WO2020059788A1 - 地中熱利用システム及び地中熱利用システムの運転方法 - Google Patents
地中熱利用システム及び地中熱利用システムの運転方法 Download PDFInfo
- Publication number
- WO2020059788A1 WO2020059788A1 PCT/JP2019/036722 JP2019036722W WO2020059788A1 WO 2020059788 A1 WO2020059788 A1 WO 2020059788A1 JP 2019036722 W JP2019036722 W JP 2019036722W WO 2020059788 A1 WO2020059788 A1 WO 2020059788A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- opening
- aquifer
- closing cylinder
- pipe
- utilization system
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/20—Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T2010/50—Component parts, details or accessories
- F24T2010/56—Control arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/40—Geothermal heat-pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Definitions
- the present invention relates to an underground heat utilization system and an operation method of the underground heat utilization system.
- Priority is claimed on Japanese Patent Application No. 2018-175985, filed on September 20, 2018, the content of which is incorporated herein by reference.
- Patent Document 1 discloses a geothermal heat utilization system that takes in groundwater in an upper aquifer at an opening of a well and recirculates water to a lower aquifer.
- An object of the present invention is to provide a geothermal heat utilization system and a method of operating a geothermal heat utilization system capable of suppressing blockage of a well when using an upper aquifer and a lower aquifer.
- the geothermal heat utilization system has a first well including a first upper opening opening in an upper aquifer and a first lower opening opening in a lower aquifer.
- a second well having a second upper opening that is open in the upper aquifer, a second lower opening that is open in the lower aquifer, a first pipe, and a second pipe.
- the groundwater of the lower aquifer can be supplied, and the underground water is supplied from one of the upper aquifer and the lower aquifer.
- the groundwater to the water supply from the other of the upper aquifer and the lower aquifer to pumping cold water As, at the same time as pumping hot water, as the groundwater to the water supply from the other of the upper aquifer and the lower aquifer to pumping cold water.
- the groundwater in the upper aquifer and the groundwater in the lower aquifer can be separately supplied, so that the groundwater in the upper aquifer and the groundwater in the lower aquifer are mixed. Can be suppressed. Therefore, in the underground heat utilization system of this aspect, when the upper aquifer and the lower aquifer are used, the blockage of the well is suppressed. Further, the geothermal heat utilization system of the present embodiment pumps warm water from one of the upper aquifer and the lower aquifer, and pumps cold water from the other of the upper aquifer and the lower aquifer. . For this reason, hot water and cold water can be used simultaneously.
- the underground heat utilization system further comprising: a heater connected to the first heat exchanger; and a cooler connected to the second heat exchanger. It is a heat utilization system.
- heating and cooling can be performed simultaneously.
- the geothermal heat utilization system of the third aspect is further capable of transmitting groundwater of the upper aquifer from the second upper opening toward the first upper opening via the second pipe.
- the first or second aspect in which groundwater of the lower aquifer can be supplied from the first lower opening toward the second lower opening through the first pipe. This is an underground heat utilization system.
- the heat stored by the water supply can be sent in reverse. Therefore, the heat stored by the water supply can be used.
- the first well is provided above the first upper opening, and has a first storage unit having a first pump, the first storage unit, and the first storage unit.
- the geothermal heat utilization system according to any one of the first to third aspects, further comprising: a second switching unit capable of switching between a mode for connecting to the two lower openings.
- the first pump can pump groundwater in the upper aquifer and pump groundwater in the lower aquifer.
- the second pump can pump groundwater in the upper aquifer and pump groundwater in the lower aquifer. Therefore, the utilization efficiency of the pump in each well can be improved.
- the first pipe has a first pumping pipe extending into the first well at a first end, and the second pipe has the first pumping pipe at a first end.
- a second pumping pipe extending into the two wells, wherein the first pipe has a first water injection pipe extending into the second well at a second end, and the second pipe has a second pipe at a second end.
- An upper pumping port comprising a second water pipe extending into the first well, wherein each of the first water pipe and the second water pipe is openable from the upper aquifer so that water can be pumped.
- a first opening / closing cylinder that can open and close the upper pumping port, a lower pumping port that is openable to pump water from the lower aquifer, and a second opening / closing cylinder that can open and close the lower pumping port.
- the first water pipe and the second water pipe each have an upper water inlet that is open to allow water to flow into the upper aquifer, and an upper water inlet that opens.
- the upper pumping port, the lower pumping port, the upper water inlet, and the lower water inlet are respectively opened and closed by the respective open / close tubes. Therefore, the mechanism in each well can be made compact.
- the geothermal heat utilization system further includes an interlocking mechanism that interlocks the pair of the first opening and closing cylinder and the second opening and closing cylinder with the pair of the third opening and closing cylinder and the fourth opening and closing cylinder.
- An underground heat utilization system according to a fifth aspect.
- the geothermal heat utilization system since the geothermal heat utilization system has the interlocking mechanism, the opening and closing operations of the upper and lower water inlets and the upper and lower water inlets can be interlocked.
- a geothermal heat utilization system includes a first weight suspended from a pair of the first opening and closing cylinder and the second opening and closing cylinder, and a pair of the third opening and closing cylinder and the fourth opening and closing cylinder.
- the underground heat utilization system according to the fifth aspect, further comprising a suspended second weight.
- the pair of the first opening / closing cylinder and the second opening / closing cylinder is pulled downward by the gravity applied to the first weight. Further, the pair of the third opening / closing cylinder and the fourth opening / closing cylinder is pulled downward by the gravity applied to the second weight. For this reason, in the underground heat utilization system, each pair of the opening and closing cylinders of the first opening and closing cylinder and the second opening and closing cylinder and the pair of the third opening and closing cylinder and the fourth opening and closing cylinder are easily moved downward.
- the geothermal heat utilization system further includes a lift mechanism that suspends the pair of the first opening / closing cylinder and the second opening / closing cylinder and the pair of the third opening / closing cylinder and the fourth opening / closing cylinder together.
- An underground heat utilization system according to a seventh aspect of the invention.
- the underground heat utilization system is configured to suspend the pair of the first opening / closing cylinder and the second opening / closing cylinder and the pair of the third opening / closing cylinder and the fourth opening / closing cylinder together,
- the opening and closing operations of the upper and lower water inlets and the upper and lower water inlets can be linked. For this reason, in the underground heat utilization system, the mechanism for performing each opening and closing operation can be simplified.
- the geothermal heat utilization system includes a first cylinder slidable on a pair of the first opening and closing cylinder and the second opening and closing cylinder, and a sliding pair of the third opening and closing cylinder and the fourth opening and closing cylinder.
- the geothermal heat utilization system according to the fifth aspect, further comprising a movable second cylinder.
- the first cylinder can move the pair of the first opening / closing cylinder and the second opening / closing cylinder up and down by the driving force of the first cylinder.
- the second cylinder can move the pair of the third opening / closing cylinder and the fourth opening / closing cylinder up and down by the driving force of the second cylinder.
- a geothermal heat utilization system includes a first drive mechanism that can slide the first opening and closing cylinder, a second drive mechanism that can slide the second opening and closing cylinder, and the third opening and closing cylinder.
- the underground heat utilization system according to a fifth aspect, further comprising a third drive mechanism slidable and a fourth drive mechanism slidable on the fourth opening / closing cylinder.
- the first opening / closing cylinder, the second opening / closing cylinder, the third opening / closing cylinder, and the fourth opening / closing cylinder can be moved up and down by the driving force of each drive mechanism. For this reason, in the underground heat utilization system, each pair of the opening and closing cylinders of the first opening and closing cylinder and the second opening and closing cylinder and the pair of the third opening and closing cylinder and the fourth opening and closing cylinder are easily moved downward.
- the operation method of the underground heat utilization system of the eleventh aspect includes a first upper opening that is open in the upper aquifer, and a first lower opening that is open in the lower aquifer.
- the groundwater in the upper aquifer and the groundwater in the lower aquifer can be separately supplied, so that the groundwater in the upper aquifer and the groundwater in the lower aquifer are mixed. Can be suppressed. Therefore, in the operation method of the underground heat utilization system of the present embodiment, when the upper aquifer and the lower aquifer are used, the well is not blocked. Further, in the operation method according to the present aspect, hot water is pumped from one of the upper aquifer and the lower aquifer, and at the same time, cold water is pumped from the other of the upper aquifer and the lower aquifer. For this reason, hot water and cold water can be used simultaneously.
- FIG. 5 is a sectional view taken along line VV of FIG. 4.
- FIG. 6 is a sectional view taken along line VI-VI of FIG. 4.
- FIG. 9 is a sectional view taken along line IX-IX of FIG. 8.
- FIG. 9 is a sectional view taken along line XX of FIG. 8.
- FIGS. 1 to 3 A first embodiment of an underground heat utilization system will be described with reference to FIGS. 1 to 3, arrows indicate flows of the heat medium (including groundwater) in each part.
- the white arrows indicate cold water and the black arrows indicate warm water.
- the underground heat utilization system 10 stores heat in two different aquifers, an upper aquifer LY1 and a lower aquifer LY2.
- the upper aquifer LY1 and the lower aquifer LY2 are formed, for example, with the dilutive clay layer LYm interposed therebetween.
- the underground heat utilization system 10 includes a first well 20 and a second well 30.
- the underground heat utilization system 10 further includes a first pipe 40, a second pipe 50, a first heat exchanger 60, and a second heat exchanger 70.
- the underground heat utilization system 10 further includes a heater 80 and a cooler 90.
- the heater 80 is used as heating equipment in the building BLD.
- the cooler 90 is used as cooling equipment in the building BLD.
- the underground heat utilization system 10 pumps hot water as groundwater to be supplied from one of the upper aquifer LY1 and the lower aquifer LY2, and simultaneously with the other of the upper aquifer LY1 and the lower aquifer LY2. It is configured so that cold water is pumped as groundwater to be supplied from the city.
- the first well 20 penetrates the upper aquifer LY1 from the ground to the underground and extends to the lower aquifer LY2.
- the first well 20 includes a first storage unit 21, a first switching unit 22, a first upper opening 23, and a first lower opening 24.
- the first well 20 includes a casing 20a embedded in an excavation hole HOL1 excavated toward the underground from the surface SG to the lower aquifer LY2.
- a packing PK is provided between each of the first storage unit 21, the first switching unit 22, the first upper opening 23, and the first lower opening 24, It controls the flow of groundwater between each area.
- the first storage section 21 is provided above the first upper opening 23.
- the first storage unit 21 has a first pump 21a capable of pumping groundwater in the first storage unit 21.
- the first switching unit 22 is provided between the first storage unit 21 and the first upper opening 23.
- the first switching unit 22 includes a first port 22a opening to the first storage unit 21 and a second port 22b connected to the second pipe 50.
- the first switching portion 22 has a third port 22c opening to the first upper opening 23 and a third port 22c extending to the first lower opening 24 after passing through the first upper opening 23.
- the first switching unit 22 is a mode for connecting the first storage unit 21 and the first upper opening 23 and a mode for connecting the first storage unit 21 and the first lower opening 24 by switching the internal piping. And can be switched. For example, in the case illustrated in FIG.
- the first switching unit 22 connects the first storage unit 21 and the first upper opening 23 by connecting the first port 22a and the third port 22c. In the case shown in FIG. 2, the first switching unit 22 connects the second pipe 50 and the first lower opening 24 by connecting the second port 22b and the fourth port 22d.
- the first upper opening 23 opens in the upper aquifer LY1.
- the first upper opening 23 is a portion of the first well 20 located at a depth corresponding to the upper aquifer LY1.
- Groundwater is stored in the first upper opening 23.
- the casing 20a is provided with a strainer 23a including a plurality of slits in the upper aquifer LY1.
- the first upper opening 23 is configured so that groundwater in the upper aquifer LY1 can be taken into the inside of the casing 20a, and groundwater can be returned from the inside of the casing 20a to the upper aquifer LY1. ing.
- the first lower opening 24 opens in the lower aquifer LY2.
- the first lower opening 24 is a portion of the first well 20 located at a depth corresponding to the lower aquifer LY2.
- Groundwater is stored in the first lower opening 24.
- the first upper opening 23 and the first lower opening 24 are arranged vertically.
- the casing 20a is provided with a strainer 24a including a plurality of slits in the lower aquifer LY2.
- the first lower opening 24 is configured so that groundwater in the lower aquifer LY2 can be taken into the casing 20a or groundwater can be returned from the inside of the casing 20a to the lower aquifer LY2. Have been.
- the second well 30 penetrates the upper aquifer LY1 from the ground to the underground, and extends to the lower aquifer LY2.
- the second well 30 is provided at a predetermined distance from the first well 20.
- the second well 30 includes a second storage unit 31, a second switching unit 32, a second upper opening 33, and a second lower opening 34.
- the second well 30 includes a casing 30a embedded in a borehole HOL2 that is bored toward the underground from the ground surface SG to the lower aquifer LY2.
- a packing PK is provided between each of the second storage portion 31, the second switching portion 32, the second upper opening portion 33, and the second lower opening portion 34. It controls the flow of groundwater between the two.
- the second storage section 31 is provided above the second upper opening 33.
- the second storage unit 31 has a second pump 31a capable of pumping groundwater in the second storage unit 31.
- the second switching section 32 is provided between the second storage section 31 and the second upper opening 33.
- the second switching unit 32 includes a first port 32a opened to the second storage unit 31 and a second port 32b connected to the first pipe 40.
- the second switching section 32 has a third port 32c opening to the second upper opening 33 and a fourth port extending to the second lower opening 34 passing through the second upper opening 33 and opening.
- the second switching unit 32 switches between the second storage unit 31 and the second upper opening 33 by switching the internal piping, and the second connection unit 32 connects the second storage unit 31 and the second lower opening 34. , Can be switched. For example, in the case shown in FIG.
- the second switching unit 32 connects the second storage unit 31 and the second lower opening 34 by connecting the first port 32a and the fourth port 32d.
- the second switching unit 32 connects the first pipe 40 and the second upper opening 33 by connecting the second port 32b and the third port 32c.
- the second upper opening 33 opens in the upper aquifer LY1.
- the second upper opening 33 is a portion of the second well 30 located at a depth corresponding to the upper aquifer LY1.
- Groundwater is stored in the second upper opening 33.
- the casing 30a is provided with a strainer 33a including a plurality of slits in the upper aquifer LY1.
- the second upper opening 33 is configured so that groundwater in the upper aquifer LY1 can be taken into the inside of the casing 30a, and groundwater can be returned from the inside of the casing 30a to the upper aquifer LY1. ing.
- the second lower opening 34 opens in the lower aquifer LY2.
- the second lower opening 34 is a portion of the second well 30 located at a depth corresponding to the lower aquifer LY2.
- Groundwater is stored in the second lower opening 34.
- the second upper opening 33 and the second lower opening 34 are arranged vertically.
- the casing 30a is provided with a strainer 34a including a plurality of slits in the lower aquifer LY2.
- the second lower opening 34 is configured so that groundwater in the lower aquifer LY2 can be taken into the casing 30a and groundwater can be returned from the inside of the casing 30a to the lower aquifer LY2. ing.
- the underground heat utilization system 10 operates the first pump 21a and the second pump 31a simultaneously. For this reason, the underground heat utilization system 10 pumps the groundwater from one of the upper aquifer LY1 and the lower aquifer LY2, and simultaneously receives the groundwater from the other of the upper aquifer LY1 and the lower aquifer LY2. Pump.
- the first pipe 40 extends from the first end 40a to the second end 40b via the primary side of the first heat exchanger 60 (primary side pipe 60a).
- the first end 40a of the first pipe 40 is connected to the first pump 21a so that water can be pumped from the first pump 21a to the first pipe 40.
- the first end 40a of the first pipe 40 extends into the first well 20 toward the first pump 21a.
- the second end 40b of the first pipe 40 is connected to the second port 32b of the second switching unit 32 via an on-off valve, a check valve, or the like so that water can be sent toward the second port 32b of the second switching unit 32. It is connected.
- the second end 40 b of the first pipe 40 extends into the second well 30 toward the second port 32 b of the second switching section 32.
- the second pipe 50 extends from the first end 50a to the second end 50b via the primary side of the second heat exchanger 70 (primary side pipe 70a).
- the first end 50a of the second pipe 50 is connected to the second pump 31a so that water can be pumped from the second pump 31a to the second pipe 50.
- the first end 50a of the second pipe 50 extends into the second well 30 toward the second pump 31a.
- the second end 50b of the second pipe 50 is connected to the second port 22b of the first switching unit 22 via an on-off valve, a check valve, or the like so that water can be sent toward the second port 22b of the first switching unit 22. It is connected.
- the second end 50 b of the second pipe 50 extends into the first well 20 toward the second port 22 b of the first switching unit 22.
- the primary side (primary side pipe 60 a) of the first heat exchanger 60 is connected in the middle of the first pipe 40.
- the secondary side (secondary piping 60b) of the first heat exchanger 60 is connected to the heater 80.
- the first heat exchanger 60 is capable of exchanging heat between the primary side and the secondary side.
- the underground heat utilization system 10 circulates a heat medium between the secondary side of the first heat exchanger 60 and the heater 80.
- the primary side (primary side pipe 70 a) of the second heat exchanger 70 is connected in the middle of the second pipe 50.
- the secondary side (secondary pipe 70 b) of the second heat exchanger 70 is connected to the cooler 90.
- the second heat exchanger 70 is capable of exchanging heat between the primary side and the secondary side.
- the underground heat utilization system 10 circulates a heat medium between the secondary side of the second heat exchanger 70 and the cooler 90.
- the first switching unit 22 connects the first storage unit 21 and the first upper opening 23. Thereby, the groundwater taken in the first upper opening 23 is pumped to the first pipe 40.
- warm water is stored in the upper aquifer LY1 around the first upper opening 23.
- the hot water taken in the first upper opening 23 is pumped to the first pipe 40.
- the second switching unit 32 connects the second storage unit 31 and the second lower opening 34.
- the groundwater taken in at the second lower opening 34 is pumped to the second pipe 50.
- cold water is stored in the upper aquifer LY1 around the second lower opening 34.
- the cold water taken in the second lower opening 34 is pumped to the second pipe 50.
- the underground heat utilization system 10 can send the groundwater in the upper aquifer LY1 from the first upper opening 23 to the second upper opening 33 via the first pipe 40. Further, the underground heat utilization system 10 can send groundwater in the lower aquifer LY2 from the second lower opening 34 to the first lower opening 24 via the second pipe 50. Therefore, the underground heat utilization system 10 can supply the stored heat of the upper aquifer LY1 to the first heat exchanger 60 and can supply the stored heat of the groundwater of the lower aquifer LY2 to the second heat exchanger 70. Further, the underground heat utilization system 10 can store the cold heat obtained from the first heat exchanger 60 in the upper aquifer LY1, and can store the heat obtained from the second heat exchanger 70 in the lower aquifer LY2.
- the underground heat utilization system 10 consumes the hot water obtained from the upper aquifer LY1 by supplying it to the first heat exchanger 60 via the first upper opening 23. I have.
- the underground heat utilization system 10 stores cold water obtained in the first heat exchanger 60 by supplying it to the upper aquifer LY1 through the second upper opening 33.
- the underground heat utilization system 10 consumes the hot water obtained from the lower aquifer LY2 by supplying it to the second heat exchanger 70 through the second lower opening 34. I have.
- the underground heat utilization system 10 stores cold water obtained in the second heat exchanger 70 by supplying it to the lower aquifer LY2 through the first lower opening 24.
- the geothermal heat utilization system 10 operates the first pump 21a and the second pump 31a simultaneously to pump hot water from one of the upper aquifer LY1 and the lower aquifer LY2, and Pump cold water from the other of the aquifer LY1 and the lower aquifer LY2.
- the geothermal heat utilization system 10 operates the first pump 21a and the second pump 31a at the same time to pump warm water from the upper aquifer LY1 and at the same time to lower the lower aquifer. Pump cold water from the layer LY2.
- hot water means water at a temperature higher than the initial ground temperature of groundwater in each aquifer
- cold water means water at a temperature lower than the initial ground temperature of groundwater in each aquifer.
- the initial underground temperature of groundwater in each aquifer is 18 ° C.
- FIG. 3 shows a state in which the internal pipes of the first switching unit 22 and the second switching unit 32 are switched from the connection shown by the solid line in FIG. 2 to the connection shown by the dotted line in FIG.
- the first switching unit 22 connects the second pipe 50 and the first upper opening 23 by connecting the second port 22b and the third port 22c.
- the first switching unit 22 connects the first storage unit 21 and the first lower opening 24 by connecting the first port 22a and the fourth port 22d.
- the second switching unit 32 connects the second storage unit 31 and the second upper opening 33 by connecting the first port 32a and the third port 32c.
- the second switching unit 32 connects the first pipe 40 and the second lower opening 34 by connecting the second port 32b and the fourth port 32d.
- the groundwater withdrawn at the first lower opening 24 is pumped to the first pipe 40, and the groundwater withdrawn at the second upper opening 33 is pumped to the second pipe 50.
- the second mode may be started after the first mode is performed.
- cold water is stored in the upper aquifer LY1 around the second upper opening 33. Therefore, the cold water taken in the second upper opening 33 is pumped to the second pipe 50.
- warm water is stored in the lower aquifer LY2 around the first lower opening 24. For this reason, the hot water taken in the first lower opening 24 is pumped to the first pipe 40.
- the underground heat utilization system 10 can send the groundwater in the lower aquifer LY2 from the first lower opening 24 to the second lower opening 34 via the first pipe 40. Further, the underground heat utilization system 10 can supply the groundwater in the upper aquifer LY1 from the second upper opening 33 to the first upper opening 23 via the second pipe 50. Therefore, the underground heat utilization system 10 can supply the stored heat of the lower aquifer LY2 to the first heat exchanger 60 and can supply the stored heat of the upper aquifer LY1 to the second heat exchanger 70. Further, the underground heat utilization system 10 can store the cold heat obtained from the first heat exchanger 60 in the lower aquifer LY2, and can store the heat obtained from the second heat exchanger 70 in the upper aquifer LY1.
- the underground heat utilization system 10 supplies the cold water obtained from the upper aquifer LY1 to the second heat exchanger 70 via the second upper opening 33. Consumed by.
- the underground heat utilization system 10 stores hot water obtained in the second heat exchanger 70 by supplying it to the upper aquifer LY1 through the first upper opening 23.
- the underground heat utilization system 10 consumes the hot water obtained from the lower aquifer LY2 by supplying it to the first heat exchanger 60 through the first lower opening 24.
- the underground heat utilization system 10 stores cold water obtained in the first heat exchanger 60 by supplying it to the lower aquifer LY2 through the second lower opening 34.
- the underground heat utilization system 10 of the present embodiment can separately transmit the groundwater of the upper aquifer LY1 and the groundwater of the lower aquifer LY2, and therefore the groundwater of the upper aquifer LY1 and the lower aquifer LY1.
- LY2 can be prevented from being mixed with the groundwater. Therefore, in the underground heat utilization system 10 of the present embodiment, when the upper aquifer LY1 and the lower aquifer LY2 are used, the blockage of the well is suppressed.
- the groundwater in the upper aquifer LY1 is oxygen-rich and the groundwater in the lower aquifer LY2 is rich in iron
- the groundwater of the upper aquifer LY1 and the groundwater of the lower aquifer LY2 are both groundwater. If mixed, iron oxides are generated and the strainers at the openings of each well are closed.
- the underground heat utilization system 10 of the present embodiment has a structure in which the two groundwaters are hardly mixed, when the upper aquifer LY1 and the lower aquifer LY2 are used, it is possible to suppress the blockage of the well. it can.
- the geothermal heat utilization system 10 of the present embodiment pumps hot water as groundwater to be supplied from one of the upper aquifer LY1 and the lower aquifer, and simultaneously forms the upper aquifer and the lower aquifer. Pump cold water as groundwater to be supplied from the other side. For this reason, hot water and cold water can be used simultaneously. For example, in a building BLD, one room can be heated and another room can be cooled at the same time.
- the geothermal heat utilization system 10 of the present embodiment can reversely transmit the heat stored by the water supply in each of the upper aquifer LY1 and the lower aquifer LY2. Therefore, the heat stored by the water supply can be used.
- the first pump 21a can pump the groundwater of the upper aquifer LY1 in the first mode and can pump the groundwater of the lower aquifer LY2 in the second mode.
- the geothermal heat utilization system 10 of the present embodiment can pump the groundwater of the upper aquifer LY1 in the second mode and pump the groundwater of the lower aquifer LY2 in the first mode by the second pump 31a. it can. Therefore, each pump can be used in each mode, and the use efficiency of each pump can be increased.
- the underground heat utilization system 10 of the present embodiment can pump and recirculate groundwater in the upper aquifer LY1 and pump and recirculate groundwater in the lower aquifer LY2. Therefore, the heat storage capacity can be doubled as compared with a geothermal heat utilization system that pumps and returns groundwater in one aquifer.
- the first upper opening 23 and the first lower opening 24 are vertically arranged, and the second upper opening 33 and the second lower opening Since the parts 34 are arranged vertically, the site area can be effectively used.
- a large-capacity heat source system is required to be mounted, but the site area is limited, so the geothermal heat utilization system 10 of the present embodiment is effective. It is.
- aquifer heat storage utilizing the heat utilization potential of groundwater existing widely in the alluvial plain common to the metropolitan area can be utilized.
- the underground heat utilization system 10 of the present embodiment transmits the groundwater of the upper aquifer LY1 from the first upper opening 23 to the second upper opening 33, while transmitting the groundwater from the second lower opening 34.
- the groundwater in the lower aquifer LY2 is supplied to the first lower opening 24. That is, in each well, water is pumped from one aquifer, while the other aquifer circulates. For this reason, the underground heat utilization system 10 of the present embodiment can suppress land subsidence and ground elevation.
- FIGS. 4 to 19 show examples of the first switching unit 22 in the embodiment of the heat utilization system described above.
- each example of the first switching unit 22 will be described, but the second switching unit 32 may have the same configuration.
- the first switching unit 22 may include a revolver 22R as shown in FIGS. By rotating the revolver 22R by 90 ° from the state shown in FIG. 4 to the state shown in FIG. 7, the first switching unit 22 can change the flow path.
- the first switching unit 22 may include a plurality of three-way valves 22T as shown in FIGS. By switching the three-way valve 22T, the first switching unit 22 can change the flow path.
- FIG. 8 is a perspective view of the first switching unit 22 as viewed from the front
- FIG. 11 is a perspective view of the first switching unit 22 as viewed from the side.
- the three-way valve 22T may be, for example, a ball valve.
- the first switching unit 22 may include a plurality of three-way valves 22T and a plurality of water injection valves 22P. By switching between the three-way valve 22T and the water injection valve 22P, the first switching unit 22 can change the flow path.
- the first switching unit 22 is a combination of a plurality of water injection valves 22P as shown in FIG. 13 or a combination of a plurality of three-way valves 22T and a plurality of water injection valves 22P as shown in FIG. Is also good.
- the first switching unit 22 may include a plurality of four-way valves 22F and a plurality of water injection valves 22P. By switching between the four-way valve 22F and the water injection valve 22P, the first switching unit 22 can change the flow path.
- the first switching unit 22 may include two slide mechanisms 22S. By switching the slide mechanism 22S from the state shown in FIG. 16 to the state shown in FIG. 17, the first switching unit 22 can change the flow path.
- the first switching unit 22 may further include a water injection valve 22P.
- the first switching unit 22 may have a configuration in which two slide mechanisms 22S are integrated. At this time, by switching from the state shown in FIG. 18 to the state shown in FIG. 19, the first switching unit 22 can change the flow path.
- groundwater in the upper aquifer LY1 is sent from the first upper opening 23 to the second upper opening 33 via the first pipe 40 (ST1: upper aquifer). Transporting groundwater in the formation). Simultaneously with the execution of ST1, the groundwater of the lower aquifer LY2 is transmitted from the second lower opening 34 to the first lower opening 24 via the second pipe 50 (ST2: lower aquifer). Sending groundwater).
- the operation method of the underground heat utilization system 10 is such that hot water is pumped as groundwater to be supplied from one of the upper aquifer LY1 and the lower aquifer LY2, and the upper aquifer LY1 and the lower aquifer LY1. Cold water is pumped as groundwater to be supplied from the other one of LY2.
- FIGS. 21 and 22 A second embodiment of the underground heat utilization system will be described with reference to FIGS.
- arrows indicate the flow of the heat medium (including groundwater) in each part.
- the white arrows indicate cold water and the black arrows indicate warm water.
- the geothermal utilization system 100 of the second embodiment is the same as the geothermal utilization system 10 of the first embodiment, except that the configurations of the first well, the second well, the first pipe, and the second pipe are different. Since they are configured and function in the same manner, duplicate description will be omitted.
- the underground heat utilization system 100 includes a first well 120 and a second well 130.
- the underground heat utilization system 100 further includes a first pipe 140, a second pipe 150, a first heat exchanger 60, and a second heat exchanger 70.
- the underground heat utilization system 100 further includes a heater 80 and a cooler 90.
- the underground heat utilization system 100 may further include a first pump 180 and a second pump 190.
- the first pump 180 is provided in the middle of the first pipe 140 so as to supply water from the first well 120 to the first heat exchanger 60.
- the first pump 180 may be provided right above the first well 120.
- the second pump 190 is provided in the middle of the first pipe 140 so as to supply water from the second well 130 to the second heat exchanger 70.
- the second pump 190 may be provided right above the second well 130.
- the underground heat utilization system 100 causes the first pump 180 and the second pump 190 to operate simultaneously. For this reason, the underground heat utilization system 100 pumps groundwater from one of the upper aquifer LY1 and the lower aquifer LY2, and at the same time, groundwater from the other of the upper aquifer LY1 and the lower aquifer LY2. Pump.
- the first well 120 penetrates the upper aquifer LY1 from the ground to the underground and extends to the lower aquifer LY2.
- the first well 120 includes a first upper opening 23 and a first lower opening 24.
- the first well 120 includes a casing 20a embedded in an excavation hole HOL1 excavated toward the underground from the surface SG to the lower aquifer LY2.
- a packing PK is provided between each of the first upper opening portion 23 and the first lower opening portion 24, and suppresses the flow of groundwater between each of them.
- the second well 130 is a well penetrating from the ground to the underground, penetrating the upper aquifer LY1, and extending to the lower aquifer LY2.
- the second well 130 is provided at a predetermined distance from the first well 120.
- the second well 130 has a second upper opening 33 and a second lower opening 34.
- the second well 130 includes a casing 30a embedded in a borehole HOL2 that is drilled toward the underground from the surface SG to the lower aquifer LY2.
- a packing PK is provided between each of the second upper opening 33 and the second lower opening 34, thereby suppressing the flow of groundwater between each of the packings PK.
- the first pipe 140 extends from the first end 140a to the second end 140b via the primary side (primary side pipe 60a) of the first heat exchanger 60.
- the first pipe 140 includes a first pumping pipe 141 extending into the first well 120 at a first end 140a.
- the first pumping pipe 141 may extend through the first upper opening 23 and extend into the first lower opening 24.
- the first pipe 140 further includes a second water pipe 142 extending into the second well 130 at the second end 140b.
- the second water pipe 142 may pass through the second upper opening 33 and extend into the second lower opening 34.
- the second pipe 150 extends from the first end 150a to the second end 150b via a primary side (primary side pipe 70a) of the second heat exchanger 70.
- the second pipe 150 includes a second pumping pipe 152 extending into the second well 130 at the first end 150a.
- the second pumping pipe 152 may pass through the second upper opening 33 and extend into the second lower opening 34.
- the second pipe 150 further includes a first water injection pipe 151 extending into the first well 120 at the second end 150b.
- the first water pipe 151 may extend through the first upper opening 23 and extend into the first lower opening 24.
- each of the first pumping pipe 141 and the second pumping pipe 152 has an upper pumping port 101 and a lower pumping port 103.
- Each of the first pumping pipe 141 and the second pumping pipe 152 includes a first opening / closing pipe 102 and a second opening / closing pipe 104.
- each of the first pumping pipe 141 and the second pumping pipe 152 may be closed below the lower pumping port 103.
- the first pumping pipe 141 will be described, but the second pumping pipe 152 is configured similarly to the first pumping pipe 141.
- the upper pumping port 101 is open so that water can be pumped from the upper aquifer LY1. That is, the upper pumping port 101 opens the groundwater taken into the first upper opening 23 from the upper aquifer LY1 so as to be pumpable.
- the first pumping pipe 141 may have, as the upper pumping port 101, a plurality of openings OP arranged around the pipe.
- the upper pumping port 101 may be provided at any depth as long as it is above the packing PK.
- the upper pumping port 101 may be provided at a position corresponding to the depth of the upper aquifer LY1. Further, the upper pumping port 101 may be provided at a depth position within a range where the first upper opening 23 is provided.
- the first opening / closing cylinder 102 can open and close the upper pumping port 101.
- the first opening / closing cylinder 102 may be provided on the outer periphery of the first pumping pipe 141 and coaxially with the first pumping pipe 141.
- the first opening / closing cylinder 102 is provided on the pipe periphery of the first pumping pipe 141 above and below the upper pumping port 101 by sliding at a position in line with the upper pumping port 101 covering the opening OP of the upper pumping port 101.
- the upper pumping port 101 can be hermetically sealed via a pair of O-rings ORG.
- the first opening / closing cylinder 102 is slidable up and down.
- the first opening / closing cylinder 102 may be slidable up and down between a position aligned with the upper pumping port 101 and a position below the upper pumping port 101. Accordingly, the first opening / closing cylinder 102 closes the upper pumping port 101 when it is located at a position aligned with the upper pumping port 101, and opens the upper pumping port 101 when it is located below the upper pumping port 101.
- the lower pumping port 103 is opened to be able to pump water from the lower aquifer LY2. That is, the lower pumping port 103 opens the groundwater taken in the first lower opening 24 from the lower aquifer LY2 so as to be pumpable.
- the first pumping pipe 141 may have, as the lower pumping port 103, a plurality of openings OP lined up around the pipe.
- the lower pumping port 103 may be provided at any depth position below the packing PK.
- the lower pumping port 103 may be provided at a position corresponding to the lower aquifer LY2. Further, the lower pumping port 103 may be provided at a depth position within a range where the first lower opening 24 is provided.
- the second opening / closing cylinder 104 can open and close the lower pumping port 103.
- the second opening / closing cylinder 104 may be provided on the outer periphery of the first pumping pipe 141 and coaxially with the first pumping pipe 141.
- the second opening / closing cylinder 104 is provided on the pipe periphery of the first pumping pipe 141 above and below the lower pumping port 103 by sliding at a position aligned with the lower pumping port 103 covering the opening OP of the lower pumping port 103.
- the lower pumping port 103 can be hermetically sealed through a pair of O-rings ORG.
- the second opening / closing cylinder 104 is slidable up and down.
- the second opening / closing cylinder 104 may be slidable up and down between a position aligned with the lower pumping port 103 and a position above the lower pumping port 103.
- the second opening / closing cylinder 104 closes the lower pumping port 103 when it is located at a position aligned with the lower pumping port 103, and opens the lower pumping port 103 when it is at a position above the lower pumping port 103.
- the first opening / closing cylinder 102 and the second opening / closing cylinder 104 are connected via a link LNK ⁇ b> 1 extending vertically around the outer periphery of the first pumping pipe 141.
- the link LNK1 may be a metal bar extending vertically.
- the link LNK1 may extend up and down through the packing PK while maintaining the suppression of groundwater flow by the packing PK. Therefore, the first opening / closing cylinder 102 and the second opening / closing cylinder 104 slide in conjunction with each other in the vertical direction.
- the second opening / closing cylinder 104 is located at a position aligned with the lower pumping port 103. And so on. Thereby, when the first opening / closing cylinder 102 opens the upper pumping port 101, the second opening / closing pipe 104 can close the lower pumping port 103.
- the second opening / closing cylinder 104 is at a position above the lower pumping port 103. And so on.
- the first opening / closing cylinder 102 closes the upper pumping port 101
- the second opening / closing cylinder 104 can open the lower pumping port 103.
- each of the first water pipe 151 and the second water pipe 142 has an upper water inlet 105 and a lower water inlet 107.
- Each water injection pipe of the first water injection pipe 151 and the second water injection pipe 142 includes a third opening / closing cylinder 106 and a fourth opening / closing cylinder 108.
- each of the first water pipe 151 and the second water pipe 142 may be closed below the lower water inlet 107.
- the first water pipe 151 will be described, but the second water pipe 142 is configured similarly to the first water pipe 151.
- the upper water inlet 105 is open so that water can be injected into the upper aquifer LY1. That is, the upper water inlet 105 opens into the first upper opening 23 so that the groundwater in the first water pipe 151 can be injected.
- the first water injection pipe 151 may have a plurality of openings OP arranged on the pipe circumference as the upper water injection port 105.
- the upper water inlet 105 may be provided at any depth as long as it is above the packing PK.
- the upper water inlet 105 may be provided at a position corresponding to the depth of the upper aquifer LY1. Further, the upper water inlet 105 may be provided in a depth position within a range where the first upper opening 23 is provided.
- the third opening / closing cylinder 106 can open and close the upper water inlet 105.
- the third opening / closing cylinder 106 may be provided on the outer periphery of the first water injection pipe 151 and coaxially with the first water injection pipe 151.
- the third opening / closing cylinder 106 is provided on the pipe periphery of the first water inlet pipe 151 above and below the upper water inlet 105 by sliding at a position aligned with the upper water inlet 105 covering the opening OP of the upper water inlet 105.
- the upper water inlet 105 can be hermetically sealed through a pair of O-rings ORG.
- the third opening / closing cylinder 106 is slidable up and down.
- the third opening / closing cylinder 106 may be slidable up and down between a position aligned with the upper water inlet 105 and a position below the upper water inlet 105.
- the third opening / closing cylinder 106 closes the upper water inlet 105 when it is located at a position aligned with the upper water inlet 105, and opens the upper water inlet 105 when it is located below the upper water inlet 105.
- the lower water inlet 107 is open so that water can be injected into the lower aquifer LY2. That is, the lower water inlet 107 is opened so that the groundwater of the first water pipe 151 can be injected into the first lower opening 24.
- the first water injection pipe 151 may have, as the lower water injection port 107, a plurality of openings OP arranged around the pipe circumference.
- the lower water inlet 107 may be provided at any depth position below the packing PK.
- the lower water inlet 107 may be provided at a depth corresponding to the lower aquifer LY2. Further, the lower water inlet 107 may be provided in a depth position within a range where the first lower opening 24 is provided.
- the fourth opening and closing cylinder 108 can open and close the lower water inlet 107.
- the fourth opening / closing cylinder 108 may be provided on the outer periphery of the first water injection pipe 151 and coaxially with the first water injection pipe 151.
- the fourth opening / closing cylinder 108 is provided on the pipe periphery of the first water inlet pipe 151 above and below the lower water inlet 107 by sliding to a position in line with the lower water inlet 107 covering the opening OP of the lower water inlet 107.
- the lower water inlet 107 is configured to be hermetically sealable via a pair of O-rings ORG.
- the fourth opening / closing cylinder 108 is slidable up and down.
- the fourth opening / closing cylinder 108 may be slidable up and down between a position aligned with the lower water inlet 107 and a position above the lower water inlet 107. Accordingly, the fourth opening / closing cylinder 108 closes the lower water inlet 107 when it is located at a position aligned with the lower water inlet 107, and opens the lower water inlet 107 when it is located above the lower water inlet 107.
- the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 are connected via a link LNK2 extending vertically around the outer periphery of the first water injection pipe 151.
- the link LNK2 may be a metal bar extending vertically.
- the link LNK2 may extend up and down through the packing PK, while maintaining the suppression of groundwater flow by the packing PK. For this reason, the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 slide in conjunction with each other in the vertical direction.
- the fourth opening / closing cylinder 108 when the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 are located at a position below the upper water inlet 105, the fourth opening / closing cylinder 108 is at a position aligned with the lower water inlet 107. And so on.
- the third opening / closing cylinder 106 opens the upper water injection port 105, the fourth opening / closing cylinder 108 can close the lower water injection port 107.
- the fourth opening / closing tube 108 when the third opening / closing tube 106 and the fourth opening / closing tube 108 are located at the position where the third opening / closing tube 106 is aligned with the upper water inlet 105, the fourth opening / closing tube 108 is located above the lower water inlet 107. And so on. Thus, when the third opening / closing tube 106 closes the upper water inlet 105, the fourth opening / closing tube 108 can open the lower water inlet 107.
- the underground heat utilization system 100 may further include an interlocking mechanism 160.
- the interlocking mechanism 160 is provided in each of the first well 120 and the second well 130.
- the interlocking mechanism 160 provided in the first well 120 will be described, but the interlocking mechanism 160 provided in the second well 130 is similarly configured.
- the interlocking mechanism 160 interlocks the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 with the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108.
- the interlocking mechanism 160 may interlock the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 and the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 in opposite directions with respect to the vertical direction.
- the interlocking mechanism 160 may include a rack gear 161 fixed to the link LNK1, a rack gear 162 fixed to the link LNK2, and a pinion gear 163.
- the rack gear 161 and the rack gear 162 are arranged in the direction in which the first pumping pipe 141 and the first water injection pipe 151 are arranged.
- the rack gear 161 and the rack gear 162 are connected via a pinion gear 163.
- the rack gear 161 and the rack gear 162 face each other across the pinion gear 163. As a result, the rack gear 161 and the rack gear 162 are linked in opposite directions in the vertical direction.
- each rack gear of the rack gear 161 and the rack gear 162 may include a suspension ring HGR.
- Each rack gear can be moved upward by an operator or a device pulling up a rod, a wire, or the like fixed to the suspension ring HGR from the ground.
- the rack gear 162 may be moved up by pulling up a rod or a wire from the ground, and the rack gear 161 may be moved down by the interlocking mechanism 160 as shown in FIG.
- the first pumping pipe 141 is connected to the upper belt through the first upper opening 23. Pump groundwater from the water layer LY1.
- the first water pipe 151 injects groundwater into the lower aquifer LY2 via the first lower opening 24.
- the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 is moved upward, and the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 is moved downward.
- the lower pumping port 103 and the upper water inlet 105 are opened, and the upper pumping port 101 and the lower water inlet 107 are closed.
- the second pumping pipe 152 pumps groundwater from the lower aquifer LY2 through the second lower opening 34. I do.
- the second water pipe 142 injects groundwater into the upper aquifer LY ⁇ b> 1 via the second upper opening 33.
- the underground heat utilization system 100 causes the first upper opening 23 to pass through the second upper
- the underground water of the upper aquifer LY1 can be sent toward the opening 33.
- the underground heat utilization system 100 can supply groundwater in the lower aquifer LY2 from the second lower opening 34 to the first lower opening 24 via the second pipe 150.
- the geothermal heat utilization system 100 operates the first pump 180 and the second pump 190 at the same time, thereby forming the upper aquifer. At the same time as pumping hot water from LY1, cold water is pumped from lower aquifer LY2.
- the rack gear 161 may be moved upward by pulling up a rod or a wire from the ground, and the rack gear 162 may be moved downward by interlocking by the interlocking mechanism 160.
- the first pumping pipe 141 supplies groundwater from the lower aquifer LY ⁇ b> 2 via the first lower opening 24. Pump water.
- the first water pipe 151 injects groundwater into the upper aquifer LY ⁇ b> 1 via the first upper opening 23.
- the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 is moved upward, and the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 is moved downward.
- the lower pumping port 103 and the upper water inlet 105 are closed, and the upper pumping port 101 and the lower water inlet 107 are opened.
- the second pumping pipe 152 pumps groundwater from the upper aquifer LY1 through the second upper opening 33. I do.
- the second water pipe 142 injects groundwater into the lower aquifer LY2 via the second lower opening 34.
- the underground heat utilization system 100 transmits the second heat from the first lower opening 24 through the first pipe 140.
- the groundwater in the lower aquifer LY2 can be supplied to the lower opening 34.
- the underground heat utilization system 100 can supply the groundwater in the upper aquifer LY1 from the second upper opening 33 to the first upper opening 23 via the second pipe 150.
- the geothermal heat utilization system 100 operates the first pump 180 and the second pump 190 at the same time, thereby lowering the aquifer. At the same time as warm water is pumped from LY2, cold water is pumped from the upper aquifer LY1.
- the underground heat utilization system 100 of the present embodiment can separately transmit the groundwater of the upper aquifer LY1 and the groundwater of the lower aquifer LY2. Mixing of the groundwater of LY1 and the groundwater of the lower aquifer LY2 can be suppressed. For this reason, according to the underground heat utilization system 100 of the present embodiment, when the upper aquifer LY1 and the lower aquifer LY2 are used, blockage of the well is suppressed.
- the geothermal heat utilization system 100 of the present embodiment in each of the first well 120 and the second well 130, the upper pumping port 101, the lower pumping port 103, the upper pumping port 105, The lower water inlet 107 is opened and closed. Therefore, the mechanism in each well can be made compact.
- the geothermal heat utilization system 100 since the geothermal heat utilization system 100 has the interlocking mechanism 160, the opening and closing of the upper pumping port 101 and the lower pumping port 103, and the upper water inlet 105 and the lower water inlet 107, respectively. Movement can be linked.
- the geothermal heat utilization system 100 includes the interlocking mechanism 160, the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104, and the third opening / closing cylinder 106 and the fourth opening / closing cylinder
- the other pair of open / close cylinders can be moved downward.
- the underground heat utilization system does not include the interlocking mechanism 160 and moves each pair of the open / close cylinders downward by the biasing force of the spring.
- the biasing force of the spring changes in relation to the displacement length, it is difficult to move each pair of the opening and closing cylinders downward with a constant force.
- each pair of the opening and closing cylinders is moved downward by the interlocking mechanism 160, each pair of the opening and closing cylinders can be easily moved downward with a constant force.
- an interlocking mechanism 160 including a rack gear 161, a rack gear 162, and a pinion gear 163 is used as the interlocking mechanism.
- the interlocking mechanism can be configured as long as the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 and the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 can be interlocked in the vertical direction and in the opposite direction. May be done.
- an interlocking mechanism 160 ′ as shown in FIG. 24 may be used as the interlocking mechanism.
- the interlocking mechanism 160 includes a chain 164a, a chain 164b, a sprocket 165a, and a sprocket 165b.
- the underground heat utilization system 100 further includes a support ring 109 and a suspension ring HGR.
- One end of the chain 164a is fixed to the upper end of the first opening / closing cylinder 102, and the other end of the chain 164a is fixed to the upper end of the third opening / closing cylinder 106.
- One end of the chain 164b is fixed to the lower end of the second opening / closing cylinder 104, and the other end of the chain 164b is fixed to the lower end of the fourth opening / closing cylinder 108.
- the sprocket 165a is connected to the chain 164a.
- the sprocket 165a is rotatable in conjunction with the movement of the chain 164a in the direction in which the chain 164a extends.
- Sprocket 165b is connected to chain 164b.
- the sprocket 165b is rotatable in conjunction with the movement of the chain 164b in the direction in which the chain 164b extends.
- the support ring 109 is provided for each link of the link LNK1 and the link LNK2.
- the suspension ring HGR is fixed to each support ring 109.
- the support ring 109 is provided so as to be slidable on the outer circumference of each of the first pumping pipe 141, the first pumping pipe 151, the second pumping pipe 152, and the second pumping pipe 142.
- the support ring 109 is slidable up and down while maintaining a constant posture up and down.
- the support ring 109 may include a pair of rings 109a vertically separated from each other and a plurality of connecting rods 109b connecting the pair of rings 109a.
- Each ring 109a is provided coaxially with each of the first pumping pipe 141, the first pumping pipe 151, the second pumping pipe 152, and the second pumping pipe 142.
- Each connecting rod 109b extends vertically.
- the plurality of connecting rods 109b are arranged in the circumferential direction of each ring 109a.
- a suspension ring HGR is fixed to at least one of the plurality of connecting rods 109b.
- the suspension ring HGR may be fixed to each connecting rod 109b of a pair of connecting rods 109b that face each other in the radial direction of the ring 109a.
- the interlocking mechanism 160 ′ moves the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 and the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 in the vertical direction in the opposite direction.
- the support ring 109 can maintain a constant posture in the vertical direction. For example, even when the link LNK1 and the link LNK2 are lifted up by a rod or a wire fixed to one suspension ring HGR, the links LNK1 and LNK2 are unlikely to be tilted vertically. For this reason, the underground heat utilization system 100 vertically shifts each pair of the open / close cylinders of the first open / close cylinder 102 and the second open / close cylinder 104 and the pair of the third open / close cylinder 106 and the fourth open / close cylinder 108. Easy to move.
- each pair of the opening and closing cylinders is moved up and down by pulling up with a rod or a wire fixed to the suspension ring HGR, but if the pair of opening and closing cylinders can be moved up and down, Is also good.
- each pair of the open / close cylinders may be moved up and down by rotating another sprocket coupled to at least one of the sprockets 165a and 165b.
- each pair of the opening and closing cylinders may be moved up and down by rotating a rotation shaft of a motor or the like coupled to at least one of the sprockets 165a and 165b.
- the underground heat utilization system 100 includes an interlocking mechanism, whereas in the example of the present embodiment, the underground heat utilization system 100 includes a first weight and a second weight. Are different. Except for the difference, the configuration is the same as that of the underground heat utilization system 100 of the second embodiment, and the function is the same.
- the underground heat utilization system 100 may further include a first weight 166a and a second weight 166b. Further, the underground heat utilization system 100 may further include a support ring 109 and a suspension ring HGR fixed to the support ring 109, similarly to the modification of the second embodiment.
- the first weight 166a is suspended from a pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104.
- the first weight 166a may be hung at the lower end of the second opening / closing cylinder 104.
- the second weight 166b is suspended by a pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108.
- the second weight 166b may be hung at the lower end of the fourth opening / closing cylinder 108.
- the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 is pulled downward by the gravity applied to the first weight 166a. Further, the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 is pulled downward by gravity applied to the second weight 166b. For this reason, for example, each pair of the opening and closing cylinders can be moved up and down by an operator or a device pulling up or loosening a rod, a wire, and the like fixed to the suspension ring HGR from the ground.
- the underground heat utilization system 100 includes a pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 and a pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108. It is easy to move each pair of open / close cylinders downward.
- the underground heat utilization system 100 includes an interlocking mechanism, whereas in the example of the present embodiment, the underground heat utilization system 100 includes a first cylinder and a second cylinder. Are different. Except for the difference, the configuration is the same as that of the underground heat utilization system 100 of the second embodiment, and the function is the same.
- the underground heat utilization system 100 may further include a first cylinder 167a and a second cylinder 167b.
- the first cylinder 167a is connected to a pair of a first opening / closing cylinder 102 and a second opening / closing cylinder 104 via a link LNK3.
- the first cylinder 167a is a hydraulic cylinder, a hydraulic cylinder, or the like, and can drive the link LNK3 up and down.
- the upper end of the link LNK3 may be fixed to the lower end of the second opening / closing cylinder 104.
- the link LNK3 may be a metal bar extending vertically.
- the second cylinder 167b is connected to a pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 via a link LNK4.
- the second cylinder 167b is a hydraulic cylinder, a hydraulic cylinder, or the like, and can drive the link LNK4 up and down.
- the upper end of the link LNK4 may be fixed to the lower end of the fourth opening / closing cylinder 108.
- the link LNK4 may be a metal bar extending vertically.
- the driving force of the first cylinder 167a allows the first cylinder 167a to move the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 up and down.
- the second cylinder 167b can move the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 up and down by the driving force of the second cylinder 167b.
- the underground heat utilization system 100 includes a pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 and a pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108. It is easy to move each pair of open / close cylinders up and down.
- the underground heat utilization system 100 includes an interlocking mechanism.
- the underground heat utilization system 100 includes a first driving mechanism, a second driving mechanism, The difference is that a third drive mechanism and a fourth drive mechanism are provided. Except for the difference, the configuration is the same as that of the underground heat utilization system 100 of the second embodiment, and the function is the same.
- the underground heat utilization system 100 may further include a first drive mechanism 168a, a second drive mechanism 168b, a third drive mechanism 168c, and a fourth drive mechanism 168d. Further, the first drive mechanism 168a, the second drive mechanism 168b, the third drive mechanism 168c, and the fourth drive mechanism 168d may be independently drivable.
- the first drive mechanism 168a is connected to the first opening / closing cylinder 102.
- the first drive mechanism 168a is a hydraulic actuator, a hydraulic actuator, or the like, and can drive the first opening / closing cylinder 102 in the vertical direction.
- the second drive mechanism 168b is connected to the second opening / closing cylinder 104.
- the second drive mechanism 168b is a hydraulic actuator, a hydraulic actuator, or the like, and can drive the second opening / closing cylinder 104 in the vertical direction.
- the third drive mechanism 168c is connected to the third opening / closing cylinder 106.
- the third drive mechanism 168c is a hydraulic actuator, a hydraulic actuator, or the like, and can drive the third opening / closing cylinder 106 in the vertical direction.
- the fourth drive mechanism 168d is connected to the fourth opening / closing cylinder 108.
- the fourth drive mechanism 168d is a hydraulic actuator, a hydraulic actuator, or the like, and can drive the fourth opening / closing cylinder 108 in the vertical direction.
- the opening / closing cylinders of the first opening / closing cylinder 102, the second opening / closing cylinder 104, the third opening / closing cylinder 106, and the fourth opening / closing cylinder 108 are driven by the driving force of each driving mechanism. Can be moved up and down. Therefore, according to an example of the present embodiment, the geothermal heat utilization system 100 includes the first opening / closing cylinder 102, the second opening / closing cylinder 104, the third opening / closing cylinder 106, and the opening / closing of the fourth opening / closing cylinder 108. Easy to move the tube up and down.
- the underground heat utilization system 100 moves each pair of the opening and closing cylinders up and down, whereas in an example of the present embodiment, the underground heat utilization system 100 controls each pair of the opening and closing cylinders. The difference is that they are lifted together. Further, in the example of the present embodiment, the moving range of the third opening / closing cylinder 106 with respect to the upper water inlet 105 is different from the example of the third embodiment. Further, in the example of the present embodiment, the moving range of the fourth opening / closing cylinder 108 with respect to the lower water inlet 107 is different from the example of the third embodiment. Except for the difference, the configuration is the same as that of the underground heat utilization system 100 of the third embodiment, and the function is the same.
- the underground heat utilization system 100 may further include a lift mechanism 170.
- the third opening / closing cylinder 106 may be slidable up and down between a position above the upper water inlet 105 and a position aligned with the upper water inlet 105. Thereby, the third opening / closing cylinder 106 closes the upper water inlet 105 when it is located at a position aligned with the upper water inlet 105, and opens the upper water inlet 105 when it is located above the upper water inlet 105.
- the fourth opening / closing cylinder 108 may be slidable up and down between a position aligned with the lower water inlet 107 and a position below the lower water inlet 107. Accordingly, the fourth opening / closing cylinder 108 opens the lower water inlet 107 when located at a position below the lower water inlet 107, and closes the lower water inlet 107 when located at a position aligned with the lower water inlet 107.
- the fourth opening / closing cylinder 108 is connected to the lower water injection port. It may be connected so that it is located below 107.
- the third opening / closing tube 106 closes the upper water inlet 105
- the fourth opening / closing tube 108 can open the lower water inlet 107.
- the third opening / closing tube 106 and the fourth opening / closing tube 108 are located at a position aligned with the lower water inlet 107 when the third opening / closing tube 106 is located above the upper water inlet 105. And so on.
- the fourth opening / closing cylinder 108 can close the lower water injection port 107.
- the lift mechanism 170 is provided directly above each of the first well 120 and the second well 130 on the ground. As shown in FIGS. 30 and 31, the lift mechanism 170 includes a guide plate 171, a top plate 172, four upper supports 173, and four lower supports 174. The lift mechanism 170 includes a pair of jacks 175, a pair of ball screws 176, a pair of jack guides 177, a lifting plate 178, and a rod group 179.
- the guide plate 171 has an upper plate surface 171a facing upward and a lower plate surface 171b facing downward.
- An upper support 173 extends downward from each of the four corners of the upper plate surface 171a.
- a lower support 174 extends downward from each of the four corners of the lower plate surface 171b. The lower end of the lower support 174 is fixed to the ground surface SG.
- the top plate 172 is provided at a distance in parallel with the guide plate 171.
- An upper support 173 is fixed to each of the four corners of the lower plate surface 172b facing the top plate 172.
- a pair of ball screws 176 are fixed to the lower plate surface 172b of the top plate 172 closer to the center than the upper support 173 so as to be axially rotatable.
- the pair of ball screws 176 extend downward from the lower plate surface 172b, and extend through the lifting plate 178 and the guide plate 171 to the pair of jacks 175.
- a pair of jack guides 177 are fixed to the lower plate surface 172b of the top plate 172 closer to the center than the upper support 173.
- the pair of jack guides 177 are arranged so as to be orthogonal to the arrangement of the pair of ball screws 176.
- Each jack guide of the pair of jack guides 177 has a rod shape.
- the pair of jack guides 177 extend downward from the lower plate surface 172b, extend through the lifting plate 178, and extend to the guide plate 171.
- the lower ends of the pair of jack guides 177 are fixed to the guide plate 171.
- the pair of jacks 175 are fixed to the lower plate surface 171b of the guide plate 171. Each jack of the pair of jacks 175 axially drives the associated ball screw 176.
- the pair of jacks 175 are connected to each other by a connection shaft JNT.
- the pair of jacks 175 are linked to each other by the connecting shaft JNT.
- the lifting plate 178 is provided in parallel with the guide plate 171.
- the lifting plate 178 is provided between the top plate 172 and the guide plate 171.
- the lifting plate 178 is surrounded by four upper columns 173.
- the lifting plate 178 can move up and down along a pair of jack guides 177.
- the lifting plate 178 is screwed with each ball screw of the pair of ball screws 176. When each ball screw of the pair of ball screws 176 is rotationally driven by the pair of jacks 175, the lifting plate 178 is driven up and down.
- the rod group 179 is fixed to the lifting plate 178.
- the rod group 179 extends downward from the lifting plate 178 through the guide plate 171.
- the rod group 179 has a rod 179a, a rod 179b, a rod 179c, and a rod 179d.
- the rod 179a, the rod 179b, the rod 179c, and the rod 179d are fixed at four corners of the lifting plate 178.
- the lower end of the rod 179a and the lower end of the rod 179b are fixed to a suspension ring HGR provided on the LNK1.
- the lower end of the rod 179c and the lower end of the rod 179d are fixed to a suspension ring HGR provided on the LNK2. Therefore, as shown in FIG. 31, when the lifting plate 178 is moved upward by driving the pair of jacks 175, the LNK1 and the LNK2 are lifted together.
- the lift mechanism 170 operates so as not to lift the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 and the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108.
- the lift mechanism 170 operates so as not to lift LNK1 and LNK2.
- the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 moves downward due to the gravity of the first weight 166a.
- the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 moves downward due to the gravity of the second weight 166b. Therefore, in the first well 120, as shown in FIG. 29, the upper pumping port 101 and the lower pumping port 107 are opened, and the lower pumping port 103 and the upper pumping port 105 are closed.
- the first pumping pipe 141 is connected via the first upper opening 23, as shown in FIG. Pump groundwater from the upper aquifer LY1.
- the first water pipe 151 injects groundwater into the lower aquifer LY2 via the first lower opening 24.
- the lift mechanism 170 lifts the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 and the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 together.
- the lift mechanism 170 operates to lift LNK1 and LNK2 together.
- the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 is moved upward by the driving force of the lift mechanism 170.
- the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 is moved upward by the driving force of the lift mechanism 170. Therefore, in the second well 130, the upper pumping port 101 and the lower water inlet 107 are closed, and the lower pumping port 103 and the upper water inlet 105 are opened.
- the second pumping pipe 152 passes through the second lower opening 34, as shown in FIG. Pump groundwater from the lower aquifer LY2.
- the second water pipe 142 injects groundwater into the upper aquifer LY ⁇ b> 1 via the second upper opening 33.
- the underground heat utilization system 100 causes the first upper opening 23 to pass through the second upper
- the underground water of the upper aquifer LY1 can be sent toward the opening 33.
- the underground heat utilization system 100 can supply groundwater in the lower aquifer LY2 from the second lower opening 34 to the first lower opening 24 via the second pipe 150.
- the geothermal heat utilization system 100 operates the first pump 180 and the second pump 190 at the same time, thereby forming the upper aquifer. At the same time as pumping hot water from LY1, cold water is pumped from lower aquifer LY2.
- the lift mechanism 170 operates to lift the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 and the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108.
- the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 is moved upward by the driving force of the lift mechanism 170.
- the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 is moved upward by the driving force of the lift mechanism 170.
- the upper pumping port 101 and the lower water inlet 107 are closed, and the lower pumping port 103 and the upper water inlet 105 are opened.
- the first pumping pipe 141 passes through the first lower opening 24 as shown in FIG. Pump groundwater from the lower aquifer LY2.
- the first water pipe 151 injects groundwater into the upper aquifer LY ⁇ b> 1 via the first upper opening 23.
- the lift mechanism 170 operates so as not to lift the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 and the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108.
- the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 moves downward due to the gravity of the first weight 166a.
- the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 moves downward due to the gravity of the second weight 166b. Therefore, in the second well 130, the upper pumping port 101 and the lower filling port 107 are opened, and the lower pumping port 103 and the upper filling port 105 are closed.
- the second pumping pipe 152 passes through the second upper opening 33, as shown in FIG. Pump groundwater from the upper aquifer LY1.
- the second water pipe 142 injects groundwater into the lower aquifer LY2 via the second lower opening 34.
- the underground heat utilization system 100 transmits the second heat from the first lower opening 24 through the first pipe 140.
- the groundwater in the lower aquifer LY2 can be supplied to the lower opening 34.
- the underground heat utilization system 100 can supply the groundwater in the upper aquifer LY1 from the second upper opening 33 to the first upper opening 23 via the second pipe 150.
- the geothermal heat utilization system 100 operates the first pump 180 and the second pump 190 at the same time, thereby lowering the aquifer. At the same time as warm water is pumped from LY2, cold water is pumped from the upper aquifer LY1.
- the geothermal heat utilization system 100 combines the pair of the first opening / closing cylinder 102 and the second opening / closing cylinder 104 with the pair of the third opening / closing cylinder 106 and the fourth opening / closing cylinder 108 together.
- each opening and closing operation of the upper water inlet 101 and the lower water inlet 103 and the upper water inlet 105 and the lower water inlet 107 can be linked.
- the mechanism for performing each opening and closing operation can be simplified.
- the first opening / closing cylinder 102 is provided on the outer periphery of each pumping pipe.
- any configuration may be used as long as the upper pumping port 101 can be opened and closed.
- the first opening / closing cylinder 102 may be provided on the inner periphery of each pumping pipe.
- the second opening / closing cylinder 104 may be provided on the inner periphery of each pumping pipe.
- the third opening / closing cylinder 106 may be provided on the inner periphery of each water injection pipe.
- the fourth opening / closing cylinder 108 may be provided on the inner periphery of each water injection pipe.
- the operation method of the underground heat utilization system shown in FIG. 20 can be executed using the underground heat utilization system 100 of the second to sixth embodiments described above.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Hydrology & Water Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
地中熱利用システムは、第一配管を介して、第一上部開口部から第二上部開口部へ向かって、上部帯水層の地下水を送水可能であり、第二配管を介して、第二下部開口部から第一下部開口部へ向かって、下部帯水層の地下水を送水可能である。また、地中熱利用システムは、温水を揚水すると同時に、冷水を揚水する。
Description
本発明は、地中熱利用システム及び地中熱利用システムの運転方法に関する。
本願は、2018年9月20日に日本に出願された特願2018-175985号について優先権を主張し、その内容をここに援用する。
本願は、2018年9月20日に日本に出願された特願2018-175985号について優先権を主張し、その内容をここに援用する。
近年、帯水層の地下水を井戸からくみ上げて、温熱源又は冷熱源として利用する地中熱利用システムが提案されている。
これに関連する技術として、特許文献1には、井戸の開口部において、上部帯水層の地下水を取水し、下部帯水層へ環水する地中熱利用システムが開示されている。
しかし、上部帯水層の地下水の水質と、下部帯水層の地下水の水質が異なっている場合、特許文献1のような地中熱利用システムを利用すると、上部帯水層の地下水と下部帯水層の地下水が混ざってしまう。地下水が混ざると、生成された反応物によって井戸の開口部が閉塞されることがある。
本発明は、上部帯水層及び下部帯水層の利用に際し、井戸の閉塞を抑制できる地中熱利用システム及び地中熱利用システムの運転方法を提供することを目的とする。
第1の態様の地中熱利用システムは、上部帯水層で開口している第一上部開口部と、下部帯水層で開口している第一下部開口部と、を備える第一井戸と、前記上部帯水層で開口している第二上部開口部と、前記下部帯水層で開口している第二下部開口部と、を備える第二井戸と、第一配管と、第二配管と、前記第一配管に接続されている第一熱交換器と、前記第二配管に接続されている第二熱交換器と、を備え、前記第一配管を介して、前記第一上部開口部から前記第二上部開口部へ向かって、前記上部帯水層の地下水を送水可能であり、前記第二配管を介して、前記第二下部開口部から前記第一下部開口部へ向かって、前記下部帯水層の地下水を送水可能であり、前記上部帯水層及び前記下部帯水層のうちの一方から送水させる前記地下水として、温水を揚水すると同時に、前記上部帯水層及び前記下部帯水層のうちの他方から送水させる前記地下水として、冷水を揚水する。
本態様によれば、上部帯水層の地下水と、下部帯水層の地下水とが別々に送水可能であるため、上部帯水層の地下水と下部帯水層の地下水とが混ざってしまうことを抑制できる。
したがって、本態様の地中熱利用システムでは、上部帯水層及び下部帯水層の利用に際し、井戸の閉塞が抑制される。
さらに、本態様の地中熱利用システムは、上部帯水層及び下部帯水層のうちの一方から温水を揚水すると同時に、上部帯水層及び下部帯水層のうちの他方から冷水を揚水する。このため、温水と冷水とを同時に活用することができる。
したがって、本態様の地中熱利用システムでは、上部帯水層及び下部帯水層の利用に際し、井戸の閉塞が抑制される。
さらに、本態様の地中熱利用システムは、上部帯水層及び下部帯水層のうちの一方から温水を揚水すると同時に、上部帯水層及び下部帯水層のうちの他方から冷水を揚水する。このため、温水と冷水とを同時に活用することができる。
第2の態様の地中熱利用システムは、第一熱交換器に接続されている暖房器と、第二熱交換器に接続されている冷房器と、をさらに備える第1の態様の地中熱利用システムである。
本態様によれば、暖房と冷房とを同時に行うことができる。
第3の態様の地中熱利用システムは、さらに、前記第二配管を介して、前記第二上部開口部から前記第一上部開口部へ向かって、前記上部帯水層の地下水を送水可能であり、さらに、前記第一配管を介して、前記第一下部開口部から前記第二下部開口部へ向かって、前記下部帯水層の地下水を送水可能である第1又は第2の態様の地中熱利用システムである。
本態様によれば、上部帯水層及び下部帯水層の各帯水層において、送水により貯蓄した熱を、逆に送ることができる。このため、送水により貯蓄した熱を利用することができる。
第4の態様の地中熱利用システムは、前記第一井戸が、前記第一上部開口部の上方に設けられ、第一ポンプを有する第一貯留部と、前記第一貯留部と前記第一上部開口部とを接続するモードと、前記第一貯留部と前記第一下部開口部とを接続するモードと、を切り換え可能な第一切換部と、をさらに備え、前記第二井戸が、前記第二上部開口部の上方に設けられ、第二ポンプを有する第二貯留部と、前記第二貯留部と前記第二上部開口部とを接続するモードと、前記第二貯留部と前記第二下部開口部とを接続するモードと、を切り換え可能な第二切換部と、をさらに備える第1から第3の何れかの態様の地中熱利用システムである。
本態様によれば、第一ポンプによって、上部帯水層の地下水を揚水できると共に、下部帯水層の地下水を揚水できる。同様に、本態様によれば、第二ポンプによって、上部帯水層の地下水を揚水できると共に、下部帯水層の地下水を揚水できる。このため、各井戸のポンプの利用効率を上げることができる。
第5の態様の地中熱利用システムは、前記第一配管は、第一端に前記第一井戸内に延びている第一揚水管を備え、前記第二配管は、第一端に前記第二井戸内に延びている第二揚水管を備え、前記第一配管は、第二端に前記第二井戸内に延びている第一注水管を備え、前記第二配管は、第二端に前記第一井戸内に延びている第二注水管を備え、前記第一揚水管と前記第二揚水管との各揚水管は、前記上部帯水層から揚水可能に開口している上部揚水口と、前記上部揚水口を開閉可能な第一開閉筒と、前記下部帯水層から揚水可能に開口している下部揚水口と、前記下部揚水口を開閉可能な第二開閉筒と、を備え、前記第一注水管と前記第二注水管との各注水管は、前記上部帯水層へ注水可能に開口している上部注水口と、前記上部注水口を開閉可能な第三開閉筒と、前記下部帯水層へ注水可能に開口している下部注水口と、前記下部注水口を開閉可能な第四開閉筒と、を備える第1から第3の何れかの態様の地中熱利用システムである。
本態様によれば、第一井戸及び第二井戸の各井戸において、各開閉筒により、上部揚水口、下部揚水口、上部注水口、及び下部注水口がそれぞれ開閉される。
そのため、各井戸内の機構をコンパクト化できる。
そのため、各井戸内の機構をコンパクト化できる。
第6の態様の地中熱利用システムは、前記第一開閉筒及び前記第二開閉筒の対と、前記第三開閉筒及び前記第四開閉筒の対と、を連動させる連動機構をさらに備える第5の態様に記載の地中熱利用システムである。
本態様によれば、地中熱利用システムは、連動機構を有するため、上部揚水口及び下部揚水口と、上部注水口及び下部注水口との各開閉動作を連動できる。
第7の態様の地中熱利用システムは、前記第一開閉筒及び前記第二開閉筒の対に吊り下げられている第一錘と、前記第三開閉筒及び前記第四開閉筒の対に吊り下げられている第二錘と、をさら備える第5の態様に記載の地中熱利用システムである。
本態様によれば、地中熱利用システムは、第一錘に掛かる重力により、第一開閉筒及び第二開閉筒の対は、下へ引っ張られる。また、第二錘に掛かる重力により、第三開閉筒及び第四開閉筒の対は、下へ引っ張られる。
このため、地中熱利用システムは、第一開閉筒及び第二開閉筒の対と、第三開閉筒及び第四開閉筒の対と、の開閉筒の各対を下に動かしやすい。
このため、地中熱利用システムは、第一開閉筒及び第二開閉筒の対と、第三開閉筒及び第四開閉筒の対と、の開閉筒の各対を下に動かしやすい。
第8の態様の地中熱利用システムは、前記第一開閉筒及び前記第二開閉筒の対と、前記第三開閉筒及び前記第四開閉筒の対と、を一緒に吊り上げるリフト機構をさら備える第7の態様に記載の地中熱利用システムである。
本態様によれば、地中熱利用システムは、前記第一開閉筒及び前記第二開閉筒の対と、前記第三開閉筒及び前記第四開閉筒の対と、を一緒に吊り上げることで、上部揚水口及び下部揚水口と、上部注水口及び下部注水口との各開閉動作を連動できる。
このため、地中熱利用システムにおいて、各開閉動作を行う機構が単純化できる。
このため、地中熱利用システムにおいて、各開閉動作を行う機構が単純化できる。
第9の態様の地中熱利用システムは、前記第一開閉筒及び前記第二開閉筒の対を摺動可能な第一シリンダと、前記第三開閉筒及び前記第四開閉筒の対を摺動可能な第二シリンダと、をさら備える第5の態様に記載の地中熱利用システムである。
本態様によれば、第一シリンダの駆動力により、第一シリンダは、第一開閉筒及び第二開閉筒の対を上下に動かすことができる。また、第二シリンダの駆動力により、第二シリンダは、第三開閉筒及び第四開閉筒の対を上下に動かすことができる。
このため、地中熱利用システムは、第一開閉筒及び第二開閉筒の対と、第三開閉筒及び第四開閉筒の対と、の開閉筒の各対を下に動かしやすい。
このため、地中熱利用システムは、第一開閉筒及び第二開閉筒の対と、第三開閉筒及び第四開閉筒の対と、の開閉筒の各対を下に動かしやすい。
第10の態様の地中熱利用システムは、前記第一開閉筒を摺動可能な第一駆動機構と、前記第二開閉筒を摺動可能な第二駆動機構と、前記第三開閉筒を摺動可能な第三駆動機構と、前記第四開閉筒を摺動可能な第四駆動機構と、をさらに備える第5の態様に記載の地中熱利用システムである。
本態様によれば、各駆動機構の駆動力により、第一開閉筒と、第二開閉筒と、第三開閉筒と、第四開閉筒と、の各開閉筒を上下に動かすことができる。
このため、地中熱利用システムは、第一開閉筒及び第二開閉筒の対と、第三開閉筒及び第四開閉筒の対と、の開閉筒の各対を下に動かしやすい。
このため、地中熱利用システムは、第一開閉筒及び第二開閉筒の対と、第三開閉筒及び第四開閉筒の対と、の開閉筒の各対を下に動かしやすい。
第11の態様の地中熱利用システムの運転方法は、上部帯水層で開口している第一上部開口部と、下部帯水層で開口している第一下部開口部と、を備える第一井戸と、前記上部帯水層で開口している第二上部開口部と、前記下部帯水層で開口している第二下部開口部と、を備える第二井戸と、第一配管と、第二配管と、前記第一配管に接続されている第一熱交換器と、前記第二配管に接続されている第二熱交換器と、を備える地中熱利用システムの運転方法であって、前記第一配管を介して、前記第一上部開口部から第二上部開口部へ向かって、前記上部帯水層の地下水を送水させるステップと、前記第二配管を介して、前記第二下部開口部から第一下部開口部へ向かって、前記下部帯水層の地下水を送水させるステップと、を含み、前記上部帯水層及び前記下部帯水層のうちの一方から送水させる前記地下水として、温水を揚水すると同時に、前記上部帯水層及び前記下部帯水層のうちの他方から送水させる前記地下水として、冷水を揚水する。
本態様によれば、上部帯水層の地下水と、下部帯水層の地下水とが別々に送水可能であるため、上部帯水層の地下水と下部帯水層の地下水とが混ざってしまうことを抑制できる。
したがって、本態様の地中熱利用システムの運転方法では、上部帯水層及び下部帯水層の利用に際し、井戸の閉塞が抑制される。
さらに、本態様の運転方法では、上部帯水層及び下部帯水層のうちの一方から温水を揚水すると同時に、上部帯水層及び下部帯水層のうちの他方から冷水を揚水する。このため、温水と冷水とを同時に活用することができる。
したがって、本態様の地中熱利用システムの運転方法では、上部帯水層及び下部帯水層の利用に際し、井戸の閉塞が抑制される。
さらに、本態様の運転方法では、上部帯水層及び下部帯水層のうちの一方から温水を揚水すると同時に、上部帯水層及び下部帯水層のうちの他方から冷水を揚水する。このため、温水と冷水とを同時に活用することができる。
本発明の地中熱利用システム及び地中熱利用システムの運転方法は、上部帯水層及び下部帯水層の利用に際し、井戸の閉塞が抑制される。
以下、本発明に係る実施形態について、図面を用いて説明する。すべての図面において同一または相当する構成には同一の符号を付し、共通する説明は省略する。
<第一実施形態>
地中熱利用システムの第一実施形態について、図1~図3を参照して説明する。
なお、図1~図3において、矢印は、各部分における(地下水を含む)熱媒体の流れを示す。
白塗の矢印は冷水を示し、黒塗の矢印は温水を示す。
地中熱利用システムの第一実施形態について、図1~図3を参照して説明する。
なお、図1~図3において、矢印は、各部分における(地下水を含む)熱媒体の流れを示す。
白塗の矢印は冷水を示し、黒塗の矢印は温水を示す。
(地中熱利用システムの構成)
地中熱利用システム10は、2つの異なる帯水層である上部帯水層LY1と下部帯水層LY2とに蓄熱する。上部帯水層LY1及び下部帯水層LY2は、例えば、洪積粘土層LYmを挟んで形成されている。
図1に示すように、地中熱利用システム10は、第一井戸20と第二井戸30とを備える。
地中熱利用システム10は、第一配管40と、第二配管50と、第一熱交換器60と、第二熱交換器70と、をさらに備える。
地中熱利用システム10は、暖房器80と、冷房器90と、をさらに備える。
暖房器80は、建物BLD内の暖房設備として用いられる。
冷房器90は、建物BLD内の冷房設備として用いられる。
地中熱利用システム10は、上部帯水層LY1及び下部帯水層LY2のうちの一方から送水させる地下水として、温水を揚水すると同時に、上部帯水層LY1及び下部帯水層LY2のうちの他方から送水させる地下水として、冷水を揚水するように構成されている。
地中熱利用システム10は、2つの異なる帯水層である上部帯水層LY1と下部帯水層LY2とに蓄熱する。上部帯水層LY1及び下部帯水層LY2は、例えば、洪積粘土層LYmを挟んで形成されている。
図1に示すように、地中熱利用システム10は、第一井戸20と第二井戸30とを備える。
地中熱利用システム10は、第一配管40と、第二配管50と、第一熱交換器60と、第二熱交換器70と、をさらに備える。
地中熱利用システム10は、暖房器80と、冷房器90と、をさらに備える。
暖房器80は、建物BLD内の暖房設備として用いられる。
冷房器90は、建物BLD内の冷房設備として用いられる。
地中熱利用システム10は、上部帯水層LY1及び下部帯水層LY2のうちの一方から送水させる地下水として、温水を揚水すると同時に、上部帯水層LY1及び下部帯水層LY2のうちの他方から送水させる地下水として、冷水を揚水するように構成されている。
(第一井戸の構成)
第一井戸20は、地上から地下に向かって、上部帯水層LY1を貫通し、下部帯水層LY2に延びる井戸である。
図2に示すように、第一井戸20は、第一貯留部21と、第一切換部22と、第一上部開口部23と、第一下部開口部24と、を備える。
第一井戸20は、地表SGから下部帯水層LY2に至る地下に向かって掘削された掘削孔HOL1に埋め込まれたケーシング20aを備える。
ケーシング20a内において、第一貯留部21と、第一切換部22と、第一上部開口部23と、第一下部開口部24と、の各間には、パッキングPKが設けられており、各間での地下水の行き来を抑制している。
第一井戸20は、地上から地下に向かって、上部帯水層LY1を貫通し、下部帯水層LY2に延びる井戸である。
図2に示すように、第一井戸20は、第一貯留部21と、第一切換部22と、第一上部開口部23と、第一下部開口部24と、を備える。
第一井戸20は、地表SGから下部帯水層LY2に至る地下に向かって掘削された掘削孔HOL1に埋め込まれたケーシング20aを備える。
ケーシング20a内において、第一貯留部21と、第一切換部22と、第一上部開口部23と、第一下部開口部24と、の各間には、パッキングPKが設けられており、各間での地下水の行き来を抑制している。
第一貯留部21は、第一上部開口部23の上方に設けられている。
第一貯留部21は、第一貯留部21内の地下水を揚水可能な第一ポンプ21aを有する。
第一貯留部21は、第一貯留部21内の地下水を揚水可能な第一ポンプ21aを有する。
第一切換部22は、第一貯留部21と第一上部開口部23との間に設けられている。
第一切換部22は、第一貯留部21に開口している第一ポート22aと、第二配管50に接続されている第二ポート22bとを備える。
第一切換部22は、第一上部開口部23に開口している第三ポート22cと、第一上部開口部23を通り過ぎて第一下部開口部24に向かって延びて開口している第四ポート22dと、をさらに備える。
第一切換部22は、内部配管の切り換えによって、第一貯留部21と第一上部開口部23とを接続するモードと、第一貯留部21と第一下部開口部24とを接続するモードと、を切り換え可能である。
例えば、図2に示す場合、第一切換部22は、第一ポート22aと第三ポート22cとを接続することによって、第一貯留部21と第一上部開口部23とを接続している。
また、図2に示す場合、第一切換部22は、第二ポート22bと第四ポート22dとを接続することによって、第二配管50と第一下部開口部24とを接続している。
第一切換部22は、第一貯留部21に開口している第一ポート22aと、第二配管50に接続されている第二ポート22bとを備える。
第一切換部22は、第一上部開口部23に開口している第三ポート22cと、第一上部開口部23を通り過ぎて第一下部開口部24に向かって延びて開口している第四ポート22dと、をさらに備える。
第一切換部22は、内部配管の切り換えによって、第一貯留部21と第一上部開口部23とを接続するモードと、第一貯留部21と第一下部開口部24とを接続するモードと、を切り換え可能である。
例えば、図2に示す場合、第一切換部22は、第一ポート22aと第三ポート22cとを接続することによって、第一貯留部21と第一上部開口部23とを接続している。
また、図2に示す場合、第一切換部22は、第二ポート22bと第四ポート22dとを接続することによって、第二配管50と第一下部開口部24とを接続している。
第一上部開口部23は、上部帯水層LY1で開口している。
第一上部開口部23は、第一井戸20のうち、上部帯水層LY1に相当する深さに位置する部分である。
第一上部開口部23には、地下水が貯留されている。
例えば、ケーシング20aには、上部帯水層LY1において、複数のスリットからなるストレーナー23aが設けられている。ストレーナー23aを介して、第一上部開口部23は、上部帯水層LY1の地下水をケーシング20aの内部に取り込んだり、ケーシング20aの内部から上部帯水層LY1へ地下水を戻したりできるように構成されている。
第一上部開口部23は、第一井戸20のうち、上部帯水層LY1に相当する深さに位置する部分である。
第一上部開口部23には、地下水が貯留されている。
例えば、ケーシング20aには、上部帯水層LY1において、複数のスリットからなるストレーナー23aが設けられている。ストレーナー23aを介して、第一上部開口部23は、上部帯水層LY1の地下水をケーシング20aの内部に取り込んだり、ケーシング20aの内部から上部帯水層LY1へ地下水を戻したりできるように構成されている。
第一下部開口部24は、下部帯水層LY2で開口している。
第一下部開口部24は、第一井戸20のうち、下部帯水層LY2に相当する深さに位置する部分である。
第一下部開口部24には、地下水が貯留されている。
第一上部開口部23と、第一下部開口部24とは、上下に並んでいる。
例えば、ケーシング20aには、下部帯水層LY2において、複数のスリットからなるストレーナー24aが設けられている。ストレーナー24aを介して、第一下部開口部24は、下部帯水層LY2の地下水をケーシング20aの内部に取り込んだり、ケーシング20aの内部から下部帯水層LY2へ地下水を戻したりできるように構成されている。
第一下部開口部24は、第一井戸20のうち、下部帯水層LY2に相当する深さに位置する部分である。
第一下部開口部24には、地下水が貯留されている。
第一上部開口部23と、第一下部開口部24とは、上下に並んでいる。
例えば、ケーシング20aには、下部帯水層LY2において、複数のスリットからなるストレーナー24aが設けられている。ストレーナー24aを介して、第一下部開口部24は、下部帯水層LY2の地下水をケーシング20aの内部に取り込んだり、ケーシング20aの内部から下部帯水層LY2へ地下水を戻したりできるように構成されている。
(第二井戸の構成)
第二井戸30は、地上から地下に向かって、上部帯水層LY1を貫通し、下部帯水層LY2に延びる井戸である。
第二井戸30は、第一井戸20と所定の距離を隔て設けられている。
図2に示すように、第二井戸30は、第二貯留部31と、第二切換部32と、第二上部開口部33と、第二下部開口部34と、を備える。
第二井戸30は、地表SGから下部帯水層LY2に至る地下に向かって掘削された掘削孔HOL2に埋め込まれたケーシング30aを備える。
ケーシング30a内において、第二貯留部31と、第二切換部32と、第二上部開口部33と、第二下部開口部34と、の各間には、パッキングPKが設けられており、各間での地下水の行き来を抑制している。
第二井戸30は、地上から地下に向かって、上部帯水層LY1を貫通し、下部帯水層LY2に延びる井戸である。
第二井戸30は、第一井戸20と所定の距離を隔て設けられている。
図2に示すように、第二井戸30は、第二貯留部31と、第二切換部32と、第二上部開口部33と、第二下部開口部34と、を備える。
第二井戸30は、地表SGから下部帯水層LY2に至る地下に向かって掘削された掘削孔HOL2に埋め込まれたケーシング30aを備える。
ケーシング30a内において、第二貯留部31と、第二切換部32と、第二上部開口部33と、第二下部開口部34と、の各間には、パッキングPKが設けられており、各間での地下水の行き来を抑制している。
第二貯留部31は、第二上部開口部33の上方に設けられている。
第二貯留部31は、第二貯留部31内の地下水を揚水可能な第二ポンプ31aを有する。
第二貯留部31は、第二貯留部31内の地下水を揚水可能な第二ポンプ31aを有する。
第二切換部32は、第二貯留部31と第二上部開口部33との間に設けられている。
第二切換部32は、第二貯留部31に開口している第一ポート32aと、第一配管40に接続されている第二ポート32bとを備える。
第二切換部32は、第二上部開口部33に開口している第三ポート32cと、第二上部開口部33を通り過ぎて第二下部開口部34に向かって延びて開口している第四ポート32dと、をさらに備える。
第二切換部32は、内部配管の切り換えによって、第二貯留部31と第二上部開口部33とを接続するモードと、第二貯留部31と第二下部開口部34とを接続するモードと、を切り換え可能である。
例えば、図2に示す場合、第二切換部32は、第一ポート32aと第四ポート32dとを接続することによって、第二貯留部31と第二下部開口部34とを接続している。
また、図2に示す場合、第二切換部32は、第二ポート32bと第三ポート32cとを接続することによって、第一配管40と第二上部開口部33とを接続している。
第二切換部32は、第二貯留部31に開口している第一ポート32aと、第一配管40に接続されている第二ポート32bとを備える。
第二切換部32は、第二上部開口部33に開口している第三ポート32cと、第二上部開口部33を通り過ぎて第二下部開口部34に向かって延びて開口している第四ポート32dと、をさらに備える。
第二切換部32は、内部配管の切り換えによって、第二貯留部31と第二上部開口部33とを接続するモードと、第二貯留部31と第二下部開口部34とを接続するモードと、を切り換え可能である。
例えば、図2に示す場合、第二切換部32は、第一ポート32aと第四ポート32dとを接続することによって、第二貯留部31と第二下部開口部34とを接続している。
また、図2に示す場合、第二切換部32は、第二ポート32bと第三ポート32cとを接続することによって、第一配管40と第二上部開口部33とを接続している。
第二上部開口部33は、上部帯水層LY1で開口している。
第二上部開口部33は、第二井戸30のうち、上部帯水層LY1に相当する深さに位置する部分である。
第二上部開口部33には、地下水が貯留されている。
例えば、ケーシング30aには、上部帯水層LY1において、複数のスリットからなるストレーナー33aが設けられている。ストレーナー33aを介して、第二上部開口部33は、上部帯水層LY1の地下水をケーシング30aの内部に取り込んだり、ケーシング30aの内部から上部帯水層LY1へ地下水を戻したりできるように構成されている。
第二上部開口部33は、第二井戸30のうち、上部帯水層LY1に相当する深さに位置する部分である。
第二上部開口部33には、地下水が貯留されている。
例えば、ケーシング30aには、上部帯水層LY1において、複数のスリットからなるストレーナー33aが設けられている。ストレーナー33aを介して、第二上部開口部33は、上部帯水層LY1の地下水をケーシング30aの内部に取り込んだり、ケーシング30aの内部から上部帯水層LY1へ地下水を戻したりできるように構成されている。
第二下部開口部34は、下部帯水層LY2で開口している。
第二下部開口部34は、第二井戸30のうち、下部帯水層LY2に相当する深さに位置する部分である。
第二下部開口部34には、地下水が貯留されている。
第二上部開口部33と、第二下部開口部34とは、上下に並んでいる。
例えば、ケーシング30aには、下部帯水層LY2において、複数のスリットからなるストレーナー34aが設けられている。ストレーナー34aを介して、第二下部開口部34は、下部帯水層LY2の地下水をケーシング30aの内部に取り込んだり、ケーシング30aの内部から下部帯水層LY2へ地下水を戻したりできるように構成されている。
第二下部開口部34は、第二井戸30のうち、下部帯水層LY2に相当する深さに位置する部分である。
第二下部開口部34には、地下水が貯留されている。
第二上部開口部33と、第二下部開口部34とは、上下に並んでいる。
例えば、ケーシング30aには、下部帯水層LY2において、複数のスリットからなるストレーナー34aが設けられている。ストレーナー34aを介して、第二下部開口部34は、下部帯水層LY2の地下水をケーシング30aの内部に取り込んだり、ケーシング30aの内部から下部帯水層LY2へ地下水を戻したりできるように構成されている。
また、地中熱利用システム10は、第一ポンプ21aと第二ポンプ31aとを同時に運転させる。このため、地中熱利用システム10は、上部帯水層LY1及び下部帯水層LY2のうちの一方から地下水を揚水すると同時に、上部帯水層LY1及び下部帯水層LY2のうちの他方から地下水を揚水する。
(第一配管の構成)
第一配管40は、第一熱交換器60の一次側(一次側配管60a)を介して、第一端40aから第二端40bへ延びている。
第一配管40の第一端40aは、第一ポンプ21aから第一配管40へ揚水可能に、第一ポンプ21aに接続されている。
第一配管40の第一端40aは、第一ポンプ21aに向かって、第一井戸20内に延びている。
第一配管40の第二端40bは、開閉弁、逆止弁等を介して、第二切換部32の第二ポート32bに向かって送水可能に、第二切換部32の第二ポート32bに接続されている。
第一配管40の第二端40bは、第二切換部32の第二ポート32bに向かって、第二井戸30内に延びている。
第一配管40は、第一熱交換器60の一次側(一次側配管60a)を介して、第一端40aから第二端40bへ延びている。
第一配管40の第一端40aは、第一ポンプ21aから第一配管40へ揚水可能に、第一ポンプ21aに接続されている。
第一配管40の第一端40aは、第一ポンプ21aに向かって、第一井戸20内に延びている。
第一配管40の第二端40bは、開閉弁、逆止弁等を介して、第二切換部32の第二ポート32bに向かって送水可能に、第二切換部32の第二ポート32bに接続されている。
第一配管40の第二端40bは、第二切換部32の第二ポート32bに向かって、第二井戸30内に延びている。
(第二配管の構成)
第二配管50は、第二熱交換器70の一次側(一次側配管70a)を介して、第一端50aから第二端50bへ延びている。
第二配管50の第一端50aは、第二ポンプ31aから第二配管50へ揚水可能に、第二ポンプ31aに接続されている。
第二配管50の第一端50aは、第二ポンプ31aに向かって、第二井戸30内に延びている。
第二配管50の第二端50bは、開閉弁、逆止弁等を介して、第一切換部22の第二ポート22bに向かって送水可能に、第一切換部22の第二ポート22bに接続されている。
第二配管50の第二端50bは、第一切換部22の第二ポート22bに向かって、第一井戸20内に延びている。
第二配管50は、第二熱交換器70の一次側(一次側配管70a)を介して、第一端50aから第二端50bへ延びている。
第二配管50の第一端50aは、第二ポンプ31aから第二配管50へ揚水可能に、第二ポンプ31aに接続されている。
第二配管50の第一端50aは、第二ポンプ31aに向かって、第二井戸30内に延びている。
第二配管50の第二端50bは、開閉弁、逆止弁等を介して、第一切換部22の第二ポート22bに向かって送水可能に、第一切換部22の第二ポート22bに接続されている。
第二配管50の第二端50bは、第一切換部22の第二ポート22bに向かって、第一井戸20内に延びている。
(第一熱交換器の構成)
第一熱交換器60の一次側(一次側配管60a)は、第一配管40の途中に接続されている。
第一熱交換器60の二次側(二次側配管60b)は、暖房器80に接続されている。
第一熱交換器60は、一次側と二次側との間で熱交換可能である。
地中熱利用システム10は、第一熱交換器60の二次側と暖房器80との間で、熱媒体を循環させている。
第一熱交換器60の一次側(一次側配管60a)は、第一配管40の途中に接続されている。
第一熱交換器60の二次側(二次側配管60b)は、暖房器80に接続されている。
第一熱交換器60は、一次側と二次側との間で熱交換可能である。
地中熱利用システム10は、第一熱交換器60の二次側と暖房器80との間で、熱媒体を循環させている。
(第二熱交換器の構成)
第二熱交換器70の一次側(一次側配管70a)は、第二配管50の途中に接続されている。
第二熱交換器70の二次側(二次側配管70b)は、冷房器90に接続されている。
第二熱交換器70は、一次側と二次側との間で熱交換可能である。
地中熱利用システム10は、第二熱交換器70の二次側と冷房器90との間で、熱媒体を循環させている。
第二熱交換器70の一次側(一次側配管70a)は、第二配管50の途中に接続されている。
第二熱交換器70の二次側(二次側配管70b)は、冷房器90に接続されている。
第二熱交換器70は、一次側と二次側との間で熱交換可能である。
地中熱利用システム10は、第二熱交換器70の二次側と冷房器90との間で、熱媒体を循環させている。
(動作)
本実施形態の地中熱利用システム10の動作について説明する。
本実施形態の地中熱利用システム10の動作について説明する。
まず、図2に示す場合(第一モード)について説明する。
図2に示す場合、上述のとおり、第一切換部22は、第一貯留部21と第一上部開口部23とを接続する。これにより、第一上部開口部23において取水される地下水は、第一配管40へ揚水される。
例えば初期状態として、第一上部開口部23周辺の上部帯水層LY1には、温水が貯留されている。
この場合、少なくとも第一モード開始時において、第一上部開口部23において取水される温水が、第一配管40へ揚水される。
図2に示す場合、上述のとおり、第一切換部22は、第一貯留部21と第一上部開口部23とを接続する。これにより、第一上部開口部23において取水される地下水は、第一配管40へ揚水される。
例えば初期状態として、第一上部開口部23周辺の上部帯水層LY1には、温水が貯留されている。
この場合、少なくとも第一モード開始時において、第一上部開口部23において取水される温水が、第一配管40へ揚水される。
図2に示す場合、上述のとおり、第二切換部32は、第二貯留部31と第二下部開口部34とを接続する。これにより、第二下部開口部34において取水される地下水は、第二配管50へ揚水される。
例えば初期状態として、第二下部開口部34周辺の上部帯水層LY1には、冷水が貯留されている。
この場合、少なくとも第一モード開始時において、第二下部開口部34において取水される冷水が、第二配管50へ揚水される。
例えば初期状態として、第二下部開口部34周辺の上部帯水層LY1には、冷水が貯留されている。
この場合、少なくとも第一モード開始時において、第二下部開口部34において取水される冷水が、第二配管50へ揚水される。
以上の動作により、地中熱利用システム10は、第一配管40を介して、第一上部開口部23から第二上部開口部33へ向かって、上部帯水層LY1の地下水を送水できる。
さらに、地中熱利用システム10は、第二配管50を介して、第二下部開口部34から第一下部開口部24へ向かって、下部帯水層LY2の地下水を送水できる。
したがって、地中熱利用システム10は、上部帯水層LY1の蓄温熱を第一熱交換器60に供給でき、下部帯水層LY2の地下水の蓄冷熱を第二熱交換器70に供給できる。
さらに、地中熱利用システム10は、第一熱交換器60から得た冷熱を上部帯水層LY1に蓄熱でき、第二熱交換器70から得た温熱を下部帯水層LY2に蓄熱できる。
さらに、地中熱利用システム10は、第二配管50を介して、第二下部開口部34から第一下部開口部24へ向かって、下部帯水層LY2の地下水を送水できる。
したがって、地中熱利用システム10は、上部帯水層LY1の蓄温熱を第一熱交換器60に供給でき、下部帯水層LY2の地下水の蓄冷熱を第二熱交換器70に供給できる。
さらに、地中熱利用システム10は、第一熱交換器60から得た冷熱を上部帯水層LY1に蓄熱でき、第二熱交換器70から得た温熱を下部帯水層LY2に蓄熱できる。
例えば、本実施形態の場合、地中熱利用システム10は、上部帯水層LY1から取得した温水を、第一上部開口部23を介して第一熱交換器60に供給することによって消費している。他方で、地中熱利用システム10は、第一熱交換器60において取得した冷水を、第二上部開口部33を介して上部帯水層LY1に供給することによって貯蓄している。
また、本実施形態の場合、地中熱利用システム10は、下部帯水層LY2から取得した温水を、第二下部開口部34を介して第二熱交換器70に供給することによって消費している。他方で、地中熱利用システム10は、第二熱交換器70において取得した冷水を、第一下部開口部24を介して下部帯水層LY2に供給することによって貯蓄している。
また、本実施形態の場合、地中熱利用システム10は、下部帯水層LY2から取得した温水を、第二下部開口部34を介して第二熱交換器70に供給することによって消費している。他方で、地中熱利用システム10は、第二熱交換器70において取得した冷水を、第一下部開口部24を介して下部帯水層LY2に供給することによって貯蓄している。
また、地中熱利用システム10は、第一ポンプ21aと第二ポンプ31aとを同時に運転させることで、上部帯水層LY1及び下部帯水層LY2のうちの一方から温水を揚水すると同時に、上部帯水層LY1及び下部帯水層LY2のうちの他方から冷水を揚水する。
本実施形態の第一モードの場合、地中熱利用システム10は、第一ポンプ21aと第二ポンプ31aとを同時に運転させることで、上部帯水層LY1から温水を揚水すると同時に、下部帯水層LY2から冷水を揚水する。
本実施形態の第一モードの場合、地中熱利用システム10は、第一ポンプ21aと第二ポンプ31aとを同時に運転させることで、上部帯水層LY1から温水を揚水すると同時に、下部帯水層LY2から冷水を揚水する。
ここで「温水」とは、各帯水層の地下水の初期地中温度より高い温度の水のことをいい、「冷水」とは、各帯水層の地下水の初期地中温度より低い温度の水のことをいう。
例えば、各帯水層の地下水の初期地中温度は18℃である。
例えば、各帯水層の地下水の初期地中温度は18℃である。
次に、図3に示す場合(第二モード)について説明する。
図3は、第一切換部22及び第二切換部32の各内部配管を、図2に実線で示す接続から図2に点線で示す接続に切り換えた状態を示す。
この場合、第一切換部22は、第二ポート22bと第三ポート22cとを接続することによって、第二配管50と第一上部開口部23とを接続する。
また、第一切換部22は、第一ポート22aと第四ポート22dとを接続することによって、第一貯留部21と第一下部開口部24とを接続する。
また、第二切換部32は、第一ポート32aと第三ポート32cとを接続することによって、第二貯留部31と第二上部開口部33とを接続する。
また、第二切換部32は、第二ポート32bと第四ポート32dとを接続することによって、第一配管40と第二下部開口部34とを接続する。
これにより、第一下部開口部24において取水される地下水は、第一配管40へ揚水され、第二上部開口部33において取水される地下水は、第二配管50へ揚水される。
図3は、第一切換部22及び第二切換部32の各内部配管を、図2に実線で示す接続から図2に点線で示す接続に切り換えた状態を示す。
この場合、第一切換部22は、第二ポート22bと第三ポート22cとを接続することによって、第二配管50と第一上部開口部23とを接続する。
また、第一切換部22は、第一ポート22aと第四ポート22dとを接続することによって、第一貯留部21と第一下部開口部24とを接続する。
また、第二切換部32は、第一ポート32aと第三ポート32cとを接続することによって、第二貯留部31と第二上部開口部33とを接続する。
また、第二切換部32は、第二ポート32bと第四ポート32dとを接続することによって、第一配管40と第二下部開口部34とを接続する。
これにより、第一下部開口部24において取水される地下水は、第一配管40へ揚水され、第二上部開口部33において取水される地下水は、第二配管50へ揚水される。
例えば、第一モードを実施した後に第二モードを開始してもよい。
この場合、少なくとも第二モード開始時において、第二上部開口部33周辺の上部帯水層LY1には、冷水が貯留されている。
このため、第二上部開口部33において取水される冷水が、第二配管50へ揚水される。
またこの場合、少なくとも第二モード開始時において、第一下部開口部24周辺の下部帯水層LY2には、温水が貯留されている。
このため、第一下部開口部24において取水される温水が、第一配管40へ揚水される。
この場合、少なくとも第二モード開始時において、第二上部開口部33周辺の上部帯水層LY1には、冷水が貯留されている。
このため、第二上部開口部33において取水される冷水が、第二配管50へ揚水される。
またこの場合、少なくとも第二モード開始時において、第一下部開口部24周辺の下部帯水層LY2には、温水が貯留されている。
このため、第一下部開口部24において取水される温水が、第一配管40へ揚水される。
以上の動作により、地中熱利用システム10は、第一配管40を介して、第一下部開口部24から第二下部開口部34へ向かって、下部帯水層LY2の地下水を送水できる。
さらに、地中熱利用システム10は、第二配管50を介して、第二上部開口部33から第一上部開口部23へ向かって、上部帯水層LY1の地下水を送水できる。
したがって、地中熱利用システム10は、下部帯水層LY2の蓄温熱を第一熱交換器60に供給でき、上部帯水層LY1の蓄冷熱を第二熱交換器70に供給できる。
さらに、地中熱利用システム10は、第一熱交換器60から得た冷熱を下部帯水層LY2に蓄熱でき、第二熱交換器70から得た温熱を上部帯水層LY1に蓄熱できる。
さらに、地中熱利用システム10は、第二配管50を介して、第二上部開口部33から第一上部開口部23へ向かって、上部帯水層LY1の地下水を送水できる。
したがって、地中熱利用システム10は、下部帯水層LY2の蓄温熱を第一熱交換器60に供給でき、上部帯水層LY1の蓄冷熱を第二熱交換器70に供給できる。
さらに、地中熱利用システム10は、第一熱交換器60から得た冷熱を下部帯水層LY2に蓄熱でき、第二熱交換器70から得た温熱を上部帯水層LY1に蓄熱できる。
例えば、本実施形態の第二モードの場合、地中熱利用システム10は、上部帯水層LY1から取得した冷水を、第二上部開口部33を介して第二熱交換器70に供給することによって消費している。他方で、地中熱利用システム10は、第二熱交換器70において取得した温水を、第一上部開口部23を介して上部帯水層LY1に供給することによって貯蓄している。
また、本実施形態の場合、地中熱利用システム10は、下部帯水層LY2から取得した温水を、第一下部開口部24を介して第一熱交換器60に供給することによって消費している。他方で、地中熱利用システム10は、第一熱交換器60において取得した冷水を、第二下部開口部34を介して下部帯水層LY2に供給することによって貯蓄している。
また、本実施形態の場合、地中熱利用システム10は、下部帯水層LY2から取得した温水を、第一下部開口部24を介して第一熱交換器60に供給することによって消費している。他方で、地中熱利用システム10は、第一熱交換器60において取得した冷水を、第二下部開口部34を介して下部帯水層LY2に供給することによって貯蓄している。
(作用及び効果)
本実施形態の地中熱利用システム10は、上部帯水層LY1の地下水と、下部帯水層LY2の地下水とを別々に送水可能であるため、上部帯水層LY1の地下水と下部帯水層LY2の地下水とが混ざってしまうことを抑制できる。
したがって、本実施形態の地中熱利用システム10では、上部帯水層LY1及び下部帯水層LY2の利用に際し、井戸の閉塞が抑制される。
例えば、上部帯水層LY1の地下水が酸素リッチであって、下部帯水層LY2の地下水が鉄分リッチである場合、上部帯水層LY1の地下水と下部帯水層LY2の地下水との両地下水が混ざると、酸化鉄が生成され、各井戸の開口部のストレーナーが閉塞されてしまう。
これに対し、本実施形態の地中熱利用システム10は、両地下水が混合しにくい構造であるため、上部帯水層LY1及び下部帯水層LY2の利用に際し、井戸の閉塞を抑制することができる。
本実施形態の地中熱利用システム10は、上部帯水層LY1の地下水と、下部帯水層LY2の地下水とを別々に送水可能であるため、上部帯水層LY1の地下水と下部帯水層LY2の地下水とが混ざってしまうことを抑制できる。
したがって、本実施形態の地中熱利用システム10では、上部帯水層LY1及び下部帯水層LY2の利用に際し、井戸の閉塞が抑制される。
例えば、上部帯水層LY1の地下水が酸素リッチであって、下部帯水層LY2の地下水が鉄分リッチである場合、上部帯水層LY1の地下水と下部帯水層LY2の地下水との両地下水が混ざると、酸化鉄が生成され、各井戸の開口部のストレーナーが閉塞されてしまう。
これに対し、本実施形態の地中熱利用システム10は、両地下水が混合しにくい構造であるため、上部帯水層LY1及び下部帯水層LY2の利用に際し、井戸の閉塞を抑制することができる。
さらに、本実施形態の地中熱利用システム10は、上部帯水層LY1及び下部帯水層のうちの一方から送水させる地下水として、温水を揚水すると同時に、上部帯水層及び下部帯水層のうちの他方から送水させる地下水として、冷水を揚水する。
このため、温水と冷水とを同時に活用することができる。
例えば、建物BLD内において、ある部屋を暖房すると同時に、他の部屋を冷房することができる。
このため、温水と冷水とを同時に活用することができる。
例えば、建物BLD内において、ある部屋を暖房すると同時に、他の部屋を冷房することができる。
また、本実施形態の地中熱利用システム10は、上部帯水層LY1及び下部帯水層LY2の各帯水層において、送水により貯蓄した熱を、逆に送ることができる。このため、送水により貯蓄した熱を利用することができる。
また、本実施形態の地中熱利用システム10は、第一ポンプ21aによって、第一モードにおいて上部帯水層LY1の地下水を揚水できると共に、第二モードにおいて下部帯水層LY2の地下水を揚水できる。同様に、本実施形態の地中熱利用システム10は、第二ポンプ31aによって、第二モードにおいて上部帯水層LY1の地下水を揚水できると共に、第一モードにおいて下部帯水層LY2の地下水を揚水できる。このため、各モードにわたって各ポンプを利用でき、各ポンプの利用効率を上げることができる。
また、本実施形態の地中熱利用システム10は、上部帯水層LY1の地下水を揚水及び環水できると共に、下部帯水層LY2の地下水を揚水及び環水できる。
このため、1つの帯水層の地下水を揚水及び還水する地中熱利用システムに比べて、蓄熱容量を2倍とすることができる。
このため、1つの帯水層の地下水を揚水及び還水する地中熱利用システムに比べて、蓄熱容量を2倍とすることができる。
また、本実施形態の地中熱利用システム10は、第一上部開口部23と、第一下部開口部24とは、上下に並んでおり、第二上部開口部33と、第二下部開口部34とは、上下に並んでいるため、敷地面積を有効に利用することができる。
特に、熱需要の高い高層ビルが密集する市街地では、大容量の熱源システムの実装が必要とされる一方で、敷地面積が限られているため、本実施形態の地中熱利用システム10は有効である。
例えば、本実施形態の地中熱利用システム10によれば、大都市域に共通した沖積平野に広く存在する地下水の熱利用ポテンシャルを生かした帯水層蓄熱利用が可能となる。
特に、熱需要の高い高層ビルが密集する市街地では、大容量の熱源システムの実装が必要とされる一方で、敷地面積が限られているため、本実施形態の地中熱利用システム10は有効である。
例えば、本実施形態の地中熱利用システム10によれば、大都市域に共通した沖積平野に広く存在する地下水の熱利用ポテンシャルを生かした帯水層蓄熱利用が可能となる。
さらに、本実施形態の地中熱利用システム10は、第一上部開口部23から第二上部開口部33へ向かって、上部帯水層LY1の地下水を送水させる一方、第二下部開口部34から第一下部開口部24へ向かって、下部帯水層LY2の地下水を送水させている。
すなわち、各井戸において一方の帯水層から揚水する一方で、他方の帯水層に環水している。
このため、本実施形態の地中熱利用システム10は、地盤沈下や地盤上昇を抑制することができる。
すなわち、各井戸において一方の帯水層から揚水する一方で、他方の帯水層に環水している。
このため、本実施形態の地中熱利用システム10は、地盤沈下や地盤上昇を抑制することができる。
<切換部の例>
上述の熱利用システムの実施形態における第一切換部22の各例を、図4~図19に示す。以下、第一切換部22の各例について説明するが、第二切換部32についても同様な構成とすることができる。
上述の熱利用システムの実施形態における第一切換部22の各例を、図4~図19に示す。以下、第一切換部22の各例について説明するが、第二切換部32についても同様な構成とすることができる。
例えば、第一切換部22は、図4~図7に示すように、リボルバー22Rを備えてもよい。
リボルバー22Rを、図4に示す状態から、図7に示す状態に90°回転することにより、第一切換部22は、流路を変えることができる。
リボルバー22Rを、図4に示す状態から、図7に示す状態に90°回転することにより、第一切換部22は、流路を変えることができる。
例えば、第一切換部22は、図8~図11に示すように、複数の三方弁22Tを備えてもよい。
三方弁22Tを切り換えることにより、第一切換部22は、流路を変えることができる。
なお、図8は、第一切換部22を正面から見た斜視図であり、図11は、第一切換部22を側面から見た斜視図である。
三方弁22Tは、例えば、ボール弁であってもよい。
三方弁22Tを切り換えることにより、第一切換部22は、流路を変えることができる。
なお、図8は、第一切換部22を正面から見た斜視図であり、図11は、第一切換部22を側面から見た斜視図である。
三方弁22Tは、例えば、ボール弁であってもよい。
例えば、第一切換部22は、図12に示すように、複数の三方弁22Tと複数の注水弁22Pを備えてもよい。
三方弁22Tと注水弁22Pとを切り換えることにより、第一切換部22は、流路を変えることができる。
他の例として、第一切換部22は、図13に示すような複数の注水弁22Pの組み合わせや、図14に示すような複数の三方弁22Tと複数の注水弁22Pとの組み合わせであってもよい。
三方弁22Tと注水弁22Pとを切り換えることにより、第一切換部22は、流路を変えることができる。
他の例として、第一切換部22は、図13に示すような複数の注水弁22Pの組み合わせや、図14に示すような複数の三方弁22Tと複数の注水弁22Pとの組み合わせであってもよい。
例えば、第一切換部22は、図15に示すように、複数の四方弁22Fと複数の注水弁22Pを備えてもよい。
四方弁22Fと注水弁22Pとを切り換えることにより、第一切換部22は、流路を変えることができる。
四方弁22Fと注水弁22Pとを切り換えることにより、第一切換部22は、流路を変えることができる。
例えば、第一切換部22は、図16及び図17に示すように、2つのスライド機構22Sを備えてもよい。
スライド機構22Sを、図16に示す状態から、図17に示す状態に切り換えることにより、第一切換部22は、流路を変えることができる。
なお、第一切換部22は、さらに注水弁22Pを備えてもよい。
他の例として、図18及び図19に示すように、第一切換部22は、2つのスライド機構22Sが一体化された構成であってもよい。その際、図18に示す状態から、図19に示す状態に切り換えることにより、第一切換部22は、流路を変えることができる。
スライド機構22Sを、図16に示す状態から、図17に示す状態に切り換えることにより、第一切換部22は、流路を変えることができる。
なお、第一切換部22は、さらに注水弁22Pを備えてもよい。
他の例として、図18及び図19に示すように、第一切換部22は、2つのスライド機構22Sが一体化された構成であってもよい。その際、図18に示す状態から、図19に示す状態に切り換えることにより、第一切換部22は、流路を変えることができる。
<地中熱利用システムの運転方法の実施形態>
地中熱利用システムの運転方法の実施形態を図20に沿って説明する。
本運転方法は、上述の実施形態の地中熱利用システム10を用いて実行する。
地中熱利用システムの運転方法の実施形態を図20に沿って説明する。
本運転方法は、上述の実施形態の地中熱利用システム10を用いて実行する。
まず、図20に示すように、第一配管40を介して、第一上部開口部23から第二上部開口部33へ向かって、上部帯水層LY1の地下水を送水させる(ST1:上部帯水層の地下水を送水させるステップ)。
ST1の実行と同時に、第二配管50を介して、第二下部開口部34から第一下部開口部24へ向かって、下部帯水層LY2の地下水を送水させる(ST2:下部帯水層の地下水を送水させるステップ)。
また、地中熱利用システム10の運転方法は、上部帯水層LY1及び下部帯水層LY2のうちの一方から送水させる地下水として、温水を揚水すると同時に、上部帯水層LY1及び下部帯水層LY2のうちの他方から送水させる地下水として、冷水を揚水する。
ST1の実行と同時に、第二配管50を介して、第二下部開口部34から第一下部開口部24へ向かって、下部帯水層LY2の地下水を送水させる(ST2:下部帯水層の地下水を送水させるステップ)。
また、地中熱利用システム10の運転方法は、上部帯水層LY1及び下部帯水層LY2のうちの一方から送水させる地下水として、温水を揚水すると同時に、上部帯水層LY1及び下部帯水層LY2のうちの他方から送水させる地下水として、冷水を揚水する。
<第二実施形態>
地中熱利用システムの第二実施形態について、図21~図23を参照して説明する。
なお、図21及び図22において、矢印は、各部分における(地下水を含む)熱媒体の流れを示す。
白塗の矢印は冷水を示し、黒塗の矢印は温水を示す。
地中熱利用システムの第二実施形態について、図21~図23を参照して説明する。
なお、図21及び図22において、矢印は、各部分における(地下水を含む)熱媒体の流れを示す。
白塗の矢印は冷水を示し、黒塗の矢印は温水を示す。
第二実施形態の地中熱利用システム100は、第一井戸、第二井戸、第一配管、及び第二配管の構成が異なる以外は、第一実施形態の地中熱利用システム10と同様に構成され、同様に機能するので、重複する説明については省略する。
(地中熱利用システムの構成)
図21及び図22に示すように、地中熱利用システム100は、第一井戸120と第二井戸130とを備える。
地中熱利用システム100は、第一配管140と、第二配管150と、第一熱交換器60と、第二熱交換器70と、をさらに備える。
地中熱利用システム100は、暖房器80と、冷房器90と、をさらに備える。
例えば、地中熱利用システム100は、第一ポンプ180と、第二ポンプ190と、をさらに備えてもよい。
図21及び図22に示すように、地中熱利用システム100は、第一井戸120と第二井戸130とを備える。
地中熱利用システム100は、第一配管140と、第二配管150と、第一熱交換器60と、第二熱交換器70と、をさらに備える。
地中熱利用システム100は、暖房器80と、冷房器90と、をさらに備える。
例えば、地中熱利用システム100は、第一ポンプ180と、第二ポンプ190と、をさらに備えてもよい。
第一ポンプ180は、第一井戸120から第一熱交換器60へ送水するように、第一配管140の途中に設けられる。
例えば、第一ポンプ180は、第一井戸120の真上に設けられてもよい。
例えば、第一ポンプ180は、第一井戸120の真上に設けられてもよい。
第二ポンプ190は、第二井戸130から第二熱交換器70へ送水するように、第一配管140の途中に設けられる。
例えば、第二ポンプ190は、第二井戸130の真上に設けられてもよい。
例えば、第二ポンプ190は、第二井戸130の真上に設けられてもよい。
地中熱利用システム100は、第一ポンプ180と、第二ポンプ190と、を同時に運転させる。このため、地中熱利用システム100は、上部帯水層LY1及び下部帯水層LY2のうちの一方から地下水を揚水すると同時に、上部帯水層LY1及び下部帯水層LY2のうちの他方から地下水を揚水する。
(第一井戸の構成)
第一井戸120は、地上から地下に向かって、上部帯水層LY1を貫通し、下部帯水層LY2に延びる井戸である。
第一井戸120は、第一上部開口部23と、第一下部開口部24と、を備える。
第一井戸120は、地表SGから下部帯水層LY2に至る地下に向かって掘削された掘削孔HOL1に埋め込まれたケーシング20aを備える。
ケーシング20a内において、第一上部開口部23と、第一下部開口部24と、の各間には、パッキングPKが設けられており、各間での地下水の行き来を抑制している。
第一井戸120は、地上から地下に向かって、上部帯水層LY1を貫通し、下部帯水層LY2に延びる井戸である。
第一井戸120は、第一上部開口部23と、第一下部開口部24と、を備える。
第一井戸120は、地表SGから下部帯水層LY2に至る地下に向かって掘削された掘削孔HOL1に埋め込まれたケーシング20aを備える。
ケーシング20a内において、第一上部開口部23と、第一下部開口部24と、の各間には、パッキングPKが設けられており、各間での地下水の行き来を抑制している。
(第二井戸の構成)
第二井戸130は、地上から地下に向かって、上部帯水層LY1を貫通し、下部帯水層LY2に延びる井戸である。
第二井戸130は、第一井戸120と所定の距離を隔て設けられている。
第二井戸130は、第二上部開口部33と、第二下部開口部34と、を備える。
第二井戸130は、地表SGから下部帯水層LY2に至る地下に向かって掘削された掘削孔HOL2に埋め込まれたケーシング30aを備える。
ケーシング30a内において、第二上部開口部33と、第二下部開口部34と、の各間には、パッキングPKが設けられており、各間での地下水の行き来を抑制している。
第二井戸130は、地上から地下に向かって、上部帯水層LY1を貫通し、下部帯水層LY2に延びる井戸である。
第二井戸130は、第一井戸120と所定の距離を隔て設けられている。
第二井戸130は、第二上部開口部33と、第二下部開口部34と、を備える。
第二井戸130は、地表SGから下部帯水層LY2に至る地下に向かって掘削された掘削孔HOL2に埋め込まれたケーシング30aを備える。
ケーシング30a内において、第二上部開口部33と、第二下部開口部34と、の各間には、パッキングPKが設けられており、各間での地下水の行き来を抑制している。
(第一配管の構成)
第一配管140は、第一熱交換器60の一次側(一次側配管60a)を介して、第一端140aから第二端140bへ延びている。
第一配管140は、第一熱交換器60の一次側(一次側配管60a)を介して、第一端140aから第二端140bへ延びている。
第一配管140は、第一端140aに第一井戸120内に延びている第一揚水管141を備える。
例えば、第一揚水管141は、第一上部開口部23を貫通し、第一下部開口部24内まで延びていてもよい。
例えば、第一揚水管141は、第一上部開口部23を貫通し、第一下部開口部24内まで延びていてもよい。
第一配管140は、第二端140bに第二井戸130内に延びている第二注水管142をさらに備える。
例えば、第二注水管142は、第二上部開口部33を貫通し、第二下部開口部34内まで延びていてもよい。
例えば、第二注水管142は、第二上部開口部33を貫通し、第二下部開口部34内まで延びていてもよい。
(第二配管の構成)
第二配管150は、第二熱交換器70の一次側(一次側配管70a)を介して、第一端150aから第二端150bへ延びている。
第二配管150は、第二熱交換器70の一次側(一次側配管70a)を介して、第一端150aから第二端150bへ延びている。
第二配管150は、第一端150aに第二井戸130内に延びている第二揚水管152を備える。
例えば、第二揚水管152は、第二上部開口部33を貫通し、第二下部開口部34内まで延びていてもよい。
例えば、第二揚水管152は、第二上部開口部33を貫通し、第二下部開口部34内まで延びていてもよい。
第二配管150は、第二端150bに第一井戸120内に延びている第一注水管151をさらに備える。
例えば、第一注水管151は、第一上部開口部23を貫通し、第一下部開口部24内まで延びていてもよい。
例えば、第一注水管151は、第一上部開口部23を貫通し、第一下部開口部24内まで延びていてもよい。
(揚水管の構成)
図23に示すように、第一揚水管141と第二揚水管152との各揚水管は、上部揚水口101と、下部揚水口103と、を有する。
第一揚水管141と第二揚水管152との各揚水管は、第一開閉筒102と、第二開閉筒104と、を備える。
例えば、第一揚水管141と第二揚水管152との各揚水管は、下部揚水口103より下で閉じていてもよい。
以下、第一揚水管141について説明するが、第二揚水管152は、第一揚水管141と同様に構成されている。
図23に示すように、第一揚水管141と第二揚水管152との各揚水管は、上部揚水口101と、下部揚水口103と、を有する。
第一揚水管141と第二揚水管152との各揚水管は、第一開閉筒102と、第二開閉筒104と、を備える。
例えば、第一揚水管141と第二揚水管152との各揚水管は、下部揚水口103より下で閉じていてもよい。
以下、第一揚水管141について説明するが、第二揚水管152は、第一揚水管141と同様に構成されている。
上部揚水口101は、上部帯水層LY1から揚水可能に開口している。
すなわち、上部揚水口101は、上部帯水層LY1から、第一上部開口部23内に取り込んだ地下水を、揚水可能に開口している。
例えば、第一揚水管141は、上部揚水口101として、管周に並ぶ複数の開口OPを有してもよい。
すなわち、上部揚水口101は、上部帯水層LY1から、第一上部開口部23内に取り込んだ地下水を、揚水可能に開口している。
例えば、第一揚水管141は、上部揚水口101として、管周に並ぶ複数の開口OPを有してもよい。
上部揚水口101は、パッキングPKより上であれば、どのような深さ位置に設けられてもよい。
例えば、上部揚水口101は、上部帯水層LY1に相当する深さに位置に設けられてもよい。
さらに、上部揚水口101は、深さ位置について、第一上部開口部23が設けられている範囲内に設けられてもよい。
例えば、上部揚水口101は、上部帯水層LY1に相当する深さに位置に設けられてもよい。
さらに、上部揚水口101は、深さ位置について、第一上部開口部23が設けられている範囲内に設けられてもよい。
第一開閉筒102は、上部揚水口101を開閉可能である。
例えば、第一開閉筒102は、第一揚水管141の外周に、第一揚水管141と同軸に設けられてもよい。
また、第一開閉筒102は、上部揚水口101の開口OPを覆う上部揚水口101と並ぶ位置に摺動することにより、上部揚水口101の上下おける第一揚水管141の管周に設けられてる一対のOリングORGを介して、上部揚水口101を密閉可能に構成されている。
例えば、第一開閉筒102は、第一揚水管141の外周に、第一揚水管141と同軸に設けられてもよい。
また、第一開閉筒102は、上部揚水口101の開口OPを覆う上部揚水口101と並ぶ位置に摺動することにより、上部揚水口101の上下おける第一揚水管141の管周に設けられてる一対のOリングORGを介して、上部揚水口101を密閉可能に構成されている。
第一開閉筒102は、上下に摺動可能である。
例えば、第一開閉筒102は、上部揚水口101と並ぶ位置と、上部揚水口101より下の位置と、の間で上下に摺動可能であってもよい。
これにより、第一開閉筒102は、上部揚水口101と並ぶ位置にあるとき、上部揚水口101を閉塞し、上部揚水口101より下の位置にあるとき、上部揚水口101を開放する。
例えば、第一開閉筒102は、上部揚水口101と並ぶ位置と、上部揚水口101より下の位置と、の間で上下に摺動可能であってもよい。
これにより、第一開閉筒102は、上部揚水口101と並ぶ位置にあるとき、上部揚水口101を閉塞し、上部揚水口101より下の位置にあるとき、上部揚水口101を開放する。
下部揚水口103は、下部帯水層LY2から揚水可能に開口している。
すなわち、下部揚水口103は、下部帯水層LY2から、第一下部開口部24内に取り込んだ地下水を、揚水可能に開口している。
例えば、第一揚水管141は、下部揚水口103として、管周に並ぶ複数の開口OPを有してもよい。
すなわち、下部揚水口103は、下部帯水層LY2から、第一下部開口部24内に取り込んだ地下水を、揚水可能に開口している。
例えば、第一揚水管141は、下部揚水口103として、管周に並ぶ複数の開口OPを有してもよい。
下部揚水口103は、パッキングPKより下であれば、どのような深さ位置に設けられてもよい。
例えば、下部揚水口103は、下部帯水層LY2に相当する深さに位置に設けられてもよい。
さらに、下部揚水口103は、深さ位置について、第一下部開口部24が設けられている範囲内に設けられてもよい。
例えば、下部揚水口103は、下部帯水層LY2に相当する深さに位置に設けられてもよい。
さらに、下部揚水口103は、深さ位置について、第一下部開口部24が設けられている範囲内に設けられてもよい。
第二開閉筒104は、下部揚水口103を開閉可能である。
例えば、第二開閉筒104は、第一揚水管141の外周に、第一揚水管141と同軸に設けられてもよい。
また、第二開閉筒104は、下部揚水口103の開口OPを覆う下部揚水口103と並ぶ位置に摺動することにより、下部揚水口103の上下おける第一揚水管141の管周に設けられてる一対のOリングORGを介して、下部揚水口103を密閉可能に構成されている。
例えば、第二開閉筒104は、第一揚水管141の外周に、第一揚水管141と同軸に設けられてもよい。
また、第二開閉筒104は、下部揚水口103の開口OPを覆う下部揚水口103と並ぶ位置に摺動することにより、下部揚水口103の上下おける第一揚水管141の管周に設けられてる一対のOリングORGを介して、下部揚水口103を密閉可能に構成されている。
第二開閉筒104は、上下に摺動可能である。
例えば、第二開閉筒104は、下部揚水口103と並ぶ位置と、下部揚水口103より上の位置と、の間で上下に摺動可能であってもよい。
これにより、第二開閉筒104は、下部揚水口103と並ぶ位置にあるとき、下部揚水口103を閉塞し、下部揚水口103より上の位置にあるとき、下部揚水口103を開放する。
例えば、第二開閉筒104は、下部揚水口103と並ぶ位置と、下部揚水口103より上の位置と、の間で上下に摺動可能であってもよい。
これにより、第二開閉筒104は、下部揚水口103と並ぶ位置にあるとき、下部揚水口103を閉塞し、下部揚水口103より上の位置にあるとき、下部揚水口103を開放する。
第一開閉筒102と、第二開閉筒104とは、第一揚水管141の外周を上下に延びるリンクLNK1を介して連結されている。
例えば、リンクLNK1は、上下に延びる金属棒であってもよい。
例えば、リンクLNK1は、パッキングPKによる地下水の行き来の抑制を維持しつつ、パッキングPKを貫通して、上下に延びていてもよい。
このため、第一開閉筒102と、第二開閉筒104とは、上下方向について連動して摺動する。
例えば、リンクLNK1は、上下に延びる金属棒であってもよい。
例えば、リンクLNK1は、パッキングPKによる地下水の行き来の抑制を維持しつつ、パッキングPKを貫通して、上下に延びていてもよい。
このため、第一開閉筒102と、第二開閉筒104とは、上下方向について連動して摺動する。
例えば、第一開閉筒102と第二開閉筒104とは、第一開閉筒102が上部揚水口101より下の位置にあるとき、第二開閉筒104は、下部揚水口103と並ぶ位置にあるように、連結されてもよい。
これにより、第一開閉筒102が上部揚水口101を開放したとき、第二開閉筒104は、下部揚水口103を閉塞可能となっている。
これにより、第一開閉筒102が上部揚水口101を開放したとき、第二開閉筒104は、下部揚水口103を閉塞可能となっている。
例えば、第一開閉筒102と第二開閉筒104とは、第一開閉筒102が上部揚水口101と並ぶ位置にあるとき、第二開閉筒104は、下部揚水口103より上の位置にあるように、連結されてもよい。
これにより、第一開閉筒102が上部揚水口101を閉塞したとき、第二開閉筒104は、下部揚水口103を開放可能となっている。
これにより、第一開閉筒102が上部揚水口101を閉塞したとき、第二開閉筒104は、下部揚水口103を開放可能となっている。
(注水管の構成)
図23に示すように、第一注水管151と第二注水管142との各注水管は、上部注水口105と、下部注水口107と、を有する。
第一注水管151と第二注水管142との各注水管は、第三開閉筒106と、第四開閉筒108と、を備える。
例えば、第一注水管151と第二注水管142との各注水管は、下部注水口107より下で閉じていてもよい。
以下、第一注水管151について説明するが、第二注水管142は、第一注水管151と同様に構成されている。
図23に示すように、第一注水管151と第二注水管142との各注水管は、上部注水口105と、下部注水口107と、を有する。
第一注水管151と第二注水管142との各注水管は、第三開閉筒106と、第四開閉筒108と、を備える。
例えば、第一注水管151と第二注水管142との各注水管は、下部注水口107より下で閉じていてもよい。
以下、第一注水管151について説明するが、第二注水管142は、第一注水管151と同様に構成されている。
上部注水口105は、上部帯水層LY1へ注水可能に開口している。
すなわち、上部注水口105は第一上部開口部23内へ、第一注水管151内の地下水を注水可能に開口している。
例えば、第一注水管151は、上部注水口105として、管周に並ぶ複数の開口OPを有してもよい。
すなわち、上部注水口105は第一上部開口部23内へ、第一注水管151内の地下水を注水可能に開口している。
例えば、第一注水管151は、上部注水口105として、管周に並ぶ複数の開口OPを有してもよい。
上部注水口105は、パッキングPKより上であれば、どのような深さ位置に設けられてもよい。
例えば、上部注水口105は、上部帯水層LY1に相当する深さに位置に設けられてもよい。
さらに、上部注水口105は、深さ位置について、第一上部開口部23が設けられている範囲内に設けられてもよい。
例えば、上部注水口105は、上部帯水層LY1に相当する深さに位置に設けられてもよい。
さらに、上部注水口105は、深さ位置について、第一上部開口部23が設けられている範囲内に設けられてもよい。
第三開閉筒106は、上部注水口105を開閉可能である。
例えば、第三開閉筒106は、第一注水管151の外周に、第一注水管151と同軸に設けられてもよい。
また、第三開閉筒106は、上部注水口105の開口OPを覆う上部注水口105と並ぶ位置に摺動することにより、上部注水口105の上下おける第一注水管151の管周に設けられてる一対のOリングORGを介して、上部注水口105を密閉可能に構成されている。
例えば、第三開閉筒106は、第一注水管151の外周に、第一注水管151と同軸に設けられてもよい。
また、第三開閉筒106は、上部注水口105の開口OPを覆う上部注水口105と並ぶ位置に摺動することにより、上部注水口105の上下おける第一注水管151の管周に設けられてる一対のOリングORGを介して、上部注水口105を密閉可能に構成されている。
第三開閉筒106は、上下に摺動可能である。
例えば、第三開閉筒106は、上部注水口105と並ぶ位置と、上部注水口105より下の位置と、の間で上下に摺動可能であってもよい。
これにより、第三開閉筒106は、上部注水口105と並ぶ位置にあるとき、上部注水口105を閉塞し、上部注水口105より下の位置にあるとき、上部注水口105を開放する。
例えば、第三開閉筒106は、上部注水口105と並ぶ位置と、上部注水口105より下の位置と、の間で上下に摺動可能であってもよい。
これにより、第三開閉筒106は、上部注水口105と並ぶ位置にあるとき、上部注水口105を閉塞し、上部注水口105より下の位置にあるとき、上部注水口105を開放する。
下部注水口107は、下部帯水層LY2へ注水可能に開口している。
すなわち、下部注水口107は、第一下部開口部24内へ、第一注水管151の地下水を、注水可能に開口している。
例えば、第一注水管151は、下部注水口107として、管周に並ぶ複数の開口OPを有してもよい。
すなわち、下部注水口107は、第一下部開口部24内へ、第一注水管151の地下水を、注水可能に開口している。
例えば、第一注水管151は、下部注水口107として、管周に並ぶ複数の開口OPを有してもよい。
下部注水口107は、パッキングPKより下であれば、どのような深さ位置に設けられてもよい。
例えば、下部注水口107は、下部帯水層LY2に相当する深さに位置に設けられてもよい。
さらに、下部注水口107は、深さ位置について、第一下部開口部24が設けられている範囲内に設けられてもよい。
例えば、下部注水口107は、下部帯水層LY2に相当する深さに位置に設けられてもよい。
さらに、下部注水口107は、深さ位置について、第一下部開口部24が設けられている範囲内に設けられてもよい。
第四開閉筒108は、下部注水口107を開閉可能である。
例えば、第四開閉筒108は、第一注水管151の外周に、第一注水管151と同軸に設けられてもよい。
また、第四開閉筒108は、下部注水口107の開口OPを覆う下部注水口107と並ぶ位置に摺動することにより、下部注水口107の上下おける第一注水管151の管周に設けられてる一対のOリングORGを介して、下部注水口107を密閉可能に構成されている。
例えば、第四開閉筒108は、第一注水管151の外周に、第一注水管151と同軸に設けられてもよい。
また、第四開閉筒108は、下部注水口107の開口OPを覆う下部注水口107と並ぶ位置に摺動することにより、下部注水口107の上下おける第一注水管151の管周に設けられてる一対のOリングORGを介して、下部注水口107を密閉可能に構成されている。
第四開閉筒108は、上下に摺動可能である。
例えば、第四開閉筒108は、下部注水口107と並ぶ位置と、下部注水口107より上の位置と、の間で上下に摺動可能であってもよい。
これにより、第四開閉筒108は、下部注水口107と並ぶ位置にあるとき、下部注水口107を閉塞し、下部注水口107より上の位置にあるとき、下部注水口107を開放する。
例えば、第四開閉筒108は、下部注水口107と並ぶ位置と、下部注水口107より上の位置と、の間で上下に摺動可能であってもよい。
これにより、第四開閉筒108は、下部注水口107と並ぶ位置にあるとき、下部注水口107を閉塞し、下部注水口107より上の位置にあるとき、下部注水口107を開放する。
第三開閉筒106と、第四開閉筒108とは、第一注水管151の外周を上下に延びるリンクLNK2を介して連結されている。
例えば、リンクLNK2は、上下に延びる金属棒であってもよい。
例えば、リンクLNK2は、パッキングPKによる地下水の行き来の抑制を維持しつつ、パッキングPKを貫通して、上下に延びていてもよい。
このため、第三開閉筒106と、第四開閉筒108とは、上下方向について連動して摺動する。
例えば、リンクLNK2は、上下に延びる金属棒であってもよい。
例えば、リンクLNK2は、パッキングPKによる地下水の行き来の抑制を維持しつつ、パッキングPKを貫通して、上下に延びていてもよい。
このため、第三開閉筒106と、第四開閉筒108とは、上下方向について連動して摺動する。
例えば、第三開閉筒106と第四開閉筒108とは、第三開閉筒106が上部注水口105より下の位置にあるとき、第四開閉筒108は、下部注水口107と並ぶ位置にあるように、連結されてもよい。
これにより、第三開閉筒106が上部注水口105を開放したとき、第四開閉筒108は、下部注水口107を閉塞可能となっている。
これにより、第三開閉筒106が上部注水口105を開放したとき、第四開閉筒108は、下部注水口107を閉塞可能となっている。
例えば、第三開閉筒106と第四開閉筒108とは、第三開閉筒106が上部注水口105と並ぶ位置にあるとき、第四開閉筒108は、下部注水口107より上の位置にあるように、連結されてもよい。
これにより、第三開閉筒106が上部注水口105を閉塞したとき、第四開閉筒108は、下部注水口107を開放可能となっている。
これにより、第三開閉筒106が上部注水口105を閉塞したとき、第四開閉筒108は、下部注水口107を開放可能となっている。
(連動機構の構成)
例えば、地中熱利用システム100は、連動機構160をさらに備えてもよい。
連動機構160は、第一井戸120及び第二井戸130の各井戸内に設けられている。
以下、第一井戸120内に設けられている連動機構160について説明するが、第二井戸130内に設けられている連動機構160も、同様に構成されている。
例えば、地中熱利用システム100は、連動機構160をさらに備えてもよい。
連動機構160は、第一井戸120及び第二井戸130の各井戸内に設けられている。
以下、第一井戸120内に設けられている連動機構160について説明するが、第二井戸130内に設けられている連動機構160も、同様に構成されている。
連動機構160は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、を連動させる。
連動機構160は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対とを、上下方向に関し、逆方向に連動させてもよい。
例えば、図23に示すように、連動機構160は、リンクLNK1に固定されているラックギヤ161と、リンクLNK2に固定されているラックギヤ162と、ピニオンギア163と、を備えてもよい。
ラックギヤ161とラックギヤ162とは、第一揚水管141と第一注水管151の並ぶ方向に並んでいる。
ラックギヤ161とラックギヤ162とは、ピニオンギア163を介して結合されている。
ラックギヤ161とラックギヤ162とは、ピニオンギア163を挟んで対向している。
これにより、ラックギヤ161とラックギヤ162とは、上下方向に関し、逆方向に連動する。
例えば、図23に示すように、連動機構160は、リンクLNK1に固定されているラックギヤ161と、リンクLNK2に固定されているラックギヤ162と、ピニオンギア163と、を備えてもよい。
ラックギヤ161とラックギヤ162とは、第一揚水管141と第一注水管151の並ぶ方向に並んでいる。
ラックギヤ161とラックギヤ162とは、ピニオンギア163を介して結合されている。
ラックギヤ161とラックギヤ162とは、ピニオンギア163を挟んで対向している。
これにより、ラックギヤ161とラックギヤ162とは、上下方向に関し、逆方向に連動する。
例えば、ラックギヤ161及びラックギヤ162の各ラックギヤは、吊り環HGRを備えてもよい。
操作者又は装置が、吊り環HGRに固定されたロッドやワイヤ等を地上から引き上げることにより、各ラックギヤを上に動かすことが可能である。
操作者又は装置が、吊り環HGRに固定されたロッドやワイヤ等を地上から引き上げることにより、各ラックギヤを上に動かすことが可能である。
(動作)
地中熱利用システム100の動作について説明する。
地中熱利用システム100の動作について説明する。
まず、図21に示す場合(第一モード)について説明する。
第一井戸120では、第三開閉筒106及び第四開閉筒108の対が上に動かされ、第一開閉筒102及び第二開閉筒104の対が下へ動かされる。
例えば、ロッドやワイヤ等を地上から引き上げることにより、図23に示すように、ラックギヤ162が上に動かされ、連動機構160による連動により、ラックギヤ161は下に動かされてもよい。
第一井戸120では、第三開閉筒106及び第四開閉筒108の対が上に動かされ、第一開閉筒102及び第二開閉筒104の対が下へ動かされる。
例えば、ロッドやワイヤ等を地上から引き上げることにより、図23に示すように、ラックギヤ162が上に動かされ、連動機構160による連動により、ラックギヤ161は下に動かされてもよい。
第一開閉筒102及び第二開閉筒104の対が下に動くと、第一開閉筒102は上部揚水口101より下の位置に動き、第二開閉筒104は、下部揚水口103と並ぶ位置に動く。
これにより、第一井戸120では、第一開閉筒102は、上部揚水口101を開放し、第二開閉筒104は、下部揚水口103を閉塞する。
これにより、第一井戸120では、第一開閉筒102は、上部揚水口101を開放し、第二開閉筒104は、下部揚水口103を閉塞する。
他方、第三開閉筒106及び第四開閉筒108の対が上に動くと、第三開閉筒106は上部注水口105と並ぶ位置に動き、第四開閉筒108は、下部注水口107より上の位置に動く。
これにより、第一井戸120では、第三開閉筒106は、上部注水口105を閉塞し、第四開閉筒108は、下部注水口107を開放する。
これにより、第一井戸120では、第三開閉筒106は、上部注水口105を閉塞し、第四開閉筒108は、下部注水口107を開放する。
第一井戸120において、上部揚水口101が開放され、下部揚水口103が閉塞されると、図21に示すように、第一揚水管141は、第一上部開口部23を介して、上部帯水層LY1から地下水を揚水する。
他方、上部注水口105が閉塞され、下部注水口107が開放されると、第一注水管151は、第一下部開口部24を介して、下部帯水層LY2へ地下水を注水する。
他方、上部注水口105が閉塞され、下部注水口107が開放されると、第一注水管151は、第一下部開口部24を介して、下部帯水層LY2へ地下水を注水する。
このとき、第二井戸130では、第一開閉筒102及び第二開閉筒104の対が上に動かされ、第三開閉筒106及び第四開閉筒108の対が下に動かされる。
これにより、第二井戸130では、下部揚水口103と上部注水口105とが開放され、上部揚水口101と下部注水口107とが閉塞される。
これにより、第二井戸130では、下部揚水口103と上部注水口105とが開放され、上部揚水口101と下部注水口107とが閉塞される。
第二井戸130において、下部揚水口103が開放され、上部揚水口101が閉塞されると、第二揚水管152は、第二下部開口部34を介して、下部帯水層LY2から地下水を揚水する。
他方、下部注水口107が閉塞され、上部注水口105が開放されると、第二注水管142は、第二上部開口部33を介して、上部帯水層LY1へ地下水を注水する。
他方、下部注水口107が閉塞され、上部注水口105が開放されると、第二注水管142は、第二上部開口部33を介して、上部帯水層LY1へ地下水を注水する。
以上の動作により、第一実施形態と同様に、本実施形態の第一モードの場合も、地中熱利用システム100は、第一配管140を介して、第一上部開口部23から第二上部開口部33へ向かって、上部帯水層LY1の地下水を送水できる。
また、地中熱利用システム100は、第二配管150を介して、第二下部開口部34から第一下部開口部24へ向かって、下部帯水層LY2の地下水を送水できる。
さらに、第一実施形態と同様に、本実施形態の第一モードの場合も、地中熱利用システム100は、第一ポンプ180と第二ポンプ190とを同時に運転させることで、上部帯水層LY1から温水を揚水すると同時に、下部帯水層LY2から冷水を揚水する。
また、地中熱利用システム100は、第二配管150を介して、第二下部開口部34から第一下部開口部24へ向かって、下部帯水層LY2の地下水を送水できる。
さらに、第一実施形態と同様に、本実施形態の第一モードの場合も、地中熱利用システム100は、第一ポンプ180と第二ポンプ190とを同時に運転させることで、上部帯水層LY1から温水を揚水すると同時に、下部帯水層LY2から冷水を揚水する。
次に、図22に示す場合(第二モード)について説明する。
第一井戸120では、第一開閉筒102及び第二開閉筒104の対が上に動かされ、第三開閉筒106及び第四開閉筒108の対が下へ動かされる。
例えば、ロッドやワイヤ等を地上から引き上げることにより、ラックギヤ161が上に動かされ、連動機構160による連動により、ラックギヤ162は下に動かされてもよい。
第一井戸120では、第一開閉筒102及び第二開閉筒104の対が上に動かされ、第三開閉筒106及び第四開閉筒108の対が下へ動かされる。
例えば、ロッドやワイヤ等を地上から引き上げることにより、ラックギヤ161が上に動かされ、連動機構160による連動により、ラックギヤ162は下に動かされてもよい。
第一開閉筒102及び第二開閉筒104の対が上に動くと、第一開閉筒102は上部揚水口101と並ぶ位置に動き、第二開閉筒104は、下部揚水口103より上の位置に動く。
これにより、第一井戸120では、第一開閉筒102は、上部揚水口101を閉塞し、第二開閉筒104は、下部揚水口103を開放する。
これにより、第一井戸120では、第一開閉筒102は、上部揚水口101を閉塞し、第二開閉筒104は、下部揚水口103を開放する。
他方、第三開閉筒106及び第四開閉筒108の対が下に動くと、第三開閉筒106は上部注水口105より下の位置に動き、第四開閉筒108は、下部注水口107と並ぶ位置に動く。
これにより、第一井戸120では、第三開閉筒106は、上部注水口105を開放し、第四開閉筒108は、下部注水口107を閉塞する。
これにより、第一井戸120では、第三開閉筒106は、上部注水口105を開放し、第四開閉筒108は、下部注水口107を閉塞する。
第一井戸120では、上部揚水口101が閉塞され、下部揚水口103が開放されると、第一揚水管141は、第一下部開口部24を介して、下部帯水層LY2から地下水を揚水する。
他方、上部注水口105が開放され、下部注水口107が閉塞されると、第一注水管151は、第一上部開口部23を介して、上部帯水層LY1へ地下水を注水する。
他方、上部注水口105が開放され、下部注水口107が閉塞されると、第一注水管151は、第一上部開口部23を介して、上部帯水層LY1へ地下水を注水する。
このとき、第二井戸130では、第三開閉筒106及び第四開閉筒108の対が上に動かされ、第一開閉筒102及び第二開閉筒104の対が下に動かされる。
これにより、第二井戸130では、下部揚水口103と上部注水口105とが閉塞され、上部揚水口101と下部注水口107とが開放される。
第二井戸130において、下部揚水口103が閉塞され、上部揚水口101が開放されると、第二揚水管152は、第二上部開口部33を介して、上部帯水層LY1から地下水を揚水する。
他方、下部注水口107が開放され、上部注水口105が閉塞されると、第二注水管142は、第二下部開口部34を介して、下部帯水層LY2へ地下水を注水する。
これにより、第二井戸130では、下部揚水口103と上部注水口105とが閉塞され、上部揚水口101と下部注水口107とが開放される。
第二井戸130において、下部揚水口103が閉塞され、上部揚水口101が開放されると、第二揚水管152は、第二上部開口部33を介して、上部帯水層LY1から地下水を揚水する。
他方、下部注水口107が開放され、上部注水口105が閉塞されると、第二注水管142は、第二下部開口部34を介して、下部帯水層LY2へ地下水を注水する。
以上の動作により、第一実施形態と同様に、本実施形態の第二モードの場合も、地中熱利用システム100は、第一配管140を介して、第一下部開口部24から第二下部開口部34へ向かって、下部帯水層LY2の地下水を送水できる。
また、地中熱利用システム100は、第二配管150を介して、第二上部開口部33から第一上部開口部23へ向かって、上部帯水層LY1の地下水を送水できる。
さらに、第一実施形態と同様に、本実施形態の第二モードの場合も、地中熱利用システム100は、第一ポンプ180と第二ポンプ190とを同時に運転させることで、下部帯水層LY2から温水を揚水すると同時に、上部帯水層LY1から冷水を揚水する。
また、地中熱利用システム100は、第二配管150を介して、第二上部開口部33から第一上部開口部23へ向かって、上部帯水層LY1の地下水を送水できる。
さらに、第一実施形態と同様に、本実施形態の第二モードの場合も、地中熱利用システム100は、第一ポンプ180と第二ポンプ190とを同時に運転させることで、下部帯水層LY2から温水を揚水すると同時に、上部帯水層LY1から冷水を揚水する。
(作用及び効果)
本実施形態の地中熱利用システム100は、第一実施形態と同様に、上部帯水層LY1の地下水と、下部帯水層LY2の地下水とを別々に送水可能であるため、上部帯水層LY1の地下水と下部帯水層LY2の地下水とが混ざってしまうことを抑制できる。
このため、本実施形態の地中熱利用システム100によれば、上部帯水層LY1及び下部帯水層LY2の利用に際し、井戸の閉塞が抑制される。
本実施形態の地中熱利用システム100は、第一実施形態と同様に、上部帯水層LY1の地下水と、下部帯水層LY2の地下水とを別々に送水可能であるため、上部帯水層LY1の地下水と下部帯水層LY2の地下水とが混ざってしまうことを抑制できる。
このため、本実施形態の地中熱利用システム100によれば、上部帯水層LY1及び下部帯水層LY2の利用に際し、井戸の閉塞が抑制される。
また、本実施形態の地中熱利用システム100によれば、第一井戸120及び第二井戸130の各井戸において、各開閉筒により、上部揚水口101、下部揚水口103、上部注水口105、及び下部注水口107がそれぞれ開閉される。
そのため、各井戸内の機構をコンパクト化できる。
そのため、各井戸内の機構をコンパクト化できる。
また、本実施形態の一例によれば、地中熱利用システム100は、連動機構160を有するため、上部揚水口101及び下部揚水口103と、上部注水口105及び下部注水口107との各開閉動作を連動できる。
また、本実施形態の一例によれば、地中熱利用システム100は、連動機構160を備えるため、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、のいずれか一方の開閉筒の対を上に動かすことで、他方の開閉筒の対を下に動かすことができる。
比較例として、地中熱利用システムが、連動機構160を備えず、ばねの付勢力により、開閉筒の各対を下へ動かす構成であるとする。
この場合、ばねは、変位長さに関連して付勢力が変化するため、一定の力で開閉筒の各対を下へ動かしにくい。
これに対し、本実施形態によれば、連動機構160により、開閉筒の各対を下へ動かす構成であるため、一定の力で開閉筒の各対を下へ動かしやすい。
この場合、ばねは、変位長さに関連して付勢力が変化するため、一定の力で開閉筒の各対を下へ動かしにくい。
これに対し、本実施形態によれば、連動機構160により、開閉筒の各対を下へ動かす構成であるため、一定の力で開閉筒の各対を下へ動かしやすい。
(第二実施形態の変形例)
本実施形態の一例では、連動機構として、ラックギヤ161と、ラックギヤ162と、ピニオンギア163と、を備える連動機構160が用いられている。
連動機構は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対とを、上下方向に関し、逆方向に連動できるなら、どのように構成されてもよい。
変形例として、連動機構として、図24に示すような連動機構160’が用いられてもよい。
本実施形態の一例では、連動機構として、ラックギヤ161と、ラックギヤ162と、ピニオンギア163と、を備える連動機構160が用いられている。
連動機構は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対とを、上下方向に関し、逆方向に連動できるなら、どのように構成されてもよい。
変形例として、連動機構として、図24に示すような連動機構160’が用いられてもよい。
連動機構160’は、チェーン164aと、チェーン164bと、スプロケット165aと、スプロケット165bと、を備える。
地中熱利用システム100は、サポートリング109と、吊り環HGRと、をさらに備える。
地中熱利用システム100は、サポートリング109と、吊り環HGRと、をさらに備える。
チェーン164aの一端は、第一開閉筒102の上端に固定され、チェーン164aの他端は、第三開閉筒106の上端に固定されている。
チェーン164bの一端は、第二開閉筒104の下端に固定され、チェーン164bの他端は、第四開閉筒108の下端に固定されている。
スプロケット165aは、チェーン164aと結合している。
スプロケット165aは、チェーン164aの延びる方向へのチェーン164aの動きに連動して、回転可能となっている。
スプロケット165aは、チェーン164aの延びる方向へのチェーン164aの動きに連動して、回転可能となっている。
スプロケット165bは、チェーン164bと結合している。
スプロケット165bは、チェーン164bの延びる方向へのチェーン164bの動きに連動して、回転可能となっている。
スプロケット165bは、チェーン164bの延びる方向へのチェーン164bの動きに連動して、回転可能となっている。
サポートリング109は、リンクLNK1とリンクLNK2との各リンクに設けられている。
吊り環HGRは、各サポートリング109に固定されている。
吊り環HGRは、各サポートリング109に固定されている。
サポートリング109は、第一揚水管141と、第一注水管151と、第二揚水管152と、第二注水管142との各管の外周を摺動可能に設けられている。
サポートリング109は、上下に向かって一定の姿勢を維持しながら、上下に摺動可能である。
サポートリング109は、上下に向かって一定の姿勢を維持しながら、上下に摺動可能である。
例えば、図25に示すように、サポートリング109は、上下に離れている一対のリング109aと、一対のリング109aをつないでいる複数の連結棒109bと、を備えてもよい。
各リング109aは、第一揚水管141と、第一注水管151と、第二揚水管152と、第二注水管142との各管と同軸に設けられている。
各連結棒109bは、上下に延びている。
複数の連結棒109bは、各リング109aの周方向に並んでいる。
各リング109aは、第一揚水管141と、第一注水管151と、第二揚水管152と、第二注水管142との各管と同軸に設けられている。
各連結棒109bは、上下に延びている。
複数の連結棒109bは、各リング109aの周方向に並んでいる。
複数の連結棒109bの少なくとも一つには、吊り環HGRが固定されている。
例えば、リング109aの径方向に対向する一対の連結棒109bの各連結棒109bに、吊り環HGRが固定されてもよい。
例えば、リング109aの径方向に対向する一対の連結棒109bの各連結棒109bに、吊り環HGRが固定されてもよい。
本変形例によれば、連動機構160’は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対とを、上下方向に関し、逆方向に連動できる。
本変形例によれば、サポートリング109は、上下に向かって一定の姿勢を維持できる。
例えば、1つの吊り環HGRに固定されたロッドやワイヤ等で引き上げても、リンクLNK1とリンクLNK2との各リンクが、上下に対し傾きにくい。
このため、地中熱利用システム100は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、の開閉筒の各対を上下に移動しやすい。
例えば、1つの吊り環HGRに固定されたロッドやワイヤ等で引き上げても、リンクLNK1とリンクLNK2との各リンクが、上下に対し傾きにくい。
このため、地中熱利用システム100は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、の開閉筒の各対を上下に移動しやすい。
本変形例では、吊り環HGRに固定されたロッドやワイヤ等で引き上げて開閉筒の各対を上下に動かしているが、開閉筒の各対を上下に動かすことができるならどのように動かしてもよい。
例えば、スプロケット165a及びスプロケット165bのうち、少なくとも一方のスプロケットに結合させた他のスプロケットを回転させることにより、開閉筒の各対を上下に動かしてもよい。
例えば、スプロケット165a及びスプロケット165bのうち、少なくとも一方のスプロケットに結合させたモータ等の回転軸を回転させることにより、開閉筒の各対を上下に動かしてもよい。
例えば、スプロケット165a及びスプロケット165bのうち、少なくとも一方のスプロケットに結合させた他のスプロケットを回転させることにより、開閉筒の各対を上下に動かしてもよい。
例えば、スプロケット165a及びスプロケット165bのうち、少なくとも一方のスプロケットに結合させたモータ等の回転軸を回転させることにより、開閉筒の各対を上下に動かしてもよい。
<第三実施形態>
地中熱利用システムの第三実施形態について、図26を参照して説明する。
地中熱利用システムの第三実施形態について、図26を参照して説明する。
第二実施形態の一例では、地中熱利用システム100が連動機構を備えるのに対し、本実施形態の一例では、地中熱利用システム100が第一錘と、第二錘と、を備える点が異なる。
なお、当該異なる以外は、第二実施形態の地中熱利用システム100と同様に構成され、同様に機能するので、重複する説明については省略する。
なお、当該異なる以外は、第二実施形態の地中熱利用システム100と同様に構成され、同様に機能するので、重複する説明については省略する。
例えば、地中熱利用システム100は、第一錘166aと、第二錘166bと、をさらに備えてもよい。
また、地中熱利用システム100は、第二実施形態の変形例と同様に、サポートリング109と、サポートリング109に固定された吊り環HGRと、をさらに備えてもよい。
また、地中熱利用システム100は、第二実施形態の変形例と同様に、サポートリング109と、サポートリング109に固定された吊り環HGRと、をさらに備えてもよい。
図26に示すように、第一錘166aは、第一開閉筒102及び第二開閉筒104の対に吊り下げられている。
例えば、第一錘166aは、第二開閉筒104の下端に吊り下げられてもよい。
例えば、第一錘166aは、第二開閉筒104の下端に吊り下げられてもよい。
第二錘166bは、第三開閉筒106及び第四開閉筒108の対に吊り下げられている。
例えば、第二錘166bは、第四開閉筒108の下端に吊り下げられてもよい。
例えば、第二錘166bは、第四開閉筒108の下端に吊り下げられてもよい。
本実施形態の一例によれば、第一錘166aに掛かる重力により、第一開閉筒102及び第二開閉筒104の対は、下へ引っ張られる。また、第二錘166bに掛かる重力により、第三開閉筒106及び第四開閉筒108の対は、下へ引っ張られる。
このため、例えば、操作者又は装置が、吊り環HGRに固定されたロッドやワイヤ等を地上から引き上げたり、緩めたりすることで、開閉筒の各対を、上下移動させることができる。
したがって、本実施形態の一例によれば、地中熱利用システム100は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、の開閉筒の各対を下に動かしやすい。
このため、例えば、操作者又は装置が、吊り環HGRに固定されたロッドやワイヤ等を地上から引き上げたり、緩めたりすることで、開閉筒の各対を、上下移動させることができる。
したがって、本実施形態の一例によれば、地中熱利用システム100は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、の開閉筒の各対を下に動かしやすい。
<第四実施形態>
地中熱利用システムの第四実施形態について、図27を参照して説明する。
地中熱利用システムの第四実施形態について、図27を参照して説明する。
第二実施形態の一例では、地中熱利用システム100が連動機構を備えるのに対し、本実施形態の一例では、地中熱利用システム100が第一シリンダと、第二シリンダと、を備える点が異なる。
なお、当該異なる以外は、第二実施形態の地中熱利用システム100と同様に構成され、同様に機能するので、重複する説明については省略する。
なお、当該異なる以外は、第二実施形態の地中熱利用システム100と同様に構成され、同様に機能するので、重複する説明については省略する。
例えば、地中熱利用システム100は、第一シリンダ167aと、第二シリンダ167bと、をさらに備えてもよい。
図27に示すように、第一シリンダ167aは、リンクLNK3を介して、第一開閉筒102及び第二開閉筒104の対と連結されている。
第一シリンダ167aは、油圧シリンダ、水圧シリンダ等であって、リンクLNK3を上下に駆動できる。
例えば、リンクLNK3の上端が、第二開閉筒104の下端に固定されてもよい。
例えば、リンクLNK3は、上下に延びる金属棒であってもよい。
第一シリンダ167aは、油圧シリンダ、水圧シリンダ等であって、リンクLNK3を上下に駆動できる。
例えば、リンクLNK3の上端が、第二開閉筒104の下端に固定されてもよい。
例えば、リンクLNK3は、上下に延びる金属棒であってもよい。
第二シリンダ167bは、リンクLNK4を介して、第三開閉筒106及び第四開閉筒108の対と連結されている。
第二シリンダ167bは、油圧シリンダ、水圧シリンダ等であって、リンクLNK4を上下に駆動できる。
例えば、リンクLNK4の上端が、第四開閉筒108の下端に固定されてもよい。
例えば、リンクLNK4は、上下に延びる金属棒であってもよい。
第二シリンダ167bは、油圧シリンダ、水圧シリンダ等であって、リンクLNK4を上下に駆動できる。
例えば、リンクLNK4の上端が、第四開閉筒108の下端に固定されてもよい。
例えば、リンクLNK4は、上下に延びる金属棒であってもよい。
本実施形態の一例によれば、第一シリンダ167aの駆動力により、第一シリンダ167aは、第一開閉筒102及び第二開閉筒104の対を上下に動かすことができる。また、第二シリンダ167bの駆動力により、第二シリンダ167bは、第三開閉筒106及び第四開閉筒108の対を上下に動かすことができる。
したがって、本実施形態の一例によれば、地中熱利用システム100は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、の開閉筒の各対を上下に動かしやすい。
したがって、本実施形態の一例によれば、地中熱利用システム100は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、の開閉筒の各対を上下に動かしやすい。
<第五実施形態>
地中熱利用システムの第五実施形態について、図28を参照して説明する。
地中熱利用システムの第五実施形態について、図28を参照して説明する。
第二実施形態の一例では、地中熱利用システム100が連動機構を備えるのに対し、本実施形態の一例では、地中熱利用システム100が第一駆動機構と、第二駆動機構と、第三駆動機構と、第四駆動機構と、を備える点が異なる。
なお、当該異なる以外は、第二実施形態の地中熱利用システム100と同様に構成され、同様に機能するので、重複する説明については省略する。
なお、当該異なる以外は、第二実施形態の地中熱利用システム100と同様に構成され、同様に機能するので、重複する説明については省略する。
例えば、地中熱利用システム100は、第一駆動機構168aと、第二駆動機構168bと、第三駆動機構168cと、第四駆動機構168dと、をさらに備えてもよい。
また、第一駆動機構168aと、第二駆動機構168bと、第三駆動機構168cと、第四駆動機構168dとは、互いに独立に駆動可能であってもよい。
また、第一駆動機構168aと、第二駆動機構168bと、第三駆動機構168cと、第四駆動機構168dとは、互いに独立に駆動可能であってもよい。
図28に示すように、第一駆動機構168aは、第一開閉筒102に結合されている。
第一駆動機構168aは、油圧アクチュエータ、水圧アクチュエータ等であって、第一開閉筒102を上下方向に駆動できる。
第一駆動機構168aは、油圧アクチュエータ、水圧アクチュエータ等であって、第一開閉筒102を上下方向に駆動できる。
第二駆動機構168bは、第二開閉筒104に結合されている。
第二駆動機構168bは、油圧アクチュエータ、水圧アクチュエータ等であって、第二開閉筒104を上下方向に駆動できる。
第二駆動機構168bは、油圧アクチュエータ、水圧アクチュエータ等であって、第二開閉筒104を上下方向に駆動できる。
第三駆動機構168cは、第三開閉筒106に結合されている。
第三駆動機構168cは、油圧アクチュエータ、水圧アクチュエータ等であって、第三開閉筒106を上下方向に駆動できる。
第三駆動機構168cは、油圧アクチュエータ、水圧アクチュエータ等であって、第三開閉筒106を上下方向に駆動できる。
第四駆動機構168dは、第四開閉筒108に結合されている。
第四駆動機構168dは、油圧アクチュエータ、水圧アクチュエータ等であって、第四開閉筒108を上下方向に駆動できる。
第四駆動機構168dは、油圧アクチュエータ、水圧アクチュエータ等であって、第四開閉筒108を上下方向に駆動できる。
本実施形態の一例によれば、各駆動機構の駆動力により、第一開閉筒102と、第二開閉筒104と、第三開閉筒106と、第四開閉筒108と、の各開閉筒を上下に動かすことができる。
したがって、本実施形態の一例によれば、地中熱利用システム100は、第一開閉筒102と、第二開閉筒104と、第三開閉筒106と、第四開閉筒108と、の各開閉筒を上下に動かしやすい。
したがって、本実施形態の一例によれば、地中熱利用システム100は、第一開閉筒102と、第二開閉筒104と、第三開閉筒106と、第四開閉筒108と、の各開閉筒を上下に動かしやすい。
<第六実施形態>
地中熱利用システムの第六実施形態について、図29~図32を参照して説明する。
地中熱利用システムの第六実施形態について、図29~図32を参照して説明する。
第三実施形態の一例では、地中熱利用システム100が、開閉筒の各対を、上下移動させるのに対し、本実施形態の一例では、地中熱利用システム100が開閉筒の各対を一緒に吊り上げる点が異なる。
また、第三実施形態の一例に対し、本実施形態の一例では、上部注水口105に対する第三開閉筒106の移動範囲が異なっている。
また、第三実施形態の一例に対し、本実施形態の一例では、下部注水口107に対する第四開閉筒108の移動範囲と、が異なっている。
なお、当該異なる以外は、第三実施形態の地中熱利用システム100と同様に構成され、同様に機能するので、重複する説明については省略する。
また、第三実施形態の一例に対し、本実施形態の一例では、上部注水口105に対する第三開閉筒106の移動範囲が異なっている。
また、第三実施形態の一例に対し、本実施形態の一例では、下部注水口107に対する第四開閉筒108の移動範囲と、が異なっている。
なお、当該異なる以外は、第三実施形態の地中熱利用システム100と同様に構成され、同様に機能するので、重複する説明については省略する。
例えば、地中熱利用システム100は、リフト機構170をさら備えてもよい。
また、第三開閉筒106は、上部注水口105より上の位置と、上部注水口105と並ぶ位置と、の間で上下に摺動可能であってもよい。
これにより、第三開閉筒106は、上部注水口105と並ぶ位置にあるとき、上部注水口105を閉塞し、上部注水口105より上の位置にあるとき、上部注水口105を開放する。
これにより、第三開閉筒106は、上部注水口105と並ぶ位置にあるとき、上部注水口105を閉塞し、上部注水口105より上の位置にあるとき、上部注水口105を開放する。
また、第四開閉筒108は、下部注水口107と並ぶ位置と、下部注水口107より下の位置と、の間で上下に摺動可能であってもよい。
これにより、第四開閉筒108は、下部注水口107より下の位置にあるとき、下部注水口107を開放し、下部注水口107と並ぶ位置にあるとき、下部注水口107を閉塞する。
これにより、第四開閉筒108は、下部注水口107より下の位置にあるとき、下部注水口107を開放し、下部注水口107と並ぶ位置にあるとき、下部注水口107を閉塞する。
また、図29に示すように、第三開閉筒106と第四開閉筒108とは、第三開閉筒106が上部注水口105と並ぶ位置にあるとき、第四開閉筒108は、下部注水口107より下の位置にあるように、連結されてもよい。
これにより、第三開閉筒106が上部注水口105を閉塞したとき、第四開閉筒108は、下部注水口107を開放可能となっている。
これにより、第三開閉筒106が上部注水口105を閉塞したとき、第四開閉筒108は、下部注水口107を開放可能となっている。
さらに、第三開閉筒106と第四開閉筒108とは、第三開閉筒106が上部注水口105より上の位置にあるとき、第四開閉筒108は、下部注水口107と並ぶ位置にあるように、連結されてもよい。
これにより、第三開閉筒106が上部注水口105を開放したとき、第四開閉筒108は、下部注水口107を閉塞可能となっている。
これにより、第三開閉筒106が上部注水口105を開放したとき、第四開閉筒108は、下部注水口107を閉塞可能となっている。
(リフト機構の構成)
リフト機構170は、地上において、第一井戸120及び第二井戸130の各井戸の真上に、設けられている。
図30及び図31に示すように、リフト機構170は、ガイド板171と、天板172と、4本の上支柱173と、4本の下支柱174と、を備える。
リフト機構170は、一対のジャッキ175と、一対のボールねじ176と、一対のジャッキガイド177と、吊り上げ板178と、ロッド群179と、を備える。
リフト機構170は、地上において、第一井戸120及び第二井戸130の各井戸の真上に、設けられている。
図30及び図31に示すように、リフト機構170は、ガイド板171と、天板172と、4本の上支柱173と、4本の下支柱174と、を備える。
リフト機構170は、一対のジャッキ175と、一対のボールねじ176と、一対のジャッキガイド177と、吊り上げ板178と、ロッド群179と、を備える。
ガイド板171は、上を向く上板面171aと下を向く下板面171bを有する。
上板面171aの四隅の各隅から、上支柱173が下に延びている。
下板面171bの四隅の各隅から、下支柱174が下に延びている。
下支柱174の下端は、地表SGに固定されている。
上板面171aの四隅の各隅から、上支柱173が下に延びている。
下板面171bの四隅の各隅から、下支柱174が下に延びている。
下支柱174の下端は、地表SGに固定されている。
天板172は、ガイド板171と平行に距離を隔てて設けられている。
天板172の下を向く下板面172bの四隅の各隅には、上支柱173が固定されている。
天板172の下を向く下板面172bの四隅の各隅には、上支柱173が固定されている。
天板172の下板面172bには、上支柱173より中央寄りに一対のボールねじ176が軸回転可能に固定されている。
一対のボールねじ176は、下板面172bから下に延びており、吊り上げ板178及びガイド板171を貫通して一対のジャッキ175まで延びている。
一対のボールねじ176は、下板面172bから下に延びており、吊り上げ板178及びガイド板171を貫通して一対のジャッキ175まで延びている。
天板172の下板面172bには、上支柱173より中央寄りに一対のジャッキガイド177が固定されている。
一対のジャッキガイド177は、一対のボールねじ176の並びと直交するように並んでいる。
一対のジャッキガイド177の各ジャッキガイドは、棒形状を有する。
一対のジャッキガイド177は、下板面172bから下に延びており、吊り上げ板178を貫通してガイド板171まで延びている。
一対のジャッキガイド177の下端は、ガイド板171に固定されている。
一対のジャッキガイド177は、一対のボールねじ176の並びと直交するように並んでいる。
一対のジャッキガイド177の各ジャッキガイドは、棒形状を有する。
一対のジャッキガイド177は、下板面172bから下に延びており、吊り上げ板178を貫通してガイド板171まで延びている。
一対のジャッキガイド177の下端は、ガイド板171に固定されている。
一対のジャッキ175は、ガイド板171の下板面171bに固定されている。
一対のジャッキ175の各ジャッキは、関連するボールねじ176を軸回転駆動する。
一対のジャッキ175は、連結シャフトJNTにより互いに結合されている。
連結シャフトJNTにより、一対のジャッキ175は、互いに連動する。
一対のジャッキ175の各ジャッキは、関連するボールねじ176を軸回転駆動する。
一対のジャッキ175は、連結シャフトJNTにより互いに結合されている。
連結シャフトJNTにより、一対のジャッキ175は、互いに連動する。
吊り上げ板178は、ガイド板171と平行に設けられている。
吊り上げ板178は、天板172とガイド板171との間に設けられている。
吊り上げ板178は、4本の上支柱173に囲まれている。
吊り上げ板178は、一対のジャッキガイド177に沿って、上下に移動可能である。
吊り上げ板178は、一対のボールねじ176の各ボールねじと螺合している。
一対のボールねじ176の各ボールねじが、一対のジャッキ175で回転駆動されると、吊り上げ板178は、上下に駆動される。
吊り上げ板178は、天板172とガイド板171との間に設けられている。
吊り上げ板178は、4本の上支柱173に囲まれている。
吊り上げ板178は、一対のジャッキガイド177に沿って、上下に移動可能である。
吊り上げ板178は、一対のボールねじ176の各ボールねじと螺合している。
一対のボールねじ176の各ボールねじが、一対のジャッキ175で回転駆動されると、吊り上げ板178は、上下に駆動される。
ロッド群179は、吊り上げ板178に固定されている。
ロッド群179は、吊り上げ板178から、ガイド板171を貫通し、下に延びている。
ロッド群179は、ロッド179aと、ロッド179bと、ロッド179cと、ロッド179dと、を有する。
ロッド179aと、ロッド179bと、ロッド179cと、ロッド179dとは、吊り上げ板178の四隅に並んで固定されている。
ロッド179aの下端、及びロッド179bの下端は、LNK1に設けられた吊り環HGRに固定されている。
ロッド179cの下端、及びロッド179dの下端は、LNK2に設けられた吊り環HGRに固定されている。
このため、図31に示すように、一対のジャッキ175の駆動により、吊り上げ板178が上に移動されると、LNK1及びLNK2は、一緒に吊り上げられる。
ロッド群179は、吊り上げ板178から、ガイド板171を貫通し、下に延びている。
ロッド群179は、ロッド179aと、ロッド179bと、ロッド179cと、ロッド179dと、を有する。
ロッド179aと、ロッド179bと、ロッド179cと、ロッド179dとは、吊り上げ板178の四隅に並んで固定されている。
ロッド179aの下端、及びロッド179bの下端は、LNK1に設けられた吊り環HGRに固定されている。
ロッド179cの下端、及びロッド179dの下端は、LNK2に設けられた吊り環HGRに固定されている。
このため、図31に示すように、一対のジャッキ175の駆動により、吊り上げ板178が上に移動されると、LNK1及びLNK2は、一緒に吊り上げられる。
(動作)
まず、第一モードについて説明する。
第一井戸120では、リフト機構170は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、を吊り上げないように動作する。
例えば、リフト機構170は、LNK1及びLNK2を吊り上げないように動作する。
この場合、第一開閉筒102及び第二開閉筒104の対は、第一錘166aの重力により下に移動する。
同様に、第三開閉筒106及び第四開閉筒108の対は、第二錘166bの重力により下に移動する。
このため、第一井戸120では、図29に示すように、上部揚水口101及び下部注水口107が開放され、下部揚水口103及び上部注水口105が閉塞される。
まず、第一モードについて説明する。
第一井戸120では、リフト機構170は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、を吊り上げないように動作する。
例えば、リフト機構170は、LNK1及びLNK2を吊り上げないように動作する。
この場合、第一開閉筒102及び第二開閉筒104の対は、第一錘166aの重力により下に移動する。
同様に、第三開閉筒106及び第四開閉筒108の対は、第二錘166bの重力により下に移動する。
このため、第一井戸120では、図29に示すように、上部揚水口101及び下部注水口107が開放され、下部揚水口103及び上部注水口105が閉塞される。
第一井戸120において、上部揚水口101が開放され、下部揚水口103が閉塞されると、図21に示すのと同様に、第一揚水管141は、第一上部開口部23を介して、上部帯水層LY1から地下水を揚水する。
他方、上部注水口105が閉塞され、下部注水口107が開放されると、第一注水管151は、第一下部開口部24を介して、下部帯水層LY2へ地下水を注水する。
他方、上部注水口105が閉塞され、下部注水口107が開放されると、第一注水管151は、第一下部開口部24を介して、下部帯水層LY2へ地下水を注水する。
このとき、第二井戸130では、リフト機構170は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、を一緒に吊り上げるように動作する。
例えば、リフト機構170は、LNK1及びLNK2を一緒に吊り上げるように動作する。
この場合、第一開閉筒102及び第二開閉筒104の対は、リフト機構170の駆動力により上に移動する。
同様に、第三開閉筒106及び第四開閉筒108の対は、リフト機構170の駆動力により上に移動する。
このため、第二井戸130では、上部揚水口101及び下部注水口107が閉塞され、下部揚水口103及び上部注水口105が開放される。
例えば、リフト機構170は、LNK1及びLNK2を一緒に吊り上げるように動作する。
この場合、第一開閉筒102及び第二開閉筒104の対は、リフト機構170の駆動力により上に移動する。
同様に、第三開閉筒106及び第四開閉筒108の対は、リフト機構170の駆動力により上に移動する。
このため、第二井戸130では、上部揚水口101及び下部注水口107が閉塞され、下部揚水口103及び上部注水口105が開放される。
第二井戸130において、上部揚水口101が閉塞され、下部揚水口103が開放されると、図21に示すのと同様に、第二揚水管152は、第二下部開口部34を介して、下部帯水層LY2から地下水を揚水する。
他方、上部注水口105が開放され、下部注水口107が閉塞されると、第二注水管142は、第二上部開口部33を介して、上部帯水層LY1へ地下水を注水する。
他方、上部注水口105が開放され、下部注水口107が閉塞されると、第二注水管142は、第二上部開口部33を介して、上部帯水層LY1へ地下水を注水する。
以上の動作により、第一実施形態と同様に、本実施形態の第一モードの場合も、地中熱利用システム100は、第一配管140を介して、第一上部開口部23から第二上部開口部33へ向かって、上部帯水層LY1の地下水を送水できる。
また、地中熱利用システム100は、第二配管150を介して、第二下部開口部34から第一下部開口部24へ向かって、下部帯水層LY2の地下水を送水できる。
さらに、第一実施形態と同様に、本実施形態の第一モードの場合も、地中熱利用システム100は、第一ポンプ180と第二ポンプ190とを同時に運転させることで、上部帯水層LY1から温水を揚水すると同時に、下部帯水層LY2から冷水を揚水する。
また、地中熱利用システム100は、第二配管150を介して、第二下部開口部34から第一下部開口部24へ向かって、下部帯水層LY2の地下水を送水できる。
さらに、第一実施形態と同様に、本実施形態の第一モードの場合も、地中熱利用システム100は、第一ポンプ180と第二ポンプ190とを同時に運転させることで、上部帯水層LY1から温水を揚水すると同時に、下部帯水層LY2から冷水を揚水する。
次に、第二モードについて説明する。
第一井戸120では、リフト機構170は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、を吊り上げるように動作する。
この場合、第一開閉筒102及び第二開閉筒104の対は、リフト機構170の駆動力により上に移動する。
同様に、第三開閉筒106及び第四開閉筒108の対は、リフト機構170の駆動力により上に移動する。
このため、第一井戸120では、上部揚水口101及び下部注水口107が閉塞され、下部揚水口103及び上部注水口105が開放される。
第一井戸120では、リフト機構170は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、を吊り上げるように動作する。
この場合、第一開閉筒102及び第二開閉筒104の対は、リフト機構170の駆動力により上に移動する。
同様に、第三開閉筒106及び第四開閉筒108の対は、リフト機構170の駆動力により上に移動する。
このため、第一井戸120では、上部揚水口101及び下部注水口107が閉塞され、下部揚水口103及び上部注水口105が開放される。
第一井戸120において、上部揚水口101が閉塞され、下部揚水口103が開放されると、図22に示すのと同様に、第一揚水管141は、第一下部開口部24を介して、下部帯水層LY2から地下水を揚水する。
他方、上部注水口105が開放され、下部注水口107が閉塞されると、第一注水管151は、第一上部開口部23を介して、上部帯水層LY1へ地下水を注水する。
他方、上部注水口105が開放され、下部注水口107が閉塞されると、第一注水管151は、第一上部開口部23を介して、上部帯水層LY1へ地下水を注水する。
このとき、第二井戸130では、リフト機構170は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、を吊り上げないように動作する。
この場合、第一開閉筒102及び第二開閉筒104の対は、第一錘166aの重力により下に移動する。
同様に、第三開閉筒106及び第四開閉筒108の対は、第二錘166bの重力により下に移動する。
このため、第二井戸130では、上部揚水口101及び下部注水口107が開放され、下部揚水口103及び上部注水口105が閉塞される。
この場合、第一開閉筒102及び第二開閉筒104の対は、第一錘166aの重力により下に移動する。
同様に、第三開閉筒106及び第四開閉筒108の対は、第二錘166bの重力により下に移動する。
このため、第二井戸130では、上部揚水口101及び下部注水口107が開放され、下部揚水口103及び上部注水口105が閉塞される。
第二井戸130において、上部揚水口101が開放され、下部揚水口103が閉塞されると、図22に示すのと同様に、第二揚水管152は、第二上部開口部33を介して、上部帯水層LY1から地下水を揚水する。
他方、上部注水口105が閉塞され、下部注水口107が開放されると、第二注水管142は、第二下部開口部34を介して、下部帯水層LY2へ地下水を注水する。
他方、上部注水口105が閉塞され、下部注水口107が開放されると、第二注水管142は、第二下部開口部34を介して、下部帯水層LY2へ地下水を注水する。
以上の動作により、第一実施形態と同様に、本実施形態の第二モードの場合も、地中熱利用システム100は、第一配管140を介して、第一下部開口部24から第二下部開口部34へ向かって、下部帯水層LY2の地下水を送水できる。
また、地中熱利用システム100は、第二配管150を介して、第二上部開口部33から第一上部開口部23へ向かって、上部帯水層LY1の地下水を送水できる。
さらに、第一実施形態と同様に、本実施形態の第二モードの場合も、地中熱利用システム100は、第一ポンプ180と第二ポンプ190とを同時に運転させることで、下部帯水層LY2から温水を揚水すると同時に、上部帯水層LY1から冷水を揚水する。
また、地中熱利用システム100は、第二配管150を介して、第二上部開口部33から第一上部開口部23へ向かって、上部帯水層LY1の地下水を送水できる。
さらに、第一実施形態と同様に、本実施形態の第二モードの場合も、地中熱利用システム100は、第一ポンプ180と第二ポンプ190とを同時に運転させることで、下部帯水層LY2から温水を揚水すると同時に、上部帯水層LY1から冷水を揚水する。
本実施形態の一例によれば、地中熱利用システム100は、第一開閉筒102及び第二開閉筒104の対と、第三開閉筒106及び第四開閉筒108の対と、を一緒に吊り上げることで、上部揚水口101及び下部揚水口103と、上部注水口105及び下部注水口107との各開閉動作を連動できる。
このため、地中熱利用システム100において、各開閉動作を行う機構が単純化できる。
このため、地中熱利用システム100において、各開閉動作を行う機構が単純化できる。
<他の変形例>
上述の第二から第六実施形態では、第一開閉筒102が各揚水管の外周に設けられているが、上部揚水口101を開閉できるならどのように構成されてもよい。
変形例として、第一開閉筒102は、各揚水管の内周に設けられてもよい。
同様に、変形例として、第二開閉筒104は、各揚水管の内周に設けられてもよい。
同様に、変形例として、第三開閉筒106は、各注水管の内周に設けられてもよい。
同様に、変形例として、第四開閉筒108は、各注水管の内周に設けられてもよい。
上述の第二から第六実施形態では、第一開閉筒102が各揚水管の外周に設けられているが、上部揚水口101を開閉できるならどのように構成されてもよい。
変形例として、第一開閉筒102は、各揚水管の内周に設けられてもよい。
同様に、変形例として、第二開閉筒104は、各揚水管の内周に設けられてもよい。
同様に、変形例として、第三開閉筒106は、各注水管の内周に設けられてもよい。
同様に、変形例として、第四開閉筒108は、各注水管の内周に設けられてもよい。
以上、本発明の実施形態を説明したが、この実施形態は、例として示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものとする。
例えば、図20に示す地中熱利用システムの運転方法は、上述の第二から第六実施形態の地中熱利用システム100を用いても実行できる。
本発明の地中熱利用システム及び地中熱利用システムの運転方法は、上部帯水層及び下部帯水層の利用に際し、井戸の閉塞が抑制される。
10 地中熱利用システム
20 第一井戸
20a ケーシング
21 第一貯留部
21a 第一ポンプ
22 第一切換部
22a 第一ポート
22b 第二ポート
22c 第三ポート
22d 第四ポート
22F 四方弁
22P 注水弁
22R リボルバー
22S スライド機構
22T 三方弁
23 第一上部開口部
23a ストレーナー
24 第一下部開口部
24a ストレーナー
30 第二井戸
30a ケーシング
31 第二貯留部
31a 第二ポンプ
32 第二切換部
32a 第一ポート
32b 第二ポート
32c 第三ポート
32d 第四ポート
33 第二上部開口部
33a ストレーナー
34 第二下部開口部
34a ストレーナー
40 第一配管
40a 第一端
40b 第二端
50 第二配管
50a 第一端
50b 第二端
60 第一熱交換器
60a 一次側配管
60b 二次側配管
70 第二熱交換器
70a 一次側配管
70b 二次側配管
80 暖房器
90 冷房器
100 地中熱利用システム
101 上部揚水口
102 第一開閉筒
103 下部揚水口
104 第二開閉筒
105 上部注水口
106 第三開閉筒
107 下部注水口
108 第四開閉筒
109 サポートリング
109a リング
109b 連結棒
120 第一井戸
130 第二井戸
140 第一配管
140a 第一端
140b 第二端
141 第一揚水管
142 第二注水管
150 第二配管
150a 第一端
150b 第二端
151 第一注水管
152 第二揚水管
160 連動機構
160’ 連動機構
161 ラックギヤ
162 ラックギヤ
163 ピニオンギア
164a チェーン
164b チェーン
165a スプロケット
165b スプロケット
166a 第一錘
166b 第二錘
167a 第一シリンダ
167b 第二シリンダ
168a 第一駆動機構
168b 第二駆動機構
168c 第三駆動機構
168d 第四駆動機構
170 リフト機構
171 ガイド板
171a 上板面
171b 下板面
172 天板
172b 下板面
173 上支柱
174 下支柱
175 ジャッキ
177 ジャッキガイド
178 吊り上げ板
179 ロッド群
179a ロッド
179b ロッド
179c ロッド
179d ロッド
180 第一ポンプ
190 第二ポンプ
BLD 建物
HGR 吊り環
HOL1 掘削孔
HOL2 掘削孔
JNT 連結シャフト
LNK1 リンク
LNK2 リンク
LNK3 リンク
LNK4 リンク
LY1 上部帯水層
LY2 下部帯水層
LYm 洪積粘土層
OP 開口
ORG Oリング
PK パッキング
SG 地表
20 第一井戸
20a ケーシング
21 第一貯留部
21a 第一ポンプ
22 第一切換部
22a 第一ポート
22b 第二ポート
22c 第三ポート
22d 第四ポート
22F 四方弁
22P 注水弁
22R リボルバー
22S スライド機構
22T 三方弁
23 第一上部開口部
23a ストレーナー
24 第一下部開口部
24a ストレーナー
30 第二井戸
30a ケーシング
31 第二貯留部
31a 第二ポンプ
32 第二切換部
32a 第一ポート
32b 第二ポート
32c 第三ポート
32d 第四ポート
33 第二上部開口部
33a ストレーナー
34 第二下部開口部
34a ストレーナー
40 第一配管
40a 第一端
40b 第二端
50 第二配管
50a 第一端
50b 第二端
60 第一熱交換器
60a 一次側配管
60b 二次側配管
70 第二熱交換器
70a 一次側配管
70b 二次側配管
80 暖房器
90 冷房器
100 地中熱利用システム
101 上部揚水口
102 第一開閉筒
103 下部揚水口
104 第二開閉筒
105 上部注水口
106 第三開閉筒
107 下部注水口
108 第四開閉筒
109 サポートリング
109a リング
109b 連結棒
120 第一井戸
130 第二井戸
140 第一配管
140a 第一端
140b 第二端
141 第一揚水管
142 第二注水管
150 第二配管
150a 第一端
150b 第二端
151 第一注水管
152 第二揚水管
160 連動機構
160’ 連動機構
161 ラックギヤ
162 ラックギヤ
163 ピニオンギア
164a チェーン
164b チェーン
165a スプロケット
165b スプロケット
166a 第一錘
166b 第二錘
167a 第一シリンダ
167b 第二シリンダ
168a 第一駆動機構
168b 第二駆動機構
168c 第三駆動機構
168d 第四駆動機構
170 リフト機構
171 ガイド板
171a 上板面
171b 下板面
172 天板
172b 下板面
173 上支柱
174 下支柱
175 ジャッキ
177 ジャッキガイド
178 吊り上げ板
179 ロッド群
179a ロッド
179b ロッド
179c ロッド
179d ロッド
180 第一ポンプ
190 第二ポンプ
BLD 建物
HGR 吊り環
HOL1 掘削孔
HOL2 掘削孔
JNT 連結シャフト
LNK1 リンク
LNK2 リンク
LNK3 リンク
LNK4 リンク
LY1 上部帯水層
LY2 下部帯水層
LYm 洪積粘土層
OP 開口
ORG Oリング
PK パッキング
SG 地表
Claims (11)
- 上部帯水層で開口している第一上部開口部と、下部帯水層で開口している第一下部開口部と、を備える第一井戸と、
前記上部帯水層で開口している第二上部開口部と、前記下部帯水層で開口している第二下部開口部と、を備える第二井戸と、
第一配管と、
第二配管と、
前記第一配管に接続されている第一熱交換器と、
前記第二配管に接続されている第二熱交換器と、を備え、
前記第一配管を介して、前記第一上部開口部から前記第二上部開口部へ向かって、前記上部帯水層の地下水を送水可能であり、
前記第二配管を介して、前記第二下部開口部から前記第一下部開口部へ向かって、前記下部帯水層の地下水を送水可能であり、
前記上部帯水層及び前記下部帯水層のうちの一方から送水させる前記地下水として、温水を揚水すると同時に、
前記上部帯水層及び前記下部帯水層のうちの他方から送水させる前記地下水として、冷水を揚水する地中熱利用システム。 - 第一熱交換器に接続されている暖房器と、
第二熱交換器に接続されている冷房器と、をさらに備える
請求項1に記載の地中熱利用システム。 - さらに、前記第二配管を介して、前記第二上部開口部から前記第一上部開口部へ向かって、前記上部帯水層の地下水を送水可能であり、
さらに、前記第一配管を介して、前記第一下部開口部から前記第二下部開口部へ向かって、前記下部帯水層の地下水を送水可能である
請求項1又は2に記載の地中熱利用システム。 - 前記第一井戸が、
前記第一上部開口部の上方に設けられ、第一ポンプを有する第一貯留部と、
前記第一貯留部と前記第一上部開口部とを接続するモードと、前記第一貯留部と前記第一下部開口部とを接続するモードと、を切り換え可能な第一切換部と、をさらに備え、
前記第二井戸が、
前記第二上部開口部の上方に設けられ、第二ポンプを有する第二貯留部と、
前記第二貯留部と前記第二上部開口部とを接続するモードと、前記第二貯留部と前記第二下部開口部とを接続するモードと、を切り換え可能な第二切換部と、をさらに備える
請求項1から3の何れか一項に記載の地中熱利用システム。 - 前記第一配管は、第一端に前記第一井戸内に延びている第一揚水管を備え、
前記第二配管は、第一端に前記第二井戸内に延びている第二揚水管を備え、
前記第一配管は、第二端に前記第二井戸内に延びている第一注水管を備え、
前記第二配管は、第二端に前記第一井戸内に延びている第二注水管を備え、
前記第一揚水管と前記第二揚水管との各揚水管は、前記上部帯水層から揚水可能に開口している上部揚水口と、前記上部揚水口を開閉可能な第一開閉筒と、前記下部帯水層から揚水可能に開口している下部揚水口と、前記下部揚水口を開閉可能な第二開閉筒と、を備え、
前記第一注水管と前記第二注水管との各注水管は、前記上部帯水層へ注水可能に開口している上部注水口と、前記上部注水口を開閉可能な第三開閉筒と、前記下部帯水層へ注水可能に開口している下部注水口と、前記下部注水口を開閉可能な第四開閉筒と、を備える
請求項1から3の何れか一項に記載の地中熱利用システム。 - 前記第一開閉筒及び前記第二開閉筒の対と、前記第三開閉筒及び前記第四開閉筒の対と、を連動させる連動機構をさらに備える
請求項5に記載の地中熱利用システム。 - 前記第一開閉筒及び前記第二開閉筒の対に吊り下げられている第一錘と、
前記第三開閉筒及び前記第四開閉筒の対に吊り下げられている第二錘と、をさら備える
請求項5に記載の地中熱利用システム。 - 前記第一開閉筒及び前記第二開閉筒の対と、前記第三開閉筒及び前記第四開閉筒の対と、を一緒に吊り上げるリフト機構をさら備える
請求項7に記載の地中熱利用システム。 - 前記第一開閉筒及び前記第二開閉筒の対を摺動可能な第一シリンダと、
前記第三開閉筒及び前記第四開閉筒の対を摺動可能な第二シリンダと、をさら備える
請求項5に記載の地中熱利用システム。 - 前記第一開閉筒を摺動可能な第一駆動機構と、
前記第二開閉筒を摺動可能な第二駆動機構と、
前記第三開閉筒を摺動可能な第三駆動機構と、
前記第四開閉筒を摺動可能な第四駆動機構と、をさらに備える
請求項5に記載の地中熱利用システム。 - 上部帯水層で開口している第一上部開口部と、下部帯水層で開口している第一下部開口部と、を備える第一井戸と、
前記上部帯水層で開口している第二上部開口部と、前記下部帯水層で開口している第二下部開口部と、を備える第二井戸と、
第一配管と、
第二配管と、
前記第一配管に接続されている第一熱交換器と、
前記第二配管に接続されている第二熱交換器と、
を備える地中熱利用システムの運転方法であって、
前記第一配管を介して、前記第一上部開口部から第二上部開口部へ向かって、前記上部帯水層の地下水を送水させるステップと、
前記第二配管を介して、前記第二下部開口部から第一下部開口部へ向かって、前記下部帯水層の地下水を送水させるステップと、を含み、
前記上部帯水層及び前記下部帯水層のうちの一方から送水させる前記地下水として、温水を揚水すると同時に、
前記上部帯水層及び前記下部帯水層のうちの他方から送水させる前記地下水として、冷水を揚水する
地中熱利用システムの運転方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020548586A JP7093937B2 (ja) | 2018-09-20 | 2019-09-19 | 地中熱利用システム及び地中熱利用システムの運転方法 |
US17/276,371 US11859871B2 (en) | 2018-09-20 | 2019-09-19 | Geothermal heat utilization system and operation method for geothermal heat utilization system |
CN201980062179.4A CN112739960B (zh) | 2018-09-20 | 2019-09-19 | 地热利用系统以及地热利用系统的运转方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-175985 | 2018-09-20 | ||
JP2018175985 | 2018-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020059788A1 true WO2020059788A1 (ja) | 2020-03-26 |
Family
ID=69888463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/036722 WO2020059788A1 (ja) | 2018-09-20 | 2019-09-19 | 地中熱利用システム及び地中熱利用システムの運転方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11859871B2 (ja) |
JP (1) | JP7093937B2 (ja) |
CN (1) | CN112739960B (ja) |
WO (1) | WO2020059788A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020026933A (ja) * | 2018-08-14 | 2020-02-20 | 三菱重工サーマルシステムズ株式会社 | 地中熱利用システム及び地中熱利用システムの運転方法 |
JP2020026934A (ja) * | 2018-08-14 | 2020-02-20 | 三菱重工サーマルシステムズ株式会社 | 地中熱利用システム |
WO2022016210A1 (en) * | 2020-07-24 | 2022-01-27 | Good Water Energy Ltd | System and methods for enhanced thermal syphoning |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1513572A (en) * | 1974-05-07 | 1978-06-07 | Technip Cie | Method and apparatus for recovering storing and distributing useful energy |
JPS60162141A (ja) * | 1984-02-03 | 1985-08-23 | Toyota Motor Corp | 地下水循環利用システムにおける地下蓄熱エネルギの利用方法及び装置 |
JP2011021804A (ja) * | 2009-07-15 | 2011-02-03 | Tatsuzo Ooka | 地下水熱交換方法及び地下水熱交換装置 |
JP2014205086A (ja) * | 2013-04-10 | 2014-10-30 | 株式会社竹中工務店 | 汚染土壌の浄化設備、及び汚染土壌の浄化方法 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2461449A (en) * | 1946-10-14 | 1949-02-08 | Muncie Gear Works Inc | Heat pump using deep well for a heat source |
FR2360838A2 (fr) * | 1975-11-13 | 1978-03-03 | Erap | Procede et dispositif de stockage souterrain de chaleur en milieu poreux et permeable |
US4201060A (en) * | 1978-08-24 | 1980-05-06 | Union Oil Company Of California | Geothermal power plant |
US4200152A (en) * | 1979-01-12 | 1980-04-29 | Foster John W | Method for enhancing simultaneous fracturing in the creation of a geothermal reservoir |
US4223729A (en) * | 1979-01-12 | 1980-09-23 | Foster John W | Method for producing a geothermal reservoir in a hot dry rock formation for the recovery of geothermal energy |
US4448237A (en) * | 1980-11-17 | 1984-05-15 | William Riley | System for efficiently exchanging heat with ground water in an aquifer |
JPS60228855A (ja) * | 1984-04-27 | 1985-11-14 | Nitsusaku:Kk | 地下水熱利用装置 |
JP3600992B2 (ja) * | 1996-04-10 | 2004-12-15 | 清水建設株式会社 | 地下水を熱源とするヒートポンプ設備 |
WO2006029112A1 (en) * | 2004-09-08 | 2006-03-16 | Sovani Meksvanh | Solar augmented geothermal energy |
JP2007303695A (ja) * | 2006-05-09 | 2007-11-22 | Misawa Kankyo Gijutsu Kk | 自然熱利用冷暖房設備 |
CN101387458A (zh) * | 2007-09-10 | 2009-03-18 | 李建民 | 一种低品位热能直接利用系统及方法 |
JP2010085074A (ja) * | 2008-09-29 | 2010-04-15 | Tokyo Civil Consultant:Kk | 複熱貯留水槽式空調システム |
JP5341482B2 (ja) | 2008-11-13 | 2013-11-13 | 東邦地水株式会社 | 地下水熱交換方法と地下水熱交換装置 |
JP2011080645A (ja) * | 2009-10-05 | 2011-04-21 | Fujitsu Ltd | 空調制御システム、空調制御方法および空調制御プログラム |
WO2011049675A1 (en) * | 2009-10-22 | 2011-04-28 | Exxonmobil Upstream Research Company | System and method for producing geothermal energy |
US8881805B2 (en) * | 2010-03-22 | 2014-11-11 | Skibo Systems Llc | Systems and methods for an artificial geothermal energy reservoir created using hot dry rock geothermal resources |
KR101021578B1 (ko) * | 2010-04-27 | 2011-03-16 | (주)넥스지오 | 대수층 축열 냉난방 시스템 |
KR101168579B1 (ko) * | 2010-11-26 | 2012-09-03 | 주식회사 호성 | 지열 냉난방 장치용 지열 교환 부재 및 그를 포함하는 지열 냉난방 장치 |
CA2818760A1 (en) * | 2010-12-07 | 2012-06-14 | Joseph John Matula | Geothermal system |
NO332707B1 (no) * | 2011-06-09 | 2012-12-17 | Nest As | Termisk energilager og -anlegg, fremgangsmate og bruk derav |
US9080441B2 (en) * | 2011-11-04 | 2015-07-14 | Exxonmobil Upstream Research Company | Multiple electrical connections to optimize heating for in situ pyrolysis |
SE537267C2 (sv) * | 2012-11-01 | 2015-03-17 | Skanska Sverige Ab | Förfarande för drift av en anordning för lagring av termiskenergi |
FR3015644B1 (fr) * | 2013-12-20 | 2017-03-24 | David Vendeirinho | Dispositif de chauffage reversible solair hybride a double stockages calorifiques |
CN206449937U (zh) * | 2016-12-27 | 2017-08-29 | 滨州市甲力太阳能科技有限公司 | 双水源热泵系统 |
JP6857883B2 (ja) * | 2017-03-31 | 2021-04-14 | 三菱重工サーマルシステムズ株式会社 | 地中熱利用システム及び地中熱利用方法 |
JP6932346B2 (ja) | 2017-03-31 | 2021-09-08 | 三菱重工サーマルシステムズ株式会社 | 地中熱利用システム及び地中熱利用方法 |
EP3399247A1 (en) * | 2017-05-02 | 2018-11-07 | E.ON Sverige AB | District energy distributing system |
CN207065770U (zh) * | 2017-08-07 | 2018-03-02 | 刘建德 | 一种单井多级分段供水/回水地温空调系统 |
JP7261405B2 (ja) | 2018-08-14 | 2023-04-20 | 三菱重工サーマルシステムズ株式会社 | 地中熱利用システム |
JP7173484B2 (ja) | 2018-08-14 | 2022-11-16 | 三菱重工サーマルシステムズ株式会社 | 地中熱利用システム及び地中熱利用システムの運転方法 |
CA3107123A1 (en) * | 2018-08-20 | 2020-02-27 | Quantitative Heat Oy | A system, an arrangement and method for heating and cooling |
US11879317B2 (en) * | 2018-12-21 | 2024-01-23 | Halliburton Energy Services, Inc. | Flow rate optimization during simultaneous multi-well stimulation treatments |
-
2019
- 2019-09-19 WO PCT/JP2019/036722 patent/WO2020059788A1/ja active Application Filing
- 2019-09-19 US US17/276,371 patent/US11859871B2/en active Active
- 2019-09-19 CN CN201980062179.4A patent/CN112739960B/zh active Active
- 2019-09-19 JP JP2020548586A patent/JP7093937B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1513572A (en) * | 1974-05-07 | 1978-06-07 | Technip Cie | Method and apparatus for recovering storing and distributing useful energy |
JPS60162141A (ja) * | 1984-02-03 | 1985-08-23 | Toyota Motor Corp | 地下水循環利用システムにおける地下蓄熱エネルギの利用方法及び装置 |
JP2011021804A (ja) * | 2009-07-15 | 2011-02-03 | Tatsuzo Ooka | 地下水熱交換方法及び地下水熱交換装置 |
JP2014205086A (ja) * | 2013-04-10 | 2014-10-30 | 株式会社竹中工務店 | 汚染土壌の浄化設備、及び汚染土壌の浄化方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020026933A (ja) * | 2018-08-14 | 2020-02-20 | 三菱重工サーマルシステムズ株式会社 | 地中熱利用システム及び地中熱利用システムの運転方法 |
JP2020026934A (ja) * | 2018-08-14 | 2020-02-20 | 三菱重工サーマルシステムズ株式会社 | 地中熱利用システム |
JP7173484B2 (ja) | 2018-08-14 | 2022-11-16 | 三菱重工サーマルシステムズ株式会社 | 地中熱利用システム及び地中熱利用システムの運転方法 |
JP7261405B2 (ja) | 2018-08-14 | 2023-04-20 | 三菱重工サーマルシステムズ株式会社 | 地中熱利用システム |
WO2022016210A1 (en) * | 2020-07-24 | 2022-01-27 | Good Water Energy Ltd | System and methods for enhanced thermal syphoning |
Also Published As
Publication number | Publication date |
---|---|
US11859871B2 (en) | 2024-01-02 |
CN112739960A (zh) | 2021-04-30 |
US20220034552A1 (en) | 2022-02-03 |
CN112739960B (zh) | 2022-07-08 |
JPWO2020059788A1 (ja) | 2021-08-30 |
JP7093937B2 (ja) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020059788A1 (ja) | 地中熱利用システム及び地中熱利用システムの運転方法 | |
RU2524725C2 (ru) | Бурильная установка | |
US8118113B2 (en) | Hydraulic control system for drilling systems | |
NO20120519A1 (no) | Slampumpe med direkte permanentmagnetdrift | |
WO2020036186A1 (ja) | 地中熱利用システム及び地中熱利用システムの運転方法 | |
CN108756726B (zh) | 旋挖钻机动力头控制装置 | |
CN110296111A (zh) | 一种液压马达系统、旋挖钻机及使用方法 | |
KR102400076B1 (ko) | 중장비용 회전 장치 | |
EP2406559B1 (en) | Percussion mole | |
KR100367469B1 (ko) | 피어싱 장치 | |
CN108775299B (zh) | 一种液电混合驱动的旋挖钻机 | |
US4315552A (en) | Raise drill apparatus | |
CN111395947B (zh) | 一种多工艺顶部电驱动钻井装置 | |
CN108050113A (zh) | 一种水平定向钻机动力头旋转防止反转控制系统 | |
CN201288568Y (zh) | 一种采用马达串并联混合驱动的盾构刀盘液压系统 | |
WO2020036196A1 (ja) | 地中熱利用システム | |
CN109611025B (zh) | 室内多功能高钻速成孔设备 | |
CN204511287U (zh) | 一种钻杆双向液压驱动设备 | |
CN114645879B (zh) | 一种主卷扬节能液压系统及旋挖钻机 | |
CN203796167U (zh) | 液压锁紧后支撑钻机 | |
CN201588533U (zh) | 液压式顶部驱动石油钻机电液成套装置 | |
JP3020663U (ja) | 地盤改良機の回転ロッド駆動装置 | |
KR20050031629A (ko) | 함마 및 오거 겸용 구동 시스템 | |
RU61339U1 (ru) | Устройство для закачки жидкости из водоносного пласта скважины в нефтеносный пласт | |
CN118728257A (zh) | 便携式工勘钻机及其液压系统控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19861689 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020548586 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19861689 Country of ref document: EP Kind code of ref document: A1 |