WO2018228570A1 - 一种无线通信方法和设备 - Google Patents

一种无线通信方法和设备 Download PDF

Info

Publication number
WO2018228570A1
WO2018228570A1 PCT/CN2018/091671 CN2018091671W WO2018228570A1 WO 2018228570 A1 WO2018228570 A1 WO 2018228570A1 CN 2018091671 W CN2018091671 W CN 2018091671W WO 2018228570 A1 WO2018228570 A1 WO 2018228570A1
Authority
WO
WIPO (PCT)
Prior art keywords
time unit
transmitting
timing
control information
data
Prior art date
Application number
PCT/CN2018/091671
Other languages
English (en)
French (fr)
Inventor
彭金磷
唐浩
王轶
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18818932.8A priority Critical patent/EP3627936B1/en
Priority to JP2019569313A priority patent/JP7001306B2/ja
Priority to ES18818932T priority patent/ES2927569T3/es
Publication of WO2018228570A1 publication Critical patent/WO2018228570A1/zh
Priority to US16/712,547 priority patent/US11304220B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a wireless communication method and device.
  • the fifth generation (5G) mobile communication system is required to support three types of application scenarios: enhanced mobile broadband (eMBB), high-reliability low-latency communication (ultra) Reliable and low latency communications (URLLC) and massive machine type communications (mMTC). Due to the service characteristics of various application scenarios, the reliability requirements or the delay requirements have obvious differences, so that different services have different requirements for system parameters such as subcarrier spacing, symbol length, and time unit.
  • eMBB enhanced mobile broadband
  • ultra high-reliability low-latency communication
  • URLLC high-reliability low-latency communication
  • mMTC massive machine type communications Due to the service characteristics of various application scenarios, the reliability requirements or the delay requirements have obvious differences, so that different services have different requirements for system parameters such as subcarrier spacing, symbol length, and time unit.
  • data is transmitted in a time unit granularity.
  • a flexible subcarrier spacing and time unit for data transmission mechanism is proposed, that is, in 5G, the time unit Different times, for example, on the same carrier, the uplink and downlink may be communicated in different time units.
  • the time units used between the aggregated carriers may also be different.
  • the use of different time units for communication may result in inconsistent timing between the base station and the user equipment.
  • the present application describes a wireless communication method and device, which aims to determine the timing through the same timing criterion to meet the problem of timing inconsistency in a scenario with different carrier parameters caused by different service requirements, and to ensure smooth communication.
  • embodiments of the present application provide a method of wireless communication.
  • the method includes, if a time unit for transmitting control information is different from a time unit for transmitting data, the control information is related to the data; determining a timing based on the same time unit, determining a timing.
  • the unit based on the same time can be understood to be based on the same time unit or based on the same time unit principle, or based on the same timing criterion. Therefore, based on the same time unit criterion timing, the timing between the base station and the terminal can be ensured to ensure smooth communication and meet different service requirements.
  • determining timing based on the same time unit includes: determining a first timing K0 and a second timing K1 based on the same time unit, wherein the first timing K0 is a time for transmitting a physical downlink control channel PDCCH a time relationship between a unit and a time unit for transmitting a physical downlink shared channel PDSCH, the PDCCH is used to transmit control information, the PDSCH is used to transmit data scheduled by the control information, and the second timing K1 is used to transmit a PDSCH a time relationship between a time unit and a time unit for transmitting a PUCCH or a PUSCH, where the PDCCH or the PUSCH is used to transmit control information corresponding to the data, where the control information is corresponding to the data.
  • Upstream feedback information Thereby, the first timing and the second timing are determined based on the same time unit, so that the timings are consistent.
  • a third timing K2 is also determined based on the same time unit, the third timing K2 being a time relationship between a time unit transmitting a PDCCH and a time unit transmitting a PUSCH, the PDCCH being used for transmission Control information, where the PUSCH is used to transmit uplink data scheduled by the control information.
  • the first timing, the second timing, and the third timing are determined based on the same time unit, so that the timing is consistent, the communication is smooth, and the system design is simplified.
  • determining timing based on the same time unit includes: determining a timing based on the time unit for transmitting data; or determining a timing based on the time unit for transmitting control information; or a time unit for transmitting a time unit for transmitting control information and a time unit for transmitting the data, determining a timing; or based on the time unit for transmitting control information and the time unit for transmitting data
  • the medium time unit determines the timing; or the timing is determined based on the source time unit or the target time unit; or the timing is determined based on a reference time interval.
  • the timing is determined based on the same time unit
  • the method further includes: transmitting downlink control information DCI for scheduling downlink transmission to the user equipment UE, where the DCI of the scheduled downlink transmission includes the first indication domain.
  • the value of the indication K0 and the second indication field are used to notify the value of K1, and the number of bits occupied by the first indication field and the second indication field are equal. Thereby, the DCI signaling overhead can be saved, and the flexibility of K0 and K1 can be ensured.
  • the downlink control information DCI for scheduling the uplink transmission is sent to the user equipment UE, where the DCI of the scheduled uplink transmission includes a third indication field for notifying the value of the K2 value, where the third indication domain
  • the first indicator field and the second indicator field occupy the same number of bits; or the number of bits occupied by the third indicator field is equal to the sum of the number of bits occupied by the first indicator field and the second indicator field.
  • the method further includes at least one of: transmitting at least one first set and a relationship between the first set and a time unit to the UE, in the first set Include at least one different value of K0; transmitting at least one second set and a relationship between the second set and the time unit to the UE, the second set including at least one different value of K1; transmitting At least one third set sum, a relationship between the third set and a time unit to the UE, the second set including at least one different value of K2.
  • the UE can determine the set based on the time unit or subcarrier spacing, and determine the specific timing based on the value of the timing indicated in the DCI.
  • the present application provides an apparatus that can implement the related functions of the methods provided herein.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the present application provides an apparatus, including a processor, a transmitter, and a receiver, wherein if the time unit for transmitting control information is different from the time unit for transmitting data, the control Information is related to the data; the processor is configured to determine timing based on the same time unit.
  • the device can implement the relevant functions of the method provided by the present application.
  • the present application provides a computer storage medium for storing computer software instructions for use with the data transmitting apparatus described above, including a program designed to perform the above aspects.
  • the present application provides a computer storage medium for storing computer software instructions for use in the data receiving device described above, including a program designed to perform the above aspects.
  • the present application provides a chip system including a processor for supporting the device to implement the functions involved in the above aspects.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application describes a method and a device for wireless communication.
  • the timing is determined by the same timing criterion to meet the problem of timing inconsistency in a scenario with different carrier parameters caused by different service requirements, so as to ensure smooth communication.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present application.
  • FIG. 2 shows an exemplary diagram of downlink communication in the LTE technology.
  • FIG. 3 shows an exemplary diagram of uplink communication in the LTE technology.
  • Figure 4 shows an exemplary diagram of one embodiment of the present application.
  • FIG. 5 shows an exemplary diagram of one embodiment of the present application.
  • Figure 6 shows an exemplary diagram of one embodiment of the present application.
  • Figure 7 shows an exemplary diagram of one embodiment of the present application.
  • Figure 8 shows an exemplary diagram of one embodiment of the present application.
  • Figure 9 shows an exemplary diagram of one embodiment of the present application.
  • Figure 10 shows an exemplary diagram of one embodiment of the present application.
  • Figure 11 shows an exemplary diagram of one embodiment of the present application.
  • Figure 12 shows an exemplary diagram of one embodiment of the present application.
  • Figure 13 shows an exemplary diagram of one embodiment of the present application.
  • Figure 14 shows an exemplary diagram of one embodiment of the present application.
  • Figure 15 shows an exemplary diagram of one embodiment of the present application.
  • Figure 16 is a flow chart showing an embodiment of the present application.
  • Figure 17 shows an exemplary diagram of one embodiment of the present application.
  • Figure 18 shows an exemplary diagram of one embodiment of the present application.
  • Figure 19 shows an exemplary diagram of one embodiment of the present application.
  • Figure 20 shows an exemplary diagram of one embodiment of the present application.
  • Figure 21 shows a schematic diagram of the structure provided by the present application.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • LTE Long Term Evolution
  • the technology described in the present invention can be applied to a Long Term Evolution (LTE) system, or other wireless communication systems using various radio access technologies, for example, using code division multiple access, frequency division multiple access, time division multiple access,
  • LTE Long Term Evolution
  • the system of orthogonal frequency division multiple access, single carrier frequency division multiple access and other access technologies can also be applied to the subsequent evolution system using the LTE system, such as the fifth generation 5G system.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present application.
  • User Equipment accesses the network side device through the wireless interface for communication, and can also communicate with another user equipment, such as Device to Device (D2D) or Machine to Machine (M2M). ) Communication under the scene.
  • D2D Device to Device
  • M2M Machine to Machine
  • the network side device can communicate with the user equipment or with another network side device, such as communication between the macro base station and the access point.
  • network and “system” are often used interchangeably, but those skilled in the art can understand the meaning.
  • the user equipment referred to in the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, control devices, or other processing devices connected to the wireless modem, and various forms of UE, mobile Mobile station (MS), terminal (Terminal) or terminal equipment (Terminal Equipment).
  • MS mobile Mobile station
  • Terminal Terminal
  • Terminal Equipment Terminal Equipment
  • the network side device involved in the present application includes a base station (BS), a network controller, or a mobile switching center, etc., wherein the device that directly communicates with the user equipment through the wireless channel is usually a base station, and the base station may include various a form of a macro base station, a micro base station, a relay station, an access point, or a remote radio unit (RRU), etc., of course, wireless communication with the user equipment may also be another network side device having a wireless communication function.
  • the application is not limited to this.
  • the names of devices with base station functions may be different, such as evolved NodeB (eNB or eNodeB), Node B, and Transmission and Reception Point (TRP). )Wait.
  • eNB evolved NodeB
  • TRP Transmission and Reception Point
  • the technical solution provided by the present application may be applied to uplink data transmission and/or downlink data transmission.
  • the data sending device may be a user equipment, and the data receiving device may be a network side device, such as a base station;
  • the data transmitting device may be a network side device, such as a base station, and the data receiving device may be a user device.
  • FIG. 2 shows an exemplary diagram of downlink communication in the LTE technology.
  • the time interval between the time unit used for downlink scheduling and the time unit used for the corresponding downlink data transmission is denoted as K0 time units.
  • the time unit in LTE can be fixed, for example 1 ms.
  • a cell in each row can be considered a time unit.
  • the downlink scheduling information may be Downlink Control Information (DCI), and the corresponding physical downlink is performed.
  • DCI Downlink Control Information
  • the time unit used for downlink data transmission by the Physical Downlink Shared Channel (PDSCH) is n+K0 time units. In the current LTE system, K0 can be zero.
  • HARQ Hybrid Automatic Repeat Request
  • ACK Acknowledgment
  • NACK Negative-Acknowledgment
  • K1 time units The time interval between the time unit used for downlink data transmission and the time unit used for the corresponding feedback acknowledgement information is referred to herein as K1 time units. Specifically, if the downlink data is transmitted through the PDSCH in the nth time unit, the corresponding use information is transmitted through the Physical Uplink Shared Channel (PUSCH) or the Physical Uplink Control Channel (PUCCH).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the time unit is the n+K1 time unit. In the current LTE system, K1 can be 4.
  • K3 time units The time interval between the time unit used for the feedback confirmation information and the corresponding time unit for data retransmission is described herein as K3 time units. Specifically, if the information is fed back through the PUSCH or the PUCCH on the nth time unit, the time unit used by the corresponding base station for data retransmission is the n+K3th time unit. In the current LTE system, K3 can be 4.
  • FIG. 3 shows an exemplary diagram of uplink communication in the LTE technology.
  • the time interval between the time unit used for uplink scheduling and the time unit used for corresponding uplink data transmission is denoted as K2 time units.
  • the time unit For the definition of the time unit, reference may be made to the related description in FIG. 2.
  • the time unit used for the uplink data transmission by the corresponding PUSCH is the n+K2 time unit.
  • the time interval between the time unit used for uplink data transmission and the time unit used for the corresponding uplink data retransmission scheduling is described herein as K4 time units. Specifically, if the uplink data transmission is performed by the PUSCH in the nth time unit, the time unit used for the uplink data retransmission scheduling by the PDCCH is the n+K4th time unit.
  • K0 is 0, K1, and K2 are 4 in the Frequency Division Duplexing (FDD) mode, and are fixed values in the Time Division Duplexing (TDD) mode.
  • the subframe configuration of the TDD is determined.
  • K3 and K4 are mainly determined based on the capabilities and scheduling of the base station. In the FDD mode in LTE, K3 and K4 are 4.
  • K0, K1, K2, K3, and K4 can be further referred to in the subsequent evolution system, and K0, K1, K2, K3, and K4 are referred to as timing in the present application.
  • the subcarrier spacing and the used time unit between different carriers may be different, the configured subcarrier spacing is different, or configured as a slot based slot transmission or a mini-slot based transmission, configured slot.
  • the number, the number of mini-slots, and the number of symbols will result in different time units.
  • the time unit used for uplink and downlink transmission of the same carrier may also be different. In this case, how to determine the timing to ensure normal communication between the base station and the user equipment is a problem to be solved.
  • the carrier configuration parameter of the carrier may include subcarrier spacing, time unit length, CP type, and the like.
  • the embodiment of the present application provides a wireless communication method, which may be performed by a network side device, such as a base station, or a user equipment.
  • a network side device such as a base station, or a user equipment.
  • the timing is determined based on the same time unit.
  • unified timing can be determined to improve robustness, ensure normal communication between the base station and the user equipment, and simplify the system. design.
  • the unit based on the same time can be understood to be based on the same time unit or based on the same time unit principle, or based on the same timing criterion.
  • the control information is related to the transmitted data.
  • the control information is downlink scheduling information (for example, DCI), and the data is the downlink data corresponding to the downlink scheduling information, and is transmitted through the PDSCH; or the data is downlink data.
  • the control information is uplink control information, and is transmitted through the PUSCH or the PUCCH, for example, may be acknowledgement information, such as a response ACK message or a negative acknowledgement NACK message; or the control information is downlink control information DCI, and the data is downlink through the PDCCH.
  • the uplink data of the control information scheduling is transmitted through the PUSCH.
  • control information may be control information of the scheduling data, or feedback information corresponding to the data (for determining whether to retransmit, may be acknowledgment information, such as ACK or NACK message).
  • feedback information corresponding to the data for determining whether to retransmit, may be acknowledgment information, such as ACK or NACK message.
  • Timing is determined based on the same time unit. Either called timing based on the same time unit principle or based on the same timing criterion. It may be that multiple timings are determined based on the same unit.
  • the plurality of timings may be a first timing, where the first timing may be K0, indicating a time relationship between a time unit for transmitting the PDCCH and a time unit for transmitting the PDSCH, that is, if the base station sends downlink scheduling information on the time unit n,
  • the downlink scheduling information may be DCI information, and subsequent downlink data is sent on n+K0 time units.
  • the multiple timings may include a second timing, and the second timing may be K1, indicating a time relationship between a time unit for transmitting the PDSCH and a PUSCH or a PUCCH for transmitting. That is, if the base station transmits downlink data on the time unit n, its corresponding uplink feedback information (ACK or Nack message) is transmitted in the time unit n+K1.
  • ACK or Nack message uplink feedback information
  • the multiple timings may be a third timing, and the third timing may be K2, indicating a time relationship between transmitting the PDCCH and transmitting the PUSHC, that is, if the base station sends on the time unit n
  • the downlink scheduling information (which may be DCI) transmits corresponding uplink data on the time unit n+K2.
  • K3 or K4 may also be determined based on the same time unit.
  • the PDCCH may not occupy the entire time unit.
  • a time unit is 1 ms and 14 symbols, and the PDCCH generally only occupies the first 1-3 symbols.
  • PDSCH, PUSCH, and PUCCH are similar.
  • the above channel names may be different in other systems.
  • the NR may be NR-PDCCH, NR-PDSCH, NR-PUSCH, NR-PUCCH, etc., and is not limited herein.
  • determining the timing based on the same time unit can improve robustness and simplify system design.
  • the timing may be determined based on the time unit of the transmission control information; or the timing may be determined based on the time unit of the transmission data; or the timing may be determined based on the time unit in which the time unit of the transmission control information is transmitted and the time unit in which the data is transmitted; or based on the transmission control
  • the time unit of the information and the short time unit in the time unit of the transmitted data determine the timing; or determine the timing based on a reference time interval, which may be 1 ms, or 7 symbols, etc., which is not limited in this application; or may be based on the source
  • the time unit determines the timing, and the time unit for transmitting the PDCCH is a timing criterion or a timing unit for the first timing (time relationship between the PDCCH and the PDSCH), and is a time unit for transmitting the PDCCH for the third timing (time relationship between the PDCCH and the PUSCH) a timing criterion or
  • the unit is a timing criterion or a timing unit; for the third timing K2 (time relationship between PDCCH and PUSCH) is a time unit for transmitting a PUSCH as a timing criterion or a timing unit; for K1 (a time relationship between PDSCH and PUSCH/PUCCH) is transmission
  • the time unit of the PUSCH/PUCCH is a timing criterion or a timing unit; or the timing is determined based on the time unit of the transmitted data, for example, for the first timing K0 (the time relationship between the PDCCH and the PDSCH) is a time unit for transmitting the PDSCH as a timing criterion or a timing unit.
  • timing K2 time relationship between PDCCH and PUSCH
  • a second timing K1 time relationship between PDSCH and PUSCH/PUCCH
  • determining the timing based on the same time unit that is, determining the timing based on the same timing criterion, can ensure the communication quality between the base station and the terminal, and improve the robustness.
  • the base station may send multiple sets to the UE, the multiple sets may be a set of one or more K0s, a set of one or more K1s, a combination of one or more K2s, etc.
  • the base station transmits a correspondence between the set and the at least one of the subcarrier spacing and the time unit to the UE; the base station further sends the indication information to the UE, and the indication information may indicate the value of the timing; the UE may determine the set based on the correspondence, based on the indication The information determines the value of the specific timing.
  • the base station determines a different set based on the subcarrier spacing or the time unit by transmitting a plurality of different timing values, and further determines the timing based on the indication information, so that the scheduling may be performed in different subcarriers or different time units.
  • Flexible scheduling
  • this embodiment is related to scheduling.
  • the PDCCH and the corresponding PDSCH or the PUSCH are configured, and the subcarrier spacing of the PDCCH and the corresponding PDSCH or the PUSCH is the subcarrier spacing supported by the UE.
  • the UE supports 15k HZ, 60k HZ, and 120k HZ
  • the PDCCH and the corresponding PDSCH or PUSCH are configured. It is an adjacent 15, 60 combination or an adjacent 60, 120 combination; or a plurality of carriers configured or activated for the UE are divided into at least one carrier group, and the carrier group can be cross-carrier scheduling and/or cross-carrier aggregation feedback.
  • carriers included in one carrier group have the same subcarrier spacing or the same time unit length, that is, network devices (for example, base stations) are divided by the same subcarrier spacing or the same time unit length.
  • the plurality of carriers configured or activated for the terminal are divided into at least one carrier group. Therefore, the grouping method can greatly simplify the complexity of cross-carrier scheduling or feedback.
  • at most one carrier group has carriers of different subcarrier intervals or different time unit lengths.
  • the network device may first divide the multiple carriers configured for the terminal into at least one carrier group by using the same subcarrier spacing or the same time unit length as the division criterion, and then use the remaining carriers as one carrier group.
  • the subcarrier spacing or the time unit length is configured to simplify the complexity of cross-carrier scheduling or feedback, and avoids too many types of subcarrier spacing or time unit length configuration in the carrier group, resulting in high complexity of cross-carrier scheduling and feedback.
  • a carrier with a subcarrier spacing configuration of 15 kHz, 60 kHz, and 120 kHz can be divided into a group of subcarrier spacings configured to be 15 kHz and 60 kHz, and subcarrier spacing can be configured to be 15 kHz, and 120 kHz carriers are grouped.
  • this embodiment relates to feedback.
  • the subcarrier spacing of the PUCCH or the PUSCH, the PDSCH, and the corresponding PUCCH or the PUSCH is the adjacent subcarrier spacing supported by the UE. For example, if the UE supports 15k, 60k, and 120k, the adjacent 15, 60 combination or the adjacent 60, 120 combination is configured. The combination of 15 and 120 cannot be configured.
  • the base station groups carriers When the base station groups carriers, at most one group has different subcarrier spacing or time unit length, such as 10 carriers, divided into 4 groups, according to whether the subcarrier spacing or the time unit length is the same. Packets, the remaining different subcarrier spacings or time unit lengths are 1 group; when the base station groups carriers, there are subcarrier spacings or time unit lengths of up to 2 carriers in each group.
  • the transmission time unit may be a subframe, a transmission time interval (where one transmission time interval is equal to several subframe lengths, or a sum of several transmission time intervals is equal to one subframe length), or may be one time Domain symbol, multiple time domain symbols, 1 slot, multiple slot aggregation, 1 mini-slot, multiple mini-slot aggregation, or mini-slot and slot aggregation
  • the subcarrier spacing may be 15 kHz*2 ⁇ n (n is a positive integer), that is, the subcarrier spacing is 15 kH, 30 kHz, and the like.
  • the transmission time unit is determined by the subcarrier spacing and the number of symbols.
  • all embodiments herein relate to a configuration scheme or description of a transmission time unit, which may be replaced with a configuration scheme or description involving subcarrier spacing.
  • Figure 4 shows an exemplary diagram of one embodiment of the present application.
  • the time unit for transmitting control information is larger than the time unit for transmitting data.
  • the first time unit of carrier 1 is used for transmitting PDCCH, and the time unit on carrier 2 can be used.
  • the first column in FIG. 4 indicates the time unit used by carrier 1, and the second column indicates the time unit used by carrier 2. .
  • the time unit in the present application is the minimum time interval used for transmission, and may be a subframe, or may be one or more time domain symbols, one slot or multiple time slots, and one mini time.
  • the subcarrier spacing may be 15 kHz*2 ⁇ m (m is a positive integer), that is, the subcarrier spacing is 15 kH, 30 kHz, and the like.
  • the transmission time unit is determined by the subcarrier spacing and the number of symbols. Therefore, the configuration scheme or description of the transmission time unit in the embodiment of the present application may be replaced by a configuration scheme or description related to the subcarrier spacing.
  • the time unit used by carrier 1 is larger than the time unit used by carrier 2, or the subcarrier spacing used by carrier 1 is smaller than the subcarrier spacing used by carrier 2.
  • the time unit based on the short time unit is used to determine the timing.
  • the PDCCH is used for downlink scheduling
  • the PDSCH is used for downlink data transmission
  • the time unit for transmitting the PDCCH is The time relationship between time units for transmitting the PDSCH, and if the time unit is based on a short time unit, K0 may be 0 or 1, or 2... or 5, which is not limited in this application. .
  • FIG. 5 shows an exemplary diagram of one embodiment of the present application.
  • the time unit for transmitting control information is smaller than the time unit for transmitting data.
  • the first time unit of carrier 1 is used to schedule the PDCCH, and the time unit of carrier 2 can be used.
  • the corresponding PDSCH is scheduled.
  • two time units for scheduling a PDCCH are aligned with time units that can be used to schedule a PDSCH.
  • timing is determined in units of time based on short time units.
  • the PDCCH is used for performing downlink scheduling
  • the PDSCH is used for performing downlink data transmission
  • the time relationship between the time unit for transmitting the PDCCH and the time unit for transmitting the PDSCH is K0. If the time unit is based on a short time unit, based on the time interval between the downlink scheduling time unit and the time unit used by the PDCCH, the time unit that can be used to schedule the PDSCH is not more than one time unit. For each time unit, the corresponding K0 can be 0, 2 or 4.
  • Figure 6 shows an exemplary diagram of one embodiment of the present application.
  • the time unit 6 is different from FIG. 5 in that the location at which the time unit for transmitting the PDCCH is located is already at the back end of the time unit A used by the carrier 2 corresponding thereto (assuming M short time units and 1 long time unit ( The time unit A) is aligned, and the time unit for transmitting the PDCCH is the i-th of the M short-time units, i>1, and the corresponding part in the subsequent embodiments may refer to the description herein), and the time of the corresponding PDSCH is used.
  • the unit may be the next time unit of the A time unit.
  • the next time unit of the A time unit is a short distance from the time unit for transmitting the PDCCH.
  • the K0 of the next time unit of the A time unit is marked as 1, then the K0 of the next time unit can be recorded as 3, the K0 of the subsequent time unit is sequentially added 2, and so on.
  • the K0 of the time unit that can be used for scheduling the PDSCH is 1 or 3, which is not limited in this application.
  • the K0 of the time unit that can be used for scheduling the PDSCH is 0 or 2, which is not limited in this application.
  • Figure 7 shows an exemplary diagram of one embodiment of the present application.
  • the time unit for transmitting control information is larger than the time unit for transmitting data.
  • the first time unit of carrier 1 is used for transmitting PDCCH, and the time unit on carrier 2 can be used.
  • the corresponding PDSCH is transmitted.
  • the time unit used by carrier 1 is larger than the time unit used by carrier 2.
  • the two time units used to schedule the PDCCH are aligned with the time units that can be used to schedule the PDSCH.
  • timing is determined in units of time based on long time units.
  • the PDCCH is used for performing downlink scheduling
  • the PDSCH is used for performing downlink data transmission.
  • the time relationship between the time unit for transmitting the PDCCH and the time unit for transmitting the PDSCH is recorded as K0. If the time unit based on the long time unit is based on the distance from the time interval between the downlink scheduling time units, the time unit that can be used to schedule the PDSCH in a time range with the time unit used by the PDCCH is the first time unit. For 0 time units, the corresponding K0 may be 0, 0, 1, 1, 2 or 2 in sequence, and so on, which is not limited in this application.
  • Figure 8 shows an exemplary diagram of one embodiment of the present application.
  • the time unit for transmitting the control information is smaller than the time unit for transmitting the data.
  • the first time unit of the carrier 1 is used to schedule the PDCCH, and the time unit of the carrier 2 can be used for scheduling.
  • Corresponding PDSCH As in Figure 5, two time units for scheduling a PDCCH are aligned with time units that can be used to schedule a PDSCH.
  • timing is determined in units of time based on long time units.
  • the PDCCH is used for performing downlink scheduling
  • the PDSCH is used for performing downlink data transmission
  • the time relationship between the time unit for transmitting the PDCCH and the time unit for transmitting the PDSCH is K0. If the time unit is based on a long time unit, based on a time interval between time units for transmitting the PDCCH, the time unit that is used with the PDCCH does not exceed a long time unit and can be used to transmit the PDSCH.
  • the K0 of the time unit (time unit A in the figure) is 0, then the K0 of the next time unit is 1, and so on, and the value of K0 is incremented by one.
  • K0 of the time unit for transmitting the PDSCH whose time interval of the time unit for transmitting the PDCCH is not more than one long time unit is 0, that is, K0 of the first time unit after the time unit A is 0,
  • the K0 of the subsequent time unit is 1, and so on, and the value of K0 is incremented by one.
  • Figure 9 shows an exemplary diagram of one embodiment of the present application.
  • the location at which the time unit for transmitting the PDCCH is located is already at the back end of the time unit A used by the carrier 2 (assuming M short time units and 1 long time unit (time unit) A) Alignment, the time unit for transmitting the PDCCH is the i-th of the M short-time units, i>1), and at this time, the timing is determined based on the long time unit.
  • the time unit used by the corresponding PDSCH may be recorded as 0, that is, the time unit of the time unit of the time unit for transmitting the PDCCH not exceeding one long time unit, that is, the first time unit after the time unit A in FIG. K0 is written as 0, K0 of the subsequent time unit is incremented by 1, and so on.
  • the K0 of the time unit that may be used to transmit the PDSCH in this embodiment may be 0 or 1.
  • the time interval of the time unit A for transmitting the PDCCH in FIG. 9 does not exceed 1 long time unit, and K0 of A is recorded as 1, subsequent time The KO of the unit is incremented by 1, and so on.
  • the K0 of the time unit that may be used to transmit the PDSCH in this embodiment may be 0, 1, or 2.
  • the time unit for transmitting control information is different from the length of the time unit for transmitting data.
  • the transmission control information is a PDCCH, and may be used to send downlink scheduling information.
  • the downlink scheduling information is used for performing uplink scheduling, for example, DCI information
  • the transmission data is a PUSCH, and is used for performing corresponding uplink data transmission, where a time unit used for uplink scheduling and a time unit used for corresponding upper and lower data transmission are used.
  • the interval can still be recorded as the timing K2.
  • the timing can be determined in a short time unit or a time unit based on a long time unit.
  • the time unit for transmitting control information is different from the length of the time unit for transmitting data.
  • the data channel is a PDSCH, and is used to send downlink data and control information.
  • the acknowledgement information for the downlink data feedback for example, the response (Acknowledgment, ACK) information or the Negative-Acknowledgment (NACK) information corresponding to the downlink data is transmitted through the PUSCH or the PUCCH, and is used for transmitting the control information.
  • the time relationship between time units between transmissions of downlink data can be written as K1.
  • the timing is determined in a short time unit or a time unit based on a long time unit. The following is a description of the combination.
  • FIG. 10 shows an exemplary diagram of an embodiment of the present application.
  • the PDSCH is used to transmit downlink data
  • the PUSCH or PUCCH is used to transmit control information
  • the time unit for transmitting data is larger than the time unit for transmitting control information, as shown in FIG. 10, the time unit for transmitting data. Align with two time units for transmitting control information.
  • the time unit K1 is determined based on the time unit based on the short time unit, and the short time unit in this embodiment is the time unit for transmitting the control information.
  • the K1 of the first time unit is 1, and is sequentially incremented by 1.
  • the second first time unit used by the PUSCH or the PUCCH that may be scheduled may be less than 1 from the time unit of the transmitted data, and the first time unit has a K1 of 1, and is sequentially incremented by one.
  • FIG. 11 shows an exemplary diagram of an embodiment of the present application.
  • the PDSCH is used to transmit downlink data
  • the PUSCH or PUCCH is used to transmit control information
  • the time unit for transmitting data is smaller than the time unit for transmitting control information.
  • two time units for transmitting data are aligned with time units for transmitting control information.
  • the timing unit K1 is determined by a time unit based on a short time unit.
  • the short time unit in this embodiment is a time unit for transmitting data.
  • K1 of the first time unit used by the PUSCH or PUCCH that may be scheduled is 0, and is sequentially incremented by 2.
  • FIG. 12 shows an exemplary diagram of an embodiment of the present application.
  • the time unit for transmitting downlink data is already at the back end of the time unit A used for the carrier 2, and at this time, if the time unit is based on a short time unit, the timing is determined. Then, the timing K1 of the A time unit may be 0, the timing K1 of the first time unit after the A unit is 1, followed by 2, and so on.
  • the timing K1 of the first time unit after the A time unit is 0, followed by 2, and so on.
  • FIG. 13 shows an exemplary diagram of an embodiment of the present application.
  • the PDSCH is used to transmit downlink data
  • the PUSCH or PUCCH is used to transmit control information
  • the time unit for transmitting data is smaller than the time unit for transmitting control information.
  • the time unit for transmitting data is larger than the time unit for transmitting control information, and as shown in FIG. 13, the time unit for transmitting data is aligned with two time units for transmitting control information.
  • the timing unit K1 is determined by a time unit based on a long time unit.
  • the long time unit in this embodiment is a time unit for transmitting data.
  • the interval between the first and second time units of the possible transmission of the PUSCH or PUCCH and the time unit for transmitting the downlink data is less than one long time unit, and the K1 of the first and second time units is 1
  • the interval between the third time unit and the time unit for transmitting downlink data is 1 long time unit, and the interval between the fourth time unit and the time unit for transmitting downlink data is less than 2 long.
  • the K1 of the third time unit and the fourth time unit is 2, and so on.
  • Figure 14 shows an exemplary diagram of one embodiment of the present application.
  • the PDSCH is used to transmit downlink data
  • the PUSCH or PUCCH is used to transmit control information
  • the time unit for transmitting data is smaller than the time unit for transmitting control information.
  • two time units for transmitting data are aligned with time units for transmitting control information.
  • the embodiment of the present application is a time unit based on a long time unit, that is, a time unit in which a time unit for transmitting control information is based.
  • the interval between the time unit A and the time unit for transmitting the PDSCH is less than one long time interval
  • K1 of A may be 0, K1 of the subsequent time unit is incremented by 1, and so on.
  • K1 of the first time unit after time unit A is 0, K1 of subsequent time units is incremented by 1, and so on.
  • Figure 15 shows an exemplary diagram of one embodiment of the present application.
  • time unit for transmitting downlink data is already at the back end of the time unit A used by the carrier 2, and at this time, the timing is determined in units of time based on the long time unit.
  • K1 of the first time unit after A is 0, and then K1 is sequentially incremented by 1.
  • K1 of time unit A is 0, and then K1 is incremented by one.
  • the present application also provides an embodiment for determining timing based on time units based on time units of the target.
  • the time unit for transmitting the PDSCH is a timing criterion or a timing unit
  • the time unit for transmitting the PUSCH is a timing criterion or a timing unit
  • K1 time relationship of PDSCH and PUSCH/PUCCH
  • K1 time relationship of PDSCH and PUSCH/PUCCH
  • K1 time relationship of PDSCH and PUSCH/PUCCH
  • K1 time relationship of PDSCH and PUSCH/PUCCH
  • the time unit in the embodiment of Figures 10-15, is a time unit based on the time unit used to transmit the PUSCH or PUCCH.
  • the present application also provides an embodiment for determining timing by time units based on source time units.
  • the time unit for transmitting the PDCCH is a timing criterion or a timing unit
  • the time unit for transmitting the PDCCH is a timing criterion or a timing unit
  • K1 time relationship between PDSCH and PUSCH/PUCCH
  • K1 time relationship between PDSCH and PUSCH/PUCCH
  • K1 time relationship between PDSCH and PUSCH/PUCCH
  • K1 time relationship between PDSCH and PUSCH/PUCCH
  • the time based on the time unit for transmitting the PDCCH Unit in the embodiment of Figures 10-15
  • the present application also provides an embodiment for determining timing by a time unit based on a time unit in which data is transmitted.
  • K0 time relationship between PDCCH and PDSCH
  • K1 a time relationship between a PDSCH and a PUSCH or a PUCCH for a PUSCH
  • a time unit for transmitting a PDSCH is used as a timing criterion.
  • a timing unit that is, in the embodiment of Figures 4-9, a time unit based on a time unit for transmitting a PDSCH.
  • the time unit using the data channel (longer time unit) is the time unit than the time channel using the control channel (shorter time unit)
  • the timing indication overhead is small, because it is assumed that M short-time units and one long-time unit are aligned, and the interval K0 values of the M short-time units and the same long-term unit are equal (note: if short-time unit timing is used, Then, the value of K0 is not equal.
  • the time unit (shorter time unit) of the data channel is used as the timing unit of the control channel (longer time unit)
  • the time unit using the data channel has a scheduling delay of 2 short time units, and if the time unit of the control channel is used, the scheduling delay is 2 long times. unit.
  • K1 uses the same timing criteria as K0 to simplify system design.
  • the timing based on the time unit of the transmission data can be understood as replacing the time unit for transmitting the PDCCH with or as the time relationship determined after transmitting the time unit of the PDSCH.
  • a time unit for transmitting a PUSCH is used as a timing criterion or a timing unit; in the embodiment of FIG. 10-15, a time unit based on a time unit for transmitting a PUSCH .
  • the above embodiment of the present application shows a method of determining the timing.
  • the communication flow between the base station and the terminal with respect to timing will be described later in the application.
  • the present application proposes a schematic flowchart of an embodiment.
  • the base station sends multiple sets to the UE, and the set is a set that includes different values of timings;
  • the multiple sets include 1 K0 set, 1 K1 set, 1 K2 set; or multiple sets include at least 2 K0 sets, and/or at least 2 K1 sets, and/or at least 2 K2 sets. set.
  • the plurality of sets may include a set of K0 (referred to as K0 set), and the K0 set may be ⁇ 1, 2 ⁇ , and the multiple sets may further include a set of K1 (K1 set for short), K1 set It may be ⁇ 3, 4 ⁇ , and the plurality of sets may further include a set of K2 (K2 set for short), and the K2 set may be ⁇ 5, 6 ⁇ .
  • the base station may send the foregoing multiple sets to the UE through high layer signaling, for example, by using RRC signaling.
  • RRC radio resource control
  • MIB master information block
  • SIB system information block
  • RRC radio resource control
  • MAC CE media access control control element
  • different sets may have corresponding correspondences with different time unit intervals or different subcarrier intervals.
  • different sets may have corresponding relationships with different subcarrier spacing pairs, or different sets may have corresponding relationships with different time unit pairs, for example (15 kHz, 60 kHz) for the corresponding K1 set 1, (15 kHz, 120 kHz) pairs The collection of K1 2.
  • the base station sends a correspondence between at least one of a time unit and a subcarrier interval and a set to the UE.
  • the relationship may be a correspondence between the subcarrier spacing 15K HZ and the set 1, or a correspondence between the 7 symbols of the time unit and the set 1, or a subcarrier spacing of 15K HZ and a time unit of 7 symbols and a set.
  • the corresponding relationship may be: different sets and different time units, or subcarrier spacing, or a correspondence between the two. Or the correspondence between different sets and different time unit intervals, or different subcarrier intervals. Or the correspondence between different subcarrier spacing/time unit length pairs and different timing sets.
  • the K1 set set1 is configured for 15k_to_30k
  • the K1 set set1 is configured for 30k_to_15k.
  • the K1 value indicated in the DCI is from the set set1; similarly, when the PDSCH is 30k and the decoding result is fed back on the PUSCH/PUCCH of 15k, The value of K1 indicated in the DCI comes from the set set2.
  • the base station may send multiple correspondences to the UE.
  • the base station may send the foregoing correspondence to the UE through high layer signaling.
  • the base station sends DCI information to the UE, where the DCI includes information for indicating a value of the timing.
  • the downlink data scheduling DCI includes a first indication field for indicating K0 value information, and a second indication field for indicating K1 value information.
  • the uplink data scheduling DCI includes a third indication field for indicating K2 value information.
  • the above value information is indicated as the first value in the above set.
  • the number of bits of the first indication field, the number of bits of the second indication field, and the number of bits of the third indication field are equal, for example, both are 2 bits. This ensures that the flexibility between the three is the same, that is, the collection size is the same.
  • the sum of the number of bits of the first indication field and the number of bits of the second indication field is equal to the number of bits of the third indication field, for example, the number of bits of the first indication field is 1, and the bits of the second indication field are The number is 1, and the number of bits in the third indicator field is 2. This ensures that the overhead or size of the uplink DCI and the downlink DCI are similar or the same.
  • the S1603 solution may not be combined with S1601 and S1602, which is not limited in this application.
  • K1 can be 1, but 60k.
  • the slot is a time unit, and its K1 is at least 4.
  • the set required for 15k is ⁇ 1, 2 ⁇
  • the set required for 60k is ⁇ 4, 5 ⁇ .
  • the timing domain in the DCI needs 2 bits. If the scheme uses 2 sets, the timing domain in the DCI only needs 1 bit. Thus, based on the solution of the present application, the DCI overhead can be reduced.
  • the UE determines the timing based on the correspondence between at least one of the subcarrier spacing and the time unit and the set, and the information used to indicate the timing of the DCI information.
  • the UE Since it is possible to configure multiple K1 sets, the UE needs to determine which set, and then determines the specific K1 value according to the indication information of the second indication domain in the DCI. Specifically, the UE determines which set is based on the currently configured subcarrier spacing (or time unit) and the corresponding relationship between the subcarrier spacing (or time unit) in S1601 and the plurality of sets.
  • K1, K0, K2 are similar, and will not be described again.
  • a subcarrier spacing (or time unit length) value corresponds to a K1 set. For example, 15 kHz (or 1 ms) corresponds to K1 set 1; 60 kHz (or 0.25 ms) corresponds to K1 set 2. Then, as an implementation manner, the UE determines the K1 set according to the subcarrier spacing (or time unit length) value of the PDSCH. For example, if the subcarrier spacing of the PDSCH is 15 kHz, it is determined to adopt the K1 set 1 and then according to the second indication domain in the DCI. The indication information and K1 set 1 determine the value of the final K1. .
  • the UE determines the K1 set according to the subcarrier spacing (or time unit length) value of the PUSCH/PUCCH. For example, if the subcarrier spacing of the PUSCH/PUCCH is 60 kHz, it is determined to adopt the K1 set 2, and then according to the first in the DCI. The indication information of the two indication fields and the K1 set 2 determine the value of the final K1. .
  • a subcarrier spacing (or time unit length) interval corresponds to a K1 set. For example, 15 kHz to 60 kHz (or 0.25 ms to 1 ms) corresponds to K1 set 1; 120 to 240 kHz corresponds to K1 set 2. Then, as an implementation manner, the UE determines the K1 set according to the subcarrier spacing (or time unit length) value of the PDSCH. For example, if the subcarrier spacing of the PDSCH is 15 kHz, it is determined to adopt the K1 set 1 and then according to the second indication domain in the DCI. The indication information and K1 set 1 determine the value of the final K1. .
  • the UE determines the K1 set according to the subcarrier spacing (or time unit length) value of the PUSCH/PUCCH. For example, if the subcarrier spacing of the PUSCH/PUCCH is 60 kHz, it is determined to adopt the K1 set 1 and then according to the first in the DCI. The indication information of the two indication fields and the K1 set 1 determine the value of the final K1.
  • a subcarrier spacing pair or subcarrier spacing interval pair (or time unit length pair or time unit length interval pair) value corresponds to a K1 set.
  • a K1 set For example (15 kHz, 60 kHz) pairs correspond to K1 set 1; (15 kHz, 120 kHz) pairs correspond to K1 set 2.
  • the UE determines the K1 set according to the subcarrier spacing (or time unit length) value of the PDSCH and the subcarrier spacing (or time unit length) value of the PUSCH/PUCCH, for example, if the subcarrier spacing of the PDSCH is 15 kHz and the PUSCH/PUCCH The subcarrier spacing is 60 kHz, and it is determined that the K1 set 1 is adopted, and then the value of the final K1 is determined according to the indication information of the second indication field in the DCI and the K1 set 1.
  • the K1 set 1 is used, and then the value of the final K1 is determined according to the indication information of the second indication field in the DCI and the K1 set 2.
  • the base station carries scheduling information through carrier 1, and performs corresponding data transmission through carrier 2.
  • the carrier interval of carrier 2 is 15K HZ, and the time unit between the time unit used for scheduling information and the time unit used for data transmission is separated.
  • the number is set 1.
  • the set 1 may include a plurality of different values, for example, may be ⁇ 1, 2 ⁇ . If the carrier interval of the carrier 2 is 30K HZ, the time unit used for scheduling information and the time unit used for data transmission
  • the number of separated time units is set 2, and the set 2 may include a plurality of different values, for example, may be ⁇ 3, 4 ⁇ ; the base station may send the correspondence between set 1 and 15K HZ, set 2 and 30K HZ.
  • the base station sends the indication information to the UE, where the indication information is used to indicate the number of time units separated by the time unit used by the scheduling information and the time unit used for data transmission, and the indication information may be included in the downlink.
  • the scheduling information for example, in the DCI, if the indication information indicates the second value, the UE determines the set 1 according to the carrier interval of the carrier 2 is 15K HZ, and the second value is the set. The number of 12, i.e., the scheduling unit time lag between the time information of the data unit using the information used for 2 time units.
  • the base station carries the scheduling information through the carrier 1 and performs the corresponding data transmission through the carrier 2.
  • the UE capability is considered, for a certain UE, if the carrier spacing of the carrier 2 is 15K HZ and the length of the time unit is 14 symbols, The number of time units separated by the time unit used by the scheduling information and the time unit used by the data information may be 1, and if the carrier interval of the carrier 2 is 60K HZ and the length of the time unit is 7 symbols, the scheduling information is used.
  • the number of time units separated by the time unit and the time unit used by the data information is at least 4.
  • the base station may send the set 1 and the set 2, and the length of the carrier interval and the time unit, and the correspondence between each set to the UE, for example, the set 1 is ⁇ 1, 2 ⁇ , corresponding to the carrier interval of 15K HZ, time The unit length is 14 symbols, the set 2 is ⁇ 4, 5 ⁇ , the carrier interval is 60K HZ, and the time unit length is 7 symbols. Further, the base station sends indication information to the UE, and the indication information is used to indicate scheduling information. The number of time units separated between the time unit used and the time unit used for data transmission. If the carrier interval of carrier 2 for corresponding data transmission is 15K HZ and the length of the time unit is 14 symbols, the UE transmits based on data.
  • the carrier interval used is 15K HZ
  • the length of the time unit is 14 symbols
  • the set 1 is determined. Based on the second value indicated in the indication information, it is determined that the time unit used by the scheduling information is separated from the time unit used for data transmission.
  • the number of time units is 2.
  • the base station performs data transmission through carrier 1, and the UE feeds back the acknowledgment information through carrier 2, that is, the decoding result.
  • the carrier interval of carrier 1 is 15K HZ
  • the carrier interval of carrier 2 is 30K HZ
  • the carrier scheduling at 15K HZ is 30K.
  • base station configures set 1, set 1 is ⁇ 1, 2 ⁇ , if carrier 1 has a carrier spacing of 30K HZ, carrier 2 has a carrier spacing of 15K HZ, base station configures set 2, and set 2 is ⁇ 3 4, the base station sends the set 1 and the set 2 to the user equipment. Further, the base station sends the indication information to the UE.
  • the carrier spacing of the carrier based on the data transmission is 15K HZ, and the carrier spacing of the carrier that feeds back the acknowledgment information is 30K HZ. Determining the set 1, determining 2 in the set 1 based on the second value indicated in the indication information, that is, the number of time units separated from the time unit for determining the feedback confirmation information and the time unit used for data transmission is 2.
  • the present application provides an embodiment involving cross-carrier scheduling of different time unit lengths.
  • Figure 17 shows an exemplary diagram of one implementation of the present application.
  • the base station configures multiple carriers for the UE, such as carrier 1 and carrier 2 in FIG. 16, and carrier 1 can schedule the PDSCH or PUSCH of carrier 2 across carriers.
  • the time unit used by carrier 1 is smaller than the time unit used by carrier 2.
  • the short time unit schedules the long time unit, and K2+K4 processes can guarantee continuous transmission.
  • Figure 18 shows an exemplary diagram of one embodiment of the present application.
  • carrier 1 schedules the PDSCH or PUCCH of carrier 2 across carriers.
  • the time unit used by carrier 1 is one quarter of the time unit used by carrier 2.
  • the time unit used by carrier 2 is four times the time unit used by carrier 1, in order to ensure continuous transmission, M-1+K2+K4 processes are required to ensure continuous transmission, and M is a long time unit and a short time. The ratio of the units.
  • the embodiment of the present application proposes a scheme that the length of the time unit for transmitting the PDCCH is not greater than the length of time for transmitting the PUSCH or the PDSCH. To avoid increasing the number of processes required to guarantee continuous transmission.
  • the subcarrier spacing of the transmitted PDCCH is not less than the subcarrier spacing of the PUSCH or the PDSCH. That is, in the case where the number of slots or the number of symbols is the same, the subcarrier spacing is limited. For example, the subcarrier spacing for transmitting the PDCCH is not less than the subcarrier spacing for transmitting the PUSCH or the PDSCH. .
  • Subcarrier spacing used by the PDCCH Subcarrier spacing allowed by PUSCH/PDSCH 240k 15k, 30k, 60k, 120k, 240k 120k 15k, 30k, 60k, 120k 60k 15k, 30k, 60k 30k 15k, 30k 15k 15k
  • the configuration of the PUSCH or the PDSCH must ensure that the time unit length is not less than the time unit length of the PDCCH, for example, the subcarrier spacing. It can be 15K, 30K, 60K or 120K, and the time unit is 2 slots. That is, if the number of slots or the number of symbols is different, the sub-carrier spacing, the number of slots or the number of symbols may be considered, at least one of the number of symbols or the number of slots, and the sub-carrier spacing may determine the length of the time unit.
  • the length of the time unit for transmitting the PDCCH may be greater than the length of the time unit for transmitting the PUSCH or the PDSCH.
  • the length of the time unit for transmitting the PDCCH is greater than the length of the time unit for transmitting the PUSCH or the PDSCH, and the length of the time unit for transmitting the PUSCH or the PDSCH is greater than that of the 1/X transmission PDCCH, in order to avoid excessive increase in the number of processes for ensuring continuous transmission.
  • the length of the time unit, X is a positive integer, optionally, X can be 2 or 4.
  • PDCCH and PUSCH or PDSCH are configured on one slot, if the subcarrier spacing of the PDCCH is 60K HZ, the subcarrier spacing of the PUSCH or PDSCH is not more than 120K HZ.
  • Subcarrier spacing used by the PDCCH Subcarrier spacing allowed by PUSCH/PDSCH 240k 15k, 30k, 60k, 120k, 240k 120k 15k, 30k, 60k, 120k, 240k 60k 15k, 30k, 60k, 120k 30k 15k, 30k, 60k 15k 15k, 30k, 60k 15k 15k, 30k, 60k 15k 15k, 30k, 60k 15k 15k 15k, 30k
  • the PDCCH is configured on a 60k slot
  • the PUSCH/PDSCH is configured such that the time unit length is not greater than the time unit length of the PDCCH, for example, the subcarrier spacing may be 15k, 30k, 60k, 120k or 240k 2 Slots. That is, if the number of slots and the number of symbols are different, the length of the time unit is determined by combining the number of symbols or the number of slots and the subcarrier spacing.
  • the value of M is related to the capability of the UE and the maximum number of processes supported by the system or supported by the UE.
  • the configuration of the M needs to meet the following condition, that is, K2+K4 (where K2+K4 is The number of processes required if the time unit length is the same)
  • K2+K4 is The number of processes required if the time unit length is the same
  • the UE supports 15k HZ, 60k HZ, 120k.
  • the PDCCH and the corresponding PDSCH or PUSCH are configured as adjacent 15, 60 combinations or adjacent 60, 120 combinations; when the base station groups carriers, at most one group of carriers have different subcarrier intervals or time lengths, for example, 10
  • the carriers are divided into four groups, based on whether the subcarrier spacing or the time unit length is the same packet, and the remaining different subcarrier spacings or time unit lengths are divided into one group; or, when the base station groups the carriers, there are at most two groups.
  • the carriers have different subcarrier spacings or lengths of time.
  • the present application provides an embodiment that relates to HARQ feedback over different time unit lengths.
  • Figure 19 shows an exemplary diagram of one embodiment provided by the present application.
  • the base station configures a plurality of carriers for the UE, such as carrier 1 and carrier 2 in FIG. 18, and the length of the time unit used by carrier 1 is four times the length of the time unit used by carrier 2.
  • the data transmitted on the carrier of the long time unit feeds back the acknowledgment information on the carrier of the short time unit, such as the acknowledgment ACK message or the negative acknowledgment NACK.
  • Figure 20 shows an exemplary diagram of one embodiment of the present application.
  • the base station configures multiple carriers for the UE, such as carrier 1 and carrier 2 in FIG. 19, and the length of the time unit used by carrier 1 is 1/4 of the length of the time unit used by carrier 2.
  • transmitting data on a carrier of a short time unit and feeding back confirmation information on a carrier of a long time unit results in an increase in the number of processes for ensuring continuous transmission.
  • the length of the time unit used by carrier 1 is 1/4 of the length of the time unit used by carrier 2, and the required process is K1+K3+K0+2M-2, that is, 16.
  • M is the ratio of the long time unit to the short time unit, here 4 .
  • one solution proposed by the present application is that the length of the time unit for configuring the transmission of the PDSCH is not less than the length of the time unit for transmitting the PUSCH or the PUCCH.
  • the subcarrier spacing needs to satisfy the following condition: if the subcarrier spacing of the PDSCH is 30k, the PUSCH or the PDSCH The subcarrier spacing must be greater than or equal to 30k, such as 30k, 60k, 120k or 240k. (If the number of slots and the number of symbols are the same, only the subcarrier spacing is considered, and they collectively determine the length of time unit. More examples are shown in the following table)
  • Subcarrier spacing used by PDSCH Subcarrier spacing allowed by PUSCH/PUCCH 240k 240k 120k 120k, 240k 60k 60k, 120k, 240k 30k 30k, 60k, 120k, 240k 15k 15k, 30k, 60k, 120k, 240k
  • the configuration of the PUSCH or the PUCCH needs to meet the length of the time unit of the PDCCH, for example, the subcarrier spacing may be 60 k, 120 k or 240k. (If the number of slots and the number of symbols are different, the number of symbols or the number of slots and the subcarrier spacing determine the unit length of time)
  • the subcarrier spacing must satisfy the following conditions. If the subcarrier spacing of the PDSCH is 30k, the subcarrier spacing of the PUSCH/PUCCH must be Greater than or equal to 30k, such as 15k, 30k, 60k, 120k or 240k.
  • Subcarrier spacing used by PDSCH Subcarrier spacing allowed by PUSCH/PUCCH 240k 120k, 240k 120k 60k, 120k, 240k 60k 30k, 60k, 120k, 240k 30k 15k, 30k, 60k, 120k, 240k 15k 15k, 30k, 60k, 120k, 240k
  • the selection of M is related to the capability of the UE (the value of K1, K3 is related), the maximum number of processes supported by the system or the UE.
  • the time unit length in which the PDSCH is not supported is smaller than the time unit length in which the PUSCH/PUCCH is located, or the value of M is as small as possible, for example, 2.
  • M is as small as possible, for example, 2.
  • M is the ratio of the long-term unit to the short-time unit length (or the ratio of the PUSCH or PUCCH, and the PDSCH time unit length).
  • M may be divided by 2.
  • the number of symbols of one slot may also be 7 symbols or 14 symbols, under the extended CP is 6 symbols or 12 symbols.
  • 15,60 combination or adjacent 15,120 combination but can not configure 15 and 120 combination; when the base station groups carriers, at most one group has different subcarrier spacing or time unit length, such as 10 carriers, divided into 4 Group, whether the subcarrier spacing or the time unit length is the same group, the remaining different subcarrier spacing or the time unit length is 1 group; when the base station groups the carriers, each group has a maximum of 2 carriers subcarrier spacing or time unit Different lengths.
  • each network element such as a network side device (such as a base station) or a UE, etc., in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function.
  • a network side device such as a base station
  • a UE such as a UE
  • the present application in combination with the examples described herein, can be implemented in a combination of hardware or hardware and computer software. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • Fig. 21 is a view showing a possible configuration of the apparatus involved in the above embodiment.
  • the device may be a network side device, such as a base station, or a user equipment UE.
  • the related functions or steps and the like in the above embodiments can be executed by the device.
  • the device includes a processor and a transmitter.
  • the structure of the device may also include a receiver.
  • the structure of the data sending device may further include a communication unit for supporting communication with other network side devices, such as communication with the core network node.
  • the memory may also be included, the memory being coupled to the processor to hold program instructions and data necessary for the data transmitting device.
  • the processor is for controlling management of the actions of the device for performing processing by the device in the above embodiments, such as for controlling the device to process data transmissions and/or performing other processes of the techniques described herein.
  • the structure of the device involved in the present application includes a transmitter 2101, a receiver 2102, a processor 2103, and a memory 2104.
  • Figure 21 only shows a simplified design of the device.
  • the device may include any number of transmitters, receivers, processors, memories, etc., and all data receiving devices that can implement the present application are within the scope of the present application.
  • the application also provides an apparatus having the functions of implementing the above embodiments.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the embodiments of the present application can be referred to each other.
  • the embodiments of the present application can be performed by the network device and the user equipment.
  • the processor for performing the above apparatus of the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable.
  • Logic device transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a data receiving device and/or a data transmitting device.
  • the processor and the storage medium may also be present as discrete components in the data receiving device and/or the data transmitting device.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信领域,尤其涉及一种无线通信方法和设备。本申请提供了一种方法,若用于传输控制信息的时间单元与用于传输数据的时间单元不同,所述控制信息与所述数据有关;基于同一时间单元确定时序。本申请通过基于同一时间单元原则,或者基于同一定时准则确定时序,可以确定统一时序,以提高鲁棒性,保证基站和用户设备之间的正常通信。

Description

一种无线通信方法和设备 技术领域
本申请涉及无线通信技术领域,尤其涉及一种无线通信方法和设备。
背景技术
为了满足日益增长的业务类型需求,第五代(the fifth generation,5G)移动通信系统要求支持三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。由于各种不同应用场景的业务特点,可靠性要求或者时延要求都具有明显的差异性,使得不同业务对于子载波间隔,符号长度,时间单位等系统参数的需求不同。
在数据传输中,数据以一个时间单元为粒度进行传输,5G系统中为了满足不同业务的不同需求,提出了灵活的子载波间隔和时间单元进行数据传输的机制,即在5G中,该时间单元可以不同,例如,在同一载波上,上下行可以采用不同的时间单元进行通信,在载波聚合的场景下,聚合的载波之间使用的时间单元也可以不同。
而使用不同的时间单元进行通信,可能导致基站与用户设备之间时序不一致的问题。
发明内容
本申请描述了一种无线通信方法和设备,旨在通过同一定时准则,确定时序,以满足业务需求不同导致的载波参数不同的场景下,时序不一致的问题,保证通信顺畅。
一方面,本申请的实施例提供一种无线通信方法。方法包括若用于传输控制信息的时间单元与用于传输数据的时间单元不同,所述控制信息与所述数据有关;基于同一时间单元确定时序,确定时序。该基于同一时间单元可以理解为基于同一时间单元或者基于同一时间单元原则,或者基于同一定时准则。由此,基于同一时间单元准则定时,可以保证基站与终端之间时序一致,以保证通信顺畅,满足不同的业务需求。
在一个可能的设计中,基于同一时间单元确定时序,包括:基于所述同一时间单元确定第一时序K0和第二时序K1,其中,所述第一时序K0为传输物理下行控制信道PDCCH的时间单元与传输物理下行共享信道PDSCH的时间单元之间的时间关系,所述PDCCH用于传输控制信息,所述PDSCH用于传输所述控制信息调度的数据;所述第二时序K1为传输PDSCH的时间单元与传输PUCCH或者PUSCH的时间单元之间的时间关系,所述PDSCH用于传输数据,所述PDCCH或者PUSCH用于传输所述数据对应的控制信息,所述控制信息为所述数据对应的上行反馈信息。由此,基于同一时间单元确定第一时序和第二时序,使得时序一致。
在一个可能的设计中,基于所述同一时间单元还确定第三时序K2,所述第三时序K2为传输PDCCH的时间单元与传输PUSCH的时间单元之间的时间关系,所述PDCCH用于传输控制信息,所述PUSCH用于传输所述控制信息调度的上行数据。基于同一时间单元确定第一时序,第二时序和第三时序,使得时序一致,保证通信顺畅,并简化系统设计。
在一个可能的设计中,基于同一时间单元确定时序,包括:基于所述用于传输数据的时间单元确定时序;或者,基于所述用于传输控制信息的时间单元确定时序;或者,基于所述用于传输控制信息的时间单元和所述用于传输数据的时间单元之中长的时间单元确定时序;或者,基于所述用于传输控制信息的时间单元和所述用于传输数据的时间单元之中短的时间单元确定时序;或者,基于源时间单元或者目标时间单元确定时序;或者,基于一个参考时间间隔确定时序。由此,本申请提供了多种确定时序的方法以供灵活选择。
在一个可能的设计中,基于同一时间单元确定时序,所述方法还包括:发送用于调度下行传输的下行控制信息DCI至用户设备UE,所述调度下行传输的DCI中包括第一指示域用于指示K0的取值和第二指示域用于通知K1的取值,所述第一指示域和第二指示域所占比特数相等。由此,可以节省DCI信令开销,保证K0,K1的灵活性。
在一个可能的设计中,发送用于调度上行传输的下行控制信息DCI至用户设备UE,所述调度上行传输的DCI中包括第三指示域用于通知K2取值的信息,其中第三指示域、第一指示域和第二指示域所占比特数相等;或者第三指示域的所占的比特数等于第一指示域和第二指示域所占比特数之和。
在一个可能的设计中,所述方法还包括下述中的至少一个:发送至少一个第一集合和,所述第一集合和时间单元之间的关系至所述UE,所述第一集合中包括至少一个不同的K0的值;发送至少一个第二集合和,所述第二集合和时间单元之间的关系至所述UE,所述第二集合中包括至少一个不同的K1的值;发送至少一个第三集合和,所述第三集合和时间单元之间的关系至所述UE,所述第二集合中包括至少一个不同的K2的值。由此,UE可以基于时间单元或者子载波间隔确定集合,基于DCI中指示的时序的值,确定具体时序。
另一方面,本申请提供了一种设备,该设备可以实现本申请提供的方法的相关功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多于一个与上述功能相对应的模块。
另一方面,本申请提供了一种设备,该设备包括处理器,发射器,接收器,其特征在于,若用于传输控制信息的时间单元与用于传输数据的时间单元不同,所述控制信息与所述数据有关;所述处理器用于基于同一时间单元确定时序。该设备可以实现本申请提供的方法的相关功能。
一方面,本申请提供了一种计算机存储介质,用于储存为上述数据发送设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本申请提供了一种计算机存储介质,用于储存为上述数据接收设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
另一方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持该设备实现上述方面中所涉及的功能。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请描述了一种无线通信方法和设备,通过同一定时准则,确定时序,以满足业务需求不同导致的载波参数不同的场景下,时序不一致的问题,保证通信顺畅。
附图说明
下面将参照所示附图对本申请实施例进行更详细的描述。
图1示出的是本申请的一种可能的应用场景示意图。
图2示出了LTE技术中下行通信的示例图。
图3示出了LTE技术中上行通信的示例图。
图4示出了本申请提出的一个实施例的示例图。
图5示出了本申请提出的一个实施例的示例图。
图6示出了本申请提出的一个实施例的示例图。
图7示出了本申请提出的一个实施例的示例图。
图8示出了本申请提出的一个实施例的示例图。
图9示出了本申请提出的一个实施例的示例图。
图10示出了本申请提出的一个实施例的示例图。
图11示出了本申请提出的一个实施例的示例图。
图12示出了本申请提出的一个实施例的示例图。
图13示出了本申请提出的一个实施例的示例图。
图14示出了本申请提出的一个实施例的示例图。
图15示出了本申请提出的一个实施例的示例图。
图16示出了本申请提出的一个实施例的流程示意图。
图17示出了本申请提出的一个实施例的示例图。
图18示出了本申请提出的一个实施例的示例图。
图19示出了本申请提出的一个实施例的示例图。
图20示出了本申请提出的一个实施例的示例图。
图21示出了本申请提供的一个结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本发明描述的技术可以适用于长期演进(Long Term Evolution,简称LTE)系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统,还可以适用于使用LTE系统后续的演进系统,如第五代5G系统等。
如图1所示,是本申请的一种可能的应用场景示意图。用户设备(User Equipment,UE)通过无线接口接入网络侧设备进行通信,也可以与另一用户设备进行通信,如设备对设备(Device to Device,D2D)或机器对机器(Machine to Machine,M2M)场景下的通信。
网络侧设备可以与用户设备通信,也可以与另一网络侧设备进行通信,如宏基站和接入 点之间的通信。本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。本申请所涉及到的用户设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备、控制设备或连接到无线调制解调器的其它处理设备,以及各种形式的UE、移动台(Mobile station,MS)、终端(Terminal)或终端设备(Terminal Equipment)等。为方便描述,本申请中,上面提到的设备统称为用户设备(UE)。本申请所涉及到的网络侧设备包括基站(Base Station,BS)、网络控制器或移动交换中心等,其中通过无线信道与用户设备进行直接通信的装置通常是基站,所述基站可以包括各种形式的宏基站、微基站、中继站、接入点或射频拉远单元(Remote Radio Unit,RRU)等,当然,与用户设备进行无线通信的也可以是其他具有无线通信功能的网络侧设备,本申请对此不做唯一限定。在不同系统中,具备基站功能的设备的名称可能会有所不同,例如演进的节点B(evolved NodeB,eNB或eNodeB),节点B(Node B),传输及接收点(Transmission and Reception Point,TRP)等。
本申请所提供的技术方案可以应用于上行数据传输和/或下行数据传输,对于上行数据传输,数据发送设备可以是用户设备,数据接收设备可以是网络侧设备,如基站;对于下行数据传输,数据发送设备可以是网络侧设备,如基站,数据接收设备可以是用户设备。
图2示出了LTE技术中下行通信的示例图。
以现有的LTE技术中的下行通信为例,下行调度使用的时间单元与相应的下行数据传输使用的时间单元之间的时间间隔,本申请记作K0个时间单元。LTE中的时间单元可以为固定的,例如为1ms。在图2中,每一行中一格可以视为一个时间单元。
具体的,若在第n个时间单元通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)发送下行调度信息,该下行调度信息可以是下行控制信息(Downlink Control Information,DCI),对应的通过物理下行共享信道(Physical Downlink Shared Channel,PDSCH)进行的下行数据传输使用的时间单元为n+K0个时间单元。在当前的LTE系统中,K0可以为0。
现有的LTE技术中,为了保证数据通信的可靠性引入了混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)机制,即发送端发送数据后,需等待接收端反馈确认信息,该确认信息可以是应答(Acknowledgment,ACK)信息或者否定应答(Negative-Acknowledgment,NACK)信息。
下行数据传输使用的时间单元与相应的反馈确认信息使用的时间单元之间的时间间隔,本申请记作K1个时间单元。具体的,若在第n个时间单元上通过PDSCH发送下行数据,对应的通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或者物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输确认信息使用的时间单元为第n+K1个时间单元。在当前的LTE系统中,K1可以为4。
反馈的确认信息使用的时间单元与相应的进行数据重传的时间单元之间的时间间隔,本申请记作K3个时间单元。具体的,若在第n个时间单元上通过PUSCH或PUCCH反馈确认信息,对应的基站进行数据重传使用的时间单元为第n+K3个时间单元。在当前的LTE系统中,K3可以为4。
如图2所示,在LTE中,若K0=0,K1=4,K3=4,为了保证连续的下行传输,需要的进程数为8。
图3示出了LTE技术中上行通信的示例图。
以LTE现有上行通信为例,上行调度使用的时间单元与相应的上行数据传输使用的时间 单元之间的时间间隔,本申请记作K2个时间单元。关于时间单元的定义可以参考图2中的相关描述。
具体的,若在第n个时间单元通过PDCCH发送下行调度信息,对应的通过PUSCH进行的上行数据传输使用的时间单元为第n+K2个时间单元。
上行数据传输使用的时间单元与相应的上行数据重传调度使用的时间单元之间的时间间隔,本申请记作K4个时间单元。具体的,若在第n个时间单元通过PUSCH进行上行数据传输,对应的通过PDCCH进行的上行数据重传调度使用的时间单元为第n+K4个时间单元。
如图3所示,在LTE中,若K2=4,K4=4,为了保证连续的上行传输,需要的进程数为8。
当前在LTE中,K0为0,K1,K2在频分双工(Frequency Division Duplexing,FDD)模式中为4,在时分双工(Time Division Duplexing,TDD)模式中为固定值,具体可以基于由TDD的子帧配置确定。K3、K4主要基于基站的能力和调度情况确定,LTE中的FDD模式下,K3和K4为4。
关于上述K0、K1、K2、K3和K4的定义可以在后续演进系统中继续参考,本申请中将K0、K1、K2、K3和K4称为时序。
为了满足不同业务的不同需求,不同载波之间的子载波间隔和使用的时间单元可以不同,配置的子载波间隔不同、或者配置为基于时隙slot传输或基于迷你mini-slot传输、配置的slot数、mini-slot数、符号数不同都会导致时间单元不同。同一载波进行上下行传输使用的时间单元也可以不同,在此情况下,如何确定时序,以保证基站和用户设备之间的正常通信,是需要解决的问题。
本文所有实施例以时间单元不同来描述,替换成子载波间隔不同或者符号数不同或者载波参数numerology不同同样适用,载波的载波配置参数(numerology)可以包括子载波间隔、时间单元长度、CP类型等。
由此,本申请实施例提供了一种无线通信方法,该方法可以由网络侧设备,如基站,或者用户设备执行。
若用于传输控制信息的时间单元与用于传输数据的时间单元不同,基于同一时间单元确定时序。
配置的子载波间隔或者使用的时间单元不同的情况下,基于同一个时间单元作为基础单位,可以确定统一时序,以提高鲁棒性,保证基站和用户设备之间的正常通信,且可以简化系统设计。该基于同一时间单元可以理解为基于同一时间单元或者基于同一时间单元原则,或者基于同一定时准则。
控制信息与传输的数据之间有关,具体可以是,控制信息为下行调度信息(例如DCI),通过PDCCH传输,数据为下行调度信息对应的下行数据,通过PDSCH传输;或者,数据为下行数据,通过PDSCH传输,控制信息为上行控制信息,通过PUSCH或者PUCCH传输,例如,可以是确认信息,例如应答ACK消息或者否定应答NACK消息;或者控制信息为下行控制信息DCI,通过PDCCH传输,数据为下行控制信息调度的上行数据,通过PUSCH传输。即控制信息可以是调度数据的控制信息,或者数据对应的反馈信息(以用于确定是否重传,可以是确认信息,例如ACK或者NACK消息)。后续关于控制信息,数据及相应信道的描述,可以参考本段,本申请对此并不限制。
基于同一时间单元确定时序。或者称为基于同一时间单元原则,或者基于同一定时准则确定时序。可以是基于同一单元确定多个时序。该多个时序可以是第一时序,第一时序可以是K0,用于指示传输PDCCH的时间单元与传输PDSCH的时间单元之间的时间关系,即基站若 在时间单元n上发送下行调度信息,下行调度信息可以是DCI信息,后续在n+K0个时间单元上发送对应的下行数据。也可以是基于该同一时间单元确定多个时序,该多个时序可以包括第二时序,第二时序可以是K1,用于指示传输PDSCH的时间单元与用于传输PUSCH或者PUCCH之间的时间关系,即基站若在时间单元n上发送下行数据,其对应的上行反馈信息(ACK或者Nack消息)在时间单元n+K1传输。
基于该同一时间单元确定多个时序,该多个时序可以是第三时序,第三时序可以是K2,用于指示传输PDCCH与传输PUSHC之间的时间关系,即基站若在时间单元n上发送下行调度信息(可以是DCI),在时间单元n+K2上传输对应的上行数据。可选的,还可以基于同一时间单元确定K3或K4。
需要说明的是,本申请的实施例中后续可以用K0、K1、K2、K3、K4进行描述,但对时序的名称并不限制,也可以是其他表现形式。
另外值得注意的是:PDCCH可能并不会占满整个时间单元。例如LTE中一个时间单元为1ms,14符号,PDCCH一般只占用前1~3个符号。PDSCH、PUSCH、PUCCH类似。其他系统中以上信道名称有可能不同,例如NR可能为NR-PDCCH,NR-PDSCH,NR-PUSCH,NR-PUCCH等,本文不做限制。
由此,基于同一时间单元确定时序,可以提高鲁棒性,简化系统设计。
进一步的,基于同一定时准则确定以上多个时序。例如,可以是基于传输控制信息的时间单元确定时序;或者基于传输数据的时间单元确定时序;或者基于传输控制信息的时间单元与传输数据的时间单元中长的时间单元确定时序;或者基于传输控制信息的时间单元与传输数据的时间单元中短的时间单元确定时序;或者基于一个参考时间间隔确定时序,可以是1ms,或者7个符号等,本申请对此并不限制;或者可以是基于源时间单元确定时序,对于第一时序(PDCCH与PDSCH的时间关系)是以传输PDCCH的时间单元为定时准则或定时单位,对于第三时序(PDCCH与PUSCH的时间关系)是以传输PDCCH的时间单元为定时准则或定时单位;对于第二时序(PDSCH与PUSCH/PUCCH的时间关系)是以传输PDSCH的时间单元为定时准则或定时单位;或者可以是基于目标时间单元确定时序,例如,对于第一时序K0(PDCCH与PDSCH的时间关系)是以传输PDSCH的时间单元为定时准则或定时单位;对于第三时序K2(PDCCH与PUSCH的时间关系)是以传输PUSCH的时间单元为定时准则或定时单位;对于K1(PDSCH与PUSCH/PUCCH的时间关系)是以传输PUSCH/PUCCH的时间单元为定时准则或定时单位;或者基于传输数据的时间单元确定时序,例如对于第一时序K0(PDCCH与PDSCH的时间关系)是以传输PDSCH的时间单元为定时准则或定时单位;对于第三时序K2(PDCCH与PUSCH的时间关系)是以传输PUSCH的时间单元为定时准则或定时单位;对于第二时序K1(PDSCH与PUSCH/PUCCH的时间关系)是以传输PDSCH的时间单元为定时准则或定时单位。由此,基于同一时间单元确定时序,即基于同一定时准则确定时序,可以保证基站与终端的通信质量,提高鲁棒性。
在本申请的一个实施例中,基站可以发送多个集合至UE,该多个集合可以是一个或多个K0的集合,1个或多个K1的集合,1个或多个K2的组合等;基站发送集合与,子载波间隔和时间单元中的至少一个的对应关系至UE;基站进一步发送指示信息至UE,指示信息可以指示时序的取值;UE可以基于上述对应关系确定集合,基于指示信息确定具体时序的取值。由此,基站通过发送多个不同的时序取值,UE基于子载波间隔或者时间单元,确定不同集合,进而基于指示信息,确定时序,可以使得在不同子载波或者不同时间单元调度的情况下的灵活调度。
本申请的一个实施例中,该实施例与调度有关。基站配置PDCCH和,对应的PDSCH或者PUSCH,X>PDCCH和PDSCH/PUSCH时间单元长度的比值>1/Y,X,Y为正整数,可选的,其中X,Y=2或者4;或者基站配置PDCCH和对应的PDSCH或者PUSCH,PDCCH和对应的PDSCH或者PUSCH的子载波间隔为UE支持的子载波间隔,例如,UE支持15k HZ,60k HZ,120k HZ,则配置PDCCH和对应的PDSCH或者PUSCH为相邻的15,60组合或者相邻的60,120组合;或者将为UE配置的或者激活的多个载波分成至少1个载波组,载波组内可以跨载波调度和/或跨载波聚合反馈。
在一种可能的实现方式中,一个载波组中包括的载波有相同的子载波间隔或相同的时间单元长度,即网络设备(例如基站)以相同子载波间隔或相同时间单元长度为划分准则,将为终端配置的或者激活的多个载波划分为至少一个载波组。因此,该分组方式能够极大简化跨载波调度或者反馈的复杂度。此外,在另一种可能的实现方式中,最多一个载波组存在不同子载波间隔或不同时间单元长度的载波。例如网络设备还可以首先以相同子载波间隔或相同时间单元长度为划分准则,将为终端配置的多个载波划分为至少一个载波组,然后将剩余的载波作为一个载波组。
在一种可能的实现方式中,一个载波组中包括的载波中存在最多两种不同的子载波间隔或时间单元长度配置,即网络设备为每个载波组分配的载波中存在最多两种不同的子载波间隔或时间单元长度配置,以简化跨载波调度或反馈的复杂度,避免载波组内子载波间隔或时间单元长度配置种类过多,造成跨载波调度和反馈的复杂度较高。
进一步可选地,一个载波组中包括的载波中存在最多两种不同的子载波间隔或时间单元长度配置,其中两种不同的子载波间隔或时间单元长度为终端支持的或者系统支持的相邻两种载波间隔或时间单元长度。例如有子载波间隔配置为15kHz,60kHz,120kHz的载波,可以将子载波间隔配置为15kHz和60kHz的载波分为一组,而不能将子载波间隔配置为15kHz,120kHz的载波分为一组。
本申请的一个实施例中,该实施例与反馈有关。基站配置PDSCH和对应的PUCCH或者PUSCH,X>PDSCH和PUCCH/PUSCH时间长度比值>1/Y,X,Y为正整数,可选的,X,Y=2或者4;基站配置PDSCH和对应的PUCCH或者PUSCH,PDSCH和对应的PUCCH或者PUSCH的子载波间隔为UE支持的相邻子载波间隔,例如UE支持15k,60k,120k,则配置相邻的15,60组合或者相邻的60,120组合,而不能配置15和120组合;基站将载波分组时,至多有1个组存在不同的子载波间隔或者时间单元长度,比如10个载波,分成4个组,按子载波间隔或者时间单元长度是否相同分组,剩余的不同子载波间隔或者时间单元长度为1个组;基站将载波分组时,每个组最多存在2个载波的子载波间隔或者时间单元长度不同。
需要说明的是,传输时间单元可以是子帧、传输时间间隔(其中一个传输时间间隔等于若干个子帧长度和,或者若干个传输时间间隔之和等于一个子帧长),也可以是1个时域符号、多个时域符号、1个时隙(slot)、多个时隙聚合、1个迷你时隙(mini-slot)、多个迷你时隙聚合,或者迷你时隙和时隙聚合等,子载波间隔可以为15kHz*2^n(n为正整数),也即子载波间隔为15kH、30kHz等。传输时间单元是由子载波间隔和符号数决定的,配置的子载波间隔或者slot数、mini-slot数、符号数会导致时间单元不同。因此,本文所有实施例涉及传输时间单元的配置方案或描述,可替换为涉及子载波间隔的配置方案或描述。
下面结合不同时间单元或者不同子载波间隔的实施例进行描述。下述实施例可以由基站或用户设备执行。
图4示出了本申请提出的一个实施例的示例图。
如图4所示,用于传输控制信息的时间单元大于用于传输数据的时间单元,如图4所示,载波1的第一个时间单元用于传输PDCCH,载波2上的时间单元可以用于传输对应的PDSCH, 图4中第一列指示载波1使用的时间单元,第二列指示载波2使用的时间单元。。
本申请中的时间单元为传输使用的最小的时间间隔,可以为子帧、也可以是1个或者多个时域符号、1个时隙(slot)或者多个时隙聚合、1个迷你时隙(mini-slot)或者多个迷你时隙聚合等,在此处载波1使用的时间单元大于载波2使用的时间单元。子载波间隔可以为15kHz*2^m(m为正整数),也即子载波间隔为15kH、30kHz等。传输时间单元是由子载波间隔和符号数决定的,因此,本申请实施例中涉及传输时间单元的配置方案或描述,可替换为涉及子载波间隔的配置方案或描述。在此处载波1使用的时间单元大于载波2使用的时间单元,或者载波1使用的子载波间隔小于载波2使用的子载波间隔。
本申请提出的一个实施例中,以短的时间单元为基础的时间单位,以确定时序,本申请中PDCCH用于进行下行调度,PDSCH用于进行下行数据传输,用于传输PDCCH的时间单元与用于传输PDSCH的时间单元之间的时间关系记做K0,则若以短的时间单元为基础的时间单位,则K0可以为0或1,或2…或5,本申请对此并不限制。
图5示出了本申请提出的一个实施例的示例图。
如图5所示,用于传输控制信息的时间单元小于用于传输数据的时间单元,如图5所示,载波1的第一个时间单元用于调度PDCCH,载波2的时间单元可以用于调度对应的PDSCH。如图5中,用于调度PDCCH的两个时间单元与可以用于调度PDSCH的时间单元对齐。
本申请提出的一个实施例中,以短的时间单元为基础的时间单位,确定时序。
本申请中PDCCH用于进行下行调度,PDSCH用于进行对应的下行数据传输,用于传输PDCCH的时间单元与用于传输PDSCH的时间单元之间的时间关系为K0。若以短的时间单元为基础的时间单位,则基于与进行下行调度时间单元之间的时间间隔,以与PDCCH使用的时间单元不超过一个时间单位的可以用于调度PDSCH的时间单元为第0个时间单元,则对应的K0可以为0,2或4。
图6示出了本申请提出的一个实施例的示例图。
图6与图5的区别在于,用于传输PDCCH的时间单元所处的位置已经处于与其对应的载波2所使用的时间单元A的后端(假设M个短时间单元与1个长时间单元(时间单元A)对齐,用于传输PDCCH的时间单元为M个短时间单元中第i个,i>1,后续实施例中相应部分可以参考此处描述),此时,对应的PDSCH使用的时间单元可以是A时间单元的下一个时间单元,可选的,若以短的时间单元为基础的时间单位,A时间单元的下一个时间单元距离用于传输PDCCH的时间单元的距离为一个短的时间单元,则A时间单元的下一个时间单元的K0记为1,则再下一个时间单元的K0可以记为3,后面的时间单元的K0依次加2,以此类推。本实施例中,可以用于调度PDSCH的时间单元的K0为1或3,本申请对此并不限制。
或者,由于用于传输PDCCH的时间单元已经处于时间单元A的后端,此处调度时间单元A已经比较困难,将A时间单元的时间单位的下一个时间单元的K0记为0,则再下一个时间单元的K0可以记为2,后面的时间单元的K0依次加2,以此类推。本实施例中,可以用于调度PDSCH的时间单元的K0为0或2,本申请对此并不限制
图7示出了本申请提出的一个实施例的示例图。
如图7所示,用于传输控制信息的时间单元大于用于传输数据的时间单元,如图7所示,载波1的第一个时间单元用于传输PDCCH,载波2上的时间单元可以用于传输对应的PDSCH。在此处载波1使用的时间单元大于载波2使用的时间单元。用于调度PDCCH的两个时间单元与可以用于调度PDSCH的时间单元对齐。
本申请提出的一个实施例中,以长的时间单元为基础的时间单位,确定时序。
本申请中PDCCH用于进行下行调度,PDSCH用于进行对应的下行数据传输,用于传输PDCCH的时间单元与用于传输PDSCH的时间单元之间的时间关系记作K0。若以长的时间单元为基础的时间单位,基于与进行下行调度时间单元之间的时间间隔的距离,以与PDCCH使用的时间单元在一个时间范围内的可以用于调度PDSCH的时间单元为第0个时间单元,则对应的K0依次可以为0,0,1,1,2或2,以此类推,本申请对此并不限制。
图8示出了本申请提出的一个实施例的示例图。
本实施例中,用于传输控制信息的时间单元小于用于传输数据的时间单元,如图8所示,载波1的第一个时间单元用于调度PDCCH,载波2的时间单元可以用于调度对应的PDSCH。如图5中,用于调度PDCCH的两个时间单元与可以用于调度PDSCH的时间单元对齐。
本申请提出的一个实施例中,以长的时间单元为基础的时间单位,确定时序。
本申请中PDCCH用于进行下行调度,PDSCH用于进行对应的下行数据传输,用于传输PDCCH的时间单元与用于传输PDSCH的时间单元之间的时间关系为K0。若以长的时间单元为基础的时间单位,则基于与用于传输PDCCH的时间单元之间的时间间隔,以与PDCCH使用的时间单元距离不超过一个长的时间单元的可以用于传输PDSCH的时间单元(图中的时间单元A)的K0为0,则下一个时间单元的K0为1,以此类推,K0的值依次加1。
或者,以距离用于传输PDCCH的时间单元的时间间隔不超过一个长的时间单元的用于传输PDSCH的时间单元的K0为0,即时间单元A后的第一个时间单元的K0为0,后续的时间单元的K0为1,以此类推,K0的值依次加1。
图9示出了本申请提出的一个实施例的示例图。
图9与图8的区别在于,用于传输PDCCH的时间单元所处的位置已经处于与载波2所使用的时间单元A的后端(假设M个短时间单元与1个长时间单元(时间单元A)对齐,用于传输PDCCH的时间单元为M个短时间单元中第i个,i>1),此时,若以长的时间单元为基础,确定时序。则对应的PDSCH使用的时间单元距离用于传输PDCCH的时间单元的距离不超过1个长的时间单元的时间单元的K0可以记作0,即图9中时间单元A后第一个时间单元的K0记作0,后续的时间单元的K0依次加1,以此类推。本实施例中可能用于传输PDSCH的时间单元的K0可以为0或1.
或者,以长的时间单元为基础的时间单位,图9中时间单元A距离用于传输PDCCH的时间单元的时间间隔不超过1个长的时间单元,则A的K0记作1,后续的时间单元的KO依次加1,以此类推。本实施例中可能用于传输PDSCH的时间单元的K0可以为0,1或2。
本申请还提供一个实施例,本实施例中,用于传输控制信息的时间单元与用于传输数据的时间单元的长度不同,该实施例中传输控制信息为PDCCH,可以用于发送下行调度信息,该下行调度信息用于进行上行调度,例如DCI信息,传输数据的为PUSCH,用于进行对应的上行数据传输,则上行调度使用的时间单元与对应的上下数据传输使用的时间单元之间的间隔,仍可以记做时序K2,则可以参考上述实施例中,以短的时间单元或者以长的时间单元为基础的时间单位确定时序。
本申请还提供一个实施例,本实施例中,用于传输控制信息的时间单元与用于传输数据的时间单元的长度不同,该实施例中数据信道为PDSCH,用于发送下行数据,控制信息为可以为对于下行数据反馈的确认信息,例如,下行数据对应的应答(Acknowledgment,ACK)信息或者否定应答(Negative-Acknowledgment,NACK)信息,通过PUSCH或者PUCCH传输,则用于传输控制信息与用于传输下行数据之间的时间单元之间的时间关系可记作K1。则可以参考上述实施例中,以短的时间单元或者以长的时间单元为基础的时间单位确定时序。下面将结 合图进行阐述。
图10示出了本申请实施例的一个示例图。
本实施例中PDSCH用于传输下行数据,PUSCH或者PUCCH用于传输控制信息,用于传输数据的时间单元大于用于传输控制信息的时间单元,如图10所示,用于传输数据的时间单元与两个用于传输控制信息的时间单元对齐。本实施例中,以短的时间单元为基础的时间单元,确定时序K1,本实施例中短的时间单元为用于传输控制信息的时间单元。
可选的,可能调度的PUSCH或者PUCCH使用的第一个时间单元距离传输数据的时间单元的距离小于1,则该第一个时间单元的K1为1,后续依次加1。
可选的,可能调度的PUSCH或者PUCCH使用的第二个第一个时间单元距离传输数据的时间单元的距离小于1,则该第一个时间单元的K1为1,后续依次加1。
图11示出了本申请实施例的一个示例图。
本实施例中PDSCH用于传输下行数据,PUSCH或者PUCCH用于传输控制信息,用于传输数据的时间单元小于用于传输控制信息的时间单元。具体的,如图11所示,两个用于传输数据的时间单元与用于传输控制信息的时间单元对齐。本申请实施例中,以短的时间单元为基础的时间单位,确定时序K1。本实施例中短的时间单元为用于传输数据的时间单元。
如图11中所示,可能调度的PUSCH或者PUCCH使用的第一个时间单元的K1为0,后续依次加2。
图12示出了本申请实施例的一个示例图。
图12与图11的区别在于,用于传输下行数据的时间单元已经处于与载波2所使用的时间单元A的后端,此时,若以短的时间单元为基础的时间单位,确定时序。则A时间单元的时序K1可以为0,A单元之后的第一个时间单元的时序K1为1,后续依次加2,以此类推。
或者,A时间单元之后的第一个时间单元的时序K1为0,后续依次加2,以此类推。
图13示出了本申请实施例的一个示例图。
本实施例中PDSCH用于传输下行数据,PUSCH或者PUCCH用于传输控制信息,用于传输数据的时间单元小于用于传输控制信息的时间单元。用于传输数据的时间单元大于用于传输控制信息的时间单元,如图13所示,用于传输数据的时间单元与两个用于传输控制信息的时间单元对齐。
本实施例中,以长的时间单元为基础的时间单元,确定时序K1。本实施例中长的时间单元为用于传输数据的时间单元。可能传输PUSCH或者PUCCH的第一个和第二个时间单元与用于传输下行数据的时间单元之间的间隔小于1个长的时间单元,则第一个和第二个时间单元的K1为1,第三个时间单元与用于传输下行数据的时间单元之间的间隔为1个长的时间单元,第四个时间单元与用于传输下行数据的时间单元之间的间隔小于2个长的时间单元,则第三个时间单元与第四个时间单元的K1为2,依次类推。
图14示出了本申请提出的一个实施例的示例图。
本实施例中PDSCH用于传输下行数据,PUSCH或者PUCCH用于传输控制信息,用于传输数据的时间单元小于用于传输控制信息的时间单元。具体的,如图11所示,两个用于传输数据的时间单元与用于传输控制信息的时间单元对齐。本申请实施例以长的时间单元为基础的时间单位,即以用于传输控制信息的时间单元以基础的时间单位。
可选的,时间单元A与传输PDSCH的时间单元的间隔小于一个长的时间间隔,A的K1可以为0,后续的时间单元的K1依次加1,以此类推。
或者,时间单元A后的第一个时间单元的K1为0,后续的时间单元的K1依次加1,以此 类推。
图15示出了本申请提出的一个实施例的示例图。
图15与图14的区别在于,用于传输下行数据的时间单元已经处于与载波2所使用的时间单元A的后端,此时,以长的时间单元为基础的时间单位,确定时序。
由于时间单元A后的第一个时间单元距离传输PDSCH的时间单元的距离小于一个长的时间单元,以A后的第一个时间单元的K1为0,之后K1依次加1。
或者,以时间单元A的K1为0,之后K1依次加1。
本申请还提供了一个实施例,以目标的时间单元为基础的时间单位,确定时序。例如,对于K0(PDCCH与PDSCH的时间关系)是以传输PDSCH的时间单元为定时准则或定时单位;对于K2(PDCCH与PUSCH的时间关系)是以传输PUSCH的时间单元为定时准则或定时单位;对于K1(PDSCH与PUSCH/PUCCH的时间关系)是以传输PUSCH/PUCCH的时间单元为定时准则或定时单位;即在图4-图9的实施例中,以用于传输PDSCH的时间单元为基础的时间单位,在图10-15的实施例中,以用于传输PUSCH或者PUCCH的时间单元为基础的时间单位。
本申请还提供了一个实施例,以源时间单元为基础的时间单元,确定时序。例如,对于K0(PDCCH与PDSCH的时间关系)是以传输PDCCH的时间单元为定时准则或定时单位;对于K2(PDCCH与PUSCH的时间关系)是以传输PDCCH的时间单元为定时准则或定时单位;对于K1(PDSCH与PUSCH/PUCCH的时间关系)是以传输PDSCH的时间单元为定时准则或定时单位;即在图4-图9的实施例中,以用于传输PDCCH的时间单元为基础的时间单位,在图10-15的实施例中,以用于传输PDSCH的时间单元为基础的时间单位。
本申请还提供了一个实施例,以传输数据的时间单元为基础的时间单元,确定时序。例如,对于K0(PDCCH与PDSCH的时间关系)是以传输PDSCH的时间单元为定时准则或定时单位;对于K1(PDSCH与对于的PUSCH或者PUCCH的时间关系)是以传输PDSCH的时间单元为定时准则或定时单位;即在图4-图9的实施例中,以用于传输PDSCH的时间单元为基础的时间单位。对于用于传输控制信道PDCCH的时间单元<用于传输数据信道PDSCH的时间单元情况:采用数据信道的时间单元(较长的时间单元)为定时比采用控制信道的时间单元(较短的时间单元)为定时指示开销小,因为假设M个短时间单元和1个长时间单元对齐,该M个短时间单元与同一个长时间单元的间隔K0值都相等(注意:若采用短时间单元定时,则K0取值不相等,假设第1个短时间单元与某个长时间单元间隔为K0=x个短时间单元,则第2个短时间单元与该长时间单元间隔为K0=x+1个短时间单元,第M个短时间单元与该长时间单元间隔为K0=x+M个短时间单元,进而后文中需要的K0集合的大小大、需要的DCI指示域比特数大),另外K0数值相比以控制信道的时间单元(较短的时间单元)为定时取值较小、给定指示绝对时间范围其取值波动也较小(进而后文中K0集合的大小也小,DCI指示域比特数也少)。如果用于传输控制信道PDCCH的时间单元>用于传输数据信道PDSCH的时间单元,采用数据信道的时间单元(较短的时间单元)为定时比采用控制信道的时间单元(较长的时间单元)具有更小的调度时延,例如都是K0=2,则采用数据信道的时间单元则调度时延为2个短时间单元,而若采用控制信道的时间单元则调度时延为2个长时间单元。进一步的,K1采用和K0一样的定时准则可以简化系统设计。基于传输数据的时间单元为基础定时可以理解为,将用于传输PDCCH的时间单元替换为或者理解为用于传输PDSCH的时间单元后确定的时间关系。进一步的,对于K2(PDCCH与PUSCH的时间关系)是以传输PUSCH的时间单元为定时准则或定时单位;在图10-15的实施例中,以用于传输PUSCH的时间单元为基础的时间单位。
本申请的上述实施例示出时序的确定方法。本申请后续将描述基站与终端之间关于时序的通信流程。关于时序的确定以及其他相关内容,可以参考上述实施例中的描述。
如图16所示,本申请提出一个实施例的流程示意图。
S1601、基站发送多个集合至UE,集合为包括时序的不同取值的集合;
可选的,多个集合包括1个K0集合,1个K1集合,1个K2集合;或者多个集合包括至少2个K0集合,和/或至少2个K1集合,和/或至少2个K2集合。
在一个示例中,所述多个集合可以包括K0的集合(简称K0集合),K0集合可以为{1,2},所述多个集合还可以包括K1的集合(简称K1集合),K1集合可以为{3,4},所述多个集合还可以包括K2的集合(简称K2集合),K2集合可以为{5,6}。
基站可以通过高层信令发送上述多个集合至UE,例如通过RRC信令发送。通过无线资源控制(radio resource control,RRC)配置或者通过主信息块(master information block,MIB)消息、系统信息块(system information block,SIB)消息、或无线资源控制(radio resource control,RRC)信令、或媒体接入控制控制元素(media access control control element,MAC CE)信令。不同的集合可以与不同的时间单元、或者子载波间隔、或者上述两者有对应关系。
或者不同的集合可以与不同的时间单元区间,或者不同的子载波间隔有对应关系。
或者不同的集合可以与不同子载波间隔对有对应关系,或者不同的集合可以与不同时间单元对对有对应关系,例如(15kHz,60kHz)对对应K1的集合1,(15kHz,120kHz)对对应K1的集合2。
S1602、基站发送时间单元与子载波间隔中的至少一个与集合之间的对应关系至UE。
可选的,该关系可以是子载波间隔15K HZ与集合1的对应关系,或者时间单元7个符号与集合1的对应关系,或者,子载波间隔15K HZ、时间单元7个符号两者与集合1的对应关系。
其中对应关系可以为:不同的集合与不同的时间单元、或者子载波间隔、或者上述两者的对应关系。或者不同的集合与不同的时间单元区间,或者不同的子载波区间的对应关系。或者为不同子载波间隔/时间单位长度对(pair)与不同时序集合的对应关系。例如为15k_to_30k配置K1集合set1,为30k_to_15k配置K1集合set1。当PDSCH为15k且在30k的PUSCH/PUCCH上反馈译码结果时,DCI中指示的K1取值来自集合set1;类似地,当PDSCH为30k且在15k的PUSCH/PUCCH上反馈译码结果时,DCI中指示的K1取值来自集合set2。
基站可以发送多个上述的对应关系至UE。基站可以通过高层信令发送上述对应关系至UE。
由此,不同子载波间隔或者时间单元对应不同处理时延,可以节省DCI信令开销。
S1603、基站发送DCI信息至UE,DCI中包括用于指示时序的取值的信息。
可选的,对于下行数据调度DCI,其包含用于指示K0取值信息的第一指示域,和用于指示K1取值信息的第二指示域。
对于上行数据调度DCI,其包含用于指示K2取值信息的第三指示域。
作为一个示例,上述取值信息指示为上述集合中第几个值。例如K0集合为{2,4,5,6},第一指示域指示的取值信息为2,代表K0的取值为集合中的第二个值即K0=4.
作为一种实现方式,第一指示域的比特数、第二指示域的比特数和第三指示域的比特数相等,例如都是2比特。如此可以保证3者之间的灵活性相同,即集合大小相同。
作为另一种实现方式,第一指示域的比特数、第二指示域的比特数之和等于第三指示域的比特数,例如第一指示域的比特数为1,第二指示域的比特数为1,第三指示域的比特数为2。如此可以保证上行DCI和下行DCI的开销或者大小相近或者相同。
可选的,S1603的方案可以不结合S1601及S1602,本申请对此并不限制。
对于不同UE,不同子载波间隔、符号个数、时间单位,其需要的最小K1,K2不一样, 例如对于某个UE,以15k的slot为时间单位,则其K1可以为1,但是以60k的slot为时间单位,则其K1至少得为4。例如15k需要的集合为{1,2},60k需要的集合为{4,5}。
若只配置1个集合则需要配置{1,2,4,5},DCI中的时序域需要2比特,而本方案采用2个集合,则DCI中的时序域只需1比特。由此,基于本申请的方案,可以减少DCI开销。
S1604、UE基于子载波间隔和时间单元中的至少一个与集合的对应关系,以及DCI信息中用于指示时序的取值的信息,确定时序。
由于可能配置多个K1集合,因此UE需要确定哪个集合,然后根据DCI中第二指示域的指示信息确定具体K1取值。具体地UE基于当前配置的子载波间隔(或者时间单元)及S1601中的子载波间隔(或者时间单元)与多个集合的对应关系确定哪个集合。
下面以K1举例,K0,K2类似,不再赘述。
若一个子载波间隔(或时间单元长度)值对应一个K1集合。例如15kHz(或1ms)对应K1集合1;60kHz(或0.25ms)对应K1集合2。则作为一种实现方式,UE根据PDSCH的子载波间隔(或时间单元长度)值确定K1集合,例如PDSCH的子载波间隔为15kHz则,确定采用K1集合1,然后根据DCI中的第二指示域的指示信息和K1集合1确定最终K1的取值。.
作为另一种实现方式UE根据PUSCH/PUCCH的子载波间隔(或时间单元长度)值确定K1集合,例如PUSCH/PUCCH的子载波间隔为60kHz则,确定采用K1集合2,然后根据DCI中的第二指示域的指示信息和K1集合2确定最终K1的取值。。
若一个子载波间隔(或时间单元长度)区间对应一个K1集合。例如15kHz~60kHz(或0.25ms~1ms)对应K1集合1;120~240kHz对应K1集合2。则作为一种实现方式UE根据PDSCH的子载波间隔(或时间单元长度)值确定K1集合,例如PDSCH的子载波间隔为15kHz则,确定采用K1集合1,然后根据DCI中的第二指示域的指示信息和K1集合1确定最终K1的取值。.
作为另一种实现方式UE根据PUSCH/PUCCH的子载波间隔(或时间单元长度)值确定K1集合,例如PUSCH/PUCCH的子载波间隔为60kHz则,确定采用K1集合1,然后根据DCI中的第二指示域的指示信息和K1集合1确定最终K1的取值。
若一个子载波间隔对或者子载波间隔区间对(或时间单元长度对或者时间单元长度区间对)值对应一个K1集合。例如(15kHz,60kHz)对对应K1集合1;(15kHz,120kHz)对对应K1集合2。一种实现方式UE根据PDSCH的子载波间隔(或时间单元长度)值和PUSCH/PUCCH的子载波间隔(或时间单元长度)值确定K1集合,例如若PDSCH的子载波间隔为15kHz且PUSCH/PUCCH的子载波间隔为60kHz则确定采用K1集合1,然后根据DCI中的第二指示域的指示信息和K1集合1确定最终K1的取值。若PDSCH的子载波间隔为15kHz且PUSCH/PUCCH的子载波间隔为120kHz则确定采用K1集合1,然后根据DCI中的第二指示域的指示信息和K1集合2确定最终K1的取值。
示例的,基站通过载波1承载调度信息,通过载波2进行相应的数据传输,载波2的载波间隔为15K HZ,调度信息使用的时间单元与数据传输使用的时间单元之间相隔的时间单元的个数为集合1,集合1中可以包括多个不同的数值,例如可以为{1、2},若载波2的载波间隔为30K HZ,调度信息使用的时间单元与数据传输使用的时间单元之间相隔的时间单元的个数为集合2,集合2中可以包括多个不同的数值,例如可以为{3、4};基站可以发送集合1与15K HZ,集合2与30K HZ之间的对应关系至UE,进一步的,基站发送指示后信息至UE,该指示信息用于指示调度信息使用的时间单元与数据传输使用的时间单元之间相隔的时间单元的个数,该指示信息可以包括在下行调度信息,例如DCI中,若该指示信息指示为第2个值,UE根据载波2的载波间隔为15K HZ,确定集合1,第2个值则为集合1中的2,即调度 信息使用的时间单元与数据信息使用的时间单元之间相隔的时间单元的个数为2。
示例的,基站通过载波1承载调度信息,通过载波2进行相应的数据传输,若考虑到UE能力,对于某个UE,若载波2的载波间隔为15K HZ、时间单元的长度为14个符号,则调度信息使用的时间单元与数据信息使用的时间单元之间相隔的时间单元的个数可以为1,若载波2的载波间隔为60K HZ、时间单元的长度为7个符号,则调度信息使用的时间单元与数据信息使用的时间单元之间相隔的时间单元的个数至少为4。则基站可以发送集合1和集合2,及载波间隔和时间单元的长度,与各个集合之间的对应关系至UE,例如,集合1为{1、2},对应于载波间隔为15K HZ、时间单元长度为14个符号,集合2为{4、5},对应于载波间隔为60K HZ、时间单元长度为7个符号,进一步的,基站发送指示信息至UE,该指示信息用于指示调度信息使用的时间单元与数据传输使用的时间单元之间相隔的时间单元的个数,若进行相应数据传输的载波2的载波间隔为15K HZ、时间单元的长度为14个符号,则UE基于数据传输使用的载波间隔为15K HZ、时间单元的长度为14个符号,确定集合1,基于指示信息中指示的第2个值,确定调度信息使用的时间单元与数据传输使用的时间单元之间相隔的时间单元的个数为2。
示例的,基站通过载波1进行数据传输,UE通过载波2反馈确认信息,即译码结果,若载波1的载波间隔为15K HZ,载波2的载波间隔为30K HZ,在15K HZ的载波调度30K HZ的载波的情况下,基站配置集合1,集合1为{1、2},若载波1的载波间隔为30K HZ,载波2的载波间隔为15K HZ,基站配置集合2,集合2为{3,4},基站发送集合1和集合2至用户设备,进一步的,基站发送指示信息至UE,UE基于进行数据传输的载波的载波间隔为15K HZ,反馈确认信息的载波的载波间隔为30K HZ,确定集合1,基于指示信息中指示的第二个值,确定集合1中的2,即确定反馈确认信息的时间单元与数据传输使用的时间单元之间相隔的时间单元的个数为2。
由此,通过发送对应不同子载波间隔或者时间单元对应的多个集合,并通知DCI指示时序取值,可以实现不同子载波间隔或者时间单元场景下的灵活调度,减少信令开销。
本申请提供一个实施例,该实施例涉及不同时间单元长度的跨载波调度。
图17示出了本申请的一个实施的示例图。
如图17所示的实施例中,基站为UE配置了多个载波,如图16中的载波1和载波2,载波1可以跨载波调度载波2的PDSCH或者PUSCH。载波1使用的时间单元小于载波2使用的时间单元。
在载波1与载波2的时间单元相同的情况下,若K2=2,K4=2,则为了保证连续传输需要的进程为4。
在载波1使用的时间单元小于载波2的时间单元的情况下,短时间单元调度长时间单元,K2+K4个进程可以保证连续传输。
图18示出了本申请的一个实施例的示例图。
如图18所示的实施例中,载波1跨载波调度载波2的PDSCH或PUCCH。载波1使用的时间单元是载波2使用的时间单元的四分之一。
在载波1与载波2的时间单元相同的情况下,若K2=4,K4=4,为了保证连续传输需要的进程为8。
在载波2使用的时间单元是载波1使用的时间单元的四倍的情况下,为了保证连续传输需M-1+K2+K4个进程可保证连续传输,M为长的时间单元和短的时间单元的比值。
由此,本申请实施例提出一种方案,传输PDCCH的时间单元的长度不大于传输PUSCH或 者PDSCH的时间长度。以避免增大保证连续传输需要的进程数。
在本申请的一个实施例中,若PDCCH和,PUSCH或者PDSCH配置在一个时隙slot上,则传输PDCCH的子载波间隔不小于传输PUSCH或者PDSCH的子载波间隔。即在slot数目或者符号数目相同的情况下,限制子载波间隔,例如,传输PDCCH的子载波间隔不小于传输PUSCH或者PDSCH的子载波间隔。。
具体,如下表所示。
PDCCH采用的子载波间隔 PUSCH/PDSCH允许的子载波间隔
240k 15k,30k,60k,120k,240k
120k 15k,30k,60k,120k
60k 15k,30k,60k
30k 15k,30k
15k 15k
本申请的一个实施例中,若PDCCH配置的子载波间隔为60K HZ、时间单元为1个slot,则PUSCH或PDSCH的配置必须保证其时间单元长度不小于PDCCH所在时间单元长度,例如子载波间隔可以为15K,30K,60K或者120K,时间单元为2个slot。即若slot数目或者符号数不同,可以结合子载波间隔,slot数目或者符号数考虑,符号数或者slot数目中的至少一个,和子载波间隔可以决定时间单元长度。
如下表所示,
Figure PCTCN2018091671-appb-000001
本申请提供的一个实施例中,传输PDCCH的时间单元的长度可以大于传输PUSCH或者PDSCH的时间单元的长度。为了避免保证连续传输的进程数增加过多,则配置传输PDCCH的时间单元的长度大于传输PUSCH或者PDSCH的时间单元的长度,且传输PUSCH或者PDSCH的时间单元的长度大于1/X传输PDCCH所在的时间单元的长度,X为正整数,可选的,X可以为2或者4。
若X=2,PDCCH和,PUSCH或者PDSCH配置在1个slot上,则若PDCCH的子载波间隔为60K HZ,则PUSCH或者PDSCH的子载波间隔不大于120K HZ。
如下表所示,
PDCCH采用的子载波间隔 PUSCH/PDSCH允许的子载波间隔
240k 15k,30k,60k,120k,240k
120k 15k,30k,60k,120k,240k
60k 15k,30k,60k,120k
30k 15k,30k,60k
15k 15k,30k
或者,若X=2,,PDCCH配置在1个60k的slot上,则PUSCH/PDSCH配置为时间单元长度不大于PDCCH所在时间单元长度,比如子载波间隔可以15k,30k,60k,120k或者240k 2个slot。即若slot数和符号数不同,则结合符号数或者slot数、子载波间隔确定时间单元长度。
如下表所示,
Figure PCTCN2018091671-appb-000002
进一步的,M的值与UE的能力及系统支持的或者UE支持的最大进程数相关,本申请的一个示例中,M的配置需满足以下条件,即K2+K4(此处的K2+K4为时间单元长度相同的情况下需要的进程数)+M-1的值不大于系统支持的(或者UE支持的)最大进程数。若此处最大进程数为16,若K2+K4=8,则M不大于9。
对于支持更小K2,K4的UE,则可以不支持传输PDCCH的时间单元长度大于传输PUSCH或者PDSCH的时间单元的长度,或者M取值尽量小,可以为2。这主要是基于“空闲率=(M-1)/(K2+K4+M-1)”的考虑。具体地,假设K2=1,K4=1,若M=4则空闲率为3/5=60%,而如果K2=4,K4=4,若M=4则空闲率为3/11=27%。
本申请提供一个与调度相关的实施例。基站配置PDCCH和,对应的PDSCH或者PUSCH,X>PDCCH和PDSCH/PUSCH比值(该比值可以为时间单元长度比值或子载波间隔比值)>1/Y,X,Y为正整数,可选的,其中X,Y=2或者4;或者基站配置PDCCH和对应的PDSCH或者PUSCH,PDCCH和对应的PDSCH或者PUSCH的子载波间隔为UE支持的子载波间隔,例如,UE支持15k HZ,60k HZ,120k HZ,则配置PDCCH和对应的PDSCH或者PUSCH为相邻的15,60组合或者相邻的60,120组合;基站将载波分组时,至多有一个组的载波存在不同的子载波间隔或者时间长度,例如10个载波,分成4个组,基于子载波间隔或者时间单元长度是否相同分组,剩余的不同的子载波间隔或者时间单元长度分为1个组;或者,基站将载波分组时,至多有两个组的载波存在不同的子载波间隔或者时间长度。
本申请提供一个实施例,该实施例涉及不同时间单元长度上的HARQ反馈。
图19示出了本申请提供的一个实施例的示例图。
如图19所示,基站为UE配置了多个载波,如图18中的载波1和载波2,载波1使用的时间单元的长度为载波2使用的时间单元的长度的4倍。
如19所示,在长的时间单元的载波上传输的数据,在短的时间单元的载波上反馈确认信息,如应答ACK消息或者否定应答NACK。
若载波1和载波2的时间单元长度相同,则需要的进程数为K1+K3+K0,若K0=0,K1=2,K3=2,则所需的进程数为4。而在载波1的时间单元的长度大于载波2的时间单元的长度的情况下,如图19所示,其所需的进程仍为4。
图20示出了本申请提出的一个实施例的示例图。
如图20所示,基站为UE配置了多个载波,如图19中的载波1和载波2,载波1使用的时间单元的长度为载波2使用的时间单元的长度的1/4。
如图20所示,在短的时间单元的载波上传输数据,在长的时间单元的载波上反馈确认信息,则会导致保证连续传输的进程数增多。
若载波1和载波2的时间单元长度相同,则需要的进程数为K1+K3+K0,若K0=0,K1=4,K3=4,则所需的进程数为8。
若如图20所示的,载波1使用的时间单元的长度为载波2使用的时间单元的长度的1/4,所需的进程为K1+K3+K0+2M-2,即16。M为长的时间单元与短的时间单元的比值,此处为4。
由此,本申请提出的一个方案为,配置传输PDSCH的时间单元长度不小于传输PUSCH或PUCCH的时间单元长度。
在本申请提供的一个示例中,若配置传输PDSCH和传输PUSCH或者PUCCH的时间单元都是1个slot,则子载波间隔需满足下述条件:若PDSCH的子载波间隔为30k,则PUSCH或PDSCH的子载波间隔必须大于等于30k,比如30k,60k,120k或者240k。(若slot数和符号数相同,则只考虑子载波间隔,它们共同决定时间单位长度,更多例子如下表所示)
具体,可见下表:
PDSCH采用的子载波间隔 PUSCH/PUCCH允许的子载波间隔
240k 240k
120k 120k,240k
60k 60k,120k,240k
30k 30k,60k,120k,240k
15k 15k,30k,60k,120k,240k
在本申请提供的一个示例中,若PDCCH配置在1个60k HZ的slot上,则PUSCH或PUCCH的配置需满足其时间单元长度小于等于PDCCH所在时间单元长度,比如子载波间隔可以60k,120k或者240k。(slot数和符号数不同,则结合符号数或者slot数、子载波间隔决定时间单位长度)
具体,可见下表:
Figure PCTCN2018091671-appb-000003
Figure PCTCN2018091671-appb-000004
可选的,本申请提出,可以配置传输PDSCH的时间单元的长度小于传输PUSCH或者PUCCH的时间单元,且PDSCH的时间单元的长度大于1/X与传输PUSCH或者PUCCH的时间单元的长度,X为正整数。进一步的,X=2或4。
X=2时,若PDSCH和,PUSCH或者PUCCH都配置为承载在14符号的slot,则子载波间隔需满足下述条件,若PDSCH的子载波间隔为30k,则PUSCH/PUCCH的子载波间隔必须大于等于30k,比如15k,30k,60k,120k或者240k。
具体,如下表:
PDSCH采用的子载波间隔 PUSCH/PUCCH允许的子载波间隔
240k 120k,240k
120k 60k,120k,240k
60k 30k,60k,120k,240k
30k 15k,30k,60k,120k,240k
15k 15k,30k,60k,120k,240k
Figure PCTCN2018091671-appb-000005
进一步的,M的选取和UE的能力(K1,K3的值相关)、系统或者UE支持的最大进程数进行相关。
可选的,若M需满足:K1+K3(时间单元相同的情况下需要的进程数)+2M-2的值不大于系统支持的最大进程数(或者UE支持的最大进程数),此处系统或者UE支持的最大进程数可以为16,若K1+K3=8,则M不大于5。
或者,对于支持更小K1,K3的UE,不支持PDSCH所在的时间单位长度小于PUSCH/PUCCH所在的时间单位长度,或者M取值尽量小,比如2。这是基于“空闲率=(2M-2)/(K1+K3+2M-2)”的考虑。具体地,假设K1=1,K3=1,若M=4则空闲率为6/8=75%,而如果K1=4,K3=4,若M=4则空闲率为6/16=37.5%.
需要注意的是,以上M为长时间单元和短时间单元长度的比值(或者PUSCH或者PUCCH,和PDSCH时间单元长度的比值)。
5G中,由于1个时间单元上可能存在2个同一UE的PUCCH时分,因此对于存在2个PUCCH时分的情况,M可以除以2。5G中,1个slot的符号数也可能是7符号或者14符号,扩展CP下是6符号或者12符号。
本申请提供一个与反馈相关的实施例。基站配置PDSCH和对应的PUCCH或者PUSCH,X>PDSCH和PUCCH/PUSCH比值(该比值为时间单元长度比值或者子载波间隔比值)>1/Y,X,Y为正整数,可选的,X,Y=2或者4;基站配置PDSCH和对应的PUCCH或者PUSCH,PDSCH和对应的PUCCH或者PUSCH的子载波间隔为UE支持的相邻子载波间隔,例如UE支持15k,60k,120k,则配置相邻的15,60组合或者相邻的15,120组合,而不能配置15和120组合;基站将载波分组时,至多有1个组存在不同的子载波间隔或者时间单元长度,比如10个载波,分成4个组,按子载波间隔或者时间单元长度是否相同分组,剩余的不同子载波间隔或者时间单元长度为1个组;基站将载波分组时,每个组最多存在2个载波的子载波间隔或者时间单元长度不同。
需要说明的是,本申请中对符号序列所做的编号,如“第一”、“第二”等等,仅为了描述清晰,不构成限定。不同实施例中相同编号的符号序列可以相同也可以不同。可以理解的是,各个网元,例如网络侧设备(例如基站)或UE等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图21示出了上述实施例中所涉及的设备的一种可能的结构示意图。该设备可以是一种网络侧设备,例如是基站,也可以是用户设备UE。通过该设备可以执行上述实施例中对应的功能或步骤等相关内容。
在一个具体的示例中,该设备包括处理器和发射器。在一个具体的示例中,该设备的结构中还可以包括接收器。在一个具体的示例中,该设备为网络侧设备时,数据发送设备的结构中还可以包括通信单元,用于支持与其他网络侧设备之间的通信,如与核心网节点之间的通信。在一个可能的示例中,该中还可以包括存储器,所述存储器用于与处理器耦合,保存数据发送设备必要的程序指令和数据。处理器用于对设备的动作进行控制管理,用于执行上述实施例中由设备进行的处理,例如用于控制设备对数据传输进行处理和/或进行本申请所描述的技术的其他过程。在图21所对应的示例中,本申请所涉及的设备的结构中包括发射器2101,接收器2102,处理器2103,存储器2104。
可以理解的是,图21仅仅示出了所述设备的简化设计。在实际应用中,所述设备可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本申请的数据接收设备都在本申请的保护范围之内。
本申请还提供一种设备,该设备具有实现上述实施例中的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多于一个与上述功能相对应的模块。
本申请的实施例之间可以相互参考,本申请实施例可以相应的由网络设备和用户设备执行。
用于执行本申请上述设备的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多于一个微处理器组合,DSP和微处理器的组合等等。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于数据接收设备和/或数据发送设备中。当然,处理器和存储介质也可以作为分立组件存在于数据接收设备和/或数据发送设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (14)

  1. 一种无线通信方法,其特征在于,包括:
    若用于传输控制信息的时间单元与用于传输数据的时间单元不同,所述控制信息与所述数据有关;
    基于同一时间单元确定时序。
  2. 根据权利要求1所述的方法,其特征在于,基于同一时间单元确定时序,包括:
    基于所述同一时间单元确定第一时序K0和第二时序K1,
    其中,所述第一时序K0为传输物理下行控制信道PDCCH的时间单元与传输物理下行共享信道PDSCH的时间单元之间的时间关系,所述PDCCH用于传输控制信息,所述PDSCH用于传输所述控制信息调度的数据;
    所述第二时序K1为传输PDSCH的时间单元与传输PUCCH或者PUSCH的时间单元之间的时间关系,所述PDSCH用于传输数据,所述PDCCH或者PUSCH用于传输所述数据对应的控制信息,所述控制信息为所述数据对应的上行反馈信息。
  3. 根据权利要求1或2所述的方法,其特征在于,基于同一时间单元确定时序,包括:
    基于所述同一时间单元确定第三时序K2,所述第三时序K2为传输PDCCH的时间单元与传输PUSCH的时间单元之间的时间关系,所述PDCCH用于传输控制信息,所述PUSCH用于传输所述控制信息调度的上行数据。
  4. 根据权利要求1-3中任一所述的方法,其特征在于,基于同一时间单元确定时序,包括:
    基于所述用于传输数据的时间单元确定时序;
    或者,基于所述用于传输控制信息的时间单元确定时序;
    或者,基于所述用于传输控制信息的时间单元和所述用于传输数据的时间单元之中长的时间单元确定时序;
    或者,基于所述用于传输控制信息的时间单元和所述用于传输数据的时间单元之中短的时间单元确定时序;
    或者,基于源时间单元或者目标时间单元确定时序。
    或者,基于一个参考时间间隔确定时序。
  5. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    发送用于调度下行传输的下行控制信息DCI至用户设备UE,
    所述调度下行传输的DCI中包括第一指示域用于指示K0的取值和第二指示域用于通知K1的取值,所述第一指示域和第二指示域所占比特数相等。
  6. 根据权利要求5所述的方法,其特征在于,
    发送用于调度上行传输的下行控制信息DCI至用户设备UE,所述调度上行传输的DCI中包括第三指示域用于通知K2取值的信息,
    其中第三指示域、第一指示域和第二指示域所占比特数相等;或者第三指示域的所占的比特数等于第一指示域和第二指示域所占比特数之和。
  7. 根据权利要5或6中所述的方法,其特征在于,所述方法还包括下述中的至少 一个:
    发送至少一个第一集合和,所述第一集合和时间单元之间的关系至所述UE,所述第一集合中包括至少一个不同的K0的值;
    发送至少一个第二集合和,所述第二集合和时间单元之间的关系至所述UE,所述第二集合中包括至少一个不同的K1的值;
    发送至少一个第三集合和,所述第三集合和时间单元之间的关系至所述UE,所述第二集合中包括至少一个不同的K2的值。
  8. 一种设备,包括处理器,发射器,接收器,其特征在于,
    若用于传输控制信息的时间单元与用于传输数据的时间单元不同,所述控制信息与所述数据有关;
    所述处理器用于基于同一时间单元确定时序。
  9. 根据权利要求8所示的设备,其特征在于,所述处理器用于基于同一时间单元确定时序包括:
    所述处理器用于基于所述同一时间单元确定第一时序K0和第二时序K1,
    其中,所述第一时序K0为传输物理下行控制信道PDCCH的时间单元与传输物理下行共享信道PDSCH的时间单元之间的时间关系,所述PDCCH用于传输控制信息,所述PDSCH用于传输所述控制信息调度的数据;
    所述第二时序K1为传输PDSCH的时间单元与传输PUCCH或者PUSCH的时间单元之间的时间关系,所述PDSCH用于传输数据,所述PDCCH或者PUSCH用于传输所述数据对应的控制信息,所述控制信息为所述数据对应的上行反馈信息。
  10. 根据权利要求8或9所述的设备,其特征在于,所述处理器用于基于同一时间单元确定时序,包括:
    所述处理器用于基于所述同一时间单元确定第三时序K2,所述第三时序K2为传输PDCCH的时间单元与传输PUSCH的时间单元之间的时间关系,所述PDCCH用于传输控制信息,所述PUSCH用于传输所述控制信息调度的上行数据。
  11. 根据权利要求8-10中任一所述的方法,其特征在于,所述处理器用于基于同一时间单元确定时序,包括:
    基于所述用于传输数据的时间单元确定时序;
    或者,基于所述用于传输控制信息的时间单元确定时序;
    或者,基于所述用于传输控制信息的时间单元和所述用于传输数据的时间单元之中长的时间单元确定时序;
    或者,基于所述用于传输控制信息的时间单元和所述用于传输数据的时间单元之中短的时间单元确定时序;
    或者,基于源时间单元或者目标时间单元确定时序。
    或者,基于一个参考时间间隔确定时序。
  12. 根据权利要求9-11中任一设备,其特征在于,
    所述发射器用于发送用于调度下行传输的下行控制信息DCI至用户设备UE,
    所述调度下行传输的DCI中包括第一指示域用于指示K0的取值和第二指示域用于通知K1的取值,所述第一指示域和第二指示域所占比特数相等。
  13. 根据权利要求10-12中任一设备,其特征在于,所述发射器用于发送用于调度上行传输的下行控制信息DCI至用户设备UE,所述调度上行传输的DCI中包括第三指示 域用于通知K2取值的信息,
    其中第三指示域、第一指示域和第二指示域所占比特数相等;或者第三指示域的所占的比特数等于第一指示域和第二指示域所占比特数之和。
  14. 根据权利要求12或13所述的设备,其特征在于,所述发射器还用于进行下述中至少一个步骤:
    发送至少一个第一集合和,所述第一集合和时间单元之间的关系至所述UE,所述第一集合中包括至少一个不同的K0的值;
    发送至少一个第二集合和,所述第二集合和时间单元之间的关系至所述UE,所述第二集合中包括至少一个不同的K1的值;
    发送至少一个第三集合和,所述第三集合和时间单元之间的关系至所述UE,所述第二集合中包括至少一个不同的K2的值。
PCT/CN2018/091671 2017-06-16 2018-06-15 一种无线通信方法和设备 WO2018228570A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18818932.8A EP3627936B1 (en) 2017-06-16 2018-06-15 Wireless communication method and device
JP2019569313A JP7001306B2 (ja) 2017-06-16 2018-06-15 無線通信方法、通信装置およびプログラム
ES18818932T ES2927569T3 (es) 2017-06-16 2018-06-15 Método y dispositivo de comunicación inalámbrica
US16/712,547 US11304220B2 (en) 2017-06-16 2019-12-12 Method and device for scheduling transmissions based on channel numerology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459585.7 2017-06-16
CN201710459585.7A CN109150456B (zh) 2017-06-16 2017-06-16 一种无线通信方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/712,547 Continuation US11304220B2 (en) 2017-06-16 2019-12-12 Method and device for scheduling transmissions based on channel numerology

Publications (1)

Publication Number Publication Date
WO2018228570A1 true WO2018228570A1 (zh) 2018-12-20

Family

ID=64659825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091671 WO2018228570A1 (zh) 2017-06-16 2018-06-15 一种无线通信方法和设备

Country Status (6)

Country Link
US (1) US11304220B2 (zh)
EP (1) EP3627936B1 (zh)
JP (1) JP7001306B2 (zh)
CN (2) CN109150456B (zh)
ES (1) ES2927569T3 (zh)
WO (1) WO2018228570A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867079A (zh) * 2019-04-30 2020-10-30 中国移动通信有限公司研究院 一种资源分配的方法、装置及计算机可读存储介质
CN113595708A (zh) * 2019-11-15 2021-11-02 Oppo广东移动通信有限公司 一种跨载波传输方法及装置、终端设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109688627B (zh) * 2018-03-29 2022-05-10 新华三技术有限公司 一种无线资源调度方法、网络侧设备及用户设备
US11516828B2 (en) * 2018-08-09 2022-11-29 Lg Electronics Inc. Method by which terminal transmits data in unlicensed band, and apparatus using method
US11509447B2 (en) * 2018-08-10 2022-11-22 Qualcomm Incorporated Enhanced carrier aggregation management
EP3841701B1 (en) * 2018-10-17 2023-08-23 Apple Inc. Enhanced physical uplink control channel (pucch) power control
CN111356211B (zh) * 2018-12-20 2021-07-13 大唐移动通信设备有限公司 一种终端节能控制方法、装置及设备
US11405288B2 (en) * 2019-08-22 2022-08-02 Qualcomm Incorporated Dynamic physical downlink control channel skipping indication
WO2021134771A1 (en) * 2020-01-03 2021-07-08 Qualcomm Incorporated Using time offset in downlink control information that schedules multiple cells
CN113194534B (zh) * 2020-01-14 2023-08-25 维沃移动通信有限公司 一种定时确定方法及通信设备
CN114765884A (zh) * 2021-01-13 2022-07-19 北京三星通信技术研究有限公司 一种信号的传输方法和设备
CN114765867A (zh) * 2021-01-14 2022-07-19 北京三星通信技术研究有限公司 一种信号的传输方法和设备
US20220240243A1 (en) * 2021-01-25 2022-07-28 Qualcomm Incorporated Physical uplink control channel configuration for millimeter wave bands
WO2023058246A1 (ja) * 2021-10-08 2023-04-13 株式会社Nttドコモ 端末、及び通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098589A2 (ko) * 2009-02-25 2010-09-02 Kim Bon-Jin 스포츠 양말의 제조방법
CN106465043A (zh) * 2014-06-13 2017-02-22 夏普株式会社 基站装置、终端装置以及通信方法
WO2017033839A1 (ja) * 2015-08-21 2017-03-02 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017074497A1 (en) * 2015-10-26 2017-05-04 Intel IP Corporation Reference signal for receive beam refinement in cellular systems

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925901B (zh) 2015-08-21 2021-05-04 株式会社Ntt都科摩 用户装置、基站、以及间隙设定方法
CN107950066B (zh) 2015-09-01 2022-06-14 株式会社Ntt都科摩 用户终端、无线基站及无线通信方法
WO2017078373A1 (ko) 2015-11-02 2017-05-11 엘지전자 주식회사 하향링크 채널 수신 방법 및 사용자기기와, 하향링크 채널 전송 방법 및 기지국
US10462739B2 (en) * 2016-06-21 2019-10-29 Samsung Electronics Co., Ltd. Transmissions of physical downlink control channels in a communication system
US11425752B2 (en) * 2016-10-19 2022-08-23 Ipla Holdings Inc. Radio interface protocol architecture aspects, quality of service (QOS), and logical channel prioritization for 5G new radio
EP3518600B1 (en) * 2016-10-27 2023-07-26 KT Corporation Method and device for scheduling uplink signal and downlink data channel in next generation wireless network
US11071130B2 (en) * 2017-02-05 2021-07-20 Lg Electronics Inc. Method for supporting plurality of transmission time intervals, plurality of subcarrier intervals or plurality of processing times in wireless communication system, and device therefor
EP4149039A1 (en) * 2017-03-23 2023-03-15 Apple Inc. Scheduling and hybrid automatic repeat request operation and codebook design for new radio carrier aggregation
US10448414B2 (en) * 2017-03-23 2019-10-15 Sharp Kabushiki Kaisha Downlink control channel for uplink ultra-reliable and low-latency communications
EP3603292B1 (en) * 2017-03-24 2023-09-20 Telefonaktiebolaget LM Ericsson (publ) Determining starting positions for uplink transmissions
EP3602935B1 (en) * 2017-03-24 2021-03-03 Motorola Mobility LLC Method and apparatus for receiving downlink data transmissions
WO2018203823A1 (en) * 2017-05-05 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) Numerology-dependent physical uplink control channel structure for wireless communication
WO2018231728A1 (en) * 2017-06-14 2018-12-20 Idac Holdings, Inc. Reliable control signaling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098589A2 (ko) * 2009-02-25 2010-09-02 Kim Bon-Jin 스포츠 양말의 제조방법
CN106465043A (zh) * 2014-06-13 2017-02-22 夏普株式会社 基站装置、终端装置以及通信方法
WO2017033839A1 (ja) * 2015-08-21 2017-03-02 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017074497A1 (en) * 2015-10-26 2017-05-04 Intel IP Corporation Reference signal for receive beam refinement in cellular systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on multi-slot/cross-slot scheduling for NR", 3GPP TSG-RAN WG1 MEETING #89 R1-1707651, no. R1-1707651, 6 May 2017 (2017-05-06), Hangzhou, China, XP051261991 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867079A (zh) * 2019-04-30 2020-10-30 中国移动通信有限公司研究院 一种资源分配的方法、装置及计算机可读存储介质
CN113595708A (zh) * 2019-11-15 2021-11-02 Oppo广东移动通信有限公司 一种跨载波传输方法及装置、终端设备
EP3930397A4 (en) * 2019-11-15 2022-03-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. CROSS CARRIER TRANSMISSION METHOD AND DEVICE AND TERMINAL
CN113595708B (zh) * 2019-11-15 2023-06-20 Oppo广东移动通信有限公司 一种跨载波传输方法及装置、终端设备

Also Published As

Publication number Publication date
CN116685000A (zh) 2023-09-01
EP3627936A4 (en) 2020-04-15
EP3627936A1 (en) 2020-03-25
US20200120701A1 (en) 2020-04-16
JP2020523888A (ja) 2020-08-06
JP7001306B2 (ja) 2022-01-19
EP3627936B1 (en) 2022-07-06
ES2927569T3 (es) 2022-11-08
CN109150456B (zh) 2023-05-12
CN109150456A (zh) 2019-01-04
US11304220B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2018228570A1 (zh) 一种无线通信方法和设备
US20200296756A1 (en) Method and user equipment of transmitting uplink signal in wireless communication system, and method and base station of receiving uplink signal in wireless communication system
US11509424B2 (en) Method and apparatus for grant free based data transmission in wireless communication system
US10764759B2 (en) Method for transmitting and receiving wireless signal and device for same
US11032803B2 (en) Method for transmitting uplink signal in wireless communication system and device therefor
US9917676B2 (en) Harq procedure and frame structure for LTE cells on unlicensed spectrum
WO2018010102A1 (zh) 传输数据的方法、终端设备和网络设备
US11456838B2 (en) Method and device for determining uplink data and control signal transmission timing in wireless communication system
WO2018227600A1 (zh) 反馈信息的发送和接收方法、装置以及通信系统
WO2018010103A1 (zh) 传输数据的方法和终端设备
WO2016000368A1 (zh) 上行控制信道的配置和发送方法、装置及基站和用户设备
WO2018059583A1 (zh) 信息的传输方法、终端设备和网络设备
WO2018228395A1 (zh) 一种控制信息发送、接收方法及装置
WO2015196628A1 (zh) 通信系统的载波聚合方法及装置
US20230028762A1 (en) Method and device for repeatedly transmitting uplink control channel in wireless cellular communication system
EP3878227B1 (en) Method and apparatus for grant free based data transmission in wireless communication system
WO2021031948A1 (zh) 处理数据的方法和通信装置
WO2022077410A1 (zh) 信息反馈方法以及装置
WO2021088026A1 (zh) 一种确定数据传输反馈时延的方法及装置
WO2020022482A1 (en) Low latency physical uplink control channel (pucch) configuration and resource allocation
EP3432659A1 (en) Uplink data sending method, uplink data scheduling method, and device
JP2023544762A (ja) データ受信方法及び装置
WO2023011097A1 (zh) 反馈信息传输方法及相关装置
WO2023077387A1 (zh) 信号发送方法、信号接收方法和装置
WO2023151048A1 (zh) 信息反馈方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018818932

Country of ref document: EP

Effective date: 20191219