diameter of 3 to 100 nm and an aspect ratio (fiber length / fiber width) of 100 or more.
  • CNF has excellent properties such as light weight, high strength, and low coefficient of thermal expansion, and is expected to be used in various fields in the future.
  • a compound fertilizer in which a plurality of components including nitrogen, phosphorus, and potassium are mixed in a well-balanced manner in order to supplement components necessary for the growth of plants such as crops and flowers.
  • a solid fertilizer using the fertilizer as a solid
  • a liquid fertilizer using the fertilizer as an aqueous solution.
  • liquid fertilizer when fertilizing as a liquid fertilizer (hereinafter sometimes referred to as liquid fertilizer), by accurately preparing the components, it is possible to reduce the risk of causing an excess or deficiency of the components or a difference in the concentration of the components in the soil. can do.
  • Liquid fertilizers having these advantages are widely used in hydroponics for managing fertilization of plants.
  • the optimal component, component concentration, pH, temperature, etc. are selected according to the cultivated crop.
  • the following inventions are disclosed as components selected for improving the yield and the quality of the crop.
  • Patent Document 1 discloses an invention of a method for increasing the yield of a plant, which comprises contacting a plant with cyclopropene applied multiple times.
  • Patent Document 2 discloses an invention of a method for cultivating a plant that supplies a nutrient solution containing 1 to 500 ppm of petaine in the cultivation of a plant that supplies a nutrient solution to a plant supported on a base bed.
  • Patent Document 3 discloses an invention relating to a composition containing tetra-N-acyl-beta-D-methyl-glucoside (TAMG), which is a synthetic LCO compound, and a related compound thereof.
  • TAMG tetra-N-acyl-beta-D-methyl-glucoside
  • composition containing and its related compounds is an invention which can be useful for the growth promoting action of a specific plant.
  • TAMG tetra-N-acyl-beta-D-methyl-glucoside
  • the present invention has been made in view of the above circumstances, and is to provide a cultivating agent in hydroponic cultivation. More specifically, the present invention can promote plant growth and improve crop yield and quality. It is an object to provide a cultivation agent for hydroponic cultivation and a hydroponic cultivation method.
  • Another object of the present invention is to provide a cultivation agent for hydroponics that is excellent in maintaining a cultivation environment.
  • the present inventor focused on the vast specific surface area of the cellulose nanofiber and the surface adsorption force resulting therefrom. That is, this is mixed with a liquid fertilizer, and fertilizer is applied in a state where components necessary for plant growth in the liquid fertilizer are adsorbed to the cellulose nanofiber, or a cellulose nanofiber dispersion is sprayed in the presence of the fertilizer component,
  • the present inventors have found that the above problem can be solved by adsorbing the fertilizer component on cellulose nanofibers, and have completed the present invention.
  • the cultivation agent for hydroponics of the present invention is characterized by containing cellulose nanofibers.
  • a cultivation agent and a cultivation method capable of promoting the growth of plants and improving the yield and quality of crops. Further, a cultivation agent for hydroponics which is excellent in maintaining the cultivation environment is provided.
  • FIG. 4 is a photograph showing the result of cultivating Casablanca of Example 1.
  • 5 is a photograph showing the result of cultivating Casablanca of Comparative Example 1.
  • It is a figure showing the result of transition of the amount of tomato harvest of Example 2 and Comparative Example 2.
  • It is a photograph which shows the result of the root after harvest of the tomato of Example 2 and Comparative Example 2.
  • It is a photograph which shows the result of cultivating radish for 20 days of Example 3 and Comparative Example 3.
  • 9 is a photograph showing a radish portion of the radish of Example 3.
  • 9 is a photograph showing a radish portion of 20 days radish of Comparative Example 3. It is a photograph which shows the result of cultivating the bean seedlings of Example 5 and Comparative Example 5. It is a photograph which shows the result of cultivating the broccoli sprout of Example 5 and Comparative Example 5. It is a figure showing a bacteria measurement result.
  • 14 is a photograph showing a result of the cabbage cultivation of Example 7 at an early stage.
  • 9 is a photograph showing a result of an initial stage of cabbage cultivation of Comparative Example 7.
  • 9 is a photograph showing the results of Example 8 and Comparative Example 8 in the initial stage of broccoli cultivation.
  • the cultivation agent for hydroponics according to one embodiment of the present invention is obtained by mixing a CNF dispersion with a liquid fertilizer.
  • CNF examples include CNF derived from polysaccharides including natural plants such as wood fiber, hardwood, conifer, bamboo fiber, sugarcane fiber, seed hair fiber, leaf fiber, and seaweed. Further, it may be produced from crop residues derived from plant leaves, flowers, stems, roots, hulls, and the like, such as bagasse, rice straw, tea husks, and fruit juice pomace. These CNFs may be used alone or in combination of two or more.
  • the polysaccharide pulp having an ⁇ -cellulose content of 60% to 99% by mass is preferably used as a raw material.
  • the ⁇ -cellulose content is 60% by mass or more, the fiber diameter and the fiber length can be easily adjusted, and the entanglement of the fibers can be suppressed, so that the sprayability is good, and the plant rots to increase the plant growth.
  • the growth environment can be maintained without hindrance.
  • an ⁇ -cellulose content of less than 60% by mass is used, the properties of natural cellulose crystals cannot be sufficiently brought out, and there is a possibility of causing deterioration over time due to decay or the like during storage, while 99% by mass. In the case of using the above, it is difficult to defibrate the fiber to the nano level.
  • pulp for papermaking can be used because it is easily available and inexpensive, and the production method is not particularly limited.
  • the production method is not particularly limited.
  • bleached kraft pulp, unbleached kraft pulp, sulfite pulp, soda pulp, thermomechanical pulp, Pulp such as deinked pulp, waste paper pulp, and dissolved pulp may be used.
  • bleached kraft pulp and unbleached kraft pulp are preferable because they are more easily available.
  • the crystallinity of CNF is preferably 50 or more.
  • the degree of crystallinity can be measured by an X-ray diffraction method or the like. If the degree of crystallinity is less than 50, it is not possible to sufficiently bring out the properties possessed by natural crystals of cellulose. May cause.
  • the CNF in the present invention can be obtained as a CNF dispersion (hereinafter, sometimes referred to as a hydrous CNF) by performing the following defibration treatment.
  • the defibration process is performed using the underwater facing collision method (hereinafter, also referred to as ACC method) shown in FIG.
  • ACC method underwater facing collision method
  • pulp suspended in water is introduced into two opposing nozzles (108a, 108b in FIG. 1: 107) in a chamber (FIG. 1: 107), and injected and collided from these nozzles toward one point. is there.
  • the apparatus shown in FIG. 1 is of a liquid circulation type, and includes a tank (FIG. 1: 109), a plunger (FIG.
  • FIG. 1: 110 two opposing nozzles (FIG. 1: 108a, 108b), and heat if necessary.
  • An exchanger (FIG. 1: 111) is provided, and fine particles dispersed in water are introduced into two nozzles, and are jetted from the nozzles (FIGS. 1: 108a, 108b) that match each other under high pressure and collide with each other in water.
  • the defibration process may be performed using a pretreatment device (FIGS. 2 and 3).
  • a pretreatment device As another defibrating method, such a pretreatment device may be used.
  • the defibration treatment using the pretreatment device is performed by causing high-pressure water of about 50 to 400 MPa to collide with a polysaccharide made into a water mixture of 0.5 to 10% by mass. This can be performed, for example, using the manufacturing apparatus 1 shown in FIG.
  • the production apparatus 1 includes a polysaccharide slurry supply path 3, which is a first liquid medium supply path, which is arranged so as to supply a polysaccharide slurry to one chamber 2, and a non-polysaccharide slurry, for example, water, in one chamber. And a second liquid medium supply path 4 circulating through the second liquid medium supply path 4.
  • a polysaccharide slurry supply path 3 allows the polysaccharide slurry to circulate through one chamber 2.
  • the polysaccharide slurry supply path 3 and the second liquid medium supply path 4 have an intersection 6 in one chamber 2.
  • the polysaccharide slurry supply path 3 is a polysaccharide slurry supply part, in which a tank 7 for storing the polysaccharide slurry and a pump 8 are arranged in a circulation path 9, while the second liquid medium supply path 4 is a tank 10, a pump 11,
  • the exchanger 12 and the plunger 13 are arranged in the liquid medium supply path 4 which is a circulation path.
  • the non-polysaccharide slurry is, for example, water, and is initially stored in the tank 10, and then the nano-micronized polysaccharide stored in the tank 10 after passing through the intersection 6 with the operation of the cellulose nanofiber manufacturing apparatus 1.
  • Those that are to be included at a concentration corresponding to the degree of operation are also generically referred to.
  • the circulation path 9 of the polysaccharide slurry supply path 3 is arranged so as to penetrate the chamber 2, and the non-polysaccharide slurry is orifice-injected in a direction intersecting with the circulation path 9 so that the circulation path 9 can be penetrated.
  • the orifice injection port 14 of the orifice injection section 5 connected to the plunger 13 of the second liquid medium supply path 4 opens inside the chamber 2.
  • a discharge port 15 of the chamber 2 is provided at a position opposite to the orifice injection port 14 of the chamber 2, and a circulation path of the second liquid medium supply path 4 is connected to the discharge port 15 of the chamber 2 to form a second liquid medium.
  • the medium supply path 4 is configured.
  • the circulation path 9 of the polysaccharide slurry supply path 3 is formed by using, for example, a vinyl hose, a rubber hose, an aluminum pipe, or the like.
  • a directional valve 16 is mounted.
  • a one-way valve 17 that is opened only in the discharge direction from the chamber 2 is attached to the circulation path 9 on the exit side from the chamber 2.
  • an air intake valve 18 is attached to the circulation path 9 between the chamber 2 and the one-way valve 17, and the air intake valve 18 is opened only in a direction in which air is sucked into the circulation path 9 from the outside.
  • cellulose nanofibers are produced as follows.
  • the non-polysaccharide slurry is circulated through the second liquid medium supply path 4 through the chamber 2.
  • the non-polysaccharide slurry in the tank 10 is passed through the heat exchanger 12 and the plunger 13 using the pump 11 and circulated in the liquid medium supply path 4.
  • the polysaccharide slurry is circulated in the polysaccharide slurry supply path 3 through the chamber 2.
  • the polysaccharide slurry in the tank 7 is circulated in the circulation path 9 formed by using a vinyl hose, a rubber hose, or the like using the pump 8.
  • the non-polysaccharide slurry circulating in the second liquid medium supply path 4 is orifice-injected to the polysaccharide slurry circulating in the polysaccharide slurry supply path 3 and flowing in the chamber 2.
  • high-pressure water is supplied from the plunger 13 to the orifice injection port 14 connected to the plunger 13, and the orifice is injected from the orifice injection port 14 toward the circulation path 9 at a high pressure of about 50 to 400 MPa.
  • the non-polysaccharide slurry passes through the through holes 26a and 26b formed in advance in the circulation path 9 formed using, for example, a vinyl hose, a rubber hose, or an aluminum pipe, and passes through the inside of the circulation path 9 in a direction crossing the circulation path 9.
  • the resulting non-polysaccharide slurry is discharged toward the outlet 15 of the chamber 2 while entraining the polysaccharide slurry circulating in the circulation path 9 and flows into the second liquid medium supply path 4. Thereby, the non-polysaccharide slurry circulates again in the second liquid medium supply path 4.
  • the polysaccharide in the polysaccharide slurry circulating in the polysaccharide slurry supply path 3 and flowing in the chamber 2 and the polysaccharide in the non-polysaccharide slurry circulating in the second liquid medium supply path 4 are gradually defibrated.
  • a CNF dispersion having a high degree of uniformity of fibrillation according to the intended use can be obtained.
  • the degree of defibration from pulp fibers to CNF can be evaluated by the viscosity value of the CNF dispersion. That is, the CNF contained in the CNF dispersion having an increased degree of fibrillation has a short fiber length, and thus has a low viscosity value. Therefore, a CNF dispersion having a high degree of fibrillation has a low viscosity. On the other hand, the CNF dispersion having a higher viscosity value has a higher viscosity value because the CNF contained in the CNF dispersion has a longer fiber length. Therefore, the degree of defibration is lower than that of the CNF dispersion.
  • the viscosity value of the CNF dispersion is different. Further, for example, by combining different kinds of pulp fibers or adjusting the degree of defibration, the viscosity of the CNF aqueous dispersion at 1 wt% can be adjusted within a range of about 300 to 10,000 mPa ⁇ s.
  • CNF obtained as described above has a structural formula represented by the following chemical formula 1 because there is no change in the structure of the cellulose molecule because nano-refining is performed by cleaving only the interaction between natural cellulose fibers.
  • CNF used in the present invention has six hydroxyl groups in the cellobiose unit in Chemical Formula 1 and means that it is not chemically modified.
  • the average particle length of the cellulose fibers can be pulverized to 10 ⁇ m, and as a result, CNF having an average thickness of 3 to 200 nm and an average length of 0.1 ⁇ m or more can be obtained.
  • the average thickness and average fiber length are measured by appropriately selecting a scanning electron microscope (SEM), a transmission electron microscope (TEM), etc., observing and measuring CNF, and selecting at least 20 from the obtained photographs. , By averaging them.
  • the cellulose nanofiber obtained by the present ACC method has a hydrophilic site and a hydrophobic site, and exhibits amphiphilicity.
  • the CNF used in the present invention preferably has an average degree of polymerization in the range of 500 to 900.
  • the average degree of polymerization can be measured by a measuring method using a copper ethylenediamine solution or the like. 0.15 g of the CNF solid content was dissolved in 30 mL of a 0.5 M copper ethylenediamine solution, and the viscosity ⁇ of the CNF / copper ethylenediamine solution was measured using a Cannon-Fenske kinematic viscosity tube to determine the viscosity of the 0.5 M copper ethylenediamine solution.
  • the intrinsic viscosity [ ⁇ ] was determined from the following Schulz-Brushke equation, and the polymerization degree DP was calculated from the following Mark-Houwink-Sakurada equation.
  • Specific viscosity ⁇ sp ⁇ / ⁇ 0-1
  • c the CNF concentration (g / mL)
  • A is a characteristic value determined by the type of the solution
  • A 0. 28.
  • TEMPO oxidation catalyst treatment phosphoric acid esterification treatment, ozone treatment, enzyme treatment, maleic acid treatment, hydrophobic modification with alkenyl succinic anhydride, alkyl ketene, which are known as other methods for producing cellulose nanofibers, Wet pulverization using mechanical action such as cellulose nanofiber or grinder (stone mill type pulverizer), disk type refiner, conical refiner etc. obtained by chemical treatment such as hydrophobic modification by dimer, hydrophobic modification by acetylation.
  • Cellulose nanofibers obtained by a physical method of thinning cellulosic fibers can be used as a CNF dispersion in the present invention.
  • Cellulose nanofibers obtained by a method combining chemical treatment and physical treatment can also be used as a CNF dispersion.
  • the cultivation agent for hydroponics of the present invention refers to a composition comprising a fertilizer component and a CNF dispersion or a CNF dispersion.
  • the form of the fertilizer component is not particularly limited, and may be a liquid or a solid (solid).
  • the fertilizer component in the present invention may contain at least one of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, boron, zinc, molybdenum, copper, chlorine, and nickel.
  • the liquid fertilizer or the solid (solid) fertilizer may contain other components as long as the various functions of the fertilizer component are not impaired.
  • liquid fertilizer may be used as the liquid fertilizer.
  • liquid fertilizers include urea compound liquid fertilizer, urea compound liquid fertilizer containing boron, manganese and magnesia, nitrate compound liquid fertilizer, nitrate-lime liquid fertilizer, organic liquid fertilizer, phosphorus ammonium liquid fertilizer, powder liquid fertilizer, nitrogen-free liquid fertilizer, A liquid trace element composite fertilizer can be used.
  • solid (solid) fertilizer include vegetable or animal organic fertilizers such as oil cake, bone meal, fish cake, chicken dung, rice bran, and plant ash, and inorganic fertilizers (chemical fertilizers) made from minerals, petroleum, and the like. Known ones can be used without any particular limitation.
  • Examples of the solvent for dissolving or dispersing the fertilizer component or the liquid fertilizer include water and an organic solvent, and water is preferable. However, since tap water contains chlorine and has a bactericidal action, it is preferable to use chlorine-free water, well water, spring water, and the like.
  • the lower limit of the content of the fertilizer component in the liquid fertilizer is not particularly limited, but is preferably 0.001% by mass or more, and more preferably 0.005% by mass or more. This is because if the amount of the fertilizer component is too small, the effect of the liquid fertilizer is reduced.
  • the upper limit of the content of the fertilizer component in the liquid fertilizer is not particularly limited, but is preferably 25% by mass or less, and more preferably 20% by mass or less. This is because if the amount of the fertilizer component is too large, it may cause an unpleasant odor.
  • the content of the solvent in the liquid fertilizer is preferably 75% by mass or more, more preferably 80% by mass or more, preferably 99% by mass or less, and further preferably 95% by mass or less. If the content of the solvent is too low, the viscosity of the liquid fertilizer increases, and the handling becomes poor. Also, if the content of the solvent is too high, it is necessary to reduce the ratio of the fertilizer component.
  • the CNF content in the nutrient solution cultivation agent can be used without any particular limitation, but is preferably 0.0001% by mass or more and 10% by mass or less. If the content of CNF is too small, the effect of CNF is reduced. On the other hand, when the content is 10% by mass or more, the cultivation agent for hydroponic cultivation has a high viscosity, the sprayability is reduced, and uniform fertilization becomes difficult.
  • the cultivation agent for hydroponics of the present invention can be used even if a CNF dispersion alone is used.
  • CNF is degraded at a slow rate by enzymes such as cellulase in the soil, and its degraded product, glucose, is quickly absorbed from the roots of the plant. This is because it also contributes to the effect.
  • the CNF dispersion may use any one of softwood, hardwood, and bamboo fiber as a starting material, and use CNF obtained by the ACC method to further improve crop yield and quality. Can be. This is presumed to be due to the fact that CNF obtained by the ACC method has amphipathic properties and that none of the hydroxyl groups in the cellobiose unit are chemically modified and there are six hydroxyl groups. You.
  • the growth can also be promoted by spraying the CNF dispersion onto a site such as soil to which a fertilizer component such as a liquid fertilizer or a solid (solid) fertilizer has been applied.
  • the CNF in the sprayed CNF dispersion adsorbs components necessary for plant growth in the fertilizer components in the soil and reaches the plant rhizosphere.
  • the concentration of the fertilizer component existing in the plant rhizosphere becomes high, and the fertilizer absorption is promoted, so that the growth is further promoted. It is needless to say that the same effect as in the case of using the CNF dispersion alone can be obtained even when the cultivation agent for hydroponics comprising the fertilizer component and the CNF dispersion is used.
  • hydroponic cultivation refers to a cultivation method in which components necessary for plant growth are provided as liquid fertilizer. Since liquid fertilizer does not require that various components such as fertilizer components are completely dissolved, a solid fertilizer component may be present.
  • cultivation methods in the cultivation method using the liquid fertilizer typical examples of which include a liquid fertilizer soil cultivation method in which the addition of the liquid fertilizer and irrigation are performed simultaneously, and a water medium that does not use soil as a medium. Cultivation and the like can be mentioned.
  • a solid medium cultivation method in which a crop is planted in a solid medium such as gravel, sand, peat, vermiculite, pumice, sawdust, rock wool, and the like, and a liquid fertilizer is supplied to the crop.
  • a solid medium such as gravel, sand, peat, vermiculite, pumice, sawdust, rock wool, and the like
  • the hydroponic cultivation includes submerged hydroponic cultivation in which the nutrient solution is filled, thin-film hydroponic cultivation in which the nutrient solution is flowed shallowly, and spraying in which the nutrient solution is mist-shaped with a spray pump and sprayed on roots or the like.
  • hydroponics is a cultivation method generally used in plant cultivation facilities such as vegetable factories and plant factories. Naturally, the cultivation agent of the present invention can also be used in a plant factory.
  • the fertilizer application method of the present invention is not particularly limited, but it is preferable to apply fertilizer using a hydroponic cultivation apparatus using a known mechanical means such as a drip irrigation apparatus from the viewpoint of reduction of labor for agricultural work and cost.
  • the fertilizer for hydroponic cultivation according to the present invention reaches the plant rhizosphere after fertilization, with the CNF having a large specific surface area adsorbing the fertilizer component contained in the hydroponic cultivation agent on the surface.
  • the concentration of the fertilizer component existing in the plant rhizosphere becomes high, and the absorption of the fertilizer is promoted. That is, in the case of the nutrient solution cultivation method using the soil as a medium, the fertilizer component of the liquid fertilizer can be efficiently used in addition to the fertilizer component existing in the soil.
  • the fertilizer component existing in the soil also includes a fertilizer component when fertilized to a specific location in advance. Further, it can be efficiently used in other cultivation methods for the same reason.
  • the plant to which the hydroponic cultivation agent of the present invention is used is not particularly limited, and can be used for all kinds of agricultural and horticultural crops. If you dare to exemplify plants, lettuce, rhubarb, mizuna, herbs, radish, wasabi, bensai, green soybeans, pakchoi, cabbage, rape, spring chrysanthemum, empty core, komatsuna, Chinese cabbage, sertas, tarsai, Leafy vegetables such as honeysuckle, nozawana, spinach, leek, etc., peppers, paprika, melon, bitter gourd, fruit and vegetables such as watermelon, pumpkin, blueberry, strawberry, eggplant, tomato, grape, etc.
  • Soybeans bean seedlings, beans such as various sprout, flowers such as roses, grains such as rice and wheat, root crops such as lotus root, radish, bulbs such as hyacinth, crocus, tulip, Casablanca, mishimasaiko, carrot, parsley And other plants of the Umbelliferae family.
  • the nutrient solution cultivation agent according to the present invention suppresses the growth of bacteria, has an effect of preventing the generation of putrefaction and offensive odor, and it is not necessary or necessary to newly add a commonly used preservative. In this case, the amount of addition can be reduced.
  • the bulbs of Casablanca at the end of the first year were dug up, washed, re-planted, and cultivated by nutrient solution plowing.
  • the CNF solid content was adjusted to 0.09 g / time (concentration during fertilization: 0.006%) at a frequency of once / week, and a total of 1500 cc of the cultivation agent was fertilized.
  • Table 2 shows the results of Example 1 and Comparative Example 1. 4 and 5 show photographs showing the results of cultivating Casablanca.
  • Example 2 ⁇ Cultivated crop; tomato (variety; Momotaro)> (Example 2) Using bamboo pulp as a raw material, 100 cc of a CNF dispersion (concentration: 0.4 wt%, average degree of polymerization: 800, degree of crystallinity: 61) was obtained by the ACC method. 10 cc of liquid fertilizer (manufactured by Sumitomo Chemical Horticultural Co., Ltd., flower factory, manufacturer guarantee sheet No.
  • Table 3 shows the weight of each of the tomatoes harvested in Example 2 and Comparative Example 2.
  • FIG. 6 shows the results of changes in the amount of harvested tomatoes
  • FIG. 7 shows photographs showing the state of the tomatoes after harvesting the roots
  • Table 4 shows the weights of the roots after each harvesting.
  • the cultivation agent according to the present invention has a total yield of about 1.3 times as much as the liquid fertilizer containing no CNF dispersion, and the weight per piece is about 1 times. 0.2 times and the growth amount about 1.4 times. From Table 4, the weight of the tomato root after harvest was smaller in Example 2. From the results, it can be said that the cultivation agent for hydroponics according to the present invention has an effect of increasing the yield of tomato while suppressing the growth of the root of tomato.
  • ⁇ Cultivated plants 20 days radish> (Example 3)
  • 100 cc of a cellulose nanofiber dispersion (concentration: 0.2 wt%, average degree of polymerization: 770, degree of crystallization: 71) was obtained by the ACC method.
  • the CNF dispersion was added to 100 cc of water and 7000 cc of water to give a total amount of 7110 cc.
  • Tables 4 and 5 show the weights of the radish portion and the stem portion of the radish radish harvested in Example 3 and Comparative Example 3, respectively. 8, 9, and 10 show photographs showing the results of cultivating radish radish of Example 3 and Comparative Example 3.
  • FIG. 11 shows photographs showing the results of cultivating the bean seedlings of Example 5 and Comparative Example 5.
  • the right bean seedling is Example 5 and the left bean seedling is Comparative Example 5.
  • FIG. 12 shows photographs showing the results of cultivating the broccoli sprout of Example 5 and Comparative Example 5.
  • the broccoli sprout on the left side is Example 6, and the broccoli sprout on the right side is Comparative Example 6.
  • FIG. 13 shows the bacteria measurement results.
  • CNF diluent once at the time of planting and once at topdressing twice (total amount of CNF solids sprayed during the period: 34 g, CNF solids per cabbage: 0.34 g)
  • Example 7 Cabbage was cultivated in the same manner as in Example 7, except that the CNF dispersion was not used.
  • Tables 7 to 9 show the respective weights (unit: kg) of the cabbage harvested in Example 7 and Comparative Example 7.
  • FIGS. 14 and 15 show photographs showing intermediate results of cultivating the cabbage of Example 7 and Comparative Example 7.
  • CNF diluent 1 time at planting, 2 times topdressing, 3 times in total (total amount of CNF solids sprayed during the period: 0.9 g)
  • Table 10 shows the results of measuring the amount of harvest (unit: g) of the top flower bud (edible portion) of the broccoli harvested in Example 8 and Comparative Example 8.
  • FIG. 16 shows a photograph showing the intermediate results of cultivating the broccoli of Example 8 and Comparative Example 8. The broccoli on the right side is Example 8, and the broccoli on the left side is Comparative Example 8.

Abstract

[Problem] The present invention addresses the problem of providing a hydroculture cultivation agent that can improve crop yield and crop quality, and can also maintain the cultivation environment for a greater diversity of crops in a hydroculture method, without using different nutrient solutions. [Solution] A hydroculture cultivation agent according to the present invention is characterized by a cellulose nanofiber dispersion or by containing cellulose nanofibers and a fertilizer component containing at least one of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, boron, zinc, molybdenum, copper, chlorine, and nickel.

Description

養液栽培用栽培剤、及び養液栽培用栽培剤を使用する養液栽培方法。A hydroponic cultivation agent and a hydroponic cultivation method using the hydroponic cultivation agent.
 本発明は、養液栽培において、肥料成分と共にセルロースナノファイバーを使用することで、収穫量を増加させることができ、かつ、栽培時における菌の増殖を抑え、腐敗や異臭等を防止し、栽培環境の維持をすることのできる養液栽培用栽培剤及び養液栽培用栽培剤を使用する養液栽培方法に関する。 INDUSTRIAL APPLICABILITY The present invention can increase the yield by using cellulose nanofibers together with fertilizer components in nutrient cultivation, and can suppress the growth of bacteria during cultivation, prevent decay, off-flavor, etc., and cultivate. The present invention relates to a hydroponic cultivation agent capable of maintaining an environment and a hydroponic cultivation method using the hydroponic cultivation agent.
 従来、農業生産における課題として、植物の生長を促進させ単位面積当たりの収穫量を増やすこと、生産効率を向上させ、全体としての収穫量を増やすこと、病原菌や害虫又は気候変動に耐性のある植物を生産すること等が挙げられる。
 収穫量を増やすためには、肥料を調製し、栽培期間を短くして植物の栽培効率や回転率を上げる必要がある。また、栽培期間が短い程、病原菌や害虫による被害を受ける可能性が減少する。このように植物の栽培期間を短くすることは、成長促進作用の関与するところであり、従来の栽培法をいかに改良して生育を促進するか或いは品質の高い作物を栽培するかが課題となっている。
Conventionally, issues in agricultural production include promoting plant growth and increasing the yield per unit area, improving production efficiency and increasing the overall yield, plants that are resistant to pathogenic bacteria, pests, or climate change. And the like.
In order to increase the yield, it is necessary to prepare a fertilizer, shorten the cultivation period, and increase the plant cultivation efficiency and turnover. Also, the shorter the cultivation period, the less the possibility of damage by pathogenic bacteria and pests. Shortening the cultivation period of a plant in this way involves a growth promoting effect, and it is an issue how to improve the conventional cultivation method to promote the growth or cultivate a high quality crop. I have.
 一方、セルロースナノファイバー(以下、CNFということもある)は、地球温暖化対策として大気中のCO2の効率的な削減を図る目的から、カーボンニュートラルな素材として注目されている。一般的に、CNFは、直径が3~100nmでアスペクト比(繊維長/繊維幅)が100以上のセルロースからなる繊維状物質であるとされている。CNFは、軽量、高強度、低熱膨張率等の優れた性質を有しており、今後、様々な分野において使用が期待される材料である。 On the other hand, cellulose nanofibers (hereinafter, also referred to as CNFs) are attracting attention as carbon-neutral materials for the purpose of efficiently reducing atmospheric CO2 as a measure against global warming. Generally, CNF is considered to be a fibrous substance made of cellulose having a diameter of 3 to 100 nm and an aspect ratio (fiber length / fiber width) of 100 or more. CNF has excellent properties such as light weight, high strength, and low coefficient of thermal expansion, and is expected to be used in various fields in the future.
 一般に肥料として、作物、花卉類等の植物体の成長に必要な成分を補うために窒素、リン、カリウムの三大要素を含む複数の成分をバランスよく配合した複合肥料が用いられる。この複合肥料の形態として、肥料を固体として用いる固体肥料と肥料を水溶液とした液体肥料とがある。固体肥料として施肥する場合は、成分の過不足を招いたり、また、土壌において成分の濃度差が生じるおそれがあり、結果として作物の収穫量の減少を招くおそれがある。この点、 液体肥料(以下、液肥ということもある。)として施肥する場合は、成分の調製を正確に行うことにより、成分の過不足を招いたり、土壌における成分の濃度差が生じるおそれを少なくすることができる。 複合 Generally, as a fertilizer, a compound fertilizer is used in which a plurality of components including nitrogen, phosphorus, and potassium are mixed in a well-balanced manner in order to supplement components necessary for the growth of plants such as crops and flowers. As a form of the compound fertilizer, there are a solid fertilizer using the fertilizer as a solid and a liquid fertilizer using the fertilizer as an aqueous solution. When the fertilizer is applied as a solid fertilizer, there is a possibility that an excess or deficiency of the component may occur, or a difference in the concentration of the component may occur in the soil, which may result in a decrease in crop yield. In this regard, (1) when fertilizing as a liquid fertilizer (hereinafter sometimes referred to as liquid fertilizer), by accurately preparing the components, it is possible to reduce the risk of causing an excess or deficiency of the components or a difference in the concentration of the components in the soil. can do.
 このような利点を有する液体肥料は、植物への施肥管理を行う養液栽培に広く使用されている。液体肥料は、その栽培作物に応じて最適の成分、成分濃度、pH、温度等が選択される。このとき、収穫量や作物の品質の向上を図るために選択される成分として下記の発明が開示されている。 液体 Liquid fertilizers having these advantages are widely used in hydroponics for managing fertilization of plants. For the liquid fertilizer, the optimal component, component concentration, pH, temperature, etc. are selected according to the cultivated crop. At this time, the following inventions are disclosed as components selected for improving the yield and the quality of the crop.
 特許文献1には、複数回施用するシクロプロペンと植物とを接触させることを含む、植物の収穫量を増加させる方法の発明が開示されている。 Patent Document 1 discloses an invention of a method for increasing the yield of a plant, which comprises contacting a plant with cyclopropene applied multiple times.
 また、特許文献2には、基床に支持された植物に養液を供給する植物の栽培において、l~500ppmのペタインを含む養液を供給する植物の栽培方法の発明が開示されている。 特許 Further, Patent Document 2 discloses an invention of a method for cultivating a plant that supplies a nutrient solution containing 1 to 500 ppm of petaine in the cultivation of a plant that supplies a nutrient solution to a plant supported on a base bed.
 さらに、特許文献3には、合成LCO化合物であるテトラ-N-アシル-ベータ-D-メチル-グルコシド(TAMG)及びその関連化合物を含む組成物に関する発明が開示されている。 Furthermore, Patent Document 3 discloses an invention relating to a composition containing tetra-N-acyl-beta-D-methyl-glucoside (TAMG), which is a synthetic LCO compound, and a related compound thereof.
 特許文献1~3に記載されているシクロプロペンを複数回施用することによる方法、1~500ppmのペタインを含んだ養液、及び、テトラ-N-アシル-ベータ-D-メチル-グルコシド(TAMG)とその関連化合物を含む組成物は、特定の植物の成長促進作用に対して役に立ちうる発明である。しかしながら、より様々な作物に対して、養液を使い分けることなく、作物の収穫量や品質の向上を図ることのできる有効な栽培剤が、依然として必要とされている。 Methods by multiple applications of cyclopropene described in Patent Documents 1-3, nutrient solution containing 1-500 ppm of petaine, and tetra-N-acyl-beta-D-methyl-glucoside (TAMG) The composition containing and its related compounds is an invention which can be useful for the growth promoting action of a specific plant. However, there is still a need for an effective cultivation agent that can improve the yield and quality of crops without using nutrient solutions for more various crops.
特表2016-511762号公報JP-T-2016-511762 特開平1-228416号公報JP-A 1-228416 特表2016-511757号公報JP-T-2016-511775
 本発明は、上記事情に鑑みなされたもので、養液栽培における栽培剤を提供することにあり、より詳しくは、植物の生育を促進し、作物の収穫量や品質の向上を図ることができる養液栽培用栽培剤、養液栽培方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is to provide a cultivating agent in hydroponic cultivation. More specifically, the present invention can promote plant growth and improve crop yield and quality. It is an object to provide a cultivation agent for hydroponic cultivation and a hydroponic cultivation method.
 また、本発明は、栽培環境の維持にも優れた養液栽培用栽培剤を提供することをさらなる目的とする。 Further, another object of the present invention is to provide a cultivation agent for hydroponics that is excellent in maintaining a cultivation environment.
 本発明者は、上記目的を達成するために鋭意検討を行った結果、セルロースナノファイバーが有する広大な比表面積及びこれに起因する表面吸着力に着目した。すなわち、これを液体肥料と混合し、液体肥料中の植物の生長に必要な成分をセルロースナノファイバーに吸着させた状態で施肥することや、肥料成分存在下でセルロースナノファイバー分散液を噴霧し、セルロースナノファイバーに前記肥料成分を吸着させることにより前記課題を解決できることを見出し、本発明を完成するに至ったものである。 As a result of intensive studies to achieve the above object, the present inventor focused on the vast specific surface area of the cellulose nanofiber and the surface adsorption force resulting therefrom. That is, this is mixed with a liquid fertilizer, and fertilizer is applied in a state where components necessary for plant growth in the liquid fertilizer are adsorbed to the cellulose nanofiber, or a cellulose nanofiber dispersion is sprayed in the presence of the fertilizer component, The present inventors have found that the above problem can be solved by adsorbing the fertilizer component on cellulose nanofibers, and have completed the present invention.
 すなわち、本発明の養液栽培用栽培剤は、セルロースナノファイバーを含有することを特徴とする。 That is, the cultivation agent for hydroponics of the present invention is characterized by containing cellulose nanofibers.
 本発明により、植物の生育を促進し、作物の収穫量や品質の向上を図ることができる栽培剤及び栽培方法が提供される。また、栽培環境維持にも優れた養液栽培用栽培剤が提供される。 According to the present invention, there are provided a cultivation agent and a cultivation method capable of promoting the growth of plants and improving the yield and quality of crops. Further, a cultivation agent for hydroponics which is excellent in maintaining the cultivation environment is provided.
CNFの製造(解繊処理)装置の概念図である。It is a conceptual diagram of a manufacturing (defibrating process) apparatus of CNF. 他のCNFの製造(解繊処理)装置の概念図である。It is a conceptual diagram of another manufacturing (defibrating) apparatus of CNF. 図2におけるCNFの製造(解繊処理)装置の一部を拡大して示す概念図である。It is a conceptual diagram which expands and shows a part of manufacturing (defibrating process) apparatus of CNF in FIG. 実施例1のカサブランカを栽培した結果を示す写真である。4 is a photograph showing the result of cultivating Casablanca of Example 1. 比較例1のカサブランカを栽培した結果を示す写真である。5 is a photograph showing the result of cultivating Casablanca of Comparative Example 1. 実施例2及び比較例2のトマトの収穫量の推移の結果を示す図である。It is a figure showing the result of transition of the amount of tomato harvest of Example 2 and Comparative Example 2. 実施例2及び比較例2のトマトの収穫後の根の結果を示す写真である。It is a photograph which shows the result of the root after harvest of the tomato of Example 2 and Comparative Example 2. 実施例3及び比較例3の二十日大根を栽培した結果を示す写真である。It is a photograph which shows the result of cultivating radish for 20 days of Example 3 and Comparative Example 3. 実施例3の二十日大根の大根部分を示す写真である。9 is a photograph showing a radish portion of the radish of Example 3. 比較例3の二十日大根の大根部分を示す写真である。9 is a photograph showing a radish portion of 20 days radish of Comparative Example 3. 実施例5及び比較例5の豆苗を栽培した結果を示す写真である。It is a photograph which shows the result of cultivating the bean seedlings of Example 5 and Comparative Example 5. 実施例5及び比較例5のブロッコリースプラウトを栽培した結果を示す写真である。It is a photograph which shows the result of cultivating the broccoli sprout of Example 5 and Comparative Example 5. 菌測定結果を示す図である。It is a figure showing a bacteria measurement result. 実施例7のキャベツ栽培の初期段階における結果を示す写真である。14 is a photograph showing a result of the cabbage cultivation of Example 7 at an early stage. 比較例7のキャベツ栽培の初期段階における結果を示す写真である。9 is a photograph showing a result of an initial stage of cabbage cultivation of Comparative Example 7. 実施例8、比較例8のブロッコリー栽培の初期段階における結果を示す写真である。9 is a photograph showing the results of Example 8 and Comparative Example 8 in the initial stage of broccoli cultivation.
 次に、本発明の一実施形態の養液栽培用栽培剤を説明するが、本発明はこの実施形態に限定されるものではない。 Next, the cultivation agent for hydroponics according to one embodiment of the present invention will be described, but the present invention is not limited to this embodiment.
 本発明の一実施形態の養液栽培用栽培剤は、液体肥料にCNF分散液を配合してなるものである。 The cultivation agent for hydroponics according to one embodiment of the present invention is obtained by mixing a CNF dispersion with a liquid fertilizer.
 まず、CNF分散液の調製方法について説明する。本発明において、CNFとしては例えば、木材繊維、広葉樹、針葉樹、竹繊維、サトウキビ繊維、種子毛繊維、葉繊維、海藻類等の天然の植物を含む多糖由来のCNFが挙げられる。また、バガス、稲わら、茶殻、果汁の搾り粕等の植物の葉、花、茎、根、外皮等に由来する作物残渣から産出されるものであっても良い。これらCNFは一種を単独で又は二種以上を混合して用いてもよい。また多糖としてはα-セルロース含有率60%~99質量%のパルプを原料として用いるのが好ましい。α-セルロース含有率60質量%以上の純度であれば繊維径及び繊維長さが調整しやすくなって繊維同士の絡み合いを抑えることができるために噴霧性が良好であり、腐敗して植物生長を阻害することなく生育環境を維持することができる。α-セルロース含有率60質量%未満のものを用いた場合は、セルロースの天然結晶が有する特性を十分に引き出せなくなるほか、腐敗等による保管時の経時劣化を引き起こす虞があり、一方、99質量%以上のものを用いた場合、繊維をナノレベルに解繊することが困難になる。 First, a method for preparing a CNF dispersion will be described. In the present invention, examples of CNF include CNF derived from polysaccharides including natural plants such as wood fiber, hardwood, conifer, bamboo fiber, sugarcane fiber, seed hair fiber, leaf fiber, and seaweed. Further, it may be produced from crop residues derived from plant leaves, flowers, stems, roots, hulls, and the like, such as bagasse, rice straw, tea husks, and fruit juice pomace. These CNFs may be used alone or in combination of two or more. As the polysaccharide, pulp having an α-cellulose content of 60% to 99% by mass is preferably used as a raw material. If the α-cellulose content is 60% by mass or more, the fiber diameter and the fiber length can be easily adjusted, and the entanglement of the fibers can be suppressed, so that the sprayability is good, and the plant rots to increase the plant growth. The growth environment can be maintained without hindrance. When an α-cellulose content of less than 60% by mass is used, the properties of natural cellulose crystals cannot be sufficiently brought out, and there is a possibility of causing deterioration over time due to decay or the like during storage, while 99% by mass. In the case of using the above, it is difficult to defibrate the fiber to the nano level.
 パルプとしては、入手しやすく安価である点から製紙用パルプを用いることができ、製造方法は特に限定されないが、例えば漂白クラフトパルプ、未晒クラフトパルプ、サルファイトパルプ、ソーダパルプ、サーモメカニカルパルプ、脱墨パルプ、古紙パルプ、溶解パルプ等のパルプが挙げられる。これらの中でも、より入手しやすいことから、漂白クラフトパルプ、未晒クラフトパルプが好ましい。 As the pulp, pulp for papermaking can be used because it is easily available and inexpensive, and the production method is not particularly limited.For example, bleached kraft pulp, unbleached kraft pulp, sulfite pulp, soda pulp, thermomechanical pulp, Pulp such as deinked pulp, waste paper pulp, and dissolved pulp may be used. Among these, bleached kraft pulp and unbleached kraft pulp are preferable because they are more easily available.
 CNFの結晶化度は結晶化度50以上が好ましい。結晶化度については、X線回折法等によって測定することができ、結晶化度50未満の場合は、セルロースの天然結晶が有する特性を十分に引き出せなくなるほか、腐敗等による保管時の経時劣化を引き起こす虞がある。 The crystallinity of CNF is preferably 50 or more. The degree of crystallinity can be measured by an X-ray diffraction method or the like. If the degree of crystallinity is less than 50, it is not possible to sufficiently bring out the properties possessed by natural crystals of cellulose. May cause.
 本発明におけるCNFは、以下の解繊処理行うことによりCNF分散液(以下、含水状態のCNFということもある。)として得られる。
解繊処理は、図1に示した水中対向衝突法(以下、ACC法と言うこともある。)を用いて行う。これは、水に懸濁したパルプをチャンバー(図1:107)内で相対する二つのノズル(図1:108a,108b)に導入し、これらのノズルから一点に向かって噴射、衝突させる手法である。図1に示される装置は液体循環型となっており、タンク(図1:109)、プランジャ(図1:110)、対向する二つのノズル(図1:108a,108b)、必要に応じて熱交換器(図1:111)を備え、水中に分散させた微粒子を二つのノズルに導入し高圧下で合い対するノズル(図1:108a,108b)から噴射して水中で対向衝突させる。
The CNF in the present invention can be obtained as a CNF dispersion (hereinafter, sometimes referred to as a hydrous CNF) by performing the following defibration treatment.
The defibration process is performed using the underwater facing collision method (hereinafter, also referred to as ACC method) shown in FIG. In this method, pulp suspended in water is introduced into two opposing nozzles (108a, 108b in FIG. 1: 107) in a chamber (FIG. 1: 107), and injected and collided from these nozzles toward one point. is there. The apparatus shown in FIG. 1 is of a liquid circulation type, and includes a tank (FIG. 1: 109), a plunger (FIG. 1: 110), two opposing nozzles (FIG. 1: 108a, 108b), and heat if necessary. An exchanger (FIG. 1: 111) is provided, and fine particles dispersed in water are introduced into two nozzles, and are jetted from the nozzles (FIGS. 1: 108a, 108b) that match each other under high pressure and collide with each other in water.
 前記解繊処理を実施する前に、前処理装置を使用して解繊処理を実施してもよい(図2、図3)。また、その他の解繊方法として、かかる前処理装置を使用してもよい。前記前処理装置を使用した解繊処理は、0.5~10質量%の水混合液にした多糖に対し、50~400MPa程度の高圧水を衝突させて行う。これは例えば図2に示す製造装置1を用いて行うことができる。製造装置1は、一のチャンバー2に対して多糖スラリを供給可能に配置される第1の液状媒体供給経路であるところの多糖スラリ供給経路3と、例えば水である非多糖スラリを一のチャンバー2を介して循環させる第2の液状媒体供給経路4とよりなる。一のチャンバー2内には第2の液状媒体供給経路4の非多糖スラリを多糖スラリ供給経路3からの多糖スラリ供給方向と交差する方向にオリフィス噴射するオリフィス噴射部5を備える。多糖スラリ供給経路3は、多糖スラリを一のチャンバー2を介して循環可能にされる。 前 Before performing the defibration process, the defibration process may be performed using a pretreatment device (FIGS. 2 and 3). As another defibrating method, such a pretreatment device may be used. The defibration treatment using the pretreatment device is performed by causing high-pressure water of about 50 to 400 MPa to collide with a polysaccharide made into a water mixture of 0.5 to 10% by mass. This can be performed, for example, using the manufacturing apparatus 1 shown in FIG. The production apparatus 1 includes a polysaccharide slurry supply path 3, which is a first liquid medium supply path, which is arranged so as to supply a polysaccharide slurry to one chamber 2, and a non-polysaccharide slurry, for example, water, in one chamber. And a second liquid medium supply path 4 circulating through the second liquid medium supply path 4. In one chamber 2, there is provided an orifice injection section 5 for orifice-injecting the non-polysaccharide slurry of the second liquid medium supply path 4 in a direction intersecting with the polysaccharide slurry supply direction from the polysaccharide slurry supply path 3. The polysaccharide slurry supply path 3 allows the polysaccharide slurry to circulate through one chamber 2.
 多糖スラリ供給経路3と第2の液状媒体供給経路4とは一のチャンバー2内に相互の交差部6を有する。
 多糖スラリ供給経路3は多糖スラリ供給部であり多糖スラリを貯留するタンク7、ポンプ8を循環路9に配置してなり、一方、第2の液状媒体供給経路4はタンク10、ポンプ11、熱交換器12、プランジャ13を循環路である液状媒体供給経路4に配置してなる。
The polysaccharide slurry supply path 3 and the second liquid medium supply path 4 have an intersection 6 in one chamber 2.
The polysaccharide slurry supply path 3 is a polysaccharide slurry supply part, in which a tank 7 for storing the polysaccharide slurry and a pump 8 are arranged in a circulation path 9, while the second liquid medium supply path 4 is a tank 10, a pump 11, The exchanger 12 and the plunger 13 are arranged in the liquid medium supply path 4 which is a circulation path.
 なお非多糖スラリは、例えば水であり、当初タンク10に収納され、その後セルロースナノ繊維の製造装置1の作動に伴い交差部6を通過してタンク10に収納されたナノ微細化された多糖を操業の度合いに応じた濃度で含むことになった状態のものをも、包括的に指称する。 The non-polysaccharide slurry is, for example, water, and is initially stored in the tank 10, and then the nano-micronized polysaccharide stored in the tank 10 after passing through the intersection 6 with the operation of the cellulose nanofiber manufacturing apparatus 1. Those that are to be included at a concentration corresponding to the degree of operation are also generically referred to.
 図3に示すようにチャンバー2を貫通する態様で多糖スラリ供給経路3の循環路9が配置され、これと交差する方向に非多糖スラリをオリフィス噴射して循環路9を貫通させることができるように第2の液状媒体供給経路4のプランジャ13に接続されるオリフィス噴射部5のオリフィス噴射口14がチャンバー2内側において開口する。チャンバー2のオリフィス噴射口14と対向する位置にチャンバー2の排出口15が設けられ、このチャンバー2の排出口15に第2の液状媒体供給経路4の循環路が接続されて、第2の液状媒体供給経路4が構成される。 As shown in FIG. 3, the circulation path 9 of the polysaccharide slurry supply path 3 is arranged so as to penetrate the chamber 2, and the non-polysaccharide slurry is orifice-injected in a direction intersecting with the circulation path 9 so that the circulation path 9 can be penetrated. Then, the orifice injection port 14 of the orifice injection section 5 connected to the plunger 13 of the second liquid medium supply path 4 opens inside the chamber 2. A discharge port 15 of the chamber 2 is provided at a position opposite to the orifice injection port 14 of the chamber 2, and a circulation path of the second liquid medium supply path 4 is connected to the discharge port 15 of the chamber 2 to form a second liquid medium. The medium supply path 4 is configured.
 一方、多糖スラリ供給経路3の循環路9は例えばビニルホース、ゴムホース、アルミパイプ等を用いて形成され、その循環路9のチャンバー2への入り側にはチャンバー2方向にのみ開弁される一方向弁16が取りつけられる。さらに循環路9のチャンバー2からの出側にはチャンバー2からの排出方向にのみ開弁される一方向弁17が取りつけられる。加えてチャンバー2と一方向弁17の間の循環路9にはエア吸入弁18が取りつけられ、このエア吸入弁18は外部から循環路9へエアを吸入する方向にのみ開弁される。 On the other hand, the circulation path 9 of the polysaccharide slurry supply path 3 is formed by using, for example, a vinyl hose, a rubber hose, an aluminum pipe, or the like. A directional valve 16 is mounted. Further, a one-way valve 17 that is opened only in the discharge direction from the chamber 2 is attached to the circulation path 9 on the exit side from the chamber 2. In addition, an air intake valve 18 is attached to the circulation path 9 between the chamber 2 and the one-way valve 17, and the air intake valve 18 is opened only in a direction in which air is sucked into the circulation path 9 from the outside.
 以上のセルロースナノ繊維の製造装置によれば以下のようにしてセルロースナノファイバーが製造される。
 非多糖スラリーを、チャンバー2を介して第2の液状媒体供給経路4を循環させる。具体的にはポンプ11を用いてタンク10内の非多糖スラリを熱交換器12、プランジャ13を通過させて液状媒体供給経路4内を循環させる。一方、多糖スラリーを、チャンバー2を介して多糖スラリ供給経路3内を循環させる。具体的にはポンプ8を用いてタンク7内の多糖スラリをビニルホース、ゴムホース等を用いて形成された循環路9内を循環させる。
According to the above-described apparatus for producing cellulose nanofibers, cellulose nanofibers are produced as follows.
The non-polysaccharide slurry is circulated through the second liquid medium supply path 4 through the chamber 2. Specifically, the non-polysaccharide slurry in the tank 10 is passed through the heat exchanger 12 and the plunger 13 using the pump 11 and circulated in the liquid medium supply path 4. On the other hand, the polysaccharide slurry is circulated in the polysaccharide slurry supply path 3 through the chamber 2. Specifically, the polysaccharide slurry in the tank 7 is circulated in the circulation path 9 formed by using a vinyl hose, a rubber hose, or the like using the pump 8.
 これにより、多糖スラリ供給経路3内を循環してチャンバー2内を流通する多糖スラリに対して第2の液状媒体供給経路4を循環する非多糖スラリがオリフィス噴射される。具体的にはプランジャ13に接続されるオリフィス噴射口14にプランジャ13から高圧水が供給され、これがオリフィス噴射口14から循環路9に向けて50~400MPa程度の高圧でオリフィス噴射される。 Thus, the non-polysaccharide slurry circulating in the second liquid medium supply path 4 is orifice-injected to the polysaccharide slurry circulating in the polysaccharide slurry supply path 3 and flowing in the chamber 2. Specifically, high-pressure water is supplied from the plunger 13 to the orifice injection port 14 connected to the plunger 13, and the orifice is injected from the orifice injection port 14 toward the circulation path 9 at a high pressure of about 50 to 400 MPa.
 その結果、例えばビニルホース、ゴムホース、アルミパイプ等を用いて形成された循環路9に予め形成された貫通孔26a、bを通過して、循環路9と交差する方向に循環路9内側を通過した非多糖スラリが循環路9内を循環する多糖スラリを巻き込みながらチャンバー2の排出口15に向けて排出され、第2の液状媒体供給経路4に流入する。これによって、非多糖スラリが第2の液状媒体供給経路4内を再度循環する。
 以上のプロセスを反復する過程で多糖スラリ供給経路3内を循環してチャンバー2内を流通する多糖スラリ及び第2の液状媒体供給経路4を循環する非多糖スラリ中の多糖が徐々に解繊されて、用途に応じた解繊度合の均一性の高いCNF分散液が得られる。
As a result, it passes through the through holes 26a and 26b formed in advance in the circulation path 9 formed using, for example, a vinyl hose, a rubber hose, or an aluminum pipe, and passes through the inside of the circulation path 9 in a direction crossing the circulation path 9. The resulting non-polysaccharide slurry is discharged toward the outlet 15 of the chamber 2 while entraining the polysaccharide slurry circulating in the circulation path 9 and flows into the second liquid medium supply path 4. Thereby, the non-polysaccharide slurry circulates again in the second liquid medium supply path 4.
In the course of repeating the above process, the polysaccharide in the polysaccharide slurry circulating in the polysaccharide slurry supply path 3 and flowing in the chamber 2 and the polysaccharide in the non-polysaccharide slurry circulating in the second liquid medium supply path 4 are gradually defibrated. Thus, a CNF dispersion having a high degree of uniformity of fibrillation according to the intended use can be obtained.
 パルプ繊維からCNFへの解繊度合は、CNF分散液の粘度値により評価することが出来る。すなわち、解繊度を高めたCNF分散液に含まれるCNFは繊維長さが短いものであるため、粘度値が低いものとなる。したがって、解繊度が高いCNF分散液は、粘度が低いものとなる。一方、これより粘度値が高いCNF分散液は、係るCNF分散液に含まれるCNFは繊維長さが長いものであるため、その粘度値が高いものとなる。したがって、前記CNF分散液と比較して解繊度が低いものとなる。
 また、解繊後の繊維径に対する繊維長の比(アスペクト比)がパルプ繊維毎に異なるので、CNF分散液の粘度値はそれぞれ異なるものとなる。
 さらに、例えば、異なる種類のパルプ繊維を組み合わせることにより、又は、前記解繊度合を調製することにより、CNF水分散液1wt%における粘度を概ね300~10000mPa・sの範囲で調整することができる。
The degree of defibration from pulp fibers to CNF can be evaluated by the viscosity value of the CNF dispersion. That is, the CNF contained in the CNF dispersion having an increased degree of fibrillation has a short fiber length, and thus has a low viscosity value. Therefore, a CNF dispersion having a high degree of fibrillation has a low viscosity. On the other hand, the CNF dispersion having a higher viscosity value has a higher viscosity value because the CNF contained in the CNF dispersion has a longer fiber length. Therefore, the degree of defibration is lower than that of the CNF dispersion.
Further, since the ratio (aspect ratio) of the fiber length to the fiber diameter after defibration is different for each pulp fiber, the viscosity value of the CNF dispersion is different.
Further, for example, by combining different kinds of pulp fibers or adjusting the degree of defibration, the viscosity of the CNF aqueous dispersion at 1 wt% can be adjusted within a range of about 300 to 10,000 mPa · s.
 以上のようにして得るCNFは、天然セルロース繊維間の相互作用のみを解裂させることによってナノ微細化を行うためセルロース分子の構造変化がなく、以下の化学式1に表わされる構造式を有する。換言すると、本願発明で用いるCNFは、化学式1中のセロビオースユニット内に水酸基6個を有し、化学修飾されていないことを意味する。これは、FT-IRを使用してセルロースのIRスペクトルと本願発明に使用するCNFとを比較することで確認することができる。 本ACC法により、セルロース繊維の平均粒子長を10μmにまで粉砕することができ、その結果、平均太さ3~200nmであり、平均長さ0.1μm以上であるCNFが得られる。平均太さと平均繊維長さの測定は、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等を適宜選択し、CNFを観察・測定し、得られた写真から20本以上を選択し、これをそれぞれ平均化することにより求める。一方で、対向衝突処理においては、加えられるエネルギーが共有結合を切断するエネルギーには、はるかに及ばず(推定1/300以下)、セルロースの重合度の低下は生じにくい。本ACC法によって得られたセルロースナノファイバーは、親水サイトと疎水サイトが共存し、両親媒性を示す。 CN The CNF obtained as described above has a structural formula represented by the following chemical formula 1 because there is no change in the structure of the cellulose molecule because nano-refining is performed by cleaving only the interaction between natural cellulose fibers. In other words, CNF used in the present invention has six hydroxyl groups in the cellobiose unit in Chemical Formula 1 and means that it is not chemically modified. This can be confirmed by comparing the IR spectrum of cellulose with CNF used in the present invention using FT-IR.に よ り According to the ACC method, the average particle length of the cellulose fibers can be pulverized to 10 μm, and as a result, CNF having an average thickness of 3 to 200 nm and an average length of 0.1 μm or more can be obtained. The average thickness and average fiber length are measured by appropriately selecting a scanning electron microscope (SEM), a transmission electron microscope (TEM), etc., observing and measuring CNF, and selecting at least 20 from the obtained photographs. , By averaging them. On the other hand, in the facing collision treatment, the applied energy is far less than the energy for breaking the covalent bond (estimated 1/300 or less), and the polymerization degree of cellulose is hardly reduced. The cellulose nanofiber obtained by the present ACC method has a hydrophilic site and a hydrophobic site, and exhibits amphiphilicity.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
CNFを平均太さ3~200nmまで解繊処理することで、流動性があって噴霧性に優れる。一方で、平均太さ3nm未満の場合には、脱水性に乏しく固形分濃度を高めることが難しくなる虞があり、平均太さ200nm超えの場合には、流動性が低下し、噴霧性が良好でなくなる他、繊維太さの分布が広くなり、均質な性質を示さない虞がある。 By defibrating CNF to an average thickness of 3 to 200 nm, it has fluidity and excellent sprayability. On the other hand, when the average thickness is less than 3 nm, there is a possibility that it is difficult to increase the solid content concentration due to poor dehydration, and when the average thickness is more than 200 nm, the fluidity is reduced and the sprayability is good. In addition, the distribution of the fiber thickness becomes wide, and there is a possibility that the fiber does not show a homogeneous property.
本発明におけるCNFは、 平均重合度が500~900の範囲にあるものを使用することが好ましい。平均重合度については、銅エチレンジアミン溶液を用いた測定法等によって測定することができる。
CNF固形分量0.15gを30mLの0.5M銅エチレンジアミン溶液に溶解させ、キャノン・フェンスケ動粘度管を用いて、CNF・銅エチレンジアミン溶液の粘度ηを測定し、0.5M銅エチレンジアミン溶液の粘度をη0として、下記のSchulz-Blaschke式から極限粘度[η]を求めて、下記のMark-Houwink-Sakurada式から重合度DPを算出した。
   比粘度 ηsp=η/η0-1
   極限粘度[η]=ηsp/{c(1+A×ηsp)}
 η0は0.5M銅エチレンジアミン溶液の粘度であり、cはCNF濃度(g/mL)であり、Aは溶液の種類によって決まる固有値であって0.5M銅エチレンジアミン溶液の場合にはA=0.28である。
   重合度DP=[η]/Ka
 Kとaは高分子と溶媒の種類によって決まる固有値であって、銅エチレンジアミン溶液に溶解したセルロースの場合としてK=0.57、a=1とした。
The CNF used in the present invention preferably has an average degree of polymerization in the range of 500 to 900. The average degree of polymerization can be measured by a measuring method using a copper ethylenediamine solution or the like.
0.15 g of the CNF solid content was dissolved in 30 mL of a 0.5 M copper ethylenediamine solution, and the viscosity η of the CNF / copper ethylenediamine solution was measured using a Cannon-Fenske kinematic viscosity tube to determine the viscosity of the 0.5 M copper ethylenediamine solution. As η0, the intrinsic viscosity [η] was determined from the following Schulz-Brushke equation, and the polymerization degree DP was calculated from the following Mark-Houwink-Sakurada equation.
Specific viscosity ηsp = η / η0-1
Intrinsic viscosity [η] = ηsp / {c (1 + A × ηsp)}
η0 is the viscosity of the 0.5 M copper ethylenediamine solution, c is the CNF concentration (g / mL), A is a characteristic value determined by the type of the solution, and A = 0. 28.
Degree of polymerization DP = [η] / Ka
K and a are intrinsic values determined by the types of the polymer and the solvent, and K = 0.57 and a = 1 in the case of cellulose dissolved in a copper ethylenediamine solution.
 なお、本発明においては、他のセルロースナノファイバーの製造方法として公知であるTEMPO酸化触媒処理、リン酸エステル化処理、オゾン処理、酵素処理、マレイン酸処理、無水アルケニルコハク酸による疎水変性、アルキルケテンダイマーによる疎水変性、アセチル化による疎水変性などの化学的処理をする方法によって得られるセルロースナノファイバー又はグラインダー(石臼型粉砕機)、ディスク型リファイナー、コニカルリファイナーなどの機械的作用を利用する湿式粉砕でセルロース系繊維を細くする物理的方法によって得られるセルロースナノファイバーであっても、本発明においてCNF分散液として使用することができる。また、化学的処理及び物理的処理を併用する方法によって得られたセルロースナノファイバーをもCNF分散液として使用することができる。 In the present invention, TEMPO oxidation catalyst treatment, phosphoric acid esterification treatment, ozone treatment, enzyme treatment, maleic acid treatment, hydrophobic modification with alkenyl succinic anhydride, alkyl ketene, which are known as other methods for producing cellulose nanofibers, Wet pulverization using mechanical action such as cellulose nanofiber or grinder (stone mill type pulverizer), disk type refiner, conical refiner etc. obtained by chemical treatment such as hydrophobic modification by dimer, hydrophobic modification by acetylation. Cellulose nanofibers obtained by a physical method of thinning cellulosic fibers can be used as a CNF dispersion in the present invention. Cellulose nanofibers obtained by a method combining chemical treatment and physical treatment can also be used as a CNF dispersion.
-養液栽培用栽培剤-
 本発明の養液栽培用栽培剤とは、肥料成分とCNF分散液とを含んでなるもの又はCNF分散液のことをいう。ここで、肥料成分の形態は、特に制限されず、液体或いは固体(固形)のいずれでもよい。
 本発明における肥料成分は、窒素、リン、カリウム、カルシウム、マグネシウム、硫黄、鉄、マンガン、ホウ素、亜鉛、モリブデン、銅、塩素、ニッケルのうち、少なくとも一つを含有していればよい。また、液体肥料或いは固体(固形)肥料は、前記肥料成分が有する諸機能を阻害しない範囲内であれば他の成分を含んでいてもよい。
-Cultivating agent for hydroponics-
The cultivation agent for hydroponics of the present invention refers to a composition comprising a fertilizer component and a CNF dispersion or a CNF dispersion. Here, the form of the fertilizer component is not particularly limited, and may be a liquid or a solid (solid).
The fertilizer component in the present invention may contain at least one of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, boron, zinc, molybdenum, copper, chlorine, and nickel. In addition, the liquid fertilizer or the solid (solid) fertilizer may contain other components as long as the various functions of the fertilizer component are not impaired.
 さらに、前記液体肥料は、市販の液体肥料を用いてもよい。市販の液体肥料の具体例としては、尿素複合液肥、ホウ素・マンガン・苦土入り尿素複合液肥、硝安系複合液肥、硝酸石灰系液肥、有機入り液肥、リン安液肥、粉末液肥、無チッソ液肥、液体微量要素複合肥料などを挙げることができる。
 また、前記固体(固形)肥料としては、油粕、骨粉、魚かす、鶏糞、米糠、草木灰等の植物性又は動物性の有機質肥料、又は、鉱物や石油などを原料とする無機質肥料(化学肥料)等、特に制限されることなく公知のものを使用することができる。
Further, a commercially available liquid fertilizer may be used as the liquid fertilizer. Specific examples of commercially available liquid fertilizers include urea compound liquid fertilizer, urea compound liquid fertilizer containing boron, manganese and magnesia, nitrate compound liquid fertilizer, nitrate-lime liquid fertilizer, organic liquid fertilizer, phosphorus ammonium liquid fertilizer, powder liquid fertilizer, nitrogen-free liquid fertilizer, A liquid trace element composite fertilizer can be used.
Examples of the solid (solid) fertilizer include vegetable or animal organic fertilizers such as oil cake, bone meal, fish cake, chicken dung, rice bran, and plant ash, and inorganic fertilizers (chemical fertilizers) made from minerals, petroleum, and the like. Known ones can be used without any particular limitation.
 前記肥料成分又は前記液体肥料を溶解または分散する溶媒としては、水または有機溶剤を挙げることができ、水が好ましい。ただし、水道水は塩素を含有し殺菌作用を有するため、塩素除去水、井戸水、湧水などを使用することが好ましい。 溶媒 Examples of the solvent for dissolving or dispersing the fertilizer component or the liquid fertilizer include water and an organic solvent, and water is preferable. However, since tap water contains chlorine and has a bactericidal action, it is preferable to use chlorine-free water, well water, spring water, and the like.
 前記液体肥料中の肥料成分の含有率の下限は、特には制限されないが、0.001質量%以上が好ましく、0.005質量%以上がより好ましい。肥料成分が少なすぎると、液体肥料の効果が低減するからである。また、前記液体肥料中の肥料成分の含有率の上限は、特には制限されないが、25質量%以下が好ましく、20質量%以下がより好ましい。肥料成分が多すぎると、異臭の原因となる場合があるからである。 下限 The lower limit of the content of the fertilizer component in the liquid fertilizer is not particularly limited, but is preferably 0.001% by mass or more, and more preferably 0.005% by mass or more. This is because if the amount of the fertilizer component is too small, the effect of the liquid fertilizer is reduced. The upper limit of the content of the fertilizer component in the liquid fertilizer is not particularly limited, but is preferably 25% by mass or less, and more preferably 20% by mass or less. This is because if the amount of the fertilizer component is too large, it may cause an unpleasant odor.
 前記液体肥料中の溶媒の含有率は、75質量%以上が好ましく、80質量%以上がより好ましく、99質量%以下が好ましく、95質量%以下がさらに好ましい。溶媒の含有率が少なくなりすぎると、液体肥料の粘度が高くなり、取扱いが悪くなる。また、溶媒の含有率が高すぎると、肥料成分の割合を低くする必要があるからである。 溶媒 The content of the solvent in the liquid fertilizer is preferably 75% by mass or more, more preferably 80% by mass or more, preferably 99% by mass or less, and further preferably 95% by mass or less. If the content of the solvent is too low, the viscosity of the liquid fertilizer increases, and the handling becomes poor. Also, if the content of the solvent is too high, it is necessary to reduce the ratio of the fertilizer component.
 養液栽培用栽培剤中のCNF含有率は、特に制限されることなく使用することができるが、0.0001質量%以上10質量%以下が好ましい。CNFの含有率があまりにも少ない場合には、CNFによる効果が低減するからである。また、10質量%以上であると、養液栽培用栽培剤が高粘度となり、噴霧性が低下し、均質な施肥が困難となるからである。 CN The CNF content in the nutrient solution cultivation agent can be used without any particular limitation, but is preferably 0.0001% by mass or more and 10% by mass or less. If the content of CNF is too small, the effect of CNF is reduced. On the other hand, when the content is 10% by mass or more, the cultivation agent for hydroponic cultivation has a high viscosity, the sprayability is reduced, and uniform fertilization becomes difficult.
 本発明の養液栽培用栽培剤は、CNF分散液単体であっても使用することができる。CNFは、土壌中のセルラーゼなどの酵素で緩慢な速度で分解し、その分解物であるブドウ糖は、植物の根から速やかに吸収されるため、生育環境の悪化原因にはならず、成長促進の効果にも寄与するからである。 また、前記CNF分散液は、針葉樹、広葉樹及び竹繊維のうちいずれか一つを出発原料とし、かつ、ACC法により得られたCNFを使用すると、より作物の収穫量や品質の向上を図ることができる。これは、ACC法により得られたCNFは、両親媒性を有していること、及び、セロビオースユニット中の水酸基はいずれも化学変性されておらず6つ存在していることに起因すると推測される。
 また、前記CNF分散液を液体肥料又は固体(固形)肥料等の肥料成分が施肥された土壌等の箇所へ噴霧することによっても生長を促進させることができる。噴霧されたCNF分散液中のCNFは、土壌中の肥料成分中の植物の生長に必要な成分を吸着し、植物根圏へ到達する。その結果、植物根圏に存在する肥料成分濃度が高いものとなり、肥料吸収が促進されるために、さらに生長が促進される。なお、肥料成分とCNF分散液とを含んでなる養液栽培用栽培剤を使用しても、CNF分散液単体である場合と同様の効果が得られること言うまでもない。
The cultivation agent for hydroponics of the present invention can be used even if a CNF dispersion alone is used. CNF is degraded at a slow rate by enzymes such as cellulase in the soil, and its degraded product, glucose, is quickly absorbed from the roots of the plant. This is because it also contributes to the effect. In addition, the CNF dispersion may use any one of softwood, hardwood, and bamboo fiber as a starting material, and use CNF obtained by the ACC method to further improve crop yield and quality. Can be. This is presumed to be due to the fact that CNF obtained by the ACC method has amphipathic properties and that none of the hydroxyl groups in the cellobiose unit are chemically modified and there are six hydroxyl groups. You.
The growth can also be promoted by spraying the CNF dispersion onto a site such as soil to which a fertilizer component such as a liquid fertilizer or a solid (solid) fertilizer has been applied. The CNF in the sprayed CNF dispersion adsorbs components necessary for plant growth in the fertilizer components in the soil and reaches the plant rhizosphere. As a result, the concentration of the fertilizer component existing in the plant rhizosphere becomes high, and the fertilizer absorption is promoted, so that the growth is further promoted. It is needless to say that the same effect as in the case of using the CNF dispersion alone can be obtained even when the cultivation agent for hydroponics comprising the fertilizer component and the CNF dispersion is used.
 本発明の養液栽培用栽培剤は養液栽培において使用されるものである。本発明において、養液栽培とは、植物の成長に必要な成分を、液体肥料として与える栽培方法のことをいう。なお、液体肥料は、肥料成分等の各種成分が完全に溶解していることを必要としないため、固体の肥料成分が存在していてもよい。ここで、液体肥料を用いる栽培方法には、いくつかの栽培方式があり、その代表的なものとして、液体肥料の添加と灌水とを同時に行う養液土耕法、培地として土を使用しない水耕栽培等が挙げられる。また、その他の養液栽培の栽培方式として、れき、砂、ピート、バーミキュライト、軽石、オガクズ、ロックウール等の固形培地に作物を定植し、この作物に液体肥料を供給する固形培地耕法が挙げられる。 栽培 The cultivation agent for hydroponics of the present invention is used in hydroponics. In the present invention, hydroponic cultivation refers to a cultivation method in which components necessary for plant growth are provided as liquid fertilizer. Since liquid fertilizer does not require that various components such as fertilizer components are completely dissolved, a solid fertilizer component may be present. Here, there are several cultivation methods in the cultivation method using the liquid fertilizer, typical examples of which include a liquid fertilizer soil cultivation method in which the addition of the liquid fertilizer and irrigation are performed simultaneously, and a water medium that does not use soil as a medium. Cultivation and the like can be mentioned. Further, as another cultivation method of hydroponic cultivation, a solid medium cultivation method in which a crop is planted in a solid medium such as gravel, sand, peat, vermiculite, pumice, sawdust, rock wool, and the like, and a liquid fertilizer is supplied to the crop. Can be
 前記水耕栽培には、養液を満たして栽培する湛液水耕、養液を浅く流して栽培する薄膜水耕、養液を噴霧ポンプでミスト状にして根等に噴霧して栽培する噴霧水耕などが含まれる。また、水耕栽培は、現在、野菜工場や植物工場等の植物栽培施設において、一般的に使用される栽培方式である。本願発明の栽培剤も当然に植物工場において使用可能である。 The hydroponic cultivation includes submerged hydroponic cultivation in which the nutrient solution is filled, thin-film hydroponic cultivation in which the nutrient solution is flowed shallowly, and spraying in which the nutrient solution is mist-shaped with a spray pump and sprayed on roots or the like. Includes hydroponics. Hydroponics is a cultivation method generally used in plant cultivation facilities such as vegetable factories and plant factories. Naturally, the cultivation agent of the present invention can also be used in a plant factory.
 本発明の栽培剤の施肥方法は特に限定されないが、農作業労力の軽減およびコストの面から、点滴灌水装置等の公知の機械的手段を用いる養液栽培装置を使用して施肥することが好ましい。 方法 The fertilizer application method of the present invention is not particularly limited, but it is preferable to apply fertilizer using a hydroponic cultivation apparatus using a known mechanical means such as a drip irrigation apparatus from the viewpoint of reduction of labor for agricultural work and cost.
-対象植物-
 本発明に係る養液栽培用栽培剤は、施肥後、比表面積が大きいCNFが養液栽培用栽培剤に含有する肥料成分を表面に吸着したまま、植物根圏へ到達する。その結果、植物根圏に存在する肥料成分濃度が高いものとなり、肥料吸収が促進される。すなわち、土壌を培地とする養液土耕法の場合には、土壌中に存在する肥料成分に加えて、液体肥料の肥料成分を効率よく利用できる。ここで、土壌中に存在する肥料成分としては、予め特定の箇所へ施肥した場合における肥料成分も含まれる。また、他の栽培方法においても同様の理由により効率よく利用できる。したがって、本発明の養液栽培用栽培剤を用いる対象となる植物は、特に限定されず、あらゆる種類の農園芸作物に対し用いることができる。あえて植物を例示するならば、レタス、ルバーブ、水菜、ハーブ、大根菜、わさび菜、べんり菜、青梗菜、パクチョイ、キャベツ、アブラナ、春菊、空芯菜、コマツナ、白菜、セルタス、ターサイ、ミツバ、野沢菜、ほうれん草、ネギ等などの葉菜類、唐辛子、パプリカ、メロン、ゴーヤ、スイカ、カボチャ、ブルーベリー、イチゴ、ナス、トマト、ブドウなどの果菜類、ブロッコリー、カリフラワー、フキノトウ等の花菜類、モヤシ、枝豆、豆苗、各種スプラウト等の豆類、バラ等の花卉類、稲、麦などの穀類、レンコン、大根などの根菜類、ヒヤシンス、クロッカス、チューリップ、カサブランカなどの球根類、ミシマサイコ、ニンジン、パセリなどのセリ科の植物等を例示することができる。
-Target plant-
The fertilizer for hydroponic cultivation according to the present invention reaches the plant rhizosphere after fertilization, with the CNF having a large specific surface area adsorbing the fertilizer component contained in the hydroponic cultivation agent on the surface. As a result, the concentration of the fertilizer component existing in the plant rhizosphere becomes high, and the absorption of the fertilizer is promoted. That is, in the case of the nutrient solution cultivation method using the soil as a medium, the fertilizer component of the liquid fertilizer can be efficiently used in addition to the fertilizer component existing in the soil. Here, the fertilizer component existing in the soil also includes a fertilizer component when fertilized to a specific location in advance. Further, it can be efficiently used in other cultivation methods for the same reason. Therefore, the plant to which the hydroponic cultivation agent of the present invention is used is not particularly limited, and can be used for all kinds of agricultural and horticultural crops. If you dare to exemplify plants, lettuce, rhubarb, mizuna, herbs, radish, wasabi, bensai, green soybeans, pakchoi, cabbage, rape, spring chrysanthemum, empty core, komatsuna, Chinese cabbage, sertas, tarsai, Leafy vegetables such as honeysuckle, nozawana, spinach, leek, etc., peppers, paprika, melon, bitter gourd, fruit and vegetables such as watermelon, pumpkin, blueberry, strawberry, eggplant, tomato, grape, etc. , Soybeans, bean seedlings, beans such as various sprout, flowers such as roses, grains such as rice and wheat, root crops such as lotus root, radish, bulbs such as hyacinth, crocus, tulip, Casablanca, mishimasaiko, carrot, parsley And other plants of the Umbelliferae family.
 本発明に係る養液栽培用栽培剤は、菌の増殖を抑え、腐敗や異臭の発生防止効果を有しており、一般に使用されている防腐剤を新たに添加する必要がないか、又は添加する場合にはその添加量を少なくすることができる。 The nutrient solution cultivation agent according to the present invention suppresses the growth of bacteria, has an effect of preventing the generation of putrefaction and offensive odor, and it is not necessary or necessary to newly add a commonly used preservative. In this case, the amount of addition can be reduced.
 以下に実施例及び比較例を挙げ、本発明を具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。 (4) The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.
<栽培作物;カサブランカ>
カサブランカの栽培を表1に示すスケジュールにおいて、同一の球根を使用して栽培を行った。ここで、2017年3月~2017年10月の期間を1年目(比較例1)とし、2017年11月~2018年9月の期間を2年目(実施例1)とした。
<Cultivated crops; Casablanca>
In the schedule shown in Table 1, cultivation of Casablanca was performed using the same bulb. Here, the period from March 2017 to October 2017 was the first year (Comparative Example 1), and the period from November 2017 to September 2018 was the second year (Example 1).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例1)
 竹パルプを原料とし、ACC法によるCNF分散液100cc(濃度0.4wt%、平均重合度800、結晶化度61)を得た。次いで、液体肥料(住友化学園芸株式会社製、花工場 生産業者保証票生第85095号 N:P:K=5:10:5 Mg:0.08 Mn:0.004 B:0.016)10cc及び前記CNF分散液100ccに水7000ccを加えて、全量7110ccとし、栽培剤とした。
 次いで、1年目終了時のカサブランカの球根を掘り起こし、洗浄した後、植え直して、養液土耕法により栽培した。このとき、1回/週間の頻度で、CNF固形分量0.09g/回(施肥時濃度0.006%)となるようにし、全量で1500ccの栽培剤を施肥した。
(Example 1)
Using bamboo pulp as a raw material, 100 cc of a CNF dispersion (concentration: 0.4 wt%, average degree of polymerization: 800, degree of crystallinity: 61) was obtained by the ACC method. 10 cc of liquid fertilizer (manufactured by Sumitomo Chemical Horticultural Co., Ltd., flower factory, manufacturer guarantee sheet No. 85095, N: P: K = 5: 10: 5 Mg: 0.08 Mn: 0.004 B: 0.016) Then, 7000 cc of water was added to 100 cc of the CNF dispersion to make a total amount of 7110 cc, which was used as a cultivation agent.
Next, the bulbs of Casablanca at the end of the first year were dug up, washed, re-planted, and cultivated by nutrient solution plowing. At this time, the CNF solid content was adjusted to 0.09 g / time (concentration during fertilization: 0.006%) at a frequency of once / week, and a total of 1500 cc of the cultivation agent was fertilized.
(比較例1)
 液体肥料(住友化学園芸株式会社製、花工場 生産業者保証票生第85095号 N:P:K=5:10:5 Mg:0.08 Mn:0.004 B:0.016)10ccに水7000ccを加えて、全量7010ccとした。
 カサブランカの苗を購入し、養液土耕法により栽培した。このとき、1回/週間の頻度にて、全量で1500ccの栽培剤を施肥した。
(Comparative Example 1)
Liquid fertilizer (Sumitomo Chemical Horticultural Co., Ltd., flower factory, manufacturer guarantee voter No. 85095, N: P: K = 5: 10: 5 Mg: 0.08 Mn: 0.004 B: 0.016) Water in 10 cc 7000 cc was added to make the total amount 7010 cc.
Casablanca seedlings were purchased and cultivated by nutrient solution soil cultivation. At this time, a total of 1500 cc of the cultivation agent was applied at a frequency of once / week.
実施例1及び比較例1の結果を表2に示す。また、カサブランカを栽培した結果を示す写真を図4及び図5に示す。 Table 2 shows the results of Example 1 and Comparative Example 1. 4 and 5 show photographs showing the results of cultivating Casablanca.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(結果の考察)
表2、図4及び図5の結果から、本願発明に係る養液栽培用栽培剤は、CNF分散液を配合しない液体肥料と比較して、約1.5倍の成長量があった。なお、一般的に、一度開花した後の球根を使用した2年目以降のカサブランカは徐々に背丈、蕾数が減少することが知られている。
(Discussion of results)
From the results shown in Table 2, FIG. 4 and FIG. 5, the cultivation agent for hydroponics according to the present invention grew about 1.5 times as much as the liquid fertilizer not containing the CNF dispersion. Generally, it is known that the height and the number of buds in Casablanca after the second year using the bulb once bloomed gradually decrease.
<栽培作物;トマト(品種;桃太郎)>
(実施例2)
 竹パルプを原料とし、ACC法によるCNF分散液100cc(濃度0.4wt%、平均重合度800、結晶化度61)を得た。次いで、液体肥料(住友化学園芸株式会社製、花工場 生産業者保証票生第85095号 N:P:K=5:10:5 Mg:0.08 Mn:0.004 B:0.016)10cc及び前記CNF分散液に水7000ccを加えて、全量7110ccとして、栽培剤とした。
<Cultivated crop; tomato (variety; Momotaro)>
(Example 2)
Using bamboo pulp as a raw material, 100 cc of a CNF dispersion (concentration: 0.4 wt%, average degree of polymerization: 800, degree of crystallinity: 61) was obtained by the ACC method. 10 cc of liquid fertilizer (manufactured by Sumitomo Chemical Horticultural Co., Ltd., flower factory, manufacturer guarantee sheet No. 85095, N: P: K = 5: 10: 5 Mg: 0.08 Mn: 0.004 B: 0.016) 7000 cc of water was added to the CNF dispersion to make a total amount of 7110 cc, which was used as a cultivation agent.
 次いで、2018年6月10日~2018年7月31日の期間、トマトを養液土耕法により栽培した。このとき、1週間毎に、CNF固形分量0.14g/回となるように調製し、全量で2500ccの栽培剤を施肥した。 ト マ ト Next, from June 10, 2018 to July 31, 2018, tomatoes were cultivated by nutrient solution cultivation. At this time, the CNF solid content was adjusted to 0.14 g / time every week, and a total of 2500 cc of a cultivation agent was applied.
(比較例2)
 液体肥料(住友化学園芸株式会社製、花工場 生産業者保証票生第85095号 N:P:K=5:10:5 Mg:0.08 Mn:0.004 B:0.016)10ccに水7000ccを加えて、全量7010ccとした。
 他の条件は、実施例2と同様にしてトマトの栽培を行った。
(Comparative Example 2)
Liquid fertilizer (Sumitomo Chemical Horticultural Co., Ltd., flower factory, manufacturer guarantee voter No. 85095, N: P: K = 5: 10: 5 Mg: 0.08 Mn: 0.004 B: 0.016) Water in 10 cc 7000 cc was added to make the total amount 7010 cc.
The other conditions were the same as in Example 2 to cultivate tomato.
 実施例2及び比較例2において収穫したトマトそれぞれの重量を表3に示す。また、トマトの収穫量の推移の結果を図6に、トマトの収穫後の根を洗浄した後の様子を示す写真を図7に示し、それぞれの収穫後の根の重量を表4に示す。 Table 3 shows the weight of each of the tomatoes harvested in Example 2 and Comparative Example 2. FIG. 6 shows the results of changes in the amount of harvested tomatoes, FIG. 7 shows photographs showing the state of the tomatoes after harvesting the roots, and Table 4 shows the weights of the roots after each harvesting.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(結果の考察)
表3及び図6の結果から本願発明に係る栽培剤は、CNF分散液を配合していない液体肥料と比較して、総収穫量は約1.3倍、1個当たりの重量は、約1.2倍及び成長量は約1.4倍となった。また、収穫後のトマトの根の重量は、表4から実施例2の方が少なかった。これより本願発明に係る養液栽培用栽培剤は、トマトの根の成長を抑えつつ、トマトの収穫量を増加させる効果があるといえる結果となった。
(Discussion of results)
From the results shown in Table 3 and FIG. 6, the cultivation agent according to the present invention has a total yield of about 1.3 times as much as the liquid fertilizer containing no CNF dispersion, and the weight per piece is about 1 times. 0.2 times and the growth amount about 1.4 times. From Table 4, the weight of the tomato root after harvest was smaller in Example 2. From the results, it can be said that the cultivation agent for hydroponics according to the present invention has an effect of increasing the yield of tomato while suppressing the growth of the root of tomato.
<栽培植物;二十日大根>
(実施例3)
 広葉樹パルプを原料とし、ACC法によるセルロースナノファイバー分散液100cc(濃度0.2wt%、平均重合度770、結晶化度71)を得た。次いで、液体肥料(住友化学園芸株式会社製、花工場 生産業者保証票生第85095号 N:P:K=5:10:5 Mg:0.08 Mn:0.004 B:0.016)10ccに前記CNF分散液100ccに水7000ccを加えて、全量を7110ccとして、栽培剤とした。
<Cultivated plants: 20 days radish>
(Example 3)
Using hardwood pulp as a raw material, 100 cc of a cellulose nanofiber dispersion (concentration: 0.2 wt%, average degree of polymerization: 770, degree of crystallization: 71) was obtained by the ACC method. 10 cc of liquid fertilizer (manufactured by Sumitomo Chemical Horticultural Co., Ltd., flower factory, manufacturer guarantee sheet No. 85095, N: P: K = 5: 10: 5 Mg: 0.08 Mn: 0.004 B: 0.016) The CNF dispersion was added to 100 cc of water and 7000 cc of water to give a total amount of 7110 cc.
 次いで、2018年8月12日~2018年9月8日の期間、二十日大根を養液土耕法により栽培した。このとき、発芽して2cm程に芽が成長してから4日毎に、CNF固形分量0.07g/回(施肥時濃度0.001%)となるように調製し、添加回数6回、全量300ccの栽培剤を施肥した。 Next, from August 12, 2018 to September 8, 2018, radish was cultivated by nutrient solution cultivation. At this time, the CNF solid content was adjusted to 0.07 g / time (concentration at fertilization 0.001%) every 4 days after the sprouts grew and grew to about 2 cm, and the number of additions was 6 times, and the total amount was 300 cc. Fertilizer.
(比較例3)
 液体肥料(住友化学園芸株式会社製、花工場 生産業者保証票生第85095号 N:P:K=5:10:5 Mg:0.08 Mn:0.004 B:0.016)10ccに水7000ccを加えて、全量7010ccとした。
 他の条件は、実施例3と同様にして二十日大根の栽培を行った。
(Comparative Example 3)
Liquid fertilizer (Sumitomo Chemical Horticultural Co., Ltd., flower factory, manufacturer guarantee voter No. 85095, N: P: K = 5: 10: 5 Mg: 0.08 Mn: 0.004 B: 0.016) Water in 10 cc 7000 cc was added to make the total amount 7010 cc.
The cultivation of radish was carried out in the same manner as in Example 3 under the other conditions.
 実施例3及び比較例3において収穫した二十日大根の大根部分及び茎部分それぞれの重量を表4、表5に示す。また、実施例3及び比較例3の二十日大根を栽培した結果を示す写真を図8、図9及び図10に示す。 Tables 4 and 5 show the weights of the radish portion and the stem portion of the radish radish harvested in Example 3 and Comparative Example 3, respectively. 8, 9, and 10 show photographs showing the results of cultivating radish radish of Example 3 and Comparative Example 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(結果の考察)
 表5、表6及び図8~図10の結果から、本発明に係る栽培剤を用いて栽培した二十日大根は、CNF分散液を配合しない液体肥料と比較して、大根部分は、2倍の成長量及び茎部分は約1.2倍の成長量であった。
(Discussion of results)
From the results shown in Tables 5 and 6, and FIGS. 8 to 10, the radish radish cultivated using the cultivating agent according to the present invention showed 2% less radish than the liquid fertilizer without the CNF dispersion. The double growth amount and the stem portion were about 1.2 times the growth amount.
<栽培植物;豆苗>
(実施例5)
 竹パルプを原料とし、ACC法によるセルロースナノファイバー分散液100cc(濃度0.2wt%、平均重合度800、結晶化度61)を得た。次いで、2018年7月1日~2018年7月13日の期間、豆苗を水耕栽培法により栽培した。このとき、水換えを毎日行い、かつ、1回/日の割合で根の部分に4側面から噴霧した。なお、前記期間中に噴霧したCNF固形分量の全量は、0.01gであった。
<Cultivated plants; Bean seedlings>
(Example 5)
Using bamboo pulp as a raw material, 100 cc of a cellulose nanofiber dispersion (concentration: 0.2 wt%, average degree of polymerization: 800, degree of crystallization: 61) was obtained by the ACC method. Next, from July 1, 2018 to July 13, 2018, the beans were cultivated by hydroponic cultivation. At this time, water was changed every day, and the root portion was sprayed from four sides at a rate of once / day. The total amount of CNF solids sprayed during the period was 0.01 g.
(比較例5)
CNF分散液を水に変え、実施例5と同様にして豆苗の栽培を行った。
(Comparative Example 5)
The CNF dispersion was changed to water, and cultivation of beans was carried out in the same manner as in Example 5.
実施例5及び比較例5の豆苗を栽培した結果を示す写真を図11に示す。なお、右側の豆苗が実施例5であり、左側の豆苗が比較例5である。 FIG. 11 shows photographs showing the results of cultivating the bean seedlings of Example 5 and Comparative Example 5. The right bean seedling is Example 5 and the left bean seedling is Comparative Example 5.
(結果の考察)
 図11の結果から、実施例5の根部分は変色せず、異臭も発生しなかった。これに対して、比較例5の根部分は褐色に変色し、異臭が発生した。この結果より、CNF分散液は、腐敗や異臭を防止する効果がある事が分かった。
(Discussion of results)
From the results shown in FIG. 11, the root portion of Example 5 did not discolor and no off-flavor occurred. On the other hand, the root portion of Comparative Example 5 was discolored brown, and an off-flavor was generated. From these results, it was found that the CNF dispersion had an effect of preventing spoilage and odor.
<栽培植物;ブロッコリースプラウト>
(実施例6)
 針葉樹パルプを原料とし、ACC法によるセルロースナノファイバー分散液100cc(濃度0.2wt%、平均重合度700、結晶化度63)を得た。次いで、2018年8月12日~2018年8月31日の期間、ブロッコリースプラウトを水耕栽培法により栽培した。8月12日に種植えを行い、8月16日に発芽した。このとき、水換えを毎日行い、かつ、発芽した8月16日から2回/日の割合で1.25ccを4側面から噴霧した。なお、前記期間中に噴霧したCNF固形分量の全量は、0.04gであった。前記期間中において、菌数の測定を以下の方法で実施した。
<Cultivated plants; broccoli sprout>
(Example 6)
Using softwood pulp as a raw material, 100 cc of a cellulose nanofiber dispersion (concentration: 0.2 wt%, average degree of polymerization: 700, degree of crystallization: 63) was obtained by the ACC method. Next, during the period from August 12, 2018 to August 31, 2018, broccoli sprout was cultivated by a hydroponic method. Seeds were planted on August 12 and germinated on August 16. At this time, water was changed every day, and 1.25 cc was sprayed from four sides at a rate of twice a day from August 16 when germination occurred. The total amount of CNF solids sprayed during the period was 0.04 g. During the above period, the number of bacteria was measured by the following method.
-菌数測定方法-
 微生物簡易測定器具「サンアイバイオチェッカーTTC(総菌数測定用)」 (三愛石油株式会社製)を用いて、ディップスライドを検体液に浸し、その後恒温槽にて37℃で24時間培養後、対照表と比較評価した。
-Bacteria count method-
A dip slide was immersed in a sample solution using a microbial simple measurement instrument “San-ai Bio Checker TTC (for measuring the total number of bacteria)” (manufactured by San-ai Sekiyu KK). Comparative evaluation was made with the table.
(比較例6)
CNF分散液を水に変え、実施例6と同様にしてブロッコリースプラウトの栽培を行い、菌数の測定を実施例6と同様の方法で測定した。
(Comparative Example 6)
The CNF dispersion was changed to water, and broccoli sprout was cultivated in the same manner as in Example 6, and the number of bacteria was measured in the same manner as in Example 6.
 実施例5及び比較例5のブロッコリースプラウトを栽培した結果を示す写真を図12に示す。なお、左側のブロッコリースプラウトが実施例6、右側のブロッコリースプラウトが比較例6である。また、菌測定結果を図13に示す。 写真 FIG. 12 shows photographs showing the results of cultivating the broccoli sprout of Example 5 and Comparative Example 5. The broccoli sprout on the left side is Example 6, and the broccoli sprout on the right side is Comparative Example 6. FIG. 13 shows the bacteria measurement results.
(結果の考察)
 図12の結果から、実施例5の根部分は変色せず、異臭も発生しなかった。これに対して、比較例5の根部分は褐色に変色し、異臭が発生した。また、図13の結果から、CNF分散液は、菌数を抑える効果が有ること明らかとなった。この結果により、CNF分散液は、菌の増殖を抑え、腐敗や異臭を防止する効果がある事が分かった。
(Discussion of results)
From the results in FIG. 12, the root portion of Example 5 did not discolor and no off-flavor occurred. On the other hand, the root portion of Comparative Example 5 was discolored brown, and an off-flavor was generated. In addition, from the results shown in FIG. 13, it became clear that the CNF dispersion had an effect of suppressing the number of bacteria. From these results, it was found that the CNF dispersion had an effect of suppressing the growth of bacteria and preventing spoilage and odor.
<栽培植物;キャベツ>
(実施例7)
 竹パルプを原料とし、ACC法によるセルロースナノファイバー分散液1000cc(濃度1.7%、平均重合度830、結晶化度61)を得た。次いで、これを水20000ccを用いて希釈した(施肥時濃度0.081%)。次いで、2018年10月17日~2019年1月24日の期間、早世キャベツ及びキャベツを以下の条件にて、畑栽培した。
CNF希釈液:作付け時1回、追肥1回の合計2回(期間中に噴霧したCNF固形分量の全量:34g、キャベツ1個あたりのCNF固形分量:0.34g)
固形肥料(化成肥料):作付け時1回、追肥2回 合計3回
農薬:1回/週
面積:縦35m×横0.4m×高さ0.2=2.8m(キャベツ100個分)
<Cultivated plants; cabbage>
(Example 7)
Bamboo pulp was used as a raw material to obtain 1000 cc of a cellulose nanofiber dispersion (concentration: 1.7%, average degree of polymerization: 830, degree of crystallization: 61) by the ACC method. Then, this was diluted with 20,000 cc of water (concentration at fertilization 0.081%). Next, during the period from October 17, 2018 to January 24, 2019, early cabbage and cabbage were cultivated in the field under the following conditions.
CNF diluent: once at the time of planting and once at topdressing twice (total amount of CNF solids sprayed during the period: 34 g, CNF solids per cabbage: 0.34 g)
Solid fertilizer (chemical fertilizer): once at the time of planting, twice at the top-dressing Total 3 times Pesticide: once / week Area: 35 m × 0.4 m × height = 0.2 = 2.8 m 3 (for 100 cabbage)
(比較例7)
CNF分散液を使用しないこと以外は、実施例7と同様にしてキャベツの栽培を行った。
(Comparative Example 7)
Cabbage was cultivated in the same manner as in Example 7, except that the CNF dispersion was not used.
 実施例7及び比較例7において収穫したキャベツのそれぞれの重量(単位:kg)を表7~9に示す。また、実施例7及び比較例7のキャベツを栽培した途中結果を示す写真を図14、図15に示す。 重量 Tables 7 to 9 show the respective weights (unit: kg) of the cabbage harvested in Example 7 and Comparative Example 7. In addition, FIGS. 14 and 15 show photographs showing intermediate results of cultivating the cabbage of Example 7 and Comparative Example 7.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(結果の考察)
 表7~9の結果から、CNFを添加したキャベツは、CNFを添加しないキャベツより平均約1.2倍の成長量であった。また、図14、15の結果から、栽培初期段階におけるキャベツ(キャベツとなる部分)に明らかに差があることが分かった。この結果により、CNF分散液には、キャベツの成長を促進させ、収穫量を増大させる効果がある事が分かった。
(Discussion of results)
From the results shown in Tables 7 to 9, the cabbage to which CNF was added had an average growth amount of about 1.2 times that of the cabbage to which CNF was not added. In addition, from the results of FIGS. 14 and 15, it was found that there was a clear difference in the cabbage (portion to become the cabbage) in the initial stage of cultivation. From these results, it was found that the CNF dispersion had the effect of promoting the growth of cabbage and increasing the yield.
<栽培植物;ブロッコリー>
(実施例8)
 針葉樹パルプを原料とし、ACC法によるセルロースナノファイバー分散液600cc(濃度0.05%、平均重合度720、結晶化度63)を得た。次いで、2018年10月7日~2019年2月28日の期間、ブロッコリーを以下の条件にて、畑栽培した。
CNF希釈液:作付け時1回、追肥2回の合計3回(期間中に噴霧したCNF固形分量の全量:0.9g)
固形肥料(朝日工業株式会社製 超速効早効き野菜の肥料 N:P:K=10:12:10 有機成分約30%):作付け時1回、追肥2回(10日おき)各6g 合計3回(期間中の添加量18g)
水:1回/日
<Cultivated plants; broccoli>
(Example 8)
Using softwood pulp as a raw material, 600 cc of a cellulose nanofiber dispersion (concentration: 0.05%, average degree of polymerization: 720, degree of crystallization: 63) was obtained by the ACC method. Then, from October 7, 2018 to February 28, 2019, broccoli was cultivated in the field under the following conditions.
CNF diluent: 1 time at planting, 2 times topdressing, 3 times in total (total amount of CNF solids sprayed during the period: 0.9 g)
Solid fertilizer (Asahi Kogyo Co., Ltd., super-fast and fast-acting vegetable fertilizer N: P: K = 10: 12: 10, organic component about 30%): 1 time at planting, 2 times top dressing (every 10 days), 6 g each, total 3 Times (addition amount 18g during the period)
Water: once / day
(比較例8)
CNF分散液を使用しないこと以外は、実施例8と同様にしてブロッコリーの栽培を行った。
(Comparative Example 8)
Broccoli was cultivated in the same manner as in Example 8, except that the CNF dispersion was not used.
 実施例8及び比較例8において収穫したブロッコリーの頂花蕾(可食部)収穫量(単位:g)を測定した結果を表10に示す。また、実施例8及び比較例8のブロッコリーを栽培した途中結果を示す写真を図16に示す。なお、右側のブロッコリーが実施例8であり、左側のブロッコリーが比較例8である。 Table 10 shows the results of measuring the amount of harvest (unit: g) of the top flower bud (edible portion) of the broccoli harvested in Example 8 and Comparative Example 8. In addition, FIG. 16 shows a photograph showing the intermediate results of cultivating the broccoli of Example 8 and Comparative Example 8. The broccoli on the right side is Example 8, and the broccoli on the left side is Comparative Example 8.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(結果の考察)
 表10の結果から、CNFを添加したブロッコリーは、CNFを添加しないブロッコリーより約1.5倍の成長量であった。この結果により、CNF分散液には、ブロッコリーの成長を促進させ、収穫量を増大させる効果がある事が分かった。
(Discussion of results)
From the results in Table 10, broccoli to which CNF was added had a growth amount about 1.5 times that of broccoli to which CNF was not added. From the results, it was found that the CNF dispersion had an effect of promoting the growth of broccoli and increasing the yield.

Claims (7)

  1.  セルロースナノファイバーを含有することを特徴とする養液栽培用栽培剤。 栽培 A cultivation agent for hydroponics, characterized by containing cellulose nanofibers.
  2.  請求項1に記載のセルロースナノファイバーは、平均太さ3~200nmであり、平均長さ0.1μm以上であることを特徴とする養液栽培用栽培剤。 (4) A cultivation agent for hydroponics, wherein the cellulose nanofiber according to (1) has an average thickness of 3 to 200 nm and an average length of 0.1 μm or more.
  3.  請求項1又は請求項2に記載のセルロースナノファイバーは、セロビオースユニット内に水酸基6個を有し、化学修飾されていないセルロースナノファイバーであることを特徴とする養液栽培用栽培剤。 (4) A cultivation agent for hydroponics, wherein the cellulose nanofiber according to (1) or (2) is a cellulose nanofiber having six hydroxyl groups in a cellobiose unit and not chemically modified.
  4.  請求項1から請求項3に記載のセルロースナノファイバーは、平均太さが3~200nmであり、結晶化度が50以上であり、かつ、原料のα―セルロース含有率が60~99質量%であることを特徴とする養液栽培用栽培剤。 The cellulose nanofiber according to any one of claims 1 to 3, having an average thickness of 3 to 200 nm, a crystallinity of 50 or more, and a raw material α-cellulose content of 60 to 99% by mass. A cultivation agent for hydroponics, which is characterized in that:
  5.  請求項1から請求項4に記載の養液栽培用栽培剤は、肥料成分と共に使用することで収穫量を増加させることを特徴とする養液栽培用栽培剤。 <5> The cultivation agent for hydroponics according to any one of claims 1 to 4, wherein the cultivation agent for hydroponics is used together with a fertilizer component to increase the yield.
  6.  請求項1から請求項5のいずれか一に記載の養液栽培用栽培剤を使用することを特徴とする養液栽培方法。 方法 A method for hydroponic cultivation, comprising using the hydroponic cultivation agent according to any one of claims 1 to 5.
  7.  肥料成分を施肥した箇所へ請求項1から請求項5のいずれか一に記載の養液栽培用栽培剤を使用することを特徴とする養液栽培方法。 (6) A method for nutrient solution cultivation, comprising using the nutrient solution for nutrient solution cultivation according to any one of claims 1 to 5 at a site where a fertilizer component has been applied.
PCT/JP2019/037036 2018-09-21 2019-09-20 Hydroculture cultivation agent and hydroculture method using hydroculture cultivation agent WO2020059858A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019571568A JP6693003B1 (en) 2018-09-21 2019-09-20 A hydroponic dispersion and a hydroponic method using the hydroponic dispersion.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-177108 2018-09-21
JP2018177108 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020059858A1 true WO2020059858A1 (en) 2020-03-26

Family

ID=69887189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037036 WO2020059858A1 (en) 2018-09-21 2019-09-20 Hydroculture cultivation agent and hydroculture method using hydroculture cultivation agent

Country Status (2)

Country Link
JP (2) JP6693003B1 (en)
WO (1) WO2020059858A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7303349B1 (en) 2022-04-28 2023-07-04 中越パルプ工業株式会社 Auxiliary-containing composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031068A (en) * 2015-07-29 2017-02-09 凸版印刷株式会社 Cut flower longevity agent and preparation method therefor
JP2018029489A (en) * 2016-08-22 2018-03-01 東洋ゴム工業株式会社 Fertilizer feeding device
JP2019154289A (en) * 2018-03-12 2019-09-19 パナソニック株式会社 Fiber composite resin composition having sustained releasability of agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031068A (en) * 2015-07-29 2017-02-09 凸版印刷株式会社 Cut flower longevity agent and preparation method therefor
JP2018029489A (en) * 2016-08-22 2018-03-01 東洋ゴム工業株式会社 Fertilizer feeding device
JP2019154289A (en) * 2018-03-12 2019-09-19 パナソニック株式会社 Fiber composite resin composition having sustained releasability of agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7303349B1 (en) 2022-04-28 2023-07-04 中越パルプ工業株式会社 Auxiliary-containing composition

Also Published As

Publication number Publication date
JP2020110183A (en) 2020-07-27
JP6693003B1 (en) 2020-05-13
JP7334134B2 (en) 2023-08-28
JPWO2020059858A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP6276197B2 (en) Method, composition, granule, and seed coating for contacting a composition comprising a mixture of complex polymeric polyhydroxy acid (CPPA) and cationic species with a plant or vegetation site thereof
JPWO2007083445A1 (en) Plant growth promotion and quality improvement method, and growth promoter and quality improvement agent used in the method
JP2007111036A (en) Material for raising seedling of plant and its utilization
JP3545661B2 (en) Plant vitalizer
CN102276350B (en) Seed-stem dipping agent for sugarcane
Krishnapillai et al. Locally produced cocopeat growing media for container plant production
BR112020005941A2 (en) plant growth promoter comprising a lignocellulosic biomass, method for producing a plant growth promoter, and method for growing a plant
DE102007031783A1 (en) Culture substrate of organic, fibrous material
JP7334134B2 (en) A hydroponics dispersion and a hydroponics method using the hydroponic dispersion.
Kassim et al. Evaluation of super absorbent polymer application on yield, and water use efficiency of grand nain banana plant
JP5719067B1 (en) Method for producing weed germination growth inhibiting material, weed germination growth inhibiting material obtained by the production method and cultivation method of paddy rice
Dingley et al. Application of superabsorbent natural polymers in agriculture
JP6896322B1 (en) Cut flower life-prolonging agent
KR100591253B1 (en) Non-woody fiber mulching mat and production method thereof
TW202005516A (en) Fertilizer absorption rate improvement method
CN105924284A (en) Special slow-release soil for seedling raising
BR112020005956A2 (en) plant growth promoter, method for producing a plant growth promoter, and method for growing a plant
Nkaa et al. Effect of differential irrigation on physical and histochemical properties of kenaf (Hibiscus cannabinus L.) grown in the field in Eastern Nigeria
Peyvast et al. Effect of substrate on greenhouse cucumber production in soilless culture
JP2007169217A (en) Plant-vitalizing agent
JPH01312934A (en) Culture medium for plant cultivation
TW202002759A (en) Clubroot disease control method
Adekiya et al. Potentials of soilless substrates from biochar and rice husk as a replacement for cocopeat in Nigeria on tomato (Solanum lycopersicum)
US11832559B2 (en) Cellulose filament medium for growing plant seedlings
US20240076551A1 (en) Erosion remediation product

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019571568

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861938

Country of ref document: EP

Kind code of ref document: A1