WO2020057422A1 - 一类万古霉素硫鎓衍生物、其制备方法、药物组合物和用途 - Google Patents

一类万古霉素硫鎓衍生物、其制备方法、药物组合物和用途 Download PDF

Info

Publication number
WO2020057422A1
WO2020057422A1 PCT/CN2019/105489 CN2019105489W WO2020057422A1 WO 2020057422 A1 WO2020057422 A1 WO 2020057422A1 CN 2019105489 W CN2019105489 W CN 2019105489W WO 2020057422 A1 WO2020057422 A1 WO 2020057422A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
vancomycin
alkyl
straight
Prior art date
Application number
PCT/CN2019/105489
Other languages
English (en)
French (fr)
Inventor
黄蔚
蓝乐夫
管栋梁
陈菲菲
唐峰
蒋柏凤
周芒
Original Assignee
中国科学院上海药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海药物研究所 filed Critical 中国科学院上海药物研究所
Publication of WO2020057422A1 publication Critical patent/WO2020057422A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K9/00Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof
    • C07K9/006Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof the peptide sequence being part of a ring structure
    • C07K9/008Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof the peptide sequence being part of a ring structure directly attached to a hetero atom of the saccharide radical, e.g. actaplanin, avoparcin, ristomycin, vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K9/00Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention belongs to the technical field of medicinal chemistry and medicine, and relates to a vancomycin sulfonium derivative represented by the general formula (I) and a pharmaceutically acceptable salt thereof.
  • a method for preparing the vancomycin sulfonium derivative includes the same A pharmaceutical composition of vancomycin sulfonium derivative or a pharmaceutically acceptable salt thereof, and the vancomycin sulfonium derivative and a pharmaceutically acceptable salt thereof are prepared for the treatment and / or prevention of gram with Use of a medicament for infections related to a disease or condition.
  • Vancomycin is a natural glycopeptide antibiotic obtained from the fermentation broth of Actinomyces orientalis. Glycopeptide antibiotics have a core heptapeptide structure. Their mode of action is to bind to the D-alanyl-D-alanine (Acyl-D-Ala-D-Ala) dipeptide residue, an important component of the bacterial cell wall, the precursor of peptidoglycan, through inhibition Subsequent transglycosylation and transpeptide effects inhibit the biosynthesis of peptidoglycan, thereby inhibiting the synthesis of bacterial cell walls, and ultimately make it difficult for bacteria to tolerate changes in osmotic pressure of themselves and the environment and lyse to death.
  • D-alanyl-D-alanine Acyl-D-Ala-D-Ala
  • VRE vancomycin-resistant enterococci
  • Another object of the present invention is to provide a method for preparing the vancomycin sulfonium derivative.
  • Another object of the present invention is to provide a pharmaceutical composition comprising the above vancomycin sulfonium derivative and / or a pharmaceutically acceptable salt thereof.
  • Yet another object of the present invention is to provide the use of the above-mentioned vancomycin sulfonium derivative and / or a pharmaceutically acceptable salt of the pharmaceutical composition for preparing an antibacterial medicine.
  • the present invention provides a vancomycin sulfonium derivative represented by the following formula (I) and a pharmaceutically acceptable salt thereof:
  • R 1 is selected from H, -CH 2 NH-XS + (R 5 ) -R 4 or -CH 2 NHR 6 ,
  • R 2 is selected from H, -XS + (R 5 ) -R 4 , -X-NHR 7 or R 8 ,
  • R 3 is selected from -OH or -NH-XS + (R 5 ) -R 4 ,
  • At least one of R 1 , R 2 , and R 3 contains a sulfonium structure fragment -S + (R 5 ) -R 4 ,
  • X is independently selected from-(CH 2 ) n- , -CO (CH 2 ) n -,-(CH 2 ) n O- (CH 2 ) m -,-(CH 2 ) n NH- (CH 2 ) m -,-(CH 2 ) n (OCH 2 CH 2 ) m- ; preferably selected from -CH 2 -,-(CH 2 ) 2 -,-(CH 2 ) 3 -,-(CH 2 ) 4- , -CO (CH 2 ) 2- , -CO (CH 2 ) 3 -,-(CH 2 ) 2 O (CH 2 ) 2 -,-(CH 2 ) 2 (OCH 2 CH 2 ) 2- ;
  • Each m and n is independently an integer selected from 0-6;
  • R 4 is each independently selected from substituted or unsubstituted C 4 -C 20 straight or branched alkyl, substituted or unsubstituted C 4 -C 20 straight or branched alkenyl, substituted or unsubstituted C 4 -C 20 straight or branched chain alkynyl, substituted or unsubstituted C 3 -C 10 cycloalkyl, substituted or unsubstituted C 6 -C 20 aryl, substituted or unsubstituted ring containing a member selected from N, 3-10 membered non-aromatic heterocyclic group of one or more heteroatoms in O and S, 5-10 of substituted or unsubstituted rings containing one or more heteroatoms selected from N, O and S Heteroaryl; the above substitution refers to substitution with one or more substituents selected from: halogen, -OH, -NH 2 , cyano, C 1 -C 10 alkyl (preferably C 1 -
  • R 4 is selected from the group:-(CH 2 ) 3 CH 3 ,-(CH 2 ) 4 CH 3 ,-(CH 2 ) 5 CH 3 ,-(CH 2 ) 7 CH 3 ,-(CH 2 ) 8 CH 3 ,-(CH 2 ) 9 CH 3 ,-(CH 2 ) 10 CH 3 ,-(CH 2 ) 11 CH 3 ,-(CH 2 ) 12 CH 3 ,-(CH 2 ) 13 CH 3 ,-(CH 2 ) 14 CH 3 ,-(CH 2 ) 15 CH 3 ,-(CH 2 ) 16 CH 3 ,-(CH 2 ) 17 CH 3 ,-(CH 2 ) 11 CH (CH 3 ) CH 3 , -CH 2 CH (OH) CH 2 CH 3 , -CH 2 CH (OH) (CH 2 ) 2 CH 3 , -CH 2 CH (OH) (CH 2 ) 3 CH 3 , -CH 2 CH (OH) (CH 2 ) 4 CH 3 , -CH 2 CH (OH
  • R 5 is each independently a C 1 -C 6 straight or branched alkyl or halogen-substituted C 1 -C 6 straight or branched alkyl, preferably a C 1 -C 4 straight or branched alkyl or halogen-substituted C 1 -C 4 straight or branched chain alkyl group.
  • R 6 is selected from substituted or unsubstituted C 4 -C 20 straight or branched alkyl, substituted or unsubstituted C 4 -C 20 straight or branched alkenyl, substituted or unsubstituted C 4 -C 20 A linear or branched alkynyl group, a substituted or unsubstituted C 3 -C 10 cycloalkyl group, a substituted or unsubstituted C 6 -C 20 aryl group, a substituted or unsubstituted ring containing a member selected from N, O and S 3- to 10-membered non-aromatic heterocyclic group of one or more heteroatoms, 5- to 10-membered heteroaromatics containing one or more heteroatoms selected from N, O, and S on a substituted or unsubstituted ring
  • substitution refers to substitution with one or more substituents selected from the group consisting of halogen, -OH, -NH
  • R 7 and R 8 are selected from substituted or unsubstituted C 4 -C 20 straight or branched alkyl, substituted or unsubstituted C 4 -C 20 straight or branched alkenyl, substituted or unsubstituted C 4 -C 20 straight or branched chain alkynyl, substituted or unsubstituted C 3 -C 10 cycloalkyl, substituted or unsubstituted C 6 -C 20 aryl, substituted or unsubstituted ring containing a member selected from N, 3-10 membered non-aromatic heterocyclic group of one or more heteroatoms in O and S, 5-10 of substituted or unsubstituted rings containing one or more heteroatoms selected from N, O and S Heteroaryl; the above substitution refers to substitution with one or more substituents selected from: halogen, -OH, -NH 2 , cyano, C 1 -C 10 alkyl (preferably C 1
  • the vancomycin sulfonium derivative represented by formula (I) is selected from the following compounds:
  • the vancomycin sulfonium derivative represented by the formula (I) of the present invention can be prepared by a preparation method including the following steps:
  • Vancomycin hydrochloride is obtained by reductive amination reaction, Mannich reaction or amide condensation reaction to obtain vancomycin derivative intermediate with sulfur atom modification, and then performs SN2 ring-opening substitution reaction with excess epoxy compound to obtain the present compound.
  • Invented vancomycin sulfonium derivatives The preparation of specific compounds can be performed correspondingly with reference to the specific reaction conditions in the examples.
  • the reductive amination reaction, the Mannich reaction, or the amide condensation reaction can be performed at room temperature to 50 ° C, and the temperature is preferably 37 ° C.
  • the equivalent ratio of epoxide can be 10-40 times that of vancomycin intermediate, and the reaction solvent can be glacial acetic acid.
  • the preparation method may be one of the following three preparation methods:
  • R 9 is -CH 2 NH-XSR 5 ,
  • R 1 is -CH 2 NH-XS + (R 5 ) -CH 2 -CH (OH) -R 12 ,
  • R 2 is selected from H, -X-NHR 7 or R 8 ,
  • R 3 is -OH
  • R 12 is selected from the group consisting of substituted or unsubstituted C 2 -C 18 straight or branched alkyl, substituted or unsubstituted C 2 -C 18 straight or branched alkenyl, substituted or unsubstituted C 2 -C 18 Linear or branched alkynyl; the above-mentioned substitution refers to substitution with one or more substituents selected from halogen, -OH, -NH 2 , cyano, C 1 -C 10 alkyl (preferably C 1- C 6 alkyl, more preferably C 1 -C 4 alkyl, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, etc.), C 1 -C 10 alkoxy (preferably C 1- C 6 alkoxy, more preferably C 1 -C 4 alkoxy, for example, methoxy, ethoxy, propoxy, butoxy, pentoxy, hex
  • the SN2 ring-opening substitution reaction is preferably performed in the presence of a reaction solvent, and the reaction solvent may be glacial acetic acid.
  • R 10 is -XSR 5 ,
  • R 1 is selected from H or -CH 2 NHR 6 ,
  • R 2 is -XS + (R 5 ) -CH 2 -CH (OH) -R 12 ,
  • R 3 is -OH
  • R 12 is selected from the group consisting of substituted or unsubstituted C 2 -C 18 straight or branched alkyl, substituted or unsubstituted C 2 -C 18 straight or branched alkenyl, substituted or unsubstituted C 2 -C 18 Linear or branched alkynyl; the above-mentioned substitution refers to substitution with one or more substituents selected from halogen, -OH, -NH 2 , cyano, C 1 -C 10 alkyl (preferably C 1- C 6 alkyl, more preferably C 1 -C 4 alkyl, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, etc.), C 1 -C 10 alkoxy (preferably C 1- C 6 alkoxy, more preferably C 1 -C 4 alkoxy, for example, methoxy, ethoxy, propoxy, butoxy, pentoxy, hex
  • the SN2 ring-opening substitution reaction is preferably performed in the presence of a reaction solvent, and the reaction solvent may be glacial acetic acid.
  • R 11 is -NH-XSR 5 .
  • R 1 is selected from H or -CH 2 NHR 6 ,
  • R 2 is selected from H, -X-NHR 7 or R 8 ,
  • R 3 is -NH-XS + (R 5 ) -CH 2 -CH (OH) -R 12 ,
  • R 12 is selected from the group consisting of substituted or unsubstituted C 2 -C 18 straight or branched alkyl, substituted or unsubstituted C 2 -C 18 straight or branched alkenyl, substituted or unsubstituted C 2 -C 18 Linear or branched alkynyl; the above-mentioned substitution refers to substitution with one or more substituents selected from halogen, -OH, -NH 2 , cyano, C 1 -C 10 alkyl (preferably C 1- C 6 alkyl, more preferably C 1 -C 4 alkyl, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, etc.), C 1 -C 10 alkoxy (preferably C 1- C 6 alkoxy, more preferably C 1 -C 4 alkoxy, for example, methoxy, ethoxy, propoxy, butoxy, pentoxy, hex
  • the SN2 ring-opening substitution reaction is preferably performed in the presence of a reaction solvent, and the reaction solvent may be glacial acetic acid.
  • the present invention also provides a vancomycin sulfonium derivative represented by formula (I) or a pharmaceutically acceptable salt thereof in the preparation of a medicament for the treatment and / or prevention of a disease or condition related to a Gram-positive bacterial infection. the use of.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a vancomycin sulfonium derivative represented by formula (I) or a pharmaceutically acceptable salt thereof.
  • the invention also provides the use of the pharmaceutical composition in the manufacture of a medicament for the treatment and / or prevention of a disease or condition associated with a Gram-positive bacterial infection.
  • the diseases or conditions related to Gram-positive bacterial infection include sepsis, pneumonia, meningitis, urinary tract infection, impetigo, erysipelas, cellulitis, and the like.
  • aryl refers to an aromatic ring group containing no hetero atom, such as phenyl, naphthyl, biphenyl, and the like.
  • heteroaryl refers to an aryl group containing one or more heteroatoms on the ring, such as pyrrolyl, imidazolyl, oxazolyl, thiazolyl, furyl, thienyl, pyridyl, pyrimidinyl , Indolyl, quinolinyl, and the like.
  • non-aromatic heterocyclic group means tetrahydrofuran, 1,4-dioxane, tetrahydropyrrole, and the like.
  • cycloalkyl refers to a saturated alicyclic hydrocarbon group such as cyclohexane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, and the like.
  • C 4 -C 20 alkyl refers to a straight or branched chain alkyl group having 4 to 20 carbon atoms in the main chain.
  • C 4 -C 20 straight or branched alkenyl group means a straight or branched alkenyl group having 4 to 20 carbon atoms in the main chain.
  • C 4 -C 20 straight or branched chain alkynyl group means a straight or branched chain alkynyl group having 4 to 20 carbon atoms in the main chain.
  • the term "pharmaceutically acceptable salt” refers to inorganic acids such as phosphoric acid, sulfuric acid, and hydrochloric acid, or organic acids such as acetic acid, tartaric acid, citric acid, malic acid, and trifluoroacetic acid, or aspartic acid, and glutamic acid. Salts formed by acidic amino acids such as amino acids, or salts with inorganic bases after forming esters or amides with such acids, such as sodium, potassium, calcium, aluminum salts, and ammonium salts.
  • FIG. 1 is a histogram of cell viability in the renal cytotoxicity experiment of Biological Test Example 3;
  • FIG. 2 is a survival curve of mice of the Staphylococcus aureus USA300 strain strain model group; among them, the negative control group is VS vancomycin group, ** P ⁇ 0.01; the vancomycin group is VS vanvan004 group, ** P ⁇ 0.001.
  • FIG. 3 is a survival curve of mice in the USA400 strain MW2 strain model group; among them, the negative control group VS vancomycin group, ** P ⁇ 0.01; the vancomycin group VS van004 group, ** P ⁇ 0.001.
  • Figure 4 shows the survival rate curve of mice in the XN 108 strain model group; among them, the negative control group vs. vancomycin group, * P ⁇ 0.05; the vancomycin group vs. van004 group, ** P ⁇ 0.001.
  • Nuclear magnetic resonance proton shift ( ⁇ ) is given in parts per million (ppm).
  • the nuclear magnetic resonance spectrum was determined by Mercury-600MHz and Bruker (AV-400) 400MHz nuclear magnetic resonance instruments.
  • Deuterated dimethyl sulfoxide (DMSO-d 6 ), deuterated water (D 2 O) were used as solvents, and tetramethylsilane ( TMS) is the internal standard.
  • High resolution mass spectrometry was performed using an Agilent 6230 series TOF LC-MS. If the intensity of ions containing chlorine or bromine is described, the expected intensity ratio (about 3: 1 for 35 Cl / 37 Cl ions, including 79 Br / 81 The Br ions are 1: 1) and only give the strength of lower mass ions.
  • HPLC LC3000 analytical high performance liquid chromatography system (Beijing Chuangtongtongheng Technology Co., Ltd.) and LC3000 preparative HPLC system (Beijing Chuangtongtongheng Technology Co., Ltd.).
  • Analytical high performance liquid chromatography conditions C18 column (5 ⁇ m, 4.6 ⁇ 250 mm), UV detection bands of 214 and 254 nm, elution conditions 2-90% acetonitrile (containing 0.1% v / v TFA) gradient wash for 30 minutes.
  • Preparative high-performance liquid chromatography conditions C18 column (5 ⁇ m, 19 ⁇ 250 mm), UV detection wavelengths of 214 and 280 nm, and elution conditions 2-70% acetonitrile (containing 0.1% v / v TFA) gradient wash for 30 minutes.
  • DIPEA is N, N-diisopropylethylamine
  • DMF is N, N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • HATU is O- (pyridotriazol-1-yl) -N, N, N ', N'-tetramethylurea hexafluorophosphate;
  • TFA is trifluoroacetic acid
  • TLC is thin layer chromatography.
  • Analytical RP-HPLC chromatographic conditions C18 column (5 ⁇ m, 4.6 ⁇ 250 mm), UV detection band is 214 nm, and elution conditions are 2-90% acetonitrile (containing 0.1% v / v TFA) and washed for 30 minutes in a gradient.
  • Preparative RP-HPLC conditions C18 column (10 ⁇ m, 19 ⁇ 250 mm), UV detection band is 214 nm, and elution conditions are 2-70% acetonitrile (containing 0.1% v / v TFA) and washed for 30 minutes in a gradient.
  • Example 1 The 1,2-butene oxide in the second step of Example 1 was replaced with 1,2-epoxyhexane. The remaining required raw materials, reagents and preparation methods were the same as in Example 1 to obtain van 002 trifluoroacetic acid. Salt (16.8 mg, yield 75%).
  • Example 1 The 1,2-butylene oxide in the second step of Example 1 was replaced with 1,2-butylene oxide.
  • the remaining required raw materials, reagents and preparation methods were the same as in Example 1 to obtain van 003 trifluoroacetic acid. Salt (18.8mg, yield 82%).
  • Example 1 The 1,2-epoxybutane in the second step of Example 1 was replaced with 1,2-epoxydecane.
  • the remaining required raw materials, reagents and preparation methods were the same as in Example 1, and trifluoroacetic acid of van 004 was obtained. Salt (19.4 mg, yield 83%).
  • Step 1 Add commercially available vancomycin hydrochloride (148.5 mg, 0.1 mmol), 3-methylthiopropanal (12 ⁇ L, 0.12 mmol), and DIPEA (52 ⁇ L, 0.3 mmol) in order to 4 mL of DMF.
  • a single-neck reaction flask transfer the reaction system to 50 ° C and stir the reaction for 2 hours until the reaction is monitored by analytical RP-HPLC.
  • the reaction system is then returned to normal temperature, and the cyanoborohydride dissolved in 1 mL of methanol is hydrogenated.
  • Sodium (18.9mg, 0.3mmol) was slowly added dropwise to the reaction flask.
  • An appropriate amount of TFA was added to the above reaction system to adjust the pH to about 3-4.
  • Analytical RP-HPLC chromatographic conditions C18 column (5 ⁇ m, 4.6 ⁇ 250 mm), UV detection band is 214 nm, and elution conditions are 2-90% acetonitrile (containing 0.1% v / v TFA) and washed for 30 minutes in a gradient.
  • Preparative RP-HPLC conditions C18 column (10 ⁇ m, 19 ⁇ 250 mm), UV detection band is 214 nm, and elution conditions are 2-70% acetonitrile (containing 0.1% v / v TFA) and washed for 30 minutes in a gradient.
  • RT 11.823min (analytical RP-HPLC).
  • Example 8 The 1,2-epoxybutane in the second step of Example 8 was replaced with 1,2-epoxydecane.
  • the remaining required raw materials, reagents and preparation methods were the same as in Example 8, and trifluoroacetic acid of van 011 was obtained. Salt (10.5mg, yield 89%).
  • Example 8 The 1,2-epoxybutane in the second step of Example 8 was replaced with 1,2-epoxydodecane. The rest of the required raw materials, reagents and preparation methods were the same as in Example 8 to obtain trifluoroethyl van 012. Acid salt (10.2 mg, yield 85%).
  • Example 8 The 1,2-epoxybutane in the second step of Example 8 was replaced with 1,2-epoxytetradecane. The rest of the required raw materials, reagents and preparation methods were the same as in Example 8, and trifluoroethyl van 013 was obtained. Acid salt (10.4 mg, yield 86%).
  • Example 15 The 1,2-butene oxide in the second step of Example 15 was replaced with 1,2-epoxyhexane. The remaining required raw materials, reagents and preparation methods were the same as in Example 15 to obtain van 016 trifluoroacetic acid. Salt (9.6 mg, yield 85%).
  • Example 15 The 1,2-epoxybutane in the second step of Example 15 was replaced with 1,2-epoxyoctane.
  • the rest of the required raw materials, reagents and preparation methods were the same as in Example 15, and trifluoroacetic acid of van 017 was obtained. Salt (9.6 mg, yield 83%).
  • Example 15 The 1,2-epoxybutane in the second step of Example 15 was replaced with 1,2-epoxydecane.
  • the rest of the required raw materials, reagents and preparation methods were the same as in Example 15 to obtain van 018 trifluoroacetic acid. Salt (10.2 mg, yield 87%).
  • Example 15 The 1,2-butene oxide in the second step of Example 15 was replaced with 1,2-tetradecane oxide. The rest of the required raw materials, reagents and preparation methods were the same as in Example 15, and trifluoroethyl van 020 was obtained. Acid salt (10.2 mg, yield 84%).
  • van-a in Example 4 is replaced with van-e.
  • the remaining required raw materials, reagents and preparation methods are the same as those in Example 4 to obtain van 022 trifluoroacetate.
  • RT 18.885min (analytical RP-HPLC).
  • van-a in Example 4 was replaced with van-g.
  • the remaining required raw materials, reagents and preparation methods were the same as in Example 4 to obtain the trifluoroacetate salt of van 023.
  • RT 19.358min (analytical RP -HPLC).
  • Van-a in Example 1 was replaced with van-e, the remaining required raw materials, reagents and preparation methods were the same as in Example 1 to obtain van 024 trifluoroacetate.
  • RT 16.013min (analytical RP-HPLC).
  • Van-a in Example 1 was replaced with van-g, the remaining required raw materials, reagents and preparation methods were the same as in Example 1 to obtain van 025 trifluoroacetate.
  • RT 16.803min (analytical RP-HPLC).
  • the 22 compounds of the present invention were tested for in vitro bacteriostatic activity.
  • test strains were vancomycin-sensitive Staphylococcus aureus Newman strain (Newman strain) and vancomycin-resistant Staphylococcus aureus Mu50strain (mu50 strain) and vancomycin-resistant strains.
  • Enterococcus faecium Vancomycin was purchased from Wuhan Dahua Weiye Pharmaceutical and Chemical Co., Ltd. with the batch number of DH20160105.
  • Terravancin was purchased from Shenzhen Jianyuan Pharmaceutical Technology Co., Ltd. with the batch number of 161002-4.
  • test bacteria 100 ⁇ L of each sample solution at different concentrations (256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.125 mg / L) was added to the sterilized 96 well polystyrene plates in the first through hole 12, and then added to each well 100 ⁇ L of test bacteria (capacity 200 L per well), a final bacteria concentration of approximately 10 5 CFU / mL, final concentration of the drug It is 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.06 mg / L.
  • One test hole was set for each test. After sealing, it was placed in a 35-37 ° C incubator for 18-24 hours, and the results were judged.
  • the minimum drug concentration that completely inhibits the growth of bacteria in the small holes is the minimum bacterial concentration (Minimal Inhibitory Concentration, MIC).
  • mice The compounds van004, van010 and the positive compound vancomycin prepared by the present invention were selected for pharmacokinetic experiments in mice. All the mice (CD-1 mice) used were from Shanghai Lingchang Biotechnology Co., Ltd., at 18 It grows to 18-22g under the condition of -29 °C and humidity range 30-70%.
  • mice Nine male CD-1 normal mice were randomly divided into three groups, namely, the van004 group, the van010 group, and the vancomycin group, with three in each group.
  • a single dose of 5 mg / kg of each group of mice was injected intravenously with a solution of the above-mentioned corresponding compound, and blood samples were taken at a total of 7 time points (0.05 h, 0.25 h, 0.75 h, 2 h, 4 h, 8 h, and 24 h after injection). blood).
  • LC-MS / MS was used to detect the corresponding plasma drug concentration (ng / mL) in three groups of mice at different times.
  • the corresponding half-life T 1/2 was obtained using the pharmacokinetic software WinNonlin 6.4.
  • the area under the drug concentration-time curve was AUC.
  • Plasma clearance CL Average dwell time MRT, and distribution volume Vss calculated when the drug reaches steady state in the body, the specific results are shown in Table 3 below.
  • the two compounds of the present invention are longer than vancomycin and travancin in terms of half-life T 1/2 , and the area under the drug concentration-time curve is 3-7 larger than vancomycin. Times. In terms of plasma clearance CL, both compounds of the present invention have slower clearance than vancomycin and show good drug-forming parameters than the positive compounds.
  • AUC last area under the drug-hour curve from the beginning of the administration time to the last point
  • AUC INF_obs area under the curve of drug time from the start of dosing to theoretical extrapolation to infinity
  • MRT INF_obs the average residence time from the start of dosing to the theoretical extrapolation to infinity
  • V SS_obs steady-state volume of drug distribution in the human body
  • Van004, van010, vancomycin were used for renal cytotoxicity experiments. Kidney cell viability was measured using the Cell Activity Detection Kit CCK8 (Cell counting Kit-8) method.
  • HK-2 cells human renal tubular epithelial cells
  • HK-2 cells in the logarithmic growth phase were seeded into a 96-well culture plate at an appropriate density (about 5000 cells), 90 ⁇ L per well.
  • 10 ⁇ L of vancomycin, van004, and van010 were added at different concentrations (25 ⁇ M, 50 ⁇ M, 100 ⁇ M) for 24 h.
  • concentrations 25 ⁇ M, 50 ⁇ M, 100 ⁇ M
  • van010 of the present invention is less toxic than vancomycin in kidney cells and has higher safety.
  • the van004 and vancomycin of the present invention are respectively dissolved in sterile physiological saline and configured into a solution, wherein the concentration of each drug is 0.7 mg / mL.
  • SPF female BALB / c mice were purchased from Shanghai Jiesijie Experimental Animal Co., Ltd., and were grown in an environment without specific microorganisms. Overnight culture of Staphylococcus aureus USA300 strain (Community-acquired methicillin-resistant Staphylococcus aureus), USA400 strain MW2 (community-acquired methicillin-resistant Staphylococcus aureus), XN 108 strain (for Vancomycin moderately resistant Staphylococcus aureus) were transferred to fresh trypticase soy broth (TSB) at 1: 100, and continued to grow for three hours to reach the exponential growth period of the strain. Wash in sterile PBS buffer twice and resuspend in this buffer.
  • TTB trypticase soy broth
  • van004 group vancomycin group
  • vancomycin group vancomycin group
  • negative control group 15 mice in each experimental group.
  • mice Female BALB / c mice (18g-20g) reared to 6-8 weeks were anesthetized with sodium pentobarbital (80mg / kg, intraperitoneally), and then 1.50 ⁇ 10 8 CFU of USA300 LAC, 1.42 ⁇ 10 8 CFU Mice were infected by intravenous injection of USA400 MW2 or 2.65 ⁇ 10 8 XN 108 suspension bacteria.
  • van004 group was given a single dose of 7mg / kg (USA300 LAC and USA400 MW2 models) or 14mg / kg (XN108 model) of van004 treatment
  • vancomycin group was given a single dose 7mg / kg (USA300 LAC and USA400 MW2 models) or 14mg / kg (XN108 model) of vancomycin treatment
  • the treatment method is tail vein injection.
  • mice in the negative control group were injected with the same amount of sterile saline. The number of mouse deaths was recorded for 14 consecutive days, and the percentage of mouse survival was calculated. The results are shown in Figure 2-4.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

如通式(I)所示结构的万古霉素衍生物及其药学上可接受的盐,其制备方法,包含该化合物的药物组合物,以及这些化合物在制备用于治疗和 / 或预防细菌感染性疾病,尤其是用于治疗因革兰氏阳性菌导致的感染性疾病的药物中的用途。

Description

一类万古霉素硫鎓衍生物、其制备方法、药物组合物和用途 技术领域
本发明属于药物化学和医药技术领域,涉及通式(I)所示的万古霉素硫鎓衍生物及其药学上可接受的盐,制备所述万古霉素硫鎓衍生物的方法,包含该万古霉素硫鎓衍生物或其药学上可接受的盐的药物组合物,和所述万古霉素硫鎓衍生物及其药学上可接受的盐在制备用于治疗和/或预防与革兰氏阳性菌感染有关疾病或病症的药物的用途。
背景技术
从1928年弗莱明发现青霉素开始一直到过去的半个多世纪中,抗生素在对细菌感染性疾病的治疗中取得了巨大的成功。但是,它的广泛使用也使得耐药致病菌株成为引起临床感染十分常见的病原菌。在传统感染性疾病尚未完全控制的同时,新的感染性疾病和病原体仍在不断涌现,多种微生物的耐药现象也越来越严重,成为临床治疗中的难题。因此发展新一代对耐药菌株有效的抗生素十分迫切而重要。
万古霉素(Vancomycin)是从放线菌东方拟无枝酸菌发酵液中提取获得的一种天然糖肽类抗生素。糖肽抗生素具有核心七肽结构。它们的作用方式是和细菌细胞壁的重要组成部分-肽聚糖的前体的D-丙氨酰-D-丙氨酸(Acyl-D-Ala-D-Ala)二肽残基结合,通过抑制接下来的转糖基化和转肽作用来抑制肽聚糖的生物合成,从而抑制细菌细胞壁的合成,最终使得细菌难以忍受自身与环境渗透压的变化而裂解死亡。自1958年FDA批准上市以来,在过去的50年中万古霉素一直作为抗革兰氏阳性菌的最后一道防线在细菌感染治疗中广泛使用。但是,自1988年耐万古霉素的肠球菌(VRE)被报道以来,肠球菌对它的耐药性变得越来越普遍(>20%)并且开始易于扩散到其它生物体中。紧接着在1997年和2002年分别发现了对万古霉素中等耐药的金黄色葡萄球菌(VISA)和对万古霉素耐药的金黄色葡萄球菌(VRSA),这些超级细菌的出现极大的危害着人类的生命健康。2017年,据美国疾病控制与预防中心(CDC)的统计,耐药性病菌已经在美国造成每年至少两百万人患病和23000人死亡,在欧洲也造成了类似的规模。其中耐药的肠球菌和金黄色葡萄球菌被列在2017年FDA发布的首份抗生素“重点病原体”清单中,且属于十分重要的对人类健康构成最大威胁的12中细菌中的两种。因此,开发第二代对耐药致病菌株有效的糖肽类抗生素的重要性和迫切性不言而喻。
在过去的数十年中,运用结构修饰的策略制备合成活性万古霉素类似物取得了一些重要进步,目前已有数个经不同天然万古霉素类似物化学修饰得到的化合物得到美国FDA批 准,如Oritavancin(奥利万星)、Dalbavancin(达巴万星)和Telavancin(特拉万星)显示出对万古霉素敏感菌和耐药菌MRSA(耐甲氧西林金黄色葡萄球菌)、VRSA(耐万古霉素金黄色葡萄球菌)和VRE(耐万古霉素肠球菌)均具有良好的抑菌作用。
Figure PCTCN2019105489-appb-000001
发明内容
本发明的一个目的是提供一类万古霉素硫鎓衍生物或其药学上可接受的盐。
本发明的另一个目的是提供上述万古霉素硫鎓衍生物的制备方法。
本发明的另一个目的是提供包含上述万古霉素硫鎓衍生物和/或其药学上可接受的盐的药物组合物。
本发明的再一个目的是提供上述万古霉素硫鎓衍生物和/或其药学上可接受的盐的药物组合物在制备抗菌药物上的用途。
本发明提供的是如下式(I)所示的万古霉素硫鎓衍生物及其药学上可接受的盐:
Figure PCTCN2019105489-appb-000002
其中:
R 1选自H、-CH 2NH-X-S +(R 5)-R 4或-CH 2NHR 6
R 2选自H、-X-S +(R 5)-R 4、-X-NHR 7或R 8
R 3选自-OH或-NH-X-S +(R 5)-R 4
R 1、R 2、R 3中的至少一个含有硫鎓结构片段-S +(R 5)-R 4
X各自独立地选自-(CH 2) n-、-CO(CH 2) n-、-(CH 2) nO-(CH 2) m-、-(CH 2) nNH-(CH 2) m-、-(CH 2) n(OCH 2CH 2) m-;优选选自-CH 2-、-(CH 2) 2-、-(CH 2) 3-、-(CH 2) 4-、-CO(CH 2) 2-、-CO(CH 2) 3-、-(CH 2) 2O(CH 2) 2-、-(CH 2) 2(OCH 2CH 2) 2-;
各个m和n独立地为选自0-6之间的整数;
R 4各自独立地选自取代或未取代的C 4-C 20直链或支链烷基、取代或未取代的C 4-C 20直链或支链烯基、取代或未取代的C 4-C 20直链或支链炔基、取代或未取代的C 3-C 10环烷基、取代或未取代的C 6-C 20芳基、取代或未取代的环上含有选自N、O和S中的一个或多个杂原子的3-10元非芳香性杂环基、取代或未取代的环上含有选自N、O和S中的一个或多个杂原子的5-10元杂芳基;上述取代是指被选自如下的一个或多个取代基所取代:卤素、-OH、-NH 2、氰基、C 1-C 10烷基(优选C 1-C 6烷基,更优选C 1-C 4烷基,例如,甲基、乙基、丙基、丁基、戊基、己基、庚基等)、C 1-C 10烷氧基(优选C 1-C 6烷氧基,更优选C 1-C 4烷氧基,例如,甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、庚氧基等)、C 1-C 10烷氨基(优选C 1-C 6烷氨基,更优选C 1-C 4烷氨基,例如,甲氨基、乙氨基、丙氨基、丁氨基、戊氨基、己氨基、庚氨基等)、C 1-C 10烷酰基(优选C 1-C 6烷酰基,更优选C 1-C 4烷酰基,例如,甲酰基、乙酰基、丙酰基、丁酰基、戊酰基、己酰基、庚酰基等)、C 3-C 10环烷基、卤代C 1-C 10烷基(优选卤代C 1-C 6烷基,更优选卤代C 1-C 4烷基,例如三氟甲基)、C 2-C 6直链或支链炔基、苯乙炔基、三甲基硅烷基乙炔基、吡啶基、苯基、氰基苯基、C1-C6烷基苯基、三氟甲基苯基、氯苯基、联苯基、甲基联苯基、三氟甲基联苯基、卤素取代的联苯基;
优选地,R 4选自如下基团:-(CH 2) 3CH 3、-(CH 2) 4CH 3、-(CH 2) 5CH 3、-(CH 2) 7CH 3、-(CH 2) 8CH 3、-(CH 2) 9CH 3、-(CH 2) 10CH 3、-(CH 2) 11CH 3、-(CH 2) 12CH 3、-(CH 2) 13CH 3、-(CH 2) 14CH 3、-(CH 2) 15CH 3、-(CH 2) 16CH 3、-(CH 2) 17CH 3、-(CH 2) 11CH(CH 3)CH 3、-CH 2CH(OH)CH 2CH 3、-CH 2CH(OH)(CH 2) 2CH 3、-CH 2CH(OH)(CH 2) 3CH 3、-CH 2CH(OH)(CH 2) 4CH 3、-CH 2CH(OH)(CH 2) 5CH 3、-CH 2CH(OH)(CH 2) 6CH 3、-CH 2CH(OH)(CH 2) 7CH 3、-CH 2CH(OH)(CH 2) 8CH 3、-CH 2CH(OH)(CH 2) 9CH 3、-CH 2CH(OH)(CH 2) 10CH 3、-CH 2CH(OH)(CH 2) 11CH 3、-CH 2CH(OH)(CH 2) 12CH 3、-CH 2CH(OH)(CH 2) 13CH 3、-CH 2CH(OH)(CH 2) 14CH 3、-CH 2CH(OH)(CH 2) 15CH 3
R 5各自独立地为C 1-C 6直链或支链烷基或卤素取代的C 1-C 6直链或支链烷基,优选为C 1-C 4直链或支链烷基或卤素取代的C 1-C 4直链或支链烷基。
R 6选自取代或未取代的C 4-C 20直链或支链烷基、取代或未取代的C 4-C 20直链或支链烯基、取代或未取代的C 4-C 20直链或支链炔基、取代或未取代的C 3-C 10环烷基、取代或未取代的C 6-C 20芳基、取代或未取代的环上含有选自N、O和S中的一个或多个杂原子的3-10元非芳香性杂环基、取代或未取代的环上含有选自N、O和S中的一个或多个杂原子的5-10元杂芳基;上述取代是指被选自如下的一个或多个取代基所取代:卤素、-OH、-NH 2、氰基、C 1-C 10烷基(优选C 1-C 6烷基,更优选C 1-C 4烷基,例如,甲基、乙基、丙基、丁基、戊基、己基、庚基等)、C 1-C 10烷氧基(优选C 1-C 6烷氧基,更优选C 1-C 4烷氧基,例如,甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、庚氧基等)、C 1-C 10烷氨基(优选C 1-C 6烷氨基,更优选C 1-C 4烷氨基,例如,甲氨基、乙氨基、丙氨基、丁氨基、戊氨基、己氨基、庚氨基等)、C 1-C 10烷酰基(优选C 1-C 6烷酰基,更优选C 1-C 4烷酰基,例如,甲酰基、乙酰基、丙酰基、丁酰基、戊酰基、己酰基、庚酰基等)、C 3-C 10环烷基、卤代C 1-C 10烷基(优选卤代C 1-C 6烷基,更优选卤代C 1-C 4烷基,例如三氟甲基)、C 2-C 6直链或支链炔基、苯乙炔基、三甲基硅烷基乙炔基、吡啶基、苯基、氰基苯基、C1-C6烷基苯基、三氟甲基苯基、氯苯基、联苯基、甲基联苯基、三氟甲基联苯基、卤素取代的联苯基;优选地,R 6选自如下基团:取代或未取代的C 4-C 20直链或支链烷基、C 4-C 20直链或支链烷酰基、取代或未取代的联苯基甲基;所述取代是指被选自如下的一个或多个取代基所取代:卤素、-OH、-NH 2、氰基、C 1-C 10烷基、三氟甲基。
R 7和R 8选自取代或未取代的C 4-C 20直链或支链烷基、取代或未取代的C 4-C 20直链或支链烯基、取代或未取代的C 4-C 20直链或支链炔基、取代或未取代的C 3-C 10环烷基、取代或未取代的C 6-C 20芳基、取代或未取代的环上含有选自N、O和S中的一个或多个杂原子的3-10元非芳香性杂环基、取代或未取代的环上含有选自N、O和S中的一个或多个杂原子的5-10元杂芳基;上述取代是指被选自如下的一个或多个取代基所取代:卤素、-OH、-NH 2、氰基、C 1-C 10烷基(优选C 1-C 6烷基,更优选C 1-C 4烷基,例如,甲基、乙基、丙基、丁基、 戊基、己基、庚基等)、C 1-C 10烷氧基(优选C 1-C 6烷氧基,更优选C 1-C 4烷氧基,例如,甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、庚氧基等)、C 1-C 10烷氨基(优选C 1-C 6烷氨基,更优选C 1-C 4烷氨基,例如,甲氨基、乙氨基、丙氨基、丁氨基、戊氨基、己氨基、庚氨基等)、C 1-C 10烷酰基(优选C 1-C 6烷酰基,更优选C 1-C 4烷酰基,例如,甲酰基、乙酰基、丙酰基、丁酰基、戊酰基、己酰基、庚酰基等)、C 3-C 10环烷基、卤代C 1-C 10烷基(优选卤代C 1-C 6烷基,更优选卤代C 1-C 4烷基,例如三氟甲基)、C 2-C 6直链或支链炔基、苯乙炔基、三甲基硅烷基乙炔基、吡啶基、苯基、氰基苯基、C1-C6烷基苯基、三氟甲基苯基、氯苯基、联苯基、甲基联苯基、三氟甲基联苯基、卤素取代的联苯基;优选地,R 7和R 8选自如下基团:取代或未取代的C 4-C 20直链或支链烷基、C 4-C 20直链或支链烷酰基、取代或未取代的联苯基甲基;所述取代是指被选自如下的一个或多个取代基所取代:卤素、-OH、-NH 2、氰基、C 1-C 10烷基、三氟甲基。
在本发明的另一个优选实施方案中,式(I)所示的万古霉素硫鎓衍生物选自下列化合物:
Figure PCTCN2019105489-appb-000003
Figure PCTCN2019105489-appb-000004
Figure PCTCN2019105489-appb-000005
Figure PCTCN2019105489-appb-000006
本发明上述式(I)所示的万古霉素硫鎓衍生物一般而言可以通过包括如下步骤的制备方法制备:
万古霉素盐酸盐通过还原胺化反应、曼尼希反应或者酰胺缩合反应得到带有硫原子修饰的万古霉素衍生物中间体,然后与过量的环氧化合物进行SN2开环取代反应得到本发明的万古霉素硫鎓衍生物。具体化合物的制备可以参照实施例中的具体反应条件相应进行。
其中还原胺化反应、曼尼希反应或者酰胺缩合反应可以在室温至50℃下进行,温度优选37℃。万古霉素衍生物中间体与环氧化物的SN2开环取代反应中,环氧化物的当量比可以为万古霉素中间体的10-40倍,反应溶剂可以为冰醋酸。
在一些实施方式中,所述制备方法可以为如下三种制备方法之一:
方法一:带有硫原子修饰的万古霉素衍生物中间体II与过量的环氧化合物
Figure PCTCN2019105489-appb-000007
发生SN2开环取代反应,得到式(I)所示的万古霉素硫鎓衍生物:
Figure PCTCN2019105489-appb-000008
其中,
R 9为-CH 2NH-X-S-R 5
R 1为-CH 2NH-X-S +(R 5)-CH 2-CH(OH)-R 12
R 2选自H、-X-NHR 7或R 8
R 3为-OH,
X、R 5、R 7、R 8的定义如前所述,
R 12选自取代或未取代的C 2-C 18直链或支链烷基、取代或未取代的C 2-C 18直链或支链烯基、取代或未取代的C 2-C 18直链或支链炔基;上述取代是指被选自如下的一个或多个取代基所取代:卤素、-OH、-NH 2、氰基、C 1-C 10烷基(优选C 1-C 6烷基,更优选C 1-C 4烷基,例如,甲基、乙基、丙基、丁基、戊基、己基、庚基等)、C 1-C 10烷氧基(优选C 1-C 6烷氧基,更优选C 1-C 4烷氧基,例如,甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、庚氧基等)、C 1-C 10烷氨基(优选C 1-C 6烷氨基,更优选C 1-C 4烷氨基,例如,甲氨基、乙氨基、丙氨基、丁氨基、戊氨基、己氨基、庚氨基等)、C 1-C 10烷酰基(优选C 1-C 6烷酰基,更优选C 1-C 4烷酰基,例如,甲酰基、乙酰基、丙酰基、丁酰基、戊酰基、己酰基、庚酰基等)、C 3-C 10环烷基、卤代C 1-C 10烷基(优选卤代C 1-C 6烷基,更优选卤代C 1-C 4烷基,例如三氟甲基)、C 2-C 6直链或支链炔基、苯乙炔基、三甲基硅烷基乙炔基、吡啶基、苯基、氰基苯基、C1-C6烷基苯基、三氟甲基苯基、氯苯基、联苯基、甲基联苯基、三氟甲基联苯基、卤素取代的联苯基。
所述SN2开环取代反应优选在反应溶剂存在下进行,反应溶剂可以为冰醋酸。
方法二:带有硫原子修饰的万古霉素衍生物中间体III与过量的环氧化合物
Figure PCTCN2019105489-appb-000009
发生SN2开环取代反应,得到式(I)所示的万古霉素硫鎓衍生物:
Figure PCTCN2019105489-appb-000010
其中,
R 10为-X-S-R 5
R 1选自H或-CH 2NHR 6
R 2为-X-S +(R 5)-CH 2-CH(OH)-R 12
R 3为-OH,
X、R 5、R 6的定义如前所述,
R 12选自取代或未取代的C 2-C 18直链或支链烷基、取代或未取代的C 2-C 18直链或支链烯基、取代或未取代的C 2-C 18直链或支链炔基;上述取代是指被选自如下的一个或多个取代基所取代:卤素、-OH、-NH 2、氰基、C 1-C 10烷基(优选C 1-C 6烷基,更优选C 1-C 4烷基,例如,甲基、乙基、丙基、丁基、戊基、己基、庚基等)、C 1-C 10烷氧基(优选C 1-C 6烷氧基,更优选C 1-C 4烷氧基,例如,甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、庚氧基等)、C 1-C 10烷氨基(优选C 1-C 6烷氨基,更优选C 1-C 4烷氨基,例如,甲氨基、乙氨基、丙氨基、丁氨基、戊氨基、己氨基、庚氨基等)、C 1-C 10烷酰基(优选C 1-C 6烷酰基,更优选C 1-C 4烷酰基,例如,甲酰基、乙酰基、丙酰基、丁酰基、戊酰基、己酰基、庚酰基等)、C 3-C 10环烷基、卤代C 1-C 10烷基(优选卤代C 1-C 6烷基,更优选卤代C 1-C 4烷基,例如三氟甲基)、C 2-C 6直链或支链炔基、苯乙炔基、三甲基硅烷基乙炔基、吡啶基、苯基、氰基苯基、C1-C6烷基苯基、三氟甲基苯基、氯苯基、联苯基、甲基联苯基、三氟甲基联苯基、卤素取代的联苯基。
所述SN2开环取代反应优选在反应溶剂存在下进行,反应溶剂可以为冰醋酸。
方法三:带有硫原子修饰的万古霉素衍生物中间体IV与过量的环氧化合物
Figure PCTCN2019105489-appb-000011
发生SN2开环取代反应,得到式(I)所示的万古霉素硫鎓衍生物:
Figure PCTCN2019105489-appb-000012
其中,
R 11为-NH-X-S-R 5
R 1选自H或-CH 2NHR 6
R 2选自H、-X-NHR 7或R 8
R 3为-NH-X-S +(R 5)-CH 2-CH(OH)-R 12
X、R 5、R 6、R 7、R 8的定义如前所述,
R 12选自取代或未取代的C 2-C 18直链或支链烷基、取代或未取代的C 2-C 18直链或支链烯基、取代或未取代的C 2-C 18直链或支链炔基;上述取代是指被选自如下的一个或多个取代基所取代:卤素、-OH、-NH 2、氰基、C 1-C 10烷基(优选C 1-C 6烷基,更优选C 1-C 4烷基,例如,甲基、乙基、丙基、丁基、戊基、己基、庚基等)、C 1-C 10烷氧基(优选C 1-C 6烷氧基,更优选C 1-C 4烷氧基,例如,甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、庚氧基等)、C 1-C 10烷氨基(优选C 1-C 6烷氨基,更优选C 1-C 4烷氨基,例如,甲氨基、乙氨基、丙氨基、丁氨基、戊氨基、己氨基、庚氨基等)、C 1-C 10烷酰基(优选C 1-C 6烷酰基,更优选C 1-C 4烷酰基,例如,甲酰基、乙酰基、丙酰基、丁酰基、戊酰基、己酰基、庚酰基等)、C 3-C 10环烷基、卤代C 1-C 10烷基(优选卤代C 1-C 6烷基,更优选卤代C 1-C 4烷基,例如三氟甲基)、C 2-C 6直链或支链炔基、苯乙炔基、三甲基硅烷基乙炔基、吡啶基、苯基、氰基苯基、C1-C6烷基苯基、三氟甲基苯基、氯苯基、联苯基、甲基联苯基、三氟甲基联苯基、卤素取代的联苯基。
所述SN2开环取代反应优选在反应溶剂存在下进行,反应溶剂可以为冰醋酸。
本发明还提供了式(I)所示的万古霉素硫鎓衍生物或其药学上可接受的盐在制备用于治疗和/或预防与革兰氏阳性菌感染有关疾病或病症的药物中的用途。
本发明还提供了包含式(I)所示的万古霉素硫鎓衍生物或其药学上可接受的盐的药物组合物。
本发明还提供了所述药物组合物在制备用于治疗和/或预防与革兰氏阳性菌感染有关疾病或病症的药物中的用途。
所述与革兰氏阳性菌感染有关疾病或病症包括败血症、肺炎、脑膜炎、尿路感染、脓疱病、丹毒、蜂窝组织炎等。
在本发明中,术语“芳基”是指不含杂原子的芳香族环基,比如苯基、萘基、联苯基等。
在本发明中,术语“杂芳基”是指环上含有一个或多个杂原子的芳基,比如吡咯基、咪唑基、恶唑基、噻唑基、呋喃基、噻吩基、吡啶基、嘧啶基、吲哚基、喹啉基等。
在本发明中,术语“非芳香性杂环基”是指四氢呋喃、1,4-二氧六环、四氢吡咯等。
在本发明中,术语“环烷基”是指饱和脂环烃基,比如环己烷、环丁烷、环戊烷、环己烷、环庚烷、环辛烷等。
在本发明中,术语“C 4-C 20烷基”是指主链上具有4至20个碳原子的直链或支链烷基。
在本发明中,术语“C 4-C 20直链或支链烯基”是指主链上具有4至20个碳原子的直链或支链烯基。
在本发明中,术语“C 4-C 20直链或支链炔基”是指主链上具有4至20个碳原子的直链或支链炔基。
本发明中的术语“药学上可接受的盐”是指与磷酸、硫酸、盐酸等无机酸,或醋酸、酒石酸、柠檬酸、苹果酸、三氟乙酸等有机酸,或天冬氨酸、谷氨酸等酸性氨基酸形成的盐,或与上述酸成酯或酰胺后再与无机碱形成的盐,如钠、钾、钙、铝盐和铵盐。
附图说明
图1为生物测试例3肾脏细胞毒性实验中细胞活力柱状图;
图2为金黄色葡萄球菌USA300 LAC菌株模型组小鼠存活率曲线图;其中,阴性对照组VS万古霉素组,**P<0.01;万古霉素组VS van004组,**P<0.001。
图3为USA400 MW2菌株菌株模型组小鼠存活率曲线图;其中,阴性对照组VS万古霉素组,**P<0.01;万古霉素组VS van004组,**P<0.001。
图4为XN 108菌株菌株模型组小鼠存活率曲线图;其中,阴性对照组VS万古霉素组,*P<0.05;万古霉素组VS van004组,**P<0.001。
具体实施方式
在以下的实施例中将进一步举例说明本发明。这些实施例仅用于说明本发明,但不以任何方式限制本发明的保护范围。
对于以下实施例,可以使用本领域技术人员已知的标准操作和纯化方法。除非另有规定,否则原料通常是从市售来源可获得的,比如Aldrich Chemicals Co.和Acros Organics。 商购的溶剂和试剂一般在不进一步纯化的情况下使用,无水溶剂均通过标准方法处理,其他试剂为市售分析纯。除非另有说明,所有温度以℃(摄氏度)表示,室温或环境温度是指20~25℃化合物的结构通过核磁共振谱(NMR)和/或质谱(MS)来确定的。
核磁共振氢谱位移(δ)以百万分之一(ppm)的单位给出。核磁共振氢谱用Mercury-600MHz和Bruker(AV-400)400MHz型核磁共振仪测定,氘代二甲亚砜(DMSO-d 6)、氘水(D 2O)为溶剂,四甲基硅烷(TMS)为内标。
高分辨质谱采用Agilent 6230系列TOF LC-MS测定,如果描述含氯或溴的离子的强度,则观察到预计的强度比(包含 35Cl/ 37Cl的离子约3:1,包含 79Br/ 81Br的离子1:1),且仅给出较低质量的离子的强度。
HPLC:LC3000分析型高效液相色谱系统(北京创新通恒科技有限公司)和LC3000制备型高效液相色谱系统(北京创新通恒科技有限公司)。分析型高效液相色谱条件:C18柱(5μm,4.6×250mm),紫外检测波段为214和254nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。制备高效液相色谱条件:C18柱(5μm,19×250mm),紫外检测波段为214和280nm,洗脱条件2-70%乙腈(含0.1%v/v TFA)梯度洗30分钟。
在上述讨论和下述实施例中,下列缩写具有如下含义。如果某一缩写没有定义,则它具有通常被接受的含义。
DIPEA为N,N-二异丙基乙胺;
DMF为N,N-二甲基甲酰胺;
DMSO为二甲基亚砜;
HATU为O-(吡啶并三唑-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐;
TFA为三氟乙酸;
TLC为薄层层析。
实施例1:
Figure PCTCN2019105489-appb-000013
第一步,将市售万古霉素盐酸盐(1g,0.67mmol),3-甲硫基丙胺(707mg,6.7mmol)溶解在盛有10mLH 2O和10mL乙腈的单口反应瓶中,搅拌的同时缓慢加入DIPEA(560μL,3.39mmol),室温搅拌2min,然后将反应体系转移到-10℃的低温反应条件下,待反应体系 温度下降到-10℃后,将37%的甲醛溶液(60μL,0.80mmol)逐滴加入到上述反应体系中,搅拌过夜,分析型反相高效液相(RP-HPLC)监测反应进程,在反应不再继续之时,用TFA调反应体系pH为弱酸性淬灭反应。直接用制备型反相C18分离纯化冻干收集的目标组分得到白色蓬松状固体van a(735mg,收率:70%)。分析型RP-HPLC色谱条件:C18柱(5μm,4.6×250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。制备型RP-HPLC条件:C18柱(10μm,19×250mm),紫外检测波段为214nm,洗脱条件2-70%乙腈(含0.1%v/v TFA)梯度洗30分钟。
保留时间(R.T.)=11.453min, 1H NMR(600MHz,DMSO-d 6)δ7.82(s,1H),7.58(s,1H),7.55–7.50(m,1H),7.47(d,J=8.4Hz,1H),7.32(d,J=8.4Hz,1H),7.20(d,J=8.4Hz,1H),7.12(s,1H),6.86(d,J=7.2Hz,1H),6.80(d,J=8.5Hz,1H),6.75(d,J=11.3Hz,1H),6.55(s,1H),5.72(d,J=7.6Hz,1H),5.66(s,1H),5.30–5.21(m,2H),5.16(d,J=4.5Hz,2H),5.12(d,J=2.0Hz,1H),4.85(s,1H),4.67(q,J=6.6Hz,1H),4.49–4.41(m,2H),4.17–4.07(m,4H),4.04–3.98(m,1H),3.30–3.24(m,2H),3.19(s,1H),3.00(t,J=7.8Hz,2H),2.61(s,3H),2.04(s,3H),1.98–1.85(m,3H),1.74(d,J=13.1Hz,1H),1.71–1.60(m,2H),1.58–1.48(m,1H),1.31(s,3H),1.06(d,J=6.4Hz,3H),0.91(d,J=6.1Hz,3H),0.86(d,J=6.1Hz,3H).高分辨质谱(ESI +)C 71H 86Cl 2N 10O 24S[M+2H] 2+理论值m/z 783.2535,实测值为m/z 783.2526。
第二步,取van a(20mg,12.7μmol)分散在盛有1.5mL冰醋酸的2mL离心管中,涡旋至体系均匀,1,2-环氧丁烷(44μL,508μmol)加入上述反应体系,将反应离心管放在37℃恒温摇床上反应24h,直至分析型RP-HPLC监测反应基本完成。浓缩除去冰醋酸,加水和乙腈使粗品溶解,直接用制备型RP-HPLC分离纯化,冻干收集到的目标化合物van 001的三氟乙酸盐组分得到白色蓬松状固体(17.8mg,收率80%)。R.T.=10.268min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.81(s,1H),7.63(s,1H),7.51(d,J=8.2Hz,1H),7.48(d,J=8.4Hz,1H),7.31(d,J=8.4Hz,1H),7.21(d,J=8.6Hz,1H),7.12(s,1H),6.88(d,J=8.3Hz,1H),6.81(d,J=8.4Hz,1H),6.77(d,J=11.4Hz,1H),6.57(s,1H),5.73(d,J=7.6Hz,1H),5.69(s,1H),5.30–5.22(m,2H),5.15(s,2H),5.12(d,J=2.0Hz,1H),4.82(s,1H),4.67(d,J=6.7Hz,1H),4.47(s,1H),4.44(d,J=5.7Hz,1H),4.19–4.05(m,4H),4.02(s,1H),3.85(s,1H),3.67(d,J=11.0Hz,1H),3.39–3.31(m,3H),3.30–3.23(m,2H),3.18(s,1H),3.12–3.02(m,2H),2.93(s,2H),2.90(d,J=4.7Hz,2H),2.59(s,3H),2.23–2.08(m,3H),1.91(d,J=12.2Hz,1H),1.74(d,J=13.2Hz,1H),1.71–1.61(m,2H),1.57–1.43(m,3H),1.31(s,3H),1.06(d,J=6.4Hz,3H),0.95–0.86(m,9H).高分辨质谱(ESI +)C 75H 95Cl 2N 10O 25S +[M+H] 2+理论值 m/z 819.2820,实测值为m/z 819.2812.
实施例2
Figure PCTCN2019105489-appb-000014
将实施例1第二步中的1,2-环氧丁烷替换成1,2-环氧己烷,其余所需原料,试剂及制备方法同实施例1,得到van 002的三氟乙酸盐(16.8mg,收率75%)。R.T.=11.496min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.81(s,1H),7.63(s,1H),7.52(d,J=8.6Hz,1H),7.48(d,J=8.3Hz,1H),7.32(d,J=8.4Hz,1H),7.21(d,J=8.4Hz,1H),7.12(s,1H),6.88(d,J=8.5Hz,1H),6.81(d,J=8.6Hz,1H),6.77(d,J=11.4Hz,1H),6.57(s,1H),5.73(d,J=7.6Hz,1H),5.70(s,1H),5.29–5.23(m,2H),5.15(s,2H),5.12(s,1H),4.82(s,1H),4.67(q,J=6.6Hz,1H),4.47(s,1H),4.44(d,J=5.7Hz,1H),4.20–4.05(m,4H),4.02(d,J=8.2Hz,1H),3.91(s,1H),3.67(d,J=11.1Hz,1H),3.40–3.30(m,3H),3.27(d,J=5.4Hz,2H),3.18(s,1H),3.10–3.02(m,2H),2.93(s,2H),2.90(d,J=5.1Hz,2H),2.59(s,3H),2.25–2.08(m,3H),1.91(d,J=12.4Hz,1H),1.74(d,J=13.0Hz,1H),1.70–1.60(m,2H),1.59–1.51(m,1H),1.50–1.42(m,2H),1.40–1.18(m,9H),1.06(d,J=6.4Hz,3H),0.92(d,J=6.0Hz,3H),0.90–0.81(m,6H).高分辨质谱(ESI +)C 77H 99Cl 2N 10O 25S +理论值[M+H] 2+m/z 833.2977,实际值为m/z 833.2965.
实施例3
Figure PCTCN2019105489-appb-000015
将实施例1第二步中的1,2-环氧丁烷替换成1,2-环氧辛烷,其余所需原料,试剂及制备方法同实施例1,得到van 003的三氟乙酸盐(18.8mg,收率82%)。R.T.=13.524min(分析型RP-HPLC). 1H NMR(500MHz,DMSO-d 6)δ7.81(s,1H),7.64(s,1H),7.52(d,J=8.7Hz,1H),7.49–7.46(m,1H),7.32(d,J=8.3Hz,1H),7.21(d,J=8.4Hz,1H),7.13(s,1H),6.90–6.86(m,1H),6.81(d,J=8.5Hz,1H),6.77(s,1H),6.57(s,1H),5.74(d,J=7.6Hz,1H),5.70(s,1H),5.31–5.24(m,2H),5.15(s,2H),5.12(d,J=2.0Hz,1H),4.81(s,1H),4.67(d,J=6.6Hz,1H),4.47(s,1H),4.44(d,J=5.8Hz,1H),4.19–4.05(m,2H),4.02(t,J=7.4Hz,1H),3.91(s,1H),3.68(d,J=10.8Hz,1H),3.39–3.30(m,1H),3.30–3.24(m,2H),3.18(s,1H),3.10–3.02(m,2H),2.93(s,1H),2.90(d,J=2.3Hz,2H),2.59(s,3H),2.24–2.08(m,3H),1.91(d,J=6.9Hz,1H),1.74(d,J=13.3Hz,1H),1.71–1.62(m,1H),1.58–1.51(m,1H),1.50–1.42(m,2H),1.42–1.34(m,1H),1.33–1.18(m,11H),1.06(d,J=6.4Hz,3H),0.93(d,J=6.1Hz,3H),0.89–0.78(m,6H).高分辨质谱(ESI +)C 79H 103Cl 2N 10O 25S +理论值[M+H] 2+m/z 847.3133,实际值为m/z 847.3133.
实施例4
Figure PCTCN2019105489-appb-000016
将实施例1第二步中的1,2-环氧丁烷替换成1,2-环氧癸烷,其余所需原料,试剂及制备方法同实施例1,得到van 004的三氟乙酸盐(19.4mg,收率83%)。R.T.=15.769min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.80(s,1H),7.64(s,2H),7.50(d,J=8.5Hz,1H),7.47(d,J=8.3Hz,1H),7.31(d,J=8.3Hz,1H),7.21(d,J=8.4Hz,1H),7.11(s,1H),6.96(s,1H),6.87(d,J=8.5Hz,1H),6.79(d,J=9.0Hz,2H),6.55(s,1H),5.73(d,J=7.6Hz,1H),5.69(s,1H),5.25(d,J=8.6Hz,2H),5.13(s,2H),5.10(s,1H),4.80(s,1H),4.66(d,J=6.6Hz,1H),4.46(s,1H),4.42(d,J=5.7Hz,1H),4.16–3.97(m,5H),3.89(s,1H),3.66(d,J=10.8Hz,1H),3.34(t,J=10.4Hz,2H),3.26(d,J=6.0Hz,2H),3.16(s,1H),3.05(s,2H),2.91(s,2H),2.88(d,J=3.6Hz,2H),2.79–2.66(m,1H),2.57(s,3H),2.23–2.05(m,3H),1.90(d,J=12.1Hz,1H),1.72(d,J=13.1Hz,1H),1.69–1.58(m,2H),1.56–1.48(m,0H),1.49–1.40(m,2H),1.40–1.32(m,1H),1.32–1.17(m,15H),1.05(d,J=6.4Hz,3H),0.92(d, J=6.1Hz,3H),0.89–0.79(m,6H).高分辨质谱(ESI +)C 81H 107Cl 2N 10O 25S +理论值[M+2H] 3+m/z 574.5552,实际值为m/z 574.5552.
实施例5
Figure PCTCN2019105489-appb-000017
将实施例1第二步中的1,2-环氧丁烷替换成1,2-环氧十二烷,其余所需原料,试剂及制备方法同实施例1,得到van 005的三氟乙酸盐(20.2mg,收率85%)。R.T.=17.606min(分析型RP-HPLC). 1H NMR(500MHz,DMSO-d 6)δ7.82(s,1H),7.63(s,1H),7.52(d,J=8.7Hz,1H),7.50–7.45(m,1H),7.32(d,J=8.0Hz,1H),7.21(d,J=8.5Hz,1H),7.13(s,1H),6.92–6.85(m,1H),6.81(d,J=8.5Hz,1H),6.80–6.75(m,1H),6.57(s,1H),5.74(d,J=7.8Hz,1H),5.71(s,1H),5.30–5.22(m,2H),5.15(s,2H),5.12(s,1H),4.82(s,1H),4.68(d,J=6.7Hz,1H),4.48(s,1H),4.44(d,J=5.7Hz,1H),4.21–3.99(m,5H),3.97–3.86(m,1H),3.68(d,J=11.0Hz,1H),3.39–3.31(m,3H),3.31–3.23(m,2H),3.18(s,1H),3.07(s,2H),2.93(s,2H),2.90(s,1H),2.74(d,J=0.0Hz,1H),2.60(s,3H),2.22–2.09(m,3H),1.91(d,J=12.7Hz,1H),1.78–1.71(m,1H),1.70–1.63(m,2H),1.59–1.51(m,1H),1.51–1.42(m,2H),1.41–1.34(m,1H),1.34–1.17(m,19H),1.07(d,J=6.3Hz,3H),0.93(d,J=5.8Hz,3H),0.90–0.81(m,6H).高分辨质谱(ESI +)C 83H 111Cl 2N 10O 25S +理论值[M+2H] 2+m/z 875.3446,实际值为m/z 875.3441.
实施例6
Figure PCTCN2019105489-appb-000018
将实施例1第二步中的1,2-环氧丁烷替换成1,2-环氧十四烷,其余所需原料,试剂及制备方法同实施例1,得到van 006的三氟乙酸盐(21.2mg,收率88%)。R.T.=19.340min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.80(s,1H),7.62(s,2H),7.50(d,J=8.6Hz,1H),7.48–7.44(m,1H),7.31(d,J=8.3Hz,1H),7.20(d,J=8.3Hz,1H),7.11(s,1H),6.96(s,1H),6.86(d,J=8.5Hz,1H),6.83–6.76(m,2H),6.54(s,1H),5.72(d,J=7.5Hz,1H),5.68(s,1H),5.28–5.20(m,2H),5.13(s,2H),5.10(s,1H),4.80(s,1H),4.66(d,J=6.7Hz,1H),4.45(s,1H),4.42(d,J=5.7Hz,1H),4.16–3.97(m,5H),3.94–3.83(m,1H),3.66(d,J=10.8Hz,1H),3.46–3.38(m,3H),3.37–3.29(m,1H),3.26(d,J=5.6Hz,2H),3.17(s,1H),3.05(s,2H),2.91(s,2H),2.88(d,J=2.2Hz,2H),2.77–2.67(m,1H),2.58(s,3H),2.20–2.04(m,2H),1.89(d,J=12.1Hz,1H),1.72(d,J=13.1Hz,1H),1.68–1.60(m,2H),1.55–1.48(m,1H),1.40–1.31(m,1H),1.32–1.16(m,23H),1.05(d,J=6.3Hz,3H),0.91(d,J=6.1Hz,3H),0.88–0.80(m,6H).高分辨质谱(ESI +)C 85H 115Cl 2N 10O 25S +理论值[M+2H] 3+m/z 593.2428,实际值为m/z 593.2442.
实施例7
Figure PCTCN2019105489-appb-000019
将实施例1第二步中的1,2-环氧丁烷替换成1,2-环氧十六烷,其余所需原料,试剂及制备方法同实施例1,得到van 007的三氟乙酸盐(21.4mg,收率87%)。R.T.=20.914min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.84–7.79(m,1H),7.63(s,1H),7.53–7.49(m,1H),7.49–7.45(m,1H),7.32(d,J=8.4Hz,1H),7.21(d,J=8.3Hz,1H),7.13(s,1H),6.88(d,J=8.5Hz,1H),6.81(d,J=8.6Hz,1H),6.77(d,J=11.1Hz,1H),6.57(s,1H),5.74(d,J=7.5Hz,1H),5.71(s,1H),5.27(d,J=8.7Hz,2H),5.15(s,2H),5.12(s,1H),4.81(s,1H),4.67(d,J=6.6Hz,1H),4.47(s,1H),4.44(d,J=5.8Hz,1H),4.18–3.98(m,5H),3.95–3.86(m,1H),3.68(d,J=10.9Hz,1H),3.54(q,J=8.3,7.8Hz,2H),3.35(t,J=11.2Hz,2H),3.29–3.25(m,2H),3.18(s,1H),3.07(s,2H),2.93(s,1H),2.90(d,J=4.8Hz,2H),2.80–2.70(m,1H),2.59(s,3H),2.23–2.07(m,2H),1.91(d,J=12.1Hz,1H),1.74(d,J=13.0Hz,1H),1.70–1.63(m,2H),1.57–1.49(m,1H),1.49–1.41(m,2H),1.41–1.34(m,1H),1.31(s,3H),1.28–1.17(m,24H),1.07(d,J=6.3Hz,3H),0.93(d,J=6.1Hz,3H),0.88(d,J=6.2 Hz,3H),0.85(t,J=7.0Hz,3H).高分辨质谱(ESI +)C 87H 119Cl 2N 10O 25S +理论值[M+2H] 2+m/z 903.3759,实际值为m/z 903.3747.
实施例8
Figure PCTCN2019105489-appb-000020
第一步:将市售万古霉素盐酸盐(148.5mg,0.1mmol),3-甲硫基丙醛(12μL,0.12mmol)和DIPEA(52μL,0.3mmol)依次加入到盛有4mL DMF的单口反应瓶中,将反应体系转移到50℃条件下搅拌反应2小时直到分析型RP-HPLC监测反应不再进一步变化,然后将反应体系恢复到常温,将溶解在1mL甲醇中的氰基硼氢化钠(18.9mg,0.3mmol)缓慢滴加到反应瓶中,适量的TFA加入上述反应体系调节pH为3-4左右,继续反应2小时使形成的西弗碱的碳-氮双键充分还原碳-氮单键,用分析型RP-HPLC监测反应变化。反应结束后,向反应体系中加入50mL乙醚使粗品沉淀析出,离心弃上清,将下层粗品沉淀物用适量水和乙腈溶解后直接用制备型RP-HPLC分离纯化,将收集的目标化合物组分冻干得到白色蓬松状固体van b(115mg,收率75%)。分析型RP-HPLC色谱条件:C18柱(5μm,4.6×250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。制备型RP-HPLC条件:C18柱(10μm,19×250mm),紫外检测波段为214nm,洗脱条件2-70%乙腈(含0.1%v/v TFA)梯度洗30分钟。R.T.=11.823min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.84(d,J=1.9Hz,1H),7.55(d,J=8.5Hz,1H),7.52(s,1H),7.48–7.45(m,1H),7.32(d,J=8.4Hz,1H),7.19(d,J=8.4Hz,1H),7.16(s,1H),6.78(dd,J=8.4,2.0Hz,1H),6.73(d,J=8.5Hz,1H),6.69(d,J=11.5Hz,1H),6.41(d,J=2.3Hz,1H),6.25(d,J=2.3Hz,1H),5.74(d,J=7.9Hz,1H),5.60(s,1H),5.30(d,J=7.8Hz,1H),5.28(d,J=4.2Hz,1H),5.19(d,J=3.7Hz,1H),5.16(d,J=2.0Hz,1H),5.12(s,1H),4.93(s,1H),4.64(q,J=6.7Hz,1H),4.45(d,J=7.0Hz,1H),4.43(d,J=5.7Hz,1H),4.19(d,J=11.4Hz,1H),3.97(dd,J=152.5,4.4Hz,1H),3.68(d,J=10.8Hz,1H),3.48–3.41(m,2H),3.32–3.24(m,3H),2.91–2.84(m,1H),2.84–2.76(m,1H),2.63(s,3H),2.20–2.11(m,1H),2.03(s,3H),2.00–1.95(m,1H),1.88–1.76(m,3H),1.72–1.65(m,1H),1.64–1.60(m,1H),1.60–1.53(m,1H),1.34(s,3H),1.09(d,J=6.3Hz,3H),0.91(d,J=6.3Hz,3H),0.86(d,J=6.2Hz,3H).高分辨质谱(ESI +) C 70H 83Cl 2N 9O 24S理论值[M+2H] 2+m/z 768.7403,实际值为m/z 768.7391.
第二步,取van b(10mg,6.5μmol)分散在盛有1.5mL冰醋酸的2mL离心管中,涡旋至体系均匀,1,2-环氧丁烷(22.5μL,260μmol)加入上述反应体系,将反应离心管放在37℃恒温摇床上反应24h,直至分析型RP-HPLC监测反应基本完成。浓缩除去冰醋酸,加水和乙腈使粗品溶解,直接用制备型RP-HPLC分离纯化,冻干收集到的目标化合物van 008的三氟乙酸盐组分得到白色蓬松状固体(9.1mg,收率81%)。R.T.=10.878min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.83(s,1H),7.55(d,J=8.6Hz,1H),7.53(s,1H),7.46(d,J=8.0Hz,1H),7.32(d,J=8.4Hz,1H),7.19(d,J=8.5Hz,1H),7.16(s,1H),6.78(d,J=8.0Hz,1H),6.73(d,J=8.5Hz,1H),6.41(d,J=2.3Hz,1H),6.25(d,J=2.3Hz,1H),5.74(d,J=7.9Hz,1H),5.61(s,1H),5.32–5.27(m,2H),5.19(d,J=3.8Hz,1H),5.16(s,1H),5.11(s,1H),4.92(s,1H),4.66(d,J=6.6Hz,1H),4.46(d,J=5.7Hz,1H),4.43(d,J=5.6Hz,1H),4.25–4.14(m,2H),3.99–3.93(m,1H),3.88–3.81(m,1H),3.68(d,J=10.7Hz,1H),3.37–3.31(m,2H),3.31–3.24(m,4H),2.97–2.84(m,5H),2.63(s,3H),2.17–2.10(m,1H),2.11–2.00(m,2H),1.96(d,J=11.6Hz,1H),1.84(d,J=13.0Hz,1H),1.71–1.60(m,2H),1.60–1.54(m,1H),1.54–1.45(m,2H),1.36(s,3H),1.10(d,J=6.4Hz,3H),0.93–0.88(m,6H),0.86(d,J=6.2Hz,3H).高分辨质谱(ESI +)C 74H 92Cl 2N 9O 25S +理论值[M+H] 2+m/z 804.7688,实际值为m/z 804.7680.
实施例9
Figure PCTCN2019105489-appb-000021
将实施例8第二步中的1,2-环氧丁烷替换成1,2-环氧己烷,其余所需原料,试剂及制备方法同实施例8,得到van 009的三氟乙酸盐(8.8mg,收率77%)。R.T.=12.000min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.83(s,1H),7.55(d,J=8.7Hz,1H),7.53(s,1H),7.47(d,J=8.5Hz,1H),7.32(d,J=8.4Hz,1H),7.19(d,J=8.4Hz,1H),7.17(s,1H),6.81–6.77(m,1H),6.73(d,J=8.5Hz,1H),6.41(d,J=2.3Hz,1H),6.25(d,J=2.3Hz,1H),5.74(d,J=7.8Hz,1H),5.61(s,1H),5.33–5.27(m,2H),5.19(d,J=3.8Hz,1H),5.16(s,1H),5.11(s,1H),4.92(s,1H),4.70–4.62(m,1H),4.49–4.45(m,1H),4.43(d,J=5.7Hz,1H),4.27–4.15(m,2H),4.00–3.94(m,1H),3.93–3.87(m,1H),3.68(d,J=11.1Hz,1H),3.37–3.31(m,2H),3.31–3.23(m,4H),2.98–2.82(m,5H),2.63(s,3H), 2.10–1.99(m,2H),1.96(d,J=11.5Hz,1H),1.84(d,J=13.3Hz,1H),1.72–1.60(m,2H),1.60–1.54(m,1H),1.47(t,J=6.7Hz,2H),1.36(s,3H),1.33–1.25(m,4H),1.23(s,1H),1.10(d,J=6.3Hz,3H),0.91(d,J=6.2Hz,3H),0.89–0.83(m,6H).高分辨质谱(ESI +)C 76H 96Cl 2N 9O 25S +理论值[M+H] 2+m/z 818.7844,实际值为m/z 818.7833.
实施例10
Figure PCTCN2019105489-appb-000022
将实施例8第二步中的1,2-环氧丁烷替换成1,2-环氧辛烷,其余所需原料,试剂及制备方法同实施例8,得到van 010的三氟乙酸盐(9.5mg,收率82%)。R.T.=13.956min(分析型RP-HPLC). 1H NMR(500MHz,DMSO-d 6)δ7.83(s,1H),7.56(d,J=8.5Hz,1H),7.52(s,1H),7.47(d,J=8.4Hz,1H),7.32(d,J=8.3Hz,1H),7.22–7.13(m,2H),6.79(d,J=8.6Hz,1H),6.73(d,J=8.6Hz,1H),6.41(s,1H),6.25(s,1H),5.75(d,J=7.9Hz,1H),5.61(s,1H),5.34–5.25(m,2H),5.22–5.18(m,1H),5.17(s,1H),5.11(s,1H),4.93(s,1H),4.66(d,J=6.8Hz,1H),4.46(d,J=5.9Hz,1H),4.44(d,J=5.7Hz,1H),4.27–4.16(m,2H),3.99–3.94(m,1H),3.94–3.86(m,1H),3.68(d,J=11.0Hz,1H),3.38–3.21(m,6H),2.99–2.82(m,5H),2.63(s,3H),2.20–2.10(m,1H),2.10–2.00(m,3H),1.97(d,J=11.4Hz,1H),1.84(d,J=13.1Hz,1H),1.73–1.66(m,1H),1.66–1.61(m,1H),1.60–1.53(m,1H),1.52–1.43(m,2H),1.36(s,3H),1.32–1.21(m,8H),1.10(d,J=6.3Hz,3H),0.91(d,J=6.0Hz,3H),0.86(d,J=6.1Hz,6H).高分辨质谱(ESI +)C 78H 100Cl 2N 9O 25S +理论值[M+H] 2+m/z 832.8000,实际值为m/z 832.7985.
实施例11
Figure PCTCN2019105489-appb-000023
将实施例8第二步中的1,2-环氧丁烷替换成1,2-环氧癸烷,其余所需原料,试剂及制备方法同实施例8,得到van 011的三氟乙酸盐(10.5mg,收率89%)。R.T.=16.234min(分析型RP-HPLC). 1H NMR(500MHz,DMSO-d 6)δ7.83(s,1H),7.56(d,J=8.5Hz,1H),7.52(s,1H),7.47(d,J=8.5Hz,1H),7.32(d,J=8.3Hz,1H),7.22–7.15(m,2H),6.79(d,J=8.6Hz,1H),6.73(d,J=8.6Hz,1H),6.41(d,J=2.2Hz,1H),6.25(d,J=2.2Hz,1H),5.74(d,J=7.9Hz,1H),5.60(s,1H),5.33–5.26(m,2H),5.19(d,J=3.6Hz,1H),5.17(s,1H),5.11(s,1H),4.93(s,1H),4.66(d,J=6.9Hz,1H),4.46(d,J=6.5Hz,1H),4.43(d,J=5.6Hz,1H),4.26–4.15(m,2H),4.01–3.94(m,1H),3.94–3.86(m,1H),3.68(d,J=11.0Hz,1H),3.38–3.22(m,6H),2.99–2.81(m,5H),2.63(s,3H),2.19–2.10(m,1H),2.05(s,1H),1.96(d,J=9.5Hz,1H),1.84(d,J=13.0Hz,1H),1.72–1.65(m,1H),1.65–1.60(m,1H),1.61–1.53(m,1H),1.50–1.42(m,2H),1.36(s,3H),1.31–1.20(m,12H),1.10(d,J=6.3Hz,3H),0.91(d,J=6.0Hz,3H),0.88–0.82(m,6H).高分辨质谱(ESI +)C 80H 104Cl 2N 9O 25S +理论值[M+H] 2+m/z 846.8157,实际值为m/z 846.8168.
实施例12
Figure PCTCN2019105489-appb-000024
将实施例8第二步中的1,2-环氧丁烷替换成1,2-环氧十二烷,其余所需原料,试剂及制备方法同实施例8,得到van 012的三氟乙酸盐(10.2mg,收率85%)。R.T.=18.204min(分析型RP-HPLC). 1H NMR(500MHz,DMSO-d 6)δ7.83(s,1H),7.56(d,J=8.6Hz,1H),7.52(s,1H),7.47(d,J=8.4Hz,1H),7.32(d,J=8.4Hz,1H),7.23–7.13(m,2H),6.79(d,J=8.6Hz,1H),6.75–6.65(m,2H),6.41(s,1H),6.25(s,1H),5.74(d,J=7.8Hz,1H),5.61(s,1H),5.37–5.25(m,2H),5.19(s,1H),5.17(s,1H),5.11(s,1H),4.93(s,1H),4.66(d,J=6.7Hz,1H),4.46(s,1H),4.44(d,J=5.6Hz,1H),4.26–4.14(m,2H),4.00–3.94(m,1H),3.93–3.82(m,1H),3.68(d,J=11.2Hz,1H),3.40–3.22(m,5H),2.99–2.78(m,5H),2.63(s,3H),2.14(s,1H),2.10–2.00(m,3H),1.97(d,J=12.1Hz,1H),1.84(d,J=13.2Hz,1H),1.73–1.54(m,3H),1.51–1.42(m,2H),1.36(s,3H),1.32–1.18(m,16H),1.10(d,J=6.3Hz,3H),0.91(d,J=5.9Hz,3H),0.89–0.78(m,6H).高分辨质谱(ESI +)C 82H 108Cl 2N 9O 25S +理论值[M+H] 2+m/z 860.8313,实际值为m/z 860.8311.
实施例13
Figure PCTCN2019105489-appb-000025
将实施例8第二步中的1,2-环氧丁烷替换成1,2-环氧十四烷,其余所需原料,试剂及制备方法同实施例8,得到van 013的三氟乙酸盐(10.4mg,收率86%)。R.T.=20.043min(分析型RP-HPLC). 1H NMR(500MHz,DMSO-d 6)δ7.83(s,1H),7.55(d,J=8.6Hz,1H),7.53(s,1H),7.47(d,J=8.5Hz,1H),7.32(d,J=8.3Hz,1H),7.21–7.14(m,2H),6.79(d,J=8.6Hz,1H),6.75–6.68(m,2H),6.41(s,1H),6.25(d,J=2.2Hz,1H),5.74(d,J=7.9Hz,1H),5.61(s,1H),5.33–5.26(m,2H),5.19(s,1H),5.17(s,1H),5.11(s,1H),4.92(s,1H),4.66(d,J=6.6Hz,1H),4.45(s,1H),4.43(d,J=5.6Hz,1H),4.25–4.14(m,2H),4.00–3.94(m,1H),3.93–3.84(m,1H),3.68(d,J=11.0Hz,1H),3.39–3.23(m,6H),2.99–2.81(m,5H),2.63(s,3H),2.19–2.10(m,1H),2.09–2.00(m,3H),1.96(d,J=12.3Hz,1H),1.84(d,J=13.2Hz,1H),1.73–1.61(m,2H),1.60–1.52(m,1H),1.49–1.42(m,2H),1.36(s,3H),1.30–1.20(m,20H),1.10(d,J=6.3Hz,3H),0.91(d,J=6.0Hz,3H),0.88–0.82(m,6H).高分辨质谱(ESI +)C 84H 112Cl 2N 9O 25S +理论值[M+H] 2+m/z 874.8470,实际值为m/z 874.8460.
实施例14
Figure PCTCN2019105489-appb-000026
将实施例8第二步中的1,2-环氧丁烷替换成1,2-环氧十四烷,其余所需原料,试剂及制备方法同实施例8,得到van 014的三氟乙酸盐(10.2mg,收率83%)。R.T.=21.726min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.83(s,1H),7.56(d,J=8.5Hz,1H),7.51(s,1H),7.47(d,J=8.4Hz,1H),7.32(d,J=8.3Hz,1H),7.22–7.15(m,2H),6.79(dd,J=8.5,1.9Hz,1H),6.75–6.68(m,2H),6.41(d,J=2.3Hz,1H),6.25(d,J=2.3Hz,1H),5.74(d,J=7.8Hz,1H),5.60(s,1H),5.35–5.25(m,2H),5.19(d,J=3.8Hz,1H),5.17(s,1H),5.11(s,1H),4.93(s,1H),4.66(d,J=6.9Hz,1H),4.46(s,1H),4.43(d,J=5.5Hz,1H),4.29–4.12(m,2H),3.96(t,J=7.6Hz,1H),3.93–3.86(m,1H), 3.68(d,J=10.8Hz,1H),3.36–3.23(m,6H),2.99–2.80(m,5H),2.63(s,3H),2.14(d,J=12.7Hz,1H),2.11–2.00(m,3H),1.97(d,J=10.9Hz,1H),1.84(d,J=12.9Hz,1H),1.72–1.60(m,2H),1.60–1.53(m,1H),1.50–1.42(m,2H),1.36(s,3H),1.31–1.20(m,24H),1.10(d,J=6.2Hz,3H),0.91(d,J=6.1Hz,3H),0.88–0.81(m,6H).高分辨质谱(ESI +)C 86H 116Cl 2N 9O 25S +理论值[M+H] 2+m/z 888.8626,实际值为m/z 888.8624.
实施例15
Figure PCTCN2019105489-appb-000027
第一步,将市售万古霉素盐酸盐(148.5mg,0.1mmol)溶解在DMSO/DMF(1/1(v/v),6mL)中,搅拌的同时依次向反应体系中加入3-甲硫基丙胺(16.8μL,0.15mmol),DIPEA(50μL,0.3mmol),HATU(0.4M溶解于DMSO/DMF=1/1(v/v),500μL,0.2mmol)。反应体系在室温条件下搅拌2小时直至分析型RP-HPLC检测反应不再继续,然后直接加入适量TFA调节pH为弱酸性淬灭反应,加适量的水和乙腈在制备型RP-HPLC上分离纯化,冻干收集的目标化合物组分得到白色蓬松状固体van c(61.4mg,收率40%)。R.T.=12.292min(分析型RP-HPLC). 1H NMR(500MHz,DMSO-d 6)δ7.85(s,1H),7.58–7.50(m,2H),7.46(d,J=8.4Hz,1H),7.32(d,J=8.3Hz,1H),7.19(d,J=8.4Hz,2H),6.76(dd,J=8.4,2.0Hz,1H),6.73–6.63(m,2H),6.37(d,J=2.3Hz,1H),6.24(d,J=2.3Hz,1H),5.75(d,J=7.9Hz,1H),5.60(s,1H),5.30–5.21(m,3H),5.18(s,2H),4.92(s,1H),4.67(q,J=6.6Hz,1H),4.45(d,J=5.5Hz,1H),4.37(d,J=5.7Hz,1H),4.27–4.14(m,2H),4.00–3.90(m,1H),3.67(d,J=11.0Hz,1H),3.59–3.50(m,2H),3.30–3.14(m,5H),2.47(t,J=7.3Hz,2H),2.19–2.09(m,1H),2.05(s,3H),1.91(d,J=11.9Hz,1H),1.79–1.69(m,3H),1.69–1.60(m,2H),1.60–1.50(m,1H),1.30(s,3H),1.07(d,J=6.5Hz,3H),0.91(d,J=6.1Hz,3H),0.86(d,J=6.1Hz,3H).高分辨质谱(ESI +)C 70H 84Cl 2N 10O 23S理论值[M+2H] 2+m/z 768.2482,实际值为m/z 768.2477.
第二步,取van c(10mg,6.5μmol)分散在盛有1.5mL冰醋酸的2mL离心管中,涡旋至体系均匀,1,2-环氧丁烷(22.5μL,260μmol)加入上述反应体系,将反应离心管放在37℃恒温摇床上反应24h,直至分析型RP-HPLC监测反应基本完成。浓缩除去冰醋酸,加水和乙腈使粗品溶解,直接用制备型RP-HPLC分离纯化,冻干收集到的目标化合物van 015的 三氟乙酸盐组分得到白色蓬松状固体(8.9mg,收率80%)。R.T.=10.910min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.81(s,1H),7.60–7.49(m,2H),7.46(d,J=8.4Hz,1H),7.34(d,J=8.4Hz,1H),7.26(s,1H),7.20(d,J=8.4Hz,1H),6.77(dd,J=8.5,1.9Hz,1H),6.71(d,J=8.5Hz,1H),6.38(d,J=2.3Hz,1H),6.21(d,J=1.5Hz,1H),5.75(d,J=7.8Hz,1H),5.58(s,1H),5.32–5.21(m,3H),5.18(s,2H),4.91(s,1H),4.67(d,J=6.7Hz,1H),4.47(s,1H),4.30(d,J=5.2Hz,1H),4.26–4.08(m,2H),3.96(s,1H),3.88–3.76(m,1H),3.67(d,J=10.9Hz,1H),3.47–3.33(m,3H),3.32–3.22(m,4H),3.18(s,2H),2.87(dd,J=15.1,7.6Hz,3H),2.62(s,3H),2.13(d,J=11.7Hz,1H),1.99–1.84(m,3H),1.73(d,J=13.0Hz,1H),1.71–1.59(m,2H),1.59–1.41(m,3H),1.30(s,3H),1.06(d,J=6.3Hz,3H),0.93–0.88(m,6H),0.85(d,J=6.2Hz,3H).高分辨质谱(ESI +)C 74H 93Cl 2N 10O 24S +理论值[M+2H] 3+m/z 804.2767,实际值为m/z 804.2753.
实施例16
Figure PCTCN2019105489-appb-000028
将实施例15第二步中的1,2-环氧丁烷替换成1,2-环氧己烷,其余所需原料,试剂及制备方法同实施例15,得到van 016的三氟乙酸盐(9.6mg,收率85%)。R.T.=12.467min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.58–7.49(m,2H),7.45(d,J=8.1Hz,1H),7.34(d,J=8.3Hz,1H),7.26(s,1H),7.19(d,J=8.4Hz,1H),6.78(dd,J=8.4,1.9Hz,1H),6.71(d,J=8.4Hz,1H),6.38(d,J=2.3Hz,1H),6.22(d,J=2.3Hz,1H),5.75(d,J=7.8Hz,1H),5.58(s,1H),5.32–5.21(m,3H),5.18(s,2H),4.91(s,1H),4.67(d,J=6.6Hz,1H),4.47(d,J=5.3Hz,1H),4.30(d,J=5.0Hz,1H),4.27–4.14(m,2H),3.96(s,1H),3.93–3.82(m,1H),3.67(d,J=10.8Hz,1H),3.45–3.35(m,3H),3.30–3.22(m,4H),3.18(s,2H),2.86(dd,J=14.8,8.1Hz,3H),2.63(s,3H),2.20–2.08(m,0H),1.97–1.84(m,3H),1.73(d,J=13.0Hz,1H),1.70–1.59(m,2H),1.59–1.52(m,1H),1.52–1.41(m,2H),1.40–1.33(m,1H),1.33–1.23(m,7H),1.06(d,J=6.4Hz,3H),0.90(d,J=6.2Hz,3H),0.89–0.81(m,6H).高分辨质谱(ESI)C 76H 97Cl 2N 10O 24S +理论值[M+H] 2+m/z 818.2923,实际值为m/z 818.2910.
实施例17
Figure PCTCN2019105489-appb-000029
将实施例15第二步中的1,2-环氧丁烷替换成1,2-环氧辛烷,其余所需原料,试剂及制备方法同实施例15,得到van 017的三氟乙酸盐(9.6mg,收率83%)。R.T.=14.736min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.81(s,1H),7.59–7.50(m,2H),7.45(d,J=8.4Hz,1H),7.33(d,J=8.3Hz,1H),7.26(s,1H),7.20(d,J=8.4Hz,1H),6.85–6.74(m,2H),6.71(d,J=8.4Hz,1H),6.38(d,J=2.3Hz,1H),6.21(d,J=2.2Hz,1H),5.75(d,J=7.8Hz,1H),5.59(s,1H),5.33–5.21(m,3H),5.17(s,2H),4.91(s,1H),4.67(d,J=6.7Hz,1H),4.48(s,1H),4.30(d,J=5.0Hz,1H),4.27–4.13(m,2H),3.96(s,1H),3.93–3.78(m,1H),3.67(d,J=10.8Hz,1H),3.46–3.39(m,3H),3.34–3.22(m,4H),3.17(s,2H),2.86(dd,J=14.9,8.1Hz,3H),2.62(s,3H),2.13(d,J=14.2Hz,1H),1.98–1.82(m,4H),1.73(d,J=13.1Hz,1H),1.70–1.58(m,2H),1.58–1.51(m,1H),1.46(t,J=7.0Hz,2H),1.36(d,J=18.9Hz,1H),1.32–1.19(m,12H),1.06(d,J=6.3Hz,3H),0.90(d,J=6.2Hz,3H),0.88–0.80(m,6H).高分辨质谱(ESI)C 78H 101Cl 2N 10O 24S +理论值[M+H] 2+m/z 832.3080,实际值为m/z 832.3082.
实施例18
Figure PCTCN2019105489-appb-000030
将实施例15第二步中的1,2-环氧丁烷替换成1,2-环氧癸烷,其余所需原料,试剂及制备方法同实施例15,得到van 018的三氟乙酸盐(10.2mg,收率87%)。R.T.=16.962min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.81(s,1H),7.63–7.47(m,2H),7.45(d,J=8.4Hz,1H),7.33(dd,J=8.4,4.0Hz,1H),7.26(s,1H),7.20(d,J=8.4Hz,1H),6.89–6.72(m,2H),6.71(d,J=8.4Hz,1H),6.38(d,J=2.3Hz,1H),6.21(d,J=2.2Hz,1H),5.75(d,J=7.8 Hz,1H),5.59(s,1H),5.34–5.21(m,3H),5.17(s,2H),4.91(s,1H),4.67(d,J=6.8Hz,1H),4.47(s,1H),4.30(d,J=5.0Hz,1H),4.27–4.13(m,2H),3.96(s,1H),3.92–3.80(m,0H),3.67(d,J=10.9Hz,1H),3.45–3.33(m,3H),3.32–3.22(m,4H),3.18(s,2H),2.86(dd,J=15.2,7.8Hz,3H),2.62(s,3H),2.13(d,J=14.1Hz,1H),1.97–1.81(m,3H),1.73(d,J=13.1Hz,1H),1.70–1.58(m,2H),1.59–1.51(m,1H),1.50–1.40(m,2H),1.41–1.33(m,1H),1.33–1.17(m,15H),1.06(d,J=6.4Hz,3H),0.90(d,J=6.2Hz,3H),0.87–0.82(m,6H).高分辨质谱(ESI +)C 80H 105Cl 2N 10O 24S +理论值[M+H] 2+m/z 846.3236,实际值为m/z 846.3225.
实施例19
Figure PCTCN2019105489-appb-000031
将实施例15第二步中的1,2-环氧丁烷替换成1,2-环氧十二烷,其余所需原料,试剂及制备方法同实施例15,得到van 019的三氟乙酸盐(10.4mg,收率88%)。R.T.=18.956min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.81(s,1H),7.59–7.48(m,2H),7.45(d,J=8.4Hz,1H),7.36–7.28(m,0H),7.26(s,1H),7.19(d,J=8.3Hz,1H),6.84–6.72(m,2H),6.71(d,J=8.5Hz,1H),6.38(d,J=2.2Hz,1H),6.21(t,J=2.1Hz,1H),5.74(d,J=7.8Hz,1H),5.58(s,1H),5.33–5.20(m,3H),5.20–5.14(m,2H),4.92(s,1H),4.66(d,J=6.7Hz,1H),4.47(s,1H),4.29(d,J=5.0Hz,1H),4.27–4.15(m,2H),3.96(s,1H),3.92–3.81(m,1H),3.66(d,J=11.0Hz,1H),3.49–3.36(m,3H),3.34–3.21(m,4H),3.18(s,2H),2.86(dd,J=14.9,7.9Hz,3H),2.62(s,3H),2.13(d,J=15.3Hz,1H),1.97–1.83(m,3H),1.73(d,J=13.1Hz,1H),1.70–1.59(m,2H),1.59–1.52(m,1H),1.52–1.41(m,2H),1.42–1.33(m,1H),1.27(d,J=37.4Hz,19H),1.06(d,J=6.3Hz,3H),0.90(d,J=6.2Hz,3H),0.88–0.75(m,6H).高分辨质谱(ESI +)C 82H 109Cl 2N 10O 24S +理论值[M+H] 2+m/z 860.3393,实际值为m/z 860.3378.
实施例20
Figure PCTCN2019105489-appb-000032
将实施例15第二步中的1,2-环氧丁烷替换成1,2-环氧十四烷,其余所需原料,试剂及制备方法同实施例15,得到van 020的三氟乙酸盐(10.2mg,收率84%)。R.T.=20.863min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.81(s,1H),7.55(d,J=8.4Hz,1H),7.50(s,1H),7.45(d,J=8.4Hz,1H),7.32(dd,J=8.6,3.6Hz,1H),7.26(s,1H),7.19(d,J=8.4Hz,1H),6.77(d,J=8.3Hz,1H),6.74(s,1H),6.71(d,J=8.5Hz,1H),6.38(d,J=2.3Hz,1H),6.21(s,1H),5.74(d,J=7.8Hz,1H),5.57(s,1H),5.33–5.20(m,4H),5.18(d,J=5.6Hz,2H),4.92(s,1H),4.67(q,J=6.6Hz,1H),4.55–4.38(m,1H),4.29(d,J=4.9Hz,1H),4.27–4.22(m,2H),3.96(s,1H),3.93–3.75(m,2H),3.66(d,J=10.9Hz,1H),3.47–3.36(m,3H),3.32–3.23(m,4H),3.18(s,2H),2.86(dd,J=14.5,7.9Hz,4H),2.63(s,3H),2.18–2.09(m,1H),1.99(s,2H),1.95–1.83(m,4H),1.77–1.71(m,1H),1.70–1.52(m,2H),1.48–1.42(m,2H),1.41–1.33(m,2H),1.30(s,3H),1.27–1.21(m,20H),1.06(d,J=6.3Hz,3H),0.90(d,J=6.2Hz,3H),0.87–0.82(m,6H).高分辨质谱(ESI +)C 84H 113Cl 2N 10O 24S +理论值[M+H] 2+m/z 874.3549,实际值为m/z 874.3535.
实施例21
Figure PCTCN2019105489-appb-000033
将实施例15第二步中的1,2-环氧丁烷替换成1,2-环氧十六烷,其余所需原料,试剂及制备方法同实施例15,得到van 021的三氟乙酸盐(10.9mg,收率87%)。R.T.=22.796min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.81(s,1H),7.55(d,J=8.4Hz,1H),7.50(s,1H),7.45(d,J=8.4Hz,1H),7.32(dd,J=8.5,3.5Hz,1H),7.26(s,1H),7.19(d,J=8.3Hz,1H),6.81–6.73(m,2H),6.71(d,J=8.5Hz,1H),6.38(d,J=2.3Hz,1H),6.21(d,J=2.2Hz, 1H),5.74(d,J=7.8Hz,1H),5.57(s,1H),5.32–5.20(m,3H),5.19–5.13(m,2H),4.92(s,1H),4.67(d,J=6.7Hz,1H),4.47(d,J=5.3Hz,1H),4.29(d,J=4.9Hz,1H),4.27–4.17(m,2H),3.96(s,1H),3.91–3.79(m,1H),3.66(d,J=10.8Hz,1H),3.48–3.38(m,2H),3.32–3.21(m,4H),3.20–3.13(m,2H),2.86(dd,J=14.5,7.8Hz,3H),2.63(s,3H),2.18–2.09(m,1H),1.94–1.87(m,3H),1.77–1.70(m,1H),1.69–1.52(m,3H),1.48–1.40(m,2H),1.39–1.34(m,1H),1.32–1.21(m,27H),1.05(d,J=6.3Hz,3H),0.90(d,J=6.2Hz,3H),0.87–0.78(m,6H).高分辨质谱(ESI +)C 86H 117Cl 2N 10O 24S +理论值[M+H] 2+m/z 888.3706,实际值为m/z 888.3698.
实施例22
Figure PCTCN2019105489-appb-000034
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,溶液浑浊,加热升温至50℃,溶液变澄清,加入4'-氯联苯-4-甲醛(30mg),加热搅拌4小时。(芳香醛反 应活性低,需要延长反应时间和升高温度加速反应进行,万古霉素在DMF中溶解不是很好,加入DIPEA会加速溶解,如果有不溶物会影响反应的速率。)室温下加入NaCNBH 3(8mg),甲醇1mL,TFA 30μL,搅拌过夜HPLC监测反应。反应液中加入乙醚(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体van-d(60mg)。HPLC:C18柱(5um,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。高分辨质谱(ESI +)C 79H 84C l3N 9O 24理论值[M+2H] 2+m/z 824.7386,实测值为824.7437。
第二步,将实施例1中万古霉素替换成van-d,其余所需原料,试剂及制备方法同实施例1第一步,得到van-e。R.T.=17.049min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.82(d,J=2.0Hz,1H),7.74–7.66(m,4H),7.63–7.58(m,1H),7.57–7.48(m,6H),7.48–7.42(m,1H),7.30(d,J=8.3Hz,1H),7.22(d,J=8.4Hz,1H),7.10(s,1H),6.85(dd,J=8.4,2.0Hz,1H),6.81–6.73(m,2H),6.53(s,1H),5.76–5.65(m,2H),5.34(d,J=7.6Hz,1H),5.29(d,J=4.1Hz,1H),5.13(s,2H),5.11–5.06(m,1H),4.81(s,1H),4.65(d,J=6.9Hz,1H),4.45(d,J=5.5Hz,1H),4.42(d,J=5.8Hz,1H),4.13–4.04(m,4H),4.03–3.96(m,3H),3.66(d,J=10.9Hz,1H),3.56(t,J=8.5Hz,1H),3.30–3.20(m,2H),2.98(t,J=7.8Hz,2H),2.76–2.65(m,1H),2.57(s,3H),2.54–2.50(m,3H),2.10(d,J=12.9Hz,2H),2.02(s,3H),1.91(p,J=7.2Hz,2H),1.82(d,J=13.1Hz,1H),1.69–1.59(m,2H),1.49(s,3H),1.11(d,J=6.2Hz,3H),0.91(d,J=6.0Hz,3H),0.85(d,J=6.0Hz,3H).高分辨质谱(ESI +)C 84H 95Cl 3N 10O 24S理论值[M+2H] 2+m/z 883.2731,实际值为m/z 883.2728.
第三步,将实施例4中van-a替换成van-e,其余所需原料,试剂及制备方法同实施例4,得到van 022的三氟乙酸盐。R.T.=18.885min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.81(s,1H),7.70(t,J=8.1Hz,4H),7.58(s,1H),7.54(d,J=8.2Hz,2H),7.51(d,J=8.3Hz,2H),7.46(d,J=8.4Hz,1H),7.23–7.16(m,2H),7.12(s,1H),6.84(d,J=8.6Hz,1H),6.77(d,J=8.7Hz,1H),6.49(s,1H),5.72(d,J=6.4Hz,1H),5.69–5.62(m,1H),5.33(d,J=7.7Hz,1H),5.31–5.24(m,1H),5.17–5.06(m,3H),4.82(s,1H),4.66(q,J=6.7Hz,1H),4.46(s,2H),4.41(d,J=5.9Hz,1H),4.19–3.97(m,6H),3.95–3.77(m,2H),3.34–3.20(m,4H),3.02–2.80(m,6H),2.56(s,3H),2.16–2.01(m,4H),1.83(d,J=13.2Hz,1H),1.68–1.57(m,2H),1.48(s,3H),1.44–1.37(m,2H),1.39–1.27(m,1H),1.28–1.15(m,12H),1.10(d,J=6.2Hz,3H),0.90(d,J=6.0Hz,3H),0.86–0.76(m,6H).高分辨质谱(ESI +)C 94H 116Cl 3N 10O 25S +理论值[M+H] 2+m/z 961.3486,实际值为m/z 961.3470.
实施例23
Figure PCTCN2019105489-appb-000035
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,溶液浑浊,加热升温至50℃,溶液变澄清,加入4'-三氟甲基二苯基-4-甲醛(30mg),加热搅拌4小时。室温下加入NaCNBH 3(8mg),甲醇1mL,TFA 30μL,搅拌过夜HPLC监测反应。反应液中加入乙醚(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体van-f(40mg)。HPLC:C18柱(5um,4.6x 250mm),检测紫外波段为214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。高分辨质谱(ESI +)C 80H 84Cl 2F 3N 9O 24理论值为841.7557,实测值为841.7559[M+2H] 2+
第二步,将实施例1中万古霉素替换成van-f,其余所需原料,试剂及制备方法同实施例1第一步,得到van-g.R.T.=17.764min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.89(d,J=8.1Hz,2H),7.84–7.80(m,3H),7.79(d,J=8.2Hz,2H),7.65–7.55(m,3H),7.51–7.48(m,1H),7.46(dd,J=8.3,1.7Hz,1H),7.30(d,J=8.3Hz,1H),7.22(d,J=8.4Hz,1H),7.10(s,1H),6.85(dd,J=8.5,1.9Hz,1H),6.80–6.72(m,2H),6.53(s,1H),5.75–5.66(m,2H),5.34(d,J=7.7Hz,1H),5.29(d,J=4.2Hz,1H),5.13(s,2H),5.10(d,J=2.0Hz,1H),4.81(s,1H),4.66(d,J=6.7Hz,1H),4.45(d,J=5.6Hz,1H),4.41(d,J=5.8Hz,1H),4.13–4.03(m, 5H),4.02–3.92(m,1H),3.66(d,J=10.8Hz,1H),3.56(t,J=8.5Hz,1H),3.29–3.21(m,2H),2.97(t,J=7.8Hz,2H),2.57(s,3H),2.10(d,J=11.0Hz,2H),1.91(p,J=7.2Hz,2H),1.83(d,J=13.2Hz,1H),1.71–1.58(m,2H),1.49(s,3H),1.11(d,J=6.3Hz,3H),0.90(d,J=6.1Hz,3H),0.85(d,J=6.2Hz,3H).高分辨质谱(ESI +)C 85H 95Cl 2F 3N 10O 24S理论值[M+2H] 2+m/z 900.2863,实际值为m/z 900.2868.
第三步,将实施例4中van-a替换成van-g,其余所需原料,试剂及制备方法同实施例4,得到van 023的三氟乙酸盐.R.T.=19.358min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.89(d,J=8.1Hz,2H),7.82(d,J=7.9Hz,3H),7.78(d,J=8.0Hz,2H),7.59(d,J=8.1Hz,3H),7.51(d,J=8.5Hz,1H),7.47(d,J=8.3Hz,1H),7.34–7.25(m,3H),7.23–7.16(m,1H),7.12(s,1H),6.80–6.72(m,2H),6.50(s,1H),5.73(d,J=6.4Hz,1H),5.69(s,1H),5.34(d,J=7.7Hz,1H),5.31–5.26(m,1H),5.18–5.07(m,3H),4.82(s,1H),4.66(q,J=6.6Hz,1H),4.46(s,2H),4.41(d,J=5.8Hz,1H),4.17–3.99(m,6H),3.97–3.90(m,1H),3.89–3.80(m,1H),3.66(d,J=10.6Hz,1H),3.34–3.19(m,5H),2.92–2.80(m,5H),2.71(s,1H),2.56(s,3H),2.16–2.04(m,4H),1.99(t,J=7.5Hz,1H),1.94(p,J=6.9Hz,1H),1.83(d,J=13.2Hz,1H),1.67–1.60(m,2H),1.50(s,3H),1.46–1.38(m,3H),1.28–1.18(m,15H),1.10(d,J=6.2Hz,3H),0.90(d,J=6.0Hz,3H),0.85(d,J=6.2Hz,3H),0.82(t,J=6.8Hz,3H).高分辨质谱(ESI +)C 95H 116Cl 2F 3N 10O 25S +理论值[M+H] 2+m/z 978.3617,实际值为m/z 978.3602.
实施例24
Figure PCTCN2019105489-appb-000036
将实施例1中van-a替换成van-e,其余所需原料,试剂及制备方法同实施例1,得到van 024的三氟乙酸盐.R.T.=16.013min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.84(s,1H),7.73(t,J=8.1Hz,4H),7.57(d,J=8.1Hz,2H),7.54(d,J=8.3Hz,2H),7.49(d,J=8.4Hz,1H),7.33(d,J=8.3Hz,1H),7.23(d,J=8.2Hz,1H),7.13(s,1H),6.88(d,J=8.8Hz,1H),6.81(d,J=8.2Hz,2H),6.56(s,1H),5.78–5.69(m,2H),5.35(d,J=7.5Hz,1H),5.30(d,J=3.6Hz,1H),5.16(d,J=4.0Hz,2H),5.12(s,1H),4.84(s,1H),4.68(d,J=6.8Hz,1H), 4.48(s,1H),4.43(d,J=5.6Hz,1H),4.19–4.09(m,3H),4.08–3.99(m,3H),3.88–3.80(m,1H),3.68(d,J=10.7Hz,1H),3.39–3.32(m,1H),3.31–3.23(m,2H),3.11–3.00(m,2H),2.93(s,1H),2.90(d,J=4.8Hz,2H),2.60(s,3H),2.24–2.09(m,4H),1.85(d,J=13.1Hz,1H),1.71–1.61(m,2H),1.57–1.42(m,6H),1.12(d,J=6.2Hz,3H),0.95–0.81(m,9H).高分辨质谱(ESI +)C 88H 104Cl 3N 10O 25S +理论值[M+H] 2+m/z 919.3016,实际值为m/z 919.3033.
实施例25
Figure PCTCN2019105489-appb-000037
将实施例1中van-a替换成van-g,其余所需原料,试剂及制备方法同实施例1,得到van 025的三氟乙酸盐.R.T.=16.803min(分析型RP-HPLC). 1H NMR(600MHz,DMSO-d 6)δ7.92(d,J=8.0Hz,2H),7.84(d,J=8.6Hz,3H),7.81(d,J=8.0Hz,2H),7.61(d,J=8.0Hz,2H),7.52(d,J=8.5Hz,1H),7.49(d,J=8.5Hz,1H),7.32(d,J=8.3Hz,1H),7.23(d,J=8.3Hz,1H),7.13(s,1H),6.88(d,J=8.7Hz,1H),6.81(d,J=8.9Hz,2H),6.56(s,1H),5.78–5.66(m,2H),5.35(d,J=7.5Hz,1H),5.30(d,J=3.5Hz,1H),5.15(s,2H),5.12(s,1H),4.83(s,1H),4.68(d,J=6.7Hz,1H),4.48(s,1H),4.43(d,J=5.6Hz,1H),4.18–3.98(m,5H),3.91–3.78(m,1H),3.68(d,J=10.7Hz,1H),3.40–3.32(m,2H),3.31–3.20(m,2H),3.06(d,J=8.5Hz,2H),2.93(s,1H),2.90(d,J=4.5Hz,2H),2.59(s,3H),2.22–2.07(m,3H),1.85(d,J=13.4Hz,1H),1.72–1.60(m,2H),1.59–1.41(m,4H),1.12(d,J=6.2Hz,3H),0.94–0.82(m,9H).高分辨质谱(ESI +)C 89H 104Cl 2F 3N 10O 25S +理论值[M+H] 2+m/z 936.3148,实际值为m/z 936.3153.
活性测试:
生物测试例1体外抑菌活性测试
对本发明中的22个化合物进行了体外抑菌活性的测试。采用美国临床和实验室标准协会(Clinical and Laboratory Standards Institute,CLSI)抗菌药物敏感性试验操作规程【Methods  for Dilution Antimicrobial Succeptibility Tests for Bacteria That Grow Aerobically;Approved Standard-Ninth Edition(Vol,32,No.2),M07-A9,2012】推荐的微量肉汤稀释法测定各受试样品对所试菌株的MIC值。结果如表1、表2所示。
测试菌株分别为万古霉素敏感的金黄色葡萄球菌(Staphylococcus aureus Newman strain,简称Newman菌株)和万古霉素中等耐药的金黄色葡萄球菌(Staphylococcus aureus Mu50strain,简称Mu50菌株)以及对万古霉素耐药的屎肠球菌(Enterococcus faecium)。万古霉素购自武汉大华伟业医药化工有限公司,批号为DH 20160105,特拉万星购自深圳市健元医药科技有限公司,批号为161002-4。
在试验中,分别吸取100μL各不同浓度(256、128、64、32、16、8、4、2、1、0.5、0.25、0.125mg/L)的受试样品溶液加到灭菌的96孔聚苯乙烯板中的第1至第12孔内,再于各孔内加入100μL的受试菌液(每孔容量200μL),菌液最终浓度约为10 5CFU/mL,使药物终浓度分别为128、64、32、16、8、4、2、1、0.5、0.25、0.125、0.06mg/L。每个测试设1个复孔。密封后置于35-37℃培养箱内培养18-24h,判断结果。以在小孔内完全抑制细菌生长的最低药物浓度为其最低抑菌浓度(Minimal Inhibitory Concentration,MIC)。
表1本发明化合物的体外对金黄色葡萄球菌抑菌活性的测试结果
Figure PCTCN2019105489-appb-000038
表2本发明化合物的体外对肠球菌抑菌活性的测试结果
Figure PCTCN2019105489-appb-000039
Figure PCTCN2019105489-appb-000040
上述体外抗菌活性研究表明,实施例所代表的本发明万古霉素类似物对万古霉素耐药的金黄色葡萄球菌以及耐药的肠球菌的抗菌活性,大部分高于万古霉素,部分优选化合物抗菌活性为万古霉素10-1000倍,为2009年上市药物特拉万星2-10倍。抗菌实验表明本发明涉及的新型万古霉素类似物,其结构改造策略可显著增强其抗菌活性。
生物测试例2小鼠体内药代动力学实验
选择本发明制备的化合物van004,van010以及阳性化合物万古霉素进行小鼠体内药代动力学实验,其中用到的小鼠(CD-1小鼠)全部来自上海灵畅生物科技有限公司,在18-29℃,湿度范围30-70%条件下成长至18-22g。
将9只雄性的CD-1正常小鼠随机分成3组,即,van004组,van010组以及万古霉素组,每组3只。各组小鼠单剂量5mg/kg分别静脉注射上述相应的化合物的溶液,注射后分别在0.05h,0.25h,0.75h,2h,4h,8h,24h一共7个时间点抽取血样(股静脉取血)。利用LC-MS/MS检测不同时间3组小鼠相应的血浆中药物浓度(ng/mL),利用药物动力学软件WinNonlin 6.4得出相应的半衰期T 1/2,药物浓度-时间曲线下面积AUC,血浆清除率CL,平均驻留时间MRT,药物在体内达到稳态时计算得到的分布容积Vss,具体结果如下表3所示。
从表3结果来看,本发明的2个化合物在半衰期T 1/2方面都比万古霉素和特拉万星要长,同时药物浓度-时间曲线下面积AUC比万古霉素大3-7倍。在血浆清除率CL方面,本发明的2个化合物都比万古霉素清除率慢,表现出优于阳性化合物的良好成药性参数。
表3本发明代表性化合物的小鼠体内药代动力学的实验结果
Figure PCTCN2019105489-appb-000041
AUC last:从给药时间开始到最后一个点的这段时间的药时曲线下面积
AUC INF_obs:从给药开始到理论外推无穷远的时间的药时曲线下面积
MRT INF_obs:从给药开始到理论外推无穷远的时间的平均滞留时间
V SS_obs:药物在人体稳态分布容积
obs是observed,观察得到的也就是实测值,INF是infinity,无穷。
生物测试例3肾脏细胞毒性实验
采用van004、van010、万古霉素进行肾脏细胞毒性实验。肾脏细胞活力测定采用细胞活性检测试剂盒CCK8(Cell Counting Kit-8)方法进行。
处于对数生长期的HK-2细胞(人肾小管上皮细胞)按合适密度(约5000个细胞)接种至96孔培养板,每孔90μL。培养过夜后,分别加入不同浓度(25μM,50μM,100μM)的万古霉素、van004、van010各10μL作用24h,每个浓度设三个复孔,并设相应浓度的生理盐水溶媒对照及无细胞调零孔。作用结束后,每孔加入10μL的CCK8检测液,置于37℃细胞培养箱约1.5h后,用VERSMax酶标仪测定450nm波长下的光密度(OD值)。将OD值转换为细胞活力值【转换公式:细胞活力值=OD C/OD C=0×100,其中C表示浓度】。结果图1所示。
结果发现,本发明的van010在肾脏细胞中毒性小于万古霉素,安全性更高。
生物测试例4小鼠体内抗菌实验
将本发明的van004、万古霉素分别加无菌生理盐水溶解,配置成溶液,其中各个药物浓度为0.7mg/mL。
SPF级雌性BALB/c鼠都购自上海杰思捷实验动物有限公司,生长在无特定微生物的环境中。过夜培养的金黄色葡萄球菌USA300 LAC菌株(社区获得性甲氧西林耐药的金黄色葡萄球菌)、USA400 MW2菌株(社区获得性甲氧西林耐药的金黄色葡萄球菌)、XN 108菌株(对万古霉素中等耐药的金黄色葡萄球菌)分别按1:100转接到新鲜的胰酪胨大豆肉汤培养基(TSB),继续培养三个小时达到菌株的指数增长期,收集菌体用无菌的PBS缓冲液 清洗两遍后悬浮于该缓冲液中。
每个感染模型共三组:van004组、万古霉素组和阴性对照组。每个实验组各15只小鼠。
饲养至6~8周的雌性BALB/c鼠(18g~20g)用戊巴比妥钠麻醉(80mg/kg,腹腔注射)后,将1.50×10 8CFU的USA300 LAC、1.42×10 8CFU的USA400 MW2或者2.65×10 8的XN 108悬浮菌液用眼眶静脉注射的方式感染小鼠。每种模型小鼠在感染1小时后,van004组分别给予单次剂量7mg/kg(USA300 LAC和USA400 MW2模型)或14mg/kg(XN108模型)的van004治疗,万古霉素组分别给予单次剂量7mg/kg(USA300 LAC和USA400 MW2模型)或14mg/kg(XN108模型)的万古霉素治疗,治疗方式为尾静脉注射。同时,对阴性对照组的小鼠注射相同量的无菌生理盐水。接下来连续14天记录小鼠的死亡数量,计算小鼠存活百分比,结果见图2-4。
由图2可见,在14天后,van004组的存活率为53.333%,万古霉素组的存活率为6.667%,阴性对照组的小鼠在3天后全部死亡,存活率为0%。由图3可见,在14天后,van004组的存活率为86.667%,万古霉素组的存活率为20%,阴性对照组的小鼠在10天后全部死亡,存活率为0%。由图4可见,在14天后,van004组的存活率为80%,万古霉素组的存活率为20%,阴性对照组存活率为6.67%。
上述体内药效学研究表明,本发明的van004对耐甲氧西林金黄色葡萄球菌以及对万古霉素中等耐药的金黄色葡萄球菌的抗菌活性,远远高于万古霉素,说明van004具有明显的保护作用,作用明显强于万古霉素。
以上,仅为本发明的示意性描述,本领域技术人员应该知道,在不偏离本发明的工作原理的基础上,可以对本发明作出多种改进,这均属于本发明的保护范围。

Claims (10)

  1. 式(I)所示的万古霉素硫鎓衍生物及其药学上可接受的盐:
    Figure PCTCN2019105489-appb-100001
    其中:
    R 1选自H、-CH 2NH-X-S +(R 5)-R 4或-CH 2NHR 6
    R 2选自H、-X-S +(R 5)-R 4、-X-NHR 7或R 8
    R 3选自-OH或-NH-X-S +(R 5)-R 4
    R 1、R 2、R 3中的至少一个含有硫鎓结构片段-S +(R 5)-R 4
    X各自独立地选自-(CH 2) n-、-CO(CH 2) n-、-(CH 2) nO-(CH 2) m-、-(CH 2) nNH-(CH 2) m-、-(CH 2) n(OCH 2CH 2) m-;
    各个m和n独立地为选自0-6之间的整数;
    R 4各自独立地选自取代或未取代的C 4-C 20直链或支链烷基、取代或未取代的C 4-C 20直链或支链烯基、取代或未取代的C 4-C 20直链或支链炔基、取代或未取代的C 3-C 10环烷基、取代或未取代的C 6-C 20芳基、取代或未取代的环上含有选自N、O和S中的一个或多个杂原子的3-10元非芳香性杂环基、取代或未取代的环上含有选自N、O和S中的一个或多个杂原子的5-10元杂芳基;上述取代是指被选自如下的一个或多个取代基所取代:卤素、-OH、-NH 2、氰基、C 1-C 10烷基、C 1-C 10烷氧基、C 1-C 10烷氨基、C 1-C 10烷酰基、C 3-C 10环烷基、卤代C 1-C 10烷基、C 2-C 6直链或支链炔基、苯乙炔基、三甲基硅烷基乙炔基、吡啶基、苯基、氰基苯基、C1-C6烷基苯基、三氟甲基苯基、氯苯基、联苯基、甲基联苯基、三氟甲基联苯基、卤素取代的联苯基;
    R 5各自独立地为C 1-C 6直链或支链烷基或卤素取代的C 1-C 6直链或支链烷基;
    R 6选自取代或未取代的C 4-C 20直链或支链烷基、取代或未取代的C 4-C 20直链或支链烯基、取代或未取代的C 4-C 20直链或支链炔基、取代或未取代的C 3-C 10环烷基、取代或未取 代的C 6-C 20芳基、取代或未取代的环上含有选自N、O和S中的一个或多个杂原子的3-10元非芳香性杂环基、取代或未取代的环上含有选自N、O和S中的一个或多个杂原子的5-10元杂芳基;上述取代是指被选自如下的一个或多个取代基所取代:卤素、-OH、-NH 2、氰基、C 1-C 10烷基、C 1-C 10烷氧基、C 1-C 10烷氨基、C 1-C 10烷酰基、C 3-C 10环烷基、卤代C 1-C 10烷基、C 2-C 6直链或支链炔基、苯乙炔基、三甲基硅烷基乙炔基、吡啶基、苯基、氰基苯基、C 1-C 6烷基苯基、三氟甲基苯基、氯苯基、联苯基、甲基联苯基、三氟甲基联苯基、卤素取代的联苯基;
    R 7和R 8选自取代或未取代的C 4-C 20直链或支链烷基、取代或未取代的C 4-C 20直链或支链烯基、取代或未取代的C 4-C 20直链或支链炔基、取代或未取代的C 3-C 10环烷基、取代或未取代的C 6-C 20芳基、取代或未取代的环上含有选自N、O和S中的一个或多个杂原子的3-10元非芳香性杂环基、取代或未取代的环上含有选自N、O和S中的一个或多个杂原子的5-10元杂芳基;上述取代是指被选自如下的一个或多个取代基所取代:卤素、-OH、-NH 2、氰基、C 1-C 10烷基、C 1-C 10烷氧基、C 1-C 10烷氨基、C 1-C 10烷酰基、C 3-C 10环烷基、卤代C 1-C 10烷基、C 2-C 6直链或支链炔基、苯乙炔基、三甲基硅烷基乙炔基、吡啶基、苯基、氰基苯基、C 1-C 6烷基苯基、三氟甲基苯基、氯苯基、联苯基、甲基联苯基、三氟甲基联苯基、卤素取代的联苯基。
  2. 如权利要求1所述的式(I)所示的万古霉素硫鎓衍生物及其药学上可接受的盐,其特征在于:X选自-CH 2-、-(CH 2) 2-、-(CH 2) 3-、-(CH 2) 4-、-CO(CH 2) 2-、-CO(CH 2) 3-、-(CH 2) 2O(CH 2) 2-、-(CH 2) 2(OCH 2CH 2) 2-。
  3. 如权利要求1所述的式(I)所示的万古霉素硫鎓衍生物及其药学上可接受的盐,其特征在于,R 4选自如下基团:-(CH 2) 3CH 3、-(CH 2) 4CH 3、-(CH 2) 5CH 3、-(CH 2) 7CH 3、-(CH 2) 8CH 3、-(CH 2) 9CH 3、-(CH 2) 10CH 3、-(CH 2) 11CH 3、-(CH 2) 12CH 3、-(CH 2) 13CH 3、-(CH 2) 14CH 3、-(CH 2) 15CH 3、-(CH 2) 16CH 3、-(CH 2) 17CH 3、-(CH 2) 11CH(CH 3)CH 3、-CH 2CH(OH)CH 2CH 3、-CH 2CH(OH)(CH 2) 2CH 3、-CH 2CH(OH)(CH 2) 3CH 3、-CH 2CH(OH)(CH 2) 4CH 3、-CH 2CH(OH)(CH 2) 5CH 3、-CH 2CH(OH)(CH 2) 6CH 3、-CH 2CH(OH)(CH 2) 7CH 3、-CH 2CH(OH)(CH 2) 8CH 3、-CH 2CH(OH)(CH 2) 9CH 3、-CH 2CH(OH)(CH 2) 10CH 3、-CH 2CH(OH)(CH 2) 11CH 3、-CH 2CH(OH)(CH 2) 12CH 3、-CH 2CH(OH)(CH 2) 13CH 3、-CH 2CH(OH)(CH 2) 14CH 3、-CH 2CH(OH)(CH 2) 15CH 3
  4. 如权利要求1所述的式(I)所示的万古霉素硫鎓衍生物及其药学上可接受的盐,其特征在于:R 5选为C 1-C 4直链或支链烷基或卤素取代的C 1-C 4直链或支链烷基。
  5. 如权利要求1所述的式(I)所示的万古霉素硫鎓衍生物及其药学上可接受的盐,其特征在于,R 6选自如下基团:取代或未取代的C 4-C 20直链或支链烷基、C 4-C 20直链或支链烷酰基、取代或未取代的联苯基甲基;所述取代是指被选自如下的一个或多个取代基所取代: 卤素、-OH、-NH 2、氰基、C 1-C 10烷基、三氟甲基。
  6. 如权利要求1所述的式(I)所示的万古霉素硫鎓衍生物及其药学上可接受的盐,其特征在于,R 7和R 8选自如下基团:取代或未取代的C 4-C 20直链或支链烷基、C 4-C 20直链或支链烷酰基、取代或未取代的联苯基甲基;所述取代是指被选自如下的一个或多个取代基所取代:卤素、-OH、-NH 2、氰基、C 1-C 10烷基、三氟甲基。
  7. 如权利要求1所述的式(I)所示的万古霉素硫鎓衍生物及其药学上可接受的盐,其特征在于,式(I)所示的万古霉素硫鎓衍生物选自下列化合物:
    Figure PCTCN2019105489-appb-100002
    Figure PCTCN2019105489-appb-100003
    Figure PCTCN2019105489-appb-100004
  8. 一种药物组合物,其包含权利要求1-7中任一项所述式(I)所示的万古霉素硫鎓衍生 物或其药学上可接受的盐。
  9. 如权利要求1-7中任一项所述式(I)所示的万古霉素硫鎓衍生物及其药学上可接受的盐或如权利要求8所述的药物组合物在制备用于治疗和/或预防与革兰氏阳性菌感染有关疾病或病症的药物中的用途。
  10. 根据权利要求9所述的用途,其特征在于:所述与革兰氏阳性菌感染有关疾病或病症包括败血症、肺炎、脑膜炎、尿路感染、脓疱病、丹毒、蜂窝组织炎。
PCT/CN2019/105489 2018-09-21 2019-09-12 一类万古霉素硫鎓衍生物、其制备方法、药物组合物和用途 WO2020057422A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811109378.X 2018-09-21
CN201811109378.XA CN110938114B (zh) 2018-09-21 2018-09-21 一类万古霉素硫鎓衍生物、其制备方法、药物组合物和用途

Publications (1)

Publication Number Publication Date
WO2020057422A1 true WO2020057422A1 (zh) 2020-03-26

Family

ID=69888316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105489 WO2020057422A1 (zh) 2018-09-21 2019-09-12 一类万古霉素硫鎓衍生物、其制备方法、药物组合物和用途

Country Status (2)

Country Link
CN (1) CN110938114B (zh)
WO (1) WO2020057422A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054057A1 (en) * 2020-09-11 2022-03-17 Supertrans Medical Ltd Drug conjugates and uses thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114569588B (zh) * 2022-02-16 2023-09-26 湖南大学 洗必泰-万古霉素协同靶向抗菌应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222933A (zh) * 2005-02-28 2008-07-16 诺瓦蒂斯疫苗和诊断公司 具有抗菌活性的半合成糖肽
CN108409837A (zh) * 2018-03-06 2018-08-17 上海来益生物药物研究开发中心有限责任公司 一组具有抗耐药性细菌活性的糖肽类化合物、其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4054900A (en) * 1999-04-02 2000-10-23 Advanced Medicine East, Inc. Desleucyl glycopeptide antibiotics and methods of making same
WO2005065050A2 (ja) * 2003-12-25 2005-07-21 Asahi Kasei Pharma Corporation 2環化合物
CN107325159A (zh) * 2016-04-29 2017-11-07 中国科学院上海药物研究所 一类万古霉素衍生物、其制备方法、药物组合物和用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222933A (zh) * 2005-02-28 2008-07-16 诺瓦蒂斯疫苗和诊断公司 具有抗菌活性的半合成糖肽
CN108409837A (zh) * 2018-03-06 2018-08-17 上海来益生物药物研究开发中心有限责任公司 一组具有抗耐药性细菌活性的糖肽类化合物、其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUAN, DONGLIANG ET AL.: "Sulfonium, an Underestimated Moiety for Structural Modification, Alters the Antibacterial Profile of Vancomycin Against Multi- drug-Resistant Bacteria", ANGEWANDTE CHEMIE (INTERNATIONAL ED. IN ENGLISH, vol. 130, 13 May 2019 (2019-05-13), pages 6678 - 6682, XP055696008, DOI: 10.1002/ange.201902210 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054057A1 (en) * 2020-09-11 2022-03-17 Supertrans Medical Ltd Drug conjugates and uses thereof

Also Published As

Publication number Publication date
CN110938114B (zh) 2023-04-28
CN110938114A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
RU2478643C2 (ru) Макроциклические полиморфы, композиции, содержащие такие полиморфы, и способы их применения и получения
JP6876082B2 (ja) (4s,4as,5ar,12as)−4−ジメチルアミノ−3,10,12,12a−テトラヒドロキシ−7−[(メトキシ(メチル)アミノ)−メチル]−1,11−ジオキソ−1,4,4a,5,5a,6,11,12a−オクタヒドロ−ナフタセン−2−カルボン酸アミドの結晶塩及びそれを使用する方法
KR20110119699A (ko) 데옥시악타가르딘 유도체
MX2014015249A (es) Derivados de segunda generacion del antibiotico antifungico anfotericina b de n-sustiduidos y metodos de su preparacion y aplicacion.
WO2017186110A1 (zh) 一类万古霉素衍生物、其制备方法、药物组合物和用途
JP2020504100A (ja) ポリミキシン誘導体及びその製造方法と応用
WO2020057422A1 (zh) 一类万古霉素硫鎓衍生物、其制备方法、药物组合物和用途
JPH09500103A (ja) シクロヘキサペプチジルアミノアルキルエーテル
US10711040B2 (en) Low substituted polymyxins and compositions thereof
JP2997510B2 (ja) 抗生物質ge2270因子a▲下1▼、a▲下2▼、a▲下3▼およびh
CA2275373A1 (en) Compositions containing lipophilic oligosaccharide antibiotic and albumin
AU2007237861B2 (en) Novel antibacterial compounds
RU2475498C1 (ru) Новые производные гемина с антибактериальной и противовирусной активностью
HU193528B (en) Process for preparing a-219780 cyclic peptide-acil derivatives
EP2852601A1 (en) Semisynthetic derivatives of nystatin a1
KR101142582B1 (ko) β-락타마제 효소에 저항성을 갖는 세팔로스포린 에스테르화합물 및 이의 염
CN115925585B (zh) 氯福克酚衍生物、抗菌药物及制备方法与应用
WO2023201712A1 (zh) 氯福克酚衍生物、抗菌药物及制备方法与应用
EP3634974B1 (en) Tunicamycin analogues
RU2656595C1 (ru) Циклическое производное гемина с антимикробными свойствами и способ его синтеза
WO2024018398A1 (en) Lipooligoureas, pharmaceutical composition, and lipooligoureas for use as medicament
EP2987792A1 (en) 1,4,7,10-Tetrazacyclododecane based agents to target bacteria and its use
KR101987854B1 (ko) 고리형 헥사펩타이드계 화합물들 및 이의 용도
EP3253776A1 (en) Glycopeptides conjugates and uses thereof
CN115710304A (zh) 一类达托霉素衍生物以及其制备方法和药物用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862673

Country of ref document: EP

Kind code of ref document: A1