WO2020057061A1 - 一种基于红外激光测量装载率的装置 - Google Patents

一种基于红外激光测量装载率的装置 Download PDF

Info

Publication number
WO2020057061A1
WO2020057061A1 PCT/CN2019/076973 CN2019076973W WO2020057061A1 WO 2020057061 A1 WO2020057061 A1 WO 2020057061A1 CN 2019076973 W CN2019076973 W CN 2019076973W WO 2020057061 A1 WO2020057061 A1 WO 2020057061A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared laser
laser sensor
loading rate
sensor
compartment
Prior art date
Application number
PCT/CN2019/076973
Other languages
English (en)
French (fr)
Inventor
石甫
Original Assignee
吉旗(成都)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉旗(成都)科技有限公司 filed Critical 吉旗(成都)科技有限公司
Publication of WO2020057061A1 publication Critical patent/WO2020057061A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/28Measuring arrangements characterised by the use of optical techniques for measuring areas

Definitions

  • the invention relates to the technical field of loading rate detection, and in particular to a device for measuring loading rate based on infrared laser.
  • the immature solution uses ultrasonic methods for measurement and has not been commercialized.
  • the ultrasonic measurement has the following defects: high accuracy (greater than 5%), the cost is high, the single element is more than 100 yuan; the blind area is large, greater than 20cm; the circuit design is more complicated, requires analog circuits, and requires complex calibration; in addition, the wiring is more Complex, using multiple strands of cables, resulting in low detection efficiency.
  • Infrared distance sensing is a measurement system using infrared as a medium, which can be divided into five categories according to function: (1) radiometer for radiation and spectrum measurement; (2) search and tracking system for searching and tracking infrared targets, Determine its spatial position and track its movements; (3) Thermal imaging system can generate an image of the entire target's infrared radiation distribution; (4) Infrared ranging and communication systems; (5) Hybrid systems refer to the above types A combination of two or more in the system. According to the detection mechanism, it can be divided into photon detectors and heat detectors. Infrared sensing technology has been widely used in modern science and technology, national defense, industry and agriculture.
  • the used infrared ranging sensor LDM301 emits a beam of infrared light, which forms a reflection process after irradiating the object, receives the signal after reflecting to the sensor, and then uses the CCD image processing to receive the data of the time difference between transmission and reception. After processing by the signal processor, the distance of the object is calculated. This can be used not only on natural surfaces, but also on reflectors. Long measurement distance, high frequency response, suitable for harsh industrial environments.
  • infrared laser sensors have not been applied to equipment that detects loading rates.
  • An object of the present invention is to provide an apparatus for measuring a loading rate based on an infrared laser, so as to solve the problems raised in the background art described above.
  • An apparatus for measuring a loading rate based on an infrared laser includes an infrared laser sensor, the infrared laser sensor is installed at the center of the top of the carriage, and the carriage is evenly divided into multiple rows and columns to form In a plurality of areas, the infrared laser sensor is installed obliquely.
  • the carriage is evenly divided into i rows and n columns, where i is an integer less than 5 and n is an integer greater than 2.
  • the installation angle of the infrared laser sensor is 15 ° -27 °.
  • the calculation method is as follows: Rectangular volume detection method: D * (Hd); whole compartment volume detection method: D1 * (H-d1) + D2 * (H-d2) + Dn * (H-dn).
  • the present invention has the beneficial effects that the present invention has higher measurement accuracy, uses a new type of infrared laser ranging sensor to measure the height of a unit area, and can realize the detection of the compartment volume ratio by calculation, which can achieve less than 2% It adopts infrared laser sensor to measure, and the cost is low.
  • the single sensor adopts the cascade method, and the installation is simple, stable and reliable.
  • the infrared laser sensor with oblique installation has a small blind area and is more suitable for box measurement.
  • Figure 1 is a schematic diagram of a sensor installation according to the present invention
  • FIG. 2 is a schematic diagram of a single rectangular volume detection according to the present invention.
  • FIG. 3 is a schematic layout of two adjacent sensors of the present invention.
  • the present invention provides a technical solution: a device for measuring a loading rate based on an infrared laser, including an infrared laser sensor 1, wherein the infrared laser sensor is a sensor produced by a new MEMS process in 2018 and has been applied to In areas such as Apple mobile phones, it has the characteristics of small size and high accuracy.
  • the infrared laser sensor 1 is installed at the center of the top of the compartment.
  • the compartment is evenly divided into multiple rows and columns to form multiple areas.
  • the compartment is evenly divided into i rows and n.
  • n is an integer greater than 2; it can be adjusted according to the size and accuracy of the compartment, the infrared laser sensor is placed in the center of the area and guaranteed to be evenly distributed throughout the compartment; the infrared laser sensor is installed obliquely, infrared
  • the installation angle of the laser sensor 1 is 15 ° -27 °.
  • the calculation method is as follows: a single rectangle Volume detection method: D * (Hd); Volume detection method of the entire cabin: D1 * (H-d1) + D2 * (H-d2) + Dn * (H-dn).
  • the present invention has high measurement accuracy.
  • the new infrared laser ranging sensor is used to measure the height of a unit area.
  • the calculation of the compartment volume ratio can be achieved by calculation, which can be less than 2%.
  • the single sensor is cascaded, which is simple and stable to install.
  • the infrared laser sensor with oblique installation has a small blind area and is more suitable for box measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种基于红外激光测量装载率的装置,包括红外激光传感器,红外激光传感器安装在车厢顶部中心,车厢均匀分成多行多列,形成多个区域,红外激光传感器倾斜安装,红外激光传感器1安装角度为15°-27°,本发明测量精度较高,采用新型红外激光测距传感器进行测量单位面积的高度,通过计算实现车厢容积率的检测,能做到2%以下,采用红外激光传感器测量,成本较低;此外,单体传感器采用级联的方式,安装简单稳定可靠,另外,采用倾斜安装的红外激光传感器盲区小,更适合箱体测量。

Description

一种基于红外激光测量装载率的装置 技术领域
本发明涉及装载率检测技术领域,具体为一种基于红外激光测量装载率的装置。
背景技术
目前在市场上还没有成熟的装载率检测的设备,不成熟的方案采用超声波的方式来进行测量,也未进行商品化。超声波测量存在以下缺陷:高精度(大于5%)成本居高,单体达到100元以上;盲区较大,大于20cm;电路设计较为复杂,需要模拟电路,并且需要复杂的校准;此外,布线较为复杂,采用多股线缆,导致检测效率低。
红外测距传感是用红外线为介质的测量系统,按照功能可分成五类:(1)辐射计,用于辐射和光谱测量;(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图像;(4)红外测距和通信系统;(5)混合系统,是指以上各类系统中的两个或者多个的组合。按探测机理可分成为光子探测器和热探测器。红外传感技术已经在现代科技、国防和工农业等领域获得了广泛的应用。利用的红外测距传感器LDM301发射出一束红外光,在照射到物体后形成一个反射的过程,反射到传感器后接收信号,然后利用CCD图像处理接收发射与接收的时间差的数据。经信号处理器处理后计算出物体的距离。这不仅可以使用于自然表面,也可用于加反射板。测量距离远,很高的频率响应,适合于恶劣的工业环境中。
目前,还未将红外激光传感器应用到检测装载率的设备中。
发明内容
本发明的目的在于提供一种一种基于红外激光测量装载率的装置,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种基于红外激光测量装载率的装置,包括红外激光传感器,所述红外激光传感器安装在车厢顶部中心,所述车厢均匀分成多行多列,形成多个区域,所述红外激光传感器倾斜安装。
优选的,所述车厢均匀分成i行和n列,i为小于5的整数,n为大于2的整数。
优选的,所述红外激光传感器安装角度为15°-27°。
优选的,所述装载率计算方法为:将车厢平均划分为相同大小的矩形,面积为D平方米,横向个数为R,纵向个数为C,总个数为n=R*C,对各个矩形进行距离测量,若车高度为H米,每个矩形完全被填充且表面是水平的,将红外激光传感器安装在车顶上,从车顶向下测量距离为d,计算方式如下:单个矩形容积检测方法:D*(H-d);整个车厢容积检测方法:D1*(H-d1)+D2*(H-d2)+Dn*(H-dn)。
与现有技术相比,本发明的有益效果是:本发明测量精度较高,采用新型红外激光测距传感器进行测量单位面积的高度,通过计算实现车厢容积率的检测,能做到2%以下,采用红外激光传感器测量,成本较低;此外,单体传感器采用级联的方式,安装简单稳定可靠,另外,采用倾斜安装的红外激光传感器盲区小,更适合箱体测量。
附图说明
图1为本发明传感器安装示意图;
图2为本发明单个矩形容积检测示意图;
图3为本发明相邻两个传感器布局示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而 不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-3,本发明提供一种技术方案:一种基于红外激光测量装载率的装置,包括红外激光传感器1,其中,红外激光传感器为2018年新型MEMS工艺生产的传感器,已经应用于苹果手机等领域,它具有体积小,精准度高的特点,所述红外激光传感器1安装在车厢顶部中心,所述车厢均匀分成多行多列,形成多个区域,车厢均匀分成i行和n列,i为小于5的整数,n为大于2的整数;可根据车厢大小和精度来调整,红外激光传感器放在区域中心,并保证均匀分布到整个车厢;所述红外激光传感器倾斜安装,红外激光传感器1安装角度为15°-27°。
本发明中,装载率计算方法为:将车厢平均划分为相同大小的矩形,面积为D平方米,横向个数为R,纵向个数为C,总个数为n=R*C,对各个矩形进行距离测量,若车高度为H米,每个矩形完全被填充且表面是水平的,将红外激光传感器安装在车顶上,从车顶向下测量距离为d,计算方式如下:单个矩形容积检测方法:D*(H-d);整个车厢容积检测方法:D1*(H-d1)+D2*(H-d2)+Dn*(H-dn)。
综上所述,本发明测量精度较高,采用新型红外激光测距传感器进行测量单位面积的高度,通过计算实现车厢容积率的检测,能做到2%以下,采用红外激光传感器测量,成本较低;此外,单体传感器采用级联的方式,安装简单稳定可靠,另外,采用倾斜安装的红外激光传感器盲区小,更适合箱体测量。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (4)

  1. 一种基于红外激光测量装载率的装置,包括红外激光传感器(1),其特征在于:所述红外激光传感器(1)安装在车厢顶部中心,所述车厢均匀分成多行多列,形成多个区域,所述红外激光传感器倾斜安装。
  2. 根据权利要求1所述的一种基于红外激光测量装载率的装置,其特征在于:所述车厢均匀分成i行和n列,i为小于5的整数,n为大于2的整数。
  3. 根据权利要求1所述的一种基于红外激光测量装载率的装置,其特征在于:所述红外激光传感器(1)安装角度为15°-27°。
  4. 根据权利要求1所述的一种基于红外激光测量装载率的装置,其特征在于:所述装载率计算方法为:将车厢平均划分为相同大小的矩形,面积为D平方米,横向个数为R,纵向个数为C,总个数为n=R*C,对各个矩形进行距离测量,若车高度为H米,每个矩形完全被填充且表面是水平的,将红外激光传感器安装在车顶上,从车顶向下测量距离为d,计算方式如下:单个矩形容积检测方法:D*(H-d);整个车厢容积检测方法:D1*(H-d1)+D2*(H-d2)+Dn*(H-dn)。
PCT/CN2019/076973 2018-09-20 2019-03-05 一种基于红外激光测量装载率的装置 WO2020057061A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811103213.1A CN109186466A (zh) 2018-09-20 2018-09-20 一种基于红外激光测量装载率的装置
CN201811103213.1 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020057061A1 true WO2020057061A1 (zh) 2020-03-26

Family

ID=64909273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076973 WO2020057061A1 (zh) 2018-09-20 2019-03-05 一种基于红外激光测量装载率的装置

Country Status (2)

Country Link
CN (1) CN109186466A (zh)
WO (1) WO2020057061A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110084558A (zh) * 2019-04-30 2019-08-02 吉旗(成都)科技有限公司 一种计算车厢空间装载率的方法及装置
CN110081822A (zh) * 2019-06-04 2019-08-02 圆通全球集运有限公司 一种基于激光传感器的测量装载率的移动装置
CN110220548A (zh) * 2019-06-26 2019-09-10 西安微电子技术研究所 一种基于距离探测集装箱装箱状况的检测装置及检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1750986A (zh) * 2003-03-20 2006-03-22 恩益禧慕百霖株式会社 控制运输工具装载的系统及方法
CN104613892A (zh) * 2014-12-31 2015-05-13 中国铁路总公司 融合视频检测技术和激光测距技术的复合雪深监测系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1750986A (zh) * 2003-03-20 2006-03-22 恩益禧慕百霖株式会社 控制运输工具装载的系统及方法
CN104613892A (zh) * 2014-12-31 2015-05-13 中国铁路总公司 融合视频检测技术和激光测距技术的复合雪深监测系统

Also Published As

Publication number Publication date
CN109186466A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2020057061A1 (zh) 一种基于红外激光测量装载率的装置
CN105890625B (zh) 一种基于碳纳米管遮光罩的星敏感器的杂光测试方法
CN103344388B (zh) 一种气体泄漏红外成像检测系统的性能评价装置及方法
CN104880711A (zh) 单波长四拉曼激光雷达探测系统及探测方法
CN103698256A (zh) 一种全场彩虹在线测量液体喷雾的方法和装置
CN114323273B (zh) 一种基于多重反射的光压测量装置及方法
CN101957317B (zh) 大气湍流折射率结构常数高度分布模式测量装置
CN107561554A (zh) 基于太阳光度计数据和多波长激光雷达数据的反演方法
CN107942406B (zh) 一种基于总大气相干长度约束的分层大气湍流强度测量方法
Lubard et al. Optical image and laser slope meter intercomparisons of high‐frequency waves
CN103424750A (zh) 一种接收激光信标测量大气湍流强度廓线的装置与方法
CN203376261U (zh) 一种离轴式大气湍流强度廓线实时测量装置
CN104776825A (zh) 一种有限距离等晕角实时测量装置及方法
CN104198348A (zh) 基于光电融合的pm2.5浓度检测系统及检测方法
CN107966712B (zh) 一种用于痕量气体柱浓度探测的对地观测激光雷达
CN105091788B (zh) 自动实时快速检测晶片基底二维形貌的装置
CN105091777B (zh) 实时快速检测晶片基底二维形貌的方法
CN110361735A (zh) 一种基于测速雷达的车辆测速方法及装置
CN105628338A (zh) 一种红外导引头全视场视线误差标校方法
CN103063869A (zh) 一种光传播路径横向平均风速风向测量装置及方法
US6841766B2 (en) Apparatus and method for detecting the location, intensity and initiation time of an energy pulse
CN110726982B (zh) 一种信号去平滑方法及系统
CN105091848A (zh) 一种时间关联计算测距仪及测量方法
CN101672777B (zh) 一种任意位置的冰层双向反射率测量装置
CN108445508A (zh) 一种轻度雾霾时大气消光系数的波段转换方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861408

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861408

Country of ref document: EP

Kind code of ref document: A1