WO2018010102A1 - 传输数据的方法、终端设备和网络设备 - Google Patents

传输数据的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2018010102A1
WO2018010102A1 PCT/CN2016/089832 CN2016089832W WO2018010102A1 WO 2018010102 A1 WO2018010102 A1 WO 2018010102A1 CN 2016089832 W CN2016089832 W CN 2016089832W WO 2018010102 A1 WO2018010102 A1 WO 2018010102A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter set
basic parameter
data
dci
terminal device
Prior art date
Application number
PCT/CN2016/089832
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to EP16908431.6A priority Critical patent/EP3442292B1/en
Priority to PCT/CN2016/089832 priority patent/WO2018010102A1/zh
Priority to US16/098,378 priority patent/US10856283B2/en
Priority to KR1020187034358A priority patent/KR20190028372A/ko
Priority to CN201680085496.4A priority patent/CN109156018B/zh
Priority to EP21192617.5A priority patent/EP3934356B1/en
Priority to CN202011050982.7A priority patent/CN112187410B/zh
Priority to JP2018562012A priority patent/JP6808758B2/ja
Priority to TW106121766A priority patent/TWI802543B/zh
Publication of WO2018010102A1 publication Critical patent/WO2018010102A1/zh
Priority to US17/067,331 priority patent/US11483820B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0075Transmission of coding parameters to receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Definitions

  • the present invention relates to the field of communications, and more particularly to a method of transmitting data, a terminal device, and a network device.
  • UE User Equipment
  • TDM Time Division Multiplex
  • FDM Frequency Division Multiplex
  • TTI Transmission Time Interval
  • different frequency domain resources may be allocated to data transmission using different basic parameter sets; or different TTIs may be used for data of different basic parameter sets. transmission. Therefore, how to schedule data transmission based on different basic parameter sets is an urgent problem to be solved.
  • the embodiment of the invention provides a method for transmitting data, a terminal device and a network device, which solves the problem of how to schedule data transmission based on different basic parameter sets.
  • a first aspect provides a method for transmitting data, including: determining, by a terminal device, a basic parameter set for transmitting the data; and detecting, by the terminal device, the network device, for scheduling, according to the basic parameter set, Downlink control information DCI of the data; the terminal device detects the data sent by the network device or sends the data to the network device according to the basic parameter set and the detected DCI.
  • the method according to the embodiment of the present invention uses different DCI formats for scheduling data transmission based on different basic parameter sets, thereby increasing the flexibility of control signaling design.
  • data transmission using different basic parameter sets can be scheduled through separate control channels and different DCI formats, further increasing the flexibility of control signaling design.
  • the terminal device can learn the DCI format used for blind detection DCI according to the basic parameter set, and reduce the complexity of detecting the control channel by the terminal device.
  • the terminal device determines a base parameter for transmitting the data.
  • Set including:
  • the terminal device determines the basic parameter set for transmitting the data from a predefined plurality of basic parameter sets.
  • the base parameter set includes at least one resource parameter for determining a time-frequency resource for transmitting the data.
  • the method further includes:
  • a basic parameter set for transmitting the data including:
  • the terminal device determines the basic parameter set for transmitting the data according to the configuration information.
  • the terminal device determines a basic parameter set for transmitting the data, including:
  • the terminal device detects a target signal or a target channel corresponding to the terminal device according to a predefined plurality of basic parameter sets
  • the terminal device determines that the basic parameter set corresponding to the target signal or the target channel is the basic parameter set for transmitting the data.
  • the terminal device detects, according to the basic parameter set, a DCI sent by the network device to schedule the data, including:
  • the terminal device detects, according to at least one parameter in the basic parameter set, the DCI sent by the network device to schedule the data.
  • the terminal device detects, according to the basic parameter set, a DCI sent by the network device to schedule the data, including:
  • the terminal device detects, according to the DCI format, the DCI sent by the network device for scheduling the data.
  • the method further includes:
  • the terminal device receives the indication information sent by the network device, where the indication information is used to indicate the corresponding relationship between the basic parameter set and the DCI format.
  • the corresponding relationship between the basic parameter set and the DCI format may be determined by the network device itself, or may be pre-agreed between the network device and the terminal device.
  • different DCI formats have different control information lengths, and/or different DCI formats include DCI format indicator bits indicating different information.
  • the different DCI formats correspond to different basic parameter sets, and the different DCI formats include the same control information domain, the same control information domain occupies bits in the different DCIs.
  • the numbers are different, and/or the same control information field is different in the content indicated in the different DCI format.
  • the length of the DCI refers to the total number of bits of control information included in the DCI
  • the content of the DCI refers to a control information field included in the DCI, and content indicated by each control information field.
  • different basic parameter sets correspond to different DCI formats
  • different DCI formats may pass at least one of the length of the DCI, the content of the control information in the DCI, the length of the control information field, and the content indicated by the control information field. distinguish. That is, the lengths of the DCIs corresponding to different DCI formats are different, and/or the contents of the control information in the DCI corresponding to different DCI formats are different, and/or for the same control information domain, DCI corresponding to different DCI formats.
  • the same control information field occupies different numbers of bits, and/or for the same control information field, the content indicated by the same control information field in the DCI corresponding to different DCI formats is different.
  • control information field includes at least one of the following:
  • control information field for indicating physical resource allocation a control information field for indicating acknowledgment/non-acknowledgment ACK/NACK feedback timing, a control information field for indicating frequency hopping configuration, and a control information field for indicating modulation coding mode MCS a control information field for indicating a subframe structure, and a control information field for indicating a demodulation reference signal DMRS configuration.
  • the control information field for indicating physical resource allocation may be, for example, an RB allocation information field for indicating a PRB occupied by the data transmission of the DCI scheduling; and a control information field for indicating an ACK/NACK feedback timing for indicating data. a timing relationship between the transmission and the corresponding ACK/NACK feedback, such as the number of subframe offsets between the subframe in which the data transmission is located and the subframe in which the corresponding ACK/NACK feedback is located; the control information field used to indicate the frequency hopping configuration, for example a control information field for indicating frequency domain frequency hopping; a control information field for indicating DMRS configuration, for example, a control information field for indicating a port used by the DMRS, a scrambling sequence, and the like; and a control for indicating a subframe structure Information domain example For indicating the total number of Orthogonal Frequency Division Multiplexing ("OFDM”) symbols in a subframe, or the number or location of guard intervals ("GP”) in a subframe
  • the basic parameter set includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, Fourier transform or inverse Fourier transform for generating an OFDM signal
  • the number of points the number of OFDM symbols in the transmission time interval TTI, the number of TTIs included in a specific time length, and the length of the signal prefix.
  • the subcarrier spacing refers to the frequency interval of adjacent subcarriers, for example, 15 kHz, 60 kHz, etc.; the number of subcarriers in a specific bandwidth is, for example, the number of subcarriers corresponding to each possible system bandwidth; the number of subcarriers included in the PRB is, for example, typical.
  • the number of OFDM symbols included in the TTI may be, for example, an integer multiple of 14; the number of TTIs included in a certain time unit may refer to the number of TTIs included in the length of 1 ms or 10 ms; the length of the signal prefix For example, the length of the cyclic prefix of the signal, or whether the cyclic prefix uses a regular CP or an extended CP.
  • a terminal device which can be used to perform the processes performed by the terminal device in the method for transmitting data in the foregoing first aspect and various implementation manners.
  • the terminal device includes: a determining module, configured to determine a basic parameter set for transmitting data; and a detecting module, configured to detect, according to the basic parameter set determined by the determining module, a network device, configured to schedule the data a downlink control information DCI, a transmission module, configured to detect, according to the basic parameter set determined by the determining module and the DCI detected by the detecting module, the data sent by the network device or sent to the network device Data.
  • a terminal device which can be used to perform the processes performed by the terminal device in the method for transmitting data in the foregoing first aspect and various implementation manners.
  • the terminal device includes: a processor, configured to determine a basic parameter set for transmitting data; and detecting, according to the basic parameter set determined by the determining module, downlink control information DCI sent by the network device for scheduling the data; And a transceiver, configured to detect the data sent by the network device or send the data to the network device according to the basic parameter set determined by the determining module and the DCI detected by the detecting module.
  • a fourth aspect provides a method for transmitting data, including: determining, by a network device, for transmitting a basic parameter set of the data; the network device sends downlink control information DCI for scheduling the data to the terminal device according to the basic parameter set; and the network device is configured according to the basic parameter set and the DCI, Transmitting the data to the terminal device or receiving the data sent by the terminal device.
  • data transmission using different basic parameter sets can be scheduled through separate control channels and different DCI formats, further increasing the flexibility of control signaling design.
  • the network device determines a basic parameter set for transmitting the data, including:
  • the network device determines the set of basic parameters for transmitting the data from a predefined plurality of base parameter sets.
  • the network device sends, according to the basic parameter set, a DCI for scheduling the data to the terminal device, including:
  • the network device sends the DCI for scheduling the data to the terminal device according to the DCI format.
  • the method further includes:
  • the network device sends indication information to the terminal device, where the indication information is used to indicate the correspondence.
  • the network device sends, according to the basic parameter set, a DCI for scheduling the data to the terminal device, including:
  • the network device sends the DCI for scheduling the data to the terminal device according to at least one parameter in the basic parameter set.
  • the method further includes:
  • the network device transmits configuration information to the terminal device, the configuration information including information for transmitting the basic parameter set of the data.
  • different DCI formats have different control information lengths, and/or Different DCI formats include DCI format indicator bits indicating different information.
  • the different DCI formats correspond to different basic parameter sets, and the different DCI formats include the same control information domain, the same control information domain occupies bits in the different DCIs.
  • the numbers are different, and/or the same control information field is different in the content indicated in the different DCI format.
  • control information field includes at least one of the following:
  • control information field for indicating physical resource allocation a control information field for indicating acknowledgment/non-acknowledgment ACK/NACK feedback timing, a control information field for indicating frequency hopping configuration, and a control information field for indicating modulation coding mode MCS a control information field for indicating a subframe structure, and a control information field for indicating a demodulation reference signal DMRS configuration.
  • the basic parameter set includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, Fourier transform or inverse Fourier transform for generating an OFDM signal
  • the number of points the number of OFDM symbols in the transmission time interval TTI, the number of TTIs included in a specific time length, and the length of the signal prefix.
  • a network device which can be used to perform various processes performed by a network device in a method for transmitting data in the foregoing fourth aspect and various implementation manners, including: determining a module, for determining a basic parameter set for transmitting data; a transmission module, configured to: send, according to the basic parameter set determined by the determining module, downlink control information DCI for scheduling the data to the terminal device; according to the basic parameter set and The DCI sends the data to the terminal device or receives the data sent by the terminal device.
  • a network device which can be used to perform various processes performed by a network device in a method for transmitting data in the foregoing fourth aspect and various implementation manners, including: a processor, configured to determine a basic parameter set for transmitting data; the transceiver, configured to send downlink control information DCI for scheduling the data to the terminal device according to the basic parameter set determined by the determining module; according to the basic parameter set and The DCI sends the data to the terminal device or receives the data sent by the terminal device.
  • a computer chip comprising: an input interface, an output interface, at least one processor, and a memory, wherein the processor is configured to execute code in the memory, when the code is executed, the processing.
  • a computer chip comprising: an input interface, an output interface, at least one processor, a memory, the processor is configured to execute code in the memory, and when the code is executed, the processing.
  • a ninth aspect a computer readable storage medium storing a program, the program causing a terminal device to perform the first aspect described above, and any of the various implementations thereof for The method of transferring data.
  • a computer readable storage medium in a tenth aspect, storing a program causing a network device to perform the fourth aspect described above, and any of the various implementations thereof for The method of transferring data.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 2 is a flow interaction diagram of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 3 is a flow interaction diagram of a method of transmitting data according to another embodiment of the present invention.
  • FIG. 4 is a flow interaction diagram of a method of transmitting data according to another embodiment of the present invention.
  • FIG. 5 is a flow diagram of a process for transmitting data according to another embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a network device according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram of a network device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the terminal device in the embodiment of the present invention may also be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and a user terminal.
  • UE User Equipment
  • terminal wireless communication device, user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SIP") phone, a Wireless Local Loop (WLL) station, or a personal digital assistant (Personal Digital Assistant, Referred to as "PDA”), a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, or a future evolved public land mobile communication network ( Terminal devices in the Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the network device in the embodiment of the present invention may be a device for communicating with a terminal device, where the network device may be a base station (Base Transceiver Station, or "BTS”) in GSM or CDMA, or may be a base station in a WCDMA system (
  • the NodeB (abbreviated as “NB”) may also be an evolved base station (Evolutional NodeB, hereinafter referred to as “eNB or eNodeB”) in the LTE system, or may be a cloud radio access network (CRAN) scenario.
  • BTS Base Transceiver Station
  • eNB evolved base station
  • CRAN cloud radio access network
  • the underlying wireless controller, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network.
  • the communication system in FIG. 1 may include a terminal device 10 and a network device 20.
  • the network device 20 is configured to provide communication services for the terminal device 10 and access the core network, and the terminal device 10 searches for synchronization signals, broadcast signals, and the like transmitted by the network device 20. And access to the network to communicate with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal device 10 and the network device 20.
  • the embodiments of the present invention can improve the flexibility of control signaling design by scheduling data transmission based on different basic parameter sets by using different DCI formats.
  • FIG. 2 shows a schematic flow chart of a method of data transmission according to an embodiment of the present invention.
  • the terminal device 10 and the network device 20 are shown in FIG.
  • the specific process of transmitting data includes:
  • the network device 20 determines a base parameter set for transmitting the data.
  • the network device 20 may determine, in a predefined plurality of basic parameter sets, a basic parameter set for transmitting the data, so that downlink control information (Downlink Control Information) sent to the terminal device 10 may be determined according to the basic parameter set. "DCI").
  • Downlink Control Information Downlink Control Information
  • the basic parameter set includes at least one resource parameter for determining a time-frequency resource for transmitting the data.
  • the basic parameter set may include at least one of the following parameters:
  • FFT Fast Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • the subcarrier spacing refers to the frequency interval of adjacent subcarriers, for example, 15 kHz, 60 kHz, etc.; the number of subcarriers in a specific bandwidth is, for example, the number of subcarriers corresponding to each possible system bandwidth; the number of subcarriers included in the PRB is, for example, typical.
  • the number of OFDM symbols included in the TTI may be, for example, an integer multiple of 14; the number of TTIs included in a certain time unit may refer to the number of TTIs included in the length of 1 ms or 10 ms; the length of the signal prefix For example, the length of the cyclic prefix of the signal, or whether the cyclic prefix uses a regular CP or an extended CP.
  • the network device 20 sends a DCI for scheduling the data to the terminal device 10 according to the basic parameter set.
  • a plurality of different basic parameter sets may be supported in the same carrier, and the different basic parameter sets may be multiplexed by TDM or FDM.
  • TDM Time Division Multiple Access
  • different frequency domain resources can be allocated to data transmission based on different basic parameter sets; or different TTIs can be used for data transmission based on different basic parameter sets.
  • Data transmission based on different basic parameter sets can be scheduled through separate control channels or common control channels.
  • the DCI for scheduling the data may be sent to the terminal device 10 according to the basic parameter set.
  • the network device 20 may schedule data based on different basic parameter sets through independent control channels, and may also schedule data based on different basic parameter sets in a common control channel, and may select appropriate channel pairs according to different requirements.
  • the data of the parameter set is scheduled, which is not limited here.
  • the network device 20 may send the DCI for scheduling the data to the terminal device 10 according to at least one parameter in the basic parameter set; or the network device 20 may be configured according to the basic parameter set, and the basic parameter set and the DCI format. Corresponding relationship, determining the DCI format of the DCI, and transmitting a DCI for scheduling the data to the terminal device 10 according to the DCI format.
  • the network device 20 may determine, according to at least one parameter in the basic parameter set, a physical resource of a DCI used to schedule the data, and then send the used to allocate the data to the terminal device 10 on the determined physical resource.
  • DCI used to allocate the data to the terminal device 10 on the determined physical resource.
  • the network device 20 may determine the number of subcarriers and the number of PRBs occupied by the control channel carrying the DCI based on the subcarrier spacing in the basic parameter set, thereby transmitting DCI to the terminal device 10 in the control channel on the corresponding subcarrier and the PRB.
  • the network device 20 may further determine the DCI format of the DCI for scheduling the data according to the determined basic parameter set and the corresponding relationship between the basic parameter set and the DCI format, and send the DCI format to the terminal device 10 according to the DCI format.
  • the DCI that schedules the data may be determined.
  • the correspondence between the basic parameter set and the DCI format may be as shown in Table 1.
  • the subcarrier spacing used for data transmission in the first frequency band is 15 kHz
  • the corresponding DCI format is DCI format 1 (DCI format 1)
  • the subcarrier spacing used for data transmission in the second frequency band is 30 kHz.
  • the corresponding DCI format is DCI format 2
  • the subcarrier spacing used for data transmission in the third frequency band is 60 kHz
  • the corresponding DCI format is DCI format 3
  • the sub-carrier used for data transmission in the fourth frequency band The carrier spacing is 120 kHz
  • the corresponding DCI format is DCI format 4.
  • the number of subcarriers corresponding to different subcarrier spacings is different for a fixed system bandwidth, and the number of corresponding physical resource blocks ("PRBs") is different.
  • the bits required for frequency domain resource allocation are performed.
  • the number is also different.
  • the number of bits in the frequency domain resource allocation field in the DCI format corresponding to different subcarrier spacings is different, and the total number of bits included in different DCI formats is also different. For example, if the number of bits in the frequency domain resource allocation field included in each DCI format is M, Mk, M-2k, and M-3k, the number of control information bits included in the four DCI formats are N, Nk, N-, respectively. 2k, N-3k.
  • the network device 20 may determine the DCI format of the DCI for scheduling the data according to the determined basic parameter set and the corresponding relationship between the basic parameter set and the DCI format, thereby transmitting the DCI to the terminal device 10 according to the DCI format. .
  • data transmission using different basic parameter sets can be scheduled through separate control channels and different DCI formats, further increasing the flexibility of control signaling design.
  • the corresponding relationship between the basic parameter set and the DCI format may be determined by the network device 20 itself, or may be pre-agreed between the network device 20 and the terminal device 10.
  • the terminal device 10 determines a basic set of parameters for performing the data transmission.
  • the terminal device 10 may determine, in a predefined plurality of basic parameter sets, a basic parameter set for performing the data transmission, so that the downlink control information sent by the network device 20 for scheduling the data may be detected according to the basic parameter set. DCI.
  • the terminal device 10 determines a basic parameter set for performing the data transmission, where the terminal device 10 may receive configuration information sent by the network device 20, where the configuration information includes the basic parameter set for performing the data transmission.
  • the information is executed 231 and 232; or the terminal device 10 determines the basic parameter set for performing the data transmission in the plurality of basic parameter sets by blindly checking a plurality of predefined basic parameter sets.
  • the method 230 of the data transmission may further include 231 and 232.
  • the network device 20 sends configuration information to the terminal device 10, where the configuration information includes The information of the underlying parameter set for the data transmission.
  • the network device 20 may send the configuration information to the terminal device 10 through high layer signaling or physical layer signaling.
  • the information of the basic information group may be sent to the terminal device 10, so that the terminal device may detect, according to the basic parameter set, the data used for scheduling the data. DCI.
  • the network device 20 may separately configure a basic parameter set for each of the frequency domain resource set or the time domain resource set. For example, the network device 20 divides the frequency domain resources into a plurality of frequency domain resource regions, and the configuration terminal device 10 uses different basic parameter sets in each of the frequency domain resource regions. Still alternatively, the network device 20 divides the time domain resource into a plurality of time domain resource regions, and the configuration terminal device 10 uses the respective basic parameter sets in each of the time domain resource regions. After receiving the configuration information, the terminal determines the basic parameter set used according to the frequency domain resource set or the time domain resource set where the physical resource is located.
  • the physical layer signaling herein may be another DCI other than the DCI that schedules data transmission on the physical resource.
  • the network device 20 may send configuration information to the terminal device 10, To inform the terminal device 10 that the subcarrier spacing used for the transmission is 15 kHz.
  • the terminal device 10 receives configuration information that is sent by the network device 20 and includes information of the basic parameter set.
  • the terminal device 10 may receive configuration information sent by the network device 20 through high layer signaling or physical layer signaling, thereby determining a basic parameter set used for performing the data transmission. After receiving the configuration information of the information including the basic parameter set sent by the network device 20, the terminal device 10 may detect the DCI for scheduling the data according to the basic parameter set.
  • the terminal device 10 determines a basic parameter set for performing the data transmission, and may also be a plurality of basic parameter sets predefined by the terminal device 10 through blind detection, and determining the basis for performing the data transmission in the plurality of basic parameter sets. Parameter set.
  • the terminal device 10 performs detection based on all possible basic parameter sets or a predefined basic parameter set, respectively, until a certain target physical signal or a target physical channel is successfully detected, thereby using the corresponding basic parameter set as the current physical.
  • the target physical signal herein may include a synchronization signal, a pilot signal, etc.
  • the target physical channel may include a broadcast channel, a control channel, and the like.
  • the terminal device 10 detects a DCI for scheduling the data according to the basic parameter set.
  • the terminal device 10 After determining the basic parameter set, the terminal device 10 detects the DCI for scheduling the data according to the basic parameter set.
  • the terminal device 10 may detect the DCI used to schedule the data according to the at least one parameter in the basic parameter set; or the terminal device 10 may determine, according to the basic parameter set, and the correspondence between the basic parameter set and the DCI format.
  • the DCI format of the DCI, and detecting the DCI for scheduling the data according to the DCI format may be determined, according to the basic parameter set, and the correspondence between the basic parameter set and the DCI format.
  • the terminal device 10 determines that there are multiple DCI formats, the terminal device 10 needs to separately perform DCI detection based on each DCI format until the DCI for scheduling the data is correctly detected based on a certain DCI format.
  • the terminal device 10 can learn the DCI format used for the blind detection DCI according to the basic parameter set, and reduces the complexity of detecting the control channel by the terminal device.
  • the terminal device 10 may determine, according to at least one parameter in the basic parameter set, a physical resource for detecting a DCI that schedules data transmission on the physical resource, and then detect, by using the determined physical resource, the network device 20 to send the physical resource.
  • a DCI that schedules data transfers on the physical resource.
  • the terminal device 10 may determine the number of subcarriers and the number of PRBs occupied by the control channel carrying the DCI based on the subcarrier spacing in the basic parameter set, thereby performing DCI detection on the control channel on the corresponding subcarrier and the PRB.
  • the terminal device 10 may further determine a DCI format for detecting the DCI according to the basic parameter set and a correspondence between the basic parameter set and the DCI format; and the terminal device 10 detects the DCI for scheduling the data according to the DCI format.
  • the terminal device 10 determines, according to Table 1, that the DCI format of the DCI used for performing the data transmission on the first frequency band is DCI format 1, and the terminal device 10 can detect the content sent by the network device 20 based on the DCI format 1
  • the DCI of the data transmission on the first frequency band is scheduled.
  • the terminal device 10 performs detection of data transmission on the first frequency band of the DCI scheduling according to the subcarrier spacing of the first frequency band and the control information carried in the detected DCI.
  • the terminal device 10 may determine the number of subcarriers and the number of PRBs on the first frequency band according to the subcarrier spacing, and the number of time domain sampling points corresponding to the OFDM symbol, and the number of OFDM symbols included in the TTI. Based on these parameters and the control information in the DCI, the detection of the data transmission of the DCI scheduling is performed.
  • the terminal can also detect DCI and data transmission on the second frequency band to the fourth frequency band based on the same method.
  • the terminal device 10 receives the basic parameter set used for data transmission on the indication subframe n sent by the network device 20 as the second basic parameter set, according to the basic parameters shown in Table 2.
  • the terminal device 10 detects, on the control channel of the subframe n, the DCI sent by the network device 20 for scheduling data transmission on the subframe n based on the DCI format 3 and the DCI format 4, assuming that the terminal device 10, based on the DCI format 4, correctly detecting the DCI for scheduling the data, the terminal device 10 performs the detection of the data transmission of the DCI scheduling according to the parameters in the second basic parameter set and the detected control information in the DCI.
  • the terminal device 10 may determine, according to the subcarrier spacing, the total number of subcarriers, and the channel prefix length in the second basic parameter set, combined with other control information in the DCI, to determine parameters for detecting data transmission of the DCI scheduling, thereby performing The DCI schedules the detection of data transmission.
  • the lengths of the control information corresponding to different DCI formats are different, and/or the information indicated by the DCI format indicator bits included in different DCI formats is different.
  • the different DCI formats correspond to different basic parameter sets, and the different DCI formats include the same control information domain, the same control information domain occupies different numbers of bits in the different DCI formats. And/or the same control information field is different in the content indicated in the different DCI format.
  • the length of the DCI refers to the total number of bits of control information included in the DCI
  • the content of the DCI refers to a control information field included in the DCI, and content indicated by each control information field.
  • different basic parameter sets correspond to different DCI formats
  • different DCI formats may pass at least one of a length of the DCI, a content of the control information in the DCI, a length of the control information field, and a content indicated by the control information field. distinguish. That is, the lengths of the DCIs corresponding to different DCI formats are different, and/or the contents of the control information in the DCI corresponding to different DCI formats are different, and/or for the same control information domain, DCI corresponding to different DCI formats.
  • the same control information field occupies different numbers of bits, and/or for the same control information field, the content indicated by the same control information field in the DCI corresponding to different DCI formats is different.
  • the length of the DCI corresponding to different DCI formats may be different, for example, the first basic parameter set
  • the corresponding DCI format is DCI format 1
  • the DCI format corresponding to the second basic parameter set is DCI format 2
  • the number of information bits included in DCI format 1 and format 2 is different
  • the control information in the DCI corresponding to different DCI formats is The content may be different.
  • the DCI format corresponding to the first basic parameter set is DCI format 1
  • the DCI format corresponding to the second basic parameter set is DCI format 2
  • DCI format 1 has one more control information domain than DCI format 2
  • In the control information field the number of bits occupied by the same control information field in the DCI corresponding to different DCI formats may be different.
  • the DCI format corresponding to the first basic parameter set is DCI format 1
  • the DCI format corresponding to the basic parameter set 2 is For DCI format 2
  • DCI format 1 and format 2 both contain control information fields for indicating resource block ("RB") allocation, but because the frequency domain resource regions corresponding to the two basic parameter sets are different, The number of bits in the control information field indicating the RB allocation is also different; for the same control information field, the same control in the DCI corresponding to different DCI formats
  • the DCI format corresponding to the first basic parameter set is DCI format 1
  • the DCI format corresponding to the second basic parameter set is DCI format 2
  • the DCI format corresponding to the third basic parameter set is DCI format 3
  • the DCI format corresponding to the fourth basic parameter set is DCI format 4
  • the four DCI formats all include a 2-bit control information field indicating ACK/NACK feedback timing for indicating data transmission and corresponding ACK/NACK.
  • the timing relationship between the four basic parameters indicated by the control information field is ⁇ 0, 1, 2, 3 ⁇ for the DCI format 1 corresponding to the first basic parameter set; and the DCI format corresponding to the second basic parameter set. 2.
  • the four possible timings indicated by the control information field are ⁇ 0, 2, 4, 6 ⁇ ; for the DCI format 3 corresponding to the third basic parameter set, the four possible timings indicated by the control information field are ⁇ 0 , 3, 6, 9 ⁇ ; for the DCI format 4 corresponding to the fourth basic parameter set, the four possible timings indicated by the control information field are ⁇ 0, 4, 8, 12 ⁇ ; different basic parameter sets correspond to different
  • the control information field in DCI refers to The content varies.
  • the DCI format corresponding to the first basic parameter set is DCI format 1 and DCI format 2
  • the DCI format corresponding to the second basic parameter set is DCI format 3 and DCI format 4.
  • the network device 20 determines that the basic parameter set used for data transmission on the subframe n is the second basic parameter set, and the terminal device 10 determines that the subframe is used for scheduling the subframe n according to the corresponding relationship between the second basic parameter set and the DCI format.
  • the DCI format used for this data transmission is DCI format 3 and DCI format 4.
  • the basic parameter set may include parameters such as a subcarrier spacing, a number of subcarriers under the current system bandwidth, and a signal prefix length.
  • the network device 20 can match the parameters of the first basic parameter set and the second basic parameter set The situation is pre-sent to the terminal device 10, and the terminal device 10 receives the parameter configuration of the basic parameter set. It is assumed that the four DCI formats include a control information field for indicating an Acknowledgement/Negative Acknowledgement ("ACK/NACK”) feedback timing, specifically indicating a data transmission subframe and an ACK/NACK feedback subframe. Subframe offset. Optionally, the number of bits occupied by the control information field in different DCI formats may be different.
  • ACK/NACK Acknowledgement/Negative Acknowledgement
  • DCI format 1 and DCI format 3 contain the same number of control information (assumed to be M), DCI format 2 and DCI format 4 The number of bits of control information contained is the same (assumed to be N).
  • different DCI formats corresponding to different parameter configuration groups may also include 2 bits of control information fields for indicating ACK/NACK feedback timing, but the 2 bits are used to indicate control information of ACK/NACK feedback timing.
  • the content indicated by the domain can be different, as shown in Table 3.
  • the terminal device 10 After the terminal device 10 determines the DCI format of the DCI according to the basic parameter set and the corresponding relationship between the basic parameter set and the DCI format, the terminal device 10 can determine the length of the DCI and the control information in the DCI according to the DCI format. The content, the number of bits occupied by one of the control information fields in the DCI, and the content indicated by one of the control information fields in the DCI, and detecting the DCI for scheduling the data according to the DCI format.
  • control information field in the DCI format may include at least one of the following:
  • MCS Modulation Coding Scheme
  • the control information field for indicating physical resource allocation may be, for example, an RB allocation information field for indicating a PRB occupied by the data transmission of the DCI scheduling; and a control information field for indicating an ACK/NACK feedback timing for indicating data.
  • the timing relationship between the transmission and the corresponding ACK/NACK feedback such as between the subframe in which the data transmission is located and the subframe in which the corresponding ACK/NACK feedback is located a subframe offset number;
  • a control information field for indicating a frequency hopping configuration is, for example, a control information field for indicating frequency domain frequency hopping;
  • a control information field for indicating DMRS configuration for example, a port for indicating DMRS use, plus a control information field for the information such as the scrambling sequence;
  • the control information field for indicating the structure of the subframe is, for example, used to indicate the total number of Orthogonal Frequency Division Multiplexing ("OFDM”) symbols in the subframe, or The number or location of guard interval
  • control information field in the DCI format may include at least one of the following:
  • MCS Modulation Coding Scheme
  • 240 in the method may further include 241 to 244.
  • 4 is a flow interaction diagram of a method of data transmission according to another embodiment of the present invention. The method includes 241 to 244, wherein 240 can be replaced by 241 to 244.
  • the network device 20 determines a correspondence relationship of the basic parameter set DCI format.
  • the network device 20 sends the indication information for indicating the correspondence to the terminal device 10.
  • the terminal device 10 receives the indication information that is sent by the network device 20 to indicate the correspondence.
  • the terminal device 10 detects the DCI according to the basic parameter set and the correspondence.
  • the terminal device 10 determines the correspondence between the basic parameter set and the DCI format required for detecting the DCI format of the DCI, and may be determined by the network device 20 and indicated to the terminal device 10 in advance, for example, the network device 20 passes the high layer signaling. Sending the indication information to the terminal device 10, the indication information is used to indicate the corresponding relationship between the basic parameter set and the DCI format, and after receiving the indication information indicating the corresponding relationship, the terminal device 10 according to the determined basic parameter set, and The corresponding relationship between the basic parameter set and the DCI format detects the DCI used to schedule the data.
  • the terminal device 10 determines the DCI format for detecting the DCI
  • the corresponding relationship between the basic parameter set and the DCI format used may also be pre-agreed by the terminal device 10 and the network device 20, for example, the terminal device 10 according to the terminal device 10
  • the basic parameter set specified in the protocol and the DCI format The correspondence determines a DCI format corresponding to the base parameter set.
  • the terminal device 10 can determine the basic parameter set for transmitting the data and the DCI for scheduling the data by performing 230 and 240; the terminal device 10 can also detect the downlink control information DCI for scheduling the data, And determining, according to the detected DCI, a basic parameter set for transmitting the data, thereby detecting the data sent by the network device 20 or transmitting the data to the network device 20 according to the basic parameter set and the DCI.
  • the terminal device 10 may detect the DCI for scheduling the data based on different DCI formats until the DCI is correctly detected according to a certain DCI format, and according to the detected DCI format and the DCI format and the basic parameter set of the DCI.
  • the corresponding relationship, and/or the cyclic redundancy check code of the DCI determines the base parameter set for transmitting the data.
  • the network device 20 sends the data to the terminal device 10 according to the basic parameter set and the DCI.
  • the network device 20 transmits the data to the terminal device 10 according to the parameters in the base parameter set and the content of the control information in the DCI for scheduling the data.
  • the terminal device 10 detects the data sent by the network device 20 according to the basic parameter set and the detected DCI.
  • the terminal device 10 detects the data sent by the network device 20 according to the parameters in the basic parameter set and the detected content of the control information in the DCI for scheduling the data.
  • 251 and 261 may also be replaced by 252 and 262 respectively shown in FIG. 5, which is a flow interaction diagram of a method of transmitting data according to another embodiment of the present invention.
  • the terminal device 10 transmits the data to the network device 20 according to the parameter in the basic parameter set and the content of the detected control information in the DCI for scheduling the data.
  • the network device 20 receives the data sent by the terminal device 10 according to the basic parameter set and the DCI.
  • the data may include uplink data or downlink data.
  • the network device 20 sends the data to the terminal device 10, where the DCI is a DCI for scheduling downlink data, and the terminal The device 10 detects the related information of the downlink data sent by the network device 20 to correctly receive the data, that is, performs 251 and 261; if the transmitted data is the uplink data, the terminal device 10 transmits the data to the network device 20, and the DCI is used for The DCI of the uplink data is scheduled, and the network device 20 receives the data transmitted by the terminal device 10, that is, performs 262 and 252.
  • the transmission may include the transmission of the service data, and may also include the transmission of the control signaling, which is not limited herein.
  • the method according to the embodiment of the present invention uses different DCI formats for scheduling data transmission based on different basic parameter sets, thereby increasing the flexibility of control signaling design.
  • data transmission using different basic parameter sets can be scheduled through separate control channels and different DCI formats, further increasing the flexibility of control signaling design.
  • the terminal device can learn the DCI format used for blind detection DCI according to the basic parameter set, and reduce the complexity of detecting the control channel by the terminal device.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the method of transmitting data according to an embodiment of the present invention has been described in detail above, and a terminal device and a network device according to an embodiment of the present invention will be described below. It should be understood that the network device and the terminal device in the embodiments of the present invention may perform various methods in the foregoing embodiments of the present invention, that is, the specific working processes of the following various devices, and may refer to the corresponding processes in the foregoing method embodiments.
  • FIG. 6 shows a schematic block diagram of a terminal device 600 according to an embodiment of the present invention.
  • the terminal device 600 includes a determining module 601, a detecting module 602, and a transmitting module 603.
  • a determining module 601 configured to determine a basic parameter set for transmitting data, where the basic parameter set includes at least one resource parameter for determining a time-frequency resource for transmitting the data;
  • the detecting module 602 is configured to detect, according to the basic parameter set determined by the determining module 601, downlink control information DCI sent by the network device for scheduling the data;
  • the transmitting module 603 is configured to detect, according to the basic parameter set determined by the determining module 601 and the DCI detected by the detecting module 602, the data sent by the network device or send the data to the network device. .
  • the terminal device in the embodiment of the present invention uses different DCI formats for data transmission based on different basic parameter sets, thereby increasing the flexibility of control signaling design.
  • data transmission using different basic parameter sets can be scheduled through separate control channels and different DCI formats, further increasing the flexibility of control signaling design.
  • the terminal device can learn the DCI format used for blind detection DCI according to the basic parameter set, and reduce the complexity of detecting the control channel by the terminal device.
  • the determining module 601 is specifically configured to:
  • the detecting module 602 is specifically configured to:
  • the transmitting module 603 is further configured to:
  • the detecting module 602 is specifically configured to:
  • the transmitting module 603 is further configured to:
  • the determining module 601 is specifically configured to:
  • the determining module 601 is specifically configured to:
  • Determining a base parameter set corresponding to the target signal or the target channel is the base parameter set for transmitting the data.
  • the lengths of the control information corresponding to different DCI formats are different, and/or the information indicated by the DCI format indicator bits included in different DCI formats is different.
  • the different DCI formats correspond to different basic parameter sets, and the different DCI formats include the same control information domain, the same control information domain occupies different numbers of bits in the different DCIs. And/or the same control information field is in the different DCI format The contents indicated in the instructions are different.
  • control information field includes at least one of the following:
  • control information field for indicating physical resource allocation a control information field for indicating acknowledgment/non-acknowledgment ACK/NACK feedback timing, a control information field for indicating frequency hopping configuration, and a control information field for indicating modulation coding mode MCS a control information field for indicating a subframe structure, and a control information field for indicating a DMRS configuration of the demodulation reference signal
  • the basic parameter set includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, Fourier transform or inverse Fourier transform for generating an OFDM signal
  • the number of points the number of OFDM symbols in the transmission time interval TTI, the number of TTIs included in a specific time length, and the length of the signal prefix.
  • the determining module 601 and the detecting module 602 may be implemented by a processor, and the transmitting module 603 may be implemented by a transceiver.
  • the terminal device 700 can include a processor 710, a transceiver 720, and a memory 730.
  • the transceiver 720 can include a receiver 721 and a transmitter 722.
  • the memory 730 can be used to store a basic parameter set, a DCI format, a correspondence between a basic parameter set and a DCI format, and the like, and can also be used by the storage processor 710. Code, etc.
  • the various components in terminal device 700 are coupled together by a bus system 740, which in addition to the data bus includes a power bus, a control bus, a status signal bus, and the like.
  • the processor 710 is specifically configured to:
  • the base parameter set including at least one resource parameter for determining a time-frequency resource for transmitting the data
  • the transceiver 720 is configured to detect, according to the basic parameter set determined by the processor 710 and the DCI detected by the processor 710, the data sent by the network device or sent to the network device. The data.
  • processor 710 is specifically configured to:
  • the set of base parameters for transmitting the data is determined from a predefined plurality of base parameter sets.
  • processor 710 is specifically configured to:
  • the processor 710 is further configured to: before determining a DCI format for detecting the DCI, according to the basic parameter set, and the correspondence between the basic parameter set and the DCI format, the processor 710 is further configured to:
  • processor 710 is specifically configured to:
  • the transceiver 720 is further configured to:
  • the processor 710 is specifically configured to:
  • processor 710 is specifically configured to:
  • Determining a base parameter set corresponding to the target signal or the target channel is the base parameter set for transmitting the data.
  • the lengths of the control information corresponding to different DCI formats are different, and/or the information indicated by the DCI format indicator bits included in different DCI formats is different.
  • the different DCI formats correspond to different basic parameter sets, and the different DCI formats include the same control information domain, the same control information domain occupies different numbers of bits in the different DCIs. And/or the same control information field is different in the content indicated in the different DCI format.
  • control information field includes at least one of the following:
  • control information field for indicating physical resource allocation, a control information field for indicating acknowledgment/non-acknowledgment ACK/NACK feedback timing, a control information field for indicating frequency hopping configuration, and The control information field indicating the modulation and coding mode MCS, the control information field for indicating the subframe structure, and the control information field for indicating the demodulation reference signal DMRS configuration.
  • the basic parameter set includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, Fourier transform or inverse Fourier transform for generating an OFDM signal
  • the number of points the number of OFDM symbols in the transmission time interval TTI, the number of TTIs included in a specific time length, and the length of the signal prefix.
  • FIG. 8 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 800 of FIG. 8 includes an input interface 801, an output interface 802, at least one processor 803, and a memory 804.
  • the input interface 801, the output interface 802, the processor 803, and the memory 804 are connected by a bus 805.
  • the processor 803 is configured to execute code in the memory 804, and when the code is executed, the processor 803 implements the method performed by the terminal device 10 in FIGS. 2 to 5.
  • the terminal device 600 shown in FIG. 6 or the terminal device 700 shown in FIG. 7 or the system chip 800 shown in FIG. 8 can implement the various processes implemented by the terminal device 10 in the foregoing method embodiments of FIG. 2 to FIG. 5, in order to avoid Repeat, no longer repeat them here.
  • FIG. 9 is a schematic block diagram of a network device 900 in accordance with an embodiment of the present invention. As shown in FIG. 9, the network device 900 includes a determining module 901 and a transmitting module 902.
  • a determining module 901 configured to determine a basic parameter set for transmitting data, where the basic parameter set includes at least one resource parameter for determining a time-frequency resource for transmitting the data;
  • the transmission module 902 is configured to:
  • the network device in the embodiment of the present invention implements scheduling of different DCI formats for data transmission based on different basic parameter sets, and increases flexibility of control signaling design.
  • data transmission using different basic parameter sets can be scheduled through separate control channels and different DCI formats, further increasing the flexibility of control signaling design.
  • the determining module 901 is specifically configured to:
  • the transmission module 902 is specifically configured to:
  • the determining module 901 is further configured to:
  • the transmission module is further configured to send indication information to the terminal device, where the indication information is used to indicate the correspondence.
  • the transmission module 902 is specifically configured to:
  • the transmitting module 902 is further configured to:
  • the configuration information including information for transmitting the base parameter set of the data.
  • the lengths of the control information corresponding to different DCI formats are different, and/or the information indicated by the DCI format indicator bits included in different DCI formats is different.
  • the different DCI formats correspond to different basic parameter sets, and the different DCI formats include the same control information domain, the same control information domain occupies different numbers of bits in the different DCIs. And/or the same control information field is different in the content indicated in the different DCI format.
  • control information field includes at least one of the following:
  • control information field for indicating physical resource allocation a control information field for indicating acknowledgment/non-acknowledgment ACK/NACK feedback timing, a control information field for indicating frequency hopping configuration, and a control information field for indicating modulation coding mode MCS a control information field for indicating a subframe structure, and a control information field for indicating a demodulation reference signal DMRS configuration.
  • the basic parameter set includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, Fourier transform for generating an OFDM signal Or the number of points of the inverse Fourier transform, the number of OFDM symbols in the transmission time interval TTI, the number of TTIs included in a specific length of time, and the length of the signal prefix.
  • network device 1000 can include a processor 1010, a transceiver 1020, and a memory 1030.
  • the transceiver 1020 can include a receiver 1021 and a transmitter 1022.
  • the memory 1030 can be used to store a basic parameter set, a DCI format, a correspondence between a basic parameter set and a DCI format, and the like, and can also be used by the storage processor 1010. Code, etc.
  • the various components in the end network device 1000 are coupled together by a bus system 1040, which in addition to the data bus includes a power bus, a control bus, a status signal bus, and the like.
  • the processor 1010 is specifically configured to:
  • the base parameter set including at least one resource parameter for determining a time-frequency resource for transmitting the data
  • Transceiver 1020 is used to:
  • processor 1010 is specifically configured to:
  • the set of base parameters for transmitting the data is determined.
  • the transceiver 1020 is further configured to:
  • processor 1010 is further configured to:
  • the transceiver 1020 is further configured to send indication information to the terminal device, where the indication information is used to indicate the correspondence.
  • the transceiver 1020 is specifically configured to:
  • the transceiver 1020 is further configured to:
  • the configuration information including information for transmitting the base parameter set of the data.
  • the lengths of the control information corresponding to different DCI formats are different, and/or the information indicated by the DCI format indicator bits included in different DCI formats is different.
  • the different DCI formats correspond to different basic parameter sets, and the different DCI formats include the same control information domain, the same control information domain occupies different numbers of bits in the different DCIs. And/or the same control information field is different in the content indicated in the different DCI format.
  • control information field includes at least one of the following:
  • control information field for indicating physical resource allocation a control information field for indicating acknowledgment/non-acknowledgment ACK/NACK feedback timing, a control information field for indicating frequency hopping configuration, and a control information field for indicating modulation coding mode MCS a control information field for indicating a subframe structure, and a control information field for indicating a demodulation reference signal DMRS configuration.
  • the basic parameter set includes at least one of the following parameters:
  • Subcarrier spacing number of subcarriers in a specific bandwidth, number of subcarriers in a physical resource block PRB, length of an orthogonal frequency division multiplexing OFDM symbol, Fourier transform or inverse Fourier transform for generating an OFDM signal
  • the number of points the number of OFDM symbols in the transmission time interval TTI, the number of TTIs included in a specific time length, and the length of the signal prefix.
  • FIG. 11 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 1100 of FIG. 11 includes an input interface 1101, an output interface 1102, at least one processor 1103, and a memory 1104.
  • the input interface 1101, the output interface 1102, the processor 1103, and the memory 1104 are connected by a bus 1105.
  • the processor 1103 is configured to execute code in the memory 1104, and when the code is executed, the processor 1103 implements the method performed by the network device 20 in FIGS. 2 through 5.
  • the network device 900 shown in FIG. 9 or the network device 1000 shown in FIG. 10 or the system chip 1100 shown in FIG. 11 can implement the processes implemented by the network device 20 in the foregoing method embodiments of FIG. 2 to FIG. 5, in order to avoid Repeat, no longer repeat them here.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with a letter.
  • the processing power of the number may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor ("DSP"), an application specific integrated circuit (ASIC), or a field programmable gate array (Field Programmable Gate Array). , referred to as "FPGA” or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory (ROM), a programmable read only memory (PROM), or an erasable programmable read only memory (Erasable PROM). , referred to as "EPROM”), electrically erasable programmable read only memory (“EEPROM”) or flash memory.
  • the volatile memory may be a Random Access Memory (“RAM”), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous DRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected to dynamic random access memory
  • DR RAM Direct Rambus RAM
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this article is merely an association describing the associated object, indicating that there can be three types. Relationships, for example, A and/or B, may indicate that there are three cases where A exists separately, and both A and B exist, and B exists alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present invention is essentially or a part contributing to the prior art or a part of the technical solution.
  • the points may be embodied in the form of a software product stored in a storage medium, including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform various embodiments of the present invention All or part of the steps of the method.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

本发明公开了一种传输数据的方法、终端设备和网络设备。该方法包括:终端设备确定用于传输所述数据的基础参数集;所述终端设备根据所述基础参数集,检测网络设备发送的用于调度所述数据的下行控制信息DCI;所述终端设备根据所述基础参数集和检测到的所述DCI,检测所述网络设备发送的所述数据或向所述网络设备发送所述数据。本发明实施例的传输数据的方法、终端设备和网络设备,可以实现对基于不同基础参数集的数据传输使用不同的DCI格式进行调度,增加了控制信令设计的灵活性。

Description

传输数据的方法、终端设备和网络设备 技术领域
本发明涉及通信领域,并且更具体地,涉及一种传输数据的方法、终端设备和网络设备。
背景技术
在第五代移动通信技术(5G)技术中,用户设备(User Equipment,简称“UE”)可以在一个载波内支持多种不同的基础参数集(numerology)。这些不同的基础参数集可以通过时分复用(Time Division Multiplex,简称“TDM”)或者频分复用(Frequency Division Multiplex,简称“FDM”)的方式进行复用。例如,在同一个传输时间间隔(Transmission Time Interval,简称“TTI”)中,不同的频域资源可以分配给使用不同基础参数集的数据传输;或者不同的TTI可以用于不同基础参数集的数据传输。因此,如何调度基于不同基础参数集的数据传输是急需解决的问题。
发明内容
本发明实施例提供了一种传输数据的方法、终端设备和网络设备,解决了如何调度基于不同基础参数集的数据传输的问题。
第一方面,提供了一种传输数据的方法,包括:终端设备确定用于传输所述数据的基础参数集;所述终端设备根据所述基础参数集,检测网络设备发送的用于调度所述数据的下行控制信息DCI;所述终端设备根据所述基础参数集和检测到的所述DCI,检测所述网络设备发送的所述数据或向所述网络设备发送所述数据。
因此,本发明实施例所述的方法,对基于不同基础参数集的数据的传输使用不同的DCI格式进行调度,增加了控制信令设计的灵活性。
可选地,使用不同基础参数集的数据传输可以通过独立的控制信道和不同的DCI格式进行调度,更进一步地增加了控制信令设计的灵活性。
另外,终端设备根据基础参数集就可以获知盲检DCI所用的DCI格式,降低了终端设备检测控制信道的复杂度。
作为另一个实施例,所述终端设备确定用于传输所述数据的基础参数 集,包括:
所述终端设备从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
作为另一个实施例,该基础参数集包括至少一个用于确定传输该数据的时频资源的资源参数。
作为另一个实施例,在所述终端设备确定用于传输所述数据的基础参数集之前,所述方法还包括:
所述终端设备接收所述网络设备发送的配置信息,所述配置信息包括用于传输所述数据的所述基础参数集的信息;
所述终端设备确定用于传输所述数据的基础参数集,包括:
终端设备根据所述配置信息,确定用于传输所述数据的所述基础参数集。
作为另一个实施例,所述终端设备确定用于传输所述数据的基础参数集,包括:
所述终端设备根据预定义的多个基础参数集,检测与所述终端设备对应的目标信号或目标信道;
所述终端设备确定与所述目标信号或所述目标信道对应的基础参数集为用于传输所述数据的所述基础参数集。
作为另一个实施例,所述终端设备根据所述基础参数集,检测网络设备发送的用于调度所述数据的DCI,包括:
所述终端设备根据所述基础参数集中的至少一个参数,检测网络设备发送的用于调度所述数据的所述DCI。
作为另一个实施例,所述终端设备根据所述基础参数集,检测网络设备发送的用于调度所述数据的DCI,包括:
所述终端设备根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定用于检测所述DCI的DCI格式;
所述终端设备根据所述DCI格式,检测网络设备发送的用于调度所述数据的所述DCI。
作为另一个实施例,在所述终端设备根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定用于检测所述DCI的DCI格式之前,所述方法还包括:
所述终端设备接收所述网络设备发送的指示信息,所述指示信息用于指示基础参数集与DCI格式的所述对应关系。
应理解,基础参数集与DCI格式的该对应关系可以是网络设备自行确定的,也可以是网络设备和终端设备之间预先约定好的。
作为另一个实施例,不同的DCI格式对应的控制信息长度不同,和/或不同的DCI格式包括的DCI格式指示位指示的信息不同。
作为另一个实施例,如果不同的DCI格式对应的基础参数集不同,且所述不同的DCI格式包括相同的控制信息域,所述相同的控制信息域在所述不同的DCI中所占的比特数不同,和/或所述相同的控制信息域在所述不同的DCI格式中指示的内容不同。
其中,该DCI的长度指该DCI中包括的控制信息的总比特数,该DCI的内容指该DCI中包括的控制信息域,以及各控制信息域所指示的内容。
也就是说,不同的基础参数集对应不同的DCI格式,不同DCI格式可以通过DCI的长度、DCI中控制信息的内容、控制信息域的长度和控制信息域所指示的内容中的至少一种来区分。即,不同的DCI格式对应的DCI的长度各不同,和/或不同的DCI格式所对应的DCI中的控制信息的内容不同,和/或针对同一种控制信息域,不同DCI格式对应的DCI中的相同的控制信息域所占的比特数不同,和/或针对同一种控制信息域,不同DCI格式对应的DCI中的相同的控制信息域所指示的内容不同。
作为另一个实施例,所述控制信息域包括以下中的至少一种:
用于指示物理资源分配的控制信息域、用于指示确认/非确认ACK/NACK反馈时序的控制信息域、用于指示跳频配置的控制信息域、用于指示调制编码方式MCS的控制信息域、用于指示子帧结构的控制信息域、以及用于指示解调参考信号DMRS配置的控制信息域。
其中,用于指示物理资源分配的控制信息域例如可以为用于指示该DCI调度的数据传输所占用的PRB的RB分配信息域;用于指示ACK/NACK反馈时序的控制信息域用于指示数据传输与对应的ACK/NACK反馈之间的时序关系,例如数据传输所在子帧与对应的ACK/NACK反馈所在子帧之间的子帧偏移数;用于指示跳频配置的控制信息域例如为用于指示频域跳频的控制信息域;用于指示DMRS配置的控制信息域例如为用于指示DMRS使用的端口、加扰序列等信息的控制信息域;用于指示子帧结构的控制信息域例 如为用于指示子帧中总的正交频分复用(Orthogonal Frequency Division Multiplexing,简称“OFDM”)符号数,或者子帧中的保护间隔(Guard Period,简称“GP”)数量或位置,或子帧中不同类型OFDM符号的数量配置,例如子帧中下行控制符号、下行数据符号和上行控制符号的数量或比例配置,或者子帧中下行控制符号和上行数据符号的数量或比例配置。
作为另一个实施例,所述基础参数集包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
其中,子载波间隔指相邻子载波的频率间隔,例如15kHz,60kHz等;特定带宽下的子载波数目例如为每个可能的系统带宽对应的子载波数;PRB中包含的子载波数例如典型的可以是12的整数倍;TTI中包含的OFDM符号数例如典型的可以是14的整数倍;一定时间单位内包含的TTI数可以指1ms或者10ms的时间长度内包含的TTI数目;信号前缀长度例如信号的循环前缀的时间长度,或者循环前缀使用常规CP还是使用扩展CP。
第二方面,提供了一种终端设备,该终端设备可以用于执行前述第一方面及各种实现方式中的用于传输数据的方法中由终端设备执行的各个过程。该终端设备包括:确定模块,用于确定用于传输数据的基础参数集;检测模块,用于根据所述确定模块确定的所述基础参数集,检测网络设备发送的用于调度所述数据的下行控制信息DCI;传输模块,用于根据所述确定模块确定的所述基础参数集和所述检测模块检测到的所述DCI,检测网络设备发送的所述数据或向所述网络设备发送所述数据。
第三方面,提供了一种终端设备,该终端设备可以用于执行前述第一方面及各种实现方式中的用于传输数据的方法中由终端设备执行的各个过程。该终端设备包括:处理器,用于确定用于传输数据的基础参数集;根据所述确定模块确定的所述基础参数集,检测网络设备发送的用于调度所述数据的下行控制信息DCI;收发信机,用于根据所述确定模块确定的所述基础参数集和所述检测模块检测到的所述DCI,检测网络设备发送的所述数据或向所述网络设备发送所述数据。
第四方面,提供了一种传输数据的方法,包括:网络设备确定用于传输 所述数据的基础参数集;所述网络设备根据所述基础参数集,向终端设备发送用于调度所述数据的下行控制信息DCI;所述网络设备根据所述基础参数集和所述DCI,向所述终端设备发送所述数据或者接收所述终端设备发送的所述数据。
这样,对基于不同基础参数集的数据的传输使用不同的DCI格式进行调度,增加了控制信令设计的灵活性。
可选地,使用不同基础参数集的数据传输可以通过独立的控制信道和不同的DCI格式进行调度,更进一步地增加了控制信令设计的灵活性。
作为另一个实施例,所述网络设备确定用于传输所述数据的基础参数集,包括:
所述网络设备从预定义的多个基础参数集中,确定用于传输所述数据的所述基础参数集。
作为另一个实施例,所述网络设备根据所述基础参数集,向终端设备发送用于调度所述数据的DCI,包括:
所述网络设备根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定所述DCI的DCI格式;
所述网络设备根据所述DCI格式,向所述终端设备发送用于调度所述数据的所述DCI。
作为另一个实施例,所述方法还包括:
所述网络设备确定基础参数集与DCI格式的所述对应关系;
所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示所述对应关系。
作为另一个实施例,所述网络设备根据所述基础参数集,向终端设备发送用于调度所述数据的DCI,包括:
所述网络设备根据所述基础参数集中的至少一个参数,向所述终端设备发送用于调度所述数据的所述DCI。
作为另一个实施例,在所述网络设备确定用于传输所述数据的基础参数集之后,所述方法还包括:
所述网络设备向终端设备发送配置信息,所述配置信息包括用于传输所述数据的所述基础参数集的信息。
作为另一个实施例,不同的DCI格式对应的控制信息长度不同,和/或 不同的DCI格式包括的DCI格式指示位指示的信息不同。
作为另一个实施例,如果不同的DCI格式对应的基础参数集不同,且所述不同的DCI格式包括相同的控制信息域,所述相同的控制信息域在所述不同的DCI中所占的比特数不同,和/或所述相同的控制信息域在所述不同的DCI格式中指示的内容不同。
作为另一个实施例,所述控制信息域包括以下中的至少一种:
用于指示物理资源分配的控制信息域、用于指示确认/非确认ACK/NACK反馈时序的控制信息域、用于指示跳频配置的控制信息域、用于指示调制编码方式MCS的控制信息域、用于指示子帧结构的控制信息域、以及用于指示解调参考信号DMRS配置的控制信息域。
作为另一个实施例,所述基础参数集包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
第五方面,提供了一种网络设备,可以用于执行前述第四方面及各种实现方式中的用于传输数据的方法中由网络设备执行的各个过程,包括:确定模块,用于确定用于传输数据的基础参数集;传输模块,用于:根据所述确定模块确定的所述基础参数集,向终端设备发送用于调度所述数据的下行控制信息DCI;根据所述基础参数集和所述DCI,向所述终端设备发送所述数据或者接收所述终端设备发送的所述数据。
第六方面,提供了一种网络设备,可以用于执行前述第四方面及各种实现方式中的用于传输数据的方法中由网络设备执行的各个过程,包括:处理器,用于确定用于传输数据的基础参数集;收发信机,用于根据所述确定模块确定的所述基础参数集,向终端设备发送用于调度所述数据的下行控制信息DCI;根据所述基础参数集和所述DCI,向所述终端设备发送所述数据或者接收所述终端设备发送的所述数据。
第七方面,提供了一种计算机芯片,包括:输入接口、输出接口、至少一个处理器、存储器,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器可以实现前述第一方面及各种实现方式中的用于数据传输的方法中由终端设备执行的各个过程。
第八方面,提供了一种计算机芯片,包括:输入接口、输出接口、至少一个处理器、存储器,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器可以实现前述第四方面及各种实现方式中的用于数据传输的方法中由网络设备执行的各个过程。
第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第一方面,及其各种实现方式中的任一种用于传输数据的方法。
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第四方面,及其各种实现方式中的任一种用于传输数据的方法。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的应用场景的示意图。
图2是本发明实施例的传输数据的方法的流程交互图。
图3是本发明另一实施例的传输数据的方法的流程交互图。
图4是本发明另一实施例的传输数据的方法的流程交互图。
图5是本发明另一实施例的传输数据的方法的流程交互图。
图6是本发明实施例的终端设备的结构框图。
图7是本发明实施例的终端设备的结构框图。
图8本发明实施例的系统芯片的示意性结构图。
图9是本发明实施例的网络设备的结构框图。
图10是本发明实施例的网络设备的结构框图。
图11本发明实施例的系统芯片的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不 是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称“GSM”)系统、码分多址(Code Division Multiple Access,简称“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称“GPRS”)、长期演进(Long Term Evolution,简称“LTE”)系统、通用移动通信系统(Universal Mobile Telecommunication System,简称“UMTS”)、等目前的通信系统,以及,尤其应用于未来的5G系统。
本发明实施例中的终端设备也可以指用户设备(User Equipment,简称“UE”)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称“SIP”)电话、无线本地环路(Wireless Local Loop,简称“WLL”)站、个人数字处理(Personal Digital Assistant,简称“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,简称“PLMN”)中的终端设备等。
本发明实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,简称“”BTS),也可以是WCDMA系统中的基站(NodeB,简称“NB”),还可以是LTE系统中的演进型基站(Evolutional NodeB,简称“eNB或eNodeB”),还可以是云无线接入网络(Cloud Radio Access Network,简称“CRAN”)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
图1是本发明一个应用场景的示意图。图1中的通信系统可以包括终端设备10和网络设备20。网络设备20用于为终端设备10提供通信服务并接入核心网,终端设备10通过搜索网络设备20发送的同步信号、广播信号等 而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端设备10与网络设备20之间的蜂窝链路进行的上/下行传输。本发明实施例通过使用不同的DCI格式对基于不同基础参数集的数据传输进行调度,能够提高控制信令设计的灵活性。
图2示出了根据本发明实施例的数据传输的方法的示意性流程图。图2中示出了终端设备10和网络设备20。如图2所示,该传输数据的具体流程包括:
210,网络设备20确定用于传输该数据的基础参数集。
例如,网络设备20可以在预定义的多个基础参数集中,确定用于传输该数据的基础参数集,从而可以根据该基础参数集确定向终端设备10发送的下行控制信息(Downlink Control Information,简称“DCI”)。
其中,所述基础参数集包括至少一个用于确定传输所述数据的时频资源的资源参数。
可选地,该基础参数集可以包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块(Physical Resource Block,简称“PRB”)中的子载波数、正交频分复用(Orthogonal Frequency Division Multiplexing,简称“OFDM”)符号的长度、用于生成OFDM信号的傅里叶变换例如快速傅里叶变换(Fast Fourier Transform,简称“FFT”)或傅里叶逆变换例如快速逆傅里叶变换(Inverse Fast Fourier Transform,简称“IFFT”)的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
其中,子载波间隔指相邻子载波的频率间隔,例如15kHz,60kHz等;特定带宽下的子载波数目例如为每个可能的系统带宽对应的子载波数;PRB中包含的子载波数例如典型的可以是12的整数倍;TTI中包含的OFDM符号数例如典型的可以是14的整数倍;一定时间单位内包含的TTI数可以指1ms或者10ms的时间长度内包含的TTI数目;信号前缀长度例如信号的循环前缀的时间长度,或者循环前缀使用常规CP还是使用扩展CP。
220,网络设备20根据该基础参数集,向终端设备10发送用于调度该数据的DCI。
具体地,本发明实施例中,同一个载波内可以支持多种不同的基础参数集,这些不同的基础参数集可以通过TDM或者FDM的方式进行复用。例 如在同一个TTI中,不同的频域资源可以分配给基于不同基础参数集的数据传输;或者不同的TTI可以用于基于不同基础参数集的数据传输。基于不同基础参数集的数据传输可以通过独立的控制信道或者公共的控制信道进行调度。网络设备确定了该基础参数集后,可以根据该基础参数集向终端设备10发送用于调度该数据的DCI。应理解,网络设备20可以通过独立的控制信道调度基于不同基础参数集的数据,也可以在公共的控制信道中调度基于不同基础参数集的数据,根据不同的需求可以选择合适信道对基于不同基础参数集的数据进行调度,这里不做限定。
可选地,网络设备20可以根据该基础参数集中的至少一个参数,向终端设备10发送用于调度该数据的DCI;或者网络设备20可以根据该基础参数集,以及基础参数集与DCI格式的对应关系,确定该DCI的DCI格式,并根据该DCI格式,向终端设备10发送用于调度该数据的DCI。
具体地,网络设备20可以基于所述基础参数集中的至少一个参数,确定用于调度该数据的DCI的物理资源,再在确定的该物理资源上向终端设备10发送用于调度该数据的该DCI。例如,网络设备20可以基于该基础参数集中的子载波间隔,确定承载该DCI的控制信道占用的子载波数和PRB数,从而在相应子载波和PRB上的控制信道中向终端设备10发送DCI。
网络设备20还可以根据确定好的该基础参数集,以及基础参数集与DCI格式的该对应关系,确定用于调度该数据的该DCI的DCI格式,并根据该DCI格式向终端设备10发送用于调度该数据的该DCI。
举例来说,假设该基础参数集包括子载波间隔,基础参数集与DCI格式的对应关系可以如表一所示。其中,在第一频带上进行数据传输所使用的子载波间隔为15kHz,所对应的DCI格式为DCI格式1(DCI format 1);在第二频带上进行数据传输所使用的子载波间隔为30kHz,所对应的DCI格式为DCI format 2;在第三频带上进行数据传输所使用的子载波间隔为60kHz,所对应的DCI格式为DCI format 3;在第四频带上进行数据传输所使用的子载波间隔为120kHz,所对应的DCI格式为DCI format 4。
表一
子载波间隔 DCI格式
15kHz DCI format 1
30kHz DCI format 2
60kHz DCI format 3
120kHz DCI format 4
其中,对于固定的系统带宽,不同子载波间隔对应的子载波数不相同,相应下行总的物理资源块(Physical Resource Block,简称“PRB”)数也不相同,进行频域资源分配需要的比特数也不同。不同子载波间隔对应的DCI格式中的频域资源分配域的比特数不同,则不同DCI格式包含的总比特数也不同。例如,假设各DCI格式包含的频域资源分配域的比特数分为M,M-k,M-2k,M-3k,则这四个DCI格式包含的控制信息比特数分别为N,N-k,N-2k,N-3k。
网络设备20可以根据确定好的该基础参数集,以及基础参数集与DCI格式的该对应关系,确定用于调度该数据的该DCI的DCI格式,从而根据该DCI格式向终端设备10发送该DCI。
这样,可以实现对基于不同基础参数集的数据传输使用不同的DCI格式进行调度,增加了控制信令设计的灵活性。
可选地,使用不同基础参数集的数据传输可以通过独立的控制信道和不同的DCI格式进行调度,更进一步地增加了控制信令设计的灵活性。
应理解,基础参数集与DCI格式的该对应关系可以是网络设备20自行确定的,也可以是网络设备20和终端设备10之间预先约定好的。
230,终端设备10确定用于进行该数据传输的基础参数集。
例如,终端设备10可以在预定义的多个基础参数集中,确定用于进行该数据传输的基础参数集,从而可以根据该基础参数集检测网络设备20发送的用于调度该数据的下行控制信息DCI。
可选地,终端设备10确定用于进行该数据传输的基础参数集,可以是终端设备10可以接收网络设备20发送的配置信息,该配置信息中包括用于进行该数据传输的该基础参数集的信息,即执行231和232;或者终端设备10通过盲检预定义的多个基础参数集,在该多个基础参数集中确定用于进行该数据传输的该基础参数集。
可选地,该数据传输的方法中230还可以包括231和232。如图3所示的本发明另一实施例的数据传输的方法的流程交互图。该方法包括231和232,其中230可以由231和232替代。
231,网络设备20向终端设备10发送配置信息,该配置信息包括用于 进行该数据传输的该基础参数集的信息。
可选地,网络设备20可以通过高层信令或者物理层信令向终端设备10发送该配置信息。
具体地,网络设备20确定用于进行该数据传输的基础参数集后,可以将该基本信息组的信息发送给终端设备10,从而终端设备可以根据该基础参数集,检测用于调度该数据的DCI。网络设备20可以为每个频域资源集合或者时域资源集合分别配置基础参数集。例如,网络设备20将频域资源划分为多个频域资源区域,配置终端设备10在每个频域资源区域分别使用不同的基础参数集。又或者,网络设备20将时域资源划分为多个时域资源区域,配置终端设备10在每个时域资源区域使用各自的基础参数集。终端接收到配置信息后,根据上述物理资源所在的频域资源集合或者时域资源集合来确定其所使用的基础参数集。这里的物理层信令可以是调度该物理资源上的数据传输的DCI外的另一个DCI。
例如,根据表一,如果网络设备20确定了在第一频带上进该数据传输所使用的基础参数集是子载波间隔为15kHz的基础参数集,那么网络设备20可以向终端设备10发送配置信息,以告知终端设备10用于进行该属于传输所使用的子载波间隔为15kHz。
232,终端设备10接收网络设备20发送的包括该基础参数集的信息的配置信息。
可选地,终端设备10可以接收网络设备20通过高层信令或者物理层信令发送的配置信息,从而确定进行该数据传输所使用的基础参数集。终端设备10接收网络设备20发送的包括该基础参数集的信息的配置信息后,可以根据该基础参数集,检测用于调度该数据的DCI。
终端设备10确定用于进行该数据传输的基础参数集,还可以是终端设备10通过盲检预定义的多个基础参数集,在该多个基础参数集中确定用于进行该数据传输的该基础参数集。
具体地,终端设备10基于所有可能的基础参数集或者预定义的基础参数集分别进行检测,直到成功检测到某个目标物理信号或目标物理信道,从而将对应的基础参数集作为所述当前物理资源上进行该数据传输所使用的基础参数集。这里的目标物理信号可以包括同步信号,导频信号等,目标物理信道可以包括广播信道、控制信道等。
240,终端设备10根据该基础参数集,检测用于调度该数据的DCI。
终端设备10确定了该基础参数集后,根据该基础参数集,检测用于调度该数据的DCI。可选地,终端设备10可以根据该基础参数集中的至少一个参数,检测用于调度该数据的DCI;或者终端设备10可以根据该基础参数集,以及基础参数集与DCI格式的对应关系,确定该DCI的DCI格式,并根据该DCI格式检测用于调度该数据的DCI。
其中,如果终端设备10确定的DCI格式有多个,则终端设备10需要基于每个DCI格式分别进行DCI的检测,直到基于某个DCI格式正确检测出用于调度该数据的该DCI。
这样,终端设备10根据基础参数集就可以获知盲检DCI所用的DCI格式,降低了终端设备检测控制信道的复杂度。
具体地,终端设备10可以基于该基础参数集中的至少一个参数,确定用于检测调度该物理资源上的数据传输的DCI的物理资源,再在确定的该物理资源上检测网络设备20发送的用于调度该物理资源上的数据传输的DCI。例如,终端设备10可以基于该基础参数集中的子载波间隔,确定承载改DCI的控制信道占用的子载波数和PRB数,从而在相应子载波和PRB上的控制信道中进行DCI的检测。
终端设备10还可以根据该基础参数集,以及基础参数集与DCI格式的对应关系,确定用于检测该DCI的DCI格式;终端设备10根据该DCI格式,检测用于调度该数据的该DCI。
举例来说,假设终端设备10根据表一,确定在第一频带上进行该数据传输所使用的DCI的DCI格式为DCI format 1,终端设备10可以基于DCI format 1检测网络设备20发送的用于调度第一频带上的数据传输的DCI。终端设备10根据该第一频带的子载波间隔,以及检测到的DCI中携带的控制信息,进行该DCI调度的第一频带上的数据传输的检测。例如,终端设备10可以根据子载波间隔确定第一频带上的子载波数目和PRB数目,以及OFDM符号对应的时域采样点数,以及TTI中包含的OFDM符号数。再根据这些参数和该DCI中的控制信息,进行该DCI调度的数据传输的检测。终端还可以基于同样的方法检测第二频带至第四频带上的DCI和数据传输。
又例如,假设终端设备10接收到网络设备20发送的指示子帧n上进行数据传输所使用的基础参数集为第二基础参数集,根据表二所示的基础参数 集与DCI格式的对应关系,终端设备10基于DCI format 3和DCI format 4,在子帧n的控制信道上检测网络设备20发送的用于调度子帧n上的数据传输的DCI,假设终端设备10基于DCI format 4正确检测出用于调度该数据的DCI,终端设备10根据第二基础参数集中的参数,和检测到的该DCI中的控制信息,进行该DCI调度的数据传输的检测。例如,终端设备10可以根据该第二基础参数集中的子载波间隔,总子载波数和信道前缀长度,再结合该DCI中的其他控制信息,确定检测该DCI调度的数据传输的参数,从而进行该DCI调度的数据传输的检测。
表二
Figure PCTCN2016089832-appb-000001
可选地,不同的DCI格式对应的控制信息长度不同,和/或不同的DCI格式包括的DCI格式指示位指示的信息不同。
可选地,如果不同的DCI格式对应的基础参数集不同,且该不同的DCI格式包括相同的控制信息域,所述相同的控制信息域在所述不同的DCI格式中所占的比特数不同,和/或所述相同的控制信息域在所述不同的DCI格式中指示的内容不同。
其中,该DCI的长度指该DCI中包括的控制信息的总比特数,该DCI的内容指该DCI中包括的控制信息域,以及各控制信息域所指示的内容。
具体而言,不同的基础参数集对应不同的DCI格式,不同DCI格式可以通过DCI的长度、DCI中控制信息的内容、控制信息域的长度和控制信息域所指示的内容中的至少一种来区分。即,不同的DCI格式对应的DCI的长度各不同,和/或不同的DCI格式所对应的DCI中的控制信息的内容不同,和/或针对同一种控制信息域,不同DCI格式对应的DCI中的相同的控制信息域所占的比特数不同,和/或针对同一种控制信息域,不同DCI格式对应的DCI中的相同的控制信息域所指示的内容不同。
不同的DCI格式对应的DCI的长度可以不同,例如,第一基础参数集 对应的DCI格式为DCI format 1,第二基础参数集对应的DCI格式为DCI format 2,且DCI format 1和format 2包含的信息比特数不同;不同的DCI格式所对应的DCI中的控制信息的内容可以不同,例如,第一基础参数集对应的DCI格式为DCI format 1,第二基础参数集对应的DCI格式为DCI format 2,且DCI format 1比DCI format 2多一个控制信息域;针对同一种控制信息域,不同DCI格式对应的DCI中的相同的控制信息域所占的比特数可以不同,例如,第一基础参数集对应的DCI格式为DCI format 1,基础参数集2对应的DCI格式为DCI format 2,DCI format 1和format 2都包含用于指示资源块(Resource Block,简称“RB”)分配的控制信息域,但因为两个基础参数集对应的频域资源区域不同,该用于指示RB分配的控制信息域的比特数也不相同;针对同一种控制信息域,不同DCI格式对应的DCI中的相同的控制信息域所指示的内容也可以不同,例如,第一基础参数集对应的DCI格式为DCI format 1,第二基础参数集对应的DCI格式为DCI format 2,第三基础参数集对应的DCI格式为DCI format 3,第四基础参数集对应的DCI格式为DCI format 4,这四个DCI格式都包含2比特的指示ACK/NACK反馈时序的控制信息域,用于指示数据传输与对应的ACK/NACK之间的时序关系,对于第一基础参数集对应的DCI format 1,该控制信息域指示的四个可能的时序为{0,1,2,3};对于第二基础参数集对应的DCI format 2,该控制信息域指示的四个可能的时序为{0,2,4,6};对于第三基础参数集对应的DCI format 3,该控制信息域指示的四个可能的时序为{0,3,6,9};对于第四基础参数集对应的DCI format 4,该控制信息域指示的四个可能的时序为{0,4,8,12};不同的基础参数集对应的不同DCI中的控制信息域所指示的内容各不相同。
举例来说,基础参数集与DCI格式的对应关系如表二所示。其中,第一基础参数集对应的DCI格式为DCI format 1和DCI format 2,第二基础参数集对应的DCI格式为DCI format 3和DCI format 4。网络设备20确定子帧n上进行数据传输所使用的基础参数集为第二基础参数集,终端设备10根据第二基础参数集与DCI格式的该对应关系,可以确定用于调度子帧n上的该数据传输所使用的DCI格式为DCI format 3和DCI format 4。其中,该基础参数集可以包括子载波间隔、当前系统带宽下的子载波数目、信号前缀长度等参数。网络设备20可以将第一基础参数集和第二基础参数集中的参数配 置情况预先发送给终端设备10,终端设备10接收基础参数集中的参数配置情况。假设四种DCI格式都包括用于指示确认/非确认(Acknowledgement/Negative Acknowledgement,简称“ACK/NACK”)反馈时序的控制信息域,具体指示数据传输子帧和ACK/NACK反馈子帧之间的子帧偏移。可选地,不同DCI格式中的该控制信息域所占的比特数可以不同,例如DCI format 1和DCI format 3包含的控制信息的比特数相同(假设为M),DCI format 2和DCI format 4包含的控制信息的比特数相同(假设为N)。可选地,对于不同参数配置组对应的不同DCI格式,也可以都包括2比特用于指示ACK/NACK反馈时序的控制信息域,但该2比特的用于指示ACK/NACK反馈时序的控制信息域所指示的内容可以不同,例如表三所示。
表三
Figure PCTCN2016089832-appb-000002
终端设备10根据该基础参数集,以及基础参数集与DCI格式的对应关系,确定该DCI的DCI格式后,终端设备10根据该DCI格式,就可以确定该DCI的长度、该DCI中的控制信息的内容、该DCI中某一个控制信息域所占的比特数和该DCI中某一个控制信息域指示的内容中的至少一种,并根据该DCI格式检测用于调度该数据的DCI。
可选地,该DCI格式中的控制信息域可以包括以下中的至少一种:
用于指示物理资源分配的控制信息域、用于指示确认/非确认ACK/NACK反馈时序的控制信息域、用于指示跳频配置的控制信息域、用于指示调制编码方式(Modulation Coding Scheme,简称“MCS”)的控制信息域、用于指示子帧结构的控制信息域、以及用于指示解调参考信号(Modulation Reference Signal,简称“DMRS”)配置的控制信息域。
其中,用于指示物理资源分配的控制信息域例如可以为用于指示该DCI调度的数据传输所占用的PRB的RB分配信息域;用于指示ACK/NACK反馈时序的控制信息域用于指示数据传输与对应的ACK/NACK反馈之间的时序关系,例如数据传输所在子帧与对应的ACK/NACK反馈所在子帧之间的 子帧偏移数;用于指示跳频配置的控制信息域例如为用于指示频域跳频的控制信息域;用于指示DMRS配置的控制信息域例如为用于指示DMRS使用的端口、加扰序列等信息的控制信息域;用于指示子帧结构的控制信息域例如为用于指示子帧中总的正交频分复用(Orthogonal Frequency Division Multiplexing,简称“OFDM”)符号数,或者子帧中的保护间隔(Guard Period,简称“GP”)数量或位置,或子帧中不同类型OFDM符号的数量配置,例如子帧中下行控制符号、下行数据符号和上行控制符号的数量或比例配置,或者子帧中下行控制符号和上行数据符号的数量或比例配置。
可选地,该DCI格式中的控制信息域可以包括以下中的至少一种:
用于指示物理资源分配的控制信息域、用于指示确认/非确认ACK/NACK反馈时序的控制信息域、用于指示跳频配置的控制信息域、用于指示调制编码方式(Modulation Coding Scheme,简称“MCS”)的控制信息域、用于指示子帧结构的控制信息域、以及用于指示解调参考信号(Modulation Reference Signal,简称“DMRS”)配置的控制信息域。
可选地,该方法中240还可以包括241至244。图4是本发明另一实施例的数据传输的方法的流程交互图。该方法包括241至244,其中,240可以由241至244替代。
241,网络设备20确定基础参数集DCI格式的对应关系。
242,网络设备20向终端设备10发送用于指示该对应关系的指示信息。
243,终端设备10接收网络设备20发送的用于指示该对应关系的指示信息。
244,终端设备10根据基础参数集和该对应关系检测DCI。
具体地,终端设备10确定用于检测DCI的DCI格式所需要的基础参数集与DCI格式的对应关系,可以由网络设备20确定好并预先指示给终端设备10,例如网络设备20通过高层信令向给终端设备10发送指示信息,该指示信息用于指示基础参数集与DCI格式的所述对应关系,终端设备10接收到指示该对应关系的指示信息后,根据确定好的基础参数集,以及基础参数集与DCI格式的该对应关系,检测用于调度该数据的DCI。
应理解,终端设备10确定用于检测该DCI的DCI格式时,所使用的基础参数集与DCI格式的该对应关系也可以是终端设备10和网络设备20预先约定好的,例如终端设备10根据协议中规定的基础参数集与DCI格式的该 对应关系确定与该基础参数集对应的DCI格式。
还应理解,终端设备10可以通过执行230和240来确定用于传输该数据的基础参数集和用于调度该数据的DCI;终端设备10也可以检测用于调度该数据的下行控制信息DCI,并根据检测到的该DCI确定用于传输该数据的基础参数集,从而根据该基础参数集和该DCI,检测所述网络设备20发送的该数据或向网络设备20发送该数据。例如,终端设备10可以基于不同的DCI格式,检测用于调度该数据的DCI,直到按照某个DCI格式正确检测出该DCI,并根据检测到的该DCI的DCI格式和DCI格式与基础参数集的对应关系,和/或该DCI的循环冗余校验码确定用于传输该数据的该基础参数集。
251,网络设备20根据该基础参数集和该DCI,向终端设备10发送该数据。
具体地,网络设备20根据该基础参数集中的参数,以及用于调度该数据的DCI中的控制信息的内容,向终端设备10发送该数据。
261,终端设备10根据该基础参数集和检测到的该DCI,检测网络设备20发送的该数据。
具体地,终端设备10根据该基础参数集中的参数,以及检测到的用于调度该数据的DCI中的控制信息的内容,检测网络设备20发送的该数据。
可选地,251和261还可以分别由图5中所示的252和262替代,图5是本发明另一实施例的传输数据的方法的流程交互图。
262,终端设备10根据该基础参数集中的参数,以及检测到的用于调度该数据的DCI中的控制信息的内容,向网络设备20发送该数据。
252,网络设备20根据该基础参数集和该DCI,接收终端设备10发送的该数据。
具体地,250和260中,该数据可以包括上行数据或下行数据,如果传输的该数据是下行数据,网络设备20向终端设备10发送该数据,该DCI为用于调度下行数据的DCI,终端设备10检测网络设备20发送的下行数据的相关信息从而正确接收该数据,即执行251和261;如果传输的该数据是上行数据,终端设备10向网络设备20发送该数据,该DCI为用于调度上行数据的DCI,网络设备20接收终端设备10发送的该数据,即执行262和252。
应理解,本发明实施例中的网络设备20与终端设备10之间的该数据传 输可以包括业务数据的传输,也可以包括控制信令的传输,这里不做限定。
因此,本发明实施例所述的方法,对基于不同基础参数集的数据的传输使用不同的DCI格式进行调度,增加了控制信令设计的灵活性。
可选地,使用不同基础参数集的数据传输可以通过独立的控制信道和不同的DCI格式进行调度,更进一步地增加了控制信令设计的灵活性。
另外,终端设备根据基础参数集就可以获知盲检DCI所用的DCI格式,降低了终端设备检测控制信道的复杂度。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文详细描述了根据本发明实施例的传输数据的方法,下面将描述根据本发明实施例的终端设备和网络设备。应理解,本发明实施例的网络设备和终端设备可以执行前述本发明实施例的各种方法,即以下各种设备的具体工作过程,可以参考前述方法实施例中的对应过程。
图6示出了本发明实施例的终端设备600的示意性框图。如图6所示,该终端设备600包括:确定模块601、检测模块602和传输模块603。
确定模块601,用于确定用于传输数据的基础参数集,所述基础参数集包括至少一个用于确定传输所述数据的时频资源的资源参数;
检测模块602,用于根据所述确定模块601确定的所述基础参数集,检测网络设备发送的用于调度所述数据的下行控制信息DCI;
传输模块603,用于根据所述确定模块601确定的所述基础参数集和所述检测模块602检测到的所述DCI,检测网络设备发送的所述数据或向所述网络设备发送所述数据。
因此,本发明实施例所述的终端设备,对基于不同基础参数集的数据传输使用不同的DCI格式进行调度,增加了控制信令设计的灵活性。
可选地,使用不同基础参数集的数据传输可以通过独立的控制信道和不同的DCI格式进行调度,更进一步地增加了控制信令设计的灵活性。
另外,终端设备根据基础参数集就可以获知盲检DCI所用的DCI格式,降低了终端设备检测控制信道的复杂度。
可选地,所述确定模块601具体用于:
从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数 集。
可选地,所述检测模块602具体用于:
根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定用于检测所述DCI的DCI格式;
根据所述DCI格式,检测网络设备发送的用于调度所述数据的所述DCI。
可选地,在所述检测模块602根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定用于检测所述DCI的DCI格式之前,所述传输模块603还用于:
接收所述网络设备发送的指示信息,所述指示信息用于指示基础参数集与DCI格式的所述对应关系。
可选地,所述检测模块602具体用于:
根据所述基础参数集中的至少一个参数,检测网络设备发送的用于调度所述数据的所述DCI。
可选地,在所述确定模块601确定用于传输所述数据的基础参数集之前,所述传输模块603还用于:
接收所述网络设备发送的配置信息,所述配置信息包括用于传输所述数据的所述基础参数集的信息;
所述确定模块601具体用于:
根据所述传输模块接收的所述配置信息,确定用于传输所述数据的所述基础参数集。
可选地,所述确定模块601具体用于:
根据预定义的多个基础参数集,检测与所述终端设备对应的目标信号或目标信道;
确定与所述目标信号或所述目标信道对应的基础参数集为用于传输所述数据的所述基础参数集。
可选地,不同的DCI格式对应的控制信息长度不同,和/或不同的DCI格式包括的DCI格式指示位指示的信息不同。
可选地,如果不同的DCI格式对应的基础参数集不同,且所述不同的DCI格式包括相同的控制信息域,所述相同的控制信息域在所述不同的DCI中所占的比特数不同,和/或所述相同的控制信息域在所述不同的DCI格式 中指示的内容不同。
可选地,所述控制信息域包括以下中的至少一种:
用于指示物理资源分配的控制信息域、用于指示确认/非确认ACK/NACK反馈时序的控制信息域、用于指示跳频配置的控制信息域、用于指示调制编码方式MCS的控制信息域、用于指示子帧结构的控制信息域、以及用于指示解调参考信号DMRS配置的控制信息域
可选地,所述基础参数集包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
应注意,本发明实施例中,确定模块601和检测模块602可以由处理器实现,传输模块603可以由收发信机实现。如图7所示,终端设备700可以包括处理器710、收发信机720和存储器730。其中,收发信机720可以包括接收器721和发送器722,存储器730可以用于存储基础参数集、DCI格式、基础参数集与DCI格式的对应关系等,还可以用于存储处理器710执行的代码等。终端设备700中的各个组件通过总线系统740耦合在一起,其中总线系统740除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。其中,处理器710具体用于:
确定用于传输数据的基础参数集,所述基础参数集包括至少一个用于确定传输所述数据的时频资源的资源参数;
根据所述基础参数集,检测网络设备发送的用于调度所述数据的下行控制信息DCI;
收发信机720用于,根据所述处理器710确定的所述基础参数集和所述处理器710检测到的所述DCI,检测所述网络设备发送的所述数据或向所述网络设备发送所述数据。
可选地,所述处理器710具体用于:
从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
可选地,所述处理器710具体用于:
根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定用 于检测所述DCI的DCI格式;
根据所述DCI格式,检测网络设备发送的用于调度所述数据的所述DCI。
可选地,在根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定用于检测所述DCI的DCI格式之前,所述处理器710还用于:
接收所述网络设备发送的指示信息,所述指示信息用于指示基础参数集与DCI格式的所述对应关系。
可选地,所述处理器710具体用于:
根据所述基础参数集中的至少一个参数,检测网络设备发送的用于调度所述数据的所述DCI。
可选地,在处理器710确定用于传输所述数据的基础参数集之前,所述收发信机720还用于:
接收所述网络设备发送的配置信息,所述配置信息包括用于传输所述数据的所述基础参数集的信息;
所述处理器710具体用于:
根据所述传输模块接收的所述配置信息,确定用于传输所述数据的所述基础参数集。
可选地,在所述处理器710具体用于:
根据预定义的多个基础参数集,检测与所述终端设备对应的目标信号或目标信道;
确定与所述目标信号或所述目标信道对应的基础参数集为用于传输所述数据的所述基础参数集。
可选地,不同的DCI格式对应的控制信息长度不同,和/或不同的DCI格式包括的DCI格式指示位指示的信息不同。
可选地,如果不同的DCI格式对应的基础参数集不同,且所述不同的DCI格式包括相同的控制信息域,所述相同的控制信息域在所述不同的DCI中所占的比特数不同,和/或所述相同的控制信息域在所述不同的DCI格式中指示的内容不同。
可选地,所述控制信息域包括以下中的至少一种:
用于指示物理资源分配的控制信息域、用于指示确认/非确认ACK/NACK反馈时序的控制信息域、用于指示跳频配置的控制信息域、用 于指示调制编码方式MCS的控制信息域、用于指示子帧结构的控制信息域、以及用于指示解调参考信号DMRS配置的控制信息域。
可选地,所述基础参数集包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
图8是本发明实施例的系统芯片的一个示意性结构图。图8的系统芯片800包括输入接口801、输出接口802、至少一个处理器803、存储器804,所述输入接口801、输出接口802、所述处理器803以及存储器804之间通过总线805相连,所述处理器803用于执行所述存储器804中的代码,当所述代码被执行时,所述处理器803实现图2至图5中由终端设备10执行的方法。
图6所示的终端设备600或图7所示的终端设备700或图8所示的系统芯片800能够实现前述图2至图5方法实施例中由终端设备10所实现的各个过程,为避免重复,这里不再赘述。
图9出了本发明实施例的网络设备900的示意性框图。如图9所示,该网络设备900包括:确定模块901和传输模块902。
确定模块901,用于确定用于传输数据的基础参数集,所述基础参数集包括至少一个用于确定传输所述数据的时频资源的资源参数;
传输模块902,用于:
根据所述确定模块确定的所述基础参数集,向终端设备发送用于调度所述数据的下行控制信息DCI;
根据所述基础参数集和所述DCI,向所述终端设备发送所述数据或者接收所述终端设备发送的所述数据。
因此,本发明实施例所述的网络设备,实现了对基于不同基础参数集的数据传输使用不同的DCI格式进行调度,增加了控制信令设计的灵活性。
可选地,使用不同基础参数集的数据传输可以通过独立的控制信道和不同的DCI格式进行调度,更进一步地增加了控制信令设计的灵活性。
可选地,确定模块901具体用于:
从预定义的多个基础参数集中,确定用于传输所述数据的所述基础参数 集。
可选地,所述传输模块902具体用于:
根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定所述DCI的DCI格式;
根据所述DCI格式,向所述终端设备传输用于调度所述数据的所述DCI。
可选地,所述确定模块901还用于:
确定基础参数集与DCI格式的所述对应关系;
所述传输模块还用于,向所述终端设备发送指示信息,所述指示信息用于指示所述对应关系。
可选地,所述传输模块902具体用于:
根据所述基础参数集中的至少一个参数,向所述终端设备发送用于调度所述数据的所述DCI。
可选地,在所述确定用于传输所述数据的基础参数集之后,所述传输模块902还用于:
向终端设备发送配置信息,所述配置信息包括用于传输所述数据的所述基础参数集的信息。
可选地,不同的DCI格式对应的控制信息长度不同,和/或不同的DCI格式包括的DCI格式指示位指示的信息不同。
可选地,如果不同的DCI格式对应的基础参数集不同,且所述不同的DCI格式包括相同的控制信息域,所述相同的控制信息域在所述不同的DCI中所占的比特数不同,和/或所述相同的控制信息域在所述不同的DCI格式中指示的内容不同。
可选地,所述控制信息域包括以下中的至少一种:
用于指示物理资源分配的控制信息域、用于指示确认/非确认ACK/NACK反馈时序的控制信息域、用于指示跳频配置的控制信息域、用于指示调制编码方式MCS的控制信息域、用于指示子帧结构的控制信息域、以及用于指示解调参考信号DMRS配置的控制信息域。
可选地,所述基础参数集包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换 或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
应注意,本发明实施例中,确定模块901可以由处理器实现,传输模块902可以由接收器和发送器实现。如图10所示,网络设备1000可以包括处理器1010、收发信机1020和存储器1030。其中,收发信机1020可以包括接收器1021和发送器1022,存储器1030可以用于存储基础参数集、DCI格式、基础参数集与DCI格式的对应关系等,还可以用于存储处理器1010执行的代码等。终网络设备1000中的各个组件通过总线系统1040耦合在一起,其中总线系统1040除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。其中,处理器1010具体用于:
确定用于传输数据的基础参数集,所述基础参数集包括至少一个用于确定传输所述数据的时频资源的资源参数;
收发信机1020用于:
根据所述确定模块确定的所述基础参数集,向终端设备发送用于调度所述数据的下行控制信息DCI;
根据所述基础参数集和所述DCI,向所述终端设备发送所述数据或者接收所述终端设备发送的所述数据。
可选地,所述处理器1010具体用于:
从预定义的多个基础参数集中,确定用于传输所述数据的所述基础参数集。
可选地,所述收发信机1020还用于:
根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定所述DCI的DCI格式;
根据所述DCI格式,向所述终端设备传输用于调度所述数据的所述DCI。
可选地,所述处理器1010还用于:
确定基础参数集与DCI格式的所述对应关系;
所述收发信机1020还用于,向所述终端设备发送指示信息,所述指示信息用于指示所述对应关系。
可选地,所述收发信机1020具体用于:
根据所述基础参数集中的至少一个参数,向所述终端设备发送用于调度 所述数据的所述DCI。
可选地,在所述确定用于传输所述数据的基础参数集之后,所述收发信机1020还用于:
向终端设备发送配置信息,所述配置信息包括用于传输所述数据的所述基础参数集的信息。
可选地,不同的DCI格式对应的控制信息长度不同,和/或不同的DCI格式包括的DCI格式指示位指示的信息不同。
可选地,如果不同的DCI格式对应的基础参数集不同,且所述不同的DCI格式包括相同的控制信息域,所述相同的控制信息域在所述不同的DCI中所占的比特数不同,和/或所述相同的控制信息域在所述不同的DCI格式中指示的内容不同。
可选地,所述控制信息域包括以下中的至少一种:
用于指示物理资源分配的控制信息域、用于指示确认/非确认ACK/NACK反馈时序的控制信息域、用于指示跳频配置的控制信息域、用于指示调制编码方式MCS的控制信息域、用于指示子帧结构的控制信息域、以及用于指示解调参考信号DMRS配置的控制信息域。
可选地,所述基础参数集包括以下参数中的至少一种:
子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
图11是本发明实施例的系统芯片的一个示意性结构图。图11的系统芯片1100包括输入接口1101、输出接口1102、至少一个处理器1103、存储器1104,所述输入接口1101、输出接口1102、所述处理器1103以及存储器1104之间通过总线1105相连,所述处理器1103用于执行所述存储器1104中的代码,当所述代码被执行时,所述处理器1103实现图2至图5中由网络设备20执行的方法。
图9所示的网络设备900或图10所示的网络设备1000或图11所示的系统芯片1100能够实现前述图2至图5方法实施例中由网络设备20所实现的各个过程,为避免重复,这里不再赘述。
可以理解,本发明实施例中的处理器可以是一种集成电路芯片,具有信 号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,简称“DSP”)、专用集成电路(Application Specific Integrated Circuit,简称“ASIC”)、现成可编程门阵列(Field Programmable Gate Array,简称“FPGA”)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称“ROM”)、可编程只读存储器(Programmable ROM,简称“PROM”)、可擦除可编程只读存储器(Erasable PROM,简称“EPROM”)、电可擦除可编程只读存储器(Electrically EPROM,简称“EEPROM”)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称“RAM”),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称“SRAM”)、动态随机存取存储器(Dynamic RAM,简称“DRAM”)、同步动态随机存取存储器(Synchronous DRAM,简称“SDRAM”)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称“DDR SDRAM”)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称“ESDRAM”)、同步连接动态随机存取存储器(Synchlink DRAM,简称“SLDRAM”)和直接内存总线随机存取存储器(Direct Rambus RAM,简称“DR RAM”)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种 关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称“ROM”)、随机存取存储器(Random Access Memory,简称“RAM”)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (42)

  1. 一种传输数据的方法,其特征在于,包括:
    终端设备确定用于传输所述数据的基础参数集;
    所述终端设备根据所述基础参数集,检测网络设备发送的用于调度所述数据的下行控制信息DCI;
    所述终端设备根据所述基础参数集和检测到的所述DCI,检测所述网络设备发送的所述数据或向所述网络设备发送所述数据。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备确定用于传输所述数据的基础参数集,包括:
    所述终端设备从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述终端设备确定用于传输所述数据的基础参数集之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的配置信息,所述配置信息包括用于传输所述数据的所述基础参数集的信息;
    所述终端设备确定用于传输所述数据的基础参数集,包括:
    终端设备根据所述配置信息,确定用于传输所述数据的所述基础参数集。
  4. 根据权利要求1或2所述的方法,其特征在于,所述终端设备确定用于传输所述数据的基础参数集,包括:
    所述终端设备根据预定义的多个基础参数集,检测与所述终端设备对应的目标信号或目标信道;
    所述终端设备将对所述目标信号或所述目标信道检测成功时采用的基础参数集确定为用于传输所述数据的所述基础参数集。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述终端设备根据所述基础参数集,检测网络设备发送的用于调度所述数据的DCI,包括:
    所述终端设备根据所述基础参数集中的至少一个参数,检测网络设备发送的用于调度所述数据的所述DCI。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述终端设备根据所述基础参数集,检测网络设备发送的用于调度所述数据的DCI, 包括:
    所述终端设备根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定用于检测所述DCI的DCI格式;
    所述终端设备根据所述DCI格式,检测网络设备发送的用于调度所述数据的所述DCI。
  7. 根据权利要求6所述的方法,其特征在于,在所述终端设备根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定用于检测所述DCI的DCI格式之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的指示信息,所述指示信息用于指示基础参数集与DCI格式的所述对应关系。
  8. 根据权利要求6或7所述的方法,其特征在于,不同的DCI格式对应的控制信息长度不同,和/或不同的DCI格式包括的DCI格式指示位指示的信息不同。
  9. 根据权利要求6或7所述的方法,其特征在于,如果不同的DCI格式对应的基础参数集不同,且所述不同的DCI格式包括相同的控制信息域,所述相同的控制信息域在所述不同的DCI格式中所占的比特数不同,和/或所述相同的控制信息域在所述不同的DCI格式中指示的内容不同。
  10. 根据权利要求9所述的方法,其特征在于,所述控制信息域包括以下中的至少一种:
    用于指示物理资源分配的控制信息域、用于指示确认/非确认ACK/NACK反馈时序的控制信息域、用于指示跳频配置的控制信息域、用于指示调制编码方式MCS的控制信息域、用于指示子帧结构的控制信息域、以及用于指示解调参考信号DMRS配置的控制信息域。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述基础参数集包括以下参数中的至少一种:
    子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
  12. 一种传输数据的方法,其特征在于,包括:
    网络设备确定用于传输所述数据的基础参数集;
    所述网络设备根据所述基础参数集,向终端设备发送用于调度所述数据的下行控制信息DCI;
    所述网络设备根据所述基础参数集和所述DCI,向所述终端设备发送所述数据或者接收所述终端设备发送的所述数据。
  13. 根据权利要求12所述的方法,其特征在于,所述网络设备确定用于传输所述数据的基础参数集,包括:
    所述网络设备从预定义的多个基础参数集中,确定用于传输所述数据的所述基础参数集。
  14. 根据权利要求12或13所述的方法,其特征在于,在所述网络设备确定用于传输所述数据的基础参数集之后,所述方法还包括:
    所述网络设备向终端设备发送配置信息,所述配置信息包括用于传输所述数据的所述基础参数集的信息。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述网络设备根据所述基础参数集,向终端设备发送用于调度所述数据的DCI,包括:
    所述网络设备根据所述基础参数集中的至少一个参数,向所述终端设备发送用于调度所述数据的所述DCI。
  16. 根据权利要求12至14中任一项所述的方法,其特征在于,所述网络设备根据所述基础参数集,向终端设备发送用于调度所述数据的DCI,包括:
    所述网络设备根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定所述DCI的DCI格式;
    所述网络设备根据所述DCI格式,向所述终端设备发送用于调度所述数据的所述DCI。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定基础参数集与DCI格式的所述对应关系;
    所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示所述对应关系。
  18. 根据权利要求16或17所述的方法,其特征在于,不同的DCI格式对应的控制信息长度不同,和/或不同的DCI格式包括的DCI格式指示位指示的信息不同。
  19. 根据权利要求16或17所述的方法,其特征在于,如果不同的DCI格式对应的基础参数集不同,且所述不同的DCI格式包括相同的控制信息域,所述相同的控制信息域在所述不同的DCI格式中所占的比特数不同,和/或所述相同的控制信息域在所述不同的DCI格式中指示的内容不同。
  20. 根据权利要求19所述的方法,其特征在于,所述控制信息域包括以下中的至少一种:
    用于指示物理资源分配的控制信息域、用于指示确认/非确认ACK/NACK反馈时序的控制信息域、用于指示跳频配置的控制信息域、用于指示调制编码方式MCS的控制信息域、用于指示子帧结构的控制信息域、以及用于指示解调参考信号DMRS配置的控制信息域。
  21. 根据权利要求12至20中任一项所述的方法,其特征在于,所述基础参数集包括以下参数中的至少一种:
    子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
  22. 一种终端设备,其特征在于,包括:
    确定模块,用于确定用于传输数据的基础参数集;
    检测模块,用于根据所述确定模块确定的所述基础参数集,检测网络设备发送的用于调度所述数据的下行控制信息DCI;
    传输模块,用于根据所述确定模块确定的所述基础参数集和所述检测模块检测到的所述DCI,检测网络设备发送的所述数据或向所述网络设备发送所述数据。
  23. 根据权利要求22所述的终端设备,其特征在于,所述确定模块具体用于:
    从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
  24. 根据权利要求22或23所述的终端设备,其特征在于,在所述确定模块确定用于传输所述数据的基础参数集之前,所述传输模块还用于:
    接收所述网络设备发送的配置信息,所述配置信息包括用于传输所述数据的所述基础参数集的信息;
    所述确定模块具体用于:
    根据所述传输模块接收的所述配置信息,确定用于传输所述数据的所述基础参数集。
  25. 根据权利要求22或23所述的终端设备,其特征在于,所述确定模块具体用于:
    根据预定义的多个基础参数集,检测与所述终端设备对应的目标信号或目标信道;
    确定与所述目标信号或所述目标信道对应的基础参数集为用于传输所述数据的所述基础参数集。
  26. 根据权利要求22至25中任一项所述的终端设备,其特征在于,所述检测模块具体用于:
    根据所述基础参数集中的至少一个参数,检测网络设备发送的用于调度所述数据的所述DCI。
  27. 根据权利要求22至25中任一项所述的终端设备,其特征在于,所述检测模块具体用于:
    根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定用于检测所述DCI的DCI格式;
    根据所述DCI格式,检测网络设备发送的用于调度所述数据的所述DCI。
  28. 根据权利要求27所述的终端设备,其特征在于,在所述检测模块根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定用于检测所述DCI的DCI格式之前,所述传输模块还用于:
    接收所述网络设备发送的指示信息,所述指示信息用于指示基础参数集与DCI格式的所述对应关系。
  29. 根据权利要求27或28所述的终端设备,其特征在于,不同的DCI格式对应的控制信息长度不同,和/或不同的DCI格式包括的DCI格式指示位指示的信息不同。
  30. 根据权利要求27或28所述的终端设备,其特征在于,如果不同的DCI格式对应的基础参数集不同,且所述不同的DCI格式包括相同的控制信息域,所述相同的控制信息域在所述不同的DCI格式中所占的比特数不同,和/或所述相同的控制信息域在所述不同的DCI格式中指示的内容不同。
  31. 根据权利要求30所述的终端设备,其特征在于,所述控制信息域包括以下中的至少一种:
    用于指示物理资源分配的控制信息域、用于指示确认/非确认ACK/NACK的控制信息域、用于指示跳频配置的控制信息域、用于指示调制编码方式MCS的控制信息域、用于指示子帧结构的控制信息域、以及用于指示解调参考信号DMRS配置的控制信息域。
  32. 根据权利要求22至31中任一项所述的终端设备,其特征在于,所述基础参数集包括以下参数中的至少一种:
    子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
  33. 一种网络设备,其特征在于,所述网络设备包括:
    确定模块,用于确定用于传输数据的基础参数集;
    传输模块,用于:
    根据所述确定模块确定的所述基础参数集,向终端设备发送用于调度所述数据的下行控制信息DCI;
    根据所述确定模块确定的所述基础参数集和所述传输模块发送的所述DCI,向所述终端设备发送所述数据或者接收所述终端设备发送的所述数据。
  34. 根据权利要求33所述的网络设备,其特征在于,所述确定模块具体用于:
    从预定义的多个基础参数集中,确定用于传输所述数据的所述基础参数集。
  35. 根据权利要求33或34所述的网络设备,其特征在于,在所述确定用于传输所述数据的基础参数集之后,所述传输模块还用于:
    向终端设备发送配置信息,所述配置信息包括用于传输所述数据的所述基础参数集的信息。
  36. 根据权利要求33至35中任一项所述的网络设备,其特征在于,所述传输模块具体用于:
    根据所述基础参数集中的至少一个参数,向所述终端设备发送用于调度所述数据的所述DCI。
  37. 根据权利要求33至35中任一项所述的网络设备,其特征在于,所述传输模块具体用于:
    根据所述基础参数集,以及基础参数集与DCI格式的对应关系,确定所述DCI的DCI格式;
    根据所述DCI格式,向所述终端设备传输用于调度所述数据的所述DCI。
  38. 根据权利要求37所述的网络设备,其特征在于,所述确定模块还用于:
    确定基础参数集与DCI格式的所述对应关系;
    所述传输模块还用于,向所述终端设备发送指示信息,所述指示信息用于指示所述对应关系。
  39. 根据权利要求37或38所述的网络设备,其特征在于,不同的DCI格式对应的控制信息长度不同,和/或不同的DCI格式包括的DCI格式指示位指示的信息不同。
  40. 根据权利要求37或38所述的网络设备,其特征在于,如果不同的DCI格式对应的基础参数集不同,且所述不同的DCI格式包括相同的控制信息域,所述相同的控制信息域在所述不同的DCI格式中所占的比特数不同,和/或所述相同的控制信息域在所述不同的DCI格式中指示的内容不同。
  41. 根据权利要求40所述的网络设备,其特征在于,所述控制信息域包括以下中的至少一种:
    用于指示物理资源分配的控制信息域、用于指示确认/非确认ACK/NACK反馈时序的控制信息域、用于指示跳频配置的控制信息域、用于指示调制编码方式MCS的控制信息域、用于指示子帧结构的控制信息域、以及用于指示解调参考信号DMRS配置的控制信息域。
  42. 根据权利要求33至41中任一项所述的网络设备,其特征在于,所述基础参数集包括以下参数中的至少一种:
    子载波间隔、特定带宽下的子载波数目、物理资源块PRB中的子载波数、正交频分复用OFDM符号的长度、用于生成OFDM信号的傅里叶变换或逆傅里叶变换的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度。
PCT/CN2016/089832 2016-07-12 2016-07-12 传输数据的方法、终端设备和网络设备 WO2018010102A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP16908431.6A EP3442292B1 (en) 2016-07-12 2016-07-12 Data transmission method, terminal device, and network device
PCT/CN2016/089832 WO2018010102A1 (zh) 2016-07-12 2016-07-12 传输数据的方法、终端设备和网络设备
US16/098,378 US10856283B2 (en) 2016-07-12 2016-07-12 Data transmission method, terminal device, and network device
KR1020187034358A KR20190028372A (ko) 2016-07-12 2016-07-12 데이터 전송 방법, 단말 기기 및 네트워크 기기
CN201680085496.4A CN109156018B (zh) 2016-07-12 2016-07-12 传输数据的方法、终端设备和网络设备
EP21192617.5A EP3934356B1 (en) 2016-07-12 2016-07-12 Data transmission method, terminal device, and network device
CN202011050982.7A CN112187410B (zh) 2016-07-12 2016-07-12 传输数据的方法、终端设备和网络设备
JP2018562012A JP6808758B2 (ja) 2016-07-12 2016-07-12 データを伝送するための方法、端末装置とネットワーク装置
TW106121766A TWI802543B (zh) 2016-07-12 2017-06-29 傳輸數據的方法、終端設備、網絡設備、計算器程式產品及計算機可讀介質
US17/067,331 US11483820B2 (en) 2016-07-12 2020-10-09 Data transmission method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/089832 WO2018010102A1 (zh) 2016-07-12 2016-07-12 传输数据的方法、终端设备和网络设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/098,378 A-371-Of-International US10856283B2 (en) 2016-07-12 2016-07-12 Data transmission method, terminal device, and network device
US17/067,331 Continuation US11483820B2 (en) 2016-07-12 2020-10-09 Data transmission method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2018010102A1 true WO2018010102A1 (zh) 2018-01-18

Family

ID=60951625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089832 WO2018010102A1 (zh) 2016-07-12 2016-07-12 传输数据的方法、终端设备和网络设备

Country Status (7)

Country Link
US (2) US10856283B2 (zh)
EP (2) EP3442292B1 (zh)
JP (1) JP6808758B2 (zh)
KR (1) KR20190028372A (zh)
CN (2) CN112187410B (zh)
TW (1) TWI802543B (zh)
WO (1) WO2018010102A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740604A (zh) * 2018-09-28 2021-04-30 高通股份有限公司 跨载波参考信号调度偏移和阈值确定
WO2023122912A1 (zh) * 2021-12-27 2023-07-06 Oppo广东移动通信有限公司 用于数据传输的方法和通信设备

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018010102A1 (zh) 2016-07-12 2018-01-18 广东欧珀移动通信有限公司 传输数据的方法、终端设备和网络设备
CN107634924B (zh) * 2016-07-18 2020-08-11 中兴通讯股份有限公司 同步信号的发送、接收方法及装置、传输系统
CN106231677B (zh) * 2016-07-29 2020-01-10 宇龙计算机通信科技(深圳)有限公司 一种通信的方法及基站
CN107733829B (zh) * 2016-08-12 2021-11-02 大唐移动通信设备有限公司 一种发送和检测同步信号的方法、设备
KR102123233B1 (ko) 2016-09-01 2020-06-17 주식회사 케이티 차세대 무선 액세스 망에서 데이터를 송수신하는 방법 및 그 장치
CN106454901A (zh) * 2016-11-04 2017-02-22 维沃移动通信有限公司 下行控制信道的检测方法、指示方法、终端及网络侧设备
CN108206731A (zh) * 2016-12-16 2018-06-26 上海诺基亚贝尔股份有限公司 一种用于ack/nack报告的方法、设备与系统
WO2019032653A1 (en) * 2017-08-11 2019-02-14 Intel IP Corporation NARROWBAND INTERNET CONTROL COMMAND CHANNEL COMMUNICATION WITHOUT LICENSE
CN109495224B (zh) * 2017-09-11 2021-04-27 电信科学技术研究院 一种信息处理方法、装置、设备及计算机可读存储介质
CN110830224B (zh) * 2018-02-13 2021-04-09 华为技术有限公司 通信过程中获知资源单元数量的方法和相关装置
US10941997B2 (en) * 2018-08-06 2021-03-09 James R. Trimble Corner shot firearm
CN111867066B (zh) * 2019-04-30 2023-04-07 大唐移动通信设备有限公司 一种信息指示和确定指示信息的方法及设备
US11510087B2 (en) * 2020-11-06 2022-11-22 Qualcomm Incorporated Differential measurement reporting based on a demodulation reference signal
CN114285521B (zh) * 2021-12-22 2024-05-28 中国信息通信研究院 一种信息格式类型确定方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868480A (zh) * 2011-07-07 2013-01-09 华为技术有限公司 控制信令的检测、发送方法及用户设备、基站
CN103139844A (zh) * 2011-11-22 2013-06-05 华为技术有限公司 控制信息的解析方法及终端
CN104113924A (zh) * 2013-04-17 2014-10-22 中兴通讯股份有限公司 一种多子帧调度方法、装置及系统
CN104144513A (zh) * 2013-05-10 2014-11-12 中兴通讯股份有限公司 一种多子帧调度方法、基站、终端和系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881398B2 (en) 2006-08-21 2011-02-01 Agere Systems Inc. FFT numerology for an OFDM transmission system
US8680390B2 (en) 2009-10-16 2014-03-25 Kesumo Llc Foot-operated controller
CN101714892B (zh) 2009-11-02 2014-12-31 中兴通讯股份有限公司 一种下行控制信息的传输方法及系统
CN101778449B (zh) 2010-01-08 2016-03-30 中兴通讯股份有限公司 一种下行控制信息传输方法及基站
CN102238621B (zh) 2010-04-29 2016-03-30 中兴通讯股份有限公司 基于物理下行共享信道传输公共数据的方法和系统
CN102377713B (zh) * 2010-08-12 2014-03-19 电信科学技术研究院 一种数据传输的方法、系统和设备
ES2947614T3 (es) * 2013-01-11 2023-08-14 Interdigital Patent Holdings Inc Sistema y método de modulación adaptativa
US9763258B2 (en) * 2013-01-21 2017-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for communication using a dynamic transmission parameter
CN103139644B (zh) 2013-01-31 2016-01-20 南通同洲电子有限责任公司 一种序列号匹配的方法和数字电视终端
CN103974430B (zh) * 2013-02-06 2017-06-13 电信科学技术研究院 一种数据传输方法及装置
DE102013220828A1 (de) 2013-04-18 2014-10-23 Mediatek Inc. Verfahren zum Durchführen einer Zeitmessung zur Positionsberechnung eines elektronischen Geräts mit Hilfe einer einzelnen Anfrage, die an mehrere Partnergeräte geschickt wird, und eine dazugehörige Vorrichtung
EP3139681B1 (en) 2014-05-30 2019-09-04 Huawei Technologies Co., Ltd. Method and device for sending and receiving downlink control information
US20170290008A1 (en) 2014-09-08 2017-10-05 Interdigital Patent Holdings, Inc. Systems and Methods of Operating with Different Transmission Time Interval (TTI) Durations
CN105578608B (zh) * 2015-12-23 2019-03-08 工业和信息化部电信研究院 一种下行控制信息的发送、接收方法和设备
US11089579B2 (en) * 2016-01-13 2021-08-10 Samsung Electronics Co., Ltd. Method and apparatus for supporting multiple services in advanced MIMO communication systems
JP2019510390A (ja) * 2016-02-05 2019-04-11 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 狭帯域通信システムにおける無線リソース割当
KR20220141916A (ko) * 2016-05-11 2022-10-20 콘비다 와이어리스, 엘엘씨 새로운 라디오 다운링크 제어 채널
US20170332396A1 (en) * 2016-05-13 2017-11-16 Mediatek Inc. Unified and Scalable Frame Structure for OFDM System
US10560718B2 (en) 2016-05-13 2020-02-11 Qualcomm Incorporated Merge candidates for motion vector prediction for video coding
WO2018010102A1 (zh) 2016-07-12 2018-01-18 广东欧珀移动通信有限公司 传输数据的方法、终端设备和网络设备
CN106578608A (zh) 2016-11-30 2017-04-26 都安瑶族自治县技术开发中心 一种产蛋鸡饲料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868480A (zh) * 2011-07-07 2013-01-09 华为技术有限公司 控制信令的检测、发送方法及用户设备、基站
CN103139844A (zh) * 2011-11-22 2013-06-05 华为技术有限公司 控制信息的解析方法及终端
CN104113924A (zh) * 2013-04-17 2014-10-22 中兴通讯股份有限公司 一种多子帧调度方法、装置及系统
CN104144513A (zh) * 2013-05-10 2014-11-12 中兴通讯股份有限公司 一种多子帧调度方法、基站、终端和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740604A (zh) * 2018-09-28 2021-04-30 高通股份有限公司 跨载波参考信号调度偏移和阈值确定
CN112740604B (zh) * 2018-09-28 2024-05-28 高通股份有限公司 跨载波参考信号调度偏移和阈值确定
WO2023122912A1 (zh) * 2021-12-27 2023-07-06 Oppo广东移动通信有限公司 用于数据传输的方法和通信设备

Also Published As

Publication number Publication date
US10856283B2 (en) 2020-12-01
CN109156018A (zh) 2019-01-04
JP2019526949A (ja) 2019-09-19
CN109156018B (zh) 2020-11-03
KR20190028372A (ko) 2019-03-18
TW201803382A (zh) 2018-01-16
JP6808758B2 (ja) 2021-01-06
US20210029681A1 (en) 2021-01-28
CN112187410A (zh) 2021-01-05
EP3442292A1 (en) 2019-02-13
EP3442292A4 (en) 2019-04-03
EP3934356A1 (en) 2022-01-05
EP3442292B1 (en) 2021-09-01
US20190159178A1 (en) 2019-05-23
US11483820B2 (en) 2022-10-25
TWI802543B (zh) 2023-05-21
EP3934356B1 (en) 2023-09-27
CN112187410B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
WO2018010102A1 (zh) 传输数据的方法、终端设备和网络设备
TWI737756B (zh) 傳輸數據的方法及裝置
WO2019154185A1 (zh) 下行控制信息dci的传输方法、装置及网络设备
WO2018228570A1 (zh) 一种无线通信方法和设备
TWI772312B (zh) 基於無線網絡的通信方法、終端設備和網絡設備
JP2016534638A (ja) キャリアアグリゲーションを使用するharqフィードバック
WO2016106905A1 (zh) 一种用户设备、接入网设备和反馈信息发送和接收方法
WO2018086147A1 (zh) 传输上行数据的方法、终端设备和网络设备
WO2018059168A1 (zh) 传输数据的方法、网络设备和终端设备
WO2018014306A1 (zh) 传输信号的方法、终端设备和网络设备
WO2020164461A1 (zh) 一种下行传输方法及其装置
GB2558586A (en) Resource block waveform transmission structures for uplink communications
WO2018018609A1 (zh) 反馈信息的传输装置、方法以及通信系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016908431

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016908431

Country of ref document: EP

Effective date: 20181109

ENP Entry into the national phase

Ref document number: 2018562012

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187034358

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE