CN107561554A - 基于太阳光度计数据和多波长激光雷达数据的反演方法 - Google Patents

基于太阳光度计数据和多波长激光雷达数据的反演方法 Download PDF

Info

Publication number
CN107561554A
CN107561554A CN201710740122.8A CN201710740122A CN107561554A CN 107561554 A CN107561554 A CN 107561554A CN 201710740122 A CN201710740122 A CN 201710740122A CN 107561554 A CN107561554 A CN 107561554A
Authority
CN
China
Prior art keywords
mrow
msubsup
lambda
laser radar
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710740122.8A
Other languages
English (en)
Other versions
CN107561554B (zh
Inventor
毛建东
刘佳博
赵虎
周春艳
巩鑫
盛洪江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia pengzhong Information Technology Co.,Ltd.
Original Assignee
North Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Minzu University filed Critical North Minzu University
Priority to CN201710740122.8A priority Critical patent/CN107561554B/zh
Publication of CN107561554A publication Critical patent/CN107561554A/zh
Application granted granted Critical
Publication of CN107561554B publication Critical patent/CN107561554B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明涉及一种基于太阳光度计数据和多波长激光雷达数据的反演方法,该方法利用太阳光度计数据反演得到气溶胶粒子后向散射系数估计值、消光系数估计值,进而模拟激光雷达信号方程,利用多波长激光雷达数据反演构造激光雷达信号方程,再利用两种数据构造的方程构造多目标优化方程,求解所述多目标优化方程得到气溶胶粒子光学、微物理特性参数垂直分布廓线。本发明融合两种设备优缺点对大气气溶胶光学参数进行反演,反演精度高,可以有效的用于区域气溶胶监测。应用本发明方法具有误差小,鉴别力高、普适性强的优点。

Description

基于太阳光度计数据和多波长激光雷达数据的反演方法
技术领域
本发明涉及大气探测技术领域,特别涉及一种基于太阳光度计数据和多波长激光雷达数据的反演方法。
背景技术
气溶胶在地球-大气辐射收支过程中扮演着重要的角色,已成为影响全球气候变化的最敏感的因子之一。作为主要观测设备的太阳光度计,它不仅能自动跟踪太阳作直射辐射测量,而且可以进行太阳等高度角天空扫描、主平面扫描和极化通道天空扫描。由于其可以获得实时、长期的观测数据,在大气环境监测和气溶胶气候效应的研究,卫星遥感产品真实性检验以及沙尘暴监测中发挥着重要作用。但是,太阳光度计只能获得整层大气柱数据,无法获得气溶胶参数的垂直分布廓线。无独有偶,凭借高时空分辨率、能同时探测气溶胶光学和微物理特性的优势,多波长激光雷达越来越得到人们的重视。可是,多波长激光雷达由于受发射波长数量的限制,直接利用消光系数反演相关参数会存在较大的不确定性。如此看来,如果能够结合上述两种探测技术的优势,融合同步测量的太阳光度计与多波长激光雷达测量数据,对气溶胶光学、微物理参数垂直分布数据进行精细反演,对于人们研究气溶胶及气候效应具有重要的研究价值和科学意义。
发明内容
本发明的目的在于提供一种基于太阳光度计数据和多波长激光雷达数据的反演方法,可以提高反演精度。
为了实现上述发明目的,本发明实施例提供了以下技术方案:
一种基于太阳光度计数据和多波长激光雷达数据的反演方法,包括以下步骤:
太阳光度计数据获取步骤:通过太阳光度计获取太阳直接辐射数据和天空散射光数据;
太阳光度计数据反演步骤:根据所述太阳直接辐射数据和天空散射光数据,反演得到气溶胶粒子后向散射系数估计值、消光系数估计值,进而模拟激光雷达信号方程;
多波长激光雷达数据获取步骤:通过多波长激光雷达获取与太阳光度计同步测量的激光雷达回波信号;
多波长激光雷达数据反演步骤:根据所述激光雷达回波信号构造激光雷达信号方程;
数据融合步骤:根据太阳光度计数据反演步骤中得到的数据和多波长激光雷达数据反演步骤中得到的数据,构造多目标优化方程,求解所述多目标优化方程得到气溶胶粒子光学、微物理特性参数垂直分布廓线。
与现有技术相比,本发明的有益效果:本发明融合两种设备优缺点对大气气溶胶光学参数进行反演的方法易于实现,反演精度高,可以有效的用于区域气溶胶监测。应用本发明方法具有误差小,鉴别力高、普适性强的优点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例中所述方法的原理流程图。
图2为本发明实施例中所述方法的细化流程图。
具体实施方式
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本实施例中提供了一种基于太阳光度计数据和多波长激光雷达数据的反演方法,该方法包括以下步骤:
太阳光度计数据获取步骤:通过太阳光度计获取太阳直接辐射数据和天空散射光数据;
太阳光度计数据反演步骤:根据所述太阳直接辐射数据和天空散射光数据,反演得到气溶胶粒子后向散射系数估计值、消光系数估计值,进而模拟激光雷达信号方程;
多波长激光雷达数据获取步骤:通过多波长激光雷达获取与太阳光度计同步测量的激光雷达回波信号;
多波长激光雷达数据反演步骤:根据所述激光雷达回波信号构造激光雷达信号方程;
数据融合步骤:根据太阳光度计数据反演步骤中得到的数据和多波长激光雷达数据反演步骤中得到的数据,构造多目标优化方程,求解所述多目标优化方程得到气溶胶粒子光学、微物理特性参数垂直分布廓线。
如图2所示,具体地,在上述方法的太阳光度计数据反演步骤中,采用如下实施方式:
将所述太阳直接辐射数据和天空散射光数据作为输入数据,应用Skyrad.Pack反演算法计算得到大气柱积分参数;所述大气柱积分参数包括粗细模态下的粒子体积浓度Vf,c、不同波长的粗细模态下的粒子的消光系数af,c(λ)、不同波长的粗细模态下的粒子的后向散色系数bf,c(λ)、光学厚度τ、相函数、复折射率n、一次散射反照比ω、体积浓度V以及粒子谱分布;Skyrad.Pack反演算法为现有技术,且代码公开,故此处未对Skyrad.Pack反演算法过程进行细致描述。
根据所述大气柱积分参数计算得到大气柱积分的单位体积后向散射系数bm,s(λ)、消光系数am,s(λ)和激光雷达比Sm,s(λ);
式中,m代表粗模式或细模式气溶胶粒子,m=1为细粒子,m=2为粗粒子,s代表粒子形状,s=1代表球形粒子,s=2代表椭球形粒子,ext代表消光系数,F()为散射强度,Θ为散射角,E0为地球大气顶层的太阳在平均日地距离处的直射辐照度是个常数。bm,s(λ)、am,s(λ)、Sm,s(λ),m可取值1或者2(即f或者c),s可取值1或者2(即球形和椭球形)。利用上述bm,s(λ)、am,s(λ)、Sm,s(λ)分别计算得到气溶胶粒子后向散射系数βaer,e、消光系数αaer,e的估计值,此处,下标e代表此系数为估计值。
βaer,e(λ,z)=cf,1(z)bf,1(λ)+cf,2(z)bf,2(λ)+cc,1(z)bc,1(λ)+cc,2(z)bc,2(λ)
αaer,e(λ,z)=cf,1(z)af,1(λ)+cf,2(z)af,2(λ)+cc,1(z)ac,1(λ)+cc,2(z)ac,2(λ)
式中,λ代表波长,b为后向散色系数,c(z)表征不同高度处的粒子体积浓度,z表示高度,角标的f表示fine细粒子,c是corse是粗粒子,角标的1、2分别代表球形粒子、椭球形粒子,角标的aer是aerosol代表气溶胶,e代表估计值。以公式中参数举例,bf,1(λ)则代表球形细粒子随波长变化的后向散色系数,βaer,e(λ,z)则代表整层大气气溶胶随波长和高度变化的后向散色系数估计值。af,c(λ)、bf,c(λ)分别代表不同波长的粗(c)、细(f)模态下的粒子的消光系数和后向散色系数。
利用βaer,e和αaer,e模拟激光雷达信号方程L(λj,zn),
式中,mol是分子,βmol(λ,z)为随波长和高度变化的分子后向散射系数。
通过融合球形、椭球形粒子(大气中的非球球粒子统一用椭球形粒子模型近似模拟)散射模型的太阳光度计数据(即前述散射光数据),还可以反演包含入射激光偏振态的大气柱平均后向散射系数:
式中,∥、⊥分别代表与出射激光平行和垂直的偏振光,对于球形粒子,可以忽略偏振态,对于非球形粒子,可以得到:
进而得到退偏振比的估计值:
具体地,在上述方法的多波长激光雷达数据反演步骤中,可以采用如下实施方式:
根据多波长激光雷达测量的三个波长处的回波信号P(λj,zi),计算距离平方校正信号Pcorj,zi),进而构造激光雷达信号方程L*j,zn);
激光雷达的回波信号经光电信号转换在示波器上获得数据,再经mathcad工具分析得到β(λ,z)、β//(λ,z),根据所述回波信号中的偏振信号,计算得到退偏振比δ(λ,z)为不同波长和高度处的退偏振比,β(λ,z),β//(λ,z)分别代表出射激光垂直和平行偏振方向的随波长和高度变化的后向散色系数。
具体地,在上述方法的数据融合步骤中,可以采用如下实施方式:
将L*j,zn)与L(λj,zn)进行比较,构造优化方程
cm,s(z)表征不同高度处的粒子体积浓度,L*j,zn)与P(λj,zi)有关,而P(λj,zi)又与βaer(λ,z)和αaer(λ,z)有关,βaer(λ,z)和αaer(λ,z)与cm,s(z)有关,因此可以获得cm,s(z)的数据结构,将cm,s(z)进行积分,得到整层大气柱体积浓度Vm,s,将Vm,s与所述体积浓度值V进行比较,构造优化方程Vm,s=V+ΔV;m代表粗模式或细模式气溶胶粒子,m=1为细粒子,m=2为粗粒子,s代表粒子形状,s=1代表球形粒子,s=2代表椭球形粒子;
将δ(λ,z)与δaer,e(λ,z)进行比较,构造优化方程δ(λ,z)=δaer,e(λ,z)+Δδ
在计算过程中,需要同时满足以上三个优化方程。因此,问题转化为多目标优化问题。
粒子群优化算法是一种解决多目标优化问题非常好的算法,是从生物种群行为特征中得到启发并用于求解优化问题。因此在本发明方法中,基于粒子群优化算法,对上述多目标优化问题进行求解。
经过反复迭代计算,最终获取粗/细模态下、球形/非球形粒子的体积浓度廓线cm,s(z)、后向散射系数bm,s(λ,z)、消光系数am,s(λ,z)和激光雷达比Sm,s(λ,z)等气溶胶光学、微物理特性参数的垂直分布廓线。
需要注意的是,同其它群体智能优化算法一样,粒子群优化算法容易产生早熟早收敛、全局收敛性能差的问题,导致整个融合算法陷入局部极值而无法获得稳定最优解,甚至导致整个融合算法失败。在基本粒子群算法中,粒子活性缺失,使得粒子很难跳出局部极值区域,是导致算法陷入早熟早收敛的根本原因。要让粒子速度有较大概率发散,必须降低粒子收敛速度、保持粒子活性、保持算法的多样性。通常,标准的粒子群算法是线性时变离散系统,为了让其更接近于线性定常离散系统,本实施例中提出一种线性递减惯性权重策略,即
w(t)=(wini-wend)(Tmax-t)/Tmax+wend (6)
式中,w为惯性权重,t是迭代次数,Tmax是最大迭代次数,wini是初始惯性权重,wend是收敛时的最终惯性权重。
而且,为了提高粒子群全局搜索能力,将改进速度更新公式改写为:
式中,k为当前迭代次数;Vid为粒子的速度;c是非负常数,称为加速因子;λ1,λ2,λ3,r是区间(0,1)之间的数,是重心位置。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种基于太阳光度计数据和多波长激光雷达数据的反演方法,其特征在于,包括以下步骤:
太阳光度计数据获取步骤:通过太阳光度计获取太阳直接辐射数据和天空散射光数据;
太阳光度计数据反演步骤:根据所述太阳直接辐射数据和天空散射光数据,反演得到气溶胶粒子后向散射系数估计值、消光系数估计值,进而模拟激光雷达信号方程;
多波长激光雷达数据获取步骤:通过多波长激光雷达获取与太阳光度计同步测量的激光雷达回波信号;
多波长激光雷达数据反演步骤:根据所述激光雷达回波信号构造激光雷达信号方程;
数据融合步骤:根据太阳光度计数据反演步骤中得到的数据和多波长激光雷达数据反演步骤中得到的数据,构造多目标优化方程,求解所述多目标优化方程得到气溶胶粒子光学、微物理特性参数垂直分布廓线。
2.根据权利要求1所述的方法,其特征在于,所述太阳光度计数据反演步骤,具体是:
将所述太阳直接辐射数据和天空散射光数据作为输入数据,应用Skyrad.Pack反演算法计算得到大气柱积分参数;所述大气柱积分参数包括光学厚度τ、相函数、复折射率n、一次散射反照比ω、体积浓度V以及粒子谱分布;
根据所述大气柱积分参数计算得到大气柱积分的单位体积后向散射系数bm,s(λ)、消光系数am,s(λ)和激光雷达比Sm,s(λ);
利用上述bm,s(λ)、am,s(λ)、Sm,s(λ)计算得到气溶胶粒子后向散射系数βaer,e、消光系数αaer,e的估计值,
利用βaer,e和αaer,e模拟激光雷达信号方程L(λj,zn)。
3.根据权利要求2所述的方法,其特征在于,所述太阳光度计数据反演步骤,还包括:
反演包含入射激光偏振态的大气柱平均后向散射系数:
<mrow> <msup> <mi>b</mi> <mo>&amp;perp;</mo> </msup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>b</mi> <mrow> <mi>f</mi> <mo>,</mo> <mn>1</mn> </mrow> <mo>&amp;perp;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>b</mi> <mrow> <mi>f</mi> <mo>,</mo> <mn>2</mn> </mrow> <mo>&amp;perp;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>b</mi> <mrow> <mi>c</mi> <mo>,</mo> <mn>1</mn> </mrow> <mo>&amp;perp;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>b</mi> <mrow> <mi>c</mi> <mo>,</mo> <mn>2</mn> </mrow> <mo>&amp;perp;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msup> <mi>b</mi> <mrow> <mo>/</mo> <mo>/</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>b</mi> <mrow> <mi>f</mi> <mo>,</mo> <mn>1</mn> </mrow> <mrow> <mo>/</mo> <mo>/</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>b</mi> <mrow> <mi>f</mi> <mo>,</mo> <mn>2</mn> </mrow> <mrow> <mo>/</mo> <mo>/</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>b</mi> <mrow> <mi>c</mi> <mo>,</mo> <mn>1</mn> </mrow> <mrow> <mo>/</mo> <mo>/</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>b</mi> <mrow> <mi>c</mi> <mo>,</mo> <mn>2</mn> </mrow> <mrow> <mo>/</mo> <mo>/</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow>
式中,∥、⊥分别代表与出射激光平行和垂直的偏振光,λ代表波长,b为后向散色系数,对于非球形粒子,可以得到:
<mrow> <msubsup> <mi>&amp;beta;</mi> <mrow> <mi>a</mi> <mi>e</mi> <mi>r</mi> <mo>,</mo> <mi>e</mi> </mrow> <mo>&amp;perp;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>c</mi> <mrow> <mi>f</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <msubsup> <mi>b</mi> <mrow> <mi>f</mi> <mo>,</mo> <mn>2</mn> </mrow> <mo>&amp;perp;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mi>c</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <msubsup> <mi>b</mi> <mrow> <mi>c</mi> <mo>,</mo> <mn>2</mn> </mrow> <mo>&amp;perp;</mo> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>&amp;beta;</mi> <mrow> <mi>a</mi> <mi>e</mi> <mi>r</mi> <mo>,</mo> <mi>e</mi> </mrow> <mrow> <mo>/</mo> <mo>/</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>c</mi> <mrow> <mi>f</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <msubsup> <mi>b</mi> <mrow> <mi>f</mi> <mo>,</mo> <mn>1</mn> </mrow> <mrow> <mo>/</mo> <mo>/</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mi>f</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <msubsup> <mi>b</mi> <mrow> <mi>f</mi> <mo>,</mo> <mn>2</mn> </mrow> <mrow> <mo>/</mo> <mo>/</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mi>c</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <msubsup> <mi>b</mi> <mrow> <mi>c</mi> <mo>,</mo> <mn>1</mn> </mrow> <mrow> <mo>/</mo> <mo>/</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mi>c</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <msubsup> <mi>b</mi> <mrow> <mi>c</mi> <mo>,</mo> <mn>2</mn> </mrow> <mrow> <mo>/</mo> <mo>/</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow>
式中,c(z)表征不同高度处的粒子体积浓度,z表示高度,脚标的f表示细粒子,脚标的c表示粗粒子,脚标的1、2分别代表球形粒子、椭球形粒子,脚标的aer代表气溶胶,脚标的e代表估计值;进而得到退偏振比的估计值:
<mrow> <msub> <mi>&amp;delta;</mi> <mrow> <mi>a</mi> <mi>e</mi> <mi>r</mi> <mo>,</mo> <mi>e</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>&amp;lambda;</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&amp;beta;</mi> <mrow> <mi>a</mi> <mi>e</mi> <mi>r</mi> <mo>,</mo> <mi>e</mi> </mrow> <mo>&amp;perp;</mo> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>&amp;lambda;</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>&amp;beta;</mi> <mrow> <mi>a</mi> <mi>e</mi> <mi>r</mi> <mo>,</mo> <mi>e</mi> </mrow> <mrow> <mo>/</mo> <mo>/</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>&amp;lambda;</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
4.根据权利要求3所述的方法,其特征在于,所述多波长激光雷达数据反演步骤,具体是:
根据多波长激光雷达测量的三个波长处的回波信号P(λj,zi),计算距离平方校正信号Pcorj,zi),进而构造激光雷达信号方程L*j,zn);
根据所述回波信号中的偏振信号,计算得到退偏振比
5.根据权利要求4所述的方法,其特征在于,所述数据融合步骤,具体是:
将L*j,zn)与L(λj,zn)进行比较,构造优化方程将cm,s(z)进行积分,得到整层大气柱体积浓度Vm,s,将Vm,s与所述体积浓度值V进行比较,构造优化方程Vm,s=V+ΔV;cm,s(z)表征不同高度处的粒子体积浓度,m代表粗模式或细模式气溶胶粒子,m=1为细粒子,m=2为粗粒子,s代表粒子形状,s=1代表球形粒子,s=2代表椭球形粒子;
将δ(λ,z)与δaer,e(λ,z)进行比较,构造优化方程δ(λ,z)=δaer,e(λ,z)+Δδ
利用粒子群优化算法求解上述3个优化方程,气溶胶粒子光学、微物理特性参数垂直分布廓线。
6.根据权利要求5所述的方法,其特征在于,所述气溶胶粒子光学、微物理特性参数的垂直分布廓线指粗模态和细模态下球形粒子和非球形粒子的体积浓度廓线、后向散射系数、消光系数和激光雷达比。
CN201710740122.8A 2017-08-25 2017-08-25 基于太阳光度计数据和多波长激光雷达数据的反演方法 Active CN107561554B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710740122.8A CN107561554B (zh) 2017-08-25 2017-08-25 基于太阳光度计数据和多波长激光雷达数据的反演方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710740122.8A CN107561554B (zh) 2017-08-25 2017-08-25 基于太阳光度计数据和多波长激光雷达数据的反演方法

Publications (2)

Publication Number Publication Date
CN107561554A true CN107561554A (zh) 2018-01-09
CN107561554B CN107561554B (zh) 2020-11-06

Family

ID=60976832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710740122.8A Active CN107561554B (zh) 2017-08-25 2017-08-25 基于太阳光度计数据和多波长激光雷达数据的反演方法

Country Status (1)

Country Link
CN (1) CN107561554B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445508A (zh) * 2018-01-31 2018-08-24 北京环境特性研究所 一种轻度雾霾时大气消光系数的波段转换方法及系统
CN108490451A (zh) * 2018-03-29 2018-09-04 中国民航大学 一种利用大气消光系数反演斜程能见度的方法
CN110161532A (zh) * 2019-05-30 2019-08-23 浙江大学 一种基于多波长激光雷达反演气溶胶微物理特性的方法
CN110850392A (zh) * 2019-10-31 2020-02-28 无锡中科光电技术有限公司 激光雷达退偏增益比的校正方法
CN111912748A (zh) * 2020-07-29 2020-11-10 中国科学院空天信息创新研究院 一种含碳气溶胶线性退偏比的计算方法
CN111965666A (zh) * 2020-07-16 2020-11-20 中国矿业大学 一种气溶胶三维空间分布制图方法
CN112684471A (zh) * 2020-12-01 2021-04-20 兰州大学 一种基于激光雷达的气溶胶微物理特性反演方法
CN114295585A (zh) * 2022-01-04 2022-04-08 浙江大学 一种基于解析模型的多视场海洋激光雷达数据正则化反演方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944503A (zh) * 2012-10-11 2013-02-27 中国科学院安徽光学精密机械研究所 基于太阳光度计和激光雷达的pm2.5质量浓度值自动反演算法
CN103115872A (zh) * 2012-12-18 2013-05-22 中国人民解放军63655部队 一种多波长大气消光系数高度分布数据反演方法
CN103175759A (zh) * 2013-02-25 2013-06-26 中国科学院安徽光学精密机械研究所 基于多种地基遥感技术获取城市气溶胶复折射指数的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944503A (zh) * 2012-10-11 2013-02-27 中国科学院安徽光学精密机械研究所 基于太阳光度计和激光雷达的pm2.5质量浓度值自动反演算法
CN103115872A (zh) * 2012-12-18 2013-05-22 中国人民解放军63655部队 一种多波长大气消光系数高度分布数据反演方法
CN103175759A (zh) * 2013-02-25 2013-06-26 中国科学院安徽光学精密机械研究所 基于多种地基遥感技术获取城市气溶胶复折射指数的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
贺千山等: "太阳光度计反演气溶胶参数的方法比较", 《气象学报》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445508A (zh) * 2018-01-31 2018-08-24 北京环境特性研究所 一种轻度雾霾时大气消光系数的波段转换方法及系统
CN108445508B (zh) * 2018-01-31 2020-07-03 北京环境特性研究所 一种轻度雾霾时大气消光系数的波段转换方法及系统
CN108490451B (zh) * 2018-03-29 2022-03-25 中国民航大学 一种利用大气消光系数反演斜程能见度的方法
CN108490451A (zh) * 2018-03-29 2018-09-04 中国民航大学 一种利用大气消光系数反演斜程能见度的方法
CN110161532A (zh) * 2019-05-30 2019-08-23 浙江大学 一种基于多波长激光雷达反演气溶胶微物理特性的方法
CN110850392A (zh) * 2019-10-31 2020-02-28 无锡中科光电技术有限公司 激光雷达退偏增益比的校正方法
CN110850392B (zh) * 2019-10-31 2023-06-30 无锡中科光电技术有限公司 激光雷达退偏增益比的校正方法
CN111965666A (zh) * 2020-07-16 2020-11-20 中国矿业大学 一种气溶胶三维空间分布制图方法
CN111912748A (zh) * 2020-07-29 2020-11-10 中国科学院空天信息创新研究院 一种含碳气溶胶线性退偏比的计算方法
CN111912748B (zh) * 2020-07-29 2023-03-17 中国科学院空天信息创新研究院 一种含碳气溶胶线性退偏比的计算方法
CN112684471A (zh) * 2020-12-01 2021-04-20 兰州大学 一种基于激光雷达的气溶胶微物理特性反演方法
CN112684471B (zh) * 2020-12-01 2022-03-08 兰州大学 一种基于激光雷达的气溶胶微物理特性反演方法
CN114295585A (zh) * 2022-01-04 2022-04-08 浙江大学 一种基于解析模型的多视场海洋激光雷达数据正则化反演方法
CN114295585B (zh) * 2022-01-04 2024-03-22 浙江大学 一种基于解析模型的多视场海洋激光雷达数据正则化反演方法

Also Published As

Publication number Publication date
CN107561554B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN107561554A (zh) 基于太阳光度计数据和多波长激光雷达数据的反演方法
Shao et al. A review on East Asian dust storm climate, modelling and monitoring
CN108490451B (zh) 一种利用大气消光系数反演斜程能见度的方法
CN111965666A (zh) 一种气溶胶三维空间分布制图方法
CN109827906A (zh) 一种激光雷达斜程能见度的反演方法
CN110058258A (zh) 一种基于混合型激光雷达的大气边界层探测方法
CN111060899A (zh) 星地一体化激光雷达回波波形仿真方法及系统
Pesek et al. Modeling of 830 nm FSO Link Attenuation in Fog or Wind Turbulence.
Kassianov et al. Simultaneous retrieval of effective refractive index and density from size distribution and light-scattering data: Weakly absorbing aerosol
CN105678236A (zh) 一种陆地植被冠层偏振反射建模方法
Lu et al. Analysis of humidity halos around trade wind cumulus clouds
CN107421917B (zh) 一种多功能高精度大气能见度仪及能见度测量方法
Wang et al. Development of an automatic polarization raman LiDAR for aerosol monitoring over complex terrain
CN103196872B (zh) 一种基于积分浊度计获取气溶胶粒子谱分布的方法
CN207730938U (zh) 一种移动式气溶胶激光雷达网络数据质控系统
Lienert et al. Aerosol size distributions from genetic inversion of polar nephelometer data
Zheng et al. McPrA-A new gas profile inversion algorithm for MAX-DOAS and apply to 50 m vertical resolution
Su et al. Numerical simulations of Asian dust storms using a coupled climate‐aerosol microphysical model
Mao et al. Preliminary results of water cloud and aerosol properties in the Yinchuan area using a Multi-wavelength lidar based on dual field of view
CN106407487A (zh) 评估气溶胶散射对co2遥感探测精度影响的方法及系统
Liu et al. An iterative calibrating method for airborne atmospheric detection lidar based on the klett forward integral equation
Wu et al. Size-resolved refractive index of scattering aerosols in urban Beijing: A seasonal comparison
Guo et al. Laser backscattering of multi-scaled large particles based on superimposed scattering
CN108445508A (zh) 一种轻度雾霾时大气消光系数的波段转换方法及系统
Fiorino et al. Assessment of Visibility from Aerosol Number Concentration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220408

Address after: 750000 room 0405, Section C, Xingqing data economy industrial park, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region

Patentee after: Ningxia pengzhong Information Technology Co.,Ltd.

Address before: 750021 No. 204 Wenchang North Road, Xixia District, the Ningxia Hui Autonomous Region, Yinchuan

Patentee before: BEIFANG MINZU University