WO2020059540A1 - 流量測定装置 - Google Patents

流量測定装置 Download PDF

Info

Publication number
WO2020059540A1
WO2020059540A1 PCT/JP2019/035187 JP2019035187W WO2020059540A1 WO 2020059540 A1 WO2020059540 A1 WO 2020059540A1 JP 2019035187 W JP2019035187 W JP 2019035187W WO 2020059540 A1 WO2020059540 A1 WO 2020059540A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
opening
flow path
fluid
plate
Prior art date
Application number
PCT/JP2019/035187
Other languages
English (en)
French (fr)
Inventor
誠二 八百幸
和明 上田
翔大 戸田
優介 吉田
健悟 伊藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020059540A1 publication Critical patent/WO2020059540A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow

Definitions

  • the present disclosure relates to a flow measurement device.
  • the fluid to be measured may temporarily flow in the reverse flow direction opposite to the normal main flow direction. It is desirable that the flow rate measuring device attached to such a pipe can accurately measure not only the flow rate of the fluid to be measured flowing in the main flow direction but also the flow rate of the fluid to be measured flowing in the reverse flow direction.
  • the flow measurement device is a housing that is disposed in the conduit, and has a first opening that opens toward an upstream side in the main flow direction, and a first opening that is opposed to the first opening in the main flow direction.
  • a housing provided and provided with a second opening through which the fluid to be measured flows, and a third opening provided at a position different from the second opening and through which the fluid to be measured flows, and provided inside the housing.
  • the second opening is more than the first opening.
  • Comprising a plate-like member disposed have position.
  • the dynamic pressure of the backward flow is transmitted to the detection unit of the second flow path through the second opening. It is suppressed by the plate-like member.
  • the plate-like member prevents foreign matter outside the housing from entering the detection unit through the second opening due to the backflow of the fluid to be measured. Therefore, it is possible to suppress occurrence of a measurement error when the fluid to be measured flows backward in the pipeline.
  • FIG. 1 is a schematic diagram showing a configuration of a combustion system
  • FIG. 2 is a schematic sectional view of a pipe at a mounting position of the flow measuring device
  • FIG. 3 is a schematic plan view of a fixing portion of the flow rate measurement device fixed to the pipeline
  • FIG. 4 is a schematic cross-sectional view of the flow measuring device of the first embodiment taken along line 4-4 shown in FIG.
  • FIG. 5 is a schematic cross-sectional view of the housing of the first embodiment taken along line 5-5 shown in FIG.
  • FIG. 6 is a schematic cross-sectional view illustrating a configuration of a flow measurement device according to the second embodiment.
  • FIG. 7 is a schematic cross-sectional view illustrating a configuration of a flow measurement device according to the third embodiment.
  • FIG. 1 is a schematic diagram showing a configuration of a combustion system
  • FIG. 2 is a schematic sectional view of a pipe at a mounting position of the flow measuring device
  • FIG. 3 is a schematic plan view of a fixing portion
  • FIG. 8 is a schematic sectional view of the housing according to the third embodiment taken along line 8-8 shown in FIG.
  • FIG. 9 is a schematic cross-sectional view illustrating a configuration of a flow measurement device according to the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating a configuration of a flow measurement device according to a fifth embodiment.
  • FIG. 11 is a schematic cross-sectional view illustrating a configuration of a flow measurement device according to the sixth embodiment.
  • FIG. 12 is a schematic cross-sectional view illustrating a configuration of a flow measurement device according to a seventh embodiment.
  • FIG. 13 is a schematic cross-sectional view illustrating a configuration of a flow measurement device according to the eighth embodiment.
  • FIG. 14 is a schematic cross-sectional view illustrating a configuration of a flow measurement device according to a ninth embodiment.
  • FIG. 15 is a schematic cross-sectional view illustrating a configuration of a flow measurement device according to a tenth embodiment.
  • FIG. 16 is a schematic cross-sectional view illustrating the configuration of the flow measurement device according to the eleventh embodiment.
  • the flow measurement device 10A according to the first embodiment is used, for example, in the combustion system 100.
  • the combustion system 100 is mounted on a vehicle or the like and generates a driving force for the vehicle.
  • the combustion system 100 includes an intake unit 110, an internal combustion engine 120, an exhaust unit 130, and an ECU 140.
  • the flow measuring device 10A is included in the suction unit 110.
  • the intake unit 110 includes a pipe line 111, an air cleaner 112, and a throttle valve 113 in addition to the flow measurement device 10A.
  • the pipe 111 is connected to the internal combustion engine 120.
  • the intake air supplied to the internal combustion engine 120 flows through the pipe line 111.
  • Exhaust gas may be mixed with the intake air as described later.
  • the flow direction of the intake air flowing toward the combustion chamber 121 along the central axis of the pipe line 111 in the pipe line 111 is referred to as a “main flow direction”.
  • the flow direction of the intake air that is opposite to the main flow direction is referred to as a “backflow direction”.
  • the air cleaner 112, the flow measuring device 10A, and the throttle valve 113 are attached to the pipeline 111 in this order from the upstream side in the main flow direction.
  • the air cleaner 112 removes dust and dirt contained in the intake air.
  • the flow measuring device 10A measures the flow rate of the intake air.
  • the flow measurement device 10A separately measures a flow rate when the measured fluid flows in the main flow direction in the pipe line 111 and a flow rate when the measured fluid flows in the reverse flow direction.
  • the intake air is the fluid to be measured by the flow measurement device 10A, and the measurement result of the flow measurement device 10A indicates the intake air amount.
  • Throttle valve 113 adjusts the amount of intake air supplied to internal combustion engine 120.
  • the internal combustion engine 120 includes a combustion chamber 121, an intake passage 122, an injector 123, an intake valve 124, a spark plug 125, a piston 126, an exhaust passage 127, and an exhaust valve 128.
  • the combustion chamber 121 is connected to a pipe 111 of the intake section 110 via an intake passage 122.
  • the intake passage 122 is provided with an injector 123 and an intake valve 124.
  • the injector 123 injects and mixes fuel with the intake air flowing from the pipe 111 into the intake passage 122.
  • a mixed gas obtained by mixing fuel with intake air flows into the combustion chamber 121.
  • the intake valve 124 is provided at an outlet of the intake passage 122. The flow of the mixed gas into the combustion chamber 121 is controlled by opening and closing the intake valve 124.
  • the ignition plug 125 ignites the mixed gas flowing into the combustion chamber 121.
  • the piston 126 is pushed and moved by the combustion pressure of the mixed gas in the combustion chamber 121.
  • the combustion chamber 121 is connected to the exhaust part 130 through an exhaust passage 127.
  • An exhaust valve 128 is provided at the entrance of the exhaust passage 127. The discharge of the exhaust gas from the combustion chamber 121 to the exhaust passage 127 is controlled by opening and closing the exhaust valve 128.
  • the exhaust unit 130 includes an exhaust gas line 131 and an air-fuel ratio sensor 132.
  • the exhaust gas channel 131 is connected to the exhaust passage 127 and guides exhaust gas discharged from the combustion chamber 121 to the outside of the vehicle. A part of the exhaust gas may be mixed with the intake air in the pipe 111 through a circulation path (not shown).
  • the air-fuel ratio sensor 132 is attached to the exhaust gas line 131 and detects the amount of oxygen contained in the exhaust gas.
  • the ECU 140 controls the operation of the combustion system 100.
  • the ECU 140 is an arithmetic processing circuit including a microcomputer and a power supply circuit.
  • the microcomputer includes, for example, a processor (hereinafter, also referred to as “CPU”), a storage medium such as a RAM, a ROM, and a flash memory, and an input / output unit.
  • the ECU 140 performs various functions for controlling the combustion system 100 by executing programs and instructions read into the RAM by the CPU. At least a part of the functions of the ECU 140 may be realized by an analog circuit included in the ECU 140.
  • the ECU 140 uses, for example, measurement results obtained from the flow rate measuring device 10A, the air-fuel ratio sensor 132, a combustion pressure sensor (not shown), and the like, the opening degree of the throttle valve 113 and the fuel injection injected from the injector 123. Control the amount. Further, the ECU 140 controls opening and closing of the intake valve 124 and the exhaust valve 128 and ignition of the mixed gas by the ignition plug 125. In addition, the ECU 140 may control the EGR amount. As described above, the flow rate measuring device 10A can separately measure the flow rate when the measured fluid flows in the main flow direction and the flow rate when flowing in the reverse flow direction. The change in direction can be appropriately reflected in the above-described control.
  • FIG. 2 and FIG. 2 and 3 show X, Y, and Z axes orthogonal to each other.
  • the positive directions of the X axis, the Y axis, and the Z axis are referred to as the X axis direction, the Y axis direction, and the Z axis direction, and the negative directions are referred to as the -X axis direction, -Y
  • the directions are referred to as the axial direction and the ⁇ Z-axis direction.
  • the X-axis direction is orthogonal to the central axis of the conduit 111 at the mounting position of the flow measuring device 10A.
  • the X-axis direction faces right when viewed in the Y-axis direction with the Z-axis direction facing downward.
  • the Y-axis direction is parallel to the central axis of the conduit 111 at the mounting position of the flow measuring device 10A, and coincides with the main flow direction of the fluid to be measured at the mounting position of the flow measuring device 10A.
  • the Z-axis direction coincides with the direction in which the main body 20 of the flow rate measuring device 10A is inserted into the conduit 111.
  • the X axis, the Y axis, and the Z axis are appropriately illustrated in other reference figures.
  • the flow measuring device 10A includes a main body 20 disposed in a conduit 111 and exposed to a fluid to be measured, a fixing portion 30 fixed to the conduit 111, and a connector 40 disposed outside the conduit 111. And.
  • the main body 20 is inserted into the conduit 111 in the Z-axis direction through an opening 111o provided in the conduit 111. Details of the configuration of the main body 20 will be described later.
  • the fixing portion 30 is connected to the base end portion 21 of the main body 20 on the side of the opening 111o of the conduit 111.
  • the fixing portion 30 By fixing the fixing portion 30 to the opening 111o of the conduit 111, the distal end portion 22 in the insertion direction of the main body 20 is held at a position separated from the inner wall surface of the conduit 111.
  • the flow measurement device 10A is attached to the conduit 111 such that the base end 21 of the main body 20 is on the upper side in the direction of gravity and the distal end 22 is on the lower side in the direction of gravity.
  • the insertion direction of the main body 20 indicated as the Z-axis direction is a direction from the upper side to the lower side in the direction of gravity. Note that the insertion direction of the main body 20 is not limited to a direction parallel to the direction of gravity, and may be a direction oblique to the direction of gravity and directed downward from the upper side in the direction of gravity.
  • the fixing part 30 includes a sealing part 32 and a flange 33.
  • the sealing portion 32 hermetically seals the opening 111o of the conduit 111.
  • the outer peripheral shape of the sealing portion 32 substantially matches the opening shape of the opening 111o.
  • An O-ring 32r is fitted on the outer periphery of the sealing portion 32 to be in airtight contact with the inner peripheral surface of the opening 111o. In FIG. 4, the O-ring 32r is not shown for convenience.
  • a flange 33 is provided on the ⁇ Z axis direction side of the sealing portion 32.
  • the flange 33 is a flat plate-shaped portion extending along the X-axis direction and the Y-axis direction.
  • the flange 33 is fastened to the conduit 111 by a bolt 34.
  • the flange 33 has a bolt hole into which the bolt 34 is inserted.
  • a boss 111b shown in FIG. 2 for receiving the bolt 34 is provided at a position corresponding to the bolt hole of the pipe 111. In FIG. 3, for convenience, the position of the boss 111b is illustrated by a broken line.
  • the connector portion 40 is provided at a position extending from the flange 33 in the X-axis direction. As shown in FIG. 2, the connector portion 40 is held at a position separated from the outer peripheral surface of the conduit 111 by the flange 33.
  • the connector section 40 is electrically connected to a detection section 75 shown in FIG. 4 disposed in the main body section 20 via a signal line (not shown).
  • the connector unit 40 is electrically connected to the ECU 140 via a cable (not shown), and outputs a signal indicating a measurement result to the ECU 140.
  • the flow measurement device 10A further includes a temperature sensor 41.
  • the temperature sensor 41 is fixed to the sealing portion 32, and extends from the sealing portion 32 in the Z-axis direction parallel to the main body portion 20 at a position separated from the main body portion 20 in the X-axis direction.
  • the temperature sensor 41 measures the temperature of the fluid to be measured flowing through the pipeline 111 and outputs the measurement result to the ECU 140 through the connector unit 40. In other embodiments, the temperature sensor 41 may be omitted.
  • the main body 20 includes a hollow housing 50 having an internal space.
  • the housing 50 has a flat rectangular parallelepiped shape.
  • the housing 50 has a first side wall 51 and a second side wall 52 facing each other in a direction intersecting the Y-axis direction which is the main flow direction of the fluid to be measured in the pipeline 111. ing.
  • the first side wall 51 and the second side wall 52 face each other in the X-axis direction and the ⁇ X-axis direction.
  • the first side wall 51 is located on the ⁇ X axis direction side
  • the second side wall 52 is located on the X axis direction side. It is located in.
  • the first side wall 51 and the second side wall 52 are arranged as a whole along the Y-axis direction which is the main flow direction of the fluid to be measured in the pipeline 111.
  • the posture of the subject is not limited to a posture parallel to the target direction.
  • the subject may have a posture having a certain inclination angle with respect to the target direction.
  • the subject may have a posture inclined at an angle of about 10 ° or less with respect to a target direction.
  • the whole of the subject does not have to be linearly along the target direction. Therefore, for example, even if a part or the whole of the main body is curved or uneven, it is sufficient if the main body is viewed as a whole, generally along the target direction.
  • the housing 50 has a front wall 53 and a rear wall 54. As shown in FIGS. 2 and 3, the front wall portion 53 and the rear wall portion 54 are located between the first side wall portion 51 and the second side wall portion 52, and the first side wall portion 51 and the second side wall portion are provided. Cross each of 52. As shown in FIG. 4, the length of the housing 50 in the Z-axis direction is larger than the length in the Y-axis direction. As shown in FIG. 5, the length of the housing 50 in the X-axis direction is smaller than the length in the Y-axis direction.
  • the housing 50 has an axial protection projection 42 projecting in the X-axis direction from a corner between the front wall 53 and the second side wall 52.
  • the protection projection 42 may be omitted.
  • the housing 50 is provided with a first opening 55 for taking the fluid to be measured flowing in the main flow direction into the housing 50.
  • the first opening 55 opens toward the ⁇ Y-axis direction, that is, the upstream side in the main flow direction of the fluid to be measured in the pipe 111 when the main body 20 is fixed to the pipe 111 by the fixing unit 30. I do.
  • the first opening 55 is open in the front wall 53.
  • the first opening 55 is provided at an end of the front wall 53 in the Z-axis direction.
  • the first opening 55 is desirably provided so as to be arranged at a position near the central axis of the conduit 111.
  • the housing 50 has a second opening 56 at a position facing the first opening 55 in the main flow direction of the fluid to be measured.
  • the second opening 56 is provided in the rear wall 54.
  • the second opening 56 functions as a discharge port for discharging foreign substances contained in the fluid to be measured taken in from the first opening 55 to the outside of the housing 50, as described later.
  • the opening area of the second opening 56 is substantially equal to the opening area of the first opening 55.
  • the opening area of the second opening 56 means an area of an opening region defined by an outer periphery of the second opening 56 in a state where a later-described plate-shaped member 81 is not arranged.
  • substantially equal means that a certain difference is allowed.
  • the “certain difference” may be, for example, a manufacturing error or a tolerance, or may be a difference of about ⁇ 5%.
  • a third opening 57 through which the fluid to be measured flows is provided at a position different from the second opening 56 in the housing 50.
  • the third opening 57 is connected to a second channel 70 described later.
  • the third opening 57 is opened in the first sidewall portion 51 in the ⁇ X axis direction.
  • first flow path 61 connecting the first opening 55 and the second opening 56 is provided inside the housing 50.
  • the first flow path 61 extends substantially linearly from the first opening 55 along the Y-axis direction.
  • a second flow path 70 branched from the first flow path 61 is provided inside the housing 50.
  • the second flow path 70 is branched from the first flow path 61 in the ⁇ Z axis direction side.
  • the second flow path 70 branches diagonally from the first flow path 61 toward the rear wall 54 and extends linearly in the ⁇ Z-axis direction toward the base end 21 of the main body 20. It has an inlet channel 70a.
  • the second flow passage 70 has an intermediate flow passage 70b connected to the inlet flow passage 70a and extending in the ⁇ Y-axis direction from the inlet flow passage 70a toward the front wall 53. Further, the second flow path 70 extends linearly in the Z-axis direction from the end on the ⁇ Y direction side of the intermediate flow path 70 b toward the distal end portion 22 of the main body section 20 and before the first flow path 61. It has an outlet-side channel 70c that extends. The outlet side flow passage 70c is connected to the third opening 57 that is open in the first side wall 51.
  • a detecting section 75 for detecting the flow rate of the fluid to be measured is provided in the middle of the second flow path 70.
  • the detection section 75 is provided in the intermediate flow path 70b.
  • the detection unit 75 detects the flow rate of the fluid to be measured by the temperature difference method.
  • the detection unit 75 has a heater (not shown) for heating the fluid to be measured, and a plurality of temperature sensors (not shown) arranged along the flow direction of the fluid to be measured.
  • the temperature sensor is formed of, for example, a temperature-sensitive resistor, and the heater is formed of, for example, a heating resistor.
  • the temperature sensors are arranged on both the upstream side and the downstream side of the heater.
  • the detector 75 detects the flow rate of the fluid to be measured from the temperature difference between the upstream side and the downstream side of the heater.
  • the detection unit 75 outputs the flow rate of the fluid to be measured flowing in the direction from the first flow path 61 to the third opening 57 in the second flow path 70 as a forward flow rate.
  • the detection unit 75 outputs the flow rate of the fluid to be measured when the fluid to be measured flows in the direction from the third opening 57 to the first flow path 61 in the second flow path 70 as a reverse flow rate.
  • the detection unit 75 of the first embodiment that employs the above-described temperature difference method determines whether the flow direction of the fluid to be measured in the second flow path 70 is a forward flow direction or a reverse flow direction, depending on the direction of the temperature gradient. Can be determined.
  • a plate-like member 81 is arranged in a part of the first flow path 61.
  • the plate-like member 81 is disposed at an end of the first flow path 61 on the second opening 56 side.
  • the plate-shaped member 81 is disposed at the downstream channel portion 63 of the first channel 61.
  • the downstream channel portion 63 is a portion of the first channel located downstream of the open end 71 of the second channel 70 in the first channel 61 in the main flow direction of the fluid to be measured. is there.
  • the plate-shaped member 81 is disposed over the entire downstream channel portion 63 in the Y-axis direction, and the end on the Y-axis direction side is located in the second opening 56.
  • the plate member 81 has a flat plate shape and is arranged along the X-axis direction and the Y-axis direction. As shown in FIG. 5, the plate-shaped member 81 is arranged in the downstream-side channel portion 63 over the X-axis direction, and connects the first side wall 51 and the second side wall 52. The function of the plate member 81 will be described later.
  • the flow of the fluid to be measured in the housing 50 of the flow measuring device 10A will be described.
  • the fluid to be measured is introduced into the first flow path 61 in the housing 50 through the first opening 55.
  • the fluid to be measured flowing in the main flow direction through the pipe line 111 can be smoothly introduced into the housing 50.
  • the fluid to be measured introduced from the first opening 55 flows in the Y-axis direction along the first flow path 61, and a part of the fluid flows into the second flow path 70 in which the detection unit 75 is disposed.
  • Foreign matter having a mass heavier than the molecules of the fluid to be measured such as dust and water contained in the fluid to be measured, is guided to the second opening 56 together with the fluid to be measured flowing along the first flow path 61, and the housing is left as it is. It is discharged to the outside of 50.
  • the foreign substance is separated, and the fluid to be measured that has flowed into the second flow path 70 flows out of the housing 50 from the third opening 57 provided at the end of the second flow path 70.
  • the detector 75 measures the flow rate of the fluid to be measured passing through the second flow path 70.
  • the detection unit 75 can accurately measure the flow rate of the fluid to be measured from which the foreign matter has been separated.
  • the second flow path 70 is located above the first flow path 61 in the direction of gravity, the entry of foreign matter into the second flow path 70 is suppressed by the action of gravity. Further, in the first embodiment, as described above, since the opening areas of the first opening 55 and the second opening 56 are substantially equal, foreign substances are more easily discharged from the second opening 56.
  • the fluid to be measured in the conduit 111 flows into the outlet side flow passage 70c of the second flow passage 70 through the third opening 57, and passes through the intermediate flow passage 70b and the outlet flow passage 70c to the first flow passage. It flows to the road 61.
  • the detector 75 measures the flow rate of the fluid to be measured flowing through the second flow path 70 flowing from the third opening 57.
  • the third opening 57 is provided in the first side wall 51 and opens in a direction intersecting with the flow direction of the fluid to be measured in the pipeline 111. Therefore, it is suppressed that a foreign substance having a higher mass than the gas molecules and exerting a large inertia force flows into the third opening 57 together with the measured fluid flowing backward.
  • the plate member 81 is disposed near the second opening 56 of the first flow channel 61.
  • the plate-like member 81 functions as a baffle plate against the backflow, so that the fluid to be measured flowing into the first flow path 61 inside the housing 50 through the second opening 56 is formed.
  • the transmission of the backflow dynamic pressure to the second flow path 70 is suppressed. Therefore, such a reverse dynamic pressure acts on the flow of the fluid to be measured in the second flow path 70 from the third opening 57 to the first flow path 61, and an unexpected vortex is generated near the detection unit 75. The occurrence is suppressed. Therefore, occurrence of a measurement error of the detection unit 75 is suppressed.
  • the foreign matter that has just been discharged from the second opening 56 may return into the housing 50 due to the reverse flow of the fluid to be measured.
  • the plate-like member 81 functions as a baffle plate, foreign matter that has returned into the housing 50 through the second opening 56 passes through the second flow path 61 through the opening end 71 opened in the first flow path 61. 70 is suppressed. Therefore, occurrence of a measurement error due to such foreign matter is suppressed.
  • the plate-like member 81 is arranged along the X-axis direction and the Y-axis direction, and has a surface facing the Z-axis direction. Therefore, transmission of a backflow dynamic pressure from the ⁇ Z axis direction side and foreign matter can be more effectively blocked.
  • the reverse flow of the fluid to be measured flowing into the first flow path 61 through the second opening 56 is guided by the plate member 81 so as to flow along the ⁇ Y-axis direction. Therefore, the fluid to be measured and the foreign matter flowing into the first flow path 61 are suppressed from flowing into the second flow path 70 on the ⁇ Z-axis direction side of the first flow path 61. Further, if the plate-shaped member 81 is arranged along the main flow direction, the flow of the measured fluid in the first flow path 61 when the measured fluid is flowing in the main flow direction is smoothed. The discharge property of the foreign matter through the two openings 56 is improved.
  • the first channel 61 is disposed only in the downstream channel portion 63 of the first channel 61, an increase in the channel resistance of the first channel 61 is suppressed.
  • the end of the plate-shaped member 81 on the Y axis direction side is located in the second opening 56, does not extend outside the housing 50, and the main body of the flow measurement device 10A
  • the unit 20 is configured to be small.
  • the flow measurement device 10A of the first embodiment the occurrence of a measurement error when a backflow occurs in the fluid to be measured is suppressed by the plate member 81 disposed in the first flow path 61. ing.
  • the various functions and effects described in the first embodiment can be achieved.
  • Second embodiment Please refer to FIG.
  • a plurality of plate members 81 are arranged in the Z-axis direction in the downstream flow path portion 63 of the first flow path 61.
  • Each plate member 81 is arranged in parallel.
  • the amount of the plate-like member 81 functioning as a baffle plate is increased, and the transmission of the reverse dynamic pressure to the second flow path 70 through the opening end 71 and the entry of foreign matter are performed. Is further suppressed.
  • the plate members 81 are arranged in parallel, an increase in the flow path resistance of the first flow path 61 due to the provision of the plurality of plate members 81 is suppressed.
  • the flow measuring device 10C according to the third embodiment has one plate-shaped member 82 installed at a different arrangement angle from the plate-shaped member 81 according to the first embodiment.
  • the plate-like member 82 of the third embodiment is substantially the same as the plate-like member 81 of the first embodiment, except that the plate-like member 81 is disposed along the Y-axis direction and the Z-axis direction in the downstream flow path portion 63. .
  • the plate-like member 82 is bridged in the Z-axis direction at the downstream flow path portion 63.
  • the plate-like member 82 since the plate-like member 82 has a surface facing the X-axis direction and the ⁇ X-axis direction, the plate-like member 82 has the surface in the X-axis direction and the ⁇ X-axis direction. It is possible to effectively block the transmission of the backflow dynamic pressure in the direction from the side toward the opening end 71 of the second flow path 70 and the entry of foreign matter.
  • a plurality of the plate-like members 82 described in the third embodiment are arranged in the downstream channel portion 63 of the first channel 61.
  • the plurality of plate members 82 are arranged in parallel in the X-axis direction. According to the flow rate measuring device 10D of the fourth embodiment, as the number of the plate-like members 82 functioning as baffles increases, the transmission of the backflow dynamic pressure to the second flow path 70 through the opening end 71 and the entry of foreign matter. Is further suppressed. Further, since the plate members 82 are arranged in parallel, an increase in the flow resistance of the first flow path 61 due to the provision of the plurality of plate members 82 is suppressed.
  • the flow measuring device 10E of the fifth embodiment has one plate member 83 installed at a different arrangement angle from the plate member 81 of the first embodiment.
  • the plate-shaped member 83 of the fifth embodiment is configured such that the first surface 83a faces the ⁇ Z-axis direction and the ⁇ Y-axis direction, and the second surface 83b faces the Z-axis and the Y-axis direction. It is arranged in the downstream side channel portion 63 in a state inclined with respect to the main flow direction of the fluid to be measured. According to the flow rate measuring device 10E, the dynamic pressure and the foreign matter of the fluid to be measured flowing in the reverse flow direction can be received by the inclined surface 83b of the plate member 83 facing the second opening 56 side.
  • the transmission of the dynamic pressure to the open end 71 of the second flow path 70 and the entry of foreign matter into the second flow path 70 through the open end 71 are suppressed.
  • the fluid to be measured and the foreign matter flowing backward from the second opening 56 into the first flow path 61 flow along the inclined surface 83b of the plate-like member 83 and open at the open end of the second flow path 70. It is guided in a direction away from the part 71. Therefore, when the fluid to be measured flows backward in the pipeline 111, generation of a vortex and entry of foreign matter into the second flow path 70 are suppressed, and generation of a measurement error is suppressed.
  • a plurality of plate members 83 are arranged in parallel in the Z-axis direction in the downstream flow path portion 63 of the first flow path 61 like the plate members 81 of the second embodiment. May be.
  • the flow measurement device 10G according to the sixth embodiment includes a plate member 85 according to the sixth embodiment, instead of the plate member 81 according to the first embodiment.
  • the configuration of the plate-like member 85 of the sixth embodiment is the same as that of the plate of the first embodiment except that an end portion on the Y-axis direction side has an inclined portion 85t bent obliquely on the ⁇ Z-axis direction side. It is almost the same as the shape member 81.
  • the inclined portion 85t has an inclined surface 85a facing the ⁇ Z direction side and the ⁇ Y axis direction side, and an inclined surface 85b facing the Z direction side and the Y axis direction side.
  • the inclined surface 85b of the inclined portion 85t facing the second opening 56 can receive the dynamic pressure and the foreign matter of the fluid to be measured flowing in the reverse flow direction. Therefore, transmission of dynamic pressure to the opening end 71 of the second flow path 70 and entry of foreign matter are suppressed. Further, due to the inclined surface 85b of the inclined portion 85t, the reversely-measured fluid and foreign matter flowing into the first flow path 61 from the second opening 56 flow to the region on the Z-axis direction side of the plate-like member 85 in the second direction. It is guided in a direction away from the open end 71 of the path 70.
  • a plurality of plate-like members 85 are arranged in parallel in the Z-axis direction in the downstream-side flow path portion 63 of the first flow path 61 like the plate-like member 81 of the second embodiment. May be.
  • the flow measuring device 10H of the seventh embodiment includes a plate member 86 of the seventh embodiment instead of the plate member 81 of the first embodiment.
  • the configuration of the plate-shaped member 86 of the seventh embodiment is substantially the same as the plate-shaped member 81 of the first embodiment, except that a portion closer to the Y-axis direction is curved so as to be located on the ⁇ Z-axis side. It is.
  • the plate-shaped member 86 has an inner curved surface 86a facing the ⁇ Y axis direction side and an outer curved surface 86b facing the Y axis direction side.
  • curved surfaces 86a and 86b can be interpreted as inclined surfaces arranged obliquely to the main flow direction of the fluid to be measured.
  • the dynamic pressure and the foreign matter of the fluid to be measured flowing backward can be received by the outer peripheral curved surface 86b on the second opening 56 side.
  • the fluid to be measured and the foreign matter contained therein flowing backward can be guided in a direction away from the open end 71 of the second flow path 70 along the outer peripheral side curved surface 86b. Therefore, when the fluid to be measured flows backward in the pipeline 111, generation of turbulence and entry of foreign matter into the second flow path 70 are suppressed, and generation of a measurement error is suppressed.
  • a plurality of plate members 86 may be arranged in parallel in the Z-axis direction at the downstream flow path portion 63 as in the plate member 81 of the second embodiment.
  • the configuration of the plate-like member 87 provided in the flow measurement device 10I of the eighth embodiment is such that an extension portion 87e that extends from the downstream flow passage portion 63 of the first flow passage 61 to a region on the ⁇ Y axis direction side is added. Except for this point, it is almost the same as the plate member 83 of the fifth embodiment.
  • the extension portion 87e is disposed at a position facing the open end 71 of the second flow path 70 in the Z-axis direction and the ⁇ Z-axis direction.
  • the plate-like member 87 is arranged from the region on the Y axis direction side of the first opening 55 to the second opening 56. That is, the plate member 87 is not disposed over the entire first flow path 61 in the main flow direction of the measured fluid, but is disposed on a part of the first flow path 61 in the main flow direction of the measured fluid. .
  • the plate-like member 87 has, like the plate-like member 83 of the fifth embodiment, an inclined surface 87a facing the ⁇ Y-axis direction side of the plate-like member 87 and a Y-axis direction. Inclined surface 87b facing the side.
  • the inclined surface 87b faces the second opening 56 side, and can provide the same operation and effect as the inclined surface 83b of the plate-like member 83 described in the fifth embodiment.
  • the extension portion 87e of the plate-like member 87 extends below the open end 71 of the second flow path 70, and faces the open end 71 in the Z-axis direction and the -Z-axis direction.
  • the fluid to be measured and foreign substances flowing in the region on the Z direction side from the plate-like member 87 can be prevented from entering the second flow path 70 by the extended portion 87e.
  • foreign matter contained in the fluid to be measured flowing in the mainstream direction to the second opening 56 by the inclined surface 87a of the extension portion 87e facing the opening end 71 of the second flow path 70. Can be induced.
  • a plurality of plate members 87 may be arranged in parallel in the Z-axis direction. In this case, the length of each of the plate members 87 in the Y-axis direction may be partially or entirely different.
  • the configuration of the plate member 88 included in the flow rate measuring device 10J of the ninth embodiment is the same as that of the eighth embodiment except that an end portion on the Y axis direction side has an extension portion 88ex extending from the second opening 56. It is almost the same as the plate-like member 87 in the form.
  • the plate member 88 has an inclined surface 88a facing the ⁇ Y axis direction side of the plate member 87 and an inclined surface 88b facing the Y axis direction side. Further, an extension portion 88e extending from the downstream channel portion 63 of the first channel 61 to a region on the ⁇ Y axis direction side is provided.
  • the inclined surface 88b and the extended portion 88e facing the second opening 56 can achieve the same operation and effect as the inclined surface 87b and the extended portion 87e of the plate-like member 87 described in the eighth embodiment.
  • the dynamic pressure and the foreign matter of the fluid to be measured flowing backward flow into the opening end 71 of the second flow path 70 by the amount that the plate-shaped member 88 has the extension portion 88ex. Is further suppressed.
  • a plurality of plate members 88 may be arranged in parallel in the Z-axis direction. In this case, the length of each of the plate members 87 in the Y-axis direction may be partially or entirely different.
  • the configuration of the plate-like member 89 included in the flow measurement device 10K of the tenth embodiment is such that the length in the Y-axis direction is such that the end on the Y-axis direction side is located on the ⁇ Y-axis direction side of the second opening 56. Except for the shortening, it is almost the same as the plate-like member 87 of the eighth embodiment.
  • the plate-like member 89 has an inclined surface 89a facing the ⁇ Y axis direction side and an inclined surface 89b facing the Y axis direction side. Further, an extension portion 89e extending from the downstream channel portion 63 of the first channel 61 to a region on the ⁇ Y axis direction side is provided.
  • the inclined surface 89b and the extended portion 89e facing the second opening 56 can provide the same operational effects as the inclined surface 87b and the extended portion 87e of the plate-like member 87 described in the eighth embodiment.
  • a plurality of plate members 89 may be arranged in parallel in the Z-axis direction. In this case, the length of each of the plate members 89 in the Y-axis direction may be partially or entirely different.
  • the configuration of the plate member 90 included in the flow rate measuring device 10L of the eleventh embodiment is such that the end portion on the ⁇ Y axis direction side extends from the first opening 55 to the outside of the housing 50, so that the Except for the extension, it is almost the same as the plate-like member 89 of the tenth embodiment.
  • the plate-like member 90 has an inclined surface 90a facing the ⁇ Y-axis direction side and an inclined surface 90b facing the Y-axis direction side.
  • the plate member 90 has a portion facing the open end 71 of the second flow path 70 in the Z-axis direction and the ⁇ Z-axis direction.
  • the flow rate measuring device 10L of the eleventh embodiment when the fluid to be measured flows in the main flow direction, the foreign matter contained in the fluid to be measured is caused to flow along the ⁇ Z-axis side inclined surface 90a on the downstream side. It can be guided to the road site 63. Therefore, entry of foreign matter into the second flow path 70 is suppressed. Further, when the fluid to be measured flows in the reverse flow direction, the fluid to be measured can be guided toward the first opening 55 along the inclined surface 90b on the Z axis direction side. Therefore, the measured fluid flowing backward is prevented from flowing into the open end 71 of the second flow path 70.
  • a plurality of plate members 90 may be arranged in parallel in the Z-axis direction. In this case, the length in the Y-axis direction of each of the plate members 90 may be partially or entirely different.
  • a plate-shaped member that is disposed in a part of the first flow path 61 in the main flow direction and at least a part is disposed in the first flow path 61 at a position closer to the second opening 56 than the first opening 55.
  • the plate-shaped member may be disposed, for example, obliquely with respect to the X-axis direction, or may have a concave portion, a convex portion, a slit, and the like. Further, the configurations of the plate members 81 to 90 of the above embodiments can be appropriately combined.
  • the plate member 81 of the first embodiment and the plate member 82 of the second embodiment may be arranged in the first flow path 61 in a state where they intersect with each other. Further, both the plate-like member 81 of the first embodiment and the plate-like member 85 of the sixth embodiment may be arranged in the downstream flow path portion 63 of the first flow path 61.
  • the open end 71 of the second flow path 70 and the Z, like the extension 87e of the plate member 87 of the eighth embodiment, are provided at the end of the plate member 85 of the sixth embodiment on the ⁇ Y axis direction side. Extension portions that are opposed in the axial direction may be provided.
  • the housing 50 may have a shape other than a rectangular parallelepiped shape.
  • the housing 50 may have an elliptical column shape having an elliptical cross section whose longitudinal direction is the Y-axis direction.
  • the first side wall 51 may be replaced on the X axis direction side and the second side wall 52 may be replaced on the ⁇ X axis direction side.
  • the detection unit 75 may use a flow rate sensor of another type instead of the temperature difference type.
  • a Coriolis-type or Karman-vortex-type sensor may be employed.
  • the detection unit 75 does not have to distinguish and detect the flow rate in the forward flow direction and the flow rate in the reverse flow direction.
  • the flow rate measuring devices 10A to 10E and 10G to 10L of the above embodiments may be attached to a portion other than the pipe 111 of the combustion system 100 mounted on the vehicle.
  • the flow measurement devices 10A to 10E and 10G to 10L of the embodiments may be attached to, for example, a pipe that supplies a reaction gas used for power generation to a fuel cell in a fuel cell system.
  • the technology of the present disclosure can be realized in various forms other than the flow measurement device.
  • the present invention can be realized in the form of a housing used for a flow measurement device, a flow channel structure in the flow measurement device, a flow measurement system, and the like.

Abstract

流量測定装置10Aは、被計測流体の主流方向Yの上流側に向かって開口する第1開口55と、前記主流方向において前記第1開口と対向する位置に設けられる第2開口56と、前記第2開口とは異なる位置に設けられる第3開口57と、を有するハウジング50と、前記第1開口と前記第2開口とを接続する第1流路61と、前記第1流路から分岐し、前記第1流路と前記第3開口とを接続する第2流路70と、前記第2流路に配置され、前記第2流路を流れる前記被計測流体の流量を検出する検出部75と、前記主流方向において前記第1流路の一部に配置され、少なくとも一部が前記第1流路において前記第1開口よりも前記第2開口に近い位置に配置される板状部材81と、を備える。

Description

流量測定装置 関連出願の相互参照
 本願は、2018年9月19日に出願された特許出願番号2018-174663号に基づくものであって、その優先権を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
 本開示は、流量測定装置に関する。
 従来から、管路を流れる被計測流体の流量を計測する種々の流量測定装置が提案されている。例えば、下記の特許文献1には、被計測流体をハウジング内に取り込み、ハウジング内の流路の分岐構造によって被計測流体から異物が分離させ、異物が分離された被計測流体の流量を検出部において測定する流量測定装置が開示されている。そうした流量計測装置では、通常、ハウジングに、被計測流体から分離させた異物を排出させるための開口と、検出部を通過した被計測流体をハウジングの外部へと排出させるための開口と、が設けられる。
特開2017-190948号公報
 例えば、内燃機関に接続された吸気配管などの管路では、被計測流体が、一時的に、通常の主流方向とは反対の逆流方向に流れる場合がある。そうした管路に取り付けられる流量計測装置は、主流方向に流れる被計測流体の流量のみならず、逆流方向に流れる被計測流体の流量も精度よく計測できることが望ましい。
 しかしながら、上記の特許文献1のように、ハウジング内の流路に異物を分離させるための分岐構造を設けている場合、被計測流体が逆流したときに、異物を排出するための開口から検出部の方へと逆流の動圧が伝達される可能性がある。こうした逆流の動圧は、検出部付近で予期せぬ渦を生じさせ、検出部に計測誤差を生じさせる原因となる。また、被計測流体が逆流すると、被計測流体が主流方向に流れているときにハウジング外部に排出された異物が、被計測流体の逆流によって、その異物を排出した開口の方へと押し返されて、検出部まで進入し、計測誤差を生じさせる可能性もある。管路において被計測流体が逆流するときの流量測定装置における計測誤差の発生を抑制することについては依然として改良の余地がある。
 本開示の技術は、以下の形態として実現することが可能である。
 本開示の一形態は、管路において被計測流体が、主流方向に流れるときの流量と、前記主流方向とは反対の逆流方向に流れるときの流量と、をそれぞれ測定する流量測定装置として提供される。この形態の流量測定装置は、前記管路内に配置されるハウジングであって、前記主流方向の上流側に向かって開口する第1開口と、前記主流方向において前記第1開口と対向する位置に設けられ、前記被計測流体が流通する第2開口と、前記第2開口とは異なる位置に設けられ、前記被計測流体が流通する第3開口と、を有するハウジングと、前記ハウジングの内部に設けられ、前記第1開口と前記第2開口とを接続する第1流路と、前記第1流路から分岐し、前記第1流路と前記第3開口とを接続する第2流路と、前記第2流路に配置され、前記第2流路を流れる前記被計測流体の流量を検出する検出部と、前記主流方向において前記第1流路の一部に配置され、少なくとも一部が前記第1流路において前記第1開口よりも前記第2開口に近い位置に配置される板状部材と、を備える。
 この形態の流量測定装置によれば、管路において被計測流体が逆流したときに、その逆流の動圧が、第2開口を通じて第2流路の検出部の方へと伝達されることが、板状部材によって抑制される。また、ハウジング外部の異物が、被計測流体の逆流によって第2開口を通じて検出部の方へと入り込むことが、板状部材によって抑制される。よって、管路において被計測流体が逆流したときの計測誤差の発生を抑制することができる。
図1は、燃焼システムの構成を示す概略図であり、 図2は、流量測定装置の取り付け位置における管路の概略断面図であり、 図3は、管路に固定された流量測定装置の固定部の概略平面図であり、 図4は、図2に示す4-4切断における第1実施形態の流量測定装置の概略断面図であり、 図5は、図4に示す5-5切断における第1実施形態のハウジングの概略断面図であり、 図6は、第2実施形態における流量測定装置の構成を示す概略断面図であり、 図7は、第3実施形態における流量測定装置の構成を示す概略断面図であり、 図8は、図7に示す8-8切断における第3実施形態のハウジングの概略断面図であり、 図9は、第4実施形態における流量測定装置の構成を示す概略断面図であり、 図10は、第5実施形態における流量測定装置の構成を示す概略断面図であり、 図11は、第6実施形態における流量測定装置の構成を示す概略断面図であり、 図12は、第7実施形態における流量測定装置の構成を示す概略断面図であり、 図13は、第8実施形態における流量測定装置の構成を示す概略断面図であり、 図14は、第9実施形態における流量測定装置の構成を示す概略断面図であり、 図15は、第10実施形態における流量測定装置の構成を示す概略断面図であり、 図16は、第11実施形態における流量測定装置の構成を示す概略断面図である。
1.第1実施形態:
 図1を参照する。第1実施形態における流量測定装置10Aは、例えば、燃焼システム100において用いられる。燃焼システム100は、車両等に搭載されて当該車両の駆動力を発生する。燃焼システム100は、吸気部110と、内燃機関120と、排気部130と、ECU140と、を備える。流量測定装置10Aは吸気部110に含まれる。
 吸気部110は、流量測定装置10Aの他に、管路111と、エアクリーナ112と、スロットルバルブ113と、を備える。管路111は、内燃機関120に接続されている。管路111には、内燃機関120に供給される吸入空気が流れる。吸入空気には、後述するように排気ガスが混合されていてもよい。以下では、管路111において管路111の中心軸に沿った燃焼室121に向かう吸入空気の流れ方向を「主流方向」と呼ぶ。また、主流方向とは逆の吸入空気の流れ方向を「逆流方向」と呼ぶ。
 エアクリーナ112と、流量測定装置10Aと、スロットルバルブ113とは、主流方向の上流側から、この順で、管路111に取り付けられている。エアクリーナ112は、吸入空気に含まれる塵や埃を除去する。流量測定装置10Aは、吸入空気の流量を計測する。流量測定装置10Aは、被計測流体が管路111において主流方向に流れるときの流量と、逆流方向に流れるときの流量と、をそれぞれ区別して計測する。燃焼システム100では、吸入空気が流量測定装置10Aの被計測流体であり、流量測定装置10Aの測定結果は吸気量を表す。スロットルバルブ113は、内燃機関120に供給される吸気量を調整する。
 内燃機関120は、燃焼室121と、吸気通路122と、インジェクタ123と、吸気弁124と、点火プラグ125と、ピストン126と、排気通路127と、排気弁128と、を備える。燃焼室121は、吸気通路122を介して、吸気部110の管路111に接続されている。
 吸気通路122には、インジェクタ123と吸気弁124とが設けられている。インジェクタ123は、管路111から吸気通路122に流入した吸入空気に、燃料を噴射して混合する。燃焼室121には、吸入空気に燃料が混合された混合ガスが流入する。吸気弁124は、吸気通路122の出口に設けられている。燃焼室121への混合ガスの流入は吸気弁124の開閉によって制御される。
 点火プラグ125は、燃焼室121に流入した混合ガスに着火する。内燃機関120では、燃焼室121における混合ガスの燃焼圧によってピストン126が押されて運動する。燃焼室121は、排気通路127を通じて排気部130に接続されている。排気通路127の入口には排気弁128が設けられている。燃焼室121から排気通路127への排気ガスの排出は、排気弁128の開閉によって制御される。
 排気部130は、排ガス管路131と、空燃比センサ132と、を備える。排ガス管路131は、排気通路127に接続されており、燃焼室121から排出された排気ガスを車両の外部へと導く。なお、排ガスの一部は、図示しない循環路を通じて、管路111の吸入空気に混合されてもよい。空燃比センサ132は、排ガス管路131に取り付けられており、排ガスに含まれる酸素量を検出する。
 ECU140は、燃焼システム100の動作を制御する。ECU140は、マイクロコンピュータと電源回路等によって構成される演算処理回路である。マイクロコンピュータは、例えば、プロセッサ(以下「CPU」とも呼ぶ。)と、RAM、ROM、および、フラッシュメモリ等の記憶媒体と、入出力部と、を含む。ECU140は、CPUがRAM上に読み込んだプログラムや命令を実行することによって、燃焼システム100を制御するための種々の機能を発揮する。ECU140の機能の少なくとも一部は、ECU140を構成するアナログ回路によって実現されていてもよい。
 ECU140は、例えば、流量測定装置10Aや、空燃比センサ132、図示されていない燃焼圧センサ等から取得される計測結果を用いて、スロットルバルブ113の開度や、インジェクタ123から噴射される燃料噴射量を制御する。また、ECU140は、吸気弁124および排気弁128の開閉や、点火プラグ125による混合ガスの点火を制御する。その他に、ECU140は、EGR量の制御をおこなってもよい。なお、流量測定装置10Aは、上述したように、被計測流体が主流方向に流れるときの流量と逆流方向に流れるときの流量とを区別して計測できるため、管路111での被計測流体の流れ方向の変化を上述の制御に適切に反映させることができる。
 図2および図3を参照する。図2および図3には、互いに直交するX,Y,Z軸が図示されている。以下では、X軸、Y軸、および、Z軸のそれぞれの正方向を、X軸方向、Y軸方向、および、Z軸方向と呼び、それぞれの負の方向を、-X軸方向、-Y軸方向、および、-Z軸方向と呼ぶ。X軸方向は、流量測定装置10Aの取り付け位置における管路111の中心軸に直交する。X軸方向は、Z軸方向を下としてY軸方向に見たときに右方向を向いている。Y軸方向は、流量測定装置10Aの取り付け位置における管路111の中心軸に平行であり、流量測定装置10Aの取り付け位置における被計測流体の主流方向に一致する。Z軸方向は、管路111に対する流量測定装置10Aの本体部20の挿入方向に一致する。X軸、Y軸、および、Z軸は、他の参照図においても、適宜、図示されている。
 図2を参照する。流量測定装置10Aは、管路111内に配置されて被計測流体に曝される本体部20と、管路111に固定される固定部30と、管路111の外部に配置されるコネクタ部40と、を備える。本体部20は、管路111に設けられた開口部111oを通じて、管路111内に、Z軸方向に挿入される。本体部20の構成の詳細については後述する。
 図2に示すように、固定部30は、本体部20における管路111の開口部111o側の基端部21に連結されている。固定部30が、管路111の開口部111oに固定されることによって、本体部20の挿入方向における先端部22は、管路111の内壁面から離間した位置に保持される。第1実施形態では、流量測定装置10Aは、本体部20の基端部21が重力方向上側となり、先端部22が重力方向下側となるように管路111に取り付けられる。第1実施形態では、Z軸方向として示される本体部20の挿入方向は、重力方向上側から下側に向かう方向である。なお、本体部20の挿入方向は、重力方向に平行な方向には限定されず、重力方向に対して斜めに、重力方向上側から下側に向かう方向であってもよい。
 固定部30は、封止部32と、フランジ33と、を備える。封止部32は、管路111の開口部111oを気密に封止する。Z軸方向に平行な方向に見たときに封止部32の外周形状は、開口部111oの開口形状とほぼ一致する。封止部32の外周には、開口部111oの内周面に気密に接触するOリング32rが嵌められている。なお、図4では、便宜上、Oリング32rの図示は省略されている。封止部32の-Z軸方向側にはフランジ33が設けられている。
 図3に示すように、フランジ33は、X軸方向およびY軸方向に沿って張り出した平板状の部位である。フランジ33は、ボルト34によって管路111に締結される。フランジ33には、ボルト34が挿入されるボルト孔が設けられている。また、管路111のボルト孔に対応する位置にはボルト34を受け入れる図2に示すボス111bが設けられている。図3では、便宜上、ボス111bの位置を破線で図示してある。フランジ33がボルト34によって管路111に固定されることによって、本体部20のハウジング50が管路111内の予め決められた位置に固定される。
 図2および図3に示すように、コネクタ部40は、フランジ33からX軸方向に延び出た位置に設けられている。図2に示すように、コネクタ部40は、フランジ33によって管路111の外周面から離間した位置に保持されている。コネクタ部40は、図示しない信号線を介して本体部20内に配置されている図4に示す検出部75に電気的に接続されている。コネクタ部40は、図示しないケーブルを介して、ECU140に電気的に接続されており、測定結果を表す信号をECU140に出力する。
 図2を参照する。第1実施形態では、流量測定装置10Aは、さらに、温度センサ41を備えている。温度センサ41は、封止部32に固定されており、本体部20からX軸方向に離間した位置において、本体部20と平行に封止部32からZ軸方向に延び出ている。温度センサ41は、管路111を流れる被計測流体の温度を計測し、その計測結果を、コネクタ部40を通じてECU140に出力する。他の実施形態では、温度センサ41は、省略されてもよい。
 図2、図4、および、図5を参照して流量測定装置10Aの本体部20の構成を説明する。本体部20は、内部空間を有する中空のハウジング50を備える。図2および図4に示すように、第1実施形態では、ハウジング50は、平板な直方体形状を有している。図2に示すように、ハウジング50は、管路111での被計測流体の主流方向であるY軸方向に交差する方向に互いに対向する第1側壁部51と第2側壁部52とを有している。第1実施形態では、第1側壁部51と第2側壁部52とはX軸方向および-X軸方向に互いに対向している。第1実施形態では、固定部30によって本体部20が管路111に固定されているときに、第1側壁部51は-X軸方向側に位置し、第2側壁部52はX軸方向側に位置している。また、第1側壁部51と第2側壁部52とは、図5に示すように、全体として管路111での被計測流体の主流方向であるY軸方向に沿って配置される。
 なお、本明細書において、ある主体がある方向に「沿って」いる、と言うときは、その主体の姿勢は、その対象とする方向に平行な姿勢には限定されない。その主体は、その対象とする方向に対してある程度の傾斜角を有する姿勢を有していてもよい。例えば、その主体は、対象とする方向に対して、概ね10°以下の角度で傾斜する姿勢を有していてもよい。また、その主体の全体が対象とする方向に直線的に沿っていなくともよい。従って、例えば、その主体の一部または全体が湾曲していても、凹凸していても、その主体を全体として見たときに概ね、その対象とする方向に沿っていればよい。
 図4に示すように、ハウジング50は、正面壁部53と背面壁部54とを有する。図2および図3に示すように、正面壁部53と背面壁部54とは、第1側壁部51と第2側壁部52との間に位置し、第1側壁部51と第2側壁部52のそれぞれに交差する。図4に示すように、ハウジング50のZ軸方向の長さは、Y軸方向の長さより大きい。また、図5に示すように、ハウジング50のX軸方向の長さはY軸方向の長さよりも小さい。
 図2を参照する。ハウジング50は、正面壁部53と第2側壁部52との間の角部からX軸方向に突起している軸状の保護突起部42を有している。保護突起部42は省略されてもよい。
 図2、図4、および、図5を参照する。ハウジング50には、主流方向に流れる被計測流体をハウジング50の内部に取り込むための第1開口55が設けられている。第1開口55は、固定部30によって本体部20が管路111に固定されているときに、-Y軸方向、つまり、管路111での被計測流体の主流方向の上流側に向かって開口する。第1実施形態では、第1開口55は、正面壁部53において開口している。第1開口55は、図2に示すように、正面壁部53のZ軸方向における端部に設けられている。第1開口55は、管路111の中心軸に近い位置に配置されるように設けられていることが望ましい。
 図4および図5を参照する。ハウジング50には、被計測流体の主流方向において第1開口55に対向する位置に第2開口56が設けられている。第2開口56は、背面壁部54に設けられている。第2開口56は、後述するように、第1開口55から取り込まれた被計測流体に含まれる異物をハウジング50の外部に排出するための排出口として機能する。
 第1実施形態では、第2開口56の開口面積は、第1開口55の開口面積とほぼ等しい。ここでの第2開口56の開口面積は、後述の板状部材81が配置されていない状態での第2開口56の外周によって規定される開口領域の面積を意味する。また、「ほぼ等しい」とは、ある程度の差が許容されることを意味する。「ある程度の差」とは、例えば、製造誤差や公差としてもよいし、±5%程度の差としてもよい。
 図2および図5を参照する。ハウジング50には、第2開口56とは異なる位置に、被計測流体が流通する第3開口57が設けられている。第3開口57は、後述する第2流路70に接続されている。第1実施形態では、第3開口57は、第1側壁部51において、-X軸方向に開口している。
 ハウジング50の内部には、第1開口55と第2開口56とを接続する第1流路61が設けられている。第1実施形態では、第1流路61は、第1開口55からY軸方向に沿って概ね直線状に延びている。
 図4を参照する。ハウジング50の内部には、第1流路61から分岐する第2流路70が設けられている。第1実施形態では、第2流路70は、第1流路61から-Z軸方向側に分岐している。
 第2流路70は、第1流路61から背面壁部54側に向かって斜めに分岐して、本体部20の基端部21側に向かって-Z軸方向に直線状に延びている入口側流路70aを有している。また、第2流路70は、入口側流路70aに接続され、入口側流路70aから正面壁部53側に向かって-Y軸方向に延びている中間流路70bを有している。さらに、第2流路70は、中間流路70bの-Y方向側の端部から本体部20の先端部22側に向かって、第1流路61の手前まで、Z軸方向に直線状に延びている出口側流路70cを有している。出口側流路70cは、第1側壁部51において開口している第3開口57に接続されている。
 第2流路70の途中には、被計測流体の流量を検出する検出部75が設けられている。第1実施形態では、検出部75は中間流路70bに設けられている。第1実施形態では、検出部75は、温度差方式によって被計測流体の流量を検出する。検出部75は、被計測流体を加熱する図示しない加熱ヒータと、被計測流体の流れ方向に沿って配置された図示しない複数の温度センサと、を有している。温度センサは、例えば、感温抵抗体によって構成され、加熱ヒータは、例えば、発熱抵抗体によって構成される。温度センサは、加熱ヒータの上流側と下流側の両方に配置されている。検出部75は、加熱ヒータの上流側と下流側との温度差から被計測流体の流量を検出する。
 検出部75は、第2流路70において被計測流体が第1流路61から第3開口57に向かう方向に流れる被計測流体の流量を順流での流量として出力する。また、検出部75は、第2流路70において被計測流体が第3開口57から第1流路61に向かう方向に流れているときの被計測流体の流量を逆流での流量として出力する。上述した温度差方式を採用している第1実施形態の検出部75は、温度勾配の向きによって、第2流路70での被計測流体の流れ方向が、順流の方向であるのか逆流の方向であるのかを判別することができる。
 図4および図5を参照する。第1流路61の一部には、板状部材81が配置されている。第1実施形態では、板状部材81は、第1流路61の第2開口56側の端部に配置されている。板状部材81は、第1流路61の下流側流路部位63に配置されている。下流側流路部位63は、第1流路61において開口している第2流路70の開口端部71よりも被計測流体の主流方向における下流側に位置する第1流路の一部位である。板状部材81は、Y軸方向において下流側流路部位63全体にわたって配置されており、そのY軸方向側の端部が第2開口56に位置している。第1実施形態では、板状部材81は、平板状であり、X軸方向およびY軸方向に沿って配置されている。図5に示すように、板状部材81は、下流側流路部位63においてX軸方向にわたって配置されており、第1側壁部51と第2側壁部52とを連結している。板状部材81の機能については後述する。
 図4を参照して、流量測定装置10Aのハウジング50内での被計測流体の流れを説明する。まず、被計測流体が管路111を主流方向に流れている場合を説明する。この場合には、被計測流体は、第1開口55を通じてハウジング50内の第1流路61に導入される。流量測定装置10Aでは、第1開口55が-Y軸方向に向かって開口しているため、管路111を主流方向に流れる被計測流体をハウジング50内へと円滑に導入することができる。
 第1開口55から導入された被計測流体は、第1流路61に沿ってY軸方向に流れ、一部が、検出部75が配置されている第2流路70へと分流する。被計測流体に含まれる塵や水分など、被計測流体の分子よりも重い質量を有する異物は、第1流路61に沿って流れる被計測流体とともに、第2開口56へと導かれ、そのままハウジング50の外部へと排出される。
 異物が分離され、第2流路70の方へと流入した被計測流体は、第2流路70の端部に設けられている第3開口57からハウジング50の外部へと流出する。検出部75は、第2流路70を通過する被計測流体の流量を計測する。
 流量測定装置10Aでは、被計測流体が主流方向に流れているときには、第1流路61と第2流路70の分岐構造によって被計測流体中の異物が第2流路70に進入することが抑制される。そのため、検出部75は、異物が分離された被計測流体の流量を精度よく計測することができる。
 第1実施形態では、第2流路70が第1流路61より重力方向上側に位置しているため、重力の作用により、異物が第2流路70へと進入することが抑制される。また、第1実施形態では、上述したように、第1開口55と第2開口56の開口面積がほぼ等しいため、第2開口56から異物がより一層、排出されやすい。
 次に、管路111において被計測流体が逆流する場合について説明する。この場合には、管路111の被計測流体は、第3開口57を通じて第2流路70の出口側流路70cに流入し、中間流路70bおよび出口側流路70cを経て、第1流路61へと流れる。検出部75は、第3開口57から流入した第2流路70を流れる被計測流体の流量を計測する。第1実施形態では、第3開口57が第1側壁部51に設けられており、管路111での被計測流体の流れ方向に交差する方向に開口している。そのため、気体分子よりも質量が高く大きい慣性力が働く異物が、逆流の被計測流体とともに第3開口57に流入することが抑制される。
 ここで、流量測定装置10Aでは、第1流路61の第2開口56近傍に板状部材81が配置されている。管路111において被計測流体が逆流したときには、板状部材81が、その逆流に対する邪魔板として機能するため、第2開口56を通じてハウジング50内部の第1流路61へと流入する被計測流体の逆流の動圧が、第2流路70へと伝達されることが抑制される。よって、そうした逆流の動圧が、第3開口57から第1流路61に向かう第2流路70での被計測流体の流れに作用して、検出部75の近傍で、予期せぬ渦が生じることが抑制される。そのため、検出部75の計測誤差の発生が抑制される。
 また、被計測流体の流れ方向が主流方向から逆流方向に切り替わった直後には、第2開口56から排出されたばかりの異物が、被計測流体の逆流によってハウジング50内に戻ってしまう場合がある。そうした場合でも、板状部材81が邪魔板として機能するため、第2開口56を通じてハウジング50内へと戻った異物が、第1流路61で開口している開口端部71を通じて第2流路70へと入り込むことが抑制される。よって、そうした異物による計測誤差の発生が抑制される。
 第1実施形態では、板状部材81はX軸方向およびY軸方向に沿って配置されており、Z軸方向に向く面を有している。そのため、-Z軸方向側からの逆流の動圧の伝達や異物を、より効果的に遮ることができる。
 第1実施形態では、第2開口56を通じて第1流路61に流入した被計測流体の逆流は、板状部材81によって-Y軸方向に沿って流れるように誘導される。そのため、第1流路61へと流入した被計測流体および異物が、第1流路61の-Z軸方向側にある第2流路70へと流入してしまうことが抑制される。また、板状部材81が主流方向に沿って配置されていれば、被計測流体が主流方向に流れているときの第1流路61での被計測流体の流れが円滑化されるため、第2開口56を通じた異物の排出性が向上する。
 第1実施形態では、第1流路61の下流側流路部位63にのみ配置されているため、第1流路61の流路抵抗の増加が抑制されている。加えて、第1実施形態では、板状部材81のY軸方向側の端部が第2開口56に位置しており、ハウジング50の外部へと延び出ておらず、流量測定装置10Aの本体部20が小型に構成されている。
 以上のように、第1実施形態の流量測定装置10Aによれば、第1流路61に配置された板状部材81によって、被計測流体に逆流が生じたときの計測誤差の発生が抑制されている。その他に、第1実施形態の流量測定装置10Aによれば、第1実施形態中で説明した種々の作用効果を奏することができる。
2.種々の実施形態:
 以下では、第1実施形態の流量測定装置10Aの構成を一部改変した構成を第2実施形態~第12実施形態として説明する。以下の各実施形態の構成は、特段の説明を設けていない構成については、第1実施形態で説明した構成と共通する。また、第1実施形態と共通する構成部には、第1実施形態と共通する符号を付して説明する。以下の各実施形態の構成においても、第1実施形態と共通する構成を有していることによって、第1実施形態で説明した種々の作用効果を奏することができる。
2-1.第2実施形態:
 図6を参照する。第2実施形態の流量測定装置10Bでは、第1流路61の下流側流路部位63に、複数の板状部材81がZ軸方向に配列されている。各板状部材81は並列に並んでいる。第2実施形態の流量測定装置10Bによれば、邪魔板として機能する板状部材81が多い分だけ、開口端部71を通じた第2流路70への逆流の動圧の伝達や異物の進入がより一層抑制される。また、各板状部材81が並列に配列されているため、複数の板状部材81が設けられていることによる第1流路61の流路抵抗の増大が抑制されている。
2-2.第3実施形態:
 図7および図8を参照する。第3実施形態の流量測定装置10Cは、第1実施形態の板状部材81とは異なる配置角度で設置された1枚の板状部材82を有している。第3実施形態の板状部材82は、下流側流路部位63においてY軸方向およびZ軸方向に沿って配置されている点以外は、第1実施形態の板状部材81とほぼ同じである。板状部材82は、下流側流路部位63においてZ軸方向にわたって架設されている。第3実施形態の流量測定装置10Cによれば、板状部材82がX軸方向および-X軸方向に向く面を有しているため、板状部材82のX軸方向側や-X軸方向側から第2流路70の開口端部71に向かう方向への逆流の動圧の伝達や異物の進入を効果的に遮ることができる。
2-3.第4実施形態:
 図9を参照する。第4実施形態の流量測定装置10Dは、第3実施形態で説明した板状部材82が複数、第1流路61の下流側流路部位63に配置されている。第4実施形態では、複数の板状部材82は、X軸方向に並列に配列されている。第4実施形態の流量測定装置10Dによれば、邪魔板として機能する板状部材82が多い分だけ、開口端部71を通じた第2流路70への逆流の動圧の伝達や異物の進入がより一層抑制される。また、各板状部材82が並列に配列されているため、複数の板状部材82が設けられていることによる第1流路61の流路抵抗の増大が抑制されている。
2-4.第5実施形態:
 図10を参照する。第5実施形態の流量測定装置10Eは、第1実施形態の板状部材81とは異なる配置角度で設置された1枚の板状部材83を有している。第5実施形態の板状部材83は、第1の面83aが-Z軸方向側かつ-Y軸方向側に向き、第2の面83bがZ軸側かつY軸方向側に向くように、被計測流体の主流方向に対して傾斜した状態で下流側流路部位63に配置されている。流量測定装置10Eによれば、板状部材83の第2開口56側に向く傾斜面83bによって、逆流方向に流れる被計測流体の動圧や異物を受け止めることができる。そのため、その動圧が第2流路70の開口端部71へと伝達されることや異物が開口端部71を通じて第2流路70に入り込むことが抑制される。また、流量測定装置10Eでは、第2開口56から第1流路61に流入した逆流の被計測流体および異物が、板状部材83の傾斜面83bに沿って、第2流路70の開口端部71から離れる方向へと誘導される。よって、管路111において被計測流体が逆流するときに、第2流路70内に渦が発生することや異物が入り込むことが抑制され、計測誤差の発生が抑制される。なお、他の実施形態では、第1流路61の下流側流路部位63において複数の板状部材83が、第2実施形態の板状部材81のように、Z軸方向に並列に配列されていてもよい。
2-5.第6実施形態:
 図11を参照する。第6実施形態の流量測定装置10Gは、第1実施形態の板状部材81の代わりに、第6実施形態の板状部材85を備えている。第6実施形態の板状部材85の構成は、Y軸方向側の端部に、-Z軸方向側に斜めに折れ曲がった傾斜部位85tを有している点以外は、第1実施形態の板状部材81とほぼ同じである。傾斜部位85tは、-Z方向側かつ-Y軸方向側に向く傾斜面85aと、Z方向側かつY軸方向側に向く傾斜面85bと、を有している。流量測定装置10Gによれば、傾斜部位85tの第2開口56側に向く傾斜面85bが、逆流方向に流れる被計測流体の動圧や異物を受け止めることができる。そのため、第2流路70の開口端部71への動圧の伝達や異物の進入が抑制される。また、傾斜部位85tの傾斜面85bによって、第2開口56から第1流路61に流入した逆流の被計測流体および異物が、板状部材85よりZ軸方向側の領域へと、第2流路70の開口端部71から離れる方向に誘導される。よって、管路111において被計測流体が逆流するときに、第2流路70内に乱流が発生することや異物が入り込むことが抑制され、計測誤差の発生が抑制される。なお、他の実施形態では、第1流路61の下流側流路部位63において複数の板状部材85が、第2実施形態の板状部材81のように、Z軸方向に並列に配列されていてもよい。
2-6.第7実施形態:
 図12を参照する。第7実施形態の流量測定装置10Hは、第1実施形態の板状部材81の代わりに、第7実施形態の板状部材86を備えている。第7実施形態の板状部材86の構成は、Y軸方向側の部位ほど-Z軸方向側に位置するように湾曲している点以外は、第1実施形態の板状部材81とほぼ同じである。板状部材86は、-Y軸方向側に向く内周側湾曲面86aと、Y軸方向側に向く外周側湾曲面86bと、を有している。これらの湾曲面86a,86bは、被計測流体の主流方向に対して斜めに配置される傾斜面であると解釈できる。第7実施形態の流量測定装置10Hによれば、第2開口56側に外周側湾曲面86bによって、逆流する被計測流体の動圧および異物を受け止めることができる。また、逆流する被計測流体およびそれに含まれる異物を外周側湾曲面86bに沿って、第2流路70の開口端部71から離れる方向に誘導することができる。よって、管路111において被計測流体が逆流するときに、第2流路70内に乱流が発生することや異物が入り込むことが抑制され、計測誤差の発生が抑制される。他の実施形態では、複数の板状部材86が、下流側流路部位63において、第2実施形態の板状部材81のように、Z軸方向に並列に配列されていてもよい。
2-7.第8実施形態:
 図13を参照する。第8実施形態の流量測定装置10Iが備える板状部材87の構成は、第1流路61の下流側流路部位63より-Y軸方向側の領域に延長された延長部位87eが追加されている点以外は、第5実施形態の板状部材83とほぼ同じである。延長部位87eは、第2流路70の開口端部71とZ軸方向および-Z軸方向に対向する位置に配置されている。板状部材87は、第1開口55よりもY軸方向側の領域から第2開口56まで配置されている。つまり、板状部材87は、被計測流体の主流方向において第1流路61の全体にわたっては配置されておらず、被計測流体の主流方向において第1流路61の一部に配置されている。
 第8実施形態の流量測定装置10Iでは、板状部材87は、第5実施形態の板状部材83と同様に、板状部材87の-Y軸方向側に向く傾斜面87aと、Y軸方向側に向く傾斜面87bと、を有している。傾斜面87bは、第2開口56側に向いており、第5実施形態で説明した板状部材83の傾斜面83bと同様の作用効果を奏することができる。また、板状部材87の延長部位87eは、第2流路70の開口端部71の下方にまで延び出ており、開口端部71とZ軸方向および-Z軸方向に対向している。流量測定装置10Iによれば、その延長部位87eによって、板状部材87よりZ方向側の領域を流れる被計測流体や異物が、第2流路70へと進入することを遮ることができる。その他に、流量測定装置10Iによれば、第2流路70の開口端部71に対向する延長部位87eの傾斜面87aによって、主流方向に流れる被計測流体に含まれる異物を第2開口56へと誘導することができる。なお、他の実施形態では、複数の板状部材87がZ軸方向に並列に配列されていてもよい。この場合に、板状部材87のそれぞれのY軸方向における長さは、一部または全部が異なっていてもよい。
2-8.第9実施形態:
 図14を参照する。第9実施形態の流量測定装置10Jが備える板状部材88の構成は、Y軸方向側の端部に第2開口56から延び出る延出部位88exを有している点以外は、第8実施形態の板状部材87とほぼ同じである。板状部材88は、板状部材87の-Y軸方向側に向く傾斜面88aと、Y軸方向側に向く傾斜面88bと、を有している。また、第1流路61の下流側流路部位63から-Y軸方向側の領域に延び出ている延長部位88eを有している。第2開口56側に向く傾斜面88bや延長部位88eは、第8実施形態で説明した板状部材87の傾斜面87bや延長部位87eと同様な作用効果を奏することができる。流量測定装置10Jでは、板状部材88が延出部位88exを有している分だけ、逆流する被計測流体の動圧や異物が第2流路70の開口端部71へと進入することが、さらに抑制される。なお、他の実施形態では、複数の板状部材88がZ軸方向に並列に配列されていてもよい。この場合に、板状部材87のそれぞれのY軸方向における長さは、一部または全部が異なっていてもよい。
2-9.第10実施形態:
 図15を参照する。第10実施形態の流量測定装置10Kが備える板状部材89の構成は、Y軸方向側の端部が第2開口56より-Y軸方向側に位置するように、Y軸方向の長さが短縮されている点以外は、第8実施形態の板状部材87とほぼ同じである。板状部材89は、-Y軸方向側に向く傾斜面89aと、Y軸方向側に向く傾斜面89bと、を有している。また、第1流路61の下流側流路部位63から-Y軸方向側の領域に延び出ている延長部位89eを有している。第2開口56側に向く傾斜面89bや延長部位89eは、第8実施形態で説明した板状部材87の傾斜面87bや延長部位87eと同様な作用効果を奏することができる。なお、他の実施形態では、複数の板状部材89がZ軸方向に並列に配列されていてもよい。この場合に、板状部材89のそれぞれのY軸方向における長さは、一部または全部が異なっていてもよい。
2-10.第11実施形態:
 図16を参照する。第11実施形態の流量測定装置10Lが備える板状部材90の構成は、-Y軸方向側の端部が第1開口55からハウジング50の外部に延出するように、-Y軸方向側に延長されている点以外は、第10実施形態の板状部材89とほぼ同じである。板状部材90は、-Y軸方向側に向く傾斜面90aと、Y軸方向側に向く傾斜面90bと、を有している。また、板状部材90は、第2流路70の開口端部71と、Z軸方向および-Z軸方向に対向する部位を有している。第11実施形態の流量測定装置10Lによれば、被計測流体が主流方向に流れているときに、被計測流体に含まれる異物を、-Z軸方向側の傾斜面90aに沿って下流側流路部位63まで誘導することができる。そのため、第2流路70への異物の進入が抑制される。また、被計測流体が逆流方向に流れるときに、Z軸方向側の傾斜面90bに沿って被計測流体を第1開口55の方へと誘導することができる。そのため、逆流する被計測流体が第2流路70の開口端部71に流入することが抑制される。また、被計測流体が逆流方向に流れるときに、板状部材90よりZ軸方向側の領域にある異物が、第2流路70の開口端部71へと進入することが抑制される。なお、他の実施形態では、複数の板状部材90がZ軸方向に並列に配列されていてもよい。この場合に、板状部材90のそれぞれのY軸方向における長さは、一部または全部が異なっていてもよい。
3.他の実施形態:
 上記の各実施形態で説明した種々の構成は、例えば、以下のように改変することも可能である。以下に説明する他の実施形態はいずれも、上記の各実施形態と同様に、本開示の技術を実施するための形態の一例として位置づけられる。
・他の実施形態1:
 流量計測装置において、主流方向において第1流路61の一部に配置され、少なくとも一部が第1流路61において第1開口55よりも第2開口56に近い位置に配置される板状部材は、上記の各実施形態の板状部材81~90には限定されない。板状部材は、例えば、X軸方向に対して斜めに配置されていてもよいし、凹部や凸部、スリットなどを有していてもよい。また、上記の各実施形態の板状部材81~90の構成は適宜組み合わせることが可能である。例えば、第1実施形態の板状部材81と第2実施形態の板状部材82とが互いに交差する状態で第1流路61に配置されてもよい。また、第1実施形態の板状部材81と第6実施形態の板状部材85の両方が第1流路61の下流側流路部位63に配置されてもよい。第6実施形態の板状部材85の-Y軸方向側の端部に、第8実施形態の板状部材87が有する延長部位87eのように、第2流路70の開口端部71とZ軸方向において対向する延長部位が設けられてもよい。
・他の実施形態2:
 上記の各実施形態において、ハウジング50は直方体形状以外の形状を有していてもよい。例えば、ハウジング50は、Y軸方向を長手方向とする楕円断面を有する楕円柱状の形状を有していてもよい。上記の各実施形態において、第1側壁部51がX軸方向側となり、第2側壁部52が-X軸方向側となるように入れ替えられてもよい。
・他の実施形態3:
 上記の各実施形態において、検出部75は、温度差方式の代わりに、他の方式の流量センサが用いられてもよい。検出部75は、例えば、コリオリ式やカルマン渦式のセンサが採用されてもよい。検出部75は、順流方向の流量と逆流方向の流量とを区別して検出しなくてもよい。
・他の実施形態4:
 上記の各実施形態の流量測定装置10A~10E,10G~10Lは、車両に搭載される燃焼システム100の管路111以外に取り付けられてもよい。各実施形態の流量測定装置10A~10E,10G~10Lは、例えば、燃料電池システムにおいて燃料電池に発電に用いられる反応ガスを供給する配管に取り付けられてもよい。
 本開示の技術は、流量測定装置以外の種々の形態で実現することも可能である。例えば、流量測定装置に用いられるハウジングや、流量測定装置における流路構造、流量測定システム等の形態で実現することができる。
 本開示の技術は、上述の実施形態や他の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須ではないと説明されているものに限らず、その技術的特徴が本明細書中に必須であると説明されていなければ、適宜、削除することが可能である。

Claims (7)

  1.  管路(111)において被計測流体が、主流方向(Y)に流れるときの流量と、前記主流方向とは反対の逆流方向に流れるときの流量と、をそれぞれ測定する流量測定装置(10A,10B.10C,10D,10E,10G,10H,10I,10J,10K,10L)であって、
     前記管路内に配置されるハウジング(50)であって、前記主流方向の上流側に向かって開口する第1開口(55)と、前記主流方向において前記第1開口と対向する位置に設けられ、前記被計測流体が流通する第2開口(56)と、前記第2開口とは異なる位置に設けられ、前記被計測流体が流通する第3開口(57)と、を有するハウジングと、
     前記ハウジングの内部に設けられ、前記第1開口と前記第2開口とを接続する第1流路(61)と、
     前記第1流路から分岐し、前記第1流路と前記第3開口とを接続する第2流路(70)と、
     前記第2流路に配置され、前記第2流路を流れる前記被計測流体の流量を検出する検出部(75)と、
     前記主流方向において前記第1流路の一部に配置され、少なくとも一部が前記第1流路において前記第1開口よりも前記第2開口に近い位置に配置される板状部材(81,82,83,85,86,87,88,89,90)と、
    を備える、流量測定装置。
  2.  請求項1記載の流量測定装置であって、
     前記第1流路には、複数の前記板状部材(81,82)が配置されている、流量測定装置。
  3.  請求項1または請求項2記載の流量測定装置であって、
     前記板状部材は、前記主流方向に対して斜めに配置される傾斜面(83a,83b,85a,85b,86a,86b,87a,87b,88a,88b,89a,89b)を有する、流量測定装置。
  4.  請求項1から請求項3のいずれか一項に記載の流量測定装置であって、
     前記板状部材は、前記第1流路において開口している前記第2流路の開口端部と対向する部位(87e,88e,89e,90e)を有する、流量測定装置。
  5.  請求項1から請求項4のいずれか一項に記載の流量測定装置であって、
     前記板状部材は、前記第2開口から前記ハウジングの外部へと延び出ている部位(88ex)を有する、流量測定装置。
  6.  請求項1から請求項3のいずれか一項に記載の流量測定装置であって、
     前記板状部材は、前記第1流路において開口している前記第2流路の開口端部より前記主流方向における下流側に設けられ、
     前記板状部材の前記主流方向における下流側の端部は、前記第2開口に位置している、流量測定装置。
  7.  請求項1から請求項6のいずれか一項に記載の流量測定装置であって、
     前記第2開口の開口面積は、前記第1開口の開口面積以上である、流量測定装置。
PCT/JP2019/035187 2018-09-19 2019-09-06 流量測定装置 WO2020059540A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-174663 2018-09-19
JP2018174663A JP2020046292A (ja) 2018-09-19 2018-09-19 流量測定装置

Publications (1)

Publication Number Publication Date
WO2020059540A1 true WO2020059540A1 (ja) 2020-03-26

Family

ID=69887314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035187 WO2020059540A1 (ja) 2018-09-19 2019-09-06 流量測定装置

Country Status (2)

Country Link
JP (1) JP2020046292A (ja)
WO (1) WO2020059540A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304585A (ja) * 1999-04-23 2000-11-02 Hitachi Ltd 流量計測装置
JP2006501452A (ja) * 2002-09-30 2006-01-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 管路内を流れる媒体の少なくとも1つのパラメータを測定する装置
JP2006038856A (ja) * 2004-07-23 2006-02-09 Robert Bosch Gmbh 導管内を流動する媒体の少なくとも1つのパラメータを測定するための装置
JP2006522917A (ja) * 2003-07-14 2006-10-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 導管内を流動する媒体の少なくとも1つのパラメータを測定するための装置
JP2007506941A (ja) * 2003-07-14 2007-03-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 導管を流れる媒体の少なくとも1つのパラメータを検出するための装置
JP2010261771A (ja) * 2009-05-01 2010-11-18 Denso Corp 空気流量測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304585A (ja) * 1999-04-23 2000-11-02 Hitachi Ltd 流量計測装置
JP2006501452A (ja) * 2002-09-30 2006-01-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 管路内を流れる媒体の少なくとも1つのパラメータを測定する装置
JP2006522917A (ja) * 2003-07-14 2006-10-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 導管内を流動する媒体の少なくとも1つのパラメータを測定するための装置
JP2007506941A (ja) * 2003-07-14 2007-03-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 導管を流れる媒体の少なくとも1つのパラメータを検出するための装置
JP2006038856A (ja) * 2004-07-23 2006-02-09 Robert Bosch Gmbh 導管内を流動する媒体の少なくとも1つのパラメータを測定するための装置
JP2010261771A (ja) * 2009-05-01 2010-11-18 Denso Corp 空気流量測定装置

Also Published As

Publication number Publication date
JP2020046292A (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
US7946158B2 (en) Air flow measuring device
CN105324644B (zh) 物理量测量装置
US7661877B2 (en) Thermal flow detecting apparatus and method for detecting flow using the same
US10520343B2 (en) Thermal flowmeter
US20220065671A1 (en) Physical quantity measurement device for measuring a physical quantity of a fluid
CN113597538B (zh) 物理量检测装置
JP6838249B2 (ja) 熱式流量計
WO2020059540A1 (ja) 流量測定装置
CN108139248B (zh) 热式流量计
WO2020059539A1 (ja) 流量測定装置
WO2020202791A1 (ja) 物理量検出装置
WO2020003809A1 (ja) 物理量検出装置
WO2017208640A1 (ja) 熱式流量計
JP6995020B2 (ja) 物理量検出装置
WO2021045117A1 (ja) 空気流量測定装置
US20160377470A1 (en) Air flow rate measurement device
WO2016027551A1 (ja) 熱式流量計
US11391610B2 (en) Flow rate measurement device
WO2023100213A1 (ja) 物理量検出装置
JP7204370B2 (ja) 流量計測装置
US20220307876A1 (en) Physical Quantity Detection Device
WO2021045120A1 (ja) 空気流量測定装置
US10718647B2 (en) Thermal flowmeter including an inclined passage
JP2020098179A (ja) 物理量測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862574

Country of ref document: EP

Kind code of ref document: A1