WO2020059102A1 - 信号処理回路、測定装置、および信号処理方法 - Google Patents

信号処理回路、測定装置、および信号処理方法 Download PDF

Info

Publication number
WO2020059102A1
WO2020059102A1 PCT/JP2018/034959 JP2018034959W WO2020059102A1 WO 2020059102 A1 WO2020059102 A1 WO 2020059102A1 JP 2018034959 W JP2018034959 W JP 2018034959W WO 2020059102 A1 WO2020059102 A1 WO 2020059102A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
signal processing
gas
processing circuit
Prior art date
Application number
PCT/JP2018/034959
Other languages
English (en)
French (fr)
Inventor
新平 梶原
藤本 尚司
池田 敦
Original Assignee
大塚電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚電子株式会社 filed Critical 大塚電子株式会社
Priority to PCT/JP2018/034959 priority Critical patent/WO2020059102A1/ja
Priority to EP18933744.7A priority patent/EP3855139A4/en
Priority to KR1020217011677A priority patent/KR20210058951A/ko
Priority to US17/277,337 priority patent/US20220026353A1/en
Priority to JP2020547564A priority patent/JP7153735B2/ja
Publication of WO2020059102A1 publication Critical patent/WO2020059102A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/004CO or CO2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4406Plural ranges in circuit, e.g. switchable ranges; Adjusting sensitivity selecting gain values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/444Compensating; Calibrating, e.g. dark current, temperature drift, noise reduction or baseline correction; Adjusting

Definitions

  • the present invention relates to a signal processing circuit, a measuring device, and a signal processing method.
  • measuring devices that use infrared detectors for diagnosing diseases have been developed. For example, after a drug containing an isotope is administered to a living body, a change in the concentration ratio of the isotope is measured with an infrared detector to determine the metabolic rate of the living body and a measuring device used for diagnosing a disease has been developed. Have been.
  • a signal output from the infrared detector has a certain S / N ratio.
  • the signal must have a ratio.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 4-357423
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2016-5067 disclose a signal processing circuit provided with an amplifier circuit for amplifying a signal output from a detector. A circuit is disclosed.
  • the amplifier circuit amplifies the signal output from the detector with respect to the reference voltage. There has been a problem that the error directly affects the signal output from the detector. Further, in the signal processing circuits disclosed in Patent Documents 1 and 2, the difference from the reference voltage is the dynamic range of the signal output from the detector, so that a signal with a wide dynamic range cannot be obtained. was there.
  • the present invention provides a signal processing circuit, a measuring device, and a signal processing method capable of improving the S / N ratio of a signal obtained by a detector and obtaining a signal having a wider dynamic range. With the goal.
  • a signal processing circuit for processing a signal based on the amount of light detected by an infrared detector, wherein the current voltage converts a current signal output from the infrared detector into a voltage signal.
  • a conversion circuit a filter circuit that passes a signal of a predetermined frequency component among the signals converted by the current-voltage conversion circuit, and an opposite phase signal of the passing signal that has passed through the filter circuit, and the passing signal and the opposite phase signal.
  • a differential circuit that outputs a differential signal including:
  • the apparatus further includes an analog-to-digital conversion circuit that converts a differential signal output from the differential circuit into a digital signal.
  • the analog-to-digital conversion circuit makes the resolution for converting the differential signal into a digital signal higher than the resolution for converting the passing signal into a digital signal.
  • an amplifier circuit for amplifying the signal converted by the current-voltage conversion circuit is further provided, and the signal amplified by the amplifier circuit is input to the filter circuit.
  • the apparatus further includes an amplifier circuit for amplifying a signal between the filter circuit and the differential circuit.
  • the signal based on the amount of light detected by the infrared detector is a signal obtained by detecting the amount of infrared light from a light source whose intensity is modulated in a sinusoidal manner by the light modulator with the infrared detector.
  • the infrared detector is a photovoltaic element.
  • a measuring device for measuring a concentration ratio of a component gas of a gas to be measured including two types of component gases having an isotope relationship with each other, and a cell for storing the gas to be measured.
  • a light source that emits infrared light transmitted through the cell
  • an optical modulator that modulates the intensity of the infrared light from the light source in a sine wave shape, and a wavelength suitable for each component gas in the infrared light transmitted through the cell.
  • An optical filter that transmits light, an infrared detector that detects the amount of light transmitted through the optical filter, a signal processing circuit that processes a signal based on the amount of light detected by the infrared detector, and a signal processing circuit that processes the signal. And an arithmetic circuit for calculating absorbance at a wavelength suitable for the component gas from the signal thus obtained and calculating the concentration ratio of the component gas.
  • the two types of component gases contained in the gas to be measured are carbon dioxide 13 CO 2 and carbon dioxide 12 CO 2 .
  • a signal processing method for processing a signal output from an infrared detector, wherein a signal detected as a current value by the infrared detector is converted into a signal having a voltage value. And passing a signal of a predetermined frequency component of the signal converted into a voltage value, generating an opposite phase signal of the passed signal, and converting a differential signal including the passed signal and the opposite phase signal into an analog signal. Outputting to a digital conversion circuit.
  • the S / N ratio of the signal obtained by the detector can be improved by the differential circuit that outputs the differential signal including the passing signal and the antiphase signal, A signal with a wider dynamic range can be obtained.
  • FIG. 2 is a schematic diagram for describing a configuration of a signal processing circuit according to the present embodiment.
  • FIG. 2 is a block diagram for describing a configuration of an arithmetic circuit according to the present embodiment.
  • FIG. 3 is a diagram for explaining signal processing in the signal processing circuit according to the present embodiment.
  • 5 is a flowchart for explaining a signal processing method in the signal processing circuit according to the present embodiment. 5 is a graph for explaining a variation amount of a signal processed by the signal processing circuit according to the present embodiment.
  • FIG. 11 is a schematic diagram for explaining a configuration of a signal processing circuit according to a modification.
  • the measuring device administers a drug containing an isotope to a living body, and then measures the change in the concentration ratio of the isotope based on the light absorption characteristics of the isotope to obtain the metabolic rate of the living body.
  • the following describes an example of an apparatus used for diagnosing the disease. Specifically, a measurement device used for diagnosing whether or not Helicobacter pylori (HP), which is said to cause gastric ulcer and gastritis, is present in the stomach of the subject will be described.
  • HP Helicobacter pylori
  • urea marked with the isotope 13C administered to the subject is decomposed by utilizing the property of HP to decompose urea into carbon dioxide and ammonia by the strong urease activity. Diagnosis of the presence or absence of HP is made from the change in the concentration ratio of 13 CO 2 obtained by the above method.
  • carbon has a mass number of 12 and isotopes with mass numbers of 13 and 14 in addition to those having a mass number of 12.
  • an isotope 13 C having a mass number of 13 has no radioactivity. It is easy to handle because it exists stably. Therefore, the urea to be administered to the subject is marked with the isotope 13 C, and when HP is present in the stomach of the subject, the urea is decomposed into 13 CO 2 and ammonia by the HP. Since the decomposed 13 CO 2 is contained in and exhaled from the subject's breath, by measuring the concentration ratio of 13 CO 2 contained in the subject's exhalation, the HP can reduce It is possible to make a diagnosis as to whether or not it is present inside.
  • the concentration ratio between 13 CO 2 and 12 CO 2 contained in the air is 1: 100. Therefore, the measuring device according to the present embodiment is required to accurately measure the concentration ratio between 13 CO 2 and 12 CO 2 .
  • infrared spectroscopy is used as a method for determining the concentration ratio between 13 CO 2 and 12 CO 2, and the absorption of 13 CO 2 in one cell and the other, It has two long and short cells that have the same absorption of 12 CO 2 in the cell.
  • the measuring device irradiates each cell with infrared light of a wavelength suitable for each analysis, measures the amount of transmitted light (the amount of transmitted light), and includes the concentration ratio in air in the breath of the subject. The change in concentration ratio is required.
  • the method of obtaining the concentration ratio between 13 CO 2 and 12 CO 2 is disclosed in Japanese Patent Publication No. Sho 61-42219 and Japanese Patent Publication No. Sho 61-42220.
  • a signal processing circuit for processing a signal based on the amount of transmitted light transmitted through the cell and detected by the detector is provided.
  • the S / N ratio of the signal is improved, and the signal has a wider dynamic range.
  • the concentration ratio of 13 CO 2 in exhaled breath is spectroscopically measured after administering the urea diagnostic agent marked with the isotope 13 C to the subject will be described in detail with reference to the drawings.
  • the breath of the subject before administration of the urea diagnostic agent is collected in a breath bag as a base gas. Thereafter, the urea diagnostic agent is orally administered to the subject, and after about 20 minutes, the breath of the subject is collected in a breath bag as a sample gas.
  • the exhalation bag of the sample gas and the exhalation bag of the base gas are respectively set to predetermined nozzles of the measuring device, and the concentration ratio between 13 CO 2 and 12 CO 2 is measured. Note that the base gas and the sample gas are the gases to be measured by the measuring device.
  • FIG. 1 is a schematic diagram for explaining a configuration of a measuring apparatus 100 according to the present embodiment.
  • the breath bag B of the base gas and the breath bag S of the sample gas are set in the nozzles N1 and N2, respectively.
  • the nozzle N1 is connected to a filter F1 and a valve (for example, an electromagnetic valve) V2 through a pipe (for example, a metal pipe).
  • the filter F1 is a filter for removing foreign substances other than the base gas contained in the breath bag B.
  • the nozzle N2 is connected to the filter F2 and the valve V3 through a pipe.
  • the valve V2 and the valve V3 are connected to the gas injector 21 through one pipe.
  • the filter F2 is a filter for removing foreign substances other than the base gas contained in the breath bag S.
  • the valve V1 is connected to the filter F5 and the reference gas supply unit 30 through a pipe.
  • the reference gas supply unit 30 includes a carbon dioxide gas absorption unit that uses, for example, soda lime (a mixture of sodium hydroxide and calcium hydroxide) as a carbon dioxide gas absorbent. Therefore, the reference gas supply unit 30 can supply the gas injector 21 with a reference gas that has absorbed carbon dioxide from air taken in from the outside.
  • the filter F5 is a dustproof filter that removes foreign matter from the reference gas supplied to the gas injector 21.
  • the valve V4 is connected to the filter F4 and the cell 11 through a pipe.
  • the valve V5 is connected to the filter F3 through a pipe.
  • the filter F3 is provided at an intake port for removing foreign matter from the intake air.
  • the filter F4 is a dry filter that removes moisture from the reference gas, the second measured gas, and the second measured gas supplied to the gas injector 21.
  • a cylinder 21b containing a piston 21c is arranged on a base 21a, and a movable nut 21d connected to the piston 21c, a feed screw 21e meshed with the nut 21d, are provided below the base 21a. And a pulse motor 21f for rotating the feed screw 21e.
  • the pulse motor 21f is driven forward and reverse by a drive circuit (not shown).
  • a drive circuit not shown.
  • the feed screw 21e rotates by the rotation of the pulse motor 21f
  • the nut 21d moves back and forth according to the rotation direction, and thereby the piston 21c moves back and forth to an arbitrary position. Therefore, introduction of the gas to be measured into the cylinder 21b and derivation of the gas to be measured from the cylinder 21b can be freely controlled.
  • the other end of the valve V4 is connected to a first sample cell 11a for measuring the absorption of 12 CO 2 .
  • the first sample cell 11a is a short cell for measuring the absorption of 12 CO 2 in one of the cells 11.
  • the cell 11 further includes a long second sample cell 11b and an auxiliary cell 11c for measuring the absorption of 13 CO 2 .
  • the first sample cell 11a and the second sample cell 11b communicate with each other, and the gas guided to the first sample cell 11a enters the second sample cell 11b as it is and is exhausted through the valve V6.
  • the auxiliary cell 11c is filled with a reference gas that does not absorb infrared rays and is sealed. Note that the auxiliary cell 11c may not always be filled with the reference gas and sealed, but may guide the reference gas from the reference gas supply unit 30 and constantly flow the same at a constant flow rate.
  • the capacity of the first sample cell 11a is about 0.1 ml, and the capacity of the second sample cell 11b is about 3.7 ml.
  • a sapphire transmission window for transmitting infrared light is provided on an end face of the cell 11.
  • the cell 11 is connected to a pressure gauge 31 through a pipe.
  • the pressure gauge 31 can measure the pressure of the gas introduced into the cell 11 by the gas injector 21.
  • light source devices L1 and L2 that emit infrared light are provided.
  • the light source devices L1 and L2 are provided with two waveguides (not shown) for irradiating infrared rays.
  • the method of generating infrared light by the light source devices L1 and L2 may be any method, for example, a ceramic heater (surface temperature of 450 ° C.) or the like can be used.
  • An optical chopper 22 is provided between the light source devices L1 and L2 and the cell 11 to block and pass infrared light at a constant period.
  • the optical chopper 22 can cause the cell 11 to emit infrared light at a constant cycle (for example, 600 Hz) by being rotated by the motor 22a. That is, the optical chopper 22 is an optical modulator that modulates the intensity of the infrared light emitted from the light source devices L1 and L2 into a sine wave shape.
  • the infrared light emitted from the light source device L1 passes through the second sample cell 11b, and the amount of light is detected by the infrared detector 25a.
  • a wavelength filter 24a is provided between the second sample cell 11b and the infrared detector 25a.
  • the infrared light emitted from the light source device L2 passes through the first sample cell 11a and the auxiliary cell 11c, and the amount of light is detected by the infrared detector 25b.
  • a wavelength filter 24b is provided between the first sample cell 11a and the auxiliary cell 11c and the infrared detector 25b.
  • the wavelength filter 24a is designed to pass infrared light having a wavelength of about 4412 nm to measure absorption of 13 CO 2
  • the wavelength filter 24b is designed to pass infrared light having a wavelength of about 4280 nm to measure absorption of 12 CO 2.
  • the infrared detectors 25a and 25b are elements for detecting the amount of infrared light, and are photovoltaic elements.
  • the photovoltaic element is an element that utilizes a phenomenon in which an electromotive force is generated by irradiating a substance with light (that is, a photovoltaic effect), and is, for example, an InAsSb element in which an electromotive force is generated by infrared light.
  • the infrared detectors 25a and 25b may be photoconductive elements whose electric resistance changes by infrared light, for example, PbSe elements.
  • the entirety of the infrared detectors 25a and 25b is maintained at a constant temperature by the heater and the Peltier element 27. Further, fans 28 and 29 for ventilating the air inside the measuring device 100 are provided. Further, the measuring device 100 includes a signal processing circuit 40 that processes signals output from the infrared detectors 25a and 25b.
  • FIG. 2 is a schematic diagram for explaining the configuration of the signal processing circuit 40 according to the present embodiment.
  • the signal processing circuit 40 includes an IV conversion circuit (current-voltage conversion circuit) 41, an amplification circuit 42, a filter circuit 43, a differential converter circuit (differential circuit) 44, and an AD conversion circuit (analog-digital conversion circuit) 45. I have.
  • the IV conversion circuit 41 is a circuit that converts a current value signal output from the infrared detectors 25a and 25b into a voltage value signal. In the infrared detectors 25a and 25b, a current value signal is output to the IV conversion circuit 41 in accordance with the amount of transmitted light transmitted through the cell 11. The IV conversion circuit 41 outputs the amount of transmitted light detected by the infrared detectors 25a and 25b as a voltage value signal.
  • the amplifying circuit 42 amplifies the signal converted by the IV conversion circuit 41 into a signal that can be processed by the filter circuit 43 and the differential converter circuit 44.
  • the amplification circuit 42 amplifies the voltage value by about twice to generate a signal having a maximum amplitude of 0 V to 5 V. I do.
  • the transmitted light amount detected by the infrared detectors 25a and 25b becomes a sine wave.
  • the transmitted light amount detected by the infrared detectors 25a and 25b is a sine wave of 600 Hz. Therefore, the signals output from the infrared detectors 25a and 25b also become sine waves of 600 Hz, and the signal amplified by the amplifier circuit 42 has a maximum amplitude of 0 V to 5 V and a sine wave of a frequency of 600 Hz.
  • the filter circuit 43 is a bandpass filter that passes a signal of a frequency component (for example, 600 Hz) modulated by the optical chopper 22. That is, the signal of the predetermined frequency component passed by the filter circuit 43 is a signal of the frequency component (for example, 600 Hz) modulated by the optical chopper 22.
  • the differential converter circuit 44 generates a signal (opposite phase signal) having an opposite phase to the signal (pass signal) that has passed through the filter circuit 43, and AD-converts a differential signal including both signals (pass signal and anti-phase signal). Output to the circuit 45.
  • the AD conversion circuit 45 the difference between the passed signal and the opposite phase signal is converted into a digital signal as a measurement result. The detailed processing in the signal processing circuit 40 will be described later.
  • the measuring apparatus 100 includes an arithmetic circuit 50 for diagnosing the presence or absence of the HP based on the signal processed by the signal processing circuit 40.
  • the arithmetic circuit 50 controls the measuring device 100 such as controlling the opening and closing of the valves V1 to V6 and the control of the drive circuit of the pulse motor 21f. ) To control the display.
  • FIG. 3 is a block diagram for explaining the configuration of the arithmetic circuit 50 according to the present embodiment.
  • arithmetic circuit 50 includes a microprocessor 51, a chipset 52, a main memory 54, a nonvolatile memory 56, a system timer 58, a display controller 60, and an I / O controller 70.
  • the chipset 52 and other components are respectively connected via various buses.
  • the microprocessor 51 and the chip set 52 are typically configured according to a general-purpose computer architecture. That is, the microprocessor 51 interprets and executes instruction codes sequentially supplied from the chipset 52 according to the internal clock. The chipset 52 exchanges internal data with various connected components and generates an instruction code required for the microprocessor 51. Further, the chipset 52 has a function of caching data and the like obtained as a result of execution of arithmetic processing in the microprocessor 51.
  • the arithmetic circuit 50 has a main memory 54 and a non-volatile memory 56 as storage means.
  • the main memory 54 is a volatile storage area (RAM) and holds various programs to be executed by the microprocessor 51 after the power to the arithmetic circuit 50 is turned on.
  • the main memory 54 is also used as a working memory when the microprocessor 51 executes various programs.
  • a device such as a DRAM (Dynamic Random Access Memory) or an SRAM (Static Random Access Memory) is used.
  • the non-volatile memory 56 non-volatilely stores data such as a real-time OS (Operating System), a system program of the measuring apparatus 100, a user program, a calculation program, and setting parameters. These programs and data are copied to the main memory 54 so that the microprocessor 51 can access them as necessary.
  • a nonvolatile memory 56 a semiconductor memory such as a flash memory can be used.
  • a magnetic recording medium such as a hard disk drive or an optical recording medium such as a DVD-RAM (Digital Versatile Disk Random Access Memory) can be used.
  • the system timer 58 generates an interrupt signal at regular intervals and provides it to the microprocessor 51.
  • an interrupt signal is generated at a plurality of different cycles depending on hardware specifications.
  • an interrupt signal is generated at an arbitrary cycle by an OS (Operating System) or a BIOS (Basic Input Output System). It can also be set to generate a signal.
  • OS Operating System
  • BIOS Basic Input Output System
  • the display controller 60 is connected to the display unit provided in the measuring device 100 via the connection unit 68, and controls the display unit.
  • the display controller 60 includes a memory control circuit 62, a display control circuit 64, and a buffer memory 66.
  • the buffer memory 66 functions as a transmission buffer for display data output to the display unit via the display controller 60 and a reception buffer for input data input from the display unit (for example, a touch panel).
  • the memory control circuit 62 transfers output data from the main memory 54 to the buffer memory 66, and transfers input data from the buffer memory 66 to the main memory 54.
  • the display control circuit 64 performs a process of transmitting display data of the buffer memory 66 and a process of receiving input data and storing the received data in the buffer memory 66 with a display unit connected thereto.
  • the I / O controller 70 is connected to a control device such as valves V1 to V6 and a pulse motor 21f provided in the measurement device 100 and a signal processing circuit 40 via a connection unit 78, and connects to the valves V1 to V6 and the pulse motor 21f.
  • the output of the control signal, the input of a digital signal from the signal processing circuit 40, and the like are controlled.
  • the I / O controller 70 includes a memory control circuit 72, a signal control circuit 74, and a buffer memory 76.
  • the buffer memory 76 functions as a transmission buffer for control signals output to the valves V1 to V6, the pulse motor 21f, and the like via the I / O controller 70, and a reception buffer for digital signals input from the signal processing circuit 40. .
  • the memory control circuit 72 transfers a control signal from the main memory 54 to the buffer memory 76 and transfers a digital signal from the buffer memory 76 to the main memory 54.
  • the signal control circuit 74 performs a process of transmitting a control signal of the buffer memory 76 and a digital signal between a control device such as the valves V1 to V6 and the pulse motor 21f connected to the I / O controller 70 and the signal processing circuit 40. A process of receiving and storing the received data in the buffer memory 76 is performed.
  • the measurement process is performed in the order of reference gas measurement, base gas measurement, reference gas measurement, sample gas measurement, reference gas measurement,.
  • the auxiliary cell 11c is filled with a reference gas and is sealed.
  • the first sample cell 11a and the second sample cell 11b are filled with the reference gas by sucking the reference gas into the cylinder 21b using the gas injector 21 and extruding the same into the cell 11, thereby obtaining 12 CO 2 and 13 CO 2.
  • the amount of transmitted CO 2 is measured by infrared detectors 25a and 25b.
  • a clean reference gas flows through the gas flow path and the cell 11, so that the gas flow path and the cell 11 can be cleaned.
  • the piston 21c is moved back and forth, the inside of the cylinder 21b can be cleaned with a clean reference gas.
  • the transmitted light amounts of CO 2 and 13 CO 2 are measured by infrared detectors 25a and 25b.
  • Sample gas measurement sample gas suction from the breath bag S into the cylinder 21b with the gas injector 21, that pushes the cell 11, satisfies the first sample cell 11a and the second sample cell 11b with the sample gas 12
  • the transmitted light amounts of CO 2 and 13 CO 2 are measured by infrared detectors 25a and 25b.
  • the signals output from the infrared detectors 25a and 25b are processed by the signal processing circuit 40 and output to the arithmetic circuit 50, as described above. Therefore, in the measuring device 100, the respective transmitted light amounts of 12 CO 2 and 13 CO 2 measured by sample gas measurement or the like are obtained based on the signals processed by the signal processing circuit 40.
  • FIG. 4 is a diagram for explaining signal processing in the signal processing circuit 40 according to the present embodiment.
  • 4A illustrates signal processing for generating a differential signal by the differential converter circuit 44
  • FIG. 4B illustrates an example of a signal processing performed by an amplifier circuit based on a reference signal in comparison with FIG. 4A. Amplifying signal processing is shown.
  • FIG. 4A when a sine wave signal that has passed through the filter circuit 43 is input to the differential converter circuit 44, a signal having a phase opposite to that of the signal (passing signal) that has passed through the filter circuit 43 (opposite phase signal) Is generated.
  • the differential converter circuit 44 outputs the passing signal and the opposite phase signal to the AD conversion circuit 45 as differential signals.
  • the AD conversion circuit 45 since a differential signal is input, a difference between a passing signal and an opposite-phase signal becomes a signal of a measurement result, and the signal is converted into a digital signal. That is, as shown in FIG. 4A, the difference between the passing signal having the maximum amplitude of 0 V to 5 V and the opposite phase signal having the maximum amplitude of 0 V to 5 V is obtained.
  • the 10 V signal is converted into a digital signal.
  • the difference between the passing signal and the reference voltage is converted into a digital signal by the AD conversion circuit 45 as a signal of the measurement result. That is, since the difference between the passing signal having the maximum amplitude of 0 V to 5 V and the reference voltage of 2.5 V is obtained, the AD conversion circuit 45 converts the signal having the maximum amplitude of 5 V into a digital signal.
  • the difference between the passing signals with respect to the opposite phase signal in the differential converter circuit 44 is a signal of the measurement result, as shown in FIG.
  • the dynamic range of the signal of the measurement result is widened as compared with the case where the difference between the passing signals is used as the signal of the measurement result.
  • the passing signal having the maximum amplitude of 0 V to 5 V is converted into a signal having the maximum amplitude of 0 V to 10 V by the differential converter circuit 44, which has about twice the dynamic range.
  • the AD converter 45 when converting the differential signal output from the differential converter circuit 44 into a digital signal in the AD conversion circuit 45, the AD converter 45 converts the sampling frequency to 57 kHz and the resolution to 24 bits to convert the signal into a digital signal.
  • the AD converter circuit converts the signal to a digital signal with a sampling frequency of 40 kHz and a resolution of 20 bits. Therefore, the AD conversion circuit 45 converts the sampling frequency to 57 kHz and the resolution to 24 bits into a digital signal, thereby reducing the quantization error generated during the AD conversion.
  • the dynamic range is widened, so that it is necessary to increase the resolution as compared with the case where the passing signal is converted into a digital signal.
  • the AD conversion circuit 45 when a passing signal having a maximum amplitude of 0 V to 5 V is converted into a digital signal with a resolution of 20 bits, a signal having a maximum amplitude of 0 V to 10 V is converted into a digital signal with the same quantization error. Needs to be converted to a digital signal with a resolution of at least 21 bits.
  • FIG. 5 is a flowchart for explaining a signal processing method in the signal processing circuit 40 according to the present embodiment.
  • the signal processing circuit 40 converts a signal detected as a current value by the infrared detectors 25a and 25b in the IV conversion circuit 41 into a voltage signal (step S10).
  • the intensity is modulated into a sine wave by the optical chopper 22, and the amount of infrared light from the light source devices L1 and L2 is detected.
  • the signal processing circuit 40 allows the filter circuit 43 to pass a signal of a specific frequency component among the signals converted into the voltage value in step S10 (step S20).
  • the specific frequency component (predetermined frequency component) is a frequency component modulated by the optical chopper 22 (for example, 600 Hz).
  • the signal processing circuit 40 generates, in the differential converter circuit 44, an opposite phase signal of the passing signal passed through the filter circuit 43, and outputs a differential signal including the passing signal and the opposite phase signal to the AD conversion circuit 45. (Step S30).
  • the signal processing circuit 40 converts the differential signal of step S30 into a digital signal in the AD conversion circuit 45 (step S40). Thereafter, the signal processing circuit 40 determines whether there is a signal input to the signal processing (step S50). If there is no signal input to the signal processing (NO in step S50), the signal processing circuit 40 ends the signal processing. On the other hand, when there is a signal input to the signal processing (YES in step S50), signal processing circuit 40 returns the processing to step S10.
  • FIG. 6 is a graph for explaining the variation of the signal processed by the signal processing circuit 40 according to the present embodiment.
  • time is set on the horizontal axis
  • the light amount fluctuation amount is set on the vertical axis
  • the fluctuation of the light amount measured by the infrared detectors 25 a and 25 b and processed by the signal processing circuit 40 is shown.
  • the fluctuation amount of the light amount is indicated by a count value obtained by AD conversion.
  • a waveform I is a signal based on the amount of transmitted light detected by the infrared detectors 25a and 25b every 600 seconds when infrared light of a constant intensity is emitted from the light source devices L1 and L2 and every 10 seconds.
  • I a measurement result obtained by processing in the signal processing circuit 40.
  • the waveform I indicates the amount of fluctuation before and after the measured light quantity, and the fluctuation is substantially within a range from 0 “zero” to about 100.
  • a waveform II emits infrared light having a constant intensity from the light source devices L1 and L2, and converts a signal based on the amount of transmitted light detected by the infrared detectors 25a and 25b every 600 seconds for 10 seconds into a conventional amplifier circuit. It is the measurement result processed by.
  • the waveform II shows the amount of fluctuation before and after the measured light amount, which varies from 0 “zero” to about 500, and is larger than the waveform I.
  • the standard deviation of the light quantity fluctuation in the waveform I is 89, while the standard deviation of the light quantity fluctuation in the waveform II is 387. Therefore, it can be seen that the standard deviation of the light quantity fluctuation is less than or equal to about 1/3 in the waveform I as compared with the waveform II.
  • the S / N ratio of the signal of the measurement result is improved, so that the light amount varies. The amount is smaller.
  • a signal based on the transmitted light amount detected by the infrared detectors 25a and 25b is processed by the signal processing circuit 40 to obtain a measurement result. / N ratio. Therefore, in the measurement device 100, the amount of sample required for measuring gas can be reduced (for example, halved), and the time required for measurement can be reduced.
  • the arithmetic circuit 50 obtains the absorbance of CO 2 in the base gas based on the transmitted light amount of the reference gas measured by the reference gas measurement and the transmitted light amount of the base gas measured by the base gas measurement.
  • the transmitted light amount of each of 12 CO 2 and 13 CO 2 is measured, so that the arithmetic circuit 50 can obtain the absorbance of the base gas of each of 12 CO 2 and 13 CO 2.
  • the arithmetic circuit 50 obtains the absorbance of CO 2 in the sample gas based on the transmitted light amount of the reference gas measured by the reference gas measurement and the transmitted light amount of the sample gas measured by the sample gas measurement.
  • the amount of transmitted light of each of 12 CO 2 and 13 CO 2 is measured, so that the arithmetic circuit 50 can obtain the absorbance of each of the sample gases of 12 CO 2 and 13 CO 2.
  • the arithmetic circuit 50 cancels the influence of drift at the time of measurement by taking the average value of the transmitted light amount of the reference gas measured before and after the base gas measurement or the sample gas measurement. can do.
  • the arithmetic circuit 50 calculates the concentration of CO 2 from the obtained absorbance of CO 2 using the calibration curve.
  • the calibration curve is a curve obtained by plotting the results of measuring the absorbance of CO 2 with respect to the gas to be measured whose CO 2 concentration is known and using the least squares method.
  • a calibration curve is prepared for each of 12 CO 2 and 13 CO 2 . Therefore, the arithmetic circuit 50, using the calibration curve of the 12 CO 2, determine the concentration of 12 CO 2 in the base gas from 12 CO 2 absorbance of the base gas, from 12 CO 2 absorbance of the sample gas in the sample gas 12 The concentration of CO 2 is determined.
  • the arithmetic circuit 50 calculates the concentration of 13 CO 2 of the base gas from the absorbance of 13 CO 2 of the base gas using the calibration curve of 13 CO 2 , and calculates the concentration of 13 CO 2 of the sample gas from the absorbance of 13 CO 2 of the sample gas. Determine the concentration of 13 CO 2 .
  • the arithmetic circuit 50 calculates the concentration ratio between 12 CO 2 and 13 CO 2 .
  • the arithmetic circuit 50 calculates the concentration ratio between 12 CO 2 and 13 CO 2 in the base gas measurement and the concentration ratio between 12 CO 2 and 13 CO 2 in the sample gas measurement.
  • the arithmetic circuit 50 obtains a 13 CO 2 concentration change amount by comparing the sample gas measurement with the base gas measurement.
  • the measuring apparatus 100 uses the infrared detectors 25a and 25b to detect the amounts of infrared light from the light source devices L1 and L2 whose sinusoidal intensity has been modulated by the optical chopper 22. And a signal processing circuit 40 for processing a signal based on the amount of light detected by the infrared detectors 25a and 25b.
  • the signal processing circuit 40 converts the current value signal output from the infrared detectors 25a and 25b into a voltage value signal, and modulates the signal converted by the IV conversion circuit 41 with the optical chopper 22.
  • a filter circuit 43 that passes the signal of the frequency component, and a differential converter circuit 44 that generates a reverse phase signal of the passing signal that has passed through the filter circuit 43 and outputs a differential signal including the passing signal and the reverse phase signal Prepare. Therefore, in the measurement apparatus 100, the signal processing circuit 40 uses the differential converter circuit 44 that outputs a differential signal including the passing signal and the opposite phase signal to perform the S / N of the signal obtained by the infrared detectors 25a and 25b. The ratio can be improved, and a signal with a wider dynamic range can be obtained.
  • the signal processing circuit 40 includes an AD conversion circuit 45 that converts a differential signal output from the differential converter circuit 44 into a digital signal. Since the signal processing circuit 40 includes the AD conversion circuit 45, it can be input to the arithmetic circuit 50 as a digital signal that can be easily processed by the arithmetic circuit 50, and the processing load on the arithmetic circuit 50 can be reduced. Of course, the signal processing circuit 40 is not provided with the AD conversion circuit 45, and the differential signal output from the differential converter circuit 44 is directly input to the arithmetic circuit 50 and converted into a digital signal by the arithmetic circuit 50. May be.
  • the AD conversion circuit 45 makes the resolution for converting the differential signal into the digital signal higher than the resolution for converting the passing signal into the digital signal.
  • the AD conversion circuit 45 can convert a differential signal having a wide dynamic range into a digital signal without increasing a quantization error.
  • the AD conversion circuit 45 may convert the differential signal into a digital signal without increasing the resolution.
  • the signal processing circuit 40 includes an amplification circuit 42 that amplifies the signal converted by the IV conversion circuit 41, and inputs the signal amplified by the amplification circuit 42 to the filter circuit 43. Since the signal processing circuit 40 includes the amplification circuit 42, the signal output from the infrared detectors 25 a and 25 b can be amplified to a signal that can be processed by the filter circuit 43 and the differential converter circuit 44. Of course, if the signal converted by the IV conversion circuit 41 can be processed by the filter circuit 43 or the differential converter circuit 44, the signal processing circuit 40 converts the signal converted by the IV conversion circuit 41 without providing the amplification circuit 42. It may be input to the filter circuit 43.
  • the signals based on the light amounts detected by the infrared detectors 25a and 25b are detected by the infrared detectors 25a and 25b by detecting the light amounts of the infrared light from the light source devices L1 and L2 whose sine waves are modulated by the light modulators.
  • the optical modulator is described as the optical chopper 22, but the optical modulator is not limited to the optical chopper 22 as long as it can modulate the intensity of the infrared light from the light source devices L1 and L2 in a sine wave shape. .
  • the infrared detectors 25a and 25b have been described as being photovoltaic elements, they are not limited to photovoltaic elements as long as they can detect the amount of infrared light, and may be photoconductive elements. Is also good.
  • FIG. 7 is a schematic diagram for explaining a configuration of a signal processing circuit 40a according to a modification.
  • the signal processing circuit 40a includes an IV conversion circuit (current-voltage conversion circuit) 41, an amplification circuit 42a, a filter circuit 43, a differential converter circuit (differential circuit) 44, and an AD conversion circuit (analog-digital conversion circuit) 45. I have.
  • signal processing circuit 40a the same components as signal processing circuit 40 shown in FIG. 2 are denoted by the same reference numerals, and detailed description will not be repeated.
  • the amplifying circuit 42a amplifies the signal passed through the filter circuit 43 into a signal that can be processed by the differential converter circuit 44. For example, when the signal that has passed through the filter circuit 43 is a signal having a maximum amplitude of 0 V to 2.5 V, the amplifier circuit 42 a amplifies the voltage value approximately twice to obtain a signal having a maximum amplitude of 0 V to 5 V. .
  • the signal processing circuit 40a includes an amplifying circuit 42a for amplifying a signal between the filter circuit 43 and the differential converter circuit 44, thereby amplifying a signal passing through the filter circuit 43 into a signal that can be processed by the differential converter circuit 44. can do.
  • the signal processing circuit 40a may be combined with the amplifier circuit 42 provided in the signal processing circuit 40 shown in FIG. That is, the signal processing circuit 40a may include the amplifier circuit 42 provided between the IV conversion circuit 41 and the filter circuit 43, and the amplifier circuit 42a amplifying a signal provided between the filter circuit 43 and the differential converter circuit 44. Good. This makes it possible to amplify the signals required by each of the filter circuit 43 and the differential converter circuit 44.
  • the measuring apparatus 100 measures the concentration ratio of the component gas of the gas to be measured including the two types of component gases having an isotope relationship with each other.
  • the measuring device 100 includes cells (first sample cell 11a, second sample cell 11b), light source devices L1, L2, optical chopper 22, optical filters (wavelength filters 24a, 24b), and infrared detectors 25a, 25b. And signal processing circuits 40 and 40a, and an arithmetic circuit 50.
  • the cells (the first sample cell 11a and the second sample cell 11b) store the gas to be measured.
  • the light source devices L1 and L2 emit infrared light transmitted through the cell.
  • the optical chopper 22 modulates the intensity of the infrared light from the light source devices L1 and L2 into a sine wave.
  • the optical filters (wavelength filters 24a and 24b) transmit a wavelength suitable for each component gas out of the infrared light transmitted through the cell.
  • the infrared detectors 25a and 25b detect the amount of transmitted light transmitted through the optical filter.
  • the signal processing circuits 40 and 40a process signals based on the amounts of light detected by the infrared detectors and 40a.
  • the arithmetic circuit 50 obtains the absorbance at a wavelength suitable for the component gas from the signals processed by the signal processing circuits 40 and 40a, and calculates the concentration ratio of the component gas.
  • the measuring apparatus 100 has the configuration described above, and converts the carbon dioxide 13 CO 2 and the carbon dioxide 12 CO 2 into two types of component gases having an isotope relationship with each other, An example of measuring the gas concentration ratio has been described.
  • the measuring device 100 may be any gas as long as it can measure the concentration ratio of two types of component gases having an isotope relationship with each other in the configuration described above. .
  • the signal processing circuits 40 and 40a are an example provided in the measuring device 100 that measures the concentration ratio of the component gases of the two types of component gases having the isotope relationship between the carbon dioxide 13 CO 2 and the carbon dioxide 12 CO 2.
  • the signal processing circuits 40 and 40a detect the amount of infrared light from the light source whose intensity is modulated sinusoidally by the optical modulator with the infrared detector, and output a signal based on the amount of light detected by the infrared detector. Any device that requires processing can be similarly provided.
  • 11 cell chamber 11a first sample cell, 11b second sample cell, 11c auxiliary cell, 21 gas injector, 21a base, 21b cylinder, 21c piston, 21d nut, 21e feed screw, 21f pulse motor, 22 optical chopper, 22a motor, 24a, 24b wavelength filter, 25a, 25b infrared detector, 27 Peltier element, 28, 29 fan, 30 reference gas supply unit, 31 pressure gauge, 40, 40a signal processing circuit, 41 IV conversion circuit, 45 AD conversion Circuit, 42, 42a ⁇ amplifier circuit, 43 ⁇ filter circuit, 44 # differential converter circuit, 50 # arithmetic circuit, 100 # measuring device.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

信号処理回路(40)は、赤外線検出器で検出した光量に基づく信号を処理する。信号処理回路(40)は、IV変換回路(41)と、フィルタ回路(43)と、差動コンバータ回路(44)とを備える。IV変換回路(41)は、赤外線検出器から出力された電流値の信号を電圧値の信号に変換する。フィルタ回路(43)は、IV変換回路(41)で変換した信号のうち予め定められた周波数成分の信号を通過させる。差動コンバータ回路(44)は、フィルタ回路(43)を通過した通過信号の逆位相信号を生成し、通過信号と逆位相信号とを含む差動信号を出力する。

Description

信号処理回路、測定装置、および信号処理方法
 本発明は、信号処理回路、測定装置、および信号処理方法に関する。
 近年、医療の分野において、赤外線検出器を病気の診断に利用する測定装置が開発されている。例えば、同位体の入った薬物を生体に投与した後、同位体の濃度比の変化を赤外線検出器で測定することにより、生体の代謝率を求めて病気の診断に利用する測定装置などが開発されている。
 このような測定装置において、光源からの赤外光の光量を赤外線検出器で検出し、その検出結果を病気の診断に利用するには、赤外線検出器から出力される信号がある程度のS/N比を有する信号である必要がある。赤外線検出器から出力される信号のS/N比を向上させるために、赤外線検出器で検出される光量を強くすることが考えられる。しかし、赤外線検出器で検出される光量を強くするには、測定装置で測定するサンプル量を増やす必要があり被検者に負担を与えることになる。
 また、赤外線検出器から出力された信号を信号処理回路で処理することで、信号のS/N比を向上させることが考えられる。信号処理回路として、例えば、特許文献1(特開平4-357423号公報)や特許文献2(特開2016-5067号公報)に検出器から出力された信号を増幅する増幅回路を備えた信号処理回路が開示されている。
特開平4-357423号公報 特開2016-5067号公報
 しかし、特許文献1および特許文献2で開示されている信号処理回路では、増幅回路が基準電圧に対して検出器から出力された信号を増幅しているので、基準電圧に誤差生じた場合、その誤差が検出器から出力された信号に直接影響を及ぼす問題があった。また、特許文献1および特許文献2で開示されている信号処理回路では、基準電圧との差分が検出器から出力された信号のダイナミックレンジとなるので、広いダイナミックレンジの信号を得ることができない問題があった。
 本発明は、検出器で得られた信号のS/N比を向上させることが可能で、よりダイナミックレンジの広い信号を得ることができる信号処理回路、測定装置、および信号処理方法を提供することを目的とする。
 本発明のある局面によれば、赤外線検出器で検出した光量に基づく信号を処理する信号処理回路であって、赤外線検出器から出力された電流値の信号を電圧値の信号に変換する電流電圧変換回路と、電流電圧変換回路で変換した信号のうち予め定められた周波数成分の信号を通過させるフィルタ回路と、フィルタ回路を通過した通過信号の逆位相信号を生成し、通過信号と逆位相信号とを含む差動信号を出力する差動回路とを備える。
 好ましくは、差動回路から出力された差動信号をデジタル信号に変換するアナログデジタル変換回路をさらに備える。
 好ましくは、アナログデジタル変換回路は、通過信号をデジタル信号に変換する分解能よりも、差動信号をデジタル信号に変換する分解能を高くする。
 好ましくは、電流電圧変換回路で変換した信号を増幅する増幅回路をさらに備え、増幅回路で増幅した信号をフィルタ回路に入力する。
 好ましくは、フィルタ回路と差動回路との間に信号を増幅する増幅回路をさらに備える。
 好ましくは、赤外線検出器で検出した光量に基づく信号は、光変調器により正弦波状に強度を変調させた光源からの赤外光の光量を赤外線検出器で検出した信号である。
 好ましくは、赤外線検出器は、光起電力素子である。
 本発明のある別の局面によれば、互いに同位体の関係にある2種類の成分ガスを含む被測定ガスの成分ガスの濃度比を測定する測定装置であって、被測定ガスを格納するセルと、セルに透過させる赤外光を発する光源と、光源からの赤外光の強度を正弦波状に変調させる光変調器と、セルを透過した赤外光のうち各成分ガスに適した波長を透過させる光学フィルタと、光学フィルタを透過した透過光の光量を検出する赤外線検出器と、赤外線検出器で検出した光量に基づく信号を処理する上記に記載の信号処理回路と、信号処理回路で処理した信号から成分ガスに適した波長の吸光度を求め、成分ガスの濃度比を算出する演算回路とを備える。
 好ましくは、被測定ガスに含まれる2種類の成分ガスは、二酸化炭素13COと二酸化炭素12COとである。
 本発明のさらに別の局面によれば、赤外線検出器から出力された信号を処理する信号処理方法であって、赤外線検出器で電流値として検出された信号を、電圧値の信号に変換するステップと、電圧値に変換した信号のうち予め定められた周波数成分の信号を通過させるステップと、通過した信号の逆位相信号を生成し、通過した信号と逆位相信号とを含む差動信号をアナログデジタル変換回路に出力するステップとを備える。
 本技術に係る信号処理回路によれば、通過信号と逆位相信号とを含む差動信号を出力する差動回路により、検出器で得られた信号のS/N比を向上させることができ、よりダイナミックレンジの広い信号を得ることができる。
本実施の形態に係る測定装置の構成を説明するための概略図である。 本実施の形態に係る信号処理回路の構成を説明するための概略図である。 本実施の形態に係る演算回路の構成を説明するためのブロック図である。 本実施の形態に係る信号処理回路での信号処理を説明するための図である。 本実施の形態に係る信号処理回路での信号処理方法を説明するためのフローチャートである。 本実施の形態に係る信号処理回路で処理された信号の変動量を説明するためのグラフである。 変形例に係る信号処理回路の構成を説明するための概略図である。
 以下において、本実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。
 (適用例)
 本実施の形態に係る測定装置は、同位体の入った薬物を生体に投与した後、同位体の光吸収特性により同位体の濃度比の変化を測定して、生体の代謝率を求めて病気の診断に利用する装置を例に説明する。具体的に、胃潰瘍、胃炎の原因であると言われているヘリコバクタピロリー(HP)が被検者の胃の中に存在するか否かの診断に利用する測定装置について説明する。
 被検者にHPが存在するか否かを診断する方法としては、様々な方法が提案されている。本実施の形態に係る測定装置では、HPが持つ強いウレアーゼ活性により尿素を二酸化炭素とアンモニアとに分解する性質を利用して、被検者に投与した同位体13Cでマーキングした尿素が分解されて得られる13COの濃度比の変化から、HPの有無の診断を行っている。
 ここで、炭素には、質量数が12のものの他、質量数が13や14の同位体が存在するが、これらの同位体の中で質量数が13の同位体13Cは、放射性がなく、安定して存在するため取り扱い易い。そのため、被検者に投与する尿素は、同位体13Cでマーキングされ、被検者の胃の中にHPが存在する場合、当該HPにより13COとアンモニアとに分解される。分解された13COは、被検者の呼気に含まれて排出されるため、被検者の呼気に含まれる13COの濃度比を測定することで、HPが被検者の胃の中に存在するか否かの診断が可能となる。
 空気中に含まれる13CO12COとの濃度比は、1:100である。そのため、本実施の形態に係る測定装置は、13CO12COとの濃度比を精度よく測定することが求められる。なお、本実施の形態に係る測定装置においては、13CO12COとの濃度比を求める方法として赤外分光を用いており、一方のセルでの13COの吸収と、他方のセルでの12COの吸収とが等しくなる長短2本のセルを備えている。測定装置では、各セルに、それぞれの分析に適した波長の赤外光を当てて、透過光の光量(透過光量)を測定し、空気中の濃度比に対して被検者の呼気に含まれる濃度比の変化を求めている。なお、13CO12COとの濃度比を求める方法については、特公昭61-42219号公報や、特公昭61-42220号公報などに開示されている。
 本実施の形態に係る測定装置では、13CO12COとの濃度比を精度よく測定するために、セルを透過し検出器で検出した透過光量に基づく信号を処理する信号処理回路を設けて、信号のS/N比を向上させ、よりダイナミックレンジの広い信号としている。
 以下、同位体13Cでマーキングしたウレア診断薬を被検者に投与した後、呼気中の13COの濃度比を分光測定する場合について、図面を参照しながら詳細に説明する。まず、ウレア診断薬を投与する前の被検者の呼気をベースガスとして呼気バッグに採集する。その後、被検者にウレア診断薬を経口投与し、約20分後、被検者の呼気をサンプルガスとして呼気バッグに採集する。
 サンプルガスの呼気バッグと、ベースガスの呼気バッグとをそれぞれ測定装置の所定のノズルにセットし、13CO12COとの濃度比を測定する。なお、ベースガスおよびサンプルガスが測定装置の被測定ガスである。
 (測定装置の構成)
 図1は、本実施の形態に係る測定装置100の構成を説明するための概略図である。測定装置100では、ベースガスの呼気バッグBとサンプルガスの呼気バッグSとを、それぞれノズルN1,N2にセットする。ノズルN1は、パイプ(例えば、金属パイプ)を通してフィルタF1およびバルブ(例えば、電磁バルブ)V2につながっている。なお、フィルタF1は、呼気バッグBに含まれるベースガス以外の異物を除去するためのフィルタである。ノズルN2は、パイプを通してフィルタF2およびバルブV3につながっている。バルブV2およびバルブV3は、1本のパイプを通してガス注入器21につながっている。なお、フィルタF2は、呼気バッグSに含まれるベースガス以外の異物を除去するためのフィルタである。
 ガス注入器21につながるパイプには、バルブV1,V4,V5がそれぞれつながっている。バルブV1は、パイプを通してフィルタF5、およびリファレンスガス供給部30につながっている。リファレンスガス供給部30には、例えばソーダライム(水酸化ナトリウムと水酸化カルシウムとを混合したもの)を炭酸ガス吸収剤として用いる炭酸ガス吸収部を含んでいる。そのため、リファレンスガス供給部30は、外部から取り込んだ空気から二酸化炭素を吸収したリファレンスガスをガス注入器21に供給することができる。なお、フィルタF5は、ガス注入器21に供給するリファレンスガスから異物を取り除く防塵フィルタである。
 バルブV4は、パイプを通してフィルタF4、およびセル11につながっている。バルブV5は、パイプを通してフィルタF3につながっている。フィルタF3は、空気を取り込み口に設けられており、取り込んだ空気から異物を取り除くフィルタである。フィルタF4は、ガス注入器21に供給するリファレンスガス、第2被測定ガス、および第2被測定ガスから水分を取り除くドライフィルタである。
 ガス注入器21は、基台21aの上に、ピストン21cの入ったシリンダー21bが配置され、基台21aの下に、ピストン21cと連結した移動自在なナット21d、ナット21dと噛み合う送りネジ21e、および送りネジ21eを回転させるパルスモータ21fを備える構造である。
 パルスモータ21fは、図示しない駆動回路によって、正転、逆転駆動される。パルスモータ21fの回転によって送りネジ21eが回転すると、回転方向に応じてナット21dが前後移動し、これによって、ピストン21cが任意の位置に前後移動する。したがって、シリンダー21bへの被測定ガスの導入と、シリンダー21bからの被測定ガスの導出を自在に制御することができる。
 バルブV4の他方は、12COの吸収を測定するための第1サンプルセル11aにつながっている。第1サンプルセル11aは、セル11の1つのセルで12COの吸収を測定するため短いセルである。セル11には、他に13COの吸収を測定するための長い第2サンプルセル11bおよび補助セル11cが含まれている。第1サンプルセル11aと第2サンプルセル11bとは連通しており、第1サンプルセル11aに導かれたガスは、そのまま第2サンプルセル11bに入り、バルブV6を通して排気される。補助セル11cには赤外線の吸収のないリファレンスガスが充填され、密閉されている。なお、補助セル11cは、リファレンスガスを充填して密閉するのではなく、リファレンスガス供給部30からリファレンスガスを導いて、一定の流速で常時流してもよい。
 第1サンプルセル11aの容量は約0.1ml、第2サンプルセル11bの容量は約3.7mlである。セル11の端面には、赤外線を透過させるサファイヤ透過窓が設けられている。また、セル11は、パイプを通して圧力計31とつながっている。圧力計31は、ガス注入器21によってセル11内に導入されたガスの圧力を測定することができる。
 セル11の一方の端面側には、赤外光を発する光源装置L1,L2が設けられている。光源装置L1,L2には、赤外線を照射するための2つの導波管(図示せず)を備えている。光源装置L1,L2による赤外光の発生方式は、任意のものでよく、例えばセラミックスヒータ(表面温度450℃)等が使用可能である。また、光源装置L1,L2とセル11との間には、赤外光を一定周期で遮断して通過させる光チョッパ22が設けられている。光チョッパ22は、モータ22aで回転させることで、セル11に一定の周期(例えば、600Hz)で赤外光を出射させることができる。つまり、光チョッパ22は、光源装置L1,L2から出射した赤外光の強度を正弦波状に変調させる光変調器である。
 光源装置L1から出射された赤外光は、第2サンプルセル11bを通り、赤外線検出器25aで光量が検出される。第2サンプルセル11bと赤外線検出器25aとの間には、波長フィルタ24aが設けられている。光源装置L2から出射された赤外光は、第1サンプルセル11aおよび補助セル11cを通り、赤外線検出器25bで光量が検出される。第1サンプルセル11aおよび補助セル11cと赤外線検出器25bとの間には、波長フィルタ24bが設けられている。
 波長フィルタ24aは、13COの吸収を測定するため約4412nmの波長の赤外光を通し、波長フィルタ24bは、12COの吸収を測定するため約4280nmの波長の赤外線を通すように設計されている。赤外線検出器25a,25bは赤外光の光量を検出する素子であり、光起電力素子である。光起電力素子とは、物質に光を照射することで起電力が発生する現象(すなわち光起電力効果)を利用する素子であり、赤外光により起電力が発生する例えばInAsSb素子である。特に、InAsSb素子であれば、PN接合を採用しているため、高速応答、高信頼性を実現することが可能である。なお、赤外線検出器25a,25bは、赤外光によって電気抵抗を変化する光導電素子であってもよく、例えばPbSe素子でもよい。
 赤外線検出器25a,25bの全体は、ヒータおよびペルチェ素子27により一定温度に保たれている。また、測定装置100内部の空気を換気するファン28,29が設けられている。さらに、測定装置100は、赤外線検出器25a,25bから出力された信号を処理する信号処理回路40を備えている。
 (信号処理回路の構成)
 図2は、本実施の形態に係る信号処理回路40の構成を説明するための概略図である。信号処理回路40は、IV変換回路(電流電圧変換回路)41、増幅回路42、フィルタ回路43、差動コンバータ回路(差動回路)44、およびAD変換回路(アナログデジタル変換回路)45を備えている。
 IV変換回路41は、赤外線検出器25a,25bから出力された電流値の信号を電圧値の信号に変換する回路である。赤外線検出器25a,25bでは、セル11を透過した透過光の光量に応じて電流値の信号として、IV変換回路41に出力される。IV変換回路41では、赤外線検出器25a,25bで検出した透過光量を電圧値の信号として出力する。
 増幅回路42は、IV変換回路41で変換した信号をフィルタ回路43や差動コンバータ回路44で処理できる信号に増幅する。例えば、IV変換回路41で変換した信号が0V~2.5Vの最大振幅の信号である場合に、増幅回路42では、電圧値を約2倍に増幅して0V~5Vの最大振幅の信号とする。
 光源装置L1,L2から出射された赤外光は、光チョッパ22で正弦波状に強度が変調されるので、赤外線検出器25a,25bで検出した透過光量は正弦波となる。例えば、光チョッパ22が600Hzで光源からの光を遮光するのであれば、赤外線検出器25a,25bで検出した透過光量は600Hzの正弦波となる。そのため、赤外線検出器25a,25bから出力される信号も600Hzの正弦波となり、増幅回路42で増幅された信号は、最大振幅が0V~5Vで、周波数が600Hzの正弦波となる。フィルタ回路43では、光チョッパ22で変調した周波数成分(例えば600Hz)の信号を通過させるバンドパスフィルタである。つまり、フィルタ回路43で通過させる予め定められた周波数成分の信号とは、光チョッパ22で変調した周波数成分(例えば600Hz)の信号である。
 差動コンバータ回路44は、フィルタ回路43を通過した信号(通過信号)の逆位相の信号(逆位相信号)を生成し、両信号(通過信号および逆位相信号)を含む差動信号をAD変換回路45に出力する。AD変換回路45では、逆位相信号に対する通過信号の差が測定結果として、デジタル信号に変換する。なお、信号処理回路40での詳しい処理については、後述する。
 図1に戻って、測定装置100は、信号処理回路40で処理された信号に基づいてHPの有無の診断を行う演算回路50を備えている。演算回路50は、HPの有無の診断を行う以外に、バルブV1~V6の開閉制御、パルスモータ21fの駆動回路の制御などの測定装置100の制御を行い、図示していない表示部(例えばLDC)での表示の制御を行っている。
 (演算回路の構成)
 図3は、本実施の形態に係る演算回路50の構成を説明するためのブロック図である。図3を参照して、演算回路50は、マイクロプロセッサ51と、チップセット52と、メインメモリ54と、不揮発性メモリ56と、システムタイマ58と、表示コントローラ60と、I/Oコントローラ70とを含む。チップセット52と他のコンポーネントとの間は、各種のバスを介してそれぞれ結合されている。
 マイクロプロセッサ51およびチップセット52は、典型的には、汎用的なコンピュータアーキテクチャに準じて構成される。すなわち、マイクロプロセッサ51は、チップセット52から内部クロックに従って順次供給される命令コードを解釈して実行する。チップセット52は、接続されている各種コンポーネントとの間で内部的なデータを遣り取りするとともに、マイクロプロセッサ51に必要な命令コードを生成する。さらに、チップセット52は、マイクロプロセッサ51での演算処理の実行の結果得られたデータなどをキャッシュする機能を有する。
 演算回路50は、記憶手段として、メインメモリ54および不揮発性メモリ56を有する。
 メインメモリ54は、揮発性の記憶領域(RAM)であり、演算回路50への電源投入後にマイクロプロセッサ51で実行されるべき各種プログラムを保持する。また、メインメモリ54は、マイクロプロセッサ51による各種プログラムの実行時の作業用メモリとしても使用される。このようなメインメモリ54としては、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)といったデバイスが用いられる。
 一方、不揮発性メモリ56は、リアルタイムOS(Operating System)、測定装置100のシステムプログラム、ユーザプログラム、演算プログラム、設定パラメータといったデータを不揮発的に保持する。これらのプログラムやデータは、必要に応じて、マイクロプロセッサ51がアクセスできるようにメインメモリ54にコピーされる。このような不揮発性メモリ56としては、フラッシュメモリのような半導体メモリを用いることができる。あるいは、ハードディスクドライブのような磁気記録媒体や、DVD-RAM(Digital Versatile Disk Random Access Memory)のような光学記録媒体などを用いることもできる。
 システムタイマ58は、一定周期ごとに割り込み信号を発生してマイクロプロセッサ51に提供する。典型的には、ハードウェアの仕様によって、複数の異なる周期でそれぞれ割り込み信号を発生するように構成されるが、OS(Operating System)やBIOS(Basic Input Output System)などによって、任意の周期で割り込み信号を発生するように設定することもできる。
 表示コントローラ60は、接続部68を介して測定装置100に設けた表示部と接続され、当該表示部を制御している。表示コントローラ60は、メモリ制御回路62、表示制御回路64、およびバッファメモリ66を備えている。
 バッファメモリ66は、表示コントローラ60を介して表示部へ出力される表示データの送信バッファ、および、表示部(例えば、タッチパネルなど)から入力される入力データの受信バッファとして機能する。
 メモリ制御回路62は、メインメモリ54からバッファメモリ66への出力データの転送、および、バッファメモリ66からメインメモリ54への入力データの転送を行う。
 表示制御回路64は、接続される表示部との間で、バッファメモリ66の表示データを送信する処理および入力データを受信してバッファメモリ66に格納する処理を行う。
 I/Oコントローラ70は、接続部78を介して測定装置100に設けたバルブV1~V6やパルスモータ21fなど制御装置や信号処理回路40と接続され、バルブV1~V6やパルスモータ21fなどへの制御信号の出力、信号処理回路40からのデジタル信号の入力などを制御している。I/Oコントローラ70は、メモリ制御回路72、信号制御回路74、およびバッファメモリ76を備えている。
 バッファメモリ76は、I/Oコントローラ70を介してバルブV1~V6やパルスモータ21fなどへ出力される制御信号の送信バッファ、および、信号処理回路40から入力されるデジタル信号の受信バッファとして機能する。
 メモリ制御回路72は、メインメモリ54からバッファメモリ76への制御信号の転送、および、バッファメモリ76からメインメモリ54へのデジタル信号の転送を行なう。
 信号制御回路74は、I/Oコントローラ70に接続されるバルブV1~V6やパルスモータ21fなど制御装置や信号処理回路40との間で、バッファメモリ76の制御信号を送信する処理およびデジタル信号を受信してバッファメモリ76に格納する処理を行う。
 (測定処理)
 次に、測定装置100での測定処理について説明する。測定装置100では、リファレンスガス測定、ベースガス測定、リファレンスガス測定、サンプルガス測定、リファレンスガス測定・・・という手順で測定処理が行われる。なお、測定処理の間、補助セル11cには、リファレンスガスが充填され、密閉されているものとする。
 リファレンスガス測定では、ガス注入器21を用いてシリンダー21b内にリファレンスガスを吸い込み、セル11へ押し出すことで、第1サンプルセル11aおよび第2サンプルセル11bをリファレンスガスで満たして12COおよび13COのそれぞれの透過光量を赤外線検出器25a,25bで測定している。リファレンスガス測定では、清浄なリファレンスガスをガス流路およびセル11に流すので、ガス流路およびセル11を洗浄することができる。このとき、ピストン21cを前後移動させているので、シリンダー21b内も清浄なリファレンスガスで洗浄できる。
 ベースガス測定では、ガス注入器21を用いてシリンダー21b内に呼気バッグBよりベースガスを吸い込み、セル11へ押し出すことで、第1サンプルセル11aおよび第2サンプルセル11bをベースガスで満たして12COおよび13COのそれぞれの透過光量を赤外線検出器25a,25bで測定している。
 サンプルガス測定では、ガス注入器21を用いてシリンダー21b内に呼気バッグSよりサンプルガスを吸い込み、セル11へ押し出すことで、第1サンプルセル11aおよび第2サンプルセル11bをサンプルガスで満たして12COおよび13COのそれぞれの透過光量を赤外線検出器25a,25bで測定している。
 測定装置100では、前述したように、赤外線検出器25a,25bから出力された信号が信号処理回路40で処理されて演算回路50に出力される。そのため、測定装置100では、サンプルガス測定などで測定される12COおよび13COのそれぞれの透過光量は、信号処理回路40で処理された後の信号に基づいて求められる。
 次に、信号処理回路40での信号処理について詳しく説明する。図4は、本実施の形態に係る信号処理回路40での信号処理を説明するための図である。図4(a)では、差動コンバータ回路44で差動信号を生成する信号処理が図示され、図4(b)では、図4(a)との対比で、基準信号に基づいて増幅回路で増幅する信号処理が図示されている。
 図4(a)では、フィルタ回路43を通過した正弦波の信号が差動コンバータ回路44に入力されると、フィルタ回路43を通過した信号(通過信号)の逆位相の信号(逆位相信号)を生成される。差動コンバータ回路44では、通過信号と逆位相信号とを差動信号としてAD変換回路45に出力する。AD変換回路45では、差動信号が入力されるので、逆位相信号に対する通過信号の差が測定結果の信号となり、当該信号をデジタル信号に変換することになる。つまり、図4(a)で示すように最大振幅が0V~5Vの通過信号と、最大振幅が0V~5Vの逆位相信号との差を取るため、AD変換回路45では、最大振幅が0V~10Vの信号をデジタル信号に変換することになる。
 一方、図4(b)では、基準電圧に対する通過信号の差を測定結果の信号として、AD変換回路45でデジタル信号に変換する。つまり、最大振幅が0V~5Vの通過信号と、2.5Vの基準電圧との差を取るため、AD変換回路45では、最大振幅が5Vの信号をデジタル信号に変換することになる。
 そのため、図4(a)で示すように、差動コンバータ回路44で逆位相信号に対する通過信号の差が測定結果の信号であるとした場合、図4(b)で示すように、基準電圧に対する通過信号の差を測定結果の信号とした場合に比べて、測定結果の信号のダイナミックレンジが広がる。具体的に、差動コンバータ回路44により、最大振幅が0V~5Vの通過信号が、最大振幅が0V~10Vの信号となり、約2倍のダイナミックレンジとなっている。
 また、図4(b)で示すように、基準電圧に対する通過信号の差を測定結果の信号とした場合、基準電圧が誤差で変動すると、AD変換回路45で変換するデジタル信号に直接影響を与えることになる。一方、図4(a)で示すように、差動コンバータ回路44で逆位相信号に対する通過信号の差が測定結果の信号であるとした場合、たとえ基準電圧が誤差で変動しても逆位相信号と通過信号との差分を取るため、誤差がキャンセルされる。よって、差動コンバータ回路44で差動信号を生成した場合、測定結果の信号(検出器で得られた信号)のS/N比を向上させることができる。
 図4(c)では、AD変換回路45において、差動コンバータ回路44から出力された差動信号をデジタル信号に変換する場合に、サンプリング周波数を57kHz、分解能を24bitとしてデジタル信号に変換する。従来の増幅回路で処理した信号をデジタル信号に変換する場合、AD変換回路では、サンプリング周波数を40kHz、分解能を20bitとしてデジタル信号に変換していた。そのため、AD変換回路45では、サンプリング周波数を57kHz、分解能を24bitとしてデジタル信号に変換することで、AD変換の際に生じていた量子化誤差を低減することができる。
 特に、差動コンバータ回路44から出力された差動信号をデジタル信号に変換する場合、ダイナミックレンジが広がるため、通過信号をデジタル信号に変換する場合に比べて分解能を高くする必要がある。具体的に、AD変換回路45において、最大振幅が0V~5Vの通過信号を20bitの分解能でデジタル信号していた場合、最大振幅が0V~10Vの信号を同等の量子化誤差でデジタル信号にするには少なくとも21bitの分解能でデジタル信号に変換する必要がある。
 次に、信号処理回路40での信号処理方法について、フローチャートを用いて説明する。図5は、本実施の形態に係る信号処理回路40での信号処理方法を説明するためのフローチャートである。まず、信号処理回路40は、IV変換回路41において赤外線検出器25a,25bで電流値として検出した信号を、電圧値の信号に変換する(ステップS10)。なお、赤外線検出器25a,25bでは、光チョッパ22により強度を正弦波状に変調させ光源装置L1,L2からの赤外光の光量を検出している。
 そして、信号処理回路40は、フィルタ回路43において、ステップS10で電圧値に変換した信号のうち特定の周波数成分の信号を通過させる(ステップS20)。特定の周波数成分(予め定められた周波数成分)とは、光チョッパ22で変調した周波数成分(例えば、600Hz)である。
 さらに、信号処理回路40は、差動コンバータ回路44において、フィルタ回路43を通過した通過信号の逆位相信号を生成し、通過信号と逆位相信号とを含む差動信号をAD変換回路45に出力する(ステップS30)。
 そして、信号処理回路40は、AD変換回路45において、ステップS30の差動信号をデジタル信号に変換する(ステップS40)。その後、信号処理回路40は、信号処理への信号の入力があるか否かを判断する(ステップS50)。信号処理への信号の入力がない場合(ステップS50でNO)、信号処理回路40は、信号処理を終了する。一方、信号処理への信号の入力がある場合(ステップS50でYES)、信号処理回路40は、処理をステップS10に戻す。
 次に、信号処理回路40により、測定結果の信号(検出器で得られた信号)のS/N比が向上した結果を示す。図6は、本実施の形態に係る信号処理回路40で処理された信号の変動量を説明するためのグラフである。図6に示すグラフでは、横軸に時間、縦軸に光量変動量がそれぞれ設定され、赤外線検出器25a,25bで測定し信号処理回路40で処理された光量の変動が示されている。なお。光量変動量は、AD変換したカウント値で示してある。
 図6に示すグラフにおいて、波形Iは、一定の強度の赤外光を光源装置L1,L2から出射して、600秒間、10秒ごとに赤外線検出器25a,25bで検出した透過光量に基づく信号を信号処理回路40で処理した測定結果である。波形Iでは、測定された光量の前後の変動量を示しており、0「ゼロ」から約100の間で変動量がほぼ収まっている。
 一方、波形IIは、一定の強度の赤外光を光源装置L1,L2から出射して、600秒間、10秒ごとに赤外線検出器25a,25bで検出した透過光量に基づく信号を従来の増幅回路で処理した測定結果である。波形IIでは、測定された光量の前後の変動量を示しており、0「ゼロ」から約500の間まで変動量でばらついており、波形Iに比べて変動量が大きくなっている。
 波形Iにおける光量変動の標準偏差は、89であるが、波形IIにおける光量変動の標準偏差は、387である。そのため、波形Iでは、波形IIに比べ光量変動の標準偏差が約1/3以下になっていることが分かる。このように、波形Iのように、赤外線検出器25a,25bで検出した透過光量に基づく信号を信号処理回路40で処理した場合、測定結果の信号のS/N比が向上するので光量の変動量が小さくなる。逆に、波形IIのように、赤外線検出器25a,25bで検出した透過光量に基づく信号を従来の増幅回路で処理した場合、測定結果の信号のS/N比が悪いため光量の変動量が大きくなる。
 本実施の形態に係る測定装置100では、赤外線検出器25a,25bで検出した透過光量に基づく信号を信号処理回路40で処理して測定結果とするので、サンプルガス測定などで透過光量を高いS/N比で測定することができる。そのため、測定装置100では、ガスを測定する際に必要となるサンプル量を減らす(例えば、半分にする)ことができ、測定に必要な時間を短縮することができる。
 演算回路50は、リファレンスガス測定で測定したリファレンスガスの透過光量と、ベースガス測定で測定したベースガスの透過光量とに基づいて、ベースガスにおけるCOの吸光度を求める。リファレンスガス測定およびベースガス測定では、12COおよび13COそれぞれの透過光量を測定しているので、演算回路50は、12COおよび13COそれぞれのベースガスの吸光度を求めることができる。ここで、ベースガスのCOの吸光度Absは、Abs=-log[ベースガスの透過光量/リファレンスガスの透過光量]で求められる。
 同様に、演算回路50は、リファレンスガス測定で測定したリファレンスガスの透過光量と、サンプルガス測定で測定したサンプルガスの透過光量とに基づいて、サンプルガスにおけるCOの吸光度を求める。リファレンスガス測定およびサンプルガス測定では、12COおよび13COそれぞれの透過光量を測定しているので、演算回路50は、12COおよび13COそれぞれのサンプルガスの吸光度を求めることができる。ここで、サンプルガスのCOの吸光度Absは、Abs=-log[サンプルガスの透過光量/リファレンスガスの透過光量]で求められる。
 なお、演算回路50は、COの吸光度を求める場合に、ベースガス測定またはサンプルガス測定の前後で測定したリファレンスガスの透過光量の光量平均値をとることで、測定時のドリフトの影響を相殺することができる。
 次に、演算回路50では、検量線を用いて、求めたCOの吸光度からCOの濃度を算出する。検量線は、CO濃度の分かっている被測定ガスに対してCOの吸光度を測定した結果をプロットし、最小自乗法を用いて求めた曲線である。検量線は、12COおよび13COのそれぞれに用意されている。そのため、演算回路50では、12COの検量線を用いて、ベースガスの12COの吸光度からベースガスの12COの濃度を求め、サンプルガスの12COの吸光度からサンプルガスの12COの濃度を求める。同様に、演算回路50では、13COの検量線を用いて、ベースガスの13COの吸光度からベースガスの13COの濃度を求め、サンプルガスの13COの吸光度からサンプルガスの13COの濃度を求める。
 さらに、演算回路50では、12CO13COとの濃度比を求める。演算回路50は、ベースガス測定での12CO13COとの濃度比と、サンプルガス測定での12CO13COとの濃度比とを求める。
 HPの有無の診断を行うため、演算回路50では、サンプルガス測定とべースガス測定とを比較した13COの濃度変化量を求める。13COの濃度変化量Δ13COは、Δ13CO=[(サンプルガス測定での12CO13COとの濃度比)-(ベースガス測定での12CO13COとの濃度比)]×10/[ベースガス測定での12CO13COとの濃度比](単位:パーミル(千分率))で求められる。演算回路50は、求めた13COの濃度変化量Δ13COが2.5パーミル以上であれば、HPが被検者の胃の中に存在する可能性が高いとして陽性と判定する。
 以上のように、本実施の形態に係る測定装置100は、光チョッパ22により正弦波状に強度を変調させた光源装置L1,L2からの赤外光の光量を赤外線検出器25a,25bで検出し、当該赤外線検出器25a,25bで検出した光量に基づく信号を処理する信号処理回路40を備えている。信号処理回路40は、赤外線検出器25a,25bから出力された電流値の信号を電圧値の信号に変換するIV変換回路41と、IV変換回路41で変換した信号のうち光チョッパ22で変調した周波数成分の信号を通過させるフィルタ回路43と、フィルタ回路43を通過した通過信号の逆位相信号を生成し、通過信号と逆位相信号とを含む差動信号を出力する差動コンバータ回路44とを備える。そのため、測定装置100では、信号処理回路40が、通過信号と逆位相信号とを含む差動信号を出力する差動コンバータ回路44により、赤外線検出器25a,25bで得られた信号のS/N比を向上させることができ、よりダイナミックレンジの広い信号を得ることができる。
 また、信号処理回路40は、差動コンバータ回路44から出力された差動信号をデジタル信号に変換するAD変換回路45を備えている。信号処理回路40では、AD変換回路45を備えることで、演算回路50での処理が容易なデジタル信号として演算回路50に入力することができ、演算回路50の処理負担を軽減することができる。もちろん、信号処理回路40にAD変換回路45を設けずに、演算回路50に差動コンバータ回路44から出力された差動信号を直接入力して、演算回路50でデジタル信号に変換するように構成してもよい。
 さらに、AD変換回路45は、通過信号をデジタル信号に変換する分解能よりも、差動信号をデジタル信号に変換する分解能を高くする。これにより、AD変換回路45は、ダイナミックレンジが広がった差動信号に対して、量子化誤差を増加させることなくデジタル信号に変換することができる。もちろん、AD変換回路45は、分解能を高くせずに差動信号をデジタル信号に変換してもよい。
 また、信号処理回路40は、IV変換回路41で変換した信号を増幅する増幅回路42を備え、増幅回路42で増幅した信号をフィルタ回路43に入力する。信号処理回路40では、増幅回路42を備えることで、赤外線検出器25a,25bから出力された信号をフィルタ回路43や差動コンバータ回路44で処理できる信号に増幅することができる。もちろん、信号処理回路40は、IV変換回路41で変換した信号がフィルタ回路43や差動コンバータ回路44で処理できる信号であれば、増幅回路42を設けずにIV変換回路41で変換した信号をフィルタ回路43に入力してもよい。
 さらに、赤外線検出器25a,25bで検出した光量に基づく信号は、光変調器により正弦波状に強度を変調させた光源装置L1,L2からの赤外光の光量を赤外線検出器25a,25bで検出した信号である。ここで、光変調器は、光チョッパ22であると説明したが、光源装置L1,L2からの赤外光の強度を正弦波状に変調させることができる装置であれば、光チョッパ22に限定されない。
 また、赤外線検出器25a,25bは、光起電力素子であると説明したが、赤外光の光量を検出することが可能であれば光起電力素子に限定されず、光導電素子であってもよい。
 (変形例)
 図2で示した信号処理回路40では、IV変換回路41で変換した信号を増幅する増幅回路42を備えていると説明した。しかし、これに限定されるものではなく、信号処理回路40は、増幅回路をIV変換回路41とフィルタ回路43との間以外に設けてもよい。図7は、変形例に係る信号処理回路40aの構成を説明するための概略図である。信号処理回路40aは、IV変換回路(電流電圧変換回路)41、増幅回路42a、フィルタ回路43、差動コンバータ回路(差動回路)44、およびAD変換回路(アナログデジタル変換回路)45を備えている。なお、信号処理回路40aにおいて、図2で示した信号処理回路40と同じ構成については、同じ符号を付して詳細な説明を繰返さない。
 増幅回路42aは、フィルタ回路43を通過した信号を差動コンバータ回路44で処理できる信号に増幅する。例えば、フィルタ回路43を通過した信号が0V~2.5Vの最大振幅の信号である場合に、増幅回路42aでは、電圧値を約2倍に増幅して0V~5Vの最大振幅の信号とする。
 信号処理回路40aは、フィルタ回路43と差動コンバータ回路44との間に信号を増幅する増幅回路42aを備えることで、フィルタ回路43を通過した信号を差動コンバータ回路44で処理できる信号に増幅することができる。
 なお、信号処理回路40aは、図2に示す信号処理回路40で設けた増幅回路42と組み合わせてもよい。つまり、信号処理回路40aは、IV変換回路41とフィルタ回路43との間に増幅回路42を設け、フィルタ回路43と差動コンバータ回路44との間に信号を増幅する増幅回路42aを設けてもよい。これにより、フィルタ回路43および差動コンバータ回路44のそれぞれで必要となる信号に増幅することが可能となる。
 本実施の形態に係る測定装置100は、互いに同位体の関係にある2種類の成分ガスを含む被測定ガスの成分ガスの濃度比を測定する。測定装置100は、セル(第1サンプルセル11a,第2サンプルセル11b)と、光源装置L1,L2と、光チョッパ22と、光学フィルタ(波長フィルタ24a,24b)と、赤外線検出器25a,25bと、信号処理回路40,40aと、演算回路50とを備える。
 セル(第1サンプルセル11a,第2サンプルセル11b)は、被測定ガスを格納する。光源装置L1,L2は、セルに透過させる赤外光を発する。光チョッパ22は、光源装置L1,L2からの赤外光の強度を正弦波状に変調させる。光学フィルタ(波長フィルタ24a,24b)は、セルを透過した赤外光のうち各成分ガスに適した波長を透過させる。赤外線検出器25a,25bは、光学フィルタを透過した透過光の光量を検出する。信号処理回路40,40aは、赤外線検出器,40aで検出した光量に基づく信号を処理する。演算回路50は、信号処理回路40,40aで処理した信号から成分ガスに適した波長の吸光度を求め、成分ガスの濃度比を算出する。
 本実施の形態に係る測定装置100では、前述で示した構成を備え、二酸化炭素13COと二酸化炭素12COを互いに同位体の関係にある2種類の成分ガスとして、被測定ガスの成分ガスの濃度比を測定する一例を説明した。しかし、測定装置100は、前述で示した構成において、互いに同位体の関係にある2種類の成分ガスの濃度比を測定することが可能な成分ガスであれば、何れのガスであってもよい。
 また、信号処理回路40,40aは、二酸化炭素13COと二酸化炭素12COを互いに同位体の関係にある2種類の成分ガスの成分ガスの濃度比を測定する測定装置100に設けられる一例を説明した。しかし、信号処理回路40,40aは、光変調器により正弦波状に強度を変調させた光源からの赤外光の光量を赤外線検出器で検出し、当該赤外線検出器で検出した光量に基づく信号を処理することが必要な装置であれば、同じように設けることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 11 セル室、11a 第1サンプルセル、11b 第2サンプルセル、11c 補助セル、21 ガス注入器、21a 基台、21b シリンダー、21c ピストン、21d ナット、21e 送りネジ、21f パルスモータ、22 光チョッパ、22a モータ、24a,24b 波長フィルタ、25a,25b 赤外線検出器、27 ペルチェ素子、28,29 ファン、30 リファレンスガス供給部、31 圧力計、40,40a 信号処理回路、41 IV変換回路、45 AD変換回路、42,42a 増幅回路、43 フィルタ回路、44 差動コンバータ回路、50 演算回路、100 測定装置。

Claims (10)

  1.  赤外線検出器で検出した光量に基づく信号を処理する信号処理回路であって、
     前記赤外線検出器から出力された電流値の信号を電圧値の信号に変換する電流電圧変換回路と、
     前記電流電圧変換回路で変換した信号のうち予め定められた周波数成分の信号を通過させるフィルタ回路と、
     前記フィルタ回路を通過した通過信号の逆位相信号を生成し、前記通過信号と前記逆位相信号とを含む差動信号を出力する差動回路とを備える、信号処理回路。
  2.  前記差動回路から出力された前記差動信号をデジタル信号に変換するアナログデジタル変換回路をさらに備える、請求項1に記載の信号処理回路。
  3.  前記アナログデジタル変換回路は、前記通過信号を前記デジタル信号に変換する分解能よりも、前記差動信号をデジタル信号に変換する分解能を高くする、請求項2に記載の信号処理回路。
  4.  前記電流電圧変換回路で変換した信号を増幅する増幅回路をさらに備え、
     前記増幅回路で増幅した信号を前記フィルタ回路に入力する、請求項1~請求項3のいずれか1項に記載の信号処理回路。
  5.  前記フィルタ回路と前記差動回路との間に信号を増幅する増幅回路をさらに備える、請求項1~請求項3のいずれか1項に記載の信号処理回路。
  6.  前記赤外線検出器で検出した光量に基づく信号は、光変調器により正弦波状に強度を変調させた光源からの赤外光の光量を前記赤外線検出器で検出した信号である、請求項1~請求項5のいずれか1項に記載の信号処理回路。
  7.  前記赤外線検出器は、光起電力素子である、請求項1~請求項6のいずれか1項に記載の信号処理回路。
  8.  互いに同位体の関係にある2種類の成分ガスを含む被測定ガスの成分ガスの濃度比を測定する測定装置であって、
     前記被測定ガスを格納するセルと、
     前記セルに透過させる赤外光を発する光源と、
     前記光源からの赤外光の強度を正弦波状に変調させる光変調器と、
     前記セルを透過した赤外光のうち各成分ガスに適した波長を透過させる光学フィルタと、
     前記光学フィルタを透過した透過光の光量を検出する赤外線検出器と、
     前記赤外線検出器で検出した光量に基づく信号を処理する請求項1~請求項7のいずれか1項に記載の信号処理回路と、
     前記信号処理回路で処理した信号から成分ガスに適した波長の吸光度を求め、成分ガスの濃度比を算出する演算回路とを備える、測定装置。
  9.  前記被測定ガスに含まれる2種類の成分ガスは、二酸化炭素13COと二酸化炭素12COとである、請求項8に記載の測定装置。
  10.  赤外線検出器から出力された信号を処理する信号処理方法であって、
     前記赤外線検出器で電流値として検出された信号を、電圧値の信号に変換するステップと、
     電圧値に変換した信号のうち予め定められた周波数成分の信号を通過させるステップと、
     通過した信号の逆位相信号を生成し、前記通過した信号と前記逆位相信号とを含む差動信号をアナログデジタル変換回路に出力するステップとを備える、信号処理方法。
PCT/JP2018/034959 2018-09-21 2018-09-21 信号処理回路、測定装置、および信号処理方法 WO2020059102A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/034959 WO2020059102A1 (ja) 2018-09-21 2018-09-21 信号処理回路、測定装置、および信号処理方法
EP18933744.7A EP3855139A4 (en) 2018-09-21 2018-09-21 SIGNAL PROCESSING CIRCUIT, MEASURING DEVICE AND SIGNAL PROCESSING METHOD
KR1020217011677A KR20210058951A (ko) 2018-09-21 2018-09-21 신호 처리 회로, 측정 장치, 및 신호 처리 방법
US17/277,337 US20220026353A1 (en) 2018-09-21 2018-09-21 Signal processing circuit, measurement apparatus, and signal processing method
JP2020547564A JP7153735B2 (ja) 2018-09-21 2018-09-21 信号処理回路、測定装置、および信号処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034959 WO2020059102A1 (ja) 2018-09-21 2018-09-21 信号処理回路、測定装置、および信号処理方法

Publications (1)

Publication Number Publication Date
WO2020059102A1 true WO2020059102A1 (ja) 2020-03-26

Family

ID=69888675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034959 WO2020059102A1 (ja) 2018-09-21 2018-09-21 信号処理回路、測定装置、および信号処理方法

Country Status (5)

Country Link
US (1) US20220026353A1 (ja)
EP (1) EP3855139A4 (ja)
JP (1) JP7153735B2 (ja)
KR (1) KR20210058951A (ja)
WO (1) WO2020059102A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417898A (en) * 1977-06-22 1979-02-09 Kernforschungsz Karlsruhe Method and circuit apparatus for measuring partial pressure and concentration of mixed gas component
JPS6142220A (ja) 1984-08-03 1986-02-28 株式会社日立製作所 デジタル保護リレ−の再スタ−ト方法
JPS6142219A (ja) 1984-07-31 1986-02-28 株式会社東芝 保護制御装置
JPH04357423A (ja) 1990-08-30 1992-12-10 Fuji Electric Co Ltd フォトセンサ回路
US20040011962A1 (en) * 2002-07-18 2004-01-22 Chin Ken K. Multicycle integration focal plane array (MIFPA) for lock-in (LI-), gated (G-), and gated lock-in (GLI-) imaging, spectroscopy and spectroscopic imaging
JP2007510131A (ja) * 2003-10-31 2007-04-19 大塚製薬株式会社 同位体ガス分析におけるガス注入量決定方法並びに同位体ガス分析測定方法及び装置
JP2008064564A (ja) * 2006-09-06 2008-03-21 Hamamatsu Photonics Kk 光検出装置
JP2016005067A (ja) 2014-06-16 2016-01-12 日本電信電話株式会社 センサインターフェース装置とその方法
US20170299429A1 (en) * 2016-04-19 2017-10-19 Texas Instruments Incorporated Bias currents to reverse-bias photodiode in light detection system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875642A (ja) * 1994-09-05 1996-03-22 Nissan Motor Co Ltd 赤外線ガス分析計
MXPA03002592A (es) * 2000-09-25 2003-06-30 Otsuka Pharma Co Ltd Un analizador de gas isotopico y metodo para estimar la capacidad de absorcion del absorbente de dioxido de carbono.
JP3940616B2 (ja) * 2002-02-25 2007-07-04 松下電器産業株式会社 光受信回路
WO2009117102A2 (en) * 2008-03-17 2009-09-24 Npe Systems, Inc. Background light detection system for a flow cytometer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417898A (en) * 1977-06-22 1979-02-09 Kernforschungsz Karlsruhe Method and circuit apparatus for measuring partial pressure and concentration of mixed gas component
JPS6142219A (ja) 1984-07-31 1986-02-28 株式会社東芝 保護制御装置
JPS6142220A (ja) 1984-08-03 1986-02-28 株式会社日立製作所 デジタル保護リレ−の再スタ−ト方法
JPH04357423A (ja) 1990-08-30 1992-12-10 Fuji Electric Co Ltd フォトセンサ回路
US20040011962A1 (en) * 2002-07-18 2004-01-22 Chin Ken K. Multicycle integration focal plane array (MIFPA) for lock-in (LI-), gated (G-), and gated lock-in (GLI-) imaging, spectroscopy and spectroscopic imaging
JP2007510131A (ja) * 2003-10-31 2007-04-19 大塚製薬株式会社 同位体ガス分析におけるガス注入量決定方法並びに同位体ガス分析測定方法及び装置
JP2008064564A (ja) * 2006-09-06 2008-03-21 Hamamatsu Photonics Kk 光検出装置
JP2016005067A (ja) 2014-06-16 2016-01-12 日本電信電話株式会社 センサインターフェース装置とその方法
US20170299429A1 (en) * 2016-04-19 2017-10-19 Texas Instruments Incorporated Bias currents to reverse-bias photodiode in light detection system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3855139A4

Also Published As

Publication number Publication date
EP3855139A1 (en) 2021-07-28
JP7153735B2 (ja) 2022-10-14
US20220026353A1 (en) 2022-01-27
EP3855139A4 (en) 2022-05-18
KR20210058951A (ko) 2021-05-24
JPWO2020059102A1 (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
JP6364665B2 (ja) 細菌感染を検出するための方法
ES2221144T3 (es) Metodo y aparato de medicion de isotopos estables por espectroscopia.
KR100772291B1 (ko) 동위체 가스의 분광 분석을 위한 안정한 동위체 측정방법
JP4435782B2 (ja) 同位体ガス分析におけるガス注入量決定方法並びに同位体ガス分析測定方法及び装置
CA2019571C (en) Method and apparatus for gas analysis
CN102393374A (zh) 一种红外呼气末co2测量方法及装置
JP2002286638A (ja) 同位体ガス測定装置
US20140179809A1 (en) Determination Of Location Of Bacterial Load In The Lungs
WO2020059102A1 (ja) 信号処理回路、測定装置、および信号処理方法
JP4158314B2 (ja) 同位体ガス測定装置
CN201061531Y (zh) 一种一体化co2浓度检测系统
JP2002350340A (ja) 同位体ガス測定装置、及び測定方法
WO2020059100A1 (ja) 測定装置、および測定方法
CN108732176A (zh) 一种医用呼吸二氧化碳检测系统
JPH09152401A (ja) 同位体ガス分光測定方法及び測定装置
JP3090412B2 (ja) 同位体ガス分光測定方法及び測定装置
Huang et al. Simultaneous measurement of 13C-, 18O-, and 17O-isotopes of CO2 using a compact mid-infrared hollow waveguide gas sensor
JP2002139435A (ja) 同位体測定装置
Puton et al. Module for measurement of CO2 concentration in exhaled air
Paldus et al. Practical applications of CRDS in medical diagnostics
Kang et al. Optical Transcutaneous pCO 2 Sensor using Soft Lithography Method for Arterial Blood Gas Analysis
JP2001027603A (ja) 非分散型赤外線ガス分析装置及び方法
JP2002228584A (ja) 同位体ガス測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547564

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217011677

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018933744

Country of ref document: EP

Effective date: 20210421