WO2020057649A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020057649A1
WO2020057649A1 PCT/CN2019/107062 CN2019107062W WO2020057649A1 WO 2020057649 A1 WO2020057649 A1 WO 2020057649A1 CN 2019107062 W CN2019107062 W CN 2019107062W WO 2020057649 A1 WO2020057649 A1 WO 2020057649A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
dci
length
time unit
unit corresponding
Prior art date
Application number
PCT/CN2019/107062
Other languages
English (en)
French (fr)
Inventor
马蕊香
李胜钰
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020057649A1 publication Critical patent/WO2020057649A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • H04L1/0018Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement based on latency requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • the terminal device After receiving a physical downlink data channel (PDSCH), the terminal device will feedback a hybrid automatic repeat request (HARQ) based on the PDSCH decoding result. For example, if the PDSCH is successfully received, an acknowledgement (ACK) may be fed back to the network device, and if a PDSCH fails to be received, a negative acknowledgement (NACK) may be fed back to the network device.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the length of the time unit is 1 time slot. When the length of the time unit becomes smaller, for example, it becomes a 1/2 time slot, there is no corresponding solution on how to feedback the response information.
  • the present application provides a communication method and device, so as to provide a solution for terminal equipment to respond to response information.
  • the present application provides a communication method applicable to a terminal device.
  • the communication method may include: the terminal device determines a first set among multiple sets, and any two of the multiple sets correspond to The length of the time unit is different, and each of the plurality of sets includes one or more K1 values, where the K1 value refers to a value from when the terminal device receives a physical downlink data channel to when the physical downlink data channel is fed back.
  • the number of time units between the response information, the K1 is a non-negative integer
  • the terminal device determines the length of the time unit corresponding to the first set
  • the terminal device receives the physical downlink data channel from the network device, so The terminal device sends the response information of the physical downlink data channel to the network device according to the first set and a length of a time unit corresponding to the first set.
  • the time units corresponding to at least two of the multiple sets are different in length, which can meet the requirements of different services.
  • the DCI information dynamically indicates which set is currently adopted, which can realize dynamic switching between multiple sets and meet different requirements for dynamically scheduling multiple services.
  • the determining, by the terminal device, a first set among multiple sets includes: the terminal device receiving first instruction information from a network device; and the terminal device according to the first instruction information And determining the first set among the plurality of sets.
  • different lengths of time units may be indicated for the first set by using the first indication information, so that the requirements of different services are met.
  • a relatively small time unit length can be used to ensure the delay of the service.
  • a relatively large time unit length can be used, which can ensure that the ACK / NACK information of multiple data is fed back together. Reduce signaling overhead and improve resource utilization.
  • the first indication information is downlink control information DCI
  • the terminal device determines the first set among the multiple sets according to the first indication information, including: the terminal The device determines the first set among the plurality of sets according to a bit field in the DCI; or the terminal device determines the first set among the plurality of sets according to a format of the DCI Or, the terminal device determines the first set among the multiple sets according to a mapping manner of the physical downlink data channel indicated by the DCI; or the terminal device determines the first set according to the physical direction indicated by the DCI The number of symbols in the time domain resource occupied by the downlink data channel is determined from the plurality of sets.
  • the determining, by the terminal device, the length of the time unit corresponding to the first set includes: the terminal device receiving second instruction information from a network device; and the terminal device according to the second The indication information determines a length of a time unit corresponding to the first set.
  • the second indication information is DCI
  • the terminal device determines a length of a time unit corresponding to the first set according to the second indication information, including: The bit field in the DCI determines the length of the time unit corresponding to the first set; or the terminal device determines the length of the time unit corresponding to the first set according to the format of the DCI; or, the The terminal device determines the length of the time unit corresponding to the first set according to the mapping mode of the physical downlink data channel indicated by the DCI; or, when the terminal device is occupied by the physical downlink data channel indicated by the DCI The number of symbols of the domain resource determines the length of the time unit corresponding to the first set.
  • the determining, by the terminal device, the length of the time unit corresponding to the first set includes: determining, by the terminal device, the location of the first set according to the correspondence between the first set and the length of the time unit. Corresponds to the length of the time unit.
  • the determining, by the terminal device, a first set among multiple sets includes: when the terminal device receives third instruction information from the network device, according to the third instruction Information, determining the first set among the plurality of sets.
  • the method further includes: when the terminal device does not receive the third instruction information from the network device, using the K1 set specified in the protocol as the first set.
  • the determining, by the terminal device, the length of the time unit corresponding to the first set includes: when the terminal device receives the fourth instruction information from the network device, according to the first Four indication information, determine the length of the time unit corresponding to the first set.
  • the method further includes: when the terminal device does not receive the fourth instruction information from the network device, using the K1 aggregation time length specified in the protocol as the first aggregation location Corresponds to the length of the time unit.
  • this application discloses a communication method applicable to a network device, including: the network device sends a physical downlink data channel to a terminal device, and the network device receives a response of the physical downlink data channel sent by the terminal device Information, the response information of the physical downlink data channel is determined according to the first set and the length of the time unit corresponding to the first set, the first set is one of a plurality of sets, and the plurality of The length of the time unit corresponding to any two sets in the set is different, and each set in the plurality of sets includes one or more K1 values, where the K1 value refers to the terminal device receiving the physical downlink data channel to The number of time units of the interval between the response information of the physical downlink data channel is fed back, and K1 is a non-negative integer.
  • the method further includes: the network device sends first indication information to the terminal device, where the first indication information is used to indicate the first set among the multiple sets .
  • the first indication information is DCI
  • a bit field of the DCI is used to determine a first set in the multiple sets, or a format of the DCI is used in the multiple sets
  • the first set is determined in each set, or the physical downlink data channel mapping manner indicated by the DCI is used to determine the first set in the multiple sets, or when the physical downlink data channel indicated by the DCI is occupied
  • the number of symbols of the domain resource is used to determine the first set among the multiple sets.
  • the method further includes: the network device sends second instruction information to a terminal device, where the second instruction information is used to indicate a length of a time unit corresponding to the first set.
  • the second indication information is DCI
  • a bit field in the DCI is used to determine a length of a time unit corresponding to the first set, or a format of the DCI is used to determine the The length of the time unit corresponding to the first set, or the physical downlink data channel mapping manner indicated by the DCI is used to determine the length of the time unit corresponding to the first set, or the physical time indicated by the DCI
  • the number of symbols of the time domain resources occupied by the downlink data channel is used to determine the length of the time unit corresponding to the first set.
  • the present application discloses a communication method applicable to a terminal device, which may include: the terminal device determines a first set, where the first set includes one or more K1 values, and the K1 value refers to the terminal The number of time units between the interval from when the device receives the physical downlink data channel to the time when the response information of the physical downlink data channel is fed back.
  • the K1 is a non-negative integer.
  • the minimum K1 value in any of the sets is greater than or equal to the first threshold, and if any of the plurality of sets includes a K1 value, the K1 value is greater than or equal to the first threshold,
  • the size of the first threshold is related to the length of the time unit corresponding to the any set; the terminal device determines the length of the time unit corresponding to the first set, and the terminal device receives physical downlink data from the network device Channel, the terminal device sends the physical downlink data channel response information to the network device according to the first set and the length of the time unit corresponding to the first set
  • the size of the first threshold is related to the length of a time unit corresponding to the any set, and is specifically:
  • the first threshold is The N1 represents the number of symbols of the interval between the terminal device receiving the physical downlink data channel and the response information of the physical downlink data channel being fed back, the M represents the length of the time unit corresponding to any set, and Represents the operation of rounding up.
  • the determining, by the terminal device, a first set includes: receiving, by the terminal device, first instruction information from the terminal device; and determining, by the terminal device, the first information according to the first instruction information. set.
  • the determining, by the terminal device, the length of the time unit corresponding to the first set includes: the terminal device receiving second instruction information from the network device; and the terminal device according to the The second indication information determines a length of a time unit corresponding to the first set.
  • the second finger information is shown as high-level signaling or downlink control information DCI;
  • the terminal device determining a length of a time unit corresponding to the first set according to the second indication information includes: the terminal device according to a bit field in the DCI, Determining the length of the time unit corresponding to the first set; or the terminal device determining the length of the time unit corresponding to the first set according to the format of the DCI; or the terminal device according to the DCI
  • the mapping manner of the indicated physical downlink data channel determines the length of the time unit corresponding to the first set; or, the terminal device uses the number of symbols of time domain resources occupied by the physical downlink data channel indicated by the DCI, Determine the length of the time unit corresponding to the first set.
  • the determining, by the terminal device, the length of the time unit corresponding to the first set includes: determining, by the terminal device, the location of the first set according to the correspondence between the first set and the length of the time unit. Corresponds to the length of the time unit.
  • the determining, by the terminal device, a first set includes: when the terminal device receives third instruction information from the network device, determining the first set according to the third instruction information. A collection.
  • the method further includes: when the terminal device does not receive the third instruction information from the network device, using the K1 set specified in the protocol as the first set.
  • the determining, by the terminal device, a length of a time unit corresponding to the first set includes:
  • the terminal device When receiving the fourth instruction information from the network device, the terminal device determines a length of a time unit corresponding to the first set according to the fourth instruction information.
  • the method further includes: when the terminal device does not receive the fourth instruction information from the network device, using the K1 aggregation time length specified in the protocol as the first aggregation location Corresponds to the length of the time unit.
  • a fourth aspect discloses a communication method applicable to a network device, which may include: the network device sends a physical downlink data channel to a terminal device, and the network device receives response information of the physical downlink data channel from the terminal device
  • the response information of the physical downlink data channel is determined according to the first set and the length of the time unit corresponding to the first set, the first set is a set of a plurality of sets, and the first set includes one Or multiple K1 values, where the K1 value refers to the number of time units between the terminal device receiving the physical downlink data channel and feedback of the response information of the physical downlink data channel, where K1 is a non-negative integer, if Any one of the plurality of sets includes multiple K1 values, and the minimum K1 value in any of the sets is greater than or equal to the first threshold, and if any one of the plurality of sets includes a K1 value , The K1 value is large or equal to the first threshold, and the size of the first threshold is related to the length of the time unit corresponding to
  • the size of the first threshold is related to the length of the time unit corresponding to the any set, and specifically, the first threshold is The N1 represents the number of symbols of the interval between the terminal device receiving the physical downlink data channel and the response information of the physical downlink data channel being fed back, the M represents the length of the time unit corresponding to any set, and Represents the operation of rounding up.
  • the method further includes: the network device sends first indication information to the terminal device, where the first indication information is used to indicate the first set.
  • the method further includes: the network device sends second instruction information to the terminal device, where the second instruction information is used to indicate a length of a time unit corresponding to the first set.
  • the second indication information is high-level signaling, or the second indication information is downlink control information DCI, and a bit field in the DCI is used to determine that the first set corresponds to The length of the time unit, or the format of the DCI is used to determine the length of the time unit corresponding to the first set, or the mapping mode of the physical downlink data channel indicated by the DCI is used to determine the first set.
  • the length of the corresponding time unit, or the number of symbols of the time domain resources occupied by the physical downlink data channel indicated by the DCI is used to determine the length of the time unit corresponding to the first set.
  • the present application provides a communication device for a terminal device or a chip of a terminal device, including: a unit or a means for performing each step of the first aspect or the third aspect above.
  • the present application provides a communication device for a network device or a chip of a network device, including: a unit or a means for performing each step of the second or fourth aspect above.
  • the present application provides a communication device for a terminal device or a chip of a terminal device, including at least one processing element and at least one storage element, wherein the at least one storage element is used to store programs and data, and the at least one A processing element is configured to execute the method provided by the first aspect or the third aspect of the present application.
  • the present application provides a communication device for a network device or a chip of a network device, including at least one processing element and at least one storage element, wherein the at least one storage element is used to store programs and data, and the at least one A processing element is configured to execute the method provided by the second aspect or the fourth aspect of the present application.
  • the present application provides a communication device for a terminal device including at least one processing element (or chip) for performing the above method in the first or third aspect.
  • the present application provides a communication device for a network device, including at least one processing element (or chip) for performing the method in the second or fourth aspect above.
  • the present application provides a computer program product including computer instructions that, when the computer instructions are executed by a computer, cause the computer to execute the method of any of the above aspects.
  • the present application provides a computer-readable storage medium that stores computer instructions, and when the computer instructions are executed by a computer, the computer is caused to execute the method of any of the above aspects.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a relationship between response information and downlink data according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a communication method process according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a communication method process according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a communication method process according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication system 100 may include a network device 101 and a terminal device 102.
  • the communication system 100 may adopt various radio access technologies (radio access technology, RAT), such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division Multiple access (frequency, multiple access, FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division multiple access (single carrier FDMA, SC-FDMA), etc.
  • RAT radio access technology
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division Multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the network device 101 may be a device in a network that connects a terminal device to a wireless network.
  • the network device is a node in a radio access network, and may also be called a base station, and may also be called a radio access network (RAN) node (or device).
  • RAN radio access network
  • some examples of network equipment are: gNB, transmission reception point (TRP), evolved Node B (eNB), home base station (e.g., home NodeB, or home NodeB, HNB) Baseband unit (BBU), or WiFi access point (AP).
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node. This structure separates the protocol layer of the eNB in a long term evolution (LTE) system. Some protocol layer functions are centrally controlled by the CU. The remaining part or all of the protocol layer functions are distributed in the DU. Centralized control of DU.
  • LTE long term evolution
  • Terminal device 102 also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc., is a device that provides voice and / or data connectivity to users Devices, for example, hand-held devices with wireless connection function, in-vehicle devices, etc.
  • terminals are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote surgery (DCIal surgery), smart grid (smart grid) Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • the network device 101 may send a physical downlink data channel (PDSCH) to the terminal device 102, and the terminal device 102 may feedback a hybrid automatic retransmission request (hybrid) according to the PDSCH decoding result.
  • automatic (request, HARQ) For example, if the PDSCH is successfully received, an acknowledgement (ACK) may be fed back to the network device 101, and if a PDSCH is received, a negative acknowledgement (negative acknowledgement (NACK)) may be fed back to the network device 101.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the timing relationship from the terminal device 102 receiving the PDSCH to feeding back the ACK / NACK to the network device 101 satisfies n + k1, where n represents the time unit of the terminal device 102 receiving the PDSCH, and k1 represents the time from the terminal device 102 receiving the PDSCH
  • n represents the time unit of the terminal device 102 receiving the PDSCH
  • k1 represents the time from the terminal device 102 receiving the PDSCH
  • the terminal device 102 receives the PDSCH in the nth slot. If k1 is 4, the terminal device 102 can feed back the ACK / NACK to the network device 101 in the n + 4 slot.
  • the k1 set may be ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ .
  • the k1 set may be prescribed by a protocol, or may be configured through high-level signaling.
  • the network device 101 may indicate the k1 value in the k1 set to the terminal device 102 through downlink control information (DCI), and the terminal device 102 may feedback ACK / NACK according to the indicated k1 value.
  • DCI downlink control information
  • the k1 values in the k1 set are all granular with slots.
  • the terminal device 102 needs a certain processing time from receiving the PDSCH to feeding back the ACK / NACK response information. It is defined that the number of time-domain symbols between the terminal device 102 from receiving the PDSCH and being able to send the ACK / NACK feedback information is N1. Among them, under different subcarrier spacing (SCS), the value of N1 is different. For example, when the SCS is 15KHz, the value of N1 can be 8 symbols.
  • SCS subcarrier spacing
  • the following solutions are proposed: reduce the length of the k1 time unit and reduce the granularity of k1, for example, change the granularity of k1 to 1/2 time slot or 7 symbols, etc . If the k1 set with the time slot granularity continues to be used, it may happen that the N1 requirement cannot be met. For example: the k1 set is ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ , the granularity of the k1 set is 1 slot, and the value of N1 is 8 symbols.
  • the terminal device 102 can feed back ACK / NACK in the (n + 1) th slot, and one slot includes 14 symbols, that is, the terminal device 102 feeds back the ACK in the (n) th slot +14 symbols.
  • / NACK which can meet the requirement that the terminal device can only feed back ACK / NACK on the nth slot + 8 symbols at the earliest.
  • the terminal device 102 will feedback ACK / NACK on the nth time slot +7 symbol. It cannot meet the requirement that the terminal device 102 feeds back ACK / NACK on the nth slot +8 symbol at the earliest.
  • the present application provides flowcharts of three communication methods. For details, refer to FIG. 3, FIG. 4, or FIG. 5. Among them, in the process shown in FIG. 3, multiple sets can be configured for the terminal device, and in the process shown in FIG. 4 or FIG. 5, one set can be configured for the terminal device, that is, the first set.
  • the network device may be the network device 101 shown in FIG. 1 described above, and the terminal device may be the terminal device 102 shown in FIG. 1 described above.
  • the functions of the network device may also be implemented by a chip applied to the network device, and the functions of the terminal device may also be implemented by a chip applied to the terminal device. It can be understood that in the description of this application, words such as “first” and “second” are used only for the purpose of distinguishing descriptions, and cannot be understood as indicating or suggesting relative importance, nor as indicating or suggesting order.
  • this process can be specifically:
  • S301 The terminal device determines a first set among the multiple sets.
  • the multiple sets may be configured for the terminal device by the network device in advance through high-level signaling, or the multiple sets may be prescribed by the protocol, or a part of the multiple sets may be the network device. Configured for terminal equipment through high-level signaling, the remaining part of the set is specified by the protocol.
  • the high-level signaling may specifically refer to signaling sent by a high-level protocol layer, and the high-level protocol layer may be a protocol layer above a physical layer.
  • the high-level protocol layer may include a medium access control (MAC) layer, a radio link control (RLC) layer, a packet data convergence protocol (PDCP) layer, and a wireless A resource control (radio resource control (RRC) layer and a non-access stratum (NAS), etc.).
  • the high-level signaling may be RRC signaling or MAC signaling.
  • the plurality of sets may include two or more sets, each of the plurality of sets may also be referred to as a K1 set, and each of the plurality of sets
  • the set may include one or more K1 values, where the K1 value refers to the number of time units between the terminal device receiving the PDSCH and feeding back the PDSCH response information, and the K1 is a non-negative integer.
  • the terminal device receives the PDSCH in the nth time slot, and the value of K1 is 4, and the terminal device can feed back PDSCH response information at the n + 4th time.
  • the lengths of time units corresponding to any two sets in the multiple sets are different, and the length of time units corresponding to each set in the multiple sets may also be referred to as each set.
  • Corresponding time unit granularity For example, when the set is called a K1 set, the length of the time unit corresponding to the set may be called a K1 granularity.
  • the minimum K1 value in any of the sets is greater than or equal to the first threshold. If any one of the plurality of sets includes a K1 value, the K1 value is greater than or equal to the first threshold.
  • the size of the first threshold is related to the length of the time unit corresponding to the any set, and may specifically be:
  • the first threshold is The N1 represents the number of symbols of the interval between the terminal device receiving the PDSCH and the earliest feedback of the PDSCH response information, the M represents the length of the time unit corresponding to any set, and Represents the operation of rounding up.
  • the value of N1 is 8 symbols
  • the value of M is 7 symbols
  • the value of the first threshold may be 2.
  • N1 can satisfy the following Table 1 or Table 2:
  • DMRS is a demodulation reference signal.
  • N1 can meet the restrictions of other tables, which is not limited in this application.
  • the network device may send the first instruction information to the terminal device, and the terminal device may determine the first set among the multiple sets according to the first instruction information.
  • the first indication information may be DCI or other information other than DCI, and is not intended to limit the present application.
  • taking the first indication information as DCI as an example, the process of determining the first set is described in detail.
  • the terminal device may determine the first set among the multiple sets according to a bit field in the DCI, and the bit field of the DCI may include one bit or multiple bits.
  • the multiple sets in step S301 can be two sets, namely set A and set B, then 1 bit can be used to indicate which set, for example, this bit only takes 1 to indicate set A, and this bit to 0 indicates the set.
  • B for another example, the multiple sets in step S301 are four sets, namely set A, set B, set C, and set D, then it can be indicated by 2 bits, and the value of these 2 bits is "00" to indicate set A. Take A value of "01” indicates set B, a value of "10” indicates set C, and a value of "11" indicates set D.
  • the terminal device may determine the first set among the multiple sets according to a format of the DCI.
  • the multiple sets in step S301 may be two sets, which are set A and set B, respectively. If the format of the DCI received by the terminal device is the first format, the terminal device may determine that the first set may be set A, and if the format of the DCI received by the terminal device is the second format, the terminal device may determine that the first set may be Is set B.
  • the first format may be a compressed DCI format
  • the second format is a format other than the compressed DCI format
  • the compressed DCI format is a DCI format with a small number of bits. Used for scheduling high-reliability services.
  • the first format may be a DCI format scrambled by a first wireless network temporary identity (RNTI), and the second format may be a format other than the first RNTI scrambled DCI format.
  • the first RNTI is mainly used to identify a high-reliability and low-latency service, or to identify a modulation and coding scheme (MCS) table with relatively high reliability.
  • MCS modulation and coding scheme
  • the format of the DCI may include the payload size of the DCI, the definition of each field included in the RNTI and / or the DCI.
  • Different DCI payload sizes can be considered to have different DCI formats; different scrambled RNTIs can also be considered to have different DCI formats; the definitions of various fields included in DCI can also be considered to be different from the DCI format.
  • the definition of the field here may include the position of the field in the DCI, the bit length of the field, and the specific meaning of the field.
  • the payload here may be the total number of bits of each field in the DCI, or the total number of bits of each field in the DCI plus the length of the CRC.
  • the terminal device may determine the first set among the multiple sets according to an indication field of the DCI, and the reference field of the DCI may be used to indicate a PDSCH start symbol, a PDSCH length, or One or more of PDSCH mapping modes.
  • the terminal device may determine a first set among the multiple sets according to a mapping manner of the PDSCH indicated by the DCI.
  • the mapping mode of the PDSCH indicated by DCI is A
  • the first set may be determined as set A
  • the mapping mode of the PDSCH indicated by DCI is B
  • the first set may be determined as set B.
  • the terminal device may determine the first set among multiple sets according to the number L of time domain symbols occupied by the PDSCH indicated by the DCI. For example, if L is greater than 7, the first set is set A, and if L is 2, 4, or 7, the first set is set B.
  • the terminal device may determine the first set among multiple sets according to the start symbol S of the PDSCH indicated by the DCI. For example, S is less than or equal to 7, and the first set is set A, or S is greater than 7, and the first set is set B.
  • the terminal device determines a length of a time unit corresponding to the first set, and a length of the time unit corresponding to the first set may also be referred to as a granularity of a K1 value included in the first set.
  • the terminal device may determine the length of the time unit corresponding to the first set according to the correspondence between the first set and the length of the time unit.
  • the protocol defines a corresponding time unit for each K1 set of multiple K1 sets. For example, for two K1 sets: set A and set B, the time unit length corresponding to set A is slot, and the time unit length corresponding to set B is 7 symbols. For example, according to the method of step S301, it is determined that the first set is set A, and then the length of the time unit corresponding to the first set is slot; 7 symbols.
  • the network device may send the second instruction information to the terminal device, and the terminal device may determine the length of the time unit corresponding to the first set according to the second instruction information.
  • the second indication information may be high-level signaling or DCI.
  • the network device may send high-level signaling to the terminal device, and the terminal device may determine the length of the time unit corresponding to the first set according to the high-level signaling.
  • high-level signaling can be configured with a time unit length, and the length of the configured time unit can be a slot, or 1/2 slot, or 2 symbols.
  • the time slot may be a time domain unit for data scheduling. For example, under a normal cyclic prefix, a slot can include 14 symbols, and under an extended cyclic prefix, a slot can include 12 symbols.
  • the network device may send DCI to the terminal device, and the terminal device may determine the length of the time unit corresponding to the first set according to the DCI.
  • the terminal device may determine the length of the time unit corresponding to the first set according to the bit field in the DCI.
  • the DCI may have a bit field including 1 bit. When the bit field has a value of 0, , It indicates that the length of the time unit corresponding to the first set is 1/2 slot. When the value of the bit field is 1, it indicates that the length of the time unit corresponding to the first set is 1 slot.
  • DCI may have a bit field containing 2 bits. When the value of the bit field is 00, it indicates that the length of the time unit corresponding to the first set is slot.
  • the value of the bit field When the value of the bit field is 01, it indicates that the The length of the time unit corresponding to a set is 1/2 slot; when the value of the bit field is 10, it means that the length of the time unit corresponding to the first set is 2 symbols; when the value of the bit field is 11, The length of the time unit corresponding to the first set is 1 symbol.
  • the terminal device may determine the length of the time unit corresponding to the first set according to the format of the DCI; for example, if the DCI format received by the terminal device is the first DCI format, the time corresponding to the first set The length of the unit is 1/2 slot. If the DCI format received by the terminal device is other than the first DCI format, the length of the time unit corresponding to the first set is 1 slot. As another example, if the DCI format received by the terminal device is scrambled by the first RNTI, the length of the time unit corresponding to the first set is 1/2 slot, and if it is another DCI format, the time unit corresponding to the first set is determined. The length is 1 slot.
  • the first format may be a compressed DCI format
  • the second format is a format other than the compressed DCI format
  • the compressed DCI format is a DCI format with a small number of bits. Used for scheduling high-reliability services.
  • the first format may be a DCI format scrambled by a first wireless network temporary identity (RNTI)
  • RNTI first wireless network temporary identity
  • the second format may be a format other than the first RNTI scrambled DCI format.
  • the first RNTI is mainly used to identify a high-reliability and low-latency service, or to identify a modulation and coding scheme (MCS) table with relatively high reliability.
  • MCS modulation and coding scheme
  • the terminal device may determine the length of the time unit corresponding to the first set according to the PDSCH mapping mode indicated by the DCI; for example, if the time domain resource mapping type of the PDSCH indicated in the DCI received by the terminal device is (mapping type) is mapping type A (mapping type A), then the length of the time unit corresponding to the first set is determined to be 1 slot, and if it is mapping type B (mapping type B), the length of the time unit corresponding to the first set is determined For 1 / 2slot.
  • the terminal device may determine the length of the time unit corresponding to the first set according to the number of symbols of the time domain resources occupied by the PDSCH indicated by the DCI. For example, if the number of symbols of the time domain resource location of the PDSCH indicated in the DCI received by the terminal device is L, if the number of symbols L is greater than 7, it can be determined that the length of the time unit corresponding to the first set is 1 slot, and if the number of symbols is L If it is 2, 4, or 7, it can be determined that the length of the time unit corresponding to the first set is 1/2 slot.
  • S303 The network device sends a PDSCH.
  • S304 The terminal device receives a PDSCH.
  • S305 The terminal device sends PDSCH response information according to the first set and a length of a time unit corresponding to the first set.
  • the network device may send a DCI to the terminal device, where the DCI is used to indicate a K1 value in the first set. For example, if the DCI indicates that the K1 value in the first set is 1, the terminal device may be on the nth time slot +7 symbol Feedback response information, which may be ACK or NACK. Specifically, if the terminal device decodes the PDSCH correctly, the response information may be ACK; otherwise, the response information may be NACK.
  • S306 The network device receives the response information of the PDSHC.
  • the values of K1 in different sets are different, so that the values in each set can meet the requirements of the processing capability of the terminal device, and avoid some of the sets that cannot meet the processing capability of the terminal device Value, thereby reducing the number of DCI bits and improving the reliability of the DCI.
  • there is only one scheme relative to the K1 set and the length of the time unit corresponding to the K1 set is always a slot.
  • the K1 sets of different time unit lengths are correspondingly matched. Different K1 values make it possible to improve the reliability of DCI while meeting user delay.
  • the time units corresponding to at least two of the multiple sets are different in length, which can meet the requirements of different services.
  • the DCI information can dynamically indicate which set is currently adopted, which can realize dynamic switching between multiple sets and meet different delay requirements for dynamically scheduling multiple services.
  • the network device sends the first instruction information.
  • the terminal device may determine the first set among the multiple sets according to the first instruction information. For the process of determining the first set in the multiple sets according to the first instruction information, refer to the foregoing process of determining the first set in the multiple sets according to the first instruction information, which is not described herein again.
  • the terminal device may use the K1 set specified in the protocol as the first set.
  • the network device sends the second instruction information.
  • the terminal device may determine the length of the time unit corresponding to the first set according to the second instruction information. For the process of determining the time unit corresponding to the first set according to the second instruction information, refer to the foregoing process of determining the time unit corresponding to the first set according to the second instruction information, which is not described herein again.
  • the K1 set time length specified in the protocol may be used as the length of the time unit corresponding to the first set.
  • a K1 set and a time unit length can be set for a terminal device in a manner prescribed by a protocol in advance.
  • the network device sends instruction information for the terminal device to indicate the K1 set, then the terminal device uses the K1 set indicated by the network device for communication; or the network device does not indicate the K1 set for the terminal device, or the terminal device does not receive the instruction information, then the protocol is adopted K1 collection for communication.
  • the network device sends instruction information for the terminal device to indicate the time unit length, the terminal device uses the time unit length indicated by the network device for communication, otherwise, the communication is performed using the time unit length specified by the protocol.
  • the rollback DCI format is adopted, that is, the DCI format 1_0 (DCI format1_0) scheduling The process of data transmission.
  • the following application scenarios are provided for DCI format1_0.
  • the set is called a K1 set
  • the length of the time unit corresponding to the set is called a K1 granularity:
  • the K1 set specified by the protocol is ⁇ 1, 2, 3, 4,5,6,7,8 ⁇
  • K1 granularity is one time slot.
  • the network device configures a K1 set for a terminal device, the configured K1 set is used for communication, otherwise the K1 set ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ specified in the protocol is used for communication.
  • the network device configures the K1 granularity for the terminal device, then the configured K1 granularity is used for communication, otherwise the K1 granularity of one time slot specified by the protocol is used.
  • the default set and granularity specified by the protocol can be used to ensure backward compatibility; after access and the configuration information is available, the K1 granularity can be changed. Meet the delay requirements of different services.
  • this embodiment may be:
  • S401 The terminal device determines a first set.
  • the network device may send the first instruction information to the terminal device, where the first instruction information is used to indicate the first set, and the terminal device may determine the first set according to the first instruction information.
  • the first indication information may be, but is not limited to, high-level signaling.
  • the first set may include one or more K1 values. For the introduction of the K1 value, refer to the description in S301 above, which is not described again here.
  • the terminal device determines a length of a time unit corresponding to the first set.
  • S403 The network device sends a PDSCH.
  • S404 The terminal device receives the PDSCH.
  • S405 The terminal device sends PDSCH response information according to the first set and a length of a time unit corresponding to the first set.
  • the network device receives response information of the PDSCH.
  • S401 can use the following:
  • the network device sends the first instruction information to the terminal device.
  • the terminal device may determine the first set according to the first instruction information. For the process of determining the first set according to the first instruction information, refer to the foregoing process of determining the first set according to the first instruction information, and details are not described herein again.
  • the K1 set specified in the protocol may be used as the first set.
  • time unit lengths may be determined for the first set according to related information of DCI or high-level signaling, so as to meet the requirements of different services. For example, in the case of ultra-high reliability and low-latency services, a relatively small time unit length may be adopted to ensure service delay; for services with less high reliability or latency requirements, a relatively large time unit length may be adopted. It can ensure that the ACK / NACK information of multiple data is fed back together, thereby reducing signaling overhead and improving resource utilization.
  • the process can be specifically:
  • S501 The terminal device determines a first set.
  • the first set includes one or more K1 values.
  • K1 value For the introduction of the K1 value, refer to the description in S301 above, which will not be described here.
  • the network device may send the second instruction information to the terminal device, and the terminal device may determine the first set according to the second instruction information.
  • the terminal device may determine the first set according to the first instruction information.
  • the network device may send the first indication information, that is, when the terminal device receives the first indication information, the first set is determined according to the first indication information; otherwise, the K1 specified in the protocol is Set as the first set.
  • the K1 set specified in the protocol may be used as the first set.
  • S503 The network device sends a PDSCH.
  • S504 The terminal device receives a PDSCH.
  • S505 The terminal device sends PDSCH response information according to the first set and a length of a time unit corresponding to the first set.
  • the network device receives the response information of the PDSCH.
  • time unit lengths may be determined for the first set according to related information of DCI or high-level signaling, so as to meet different delay requirements for different services. .
  • S303 may be located in front of S301 and S302, or may be located after S301 and S302.
  • an embodiment of the present application provides a communication device 600 that can be used to implement the functions of the terminal device in the process shown in FIG. 3, FIG. 4, or FIG. 5.
  • the communication device 600 can be applied to a terminal device or a chip in the terminal device.
  • the communication device 600 may include a processing module 601 and a receiving module 602.
  • it may further include a sending module 603 and a storage module 604.
  • the processing module 601 may be configured to determine the first set among multiple sets, and the time units corresponding to any two of the multiple sets have different lengths, and the multiple sets Each set includes one or more K1 values, where the K1 value refers to the number of time units between the time when the terminal device receives the physical downlink data channel and the time when the response information of the physical downlink data channel is fed back.
  • K1 is a non-negative integer; the processing module 601 is further configured to determine the length of the time unit corresponding to the first set; the receiving module 602 is configured to receive a physical downlink data channel from a network device; the processing module 601 is further configured to The first set and the length of the time unit corresponding to the first set send to the network device response information of the physical downlink data channel received by the receiving module.
  • the receiving module 602 may be configured to receive the first instruction information from the network device; the processing module 601 may be configured to, according to the first instruction information received by the receiving module, The first set is determined from the set.
  • the processing module 601 may be specifically configured to, when the first indication information is downlink control information DCI, determine the first among the multiple sets according to a bit field in the DCI. A set; or, when the first indication information is downlink control information DCI, the first set is determined among the plurality of sets according to a format of the DCI; or, the first indication information is downlink
  • the control information is DCI
  • the first set is determined among the multiple sets according to a mapping manner of the physical downlink data channel indicated by the DCI
  • the first indication information is downlink control information DCI, Determining the first set among the multiple sets according to the number of symbols of time domain resources occupied by the physical downlink data channel indicated by the DCI.
  • the receiving module 602 may be configured to receive second instruction information from a network device; and the processing module 601 may be configured to determine the first assembly location according to the second instruction information received by the receiving module. Corresponds to the length of the time unit.
  • the processing module 601 may be specifically configured to: when the second indication information is the DCI, determine a length of a time unit corresponding to the first set according to a bit field in the DCI; Alternatively, when the second indication information is the DCI, determine a length of a time unit corresponding to the first set according to a format of the DCI; or, when the second indication information is the DCI, Determine the length of the time unit corresponding to the first set according to the mapping mode of the physical downlink data channel indicated by the DCI; or, when the second indication information is the DCI, the physical time indicated by the DCI The number of symbols of the time domain resources occupied by the downlink data channel determines the length of the time unit corresponding to the first set.
  • the processing module 601 may be specifically configured to determine the length of the time unit corresponding to the first set according to the correspondence between the first set and the length of the time unit.
  • the receiving module 602 is further configured to receive the third instruction information from the network device; the processing module 601 may be specifically configured to receive the third instruction from the network device at the receiving module.
  • the first set is determined among the multiple sets according to the third instruction information.
  • the processing module 601 may be further configured to use the K1 set specified in the protocol as the first set when the third instruction information from the network device is not received.
  • the receiving module 602 is further configured to receive the fourth instruction information from the network device; the processing module 601 is further configured to, when the receiving module receives the fourth instruction information from the network device, The fourth instruction information determines a length of a time unit corresponding to the first set.
  • the processing module 601 is further configured to: when the fourth instruction information from the network device is not received, use the K1 set time length specified by the protocol as the length of the time unit corresponding to the first set.
  • the processing module 601 may be configured to determine a first set, where the first set includes one or more K1 values, where the K1 value refers to a physical downlink data channel received by the terminal device.
  • the number of time units between the interval to which the response information of the physical downlink data channel is fed back, the K1 is a non-negative integer, and if any one of the plurality of sets includes multiple K1 values, the any set The minimum K1 value in is greater than or equal to the first threshold value.
  • any one of the multiple sets includes a K1 value, the K1 value is greater than or equal to the first threshold value, and the size of the first threshold value is The length of the time unit corresponding to any one set is related; the processing module 601 is further configured to determine the length of the time unit corresponding to the first set; the receiving module 602 is configured to receive a physical downlink data channel from a network device; processing A module 601 is further configured to send, according to the first set and a length of a time unit corresponding to the first set, a response that the receiving module receives the physical downlink data channel to the network device. Information.
  • the size of the first threshold is related to the length of the time unit corresponding to any one set, and is specifically:
  • the first threshold is The N1 represents the number of symbols of the interval between the terminal device receiving the physical downlink data channel and the response information of the physical downlink data channel being fed back, the M represents the length of the time unit corresponding to any set, Represents the operation of rounding up.
  • the receiving module 602 may be configured to receive the first instruction information from the terminal device, and the processing module 601 may be configured to determine the first set according to the first instruction information received by the receiving module.
  • the receiving module 602 may be further configured to receive second instruction information from the network device; the processing module 601 may be further configured to determine the first instruction information according to the second instruction information received by the receiving module. The length of the time unit corresponding to the set.
  • the processing module 601 may be further specifically configured to: the second indication information is DCI, and determine a length of a time unit corresponding to the first set according to a bit field in the DCI; or The second indication information is DCI, and the length of the time unit corresponding to the first set is determined according to the format of the DCI; or the second indication information is DCI, according to the physical downlink data channel indicated by the DCI To determine the length of the time unit corresponding to the first set; or, the second indication information is DCI, and is determined according to the number of symbols of time domain resources occupied by the physical downlink data channel indicated by the DCI. The length of the time unit corresponding to the first set.
  • the processing module 601 may be specifically configured to determine the length of the time unit corresponding to the first set according to the correspondence between the first set and the length of the time unit.
  • the receiving module 602 may be further configured to receive third instruction information from the network device; the processing module 601 may be further configured to determine the first instruction information according to the third instruction information received by the receiving module. A collection.
  • the processing module 601 may be further configured to use the K1 set specified in the protocol as the first set when the third instruction information from the network device is not received.
  • the receiving module 602 may be further configured to receive fourth instruction information from the network device; the processing module 601 may be further configured to determine a time corresponding to the first set according to the fourth instruction information received by the receiving module. The length of the unit.
  • the processing module 601 may be further configured to use, as the length of the time unit corresponding to the first set, the time length of the K1 set specified in the protocol when the fourth instruction information from the network device is not received.
  • the physical device corresponding to the processing module in the communication device may be a processor, and the physical device corresponding to the receiving module may be a receiver. Further, the physical device corresponding to the sending module is a transmitter and the physical device corresponding to the storage module is Memory.
  • an embodiment of the present application provides a communication device 700, which can be used to implement the functions of the network device in the process shown in FIG. 3, FIG. 4, or FIG.
  • the communication device 700 can be applied to a network device or a chip in the network device.
  • the communication device 700 may include a storage module 701, a sending module 702, and a receiving module 703.
  • the communication device 700 may further include a processing module 704.
  • the storage module 701 may be used to store program instructions; the sending module 702 may be used to send a physical downlink data channel to a terminal device; and the receiving module 703 may be used to receive the physical downlink sent by the terminal device Data channel response information, the physical downlink data channel response information is determined according to the first set and the length of the time unit corresponding to the first set, the first set is one of a plurality of sets, The time units corresponding to any two of the multiple sets have different lengths, and each of the multiple sets includes one or more K1 values, where the K1 value refers to the physical value received by the terminal device from The number of time units between the downlink data channel and the response information of the physical downlink data channel, where K1 is a non-negative integer.
  • the sending module is further configured to send first instruction information to a terminal device, where the first instruction information is used to indicate the first set among the multiple sets.
  • the first indication information is downlink control information DCI
  • a bit field of the DCI is used to determine the first set among the multiple sets, or a format of the DCI is used in all
  • the first set is determined in the multiple sets, or the mapping manner of the physical downlink data channel indicated by the DCI is used to determine the first set in the multiple sets, or the physical downlink data channel indicated by the DCI is determined by the mapping manner.
  • the number of symbols occupying time domain resources is used to determine the first set among the multiple sets.
  • the sending module 702 may be configured to send third instruction information to a terminal device, where the third instruction information is used to indicate a length of a time unit corresponding to the first set.
  • the third indication information is high-level signaling, or the third indication information is DCI, and a bit field in the DCI is used to determine a length of a time unit corresponding to the first set.
  • the format of the DCI is used to determine the length of the time unit corresponding to the first set, or the mapping mode of the physical downlink data channel indicated by the DCI is used to determine the time unit corresponding to the first set Or the number of symbols of the time domain resources occupied by the physical downlink data channel indicated by the DCI is used to determine the length of the time unit corresponding to the first set.
  • any one of the plurality of sets includes multiple K1 values, and the minimum K1 value in any of the sets is greater than or equal to a first threshold, and the size of the first threshold is different from The length of the time unit corresponding to any set is related; or any one of the plurality of sets includes a K1 value, and the K1 value is greater than or equal to the first threshold.
  • the size of the first threshold is related to the length of the time unit corresponding to the any set, and specifically, the first threshold is
  • the N1 represents the number of symbols between the terminal device receiving the physical downlink data channel and the earliest feedback of the physical downlink data channel response information
  • the M represents the length of the time unit corresponding to any set, Represents the operation of rounding up.
  • the storage module 701 may be used to store program instructions; the sending module 702 may be used to send a physical downlink data channel to a terminal device; and the receiving module 703 may be used to receive the physical device from the terminal device.
  • the response information of the downlink data channel, the response information of the physical downlink data channel is determined according to the length of the first set and the time unit corresponding to the first set, the first set is a set of a plurality of sets, the The first set includes one or more K1 values, where the K1 value refers to the number of time units between the terminal device receiving a physical downlink data channel and feeding back the response information of the physical downlink data channel, the K1 Is a non-negative integer, if any one of the plurality of sets includes multiple K1 values, the minimum K1 value in any of the sets is greater than or equal to the first threshold, and if any of the plurality of sets The set includes a K1 value, the K1 value is greater than or equal to the first threshold, and the size of
  • the size of the first threshold is related to the length of the time unit corresponding to the any set, and is specifically:
  • the first threshold is The N1 represents the number of symbols of the interval between the terminal device receiving the physical downlink data channel and the response information of the physical downlink data channel being fed back, the M represents the length of the time unit corresponding to any set, and Represents the operation of rounding up.
  • the sending module 702 may be further configured to send first instruction information to the terminal device, where the first instruction information is used to indicate the first set.
  • the sending module 702 may be further configured to send second instruction information to the terminal device, where the second instruction information is used to indicate a length of a time unit corresponding to the first set. .
  • the second indication information is high-level signaling, or the second indication information is downlink control information DCI, and a bit field in the DCI is used to determine a time corresponding to the first set.
  • the length of the unit, or the format of the DCI is used to determine the length of the time unit corresponding to the first set, or the mapping mode of the physical downlink data channel indicated by the DCI is used to determine the location of the first set.
  • the length of the time unit or the number of symbols of the time domain resources occupied by the physical downlink data channel indicated by the DCI is used to determine the length of the time unit corresponding to the first set.
  • the physical device corresponding to the processing module in the communication device may be a processor, the physical device corresponding to the receiving module may be a receiver, the physical device corresponding to the sending module is a transmitter, and the physical device corresponding to the storage module is a memory.
  • FIG. 8 shows a simplified schematic diagram of a possible design structure of the terminal device involved in the foregoing embodiment.
  • the terminal device includes a transmitter 801, a receiver 802, a controller / processor 803, a memory 804, and a modem processor 805.
  • the transmitter 801 adjusts (for example, analog conversion, filtering, amplification, up-conversion, etc.) the output samples and generates an uplink signal, which is transmitted to the base station described in the above embodiment via an antenna.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • the receiver 802 conditions (e.g., filters, amplifies, downconverts, and digitizes, etc.) a signal received from an antenna and provides input samples.
  • the encoder 806 receives service data and signaling messages to be transmitted on the uplink, and processes (e.g., formats, encodes, and interleaves) the service data and signaling messages. .
  • the modulator 807 further processes (e.g., symbol maps and modulates) the encoded service data and signaling messages and provides output samples.
  • a demodulator 809 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 808 processes (e.g., deinterleaves and decodes) the symbol estimates and provides decoded data and signaling messages sent to the UE.
  • the encoder 806, the modulator 807, the demodulator 809, and the decoder 808 may be implemented by a synthesized modem processor 805. These units process according to the radio access technology (for example, the access technology of LTE and other evolved systems) adopted by the radio access network.
  • the controller / processor 803 controls and manages the actions of the terminal device, and is configured to execute the processing performed by the terminal device in the foregoing embodiment. For example, in a plurality of sets, a first set is determined, and / or other processes of the technology described in the present invention. As an example, the controller / processor 803 is configured to support the terminal device to perform steps S301 and S302 in FIG. 3, steps S401 and S402 in FIG. 4, and steps S501 and S502 in FIG. 5.
  • the memory 804 is configured to store program code and data related to the terminal device 800.
  • the terminal device 800 provided in the embodiment of the present application is used to implement the communication method shown in FIG. 3 to FIG. 5 or the functions of the terminal device in the communication method shown in FIG. 3 to FIG.
  • the connection relationship between the various modules in the terminal device 800 is described.
  • FIG. 9 shows a possible structural diagram of a network device involved in the foregoing embodiment.
  • the base station 900 includes a transmitter / receiver 901, a controller / processor 902, and a memory 903.
  • the transmitter / receiver 901 is configured to support transmission and reception of information between a network device and the terminal device described in the foregoing embodiments, and support radio communication between the network device and other terminal devices.
  • the controller / processor 902 performs various functions for communicating with a terminal device.
  • the uplink signal from the terminal device is received via the antenna, mediated by the receiver 901, and further processed by the controller / processor 902 to recover the service data and information sent by the terminal device. ⁇ ⁇ Order information.
  • the service data and signaling messages are processed by the controller / processor 902 and mediated by the transmitter 901 to generate a downlink signal and transmitted to the terminal device via the antenna.
  • the controller / processor 902 also executes the processing procedures involving network devices in FIG. 3 to FIG. 5 and / or other processes for the technology described in this application.
  • the memory 903 is configured to store program code and data of a network device.
  • the network device 900 may further include a communication unit 904.
  • the communication unit 904 is configured to support a network device to communicate with other network entities.
  • the network device 900 provided in the embodiment of the present application is used to implement the functions of the network device in the communication methods shown in FIG. 3 to FIG. 5. The connection relationship is described.
  • the embodiment of the present application further provides a communication system, which includes the foregoing network device and terminal device.
  • an embodiment of the present application further provides a computer storage medium.
  • a software program is stored in the storage medium, and the software program can implement any one or more of the foregoing when read and executed by one or more processors.
  • the computer storage medium may include various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • an embodiment of the present application further provides a chip that includes a processor, and is configured to implement a function involved in any one or more of the foregoing embodiments, such as obtaining or processing information involved in the foregoing method, or Message.
  • the chip further includes a memory, which is configured to store program instructions and data executed by the processor.
  • the chip can also include chips and other discrete devices.
  • the processor may be a central processing unit (CPU), and the processor may also be another general-purpose processor, a digital signal processor (DSP), or a special-purpose integration.
  • Circuit application-specific integrated circuit, ASIC
  • ready-made programmable gate array field programmable gate array, FPGA
  • a general-purpose processor may be a microprocessor, or any conventional processor or the like.
  • the memory may include read-only memory and random access memory, and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the bus system may also include a power bus, a control bus, and a status signal bus.
  • various buses are marked as a bus system in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware. To avoid repetition, it will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置,该方法可包括:终端设备在多个集合中,确定第一集合,所述终端设备确定所述第一集合所对应时间单元的长度,所述终端设备接收来自网络设备的物理下行数据信道,所述终端设备根据所述第一集合和所述第一集合所对应时间单元的长度,向所述网络设备发送所述物理下行数据信道的应答信息。采用本申请的方法及装置,可满足动态调度多种业务之间的不同需求。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2018年09月21日提交中国专利局、申请号为201811110587.6、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在现有通信过程中,终端设备在接收到物理下行数据信道(physical downlink shared Channel,PDSCH)后,会根据PDSCH的译码结果,反馈混合自动重传请求(hybrid automatic repeat reQuest,HARQ)。比如,PDSCH接收成功,可反馈肯定应答(acknowledgement,ACK)至网络设备,PDSCH接收失败,可反馈否定应答(negative acknowledgment,NACK)至网络设备。其中,在现有技术中,时间单元的长度为1个时隙。当时间单元的长度变小时,比如变为1/2时隙,如何反馈应答信息并没有相应的解决方案。
发明内容
本申请提供一种通信方法及装置,以提供终端设备反馈应答信息的方案。
第一方面,本申请提供一种通信方法,可应用于终端设备,该通信方法可包括:终端设备在多个集合中,确定第一集合,所述多个集合中的任两个集合所对应时间单元的长度不同,所述多个集合中的每个集合中包括一个或多个K1值,所述K1值指所述终端设备从接收到物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的时间单元数量,所述K1为非负整数,所述终端设备确定所述第一集合所对应时间单元的长度,所述终端设备接收来自网络设备的物理下行数据信道,所述终端设备根据所述第一集合和所述第一集合所对应时间单元的长度,向所述网络设备发送所述物理下行数据信道的应答信息。
在本申请实施例中,通过配置多个集合,多个集合中的至少两个集合所对应的时间单元长度不同,可满足不同业务的需求。并且DCI信息,动态指示当前采用那个集合,能够实现多个集合之间的动态切换,满足动态调度多种业务之间的不同需求。
在一种可能的实现中,所述终端设备在多个集合中,确定第一集合,包括:所述终端设备接收来自网络设备的第一指示信息;所述终端设备根据所述第一指示信息,在所述多个集合中确定所述第一集合。
在本申请实施例中,通过第一指示信息可为第一集合指示不同的时间单元长度,使得满足不同业务的需求。比如,在有些业务的时候可采用比较小的时间单元长度,保证业务的时延,在有些业务的时候可采用比较大的时间单元长度,能够保证多个数据的ACK/NACK信息一起反馈,从而降低信令的开销,提高资源利用率。
在一种可能的实现中,述第一指示信息为下行控制信息DCI,所述终端设备根据所述第一指示信息,在所述多个集合中确定所述第一集合,包括:所述终端设备根据所述DCI中的比特域,在所述多个集合中确定所述第一集合;或者,所述终端设备根据所述DCI的格式,在所述多个集合中确定所述第一集合;或者,所述终端设备根据所述DCI所指示的物理下行数据信道的映射方式,在所述多个集合中确定所述第一集合;或者,所述终端设备根据所述DCI所指示的物理下行数据信道所占用时域资源的符号个数,在所述多个集合中确定所述第一集合。
在一种可能的实现中,所述终端设备确定所述第一集合所对应时间单元的长度,包括:所述终端设备接收来自网络设备的第二指示信息;所述终端设备根据所述第二指示信息,确定所述第一集合所对应时间单元的长度。
在一种可能的实现中,所述第二指示信息为DCI,所述终端设备根据所述第二指示信息,确定所述第一集合所对应时间单元的长度,包括:所述终端设备根据所述DCI中的比特域,确定所述第一集合所对应时间单元的长度;或者,所述终端设备根据所述DCI的格式,确定所述第一集合所对应时间单元的长度;或者,所述终端设备根据所述DCI所指示的物理下行数据信道的映射方式,确定所述第一集合所对应时间单元的长度;或者,所述终端设备根据所述DCI所指示的物理下行数据信道所占用时域资源的符号个数,确定所述第一集合所对应时间单元的长度。
在一种可能的实现中,所述终端设备确定所述第一集合所对应时间单元的长度,包括:所述终端设备根据第一集合与时间单元长度的对应关系,确定所述第一集合所对应时间单元的长度。
在一种可能的实现中,所述终端设备在多个集合中,确定第一集合,包括:所述终端设备在接收到来自所述网络设备的第三指示信息时,根据所述第三指示信息,在所述多个集合中确定所述第一集合。
在一种可能的实现中,所述方法还包括:所述终端设备在未接收到来自所述网络设备的第三指示信息时,将协议规定的K1集合,作为所述第一集合。
在一种可能的实现中,所述终端设备确定所述第一集合所对应时间单元的长度,包括:所述终端设备在接收到来自所述网络设备的第四指示信息时,根据所述第四指示信息,确定所述第一集合所对应时间单元的长度。
在一种可能的实现中,所述方法还包括:所述终端设备在未接收到来自所述网络设备的第四指示信息时,将协议规定的K1集合时间长度,作为所述第一集合所对应时间单元的长度。
第二方面,本申请公开一种通信方法,可应用于网络设备,包括:网络设备向终端设备发送物理下行数据信道,所述网络设备接收所述终端设备发送的所述物理下行数据信道的应答信息,所述物理下行数据信道的应答信息是根据第一集合和所述第一集合所对应时间单元的长度所确定的,所述第一集合为多个集合中的一个集合,所述多个集合中的任两个集合所对应时间单元的长度不同,所述多个集合中的每个集合中包括一个或多个K1值,所述K1值指所述终端设备从接收物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的时间单元数量,所述K1为非负整数。
在一种可能的实现中,所述方法还包括:所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于在所述多个集合中指示所述第一集合。
在一种可能的实现中,所述第一指示信息为DCI,所述DCI的比特域用于在所述多个集合中确定第一集合,或者,所述DCI的格式用于在所述多个集合中确定第一集合,或者,所述DCI所指示物理下行数据信道的映射方式用于在所述多个集合中确定第一集合,或者,所述DCI所指示物理下行数据信道所占用时域资源的符号个数用于在所述多个集合中确定所述第一集合。
在一种可能的实现中,所述方法还包括:所述网络设备向终端设备发送第二指示信息,所述第二指示信息用于指示所述第一集合所对应时间单元的长度。
在一种可能的实现中,所述第二指示信息为DCI,所述DCI中的比特域用于确定所述第一集合所对应时间单元的长度,或,所述DCI的格式用于确定所述第一集合所对应时间单元的长度,或,所述DCI所指示的物理下行数据信道的映射方式用于确定所述第一集合所对应时间单元的长度,或,所述DCI所指示的物理下行数据信道所占用时域资源的符号个数用于确定所述第一集合所对应时间单元的长度。
第三方面,本申请公开一种通信方法,可应用于终端设备,可包括:终端设备确定第一集合,所述第一集合中包括一个或多个K1值,所述K1值指所述终端设备从接收到物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的时间单元数量,所述K1为非负整数,如果所述多个集合中的任一集合中包括多个K1值,所述任一集合中的最小K1值大于或等于第一阈值,如果所述多个集合中的任一集合中包括一个K1值,所述K1值大或等于所述第一阈值,所述第一阈值的大小与所述任一集合所对应时间单元的长度相关;所述终端设备确定所述第一集合所对应时间单元的长度,所述终端设备接收来自网络设备的物理下行数据信道,所述终端设备根据所述第一集合和所述第一集合所对应时间单元的长度,向所述网络设备发送所述物理下行数据信道的应答信息。
在一种可能的实现中,所述第一阈值的大小与所述任一集合所对应时间单元的长度相关,具体为:
所述第一阈值为
Figure PCTCN2019107062-appb-000001
所述N1表示所述终端设备从接收物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的符号数量,所述M表示所述任一集合所对应时间单元的长度,所述
Figure PCTCN2019107062-appb-000002
表示向上取整的操作。
在一种可能的实现中,所述终端设备确定第一集合,包括:所述终端设备接收来自终端设备的第一指示信息;所述终端设备根据所述第一指示信息,确定所述第一集合。
在一种可能的实现中,所述终端设备确定所述第一集合所对应时间单元的长度,包括:所述终端设备接收来自所述网络设备的第二指示信息;所述终端设备根据所述第二指示信息,确定所述第一集合所对应时间单元的长度。
在一种可能的实现中,所述第二指信息示为高层信令,或下行控制信息DCI;
如果所述第二指示信息为DCI,所述终端设备根据所述第二指示信息,确定所述第一集合所对应时间单元的长度,包括:所述终端设备根据所述DCI中的比特域,确定所述第一集合所对应时间单元的长度;或者,所述终端设备根据所述DCI的格式,确定所述第一集合所对应时间单元的长度;或者,所述终端设备根据所述DCI所指示的物理下行数据信道的映射方式,确定所述第一集合所对应时间单元的长度;或者,所述终端设备根据所述DCI所指示的物理下行数据信道所占用时域资源的符号个数,确定所述第一集合所对应时间单元的长度。
在一种可能的实现中,所述终端设备确定所述第一集合所对应时间单元的长度,包括:所述终端设备根据第一集合与时间单元长度的对应关系,确定所述第一集合所对应时间单元的长度。
在一种可能的实现中,所述终端设备确定第一集合,包括:所述终端设备在接收到来自所述网络设备的第三指示信息时,根据所述第三指示信息,确定所述第一集合。
在一种可能的实现中,所述方法还包括:所述终端设备在未接收到来自所述网络设备的第三指示信息时,将协议规定的K1集合,作为所述第一集合。
在一种可能的实现中,所述终端设备确定所述第一集合所对应时间单元的长度,包括:
所述终端设备在接收到来自所述网络设备的第四指示信息时,根据所述第四指示信息,确定所述第一集合所对应时间单元的长度。
在一种可能的实现中,所述方法还包括:所述终端设备在未接收到来自所述网络设备的第四指示信息时,将协议规定的K1集合时间长度,作为所述第一集合所对应时间单元的长度。
第四方面,公开一种通信方法,可应用于网络设备,可包括:网络设备向终端设备发送物理下行数据信道,所述网络设备接收来自所述终端设备的所述物理下行数据信道的应答信息,所述物理下行数据信道的应答信息是根据第一集合和第一集合所对应时间单元的长度所确定,所述第一集合为多个集合中的一集合,所述第一集合中包括一个或多个K1值,所述K1值指所述终端设备从接收到物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的时间单元数量,所述K1为非负整数,如果所述多个集合中的任一集合中包括多个K1值,所述任一集合中的最小K1值大于或等于第一阈值,如果所述多个集合中的任一集合中包括一个K1值,所述K1值大或等于所述第一阈值,所述第一阈值的大小与所述任一集合所对应时间单元的长度相关。
在一种可能的实现中,所述第一阈值的大小与所述任一集合所对应时间单元的长度相关,具体为:所述第一阈值为
Figure PCTCN2019107062-appb-000003
所述N1表示所述终端设备从接收物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的符号数量,所述M表示所述任一集合所对应时间单元的长度,所述
Figure PCTCN2019107062-appb-000004
表示向上取整的操作。
在一种可能的实现中,所述方法还包括:所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一集合。
在一种可能的实现中,所述方法还包括:所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一集合所对应时间单元的长度。
在一种可能的实现中,所述第二指示信息为高层信令,或,所述第二指示信息为下行控制信息DCI,所述DCI中的比特域用于确定所述第一集合所对应时间单元的长度,或,所述DCI的格式用于确定所述第一集合所对应时间单元的长度,或,所述DCI所指示的物理下行数据信道的映射方式用于确定所述第一集合所对应时间单元的长度,或,所述DCI所指示的物理下行数据信道所占用时域资源的符号个数用于确定所述第一集合所对应时间单元的长度。
五方面,本申请提供一种通信装置,用于终端设备或终端设备的芯片,包括:包括用于执行以上第一方面或第三方面各个步骤的单元或手段(means)。
第六方面,本申请提供一种通信装置,用于网络设备或网络设备的芯片,包括:包括 用于执行以上第二方面或第四方面各个步骤的单元或手段(means)。
第七方面,本申请提供一种通信装置,用于终端设备或终端设备的芯片,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述至少一个处理元件用于执行本申请第一方面或第三方面提供的方法。
第八方面,本申请提供一种通信装置,用于网络设备或网络设备的芯片,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述至少一个处理元件用于执行本申请第二方面或第四方面提供的方法。
第九方面,本申请提供一种通信装置,用于终端设备包括用于执行以上第一方面或第三方面的方法的至少一个处理元件(或芯片)。
第十方面,本申请提供一种通信装置,用于网络设备,包括用于执行以上第二方面或第四方面的方法的至少一个处理元件(或芯片)。
第十一方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机指令,当该计算机指令被计算机执行时,使得所述计算机执行以上任一方面的方法。
第十二方面,本申请提供了一种计算机可读存储介质,该存储介质存储有计算机指令,当所述计算机指令被计算机执行时,使得所述计算机执行以上任一方面的方法。
附图说明
图1为本申请实施例提供的通信系统的一结构示意图;
图2为本申请实施例提供的应答信息与下行数据关系的示意图;
图3为本申请实施例提供的通信方法流程的一示意图;
图4为本申请实施例提供的通信方法流程的一示意图;
图5为本申请实施例提供的通信方法流程的一示意图;
图6为本申请实施例提供的通信装置的一结构示意图;
图7为本申请实施例提供的通信装置的一结构示意图;
图8为本申请实施例提供的通信装置的一结构示意图;
图9为本申请实施例提供的通信装置的一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
如图1所示,本申请实施例提供一种通信系统100,该通信系统100可包括网络设备101和终端设备102。
其中,通信系统100,可以采用各种无线接入技术(radio access technology,RAT),例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)等,本申请对通信系统所采用的RAT不做限定。在本申请中,术语“系统”可以和“网络”相互替换。
网络设备101可以是网络中将终端设备接入到无线网络的设备。所述网络设备为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN) 节点(或设备)。目前,一些网络设备的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或WiFi接入点(access point,AP)等。另外,在一种网络结构中,所述网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
终端设备102,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote meDCIal surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
在本申请实施例中,网络设备101可向终端设备102发送物理下行数据信道(physical downlink shared Channel,PDSCH),所述终端设备102可根据PDSCH的译码结果,反馈混合自动重传请求(hybrid automatic repeat reQuest,HARQ)。比如,PDSCH接收成功,可反馈肯定应答(acknowledgement,ACK)至网络设备101,PDSCH接收失败,可反馈否定应答(negative acknowledgment,NACK)至网络设备101。
其中,从终端设备102接收PDSCH到向网络设备101反馈ACK/NACK满足n+k1的定时关系,所述n代表终端设备102接收PDSCH的时间单元,所述k1代表终端设备102从接收PDSCH的时间单元到反馈ACK/NACK时间单元之间相差的时间单元。如图2所示,终端设备102在第n个时隙(slot)接收PDSCH,若k1为4,则终端设备102可在第n+4个时隙反馈ACK/NACK给网络设备101。终端设备102侧会存在一个k1集合,所述k1集合中包括一个或多个k1值,比如,所述k1集合可为{1,2,3,4,5,6,7,8}。所述k1集合可为协议规定的,也可为通过高层信令配置的。网络设备101可通过下行控制信息(downlink control information,DCI)将所述k1集合中的k1值指示给终端设备102,终端设备102可按照所指示的k1值反馈ACK/NACK。目前,所述k1集合中的k1值均是以时隙(slot)为粒度的。
其中,终端设备102从接收PDSCH,到反馈ACK/NACK应答信息,需要一定的处理时间,定义终端设备102从接收到PDSCH到最早能够发送ACK/NACK反馈信息间的时域符号个数为N1。其中,在不同子载波间隔(subcarrier spacing,SCS)下,N1的取值不同,比如当SCS为15KHz时,N1的取值可为8个符号。
在一种实现方式中,为了降低用户的反馈时延,提出了以下解决方案:减少k1时间单元的长度,降低k1的粒度,比如,将k1的粒度改为1/2时隙即7符号等。如果继续沿用以时隙为粒度的k1集合,可能会出现不能满足N1要求的情况。举例说明:k1集合为{1,2,3,4,5,6,7,8},k1集合的粒度为1个时隙,N1取值为8个符号,如果网络设备101通过DCI指示当前k1取值为1,那么,终端设备102可在第n+1个时隙反馈ACK/NACK, 1个时隙包括14个符号,即终端设备102在第n时隙+14个符号上反馈ACK/NACK,能满足终端设备最早只能在第n时隙+8个符号上反馈ACK/NACK的要求。如果将k1的粒度修改为1/2时隙即7符号,同样如果网络设备101通过DCI指示当前k1取值为1,那么终端设备102将在第n时隙+7符号上反馈ACK/NACK,不能满足终端设备102最早在第n时隙+8符号上反馈ACK/NACK的要求。
基于以上,本申请提供三种通信方法的流程图,具体可参见图3、图4或图5所示。其中,在图3所示的流程中,可为终端设备配置多个集合,在图4或图5所示的流程中,可为终端设备配置一个集合,即第一集合。在图3、图4或图5所示的流程中,网络设备可为上述图1所示的网络设备101,终端设备可为上述图1所示的终端设备102。可以理解的是,在本申请实施例中,网络设备的功能也可以通过应用于网络设备的芯片来实现,终端设备的功能也可以通过应用于终端设备的芯片来实现。可以理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
如图3所示,该流程可具体为:
S301:终端设备在多个集合中,确定第一集合。
在本申请实施例中,多个集合可为网络设备预先通过高层信令为终端设备配置的,或者,所述多个集合可为协议规定的,或者,所述多个集合一部分集合为网络设备通过高层信令为终端设备配置的,剩余的一部分集合为协议规定的。所述高层信令可具体指高层协议层发出的信令,所述高层协议层可为物理层以上的协议层。比如,所述高层协议层可包括媒体接入控制(medium access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据会聚协议(packet data convergence protocol,PDCP)层、无线资源控制(radio resource control,RRC)层和非接入层(non access stratum,NAS)等,所述高层信令可为RRC信令或MAC信令等。
在本申请实施例中,所述多个集合中可包括两个或两个以上的集合,所述多个集合中的每个集合还可称为K1集合,所述多个集合中的每个集合中可包括一个或多个K1值,所述K1值指所述终端设备从接收到PDSCH至反馈所述PDSCH的应答信息之间间隔的时间单元数量,所述K1为非负整数。如图2所示,终端设备在第n个时隙接收PDSCH,K1取值为4,终端设备可在第n+4时馈反馈PDSCH的应答信息。
在本申请实施例中,所述多个集合中的任两个集合所对应时间单元的长度不同,所述多个集合中每个集合所对应的时间单元长度,也可称为每个集合所对应的时间单元粒度。比如,当所述集合称为K1集合时,所述集合所对应的时间单元长度可称为K1粒度。
在本申请实施例中,如果所述多个集合中的任一集合中包括多个K1值,所述任一集合中的最小K1值大于或等于第一阈值。如果所述多个集合中的任一集合中包括一个K1值,所述K1值大或等于所述第一阈值。
其中,所述第一阈值的大小与所述任一集合所对应时间单元的长度相关,具体可为:
所述第一阈值为
Figure PCTCN2019107062-appb-000005
所述N1表示所述终端设备从接收PDSCH至最早反馈PDSCH应答信息之间间隔的符号数量,所述M表示所述任一集合所对应时间单元的长度,所述
Figure PCTCN2019107062-appb-000006
表示向上取整的操作。
比如,在本申请实施例中,N1的取值为8个符号,M的取值为7个符号,所述第一 阈值的取值可为2。
在本申请实施例中,所述N1的取值可满足下述表1或表2:
表1
Figure PCTCN2019107062-appb-000007
表2
Figure PCTCN2019107062-appb-000008
在所述表1或所述表2中,DMRS为解调参考信号。N1的取值可以满足其他的表格的限制,本申请不做限定。
在本申请实施例中,网络设备可向终端设备发送第一指示信息,所述终端设备可根据第一指示信息,在所述多个集合中确定所述第一集合。比如,所述第一指示信息可为DCI,也可为除DCI外的其它信息,并不作为对本申请的限定。在本申请实施例中,以第一指示信息为DCI为例,详细说明确定第一集合的过程。
在本申请的一示例中,终端设备可根据DCI中的比特域,在所述多个集合中确定第一集合,所述DCI的比特域中可包括一比特(bit)或多比特。
比如,步骤S301中的多集合可以为两个集合,分别为集合A与集合B,那么可用1比特指示具体是哪一个集合,例如这个比特只取1指示为集合A,比特这取0指示集合B;再例如,步骤S301中的多集合为4个集合,分别为集合A、集合B、集合C和集合D,那么可用2比特指示,这2比特取值为“00”指示集合A,取值为“01”指示集合B,取值为“10”指示集合C,取值为“11”指示集合D。
在本申请的另一示例中,终端设备可以根据DCI的格式,在所述多个集合中确定第一集合。
比如,步骤S301中的多集合可以为两集合,分别为集合A与集合B。如果终端设备所接收DCI的格式为第一格式,终端设备可确定所述第一集合可为集合A,如果终端设备所接收DCI的格式为第二格式,终端设备可确定所述第一集合可为集合B。比如,所述第一格式可以为压缩的DCI格式,所述第二格式为除所述压缩的DCI格式外的其它格式,所述压缩的DCI格式为一种比特数较小的DCI格式,主要用于调度高可靠性业务。再如,所述第一格式可以为通过第一无线网络临时标识(radio network tempory identity,RNTI)加扰的DCI格式,所述第二格式可为除第一RNTI加扰DCI格式外的其它格式,所述第一RNTI主要用于标识高可靠性低时延业务,或者用于标识可靠性比较高的调制与编码策略(modulation and coding scheme,MCS)表格。
在本申请中,DCI的格式可以包括DCI的载荷大小、RNTI和/或DCI中包括的各个字 段的定义。DCI的载荷大小(payload size)不同,可以认为DCI的格式不同;加扰的RNTI不同,也可以认为DCI的格式不同;DCI中包括的各个字段的定义不同,也可以认为DCI的格式不同。这里的字段的定义可以包括字段在DCI中所处的位置、字段的比特长度以及字段所表示的具体含义。这里的载荷大小可以是DCI中各个字段的总比特数,也可以是DCI中各个字段的总比特数加上CRC的长度。
在本申请的另一示例中,终端设备可根据DCI的指示域,在所述多个集合中确定第一集合,所述DCI的指用域可以用于指示PDSCH的开始符号、PDSCH的长度或PDSCH的映射方式中的一个或多个。
具体的,所述终端设备可以根据所述DCI所指示PDSCH的映射方式,在所述多个集合中确定第一集合。比如,DCI所指示PDSCH的映射方式为A,可确定第一集合为集合A,DCI所指示PDSCH的映射方式为B,可确定第一集合为集合B。
或者,终端设备可根据所述DCI所指示PDSCH所占用时域符号的个数L,在多个集合中确定第一集合。比如,如果L大于7,第一集合为集合A,如果L为2、4或7,第一集合为集合B。
或者,终端设备可根据所述DCI所指示PDSCH的开始符号S,在多个集合中确定第一集合。比如,S小于等于7,第一集合为集合A,或者S大于7,第一集合为集合B。
S302:所述终端设备确定所述第一集合所对应时间单元的长度,所述第一集合所对应时间单元的长度也可称为第一集合中所包括K1值的粒度。
在本申请的一示例中,终端设备可以根据第一集合与时间单元长度的对应关系,确定所述第一集合所对应时间单元的长度。
一种实现方式中,协议针对多个K1的集合中的每一个K1集合分别定义了一个对应的时间单元。例如,针对两个K1集合:集合A和集合B,集合A对应的时间单元长度为slot,集合B对应的时间单元长度为7个符号。例如,根据步骤S301的方法,确定第一集合为集合A,则确定第一集合对应的时间单元长度为slot;又例如确定第一集合为集合B,则确定第一集合对应的时间单元长度为7个符号。
在本申请的另一示例中,网络设备可向终端设备发送第二指示信息,所述终端设备可根据所述第二指示信息,确定第一集合所对应时间单元的长度。所述第二指示信息可为高层信令,或者DCI。
在一种实现中,网络设备可向终端设备发送高层信令,所述终端设备可根据高层信令确定第一集合所对应时间单元的长度。比如,高层信令可配置一个时间单元长度,所配置时间单元的长度可以为时隙(slot),或者,1/2slot,或者2个符号等,这仅是我们为了理解本发明技术方案所举的例子,本申请包括并不限于此。在本申请实施例中,时隙可以为数据调度的时域单位。比如,在正常循环前缀下,一个slot可以包括14个符号,在扩展循环前缀下,一个slot可以包括12个符号。
在一种实现中,网络设备可向终端设备发送DCI,所述终端设备可根据所述DCI,确定第一集合所对应时间单元的长度。
一示例中,终端设备可根据所述DCI中的比特域,确定所述第一集合所对应时间单元的长度,比如,DCI可有一个比特域,包含1bit,当该比特域的取值为0时,表示第一集合所对应时间单元的长度为1/2slot,当该比特域的取值为1时,表示第一集合所对应时间单元的长度为1slot。再比如,DCI可有一个比特域,包含2bit,当该比特域的取值为00 时,表示第一集合所对应时间单元的长度为slot;当该比特域的取值为01时,表示第一集合所对应时间单元的长度为1/2slot;当该比特域的取值为10时,表示第一集合所对应时间单元的长度为2个符号;当该比特域的取值为11时,表示第一集合所对应时间单元的长度为1个符号。
一示例中,终端设备可根据所述DCI的格式,确定所述第一集合所对应时间单元的长度;比如,如果终端设备接收到的DCI格式为第一DCI格式,则第一集合所对应时间单元的长度为1/2slot,如果终端设备接收到的DCI格式为除第一DCI格式以外的其他DCI格式,则第一集合所对应时间单元的长度为1slot。再如,如果终端设备接收到的DCI格式是通过第一RNTI加扰的,则第一集合所对应时间单元的长度为1/2slot,如果为其他DCI格式,则确定第一集合所对应时间单元的长度为1slot。比如,所述第一格式可为压缩的DCI格式,所述第二格式为除所述压缩的DCI格式外的其它格式,所述压缩的DCI格式为一种比特数较小的DCI格式,主要用于调度高可靠性业务。再如,所述第一格式可为通过第一无线网络临时标识(radio network tempory identity,RNTI)加扰的DCI格式,所述第二格式可为除第一RNTI加扰DCI格式外的其它格式,所述第一RNTI主要用于标识高可靠性低时延业务,或者用于标识可靠性比较高的调制与编码策略(modulation and coding scheme,MCS)表格。
一示例中,终端设备可根据所述DCI所指示的PDSCH的映射方式,确定所述第一集合所对应时间单元的长度;例如,如果终端设备所接收DCI中指示的PDSCH的时域资源映射类型(mapping type)为映射类型A(mapping type A),则确定第一集合所对应时间单元的长度为1slot,如果为映射类型B(mapping type B),则确定第一集合所对应时间单元的长度为1/2slot。
一示例中,终端设备可根据所述DCI所指示的PDSCH所占用时域资源的符号个数,确定所述第一集合所对应时间单元的长度。例如,如果终端设备所接收DCI中指示的PDSCH的时域资源位置的符号个数为L,如果符号个数L大于7,可确定第一集合所对应时间单元长度为1slot,如果符号个数L为2、4或者7,则可确定第一集合所对应时间单元的长度为1/2slot。
S303:网络设备发送PDSCH。
S304:所述终端设备接收PDSCH。
S305:所述终端设备根据所述第一集合和第一集合所对应时间单元的长度,发送PDSCH的应答信息。
在本申请实施例中,如果所述第一集合为{1,2,3,4,5,6,7,8},所述第一集合所对应时间单元的长度为7符号,终端设备在第n时隙接收PDSCH。网络设备可向终端设备发送DCI,该DCI用于指示第一集合中的一K1值,比如,DCI指示第一集合中的K1值为1,那么终端设备可在第n时隙+7符号上反馈应答信息,所述应答信息可为ACK或NACK。具体的,如果终端设备正确译码PDSCH,该应答信息可为ACK,否则该应答信息可为NACK。
S306:所述网络设备接收所述PDSHC的应答信息。
由上可见,在本申请实施例中,通过不同集合中的K1取值不同,使得每个集合中的数值都能够满足终端设备处理能力的要求,避免集合中有一些不能满足终端设备处理能力的数值,从而减少DCI的比特数,提高DCI的可靠性。同时,相对于K1集合只有一个, 且所述K1集合所对应时间单元的长度永远为slot的方案,在本申请实施例中,在时间单元的长度变小时,给不同时间单元长度的K1集合对应不同的K1值,使得在满足用户时延的同时,提高DCI的可靠性。
在本申请实施例中,通过配置多个集合,多个集合中的至少两个集合所对应的时间单元长度不同,可满足不同业务的需求。并且DCI信息可以动态指示当前采用那个集合,能够实现多个集合之间的动态切换,满足动态调度多种业务不同的时延需求。
可替代性的,上述S301的实现方式,可采用以下方案:
网络设备发送第一指示信息,终端设备在接收到所述第一指示信息时,终端设备可根据所述第一指示信息在所述多个集合中确定第一集合。关于根据第一指示信息在多个集合中确定第一集合的过程,可参见上述根据第一指示信息在多个集合中确定第一集合的过程,在此不再说明。
网络设备在未发送第一指示信息时,或者,终端设备在未接收到所述第一指示信息时,终端设备可将协议规定的K1集合,作为第一集合。
可替代性的,上述S302的实现方式,可采用以下方案:
网络设备发送第二指示信息,终端设备在接收到所述第二指示信息时,可根据所述第二指示信息,确定所述第一集合所对应时间单元的长度。关于根据第二指示信息确定第一集合所对应时间单元的过程,可参见上述根据第二指示信息确定第一集合所对应时间单元的过程,在此不再说明。
网络设备未发送第二指示信息,或者终端设备在未接收到所述第二指示信息时,可将协议规定的K1集合时间长度,作为所述第一集合所对应时间单元的长度。
针对上述可替代性的方案,提供一种应用场景:可预先通过协议规定的方式为终端设备设置K1集合和时间单元长度。网络设备为终端设备发送指示信息指示了K1集合,则终端设备采用网络设备指示的K1集合进行通信;或者网络设备未为终端设备指示K1集合,或者终端设备未收到指示信息,则采用协议规定的K1集合进行通信。和/或,如果网络设备为终端设备发送了指示信息指示了时间单元长度,则终端设备采用网络设备指示的时间单元长度进行通信,否则,采用协议规定的时间单元长度进行通信。针对上述可替代性的方案,包括但不限于应用于回退场景中,也就是在RRC建立之前,或者在RRC重新建立过程中,如果采用回退DCI格式,即DCI格式1_0(DCI format1_0)调度数据传输的过程。
在一示例中,针对DCI format1_0提供以下应用场景,以下场景中,将集合称为K1集合,将集合所对应的时间单元长度称为K1粒度:协议规定的K1集合为{1,2,3,4,5,6,7,8},K1粒度为1个时隙。网络设备为终端设备配置K1集合,则采用配置的K1集合进行通信,否则采用协议规定的K1集合{1,2,3,4,5,6,7,8}进行通信。或者网络设备为终端设备配置K1粒度,则采用配置的K1粒度进行通信,否则采用协议规定的1个时隙的K1粒度。
在本申请实施例中,对于DCI format1_0,在没有配置过程中,使用默认的协议规定的集合和粒度,能够保证后向兼容能力;在接入以后,有了配置信息以后,可改变K1粒度,满足不同业务的时延需求。
如图4所示,该实施例为可以为:
S401:终端设备确定第一集合。
在本申请实施例中,网络设备可向终端设备发送第一指示信息,所述第一指示信息用 于指示第一集合,终端设备可根据所述第一指示信息,确定第一集合,所述第一指示信息可但不限于为高层信令。所述第一集合中可包括一个或多个K1值,关于K1值的介绍,可参见上述S301中的记载,在此不再说明。
S402:所述终端设备确定所述第一集合所对应时间单元的长度。
关于S402的实现,可参见S302的记载,在此不再赘述。
S403:网络设备发送PDSCH。
S404:所述终端设备接收所述PDSCH。
S405:所述终端设备根据所述第一集合和所述第一集合所对应时间单元的长度,发送PDSCH的应答信息。
S406:所述网络设备接收所述PDSCH的应答信息。
可替代的,S401的实现方式可采用以下:
网络设备向终端设备发送第一指示信息,所述终端设备在接收到所述第一指示信息时,可根据所述第一指示信息,确定所述第一集合。关于根据所述第一指示信息,确定所述第一集合的过程,可参见上述根据所述第一指示信息,确定所述第一集合的过程,在此不再赘述。
网络设备未向终端设备发送第一指示信息,或者所述终端设备在未接收到来自所述第一指示信息时,可将协议规定的K1集合,作为所述第一集合。
在本申请实施例中,虽然仅为终端设备配置一个第一集合,但是可以根据DCI的相关信息或者高层信令,为第一集合确定出不同的时间单元长度,使得满足不同业务的需求。比如,在超高可靠性低时延业务的时候可采用比较小的时间单元长度,保证业务的时延;针对可靠性或者时延要求不那么高的业务的可采用比较大的时间单元长度,能够保证多个数据的ACK/NACK信息一起反馈,从而降低信令的开销,提高资源利用率。
如图5所示,该流程可具体为:
S501:终端设备确定第一集合。
所述第一集合中包括一个或多个K1值,关于K1值的介绍,可参见上述S301中的记载,在此不再说明。
在一示例中,网络设备可向终端设备发送第二指示信息,所述终端设备可根据所述第二指示信息,确定第一集合。关于确定所述第一集合的过程可参见上述S401中关于“终端设备可根据所述第一指示信息,确定第一集合”的介绍,在此不再说明。
在一示例中,网络设备可发送第一指示信息,即终端设备在接收到所述第一指示信息时,根据所述第一指示信息,确定所述第一集合,否则,将协议规定的K1集合,作为所述第一集合。
S502:所述终端设备在接收到来自网络设备的第一指示信息时,根据所述第一指示信息,确定所述第一集合所对应时间单元的长度;
在本申请实施例中,关于根据第一指示信息,确定所述第一集合所对应时间单元的长度的具体实现,可参见上述S302中的记载,在此不再说明。
在本申请实施例中,在终端设备未接收到来自终端设备的所述第一指示信息时,可将协议规定的K1集合,作为所述第一集合。
S503:所述网络设备发送PDSCH。
S504:所述终端设备接收PDSCH。
S505:所述终端设备根据所述第一集合和所述第一集合所对应时间单元的长度,发送PDSCH的应答信息。
S506:所述网络设备接收所述PDSCH的应答信息。
在本申请实施例中,虽然仅为终端设备配置一个第一集合,但是可以根据DCI的相关信息或者高层信令,为第一集合确定不同的时间单元长度,使得满足不同业务不同的时延需求。
需要说明的是,针对图3至图5所示的流程图,并不限定各个步骤之间的先后执行顺序,比如,对于S303可位于S301和S302的前面,也可位于S301和S302的后面。
基于上述构思,如图6所示,本申请实施例提供了一种通信装置600,该通信装置600可用于实现上述图3、图4或图5所示流程中终端设备的功能。通信装置600可应用于终端设备或终端设备内的芯片。通信装置600可包括处理模块601和接收模块602。可选的,还可包括发送模块603以及存储模块604。
在本申请的一示例中,处理模块601,可用于在多个集合中,确定第一集合,所述多个集合中的任两个集合所对应时间单元的长度不同,所述多个集合中的每个集合中包括一个或多个K1值,所述K1值指所述终端设备从接收到物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的时间单元数量,所述K1为非负整数;处理模块601,还用于确定所述第一集合所对应时间单元的长度;接收模块602,可用于接收来自网络设备的物理下行数据信道;处理模块601,还用于根据所述第一集合和所述第一集合所对应时间单元的长度,向所述网络设备发送所述接收模块接收的所述物理下行数据信道的应答信息。
在本申请实施例中,可选的,接收模块602,可用于接收来自网络设备的第一指示信息;处理模块601,可用于根据所述接收模块接收的第一指示信息,在所述多个集合中确定所述第一集合。
在本申请实施例中,处理模块601可具体用于,在所述第一指示信息为下行控制信息DCI时,根据所述DCI中的比特域,在所述多个集合中确定所述第一集合;或者,在所述第一指示信息为下行控制信息DCI时,根据所述DCI的格式,在所述多个集合中确定所述第一集合;或者,在所述第一指示信息为下行控制信息DCI时,根据所述DCI所指示的物理下行数据信道的映射方式,在所述多个集合中确定所述第一集合;或者,在所述第一指示信息为下行控制信息DCI时,根据所述DCI所指示的物理下行数据信道所占用时域资源的符号个数,在所述多个集合中确定所述第一集合。
在本申请实施例中,接收模块602,可用于接收来自网络设备的第二指示信息;处理模块601,可用于根据所述接收模块接收的所述第二指示信息,确定所述第一集合所对应时间单元的长度。
在本申请实施例中,处理模块601可具体用于:在所述第二指示信息为所述DCI时,根据所述DCI中的比特域,确定所述第一集合所对应时间单元的长度;或者,在所述第二指示信息为所述DCI时,根据所述DCI的格式,确定所述第一集合所对应时间单元的长度;或者,在所述第二指示信息为所述DCI时,根据所述DCI所指示的物理下行数据信道的映射方式,确定所述第一集合所对应时间单元的长度;或者,在所述第二指示信息为所述DCI时,所述DCI所指示的物理下行数据信道所占用时域资源的符号个数,确定所述第一集合 所对应时间单元的长度。
可选的,在本申请实施例中,处理模块601可具体用于:根据第一集合与时间单元长度的对应关系,确定所述第一集合所对应时间单元的长度。
在本申请实施例中,接收模块602,还用于接收到来自所述网络设备的第三指示信息;处理模块601可具体用于,在所述接收模块接收来自所述网络设备的第三指示信息时,根据所述第三指示信息,在所述多个集合中确定所述第一集合。
在本申请实施例中,所述处理模块601还可用于,在未接收到来自所述网络设备的第三指示信息时,将协议规定的K1集合,作为所述第一集合。所述接收模块602还用于接收到来自所述网络设备的第四指示信息;所述处理模块601还可用于,在所述接收模块接收来自所述网络设备的第四指示信息时,根据所述第四指示信息,确定所述第一集合所对应时间单元的长度。所述处理模块601还用于:在未接收到来自所述网络设备的第四指示信息时,将协议规定的K1集合时间长度,作为所述第一集合所对应时间单元的长度。
在本申请的另一示例中,处理模块601,可用于确定第一集合,所述第一集合中包括一个或多个K1值,所述K1值指所述终端设备从接收到物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的时间单元数量,所述K1为非负整数,如果所述多个集合中的任一集合中包括多个K1值,所述任一集合中的最小K1值大于或等于第一阈值,如果所述多个集合中的任一集合中包括一个K1值,所述K1值大或等于所述第一阈值,所述第一阈值的大小与所述任一集合所对应时间单元的长度相关;处理模块601,还用于确定所述第一集合所对应时间单元的长度;接收模块602,可用于接收来自网络设备的物理下行数据信道;处理模块601,还用于根据所述第一集合和所述第一集合所对应时间单元的长度,向所述网络设备发送所述接收模块接收所述物理下行数据信道的应答信息。
在本申请实施例中,可选的,所述第一阈值的大小与所述任一集合所对应时间单元的长度相关,具体为:
所述第一阈值为
Figure PCTCN2019107062-appb-000009
所述N1表示所述终端设备从接收物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的符号数量,所述M表示所述任一集合所对应时间单元的长度,所述
Figure PCTCN2019107062-appb-000010
表示向上取整的操作。
在本申请实施例中,接收模块602,可用于接收来自终端设备的第一指示信息;处理模块601,可用于根据所述接收模块接收的所述第一指示信息,确定所述第一集合。
在本申请实施例中,接收模块602还可用于接收来自所述网络设备的第二指示信息;处理模块601还可用于根据所述接收模块接收的所述第二指示信息,确定所述第一集合所对应时间单元的长度。
在本申请实施例中,处理模块601还可具体用于:所述第二指示信息为DCI,根据所述DCI中的比特域,确定所述第一集合所对应时间单元的长度;或者,所述第二指示信息为DCI,根据所述DCI的格式,确定所述第一集合所对应时间单元的长度;或者,所述第二指示信息为DCI,根据所述DCI所指示的物理下行数据信道的映射方式,确定所述第一集合所对应时间单元的长度;或者,所述第二指示信息为DCI,根据所述DCI所指示的物理下行数据信道所占用时域资源的符号个数,确定所述第一集合所对应时间单元的长度。
在本申请实施例中,处理模块601可具体用于根据第一集合与时间单元长度的对应关系,确定所述第一集合所对应时间单元的长度。
在本申请实施例中,接收模块602,还可用于接收到来自所述网络设备的第三指示信息;处理模块601,还可用于根据所述接收模块接收的第三指示信息,确定所述第一集合。
在本申请实施例中,所述处理模块601还可用于在未接收到来自所述网络设备的第三指示信息时,将协议规定的K1集合,作为所述第一集合。所述接收模块602还可用于接收到来自所述网络设备的第四指示信息;处理模块601还可用于根据所述接收模块接收的所述第四指示信息,确定所述第一集合所对应时间单元的长度。处理模块601还可用于在未接收到来自所述网络设备的第四指示信息时,将协议规定的K1集合时间长度,作为所述第一集合所对应时间单元的长度。
在本申请实施例中,关于处理模块601和接收模块602的介绍,可具体参见上述图3至图5所示流程的介绍,在此不再详细说明。
需要特别说明的是,本通信装置中处理模块对应的实体装置可以为处理器,接收模块对应的实体设备可以接收器,进一步,发送模块对应的实体装置为发射器以及存储模块对应的实体设备为存储器。
基于上述构思,如图7所示,本申请实施例提供了一种通信装置700,该通信装置700可用于实现上述图3、图4或图5所示流程中网络设备的功能。通信装置700可应用于网络设备或网络设备内的芯片。通信装置700可包括存储模块701、发送模块702和接收模块703。可选的,通信装置700还可包括处理模块704。
在本申请的一示例中,存储模块701,可用于存储程序指令;发送模块702,可用于向终端设备发送物理下行数据信道;接收模块703,可用于接收所述终端设备发送的所述物理下行数据信道的应答信息,所述物理下行数据信道的应答信息是根据第一集合和所述第一集合所对应时间单元的长度所确定的,所述第一集合为多个集合中的一个集合,所述多个集合中的任两个集合所对应时间单元的长度不同,所述多个集合中的每个集合中包括一个或多个K1值,所述K1值指所述终端设备从接收物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的时间单元数量,所述K1为非负整数。
所述发送模块还用于向终端设备发送第一指示信息,所述第一指示信息用于在所述多个集合中指示所述第一集合。
在本申请实施例中,所述第一指示信息为下行控制信息DCI,所述DCI的比特域用于在所述多个集合中确定第一集合,或者,所述DCI的格式用于在所述多个集合中确定第一集合,或者,所述DCI所指示物理下行数据信道的映射方式用于在所述多个集合中确定第一集合,或者,所述DCI所指示物理下行数据信道所占用时域资源的符号个数用于在所述多个集合中确定所述第一集合。
在本申请实施例中,所述发送模块702可用于向终端设备发送第三指示信息,所述第三指示信息用于指示所述第一集合所对应时间单元的长度。
在本申请实施例中,所述第三指示信息为高层信令,或,所述第三指示信息为DCI,所述DCI中的比特域用于确定所述第一集合所对应时间单元的长度,或,所述DCI的格式用于确定所述第一集合所对应时间单元的长度,或,所述DCI所指示的物理下行数据信道的映射方式用于确定所述第一集合所对应时间单元的长度,或,所述DCI所指示的物理下行数据信道所占用时域资源的符号个数用于确定所述第一集合所对应时间单元的长度。
在本申请实施例中,所述多个集合中的任一集合中包括多个K1值,所述任一集合中的最小K1值大于或等于第一阈值,所述第一阈值的大小与所述任一集合所对应时间单元 的长度相关;或者所述多个集合中的任一集合中包括一个K1值,所述K1值大或等于所述第一阈值。所述第一阈值的大小与所述任一集合所对应时间单元的长度相关,具体为:所述第一阈值为
Figure PCTCN2019107062-appb-000011
所述N1表示所述终端设备从接收物理下行数据信道至最早反馈所述物理下行数据信道应答信息之间间隔的符号数量,所述M表示所述任一集合所对应时间单元的长度,所述
Figure PCTCN2019107062-appb-000012
表示向上取整的操作。
在本申请的另一示例中,存储模块701,可用于存储程序指令;发送模块702,可用于向终端设备发送物理下行数据信道;接收模块703,可用于接收来自所述终端设备的所述物理下行数据信道的应答信息,所述物理下行数据信道的应答信息是根据第一集合和第一集合所对应时间单元的长度所确定,所述第一集合为多个集合中的一集合,所述第一集合中包括一个或多个K1值,所述K1值指所述终端设备从接收到物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的时间单元数量,所述K1为非负整数,如果所述多个集合中的任一集合中包括多个K1值,所述任一集合中的最小K1值大于或等于第一阈值,如果所述多个集合中的任一集合中包括一个K1值,所述K1值大或等于所述第一阈值,所述第一阈值的大小与所述任一集合所对应时间单元的长度相关。
在本申请实施例中,所述第一阈值的大小与所述任一集合所对应时间单元的长度相关,具体为:
所述第一阈值为
Figure PCTCN2019107062-appb-000013
所述N1表示所述终端设备从接收物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的符号数量,所述M表示所述任一集合所对应时间单元的长度,所述
Figure PCTCN2019107062-appb-000014
表示向上取整的操作。
可选的,在本申请实施例中,所述发送模块702还可用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一集合。
可选的,在本申请实施例中,所述发送模块702还可用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一集合所对应时间单元的长度。
在本申请实施例中,所述第二指示信息为高层信令,或,所述第二指示信息为下行控制信息DCI,所述DCI中的比特域用于确定所述第一集合所对应时间单元的长度,或,所述DCI的格式用于确定所述第一集合所对应时间单元的长度,或,所述DCI所指示的物理下行数据信道的映射方式用于确定所述第一集合所对应时间单元的长度,或,所述DCI所指示的物理下行数据信道所占用时域资源的符号个数用于确定所述第一集合所对应时间单元的长度。
在本申请实施例中,关于发送模块702和接收模块703的具体介绍,可参见上述图3至图5的介绍,在此不再说明。
本通信装置中处理模块对应的实体装置可以为处理器,接收模块对应的实体设备可以接收器,发送模块对应的实体装置为发射器以及存储模块对应的实体设备为存储器。
图8示出了上述实施例中所涉及的终端设备的一种可能的设计结构的简化示意图。所述终端设备包括发射器801,接收器802,控制器/处理器803,存储器804和调制解调处理器805。
所述发射器801调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。所述接收器802调节(例如,滤波、放大、 下变频以及数字化等)从天线接收的信号并提供输入采样。在所述调制解调处理器805中,编码器806接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器807进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器809处理(例如,解调)该输入采样并提供符号估计。解码器808处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信令消息。编码器806、调制器807、解调器809和解码器808可以由合成的调制解调处理器805来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
所述控制器/处理器803对终端设备的动作进行控制管理,用于执行上述实施例中由终端设备进行的处理。例如在多个集合中,确定第一集合,和/或本发明所描述的技术的其他过程。作为示例,所述控制器/处理器803用于支持终端设备执行图3中的步骤S301和S302,图4中的步骤S401和S402,图5中的步骤S501和S502。
所述存储器804用于存储用于所述终端设备800涉及的程序代码和数据。
需要说明的是,本申请实施例提供的所述终端设备800用于实现图3至图5所示的通信方法,或者图3至图5所示的通信方法中终端设备的功能,此处仅对所述终端设备800中各个模块之间的连接关系进行了描述,所述终端设备800处理通信方法的具体方案以及具体执行的动作参见上述方法实施例中的相关描述,此处不再赘述。
图9示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。所述基站900包括:发射器/接收器901,控制器/处理器902以及存储器903。
所述发射器/接收器901用于支持网络设备与上述实施例中所述的终端设备之间收发信息,以及支持所述网络设备与其他终端设备之间进行无线电通信。所述控制器/处理器902执行各种用于与终端设备通信的功能。在上行链路,来自所述终端设备的上行链路信号经由天线接收,由接收器901进行调解,并进一步由所述控制器/处理器902进行处理来恢复终端设备所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由所述控制器/处理器902进行处理,并由发射器901进行调解来产生下行链路信号,并经由天线发射给终端设备。所述控制器/处理器902还执行图3至图5中涉及网络设备的处理过程和/或用于本申请所描述的技术的其他过程。
所述存储器903用于存储网络设备的程序代码和数据。所述网络设备900还可以包括通信单元904,所述通信单元904用于支持网络设备与其他网络实体进行通信。
需要说明的是,本申请实施例提供的所述网络设备900用于实现图3至图5所示的通信方法中网络设备的功能,此处仅对所述网络设备900中各个模块之间的连接关系进行了描述,所述网络设备900处理通信方法的具体方案以及具体执行的动作参见上述方法实施例中的相关描述,此处不再赘述。根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和终端设备。
基于以上实施例,本申请实施例还提供了一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述任意一个或多个实施例提供的方法。该计算机存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种芯片,该芯片包括处理器,用于实现上述任意一个或多个实施例所涉及的功能,例如获取或处理上述方法中所涉及的信息或者消 息。可选地,该芯片还包括存储器,该存储器,用于存储处理器所执行的程序指令和数据。该芯片,也可以包含芯片和其他分立器件。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器,也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。

Claims (35)

  1. 一种通信方法,其特征在于,包括:
    终端设备在多个集合中,确定第一集合,所述多个集合中的任两个集合所对应时间单元的长度不同,所述多个集合中的每个集合中包括一个或多个K1值,所述K1值指所述终端设备从接收到物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的时间单元数量,所述K1为非负整数;
    所述终端设备确定所述第一集合所对应时间单元的长度;
    所述终端设备接收来自网络设备的物理下行数据信道;
    所述终端设备根据所述第一集合和所述第一集合所对应时间单元的长度,向所述网络设备发送所述物理下行数据信道的应答信息。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备在多个集合中,确定第一集合,包括:
    所述终端设备接收来自网络设备的第一指示信息;
    所述终端设备根据所述第一指示信息,在所述多个集合中确定所述第一集合。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息为下行控制信息DCI,所述终端设备根据所述第一指示信息,在所述多个集合中确定所述第一集合,包括:
    所述终端设备根据所述DCI中的比特域,在所述多个集合中确定所述第一集合;或者,
    所述终端设备根据所述DCI的格式,在所述多个集合中确定所述第一集合;或者,
    所述终端设备根据所述DCI所指示的物理下行数据信道的映射方式,在所述多个集合中确定所述第一集合;或者,
    所述终端设备根据所述DCI所指示的物理下行数据信道所占用时域资源的符号个数,在所述多个集合中确定所述第一集合。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述终端设备确定所述第一集合所对应时间单元的长度,包括:
    所述终端设备接收来自网络设备的第二指示信息;
    所述终端设备根据所述第二指示信息,确定所述第一集合所对应时间单元的长度。
  5. 根据权利要求4所述的方法,其特征在于,所述第二指示信息为DCI;
    所述终端设备根据所述第二指示信息,确定所述第一集合所对应时间单元的长度,包括:
    所述终端设备根据所述DCI中的比特域,确定所述第一集合所对应时间单元的长度;或者,
    所述终端设备根据所述DCI的格式,确定所述第一集合所对应时间单元的长度;或者,
    所述终端设备根据所述DCI所指示的物理下行数据信道的映射方式,确定所述第一集合所对应时间单元的长度;或者,
    所述终端设备根据所述DCI所指示的物理下行数据信道所占用时域资源的符号个数,确定所述第一集合所对应时间单元的长度。
  6. 根据权利要求1至3任一项所述的方法,其特征在于,所述终端设备确定所述第一集合所对应时间单元的长度,包括:
    所述终端设备根据第一集合与时间单元长度的对应关系,确定所述第一集合所对应时间单元的长度。
  7. 根据权利要求1所述的方法,其特征在于,所述终端设备在多个集合中,确定第一集合,包括:
    所述终端设备在接收到来自所述网络设备的第三指示信息时,根据所述第三指示信息,在所述多个集合中确定所述第一集合。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述终端设备在未接收到来自所述网络设备的第三指示信息时,将协议规定的K1集合,作为所述第一集合。
  9. 根据权利要求1、7、8任一项所述的方法,其特征在于,所述终端设备确定所述第一集合所对应时间单元的长度,包括:
    所述终端设备在接收到来自所述网络设备的第四指示信息时,根据所述第四指示信息,确定所述第一集合所对应时间单元的长度。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述终端设备在未接收到来自所述网络设备的第四指示信息时,将协议规定的K1集合时间长度,作为所述第一集合所对应时间单元的长度。
  11. 一种通信方法,其特征在于,包括:
    网络设备向终端设备发送物理下行数据信道;
    所述网络设备接收所述终端设备发送的所述物理下行数据信道的应答信息,所述物理下行数据信道的应答信息是根据第一集合和所述第一集合所对应时间单元的长度所确定的,所述第一集合为多个集合中的一个集合,所述多个集合中的任两个集合所对应时间单元的长度不同,所述多个集合中的每个集合中包括一个或多个K1值,所述K1值指所述终端设备从接收物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的时间单元数量,所述K1为非负整数。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于在所述多个集合中指示所述第一集合。
  13. 根据权利要求12所述的方法,其特征在于,所述第一指示信息为DCI,所述DCI的比特域用于在所述多个集合中确定第一集合,或者,所述DCI的格式用于在所述多个集合中确定第一集合,或者,所述DCI所指示物理下行数据信道的映射方式用于在所述多个集合中确定第一集合,或者,所述DCI所指示物理下行数据信道所占用时域资源的符号个数用于在所述多个集合中确定所述第一集合。
  14. 根据权利要求11至13任一项权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备向终端设备发送第二指示信息,所述第二指示信息用于指示所述第一集合所对应时间单元的长度。
  15. 根据权利要求14所述的方法,其特征在于,所述第二指示信息为DCI,所述DCI中的比特域用于确定所述第一集合所对应时间单元的长度,或,所述DCI的格式用于确定所述第一集合所对应时间单元的长度,或,所述DCI所指示的物理下行数据信道的映射方式用于确定所述第一集合所对应时间单元的长度,或,所述DCI所指示的物理下行数据信道所占用时域资源的符号个数用于确定所述第一集合所对应时间单元的长度。
  16. 一种通信装置,其特征在于,包括:
    处理模块,用于在多个集合中,确定第一集合,所述多个集合中的任两个集合所对应时间单元的长度不同,所述多个集合中的每个集合中包括一个或多个K1值,所述K1值指所述终端设备从接收到物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的时间单元数量,所述K1为非负整数;
    所述处理模块,用于确定所述第一集合所对应时间单元的长度;
    接收模块,用于接收来自网络设备的物理下行数据信道;
    所述处理模块,用于根据所述第一集合和所述第一集合所对应时间单元的长度,向所述网络设备发送所述接收模块接收的所述物理下行数据信道的应答信息。
  17. 根据权利要求16所述的装置,其特征在于,所述接收模块,用于接收来自网络设备的第一指示信息;
    所述处理模块,用于根据所述接收模块接收的第一指示信息,在所述多个集合中确定所述第一集合。
  18. 根据权利要求17所述的装置,其特征在于,所述处理模块具体用于,在所述第一指示信息为下行控制信息DCI时,根据所述DCI中的比特域,在所述多个集合中确定所述第一集合;或者,
    在所述第一指示信息为下行控制信息DCI时,根据所述DCI的格式,在所述多个集合中确定所述第一集合;或者,
    在所述第一指示信息为下行控制信息DCI时,根据所述DCI所指示的物理下行数据信道的映射方式,在所述多个集合中确定所述第一集合;或者,
    在所述第一指示信息为下行控制信息DCI时,根据所述DCI所指示的物理下行数据信道所占用时域资源的符号个数,在所述多个集合中确定所述第一集合。
  19. 根据权利要求16至18任一项权利要求所述的装置,其特征在于,
    所述接收模块,用于接收来自网络设备的第二指示信息;
    所述处理模块,用于根据所述接收模块接收的所述第二指示信息,确定所述第一集合所对应时间单元的长度。
  20. 根据权利要求19所述的装置,其特征在于,所述处理模块具体用于:
    在所述第二指示信息为所述DCI时,根据所述DCI中的比特域,确定所述第一集合所对应时间单元的长度;或者,
    在所述第二指示信息为所述DCI时,根据所述DCI的格式,确定所述第一集合所对应时间单元的长度;或者,
    在所述第二指示信息为所述DCI时,根据所述DCI所指示的物理下行数据信道的映射方式,确定所述第一集合所对应时间单元的长度;或者,
    在所述第二指示信息为所述DCI时,所述DCI所指示的物理下行数据信道所占用时域资源的符号个数,确定所述第一集合所对应时间单元的长度。
  21. 根据权利要求16至18任一项权利要求所述的装置,其特征在于,所述处理模块具体用于:
    根据第一集合与时间单元长度的对应关系,确定所述第一集合所对应时间单元的长度。
  22. 根据权利要求16所述的装置,其特征在于,
    所述接收模块,还用于接收到来自所述网络设备的第三指示信息;
    所述处理模块,具体用于在所述接收模块接收来自所述网络设备的第三指示信息时, 根据所述第三指示信息,在所述多个集合中确定所述第一集合。
  23. 根据权利要求22所述的装置,其特征在于,所述处理模块还用于,在未接收到来自所述网络设备的第三指示信息时,将协议规定的K1集合,作为所述第一集合。
  24. 根据权利要求16、22、23任一项权利要求所述的装置,其特征在于,
    所述接收模块,还用于接收到来自所述网络设备的第四指示信息;
    所述处理模块,还用于在所述接收模块接收来自所述网络设备的第四指示信息时,根据所述第四指示信息,确定所述第一集合所对应时间单元的长度。
  25. 根据权利要求24所述的装置,其特征在于,所述处理模块,还用于在未接收到来自所述网络设备的第四指示信息时,将协议规定的K1集合时间长度,作为所述第一集合所对应时间单元的长度。
  26. 一种通信装置,其特征在于,包括存储模块、发送模块和接收模块,其中:
    所述存储模块,用于存储程序指令;
    所述发送模块,用于向终端设备发送物理下行数据信道;
    所述接收模块,用于接收所述终端设备发送的所述物理下行数据信道的应答信息,所述物理下行数据信道的应答信息是根据第一集合和所述第一集合所对应时间单元的长度所确定的,所述第一集合为多个集合中的一个集合,所述多个集合中的任两个集合所对应时间单元的长度不同,所述多个集合中的每个集合中包括一个或多个K1值,所述K1值指所述终端设备从接收物理下行数据信道至反馈所述物理下行数据信道的应答信息之间间隔的时间单元数量,所述K1为非负整数。
  27. 根据权利要求26所述的装置,其特征在于,所述发送模块还用于向所述终端设备发送第一指示信息,所述第一指示信息用于在所述多个集合中指示所述第一集合。
  28. 根据权利要求27所述的装置,其特征在于,所述第一指示信息为下行控制信息DCI,所述DCI的比特域用于在所述多个集合中确定第一集合,或者,所述DCI的格式用于在所述多个集合中确定第一集合,或者,所述DCI所指示物理下行数据信道的映射方式用于在所述多个集合中确定第一集合,或者,所述DCI所指示物理下行数据信道所占用时域资源的符号个数用于在所述多个集合中确定所述第一集合。
  29. 根据权利要求26至28任一项所述的装置,其特征在于,所述发送模块还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一集合所对应时间单元的长度。
  30. 根据权利要求29所述的装置,其特征在于,所述第二指示信息为DCI,所述DCI中的比特域用于确定所述第一集合所对应时间单元的长度,或,所述DCI的格式用于确定所述第一集合所对应时间单元的长度,或,所述DCI所指示的物理下行数据信道的映射方式用于确定所述第一集合所对应时间单元的长度,或,所述DCI所指示的物理下行数据信道所占用时域资源的符号个数用于确定所述第一集合所对应时间单元的长度。
  31. 根据权利要求1至10任一项权利要求所述的方法、权利要求11至15任一项权利要求所述的方法、权利要求16至25任一项权利要求所述装置或者权利要求26至30任一权利要求所述的装置,其特征在于,所述多个集合中的任一集合中包括多个K1值,所述任一集合中的最小K1值大于或等于第一阈值,所述第一阈值的大小与所述任一集合所对应时间单元的长度相关;或者所述多个集合中的任一集合中包括一个K1值,所述K1值大或等于所述第一阈值。
  32. 根据权利要求31所述的方法或者权利要求31所述的装置,其特征在于,所述第一阈值的大小与所述任一集合所对应时间单元的长度相关,具体为:
    所述第一阈值为
    Figure PCTCN2019107062-appb-100001
    所述N1表示所述终端设备从接收物理下行数据信道至最早反馈所述物理下行数据信道应答信息之间间隔的符号数量,所述M表示所述任一集合所对应时间单元的长度,所述
    Figure PCTCN2019107062-appb-100002
    表示向上取整的操作。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1至10任一项权利要求所述的方法。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求11至15任一项权利要求所述的方法。
  35. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至15中任一项所述的方法。
PCT/CN2019/107062 2018-09-21 2019-09-20 一种通信方法及装置 WO2020057649A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811110587.6 2018-09-21
CN201811110587.6A CN110943799B (zh) 2018-09-21 2018-09-21 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2020057649A1 true WO2020057649A1 (zh) 2020-03-26

Family

ID=69888313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107062 WO2020057649A1 (zh) 2018-09-21 2019-09-20 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN110943799B (zh)
WO (1) WO2020057649A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739374A (zh) * 2011-04-12 2012-10-17 中兴通讯股份有限公司 一种载波聚合下确认信息的反馈方法、用户设备和系统
CN103856301A (zh) * 2014-02-21 2014-06-11 重庆邮电大学 一种td-lte-a系统中ue端下行harq信息反馈实现方法
CN103973397A (zh) * 2013-01-29 2014-08-06 中兴通讯股份有限公司 Ack/nack信息的发送及接收方法、基站及终端
US20170238312A1 (en) * 2016-02-16 2017-08-17 Qualcomm Incorporated Downlink operations with shortened transmission time intervals
US20170289899A1 (en) * 2016-04-04 2017-10-05 Lg Electronics Inc. Method and user equipment for receiving downlink control channel, and method and base station for transmitting downlink control channel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084378A1 (en) * 2010-12-20 2012-06-28 Nokia Siemens Networks Oy Channelization code sharing between multiple users
US9839049B2 (en) * 2014-02-24 2017-12-05 Intel IP Corporation Scheduling for an unlicensed carrier type
CN111278134B (zh) * 2014-07-28 2023-09-26 Lg 电子株式会社 在无线通信系统中收发无线信号的方法及其设备
CN106559187B (zh) * 2015-09-25 2021-11-05 北京三星通信技术研究有限公司 Harq-ack信息的反馈和接收方法及设备
CN107231218B (zh) * 2016-03-25 2021-07-30 大唐移动通信设备有限公司 一种ack/nack反馈方法及相关设备
CN108289015B (zh) * 2017-01-09 2023-04-07 北京三星通信技术研究有限公司 发送harq-ack/nack的方法和设备及下行传输方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739374A (zh) * 2011-04-12 2012-10-17 中兴通讯股份有限公司 一种载波聚合下确认信息的反馈方法、用户设备和系统
CN103973397A (zh) * 2013-01-29 2014-08-06 中兴通讯股份有限公司 Ack/nack信息的发送及接收方法、基站及终端
CN103856301A (zh) * 2014-02-21 2014-06-11 重庆邮电大学 一种td-lte-a系统中ue端下行harq信息反馈实现方法
US20170238312A1 (en) * 2016-02-16 2017-08-17 Qualcomm Incorporated Downlink operations with shortened transmission time intervals
US20170289899A1 (en) * 2016-04-04 2017-10-05 Lg Electronics Inc. Method and user equipment for receiving downlink control channel, and method and base station for transmitting downlink control channel

Also Published As

Publication number Publication date
CN110943799A (zh) 2020-03-31
CN110943799B (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
EP3340507B1 (en) Method for transmitting data, base station and terminal equipment
WO2020143524A1 (zh) 传输下行信道的方法和装置
WO2020143709A1 (zh) 一种信息处理方法、终端设备及网络设备
EP3703402A1 (en) System and method of air interface capability exchange
WO2018010102A1 (zh) 传输数据的方法、终端设备和网络设备
WO2018010103A1 (zh) 传输数据的方法和终端设备
WO2020253770A1 (zh) 由用户设备执行的方法以及用户设备
EP3678429B1 (en) Communication method and device
WO2020216130A1 (zh) 一种通信方法及装置
WO2020216314A1 (zh) 通信方法和通信装置
US11902943B2 (en) Communication method and communications apparatus
WO2019029579A1 (zh) 无线通信的方法、芯片和系统
WO2021031906A1 (zh) 配置时域资源的方法和装置
EP3761701B1 (en) Resource determination method, indication method, and device
WO2021204196A1 (zh) 控制信息传输方法、装置及系统
US20220368505A1 (en) Data feedback method and apparatus
WO2018228553A1 (zh) 数据传输的方法、网络设备和终端设备
WO2018127094A1 (zh) 数据传输方法及装置
WO2020057649A1 (zh) 一种通信方法及装置
WO2021031855A1 (zh) 一种通信方法及装置
WO2019001539A1 (zh) 无线通信方法、装置及系统
TW201832503A (zh) 通信方法、終端設備和網絡設備
WO2021000954A1 (zh) 一种数据传输方法及通信装置
US11252702B2 (en) Uplink control information sending method, uplink control information receiving method, and device
WO2021035450A1 (zh) 一种数据传输方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861649

Country of ref document: EP

Kind code of ref document: A1