WO2020056993A1 - 一种盾构机主驱动高压密封系统和一种泥水平衡盾构机 - Google Patents

一种盾构机主驱动高压密封系统和一种泥水平衡盾构机 Download PDF

Info

Publication number
WO2020056993A1
WO2020056993A1 PCT/CN2018/124333 CN2018124333W WO2020056993A1 WO 2020056993 A1 WO2020056993 A1 WO 2020056993A1 CN 2018124333 W CN2018124333 W CN 2018124333W WO 2020056993 A1 WO2020056993 A1 WO 2020056993A1
Authority
WO
WIPO (PCT)
Prior art keywords
regulating valve
pneumatic regulating
positive
acting pneumatic
pressure
Prior art date
Application number
PCT/CN2018/124333
Other languages
English (en)
French (fr)
Inventor
刘飞香
程永亮
肖前龙
文中保
王凯
张帅坤
刘华
章程
Original Assignee
中国铁建重工集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国铁建重工集团有限公司 filed Critical 中国铁建重工集团有限公司
Priority to SG11202102595QA priority Critical patent/SG11202102595QA/en
Priority to EP18934351.0A priority patent/EP3854990B1/en
Priority to KR1020217010716A priority patent/KR102528459B1/ko
Publication of WO2020056993A1 publication Critical patent/WO2020056993A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/002Sealings comprising at least two sealings in succession
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid

Definitions

  • the invention relates to the technical field of a shield machine, in particular to a main driving high-pressure sealing system of a shield machine, and a mud-water balance shield machine provided with the system.
  • the tunnel construction mostly adopts a complex boring machine, a shield tunneling machine, which integrates tunnel excavation, construction slag drainage and segment lining. It has become a standard for measuring the development height of a country's construction machinery field.
  • the main drive is an important part of the mud-water balance shield machine, and its sealing performance directly determines the water-soil pressure capacity of the shield machine.
  • the main drive of the shield machine mainly uses lip rubber seals.
  • four seal lips are generally provided.
  • the first seal lip is processed with a labyrinth cavity, and high-fiber grease is continuously injected into the cavity to resist the invasion of external sludge.
  • the grease cavity P1 formed by the first and second seal lips is continuously injected with grease, which further improves the main drive Sealing ability.
  • the sealing lip is lubricated and reduced.
  • the annular cavity formed by the second and third sealing lip is an oil and gas sealing cavity P2.
  • this cavity will be filled with gear oil and air.
  • the third sealing lip and the fourth sealing lip are generally reversely installed to form a leak detection cavity P3; the fourth sealing lip mainly seals the gearbox P4 to prevent the internal gear oil from leaking.
  • the pressure bearing capacity of a single lip rubber seal is generally about 3 bar. When the water and earth pressure is less than 3 bar, the external water and earth pressure can be resisted by the grease pressure in the grease chamber P1 to ensure that the main drive seal is reliable;
  • the sum of the pressure provided by the oil and gas sealed cavity P2 and the grease cavity P1 can also resist external water and earth pressure;
  • the main drive sealing system uses manual operation during pressurization, which requires high operating experience of the user, resulting in large errors.
  • the pressure is severe, the excavation surface collapses, Disasters such as roof fall.
  • the main drive sealing system in the prior art cannot achieve automatic pressure reduction.
  • the exhaust ball valve needs to be manually opened, which has certain safety risks.
  • the object of the present invention is to provide a main driving high-pressure sealing system for a shield machine and a mud-water balance shield machine provided with the system, which realizes pneumatic closed-loop feedback, follow-up response control, safety and reliability, and reduces human intervention.
  • High degree of automation which can fundamentally improve the theoretical pressure-bearing capacity of lip seals.
  • the present invention provides the following technical solutions:
  • a main driving high-pressure sealing system for a shield machine includes an air-cushion silo, an oil-gas sealed cavity, a compressed air input interface, a first positive-acting pneumatic regulating valve, and a first counter-acting pneumatic regulating valve, wherein:
  • An inlet of the compressed air input interface is used to connect an air source, an outlet of the compressed air input interface is connected to an inlet of the first positive acting pneumatic regulating valve, and an outlet of the first positive acting pneumatic regulating valve is connected to the first An inlet of a reaction pneumatic regulating valve and the oil and gas sealed cavity, an outlet of the first reaction pneumatic regulating valve is connected to an exhaust pipe;
  • the positive pressure detecting end of the first positive acting pneumatic regulating valve and the positive pressure detecting end of the first reactive acting pneumatic regulating valve are both connected to the air cushion bin;
  • the negative pressure detecting end of the first positive acting pneumatic regulating valve and the negative pressure detecting end of the first reactive acting pneumatic regulating valve are both connected to the oil and gas sealed cavity;
  • the first reaction pneumatic control valve When the pressure difference between the air cushion bunker and the oil and gas sealed cavity is less than or equal to a second preset value, the first reaction pneumatic control valve is opened, and the first valve pneumatic control valve is in a closed state.
  • the above-mentioned main driving high-pressure sealing system of the shield machine further includes a gearbox, a second positive-acting pneumatic regulating valve, and a second negative-acting pneumatic regulating valve, wherein:
  • the outlet of the compressed air input interface is connected to the inlet of the second positive-acting pneumatic regulating valve, and the outlet of the second positive-acting pneumatic regulating valve is connected to the inlet of the second reaction-acting pneumatic regulating valve and the gearbox.
  • An outlet of the second reaction pneumatic regulating valve is connected to the exhaust pipeline;
  • the positive pressure detecting end of the second positive acting pneumatic regulating valve and the positive pressure detecting end of the second reactive acting pneumatic regulating valve are both connected to the oil and gas sealed cavity;
  • the negative pressure detection end of the second positive acting pneumatic regulating valve and the negative pressure detection end of the second reverse acting pneumatic regulating valve are both connected to the gearbox;
  • the second positive-acting pneumatic regulating valve When the pressure difference between the oil-gas sealed cavity and the gearbox is greater than or equal to a third preset value, the second positive-acting pneumatic regulating valve is opened, and the second negative-acting pneumatic regulating valve is in a closed state;
  • the second reaction-acting pneumatic regulating valve When the pressure difference between the oil-gas sealed cavity and the gearbox is less than or equal to a fourth preset value, the second reaction-acting pneumatic regulating valve is opened, and the second positive-acting pneumatic regulating valve is in a closed state.
  • the above-mentioned main driving high-pressure sealing system of the shield machine further includes a leak detection cavity, a third positive-acting pneumatic regulating valve, and a third negative-acting pneumatic regulating valve, wherein:
  • the outlet of the second positive-acting pneumatic regulating valve is connected to the inlet of the third positive-acting pneumatic regulating valve, and the outlet of the third positive-acting pneumatic regulating valve is connected to the inlet of the third reactive-acting pneumatic regulating valve and the leakage.
  • a detection cavity, an outlet of the third reaction pneumatic regulating valve is connected to the exhaust pipeline;
  • the positive pressure detecting end of the third positive acting pneumatic regulating valve and the positive pressure detecting end of the third reactive acting pneumatic regulating valve are both connected to the gearbox;
  • the negative pressure detection end of the third positive-acting pneumatic regulating valve and the negative pressure detection end of the third reverse-acting pneumatic regulating valve are both connected to the leak detection cavity;
  • the third reaction-acting pneumatic regulating valve is opened, and the third positive-acting pneumatic regulating valve is in a closed state.
  • a first check valve is provided at an outlet of the first reaction pneumatic regulating valve
  • a second check valve is provided at an outlet of the second reaction pneumatic regulating valve
  • a third check valve is provided at an outlet of the third reaction pneumatic regulating valve.
  • a first safety valve and / or a first pressure sensor is further provided on the outlet connection pipe of the first positive acting pneumatic regulating valve;
  • a second safety valve and / or a second pressure sensor is further provided on the outlet connection pipe of the second positive-acting pneumatic regulating valve;
  • a third safety valve and / or a third pressure sensor is further provided on the outlet connection pipe of the third positive-acting pneumatic regulating valve.
  • the above-mentioned main driving high-pressure sealing system of the shield machine further includes an emergency pressure relief pipeline connected to the oil-gas sealed cavity, the gearbox, and the leak detection cavity.
  • a fourth check valve is provided between the oil-gas sealed cavity and the emergency pressure relief pipeline;
  • a fifth check valve is provided between the transmission and the emergency pressure relief line;
  • a sixth check valve is provided between the leak detection chamber and the emergency pressure relief pipeline;
  • a first ball valve is provided on the emergency pressure relief pipeline
  • a first muffler is provided on the emergency pressure relief pipeline.
  • a second muffler is provided on the exhaust pipe.
  • a mud-water balance shield machine is provided with the main drive high-pressure sealing system of the shield machine as described above.
  • the mud-water balance shield machine further includes:
  • Liquid level controller for detecting the liquid level in the gear oil cavity
  • the main driving high-pressure sealing system of the shield machine provided by the present invention and the mud-water balance shield machine provided with the system adopt full pneumatic control to achieve pneumatic closed-loop feedback, follow-up response control, and high accuracy.
  • the purpose of control can ensure that the main drive sealing structure can still reliably resist external earth water pressure when power is cut off in the tunnel. It is not only safe and reliable, reduces human intervention, and has a high degree of automation. It also fundamentally improves the theoretical bearing of the lip seal. Pressure capacity.
  • the first reaction pneumatic regulating valve is used to realize automatic, differential pressure exhaust pressure relief, thereby making the system response more sensitive and reducing Tuning will help increase system stability.
  • the mud-water balance shield machine can be guaranteed under the conditions of large burial depth and high water pressure, especially high water pressure. At 6 bar, the main drive is still sealed and reliable.
  • FIG. 1 is a schematic diagram of a gas circuit structure of a main driving high-pressure sealing system of a shield machine according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a main driving seal structure of a shield machine according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a main driving high-pressure sealing system of a shield machine according to an embodiment of the present invention.
  • P1-grease cavity P2-oil-sealed cavity
  • P3-leak detection cavity P4-gearbox
  • the invention discloses a main driving high-pressure sealing system of a shield machine and a mud-water balance shield machine provided with the system, which realizes pneumatic closed-loop feedback and follow-up response control, is safe and reliable, reduces human intervention, and has a high degree of automation.
  • the theoretical pressure-bearing capacity of the lip seal is fundamentally improved.
  • FIG. 1 is a schematic diagram of a gas path structure of a main drive high pressure sealing system of a shield machine according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a main drive seal structure of a shield machine according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a main driving high-pressure sealing system of a shield machine according to an embodiment of the present invention.
  • the main driving high-pressure sealing system of a shield machine mainly includes three main gas paths, namely a first gas path, a second gas path, and a third gas path.
  • the first gas path includes an air-cushion silo, an oil-gas sealed cavity P2, a compressed air input interface, a first positive-acting pneumatic regulating valve 21, and a first counter-acting pneumatic regulating valve 51, wherein:
  • the inlet of the compressed air input interface is used to connect the air source, the outlet of the compressed air input interface is connected to the inlet of the first positive-acting pneumatic regulating valve 21, and the outlet of the first positive-acting pneumatic regulating valve 21 is connected to the inlet of the first reactive-acting pneumatic regulating valve 51 And the oil-gas sealed cavity P2, the outlet of the first reaction pneumatic regulating valve 51 is connected to the exhaust pipe;
  • the positive pressure detection terminal “+” of the first positive-acting pneumatic regulating valve 21 and the positive pressure detection terminal “+” of the first reactive-acting pneumatic regulating valve 51 are both connected to the air cushion bin; the negative pressure detection of the first positive-acting pneumatic regulating valve 21
  • the terminal "-" and the negative pressure detection terminal “-” of the first reaction pneumatic regulating valve 51 are both connected to the oil-gas sealed cavity P2.
  • the first positive-acting pneumatic regulating valve 21 when the pressure difference between the air cushion bunker and the oil-gas sealed cavity P2 is greater than or equal to the first preset value, the first positive-acting pneumatic regulating valve 21 is opened, and the first reactive-acting pneumatic regulating valve 51 is in a closed state ("in a closed state” “State” means that the valve is closed at this time or has been closed in advance, the same below); when the pressure difference between the air cushion chamber and the oil and gas sealed chamber P2 is less than or equal to the second preset value, the first reaction pneumatic regulating valve 51 is opened, The first positive-acting pneumatic regulating valve 21 is in a closed state.
  • the "first preset value” is based on the preset minimum opening value in the first positive-acting pneumatic regulating valve 21 (that is, the first positive-acting pneumatic regulating valve 21 opens and conducts when the pressure difference reaches or exceeds this value), the first reaction
  • the preset minimum closing value in the pneumatic regulating valve 51 (that is, the first reaction pneumatic regulating valve 51 is closed and non-conductive when the pressure difference reaches or exceeds this value) is set.
  • the first preset value the minimum opening value of the first positive-acting pneumatic regulating valve 21 ⁇ the minimum closing value of the first reactive-acting pneumatic regulating valve 51;
  • the "second preset value” is based on the maximum closing value preset in the first positive-acting pneumatic regulating valve 21 (that is, the first positive-acting pneumatic regulating valve 21 is closed and non-conductive when the pressure difference reaches or is less than this value), the first The preset maximum opening value in the reaction pneumatic regulating valve 51 (that is, the first reaction pneumatic regulating valve 51 is opened and turned on when the pressure difference reaches or is less than this value) is set.
  • the second preset value the maximum open value of the first reaction pneumatic control valve 51 ⁇ the maximum close value of the first positive reaction pneumatic control valve 21.
  • the main drive seal is reliable.
  • the pressure difference between the air cushion bunker and the oil-gas sealed cavity P2 reaches or is smaller than an intermediate value preset in the first positive acting pneumatic regulating valve 21 (less than the first preset value and less than or equal to the grease cavity).
  • the rated pressure value of P1), the first positive-acting pneumatic regulating valve 21 is closed (or, in other specific embodiments, the first positive-acting pneumatic regulating valve 21 can also be opened in a small delivery volume to compensate The role of leakage);
  • the air source for generating compressed gas is derived from an air compressor outside the tunnel.
  • the compressed gas is filtered through the air filter 1 and then enters the compressed air input interface in the main drive high pressure sealing system of the shield machine, and then enters the main drive high pressure seal system of the shield machine.
  • the main driving high-pressure sealing system of the shield machine provided by the embodiment of the present invention adopts full pneumatic control, which achieves the objectives of pneumatic closed-loop feedback, follow-up response control, and high-precision control, and can be guaranteed in the cave.
  • the main drive sealing structure can still be reliable and can withstand external earth water pressure, which is not only safe and reliable, reduces human intervention, and has a high degree of automation, but also fundamentally improves the theoretical pressure bearing capacity of the lip seal.
  • the first reaction pneumatic regulating valve 51 is used to realize automatic, differential pressure exhaust pressure relief, thereby making the system response more sensitive and reduced. Overshoot is helpful to increase system stability.
  • the main driving high-pressure sealing system of the shield machine can be used for a mud-water balance shield machine to ensure that the mud-water balance shield machine is under a large burial depth and high water pressure, especially when the water pressure is higher than 6 bar.
  • the main drive remains sealed and reliable.
  • the second gas path in the main drive high pressure sealing system of the shield machine includes an oil and gas sealed cavity P2, a gearbox P4, a second positive acting pneumatic regulating valve 22, and a second reactive acting pneumatic regulating valve 52. among them:
  • the outlet of the compressed air input interface is connected to the inlet of the second positive acting pneumatic regulating valve 22, and the outlet of the second positive acting pneumatic regulating valve 22 is connected to the inlet of the second reactive pneumatic regulating valve 52 and the gearbox P4, and the second reactive pneumatic regulating valve 52
  • the outlet is connected to the exhaust pipe;
  • the positive pressure detection terminal “+” of the second positive-acting pneumatic regulating valve 22 and the positive pressure detection terminal “+” of the second reactive-acting pneumatic regulating valve 52 are both connected to the oil and gas sealed cavity P2;
  • the pressure detection terminal "-” and the negative pressure detection terminal “-” of the second reaction pneumatic regulating valve 52 are both connected to the gearbox P4.
  • the second positive-acting pneumatic regulating valve 22 is opened, and the second reaction-acting pneumatic regulating valve 52 is closed;
  • the second reaction-acting pneumatic regulating valve 52 is opened, and the second positive-acting pneumatic regulating valve 22 is in a closed state.
  • the "third preset value” is based on the preset minimum opening value in the second positive-acting pneumatic regulating valve 22 (that is, the second positive-acting pneumatic regulating valve 22 opens and conducts when the pressure difference reaches or exceeds this value), the second reaction
  • the preset minimum closing value in the pneumatic regulating valve 52 (that is, the second reaction pneumatic regulating valve 52 is closed and non-conductive when the pressure difference reaches or exceeds this value) is set.
  • the third preset value the minimum opening value of the second positive-acting pneumatic regulating valve 22 ⁇ the minimum closing value of the second reactive-acting pneumatic regulating valve 52;
  • the "fourth preset value” is based on the maximum closing value preset in the second positive-acting pneumatic regulating valve 22 (that is, the second positive-acting pneumatic regulating valve 22 is closed and not conducting when the pressure difference reaches or is less than this value), the second The preset maximum opening value in the reaction pneumatic regulating valve 52 (that is, the second reaction pneumatic regulating valve 52 is opened and conducted when the pressure difference reaches or is smaller than this value) is set.
  • the fourth preset value the maximum open value of the second reaction pneumatic control valve 52 ⁇ the maximum close value of the second positive reaction pneumatic control valve 22.
  • the third gas path in the main driving high-pressure sealing system of the shield machine includes a gearbox P4, a leak detection cavity P3, a third positive-acting pneumatic regulating valve 23, and a third reactive-acting pneumatic regulating valve 53, among which :
  • the outlet of the second positive-acting pneumatic regulating valve 22 is connected to the inlet of the third positive-acting pneumatic regulating valve 23, and the outlet of the third positive-acting pneumatic regulating valve 23 is connected to the inlet of the third reaction-acting pneumatic regulating valve 53 and the leakage detection chamber P3.
  • the outlet of the reaction pneumatic regulating valve 53 is connected to the exhaust line;
  • the positive pressure detection terminal “+” of the third positive acting pneumatic regulating valve 23 and the positive pressure detection terminal “+” of the third reactive pneumatic regulating valve 53 are both connected to the gearbox P4; the negative pressure of the third positive acting pneumatic regulating valve 23 The detection end "-" and the negative pressure detection end “-” of the third reaction pneumatic regulating valve 53 are both connected to the leak detection cavity P3;
  • the third positive-acting pneumatic regulating valve 23 is opened, and the third reactive-acting pneumatic regulating valve 53 is closed;
  • the third reaction-action pneumatic regulating valve 53 is opened, and the third positive-action pneumatic regulating valve 23 is closed.
  • the "fifth preset value” is based on the preset minimum opening value in the third positive-acting pneumatic regulating valve 23 (that is, the third positive-acting pneumatic regulating valve 23 opens and conducts when the pressure difference reaches or exceeds this value), the third reaction The preset minimum closing value in the pneumatic regulating valve 53 (that is, the third reaction pneumatic regulating valve 53 is closed and non-conductive when the pressure difference reaches or exceeds this value) is set.
  • the fifth preset value the minimum opening value of the third positive-acting pneumatic regulating valve 23 ⁇ the minimum closing value of the third reactive-acting pneumatic regulating valve 53;
  • the "sixth preset value” is based on the maximum closing value preset in the third positive-acting pneumatic regulating valve 23 (that is, the third positive-acting pneumatic regulating valve 23 is closed and non-conductive when the pressure difference reaches or is less than this value), the third The preset maximum opening value in the reaction pneumatic regulating valve 53 (that is, the third reaction pneumatic regulating valve 53 is opened and turned on when the pressure difference reaches or is less than this value) is set.
  • the sixth preset value the maximum open value of the third reaction pneumatic control valve 53 ⁇ the maximum close value of the third positive reaction pneumatic control valve 23.
  • the pressure difference between the gearbox P4 and the leak detection chamber P3 reaches or is smaller than an intermediate value (less than the fifth preset value) preset in the third positive acting pneumatic regulating valve 23, and the third positive acting The pneumatic regulating valve 23 is closed (or, in other specific embodiments, the third positive-acting pneumatic regulating valve 23 may also be opened with a small delivery amount to play a role of leakage compensation);
  • the third reaction pneumatic regulating valve 53 When opened, the third positive-acting pneumatic regulating valve 23 is in a closed state. At this time, the compressed air in the leak detection chamber P3 is discharged through the third reaction pneumatic regulating valve 53;
  • the emergency pressure relief pipeline is preferably provided with a first ball valve 8 and a first muffler 91.
  • the first ball valve 8 is opened.
  • the compressed air in the oil and gas sealed cavity P2, the leak detection cavity P3, and the gearbox P4 respectively passes through the emergency pressure relief pipe. Road to vent and release pressure.
  • a second muffler 92 is provided on the exhaust pipe in the main driving high-pressure sealing system of the shield machine.
  • the first and second mufflers 91 and 92 can reduce noise pollution during exhaust.
  • a first non-return valve 61 is provided at the exit of the first reaction pneumatic regulating valve 51; an outlet of the second reaction pneumatic regulating valve 52, A second check valve 62 is provided; a third check valve 63 is provided at the outlet of the third reaction pneumatic regulating valve 53.
  • the first check valve 61, the second check valve 62, and the third check valve 63 are connected in parallel to the above-mentioned exhaust line.
  • a fourth check valve 71 is provided between the oil-gas sealed cavity P2 and the emergency pressure relief pipeline; and between the gearbox P4 and the emergency pressure relief pipeline, There is a fifth check valve 72; a sixth check valve 73 is provided between the leak detection chamber P3 and the emergency pressure relief line. Specifically, the fourth check valve 71, the fifth check valve 72, and the sixth check valve 73 are connected in parallel to the emergency pressure relief pipeline.
  • a first safety valve 31 and a first pressure sensor 41 are also connected to the outlet of the first positive-acting pneumatic regulating valve 21 (that is, the outlet connecting line of the first positive-acting pneumatic regulating valve 21).
  • the first safety valve 31 can ensure that The pressure of the oil and gas sealed cavity P2 is in a controllable range to prevent overpressure from damaging the seal.
  • the first pressure sensor 41 can collect the pressure data of the oil and gas sealed cavity P2 in real time for easy analysis, display and storage;
  • a second safety valve 32 and a second pressure sensor 42 are also connected to the outlet of the second positive-acting pneumatic regulating valve 22 (that is, the outlet connecting line of the second positive-acting pneumatic regulating valve 22).
  • the second safety valve 32 can ensure that The pressure of gearbox P4 is in a controllable range to prevent overpressure from damaging the seal.
  • the second pressure sensor 42 can collect pressure data of gearbox P4 in real time for analysis, display and storage;
  • a third safety valve 33 and a third pressure sensor 43 are also connected to the outlet of the third positive-acting pneumatic regulating valve 23 (that is, the outlet connecting pipe of the third positive-acting pneumatic regulating valve 23).
  • the third safety valve 33 can ensure that The pressure of the leak detection cavity P3 is within a controllable range to prevent overpressure from damaging the seal.
  • the third pressure sensor 43 can collect the pressure data of the leak detection cavity P3 in real time for analysis, display and storage.
  • a specific embodiment of the present invention also provides a mud-water balance shield machine.
  • the mud-water balance shield machine is provided with the main driving high-pressure sealing system of the shield machine as described above.
  • the mud-water balance shield machine further includes a liquid level controller 12, a respirator 13, and an oil-gas sealed tank 11. among them:
  • the liquid level controller 12 is used to detect the liquid level in the gear oil cavity, and it can be chain-protected. When the liquid level is lower than the required low limit, it can trigger a stop signal;
  • the respirator 13 is used to realize the emptying of the gearbox P4 and prevent pressure. Further, in order to prevent the respirator 13 from being damaged by the high pressure stage, a second ball valve is also installed between the respirator 13 and the main drive;
  • the oil and gas sealed tank 11 is arranged between the oil and gas sealed cavity P2 and the gear oil cavity.
  • the oil and gas sealed tank 11 is provided with a high limit liquid level switch 101 and a low limit liquid level switch 102, and the oil and gas sealed tank 11 is triggered when the high limit liquid level switch 101 is triggered. Oil must be drained, and the oil and gas sealed tank 11 must be fueled when the low limit level switch 102 is triggered.
  • the main driving high-pressure sealing system of the shield machine and the mud-water balance shield machine provided with the system provided by the embodiment of the present invention have at least the following beneficial effects:

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Devices (AREA)

Abstract

公开了一种盾构机主驱动高压密封系统,在该系统中,压缩空气输入接口的进口用于连接气源;第一正作用气动调节阀(21)的进口连接压缩空气输入接口的出口,出口连接第一反作用气动调节阀(51)的进口和油气密封腔(P2);第一反作用气动调节阀(51)的出口连接排气管路;第一正作用气动调节阀(21)和第一反作用气动调节阀(51)的正压力检测端均连接气垫仓;第一正作用气动调节阀(21)和第一反作用气动调节阀(51)的负压力检测端均连接油气密封腔(P2)。该系统实现了气动闭环反馈、随动响应控制,安全可靠、自动化程度高,提高了唇形密封理论承压能力。还公开了一种设置有该系统的泥水平衡盾构机。

Description

一种盾构机主驱动高压密封系统和一种泥水平衡盾构机
本申请要求于2018年09月17日提交中国专利局、申请号为201811092816.6、发明名称为“一种盾构机主驱动高压密封系统和一种泥水平衡盾构机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及盾构机技术领域,特别涉及一种盾构机主驱动高压密封系统,和一种设置有该系统的泥水平衡盾构机。
背景技术
随着国家基础设施建设的深入发展,大断面、大埋深、高水压、长距离隧道的建设已逐步展开。为应对这些复杂恶劣工况,隧道施工多采用一种集隧道挖掘、施工排渣和管片衬砌为一体的复杂掘进设备——盾构机。其已成为衡量一个国家工程机械领域发展高度的标准。
而在过江过海等高水压工况时,需采用泥水平衡盾构机进行掘进,目前主流且安全可靠的是采用带气垫仓的间接式泥水平衡盾构机。
主驱动是泥水平衡盾构机的重要组成部分,其密封性能的好坏直接决定了盾构机水土承压能力的大小。目前,盾构机主驱动主要采用唇形橡胶密封,为了提高水土承压能力,一般会设置四道密封唇。第一道密封唇外加工迷宫腔,腔体内持续注入高纤维油脂抵抗外部泥渣侵入;第一道与第二道密封唇形成的油脂腔P1,其会持续注入油脂,一方面进一步提高主驱动密封能力,一方面对密封唇进行润滑减磨;第二道与第三道密封唇形成的环腔为油气密封腔P2,即当外部水压超过一定数值时,此腔会注入齿轮油和空气以给密封唇提供支撑力;第三道密封唇与第四道密封唇一般反装,形成泄漏检测腔P3;第四道密封唇主要是密封变速箱P4,以免其内部齿轮油泄漏。
单道唇形橡胶密封承压能力一般在3bar左右,在水土压力小于3bar 时,依靠油脂腔P1油脂压力便可抵抗外部水土压力,保证主驱动密封可靠;
当水土压力大于3bar且小于6bar时,通过油气密封腔P2和油脂腔P1提供的压力之和亦可抵抗外部水土压力;
当盾构机大埋深高水压作业时,水土压力超过6bar,传统的多道组合密封很难抵抗外部水压,外部泥渣会穿透密封侵入主驱动,造成盾构机停机、工程延期。
此外,现有技术中的主驱动密封系统,在加压时,多采用人工操作,对使用人员操作经验要求较高,结果误差较大,严重时会造成泥水压力不稳,开挖面塌陷、冒顶等工程灾害。而且,现有技术中的主驱动密封系统不能实现自动降压,当密封腔不需要加压时,需人工开启排气球阀,存在一定安全隐患。
发明内容
有鉴于此,本发明的目的在于提供一种盾构机主驱动高压密封系统和一种设置有该系统的泥水平衡盾构机,实现气动闭环反馈、随动响应控制,安全可靠、减少人为干预、自动化程度高,从根本上提高唇形密封理论承压能力。
为实现上述目的,本发明提供如下技术方案:
一种盾构机主驱动高压密封系统,包括气垫仓、油气密封腔、压缩空气输入接口、第一正作用气动调节阀、第一反作用气动调节阀,其中:
所述压缩空气输入接口的进口用于连接气源,所述压缩空气输入接口的出口连接所述第一正作用气动调节阀的进口,所述第一正作用气动调节阀的出口连接所述第一反作用气动调节阀的进口和所述油气密封腔,所述第一反作用气动调节阀的出口连接排气管路;
所述第一正作用气动调节阀的正压力检测端和所述第一反作用气动调节阀的正压力检测端,均连接所述气垫仓;
所述第一正作用气动调节阀的负压力检测端和所述第一反作用气动调节阀的负压力检测端,均连接所述油气密封腔;
当所述气垫仓和所述油气密封腔之间的压力差大于或等于第一预设值 时,所述第一正作用气动调节阀打开,所述第一反作用气动调节阀处于关闭状态(“处于关闭状态”是指阀件此时关闭或提前已经关闭,下文同);
当所述气垫仓和所述油气密封腔之间的压力差小于或等于第二预设值时,所述第一反作用气动调节阀打开,所述第一正作用气动调节阀处于关闭状态。
优选地,在上述盾构机主驱动高压密封系统中,还包括变速箱、第二正作用气动调节阀、第二反作用气动调节阀,其中:
所述压缩空气输入接口的出口连接所述第二正作用气动调节阀的进口,所述第二正作用气动调节阀的出口连接所述第二反作用气动调节阀的进口和所述变速箱,所述第二反作用气动调节阀的出口连接所述排气管路;
所述第二正作用气动调节阀的正压力检测端和所述第二反作用气动调节阀的正压力检测端,均连接所述油气密封腔;
所述第二正作用气动调节阀的负压力检测端和所述第二反作用气动调节阀的负压力检测端,均连接所述变速箱;
当所述油气密封腔和所述变速箱之间的压力差大于或等于第三预设值时,所述第二正作用气动调节阀打开,所述第二反作用气动调节阀处于关闭状态;
当所述油气密封腔和所述变速箱之间的压力差小于或等于第四预设值时,所述第二反作用气动调节阀打开,所述第二正作用气动调节阀处于关闭状态。
优选地,在上述盾构机主驱动高压密封系统中,还包括泄露检测腔、第三正作用气动调节阀、第三反作用气动调节阀,其中:
所述第二正作用气动调节阀的出口连接所述第三正作用气动调节阀的进口,所述第三正作用气动调节阀的出口连接所述第三反作用气动调节阀的进口和所述泄露检测腔,所述第三反作用气动调节阀的出口连接所述排气管路;
所述第三正作用气动调节阀的正压力检测端和所述第三反作用气动调节阀的正压力检测端,均连接所述变速箱;
所述第三正作用气动调节阀的负压力检测端和所述第三反作用气动调节阀的负压力检测端,均连接所述泄露检测腔;
当所述变速箱和所述泄露检测腔之间的压力差大于或等于第五预设值时,所述第三正作用气动调节阀打开,所述第三反作用气动调节阀处于关闭状态;
当所述变速箱和所述泄露检测腔之间的压力差小于或等于第六预设值时,所述第三反作用气动调节阀打开,所述第三正作用气动调节阀处于关闭状态。
优选地,在上述盾构机主驱动高压密封系统中,所述第一反作用气动调节阀的出口处设置有第一止回阀;
和/或,所述第二反作用气动调节阀的出口处设置有第二止回阀;
和/或,所述第三反作用气动调节阀的出口处设置有第三止回阀。
优选地,在上述盾构机主驱动高压密封系统中,所述第一正作用气动调节阀的出口连接管路上还设置有第一安全阀和/或第一压力传感器;
和/或,所述第二正作用气动调节阀的出口连接管路上还设置有第二安全阀和/或第二压力传感器;
和/或,所述第三正作用气动调节阀的出口连接管路上还设置有第三安全阀和/或第三压力传感器。
优选地,在上述盾构机主驱动高压密封系统中,还包括与所述油气密封腔、所述变速箱、所述泄露检测腔连接的紧急泄压管路。
优选地,在上述盾构机主驱动高压密封系统中,所述油气密封腔与所述紧急泄压管路之间设置有第四止回阀;
和/或,所述变速箱与所述紧急泄压管路之间设置有第五止回阀;
和/或,所述泄露检测腔与所述紧急泄压管路之间设置有第六止回阀;
和/或,所述紧急泄压管路上设置有第一球阀;
和/或,所述紧急泄压管路上设置有第一消音器。
优选地,在上述盾构机主驱动高压密封系统中,所述排气管路上设置有第二消音器。
一种泥水平衡盾构机,设置有如上文中所述的盾构机主驱动高压密封系统。
优选地,在上述泥水平衡盾构机中,还包括:
用于检测齿轮油腔内液位的液位控制器;
和/或,用于实现变速箱排空的呼吸器;
和/或,设置在所述油气密封腔和齿轮油腔之间的油气密封罐,所述油气密封罐上设置有高限液位开关和/或低限液位开关。
从上述技术方案可以看出,本发明提供的盾构机主驱动高压密封系统和设置有该系统的泥水平衡盾构机,采用全气动控制,实现了气动闭环反馈、随动响应控制、高精度控制的目的,能够保证在洞内断电时,主驱动密封结构依然能够可靠可抵御外部土水压力,不仅安全可靠、减少人为干预、自动化程度高,而且从根本上提高了唇形密封理论承压能力。而且,该盾构机主驱动高压密封系统中,排气管路进行排气时,通过第一反作用气动调节阀实现自动化、压差式排气泄压,从而令系统响应更加灵敏、减小超调,有利于增加系统稳定性。此外,采用本发明提供的盾构机主驱动高压密封系统和设置有该系统的泥水平衡盾构机,能够保证泥水平衡盾构机在大埋深、高水压情况下,尤其是水压高于6bar时,主驱动依然密封可靠。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的盾构机主驱动高压密封系统的气路结构原理图;
图2为本发明实施例提供的盾构机主驱动密封结构示意图;
图3为本发明实施例提供的盾构机主驱动高压密封系统的结构示意图。
其中:
P1-油脂腔,P2-油气密封腔,P3-泄露检测腔,P4-变速箱,
1-空滤器,8-第一球阀,11-油气密封罐,12-液位控制器,13-呼吸器,
21-第一正作用气动调节阀,22-第二正作用气动调节阀,
23-第三正作用气动调节阀,
31-第一安全阀,32-第二安全阀,33-第三安全阀,
41-第一压力传感器,42-第二压力传感器,43-第三压力传感器,
51-第一反作用气动调节阀,52-第二反作用气动调节阀,
53-第三反作用气动调节阀,
61-第一止回阀,62-第二止回阀,63-第三止回阀,
71-第四止回阀,72-第五止回阀,73-第六止回阀,
91-第一消音器,92-第二消音器,
101-高限液位开关,102-低限液位开关。
具体实施方式
本发明公开了一种盾构机主驱动高压密封系统和一种设置有该系统的泥水平衡盾构机,实现了气动闭环反馈、随动响应控制,安全可靠、减少人为干预、自动化程度高,从根本上提高了唇形密封理论承压能力。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1至图3,图1为本发明实施例提供的盾构机主驱动高压密封系统的气路结构原理图,图2为本发明实施例提供的盾构机主驱动密封结构示意图,图3为本发明实施例提供的盾构机主驱动高压密封系统的结构示意图。
本发明实施例提供的盾构机主驱动高压密封系统,主要包括三个气路主路,分别是第一气路、第二气路、第三气路。
在具体实施例中,第一气路中包括气垫仓、油气密封腔P2、压缩空气输入接口、第一正作用气动调节阀21、第一反作用气动调节阀51,其中:
压缩空气输入接口的进口用于连接气源,压缩空气输入接口的出口连 接第一正作用气动调节阀21的进口,第一正作用气动调节阀21的出口连接第一反作用气动调节阀51的进口和油气密封腔P2,第一反作用气动调节阀51的出口连接排气管路;
第一正作用气动调节阀21的正压力检测端“+”和第一反作用气动调节阀51的正压力检测端“+”,均连接气垫仓;第一正作用气动调节阀21的负压力检测端“-”和第一反作用气动调节阀51的负压力检测端“-”,均连接油气密封腔P2。
具体地,当气垫仓和油气密封腔P2之间的压力差大于或等于第一预设值时,第一正作用气动调节阀21打开,第一反作用气动调节阀51处于关闭状态(“处于关闭状态”是指阀件此时关闭或提前已经关闭,下文同);当气垫仓和油气密封腔P2之间的压力差小于或等于第二预设值时,第一反作用气动调节阀51打开,第一正作用气动调节阀21处于关闭状态。
其中:
“第一预设值”根据第一正作用气动调节阀21中预设的最小打开值(即压力差达到或大于该值时第一正作用气动调节阀21开启并导通)、第一反作用气动调节阀51中预设的最小关闭值(即压力差达到或大于该值时第一反作用气动调节阀51关闭且不导通)来进行设置。优选地,第一预设值=第一正作用气动调节阀21的最小打开值≥第一反作用气动调节阀51的最小关闭值;
“第二预设值”根据第一正作用气动调节阀21中预设的最大关闭值(即压力差达到或小于该值时第一正作用气动调节阀21关闭且不导通)、第一反作用气动调节阀51中预设的最大打开值(即压力差达到或小于该值时第一反作用气动调节阀51开启并导通)来进行设置。优选地,第二预设值=第一反作用气动调节阀51的最大打开值≤第一正作用气动调节阀21的最大关闭值。
从而:
1)当气垫仓和油气密封腔P2之间的压力差升高,达到或超过第一预设值时,第一正作用气动调节阀21打开,第一反作用气动调节阀51处于关闭状态,此时,压缩空气经压缩空气输入接口、第一正作用气动调节阀21后充入油气密封腔P2(即油气密封罐11);
2)直到油气密封腔P2与油脂腔P1的压力之和可平衡外部水土压力,使主驱动密封可靠。优选地,此时,气垫仓和油气密封腔P2之间的压力差达到或小于第一正作用气动调节阀21中预设的一个中间值(小于第一预设值,且小于或等于油脂腔P1的额定压力值),第一正作用气动调节阀21关闭(或者,在其它具体实施例中,也可令第一正作用气动调节阀21处于较小输送量的打开状态,以起到补偿泄露的作用);
3)若气垫仓压力减小,则当气垫仓和油气密封腔P2之间的压力差小于或等于第二预设值时,第一反作用气动调节阀51打开,第一正作用气动调节阀21处于关闭状态,此时,油气密封腔P2内的压缩空气经第一反作用气动调节阀51进行排泄;
4)直到气垫仓与油气密封腔P2之间的压力差达到第一反作用气动调节阀51中预设的一个中间值(大于第二预设值),第一反作用气动调节阀51关闭。
在具体实施例中,上述盾构机主驱动高压密封系统中,用于产生压缩气体的气源来源于洞外空气压缩机。工作时,压缩气体通过空滤器1进行过滤后,进入上述盾构机主驱动高压密封系统中的压缩空气输入接口,进而进入盾构机主驱动高压密封系统中。
从上述技术方案可以看出,本发明实施例提供的盾构机主驱动高压密封系统,采用全气动控制,实现了气动闭环反馈、随动响应控制、高精度控制的目的,能够保证在洞内断电时,主驱动密封结构依然能够可靠可抵御外部土水压力,不仅安全可靠、减少人为干预、自动化程度高,而且从根本上提高了唇形密封理论承压能力。
而且,该盾构机主驱动高压密封系统中,排气管路进行排气时,通过第一反作用气动调节阀51实现自动化、压差式排气泄压,从而令系统响应更加灵敏、减小超调,有利于增加系统稳定性。
在具体实施例中,该盾构机主驱动高压密封系统,可用于泥水平衡盾构机,保证泥水平衡盾构机在大埋深、高水压情况下,尤其是水压高于6bar时,主驱动依然密封可靠。
在具体实施例中,上述盾构机主驱动高压密封系统中的第二气路中,包括油气密封腔P2、变速箱P4、第二正作用气动调节阀22、第二反作用 气动调节阀52,其中:
压缩空气输入接口的出口连接第二正作用气动调节阀22的进口,第二正作用气动调节阀22的出口连接第二反作用气动调节阀52的进口和变速箱P4,第二反作用气动调节阀52的出口连接排气管路;
第二正作用气动调节阀22的正压力检测端“+”和第二反作用气动调节阀52的正压力检测端“+”,均连接油气密封腔P2;第二正作用气动调节阀22的负压力检测端“-”和第二反作用气动调节阀52的负压力检测端“-”,均连接变速箱P4。
具体地,当油气密封腔P2和变速箱P4之间的压力差大于或等于第三预设值时,第二正作用气动调节阀22打开,第二反作用气动调节阀52处于关闭状态;当油气密封腔P2和变速箱P4之间的压力差小于或等于第四预设值时,第二反作用气动调节阀52打开,第二正作用气动调节阀22处于关闭状态。
其中:
“第三预设值”根据第二正作用气动调节阀22中预设的最小打开值(即压力差达到或大于该值时第二正作用气动调节阀22开启并导通)、第二反作用气动调节阀52中预设的最小关闭值(即压力差达到或大于该值时第二反作用气动调节阀52关闭且不导通)来进行设置。优选地,第三预设值=第二正作用气动调节阀22的最小打开值≥第二反作用气动调节阀52的最小关闭值;
“第四预设值”根据第二正作用气动调节阀22中预设的最大关闭值(即压力差达到或小于该值时第二正作用气动调节阀22关闭且不导通)、第二反作用气动调节阀52中预设的最大打开值(即压力差达到或小于该值时第二反作用气动调节阀52开启并导通)来进行设置。优选地,第四预设值=第二反作用气动调节阀52的最大打开值≤第二正作用气动调节阀22的最大关闭值。
从而:
1)为防止压力过高导致变速箱齿轮油泄漏,当油气密封腔P2和变速箱P4之间的压力差大于第三预设值时,第二正作用气动调节阀22打开,第二反作用气动调节阀52处于关闭状态,此时,压缩空气经压缩空气输入 接口、第二正作用气动调节阀22后充入变速箱P4,给变速箱充压;
2)直到油气密封腔P2和变速箱P4之间的压力差达到或小于第二正作用气动调节阀22中预设的一个中间值(小于第三预设值),此时,第二正作用气动调节阀22关闭(或者,在其它具体实施例中,也可令第二正作用气动调节阀22处于较小输送量的打开状态,以起到泄露补偿的作用);
3)当气垫仓压力减小,油气密封腔P2压力亦减小,即当油气密封腔P2和变速箱P4之间的压力差小于或等于第四预设值时,第二反作用气动调节阀52打开,第二正作用气动调节阀22处于关闭状态,此时,变速箱P4内的压缩空气经第二反作用气动调节阀52排泄;
4)直到油气密封腔P2与变速箱P4之间的压力差达到第二反作用气动调节阀52中预设的一个中间值(大于第四预设值),第二反作用气动调节阀52关闭。
在具体实施例中,上述盾构机主驱动高压密封系统中的第三气路中包括变速箱P4、泄露检测腔P3、第三正作用气动调节阀23、第三反作用气动调节阀53,其中:
第二正作用气动调节阀22的出口连接第三正作用气动调节阀23的进口,第三正作用气动调节阀23的出口连接第三反作用气动调节阀53的进口和泄露检测腔P3,第三反作用气动调节阀53的出口连接排气管路;
第三正作用气动调节阀23的正压力检测端“+”和第三反作用气动调节阀53的正压力检测端“+”,均连接变速箱P4;第三正作用气动调节阀23的负压力检测端“-”和第三反作用气动调节阀53的负压力检测端“-”,均连接泄露检测腔P3;
具体地,当变速箱P4和泄露检测腔P3之间的压力差大于或等于第五预设值时,第三正作用气动调节阀23打开,第三反作用气动调节阀53处于关闭状态;当变速箱P4和泄露检测腔P3之间的压力差小于或等于第六预设值时,第三反作用气动调节阀53打开,第三正作用气动调节阀23处于关闭状态。
其中:
“第五预设值”根据第三正作用气动调节阀23中预设的最小打开值(即压力差达到或大于该值时第三正作用气动调节阀23开启并导通)、第 三反作用气动调节阀53中预设的最小关闭值(即压力差达到或大于该值时第三反作用气动调节阀53关闭且不导通)来进行设置。优选地,第五预设值=第三正作用气动调节阀23的最小打开值≥第三反作用气动调节阀53的最小关闭值;
“第六预设值”根据第三正作用气动调节阀23中预设的最大关闭值(即压力差达到或小于该值时第三正作用气动调节阀23关闭且不导通)、第三反作用气动调节阀53中预设的最大打开值(即压力差达到或小于该值时第三反作用气动调节阀53开启并导通)来进行设置。优选地,第六预设值=第三反作用气动调节阀53的最大打开值≤第三正作用气动调节阀23的最大关闭值。
从而:
1)当变速箱P4和泄露检测腔P3之间的压力差大于或等于第五预设值时,第三正作用气动调节阀23打开,第三反作用气动调节阀53处于关闭状态,此时,压缩空气经压缩空气输入接口、第二正作用气动调节阀22、第三正作用气动调节阀23后充入泄露检测腔P3;
2)直到泄漏检测腔P3、油气密封腔P2与油脂腔P1的压力之和可平衡外部水压,使主驱动密封可靠。优选地,此时,变速箱P4和泄露检测腔P3之间的压力差达到或小于第三正作用气动调节阀23中预设的一个中间值(小于第五预设值),第三正作用气动调节阀23关闭(或者,在其它具体实施例中,也可令第三正作用气动调节阀23处于较小输送量的打开状态,以起到泄露补偿的作用);
3)当气垫仓压力减小,泄露检测腔P3压力亦减小,即当变速箱P4和泄露检测腔P3之间的压力差小于或等于第六预设值时,第三反作用气动调节阀53打开,第三正作用气动调节阀23处于关闭状态。此时,泄露检测腔P3内的压缩空气经第三反作用气动调节阀53进行排泄;
4)直到变速箱P4与泄露检测腔P3之间的压力差达到第三反作用气动调节阀53中预设的一个中间值(大于第六预设值),第三反作用气动调节阀53关闭。
为了进一步优化上述技术方案,如图1所示,上述盾构机主驱动高压密封系统中,为防止任一阀件损坏导致密封压力过高,还设置了与油气密 封腔P2、变速箱P4、泄露检测腔P3连接的紧急泄压管路。该紧急泄压管路上优选设置有第一球阀8和第一消音器91。当外部水压减小至主驱动单道密封承压范围之内时,打开第一球阀8,此时油气密封腔P2、泄漏检测腔P3及变速箱P4内的压缩空气分别经紧急泄压管路进行排空泄压。
在具体实施例中,如图1所示,上述盾构机主驱动高压密封系统中的排气管路上,设置有第二消音器92。第一消音器91和第二消音器92可以减少排气时的噪音污染。
为了进一步优化上述技术方案,在上述盾构机主驱动高压密封系统中,第一反作用气动调节阀51的出口处,设置有第一止回阀61;第二反作用气动调节阀52的出口处,设置有第二止回阀62;第三反作用气动调节阀53的出口处,设置有第三止回阀63。具体地,第一止回阀61、第二止回阀62和第三止回阀63并联后连接上述排气管路。
进一步地,在上述盾构机主驱动高压密封系统中,油气密封腔P2与紧急泄压管路之间,设置有第四止回阀71;变速箱P4与紧急泄压管路之间,设置有第五止回阀72;泄露检测腔P3与紧急泄压管路之间,设置有第六止回阀73。具体地,第四止回阀71、第五止回阀72和第六止回阀73并联后连接上述紧急泄压管路。
为了进一步优化上述技术方案,在上述盾构机主驱动高压密封系统中:
第一正作用气动调节阀21的出口处(即第一正作用气动调节阀21的出口连接管路上),还连接有第一安全阀31和第一压力传感器41,第一安全阀31可确保油气密封腔P2的压力在可控范围内,防止超压损坏密封,第一压力传感器41可实时采集油气密封腔P2的压力数据,便于分析、显示及保存;
第二正作用气动调节阀22的出口处(即第二正作用气动调节阀22的出口连接管路上),还连接有第二安全阀32和第二压力传感器42,第二安全阀32可确保变速箱P4的压力在可控范围内,防止超压损坏密封,第二压力传感器42可实时采集变速箱P4的压力数据,便于分析、显示及保存;
第三正作用气动调节阀23的出口处(即第三正作用气动调节阀23的出口连接管路上),还连接有第三安全阀33和第三压力传感器43,第三安全阀33可确保泄漏检测腔P3的压力在可控范围内,防止超压损坏密封, 第三压力传感器43可实时采集泄漏检测腔P3的压力数据,便于分析、显示及保存。
此外,本发明具体实施例还提供了一种泥水平衡盾构机,该泥水平衡盾构机设置有如上文中所述的盾构机主驱动高压密封系统。
具体地,如图3所示,上述泥水平衡盾构机中,还包括液位控制器12、呼吸器13、油气密封罐11。其中:
液位控制器12用于检测齿轮油腔内液位,可对其进行连锁保护,当液位低于要求低限值时,可触发停机信号;
呼吸器13用于实现变速箱P4的排空,防止憋压,进一步地,为防止高压阶段冲坏呼吸器13,还在呼吸器13与主驱动间加装第二球阀;
油气密封罐11设置在油气密封腔P2和齿轮油腔之间,油气密封罐11上设置有高限液位开关101和低限液位开关102,触发高限液位开关101时油气密封罐11必须放油,触发低限液位开关102时油气密封罐11必须加油。
综上可见,本发明实施例提供的盾构机主驱动高压密封系统和设置有该系统的泥水平衡盾构机,至少具有如下有益效果:
1)各调节阀之间逻辑互联,使系统安全可靠;
2)控制过程不需要人为参与,自动化程度高;
3)通过闭环反馈使得系统控制精度较高;
4)水压高于6bar时,主驱动依然密封可靠。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的 都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种盾构机主驱动高压密封系统,其特征在于,包括气垫仓、油气密封腔(P2)、压缩空气输入接口、第一正作用气动调节阀(21)、第一反作用气动调节阀(51),其中:
    所述压缩空气输入接口的进口用于连接气源,所述压缩空气输入接口的出口连接所述第一正作用气动调节阀(21)的进口,所述第一正作用气动调节阀(21)的出口连接所述第一反作用气动调节阀(51)的进口和所述油气密封腔(P2),所述第一反作用气动调节阀(51)的出口连接排气管路;
    所述第一正作用气动调节阀(21)的正压力检测端和所述第一反作用气动调节阀(51)的正压力检测端,均连接所述气垫仓;
    所述第一正作用气动调节阀(21)的负压力检测端和所述第一反作用气动调节阀(51)的负压力检测端,均连接所述油气密封腔(P2);
    当所述气垫仓和所述油气密封腔(P2)之间的压力差大于或等于第一预设值时,所述第一正作用气动调节阀(21)打开,所述第一反作用气动调节阀(51)处于关闭状态;
    当所述气垫仓和所述油气密封腔(P2)之间的压力差小于或等于第二预设值时,所述第一反作用气动调节阀51打开,所述第一正作用气动调节阀(21)处于关闭状态。
  2. 根据权利要求1所述的盾构机主驱动高压密封系统,其特征在于,还包括变速箱(P4)、第二正作用气动调节阀(22)、第二反作用气动调节阀(52),其中:
    所述压缩空气输入接口的出口连接所述第二正作用气动调节阀(22)的进口,所述第二正作用气动调节阀(22)的出口连接所述第二反作用气动调节阀(52)的进口和所述变速箱(P4),所述第二反作用气动调节阀(52)的出口连接所述排气管路;
    所述第二正作用气动调节阀(22)的正压力检测端和所述第二反作用气动调节阀(52)的正压力检测端,均连接所述油气密封腔(P2);
    所述第二正作用气动调节阀(22)的负压力检测端和所述第二反作用 气动调节阀(52)的负压力检测端,均连接所述变速箱(P4);
    当所述油气密封腔(P2)和所述变速箱(P4)之间的压力差大于或等于第三预设值时,所述第二正作用气动调节阀(22)打开,所述第二反作用气动调节阀(52)处于关闭状态;
    当所述油气密封腔(P2)和所述变速箱(P4)之间的压力差小于或等于第四预设值时,所述第二反作用气动调节阀(52)打开,所述第二正作用气动调节阀(22)处于关闭状态。
  3. 根据权利要求2所述的盾构机主驱动高压密封系统,其特征在于,还包括泄露检测腔(P3)、第三正作用气动调节阀(23)、第三反作用气动调节阀(53),其中:
    所述第二正作用气动调节阀(22)的出口连接所述第三正作用气动调节阀(23)的进口,所述第三正作用气动调节阀(23)的出口连接所述第三反作用气动调节阀(53)的进口和所述泄露检测腔(P3),所述第三反作用气动调节阀(53)的出口连接所述排气管路;
    所述第三正作用气动调节阀(23)的正压力检测端和所述第三反作用气动调节阀(53)的正压力检测端,均连接所述变速箱(P4);
    所述第三正作用气动调节阀(23)的负压力检测端和所述第三反作用气动调节阀(53)的负压力检测端,均连接所述泄露检测腔(P3);
    当所述变速箱(P4)和所述泄露检测腔(P3)之间的压力差大于或等于第五预设值时,所述第三正作用气动调节阀(23)打开,所述第三反作用气动调节阀(53)处于关闭状态;
    当所述变速箱(P4)和所述泄露检测腔(P3)之间的压力差小于或等于第六预设值时,所述第三反作用气动调节阀(53)打开,所述第三正作用气动调节阀(23)处于关闭状态。
  4. 根据权利要求3所述的盾构机主驱动高压密封系统,其特征在于,所述第一反作用气动调节阀(51)的出口处设置有第一止回阀(61);
    和/或,所述第二反作用气动调节阀(52)的出口处设置有第二止回阀(62);
    和/或,所述第三反作用气动调节阀(53)的出口处设置有第三止回阀(63)。
  5. 根据权利要求3所述的盾构机主驱动高压密封系统,其特征在于,所述第一正作用气动调节阀(21)的出口连接管路上还设置有第一安全阀(31)和/或第一压力传感器(41);
    和/或,所述第二正作用气动调节阀(22)的出口连接管路上还设置有第二安全阀(32)和/或第二压力传感器(42);
    和/或,所述第三正作用气动调节阀(23)的出口连接管路上还设置有第三安全阀(33)和/或第三压力传感器(43)。
  6. 根据权利要求3所述的盾构机主驱动高压密封系统,其特征在于,还包括与所述油气密封腔(P2)、所述变速箱(P4)、所述泄露检测腔(P3)连接的紧急泄压管路。
  7. 根据权利要求6所述的盾构机主驱动高压密封系统,其特征在于,所述油气密封腔(P2)与所述紧急泄压管路之间设置有第四止回阀(71);
    和/或,所述变速箱(P4)与所述紧急泄压管路之间设置有第五止回阀(72);
    和/或,所述泄露检测腔(P3)与所述紧急泄压管路之间设置有第六止回阀(73);
    和/或,所述紧急泄压管路上设置有第一球阀(8);
    和/或,所述紧急泄压管路上设置有第一消音器(91)。
  8. 根据权利要求1所述的盾构机主驱动高压密封系统,其特征在于,所述排气管路上设置有第二消音器(92)。
  9. 一种泥水平衡盾构机,其特征在于,设置有如权利要求1至8任一项所述的盾构机主驱动高压密封系统。
  10. 根据权利要求9所述的泥水平衡盾构机,其特征在于,还包括:
    用于检测齿轮油腔内液位的液位控制器(12);
    和/或,用于实现变速箱(P4)排空的呼吸器(13);
    和/或,设置在所述油气密封腔(P2)和齿轮油腔之间的油气密封罐(11),所述油气密封罐(11)上设置有高限液位开关(101)和/或低限液位开关(102)。
PCT/CN2018/124333 2018-09-17 2018-12-27 一种盾构机主驱动高压密封系统和一种泥水平衡盾构机 WO2020056993A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11202102595QA SG11202102595QA (en) 2018-09-17 2018-12-27 Main drive high-pressure sealing system for shield machine and slurry balance shield machine
EP18934351.0A EP3854990B1 (en) 2018-09-17 2018-12-27 Main drive high-pressure sealing system for shield machine and slurry balance shield machine
KR1020217010716A KR102528459B1 (ko) 2018-09-17 2018-12-27 쉴드 머신용 메인 드라이브 고압 실링 시스템 및 이수식 쉴드 머신

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811092816.6A CN108868793B (zh) 2018-09-17 2018-09-17 一种盾构机主驱动高压密封系统和一种泥水平衡盾构机
CN201811092816.6 2018-09-17

Publications (1)

Publication Number Publication Date
WO2020056993A1 true WO2020056993A1 (zh) 2020-03-26

Family

ID=64324448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124333 WO2020056993A1 (zh) 2018-09-17 2018-12-27 一种盾构机主驱动高压密封系统和一种泥水平衡盾构机

Country Status (5)

Country Link
EP (1) EP3854990B1 (zh)
KR (1) KR102528459B1 (zh)
CN (1) CN108868793B (zh)
SG (1) SG11202102595QA (zh)
WO (1) WO2020056993A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108868793A (zh) * 2018-09-17 2018-11-23 中国铁建重工集团有限公司 一种盾构机主驱动高压密封系统和一种泥水平衡盾构机
CN111811853A (zh) * 2020-06-30 2020-10-23 上海隧道工程有限公司 盾尾刷性能测试装置及其测试方法
CN113863943A (zh) * 2021-10-12 2021-12-31 中建八局轨道交通建设有限公司 泥水平衡盾构后配套拆解组装长时间停机的保压方法
CN114136677A (zh) * 2021-11-26 2022-03-04 中铁隧道局集团有限公司 一种泥水盾构设备的综合监测实验平台

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109297642A (zh) * 2018-12-03 2019-02-01 江苏凯宫隧道机械有限公司 用于测试盾构机主驱动密封性能的试验装置及试验方法
CN110217505B (zh) * 2019-06-21 2024-03-29 航天晨光股份有限公司 一种加油车高液位测试系统
CN110656940B (zh) * 2019-09-30 2021-03-02 中国铁建重工集团股份有限公司 一种竖井掘进机及其主驱动密封系统
CN111997635B (zh) * 2020-08-24 2022-03-04 中铁工程装备集团有限公司 一种盾构机迷宫背压结构、密封系统及其工作方法
CN114295279A (zh) * 2021-12-31 2022-04-08 中国铁建重工集团股份有限公司 一种气压检测装置及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280847A (zh) * 2007-12-24 2008-10-08 沈阳重型机械集团有限责任公司 全断面隧道掘进机主轴承多层密封结构
EP2725190A2 (de) * 2012-10-25 2014-04-30 Lessmann GmbH Vorrichtung zur Befestigung einer Abdichtbürste an einer Tunnelbohrmaschine
CN205533500U (zh) * 2016-01-29 2016-08-31 甘肃建投装备制造有限公司 一种盾构机hbw密封系统
CN207420573U (zh) * 2017-08-11 2018-05-29 中国铁建重工集团有限公司 一种用于泥水平衡盾构机的自动保压系统及盾构机
CN108868793A (zh) * 2018-09-17 2018-11-23 中国铁建重工集团有限公司 一种盾构机主驱动高压密封系统和一种泥水平衡盾构机
CN208702412U (zh) * 2018-09-17 2019-04-05 中国铁建重工集团有限公司 一种盾构机主驱动高压密封系统和一种泥水平衡盾构机

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202197A (ja) * 1986-02-27 1987-09-05 機動建設工業株式会社 圧気式シ−ルド掘進機
DE3741460C2 (de) * 1987-12-08 1995-06-22 Westfalia Becorit Ind Tech Schildvortriebseinrichtung mit einer Druckkammer zur Aufnahme eines Gaspolsters
JP2659615B2 (ja) * 1990-11-16 1997-09-30 株式会社フジタ 圧気式シールドにおけるロックドアの開閉方法および開閉装置
GB9503854D0 (en) * 1995-02-25 1995-04-19 Ultra Hydraulics Ltd Electrohydraulic proportional control valve assemblies
DK2702330T3 (da) * 2011-04-28 2019-07-08 3Eflow Ab Fremgangsmåde og væskehaneanordning til bevaring af temperaturen af en væske i et væskedistributionssystem
CN102322268B (zh) * 2011-08-30 2013-06-19 中国铁建重工集团有限公司 一种盾构机推进油缸保护装置
CN202325527U (zh) * 2011-12-09 2012-07-11 中铁隧道装备制造有限公司 泥水盾构泥浆输送装置
CN102733813A (zh) * 2012-06-29 2012-10-17 中铁隧道装备制造有限公司 敞口式盾构密封装置
DE102013203263A1 (de) * 2013-02-27 2014-08-28 Skf Lubrication Systems Germany Ag Vorrichtung zur Schmierstoffzufuhr zu einer Schmierstelle in einer Maschine
CN103644305B (zh) * 2013-12-06 2015-11-18 南车资阳机车有限公司 一种复合地层盾构机主密封的hbw油脂系统
CN105221159B (zh) * 2015-10-10 2017-05-24 银川英奥特自控有限公司 电气联合控制型盾构保压系统
CN106223964B (zh) * 2016-08-27 2018-03-30 中铁隧道集团有限公司 一种盾构机主轴承密封压力控制方法
CN107091096A (zh) * 2017-05-17 2017-08-25 中铁工程装备集团盾构制造有限公司 一种常压下土压平衡盾构机主驱动密封失效洞内更换方法
CN207049619U (zh) * 2017-08-15 2018-02-27 中铁工程装备集团有限公司 一种全气动压力补偿控制系统
CN110306996A (zh) * 2019-07-25 2019-10-08 中交天和机械设备制造有限公司 盾构机土压平衡的气压辅助装置
KR20220033323A (ko) * 2020-09-09 2022-03-16 이엠코리아주식회사 Tbm 조작 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280847A (zh) * 2007-12-24 2008-10-08 沈阳重型机械集团有限责任公司 全断面隧道掘进机主轴承多层密封结构
EP2725190A2 (de) * 2012-10-25 2014-04-30 Lessmann GmbH Vorrichtung zur Befestigung einer Abdichtbürste an einer Tunnelbohrmaschine
CN205533500U (zh) * 2016-01-29 2016-08-31 甘肃建投装备制造有限公司 一种盾构机hbw密封系统
CN207420573U (zh) * 2017-08-11 2018-05-29 中国铁建重工集团有限公司 一种用于泥水平衡盾构机的自动保压系统及盾构机
CN108868793A (zh) * 2018-09-17 2018-11-23 中国铁建重工集团有限公司 一种盾构机主驱动高压密封系统和一种泥水平衡盾构机
CN208702412U (zh) * 2018-09-17 2019-04-05 中国铁建重工集团有限公司 一种盾构机主驱动高压密封系统和一种泥水平衡盾构机

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108868793A (zh) * 2018-09-17 2018-11-23 中国铁建重工集团有限公司 一种盾构机主驱动高压密封系统和一种泥水平衡盾构机
CN108868793B (zh) * 2018-09-17 2023-09-01 中国铁建重工集团股份有限公司 一种盾构机主驱动高压密封系统和一种泥水平衡盾构机
CN111811853A (zh) * 2020-06-30 2020-10-23 上海隧道工程有限公司 盾尾刷性能测试装置及其测试方法
CN113863943A (zh) * 2021-10-12 2021-12-31 中建八局轨道交通建设有限公司 泥水平衡盾构后配套拆解组装长时间停机的保压方法
CN114136677A (zh) * 2021-11-26 2022-03-04 中铁隧道局集团有限公司 一种泥水盾构设备的综合监测实验平台
CN114136677B (zh) * 2021-11-26 2023-09-08 中铁隧道局集团有限公司 一种泥水盾构设备的综合监测实验平台

Also Published As

Publication number Publication date
KR20210056416A (ko) 2021-05-18
SG11202102595QA (en) 2021-04-29
EP3854990A4 (en) 2022-06-15
CN108868793A (zh) 2018-11-23
KR102528459B1 (ko) 2023-05-02
CN108868793B (zh) 2023-09-01
EP3854990A1 (en) 2021-07-28
EP3854990B1 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
WO2020056993A1 (zh) 一种盾构机主驱动高压密封系统和一种泥水平衡盾构机
CN102606842A (zh) 一种正向水锤防护装置
CN208688749U (zh) 一种大管径管道水压试验装置
CN105650479A (zh) 一种u型双向煤气水封装置
CN110715772A (zh) 一种盾构机主驱动密封测试系统及测试方法
CN208702412U (zh) 一种盾构机主驱动高压密封系统和一种泥水平衡盾构机
CN108088622A (zh) 一种用于大坝水下查漏的喷墨示踪设备
KR100839615B1 (ko) 환경오염 방지를 위한 상,하수관거시설의 누설검사장비
CN206221740U (zh) 直埋式进排气阀
CN112049936A (zh) 一种新型往复式压缩机隔距件防泄漏系统
CN204694428U (zh) 一种轴系艉轴管水压密封试验装置
RU2773342C1 (ru) Система уплотнения высокого давления главного привода проходческого щита и проходческий щит с гидропригрузом
CN214467022U (zh) 堵水囊及封堵导流装置
CN205579163U (zh) 一种u型双向煤气水封装置
CN107504315A (zh) 一种利用气压系统修复渗漏越江管道的施工方法
CN213209752U (zh) 一种供水管道耐压性测试装置
CN207554110U (zh) 一种用于易自燃煤层老空区的疏放水装置
CN106223964A (zh) 一种盾构机主轴承密封压力控制方法
CN201954055U (zh) 非对称水封逆止阀
CN209907520U (zh) 一种应用在排口的防倒灌系统
CN202484515U (zh) 一种正向水锤防护装置
CN220953777U (zh) 一种新型智能化柔性截流井装置
CN220668472U (zh) 一种三通膜片阀
CN215257073U (zh) 一种挖掘机专用平衡制动阀
CN211602330U (zh) 一种盾构机铰接密封试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010716

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018934351

Country of ref document: EP

Effective date: 20210419