WO2020056954A1 - 模块浸泡式冷却机构和变频器 - Google Patents

模块浸泡式冷却机构和变频器 Download PDF

Info

Publication number
WO2020056954A1
WO2020056954A1 PCT/CN2018/121913 CN2018121913W WO2020056954A1 WO 2020056954 A1 WO2020056954 A1 WO 2020056954A1 CN 2018121913 W CN2018121913 W CN 2018121913W WO 2020056954 A1 WO2020056954 A1 WO 2020056954A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
cold plate
cooling liquid
plate
cooling mechanism
Prior art date
Application number
PCT/CN2018/121913
Other languages
English (en)
French (fr)
Inventor
刘华
张治平
李宏波
周宇
周堂
华超
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020056954A1 publication Critical patent/WO2020056954A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20236Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures by immersion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant

Definitions

  • the present application relates to the field of module cooling, and in particular, to a module immersion cooling mechanism and a frequency converter.
  • the module is generally fan-heated by means of air cooling and cooling liquid cooling.
  • Air cooling refers to the use of fans or other devices capable of generating flowing wind to accelerate the flow of air around the module to improve heat dissipation.
  • Cooling liquid cooling means that the heat in the module is transferred to the cooling liquid such as water or coolant through the heat exchange plate to achieve the effect of heat dissipation.
  • the general method of cooling liquid cooling is low in heat exchange efficiency, resulting in a short service life of the module.
  • a module immersion type cooling mechanism includes a module and a cold plate, the cold plate is provided with a cavity for containing a cooling liquid, the module is partially embedded in the cold plate, and the module can be immersed in the cold plate In the cooling liquid in the cold plate.
  • the above solution provides a module immersion cooling mechanism.
  • the module is partially embedded in the cavity of the cold plate, so that the module can be partially immersed in the cooling liquid in the cavity, thereby expanding the module.
  • the area of heat dissipation improves the heat exchange efficiency, thereby extending the service life of the module.
  • the cold plate is provided with a mounting port, and the module is embedded in the cold plate through the mounting port.
  • a base plate is provided between the module and the cold plate, and a portion of the base plate corresponding to the mounting port is bent away from the module and extends into the cold plate. And can be immersed in the cooling liquid in the cold plate, the bent portion of the substrate forms a groove matching the module on a side close to the module.
  • a portion of the substrate located on the periphery of the mounting opening and connected to a side wall at the opening of the groove is an epitaxial portion, and the epitaxial portion overlaps the cold plate. And sealed with the cold plate.
  • a portion of the cold plate on which the module is embedded is bent inward to form a recess matching the module, and the module is installed in the recess.
  • a fin is provided in the cavity, a part of the module embedded in the cold plate is a heat dissipation part, and the fin is connected to the heat dissipation part.
  • modules there are multiple modules and multiple mounting ports. Multiple modules are arranged according to the circuit design. Multiple mounting ports are arranged according to the arrangement of multiple modules. Modules are set up one-to-one.
  • multiple modules there are multiple modules and multiple notches, multiple modules are arranged according to the circuit design, multiple notches are arranged according to the arrangement of multiple modules, and the notches and the Modules are set up one-to-one.
  • the cold plate is provided with a coolant inlet and a coolant outlet that are both in communication with the cavity, and the cold plate includes an upper plate and a lower plate that are relatively spaced apart, and the upper plate A side plate is provided between the lower plate and the lower plate to form the cavity.
  • the module is embedded into the cold plate through the upper plate, and the cooling liquid inlet and the cooling liquid outlet are in contact with the upper plate. The distance between them is less than the depth that the module is embedded in the cold plate.
  • the cooling liquid inlet and the cooling liquid outlet are respectively located on two sides of the module.
  • An inverter includes the above-mentioned module immersion cooling mechanism.
  • the above solution provides a frequency converter, which mainly adopts the module immersion cooling mechanism described in any of the above embodiments, so that the heat dissipation area of the module is increased, thereby improving the heat exchange efficiency of the manuscript, thereby extending the service life.
  • Figure 1 is a schematic diagram of the original module cooling structure
  • FIG. 2 is a schematic structural diagram of a module immersion cooling mechanism according to the embodiment
  • FIG. 3 is a schematic structural diagram of a module immersion cooling mechanism provided with fins according to the embodiment.
  • Fig. 4 is a sectional view taken along the line A-A in Fig. 3.
  • module immersion cooling mechanism 11, module, 111, heat sink, 12, cold plate, 121, cavity, 122, installation port, 123, coolant inlet, 124, coolant outlet, 125, upper board , 126, lower plate, 127, side plate, 13, substrate, 131, groove, 132, epitaxial part, 133, heat conducting part, 14, fins, 20, condenser tube, 30, cooling liquid.
  • a module immersion cooling mechanism 10 which includes a module 11 and a cold plate 12.
  • the cold plate 12 is provided with a cavity 121 for containing a cooling liquid 30.
  • 11 is partially embedded in the cold plate 12, and the module 11 can be immersed in the cooling liquid 30 in the cold plate 12.
  • the above solution provides a module immersion cooling mechanism 10, mainly by partially embedding the module 11 into the cavity 121 of the cold plate 12, so that the module 11 can be partially immersed in the cavity 121 for cooling In the liquid 30, the heat dissipation area of the module 11 is enlarged, the heat exchange efficiency is improved, and the service life of the module 11 is prolonged.
  • the general module 11 is in contact with the cold plate 12 through the base plate 13, and a plurality of condensation pipes 20 passing through the cooling liquid 30 are installed in the cold plate 12.
  • the heat generated by the module 11 needs to be transmitted to the cooling liquid 30 after passing through the base plate 13, the cold plate 12, and the condensing pipe 20, and there is more intermediate medium, and the contact area between the condensing pipe 20 and the cold plate 12 is small, so that heat exchange Poor efficiency.
  • the module 11 in this solution can be partially immersed in the cooling liquid 30.
  • the contact heat dissipation area is large, and on the other hand, the intermediate conductive medium is small, which improves the heat exchange efficiency as a whole.
  • the module 11 is embedded in the cold plate 12 so that the module 11 can be immersed in the cooling liquid 30.
  • a mounting port 122 matching the module 11 may be provided on the cold plate 12, and the module 11 is embedded in the cold plate 12 through the mounting port 122.
  • a recess corresponding to the module 11 may be formed by bending the position of the cold plate 12 corresponding to the module 11 inward, and the module 11 is installed in the recess, thereby The area where the module 11 can dissipate heat is large.
  • the cold plate 12 is provided with a mounting port 122, the module 11 is embedded in the cold plate 12 through the mounting port 122, and the The module 11 and the cold plate 12 are sealed at the mounting port 122.
  • the mounting port 122 is directly provided on the cold plate 12, and then the module 11 is embedded in the cold plate 12 through the mounting port 122, so that the module 11 can be partially immersed in the cooling liquid 30. In order to achieve the heat dissipation process of a larger contact area. In addition, the module 11 and the cold plate 12 are sealed at the mounting port 122, which effectively prevents the cooling liquid 30 from overflowing from the mounting port 122.
  • a base plate 13 is provided between the module 11 and the cold plate 12, and a portion of the base plate 13 corresponding to the mounting port 122 faces away from the base plate 13.
  • the direction of the module 11 is bent, extends into the cold plate 12, and can be immersed in the cooling liquid 30 in the cold plate 12, and the bent portion of the substrate 13 is formed on a side close to the module 11.
  • the groove 131 is matched with the module 11.
  • the substrate 13 By arranging the substrate 13 between the module 11 and the cold plate 12, while ensuring a large heat dissipation area with the cooling liquid 30, avoiding contact between the module 11 and the cooling liquid 30, Said module 11 plays a protective role. Specifically, the bending protrusion of the substrate 13 is located in the cavity 121 of the cold plate 12. When the cooling plate 30 contains the cooling liquid 30, the heat generated by the module 11 installed in the groove 131 passes through the substrate 13. A portion protruding in the cavity 121 diffuses into the cooling liquid 30. The module 11 does not need to be in direct contact with the cooling liquid 30, and can also realize a heat dissipation process with a large heat exchange area.
  • a portion of the substrate 13 located on the periphery of the mounting port 122 and connected to a sidewall of the opening of the groove 131 is an epitaxial portion 132.
  • the extension portion 132 is overlapped on the cold plate 12 and sealed with the cold plate 12.
  • the extension portion 132 of the substrate 13 realizes the support of the module 11 on the cold plate 12 on the one hand, and seals between the extension portion 132 and the cold plate 12 on the other hand, thereby preventing the cooling liquid 30 from overflowing and improving Performance of the module immersion cooling mechanism 10.
  • the epitaxial portion 132 may be a plate that surrounds the opening of the groove 131, or may be a plurality of lugs suspended at the opening of the groove 131.
  • a plate that is open around the groove 131 is used. In this way, the sealing effect between the epitaxial portion 132 and the cold plate 12 is better.
  • a portion of the cold plate 12 for the module 11 to be embedded is bent inward to form a recess matching the module 11, and the module 11 is installed in the recess. .
  • the module 11 is directly placed in the recess during use, and the heat generated in the module 11 is Diffusion into the cooling liquid 30 through the side walls and the bottom wall of the notch.
  • the cavity 121 is provided with a fin 14, and a part of the module 11 embedded in the cold plate 12 is a heat radiation portion 111.
  • the fin 14 is connected to the heat radiation portion 111.
  • the plurality of fins 14 there are a plurality of fins 14, an end surface of the fins 14 away from the heat radiation portion 111 abuts the cold plate 12, and the plurality of fins 14 surround a labyrinth structure, and A diversion passage is formed in the cavity 121.
  • the end surfaces of the plurality of fins 14 away from the heat radiation portion 111 are in contact with the cold plate 12, so that the plurality of fins 14 surrounding a labyrinth structure form a flow guide path in the cavity 121, on the one hand, the heat exchange is further increased.
  • the area causes the cooling liquid 30 to form a turbulent flow in the diversion channel, further improving the heat exchange effect.
  • the fins 14 may be located on the side and / or the bottom surface of the corresponding component.
  • a portion of the substrate 13 extending into the cold plate is a heat conducting portion 133, and the fin 14 is connected to the heat conducting portion 133.
  • the heat generated by the module 11 is directly diffused into the cooling liquid 30 through the heat conducting portion 133, and on the other hand, is diffused into the cooling liquid 30 through the fins 14 connected to the heat conducting portion 133.
  • the fins 14 lead to an increase in the heat transfer medium, based on the good heat transfer performance of the fins 14, the heat transfer effect is increased by increasing the heat transfer area.
  • the generated turbulence further improves the heat absorption efficiency of the cooling liquid 30 during the heat exchange process.
  • the fin 14 is connected to a part of the cold plate forming the notch.
  • the multiple modules 11 are arranged according to the circuit design, and the multiple mounting ports 122 are arranged according to the arrangement of the multiple modules 11.
  • the mounting ports 122 are arranged one-to-one corresponding to the modules 11.
  • multiple modules 11 are connected according to a certain circuit design, and multiple mounting ports 122 are arranged according to the arrangement of the multiple modules 11 so that each module 11 can be placed in the corresponding mounting port 122.
  • the heat dissipation process of each module 11 is realized by immersion, which improves the heat exchange efficiency.
  • the multiple modules 11 there are multiple modules 11 and multiple notches.
  • the multiple modules 11 are arranged according to the circuit design.
  • the multiple notches are arranged according to the arrangement of the multiple modules 11.
  • the notches are provided in a one-to-one correspondence with the modules 11.
  • the plurality of modules 11 arranged according to the circuit design can realize the heat dissipation process by immersion, and improve heat exchange. effectiveness.
  • the immersion described herein does not refer to the heat dissipation method of the module 11 directly immersed in the cooling liquid 30, but also refers to the indirect implementation of the module 11 through the groove 131 on the substrate 13 or the notch on the cold plate 12 described in the previous scheme.
  • the heat dissipation method soaked in the cooling liquid 30 is mainly reflected in an increase in the area that the module 11 can directly or indirectly exchange heat with the cooling liquid 30.
  • the module 11 is embedded in the cold plate 12 so that the area where the module 11 can achieve heat exchange with the cooling liquid 30 is increased.
  • the cooling liquid 30 in the hollow structure of the cold plate 12 may be directly completely enclosed in the hollow structure, or as shown in FIG. 1, the cooling liquid 30 may be continuously embedded through the flow method.
  • the location of the module 11 takes away the heat in the module 11.
  • the cooling liquid 30 described herein may be water, a refrigerant, or the like, which is not specifically limited herein.
  • the cold plate 12 is provided with a cooling liquid introduction port 123 and a cooling liquid introduction port 124 both of which communicate with the cavity 121.
  • the cold plate 12 The upper plate 125 and the lower plate 126 are relatively spaced apart.
  • a side plate 127 is provided between the upper plate 125 and the lower plate 126 to form the cavity 121.
  • the module 11 is embedded in the cold plate through the upper plate 125. In 12, the distances between the cooling liquid inlet 123 and the cooling liquid outlet 124 and the upper plate 125 are smaller than the depth of the module 11 embedded in the cold plate 12.
  • the cooling liquid 30 enters the cavity 121 through the cooling liquid introduction port 123, and flows out from the cooling liquid outlet 124 after heat exchange with the module 11 to take away the heat generated by the module 11 .
  • the distances between the coolant introduction port 123 and the coolant introduction port 124 and the upper plate 125 are smaller than the depth in which the module 11 is embedded in the cold plate 12, so that it enters the cold plate 12
  • the cooling liquid 30 in the medium has a sufficiently high water level, so that the module 11 can be immersed therein to realize a large-area heat dissipation process.
  • the cooling liquid inlet 123 and the cooling liquid outlet 124 may be disposed on the upper plate 125, so that the cooling liquid 30 in the cold plate 12 can reach the highest water level.
  • the cooling liquid inlet 123 and the cooling liquid outlet 124 are located on two sides of the module 11, respectively.
  • the cooling liquid introduction port 123 and the cooling liquid introduction port 124 are respectively provided on both sides of the module 11, so that the cooling liquid 30 flowing in from the cooling liquid introduction port 123 can effectively pass through the module 11 and be taken away.
  • the heat generated by the module 11 ensures that the heat dissipation process is effectively performed.
  • a frequency converter includes the above-mentioned module immersion cooling mechanism 10.
  • the above solution provides a frequency converter, which mainly adopts the module immersion cooling mechanism 10 described in any of the above embodiments to increase the heat dissipation area of the module 11 so as to improve the heat exchange efficiency and extend the service life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请涉及一种模块浸泡式冷却机构和变频器,其中所述模块浸泡式冷却机构包括模块和冷板,所述冷板设有用于盛装冷却液体的腔体,所述模块部分嵌设在所述冷板中,且所述模块能够浸泡在所述冷板中的冷却液体中。通过将所述模块部分嵌设到所述冷板的腔体中,使得模块能够部分浸泡在所述腔体中的冷却液体中,从而扩大模块散热的面积,提高换热效率,进而延长模块的使用寿命。

Description

模块浸泡式冷却机构和变频器
相关申请
本申请要求2018年09月18日申请的,申请号为201811091704.9,名称为“模块浸泡式冷却机构和变频器”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及模块冷却领域,特别是涉及一种模块浸泡式冷却机构和变频器。
背景技术
随着科技的发展,电子元器件的集成化层度越来越高,通常将能够实现一定功能的电子元器件集成在一起,形成模块。封装在模块中的电子元器件在工作的过程中将产生热量,如果热量无法得到较好的释放,则会影响模块中电子元器件的正常使用。
基于此,一般通过风冷却和冷却液体冷却的方式对模块进行扇热。风冷却是指采用风扇或其他能够产生流动风的器件加速模块周围空气的流动,以提高散热效果。冷却液体冷却是指,通过换热板将模块中的热量传递到水或冷却剂等冷却液体中,以达到散热的效果。但是一般的采用冷却液体冷却的方法换热效率较低,导致模块的使用寿命较短。
发明内容
基于此,有必要提供一种模块浸泡式冷却机构和变频器,以提高换热效率,从而延长模块的使用寿命。
一种模块浸泡式冷却机构,包括模块和冷板,所述冷板设有用于盛装冷却液体的腔体,所述模块部分嵌设在所述冷板中,且所述模块能够浸泡在所述冷板中的冷却液体中。
上述方案提供了一种模块浸泡式冷却机构,主要通过将所述模块部分嵌设到所述冷板的腔体中,使得模块能够部分浸泡在所述腔体中的冷却液体中,从而扩大模块散热的面积,提高换热效率,进而延长模块的使用寿命。
在其中一个实施例中,所述冷板上设有安装口,所述模块通过所述安装口嵌设在所述冷板中。
在其中一个实施例中,所述模块与所述冷板之间设有基板,所述基板上与所述安装口对应的部分向远离所述模块的方向弯折,延伸到所述冷板中,且能够浸泡到所述冷板中的 冷却液体中,所述基板弯折的部分在靠近所述模块的一侧形成与所述模块匹配的凹槽。
在其中一个实施例中,所述基板上位于所述安装口的外围,且与所述凹槽的开口处的侧壁连接的部分为外延部,所述外延部搭接在所述冷板上,且与所述冷板之间密封。
在其中一个实施例中,所述冷板上供所述模块嵌设的部分向内弯折,形成与所述模块匹配的凹口,所述模块安装在所述凹口中。
在其中一个实施例中,所述腔体内设有翅片,所述模块嵌入冷板中的部分为散热部,所述翅片与所述散热部连接。
在其中一个实施例中,所述翅片为多个,所述翅片远离散热部的端面与所述冷板抵接,且多个翅片围成迷宫结构,且在所述腔体内形成导流通路。
在其中一个实施例中,所述模块为多个,所述安装口为多个,多个模块按照电路设计布置,多个安装口按照多个模块的布置形式设置,所述安装口与所述模块一一对应设置。
在其中一个实施例中,所述模块为多个,所述凹口为多个,多个模块按照电路设计布置,多个凹口按照多个模块的布置形式设置,所述凹口与所述模块一一对应设置。
在其中一个实施例中,所述冷板上设有均与所述腔体导通的冷却液导入口和冷却液导出口,所述冷板包括相对间隔设置的上层板和下层板,上层板和下层板之间设有侧板,形成所述腔体,所述模块通过所述上层板嵌设到冷板中,所述冷却液导入口和所述冷却液导出口与所述上层板之间的距离均小于所述模块嵌入所述冷板中的深度。
在其中一个实施例中,所述冷却液导入口和所述冷却液导出口分别位于所述模块的两侧。
一种变频器,包括上述的模块浸泡式冷却机构。
上述方案提供了一种变频器,主要通过采用上述任一实施例中所述模块浸泡式冷却机构,使得模块的散热面积增大,从而提稿换热效率,进而延长使用寿命。
附图说明
图1为原来模块冷却结构的示意图;
图2为本实施例所述模块浸泡式冷却机构的结构示意图;
图3为本实施例所述设有翅片的模块浸泡式冷却机构的结构示意图;
图4为图3中A-A向的剖视图。
附图标记说明:
10、模块浸泡式冷却机构,11、模块,111、散热部,12、冷板,121、腔体,122、安装口,123、冷却液导入口,124、冷却液导出口,125、上层板,126、下层板,127、侧 板,13、基板,131、凹槽,132、外延部,133、导热部,14、翅片,20、冷凝管,30、冷却液体。
具体实施方式
如图2所示,在一个实施例中提供了一种模块浸泡式冷却机构10,包括模块11和冷板12,所述冷板12设有用于盛装冷却液体30的腔体121,所述模块11部分嵌设在所述冷板12中,且所述模块11能够浸泡在所述冷板12中的冷却液体30中。
上述方案提供了一种模块浸泡式冷却机构10,主要通过将所述模块11部分嵌设到所述冷板12的腔体121中,使得模块11能够部分浸泡在所述腔体121中的冷却液体30中,从而扩大模块11散热的面积,提高换热效率,进而延长模块11的使用寿命。
如图1所示,一般模块11通过基板13与冷板12接触,在冷板12内安装多根通有冷却液体30的冷凝管20。模块11产生的热量需要通过基板13、冷板12和冷凝管20之后才传导到冷却液体30中,中间介质较多,且冷凝管20与冷板12之间的接触面积较小,从而换热效率较差。而如图2所示,本方案中所述模块11能够部分浸泡在冷却液体30中,一方面接触散热面积较大,另一方面中间传导介质较少,整体上提高了换热效率。
上述方案中所述模块11嵌设在所述冷板12中,以使得模块11能够浸泡在冷却液体30中。具体的,可以通过在所述冷板12上设置与所述模块11匹配的安装口122,模块11通过安装口122嵌设在所述冷板12中。可选地,也可以通过将所述冷板12上与所述模块11对应的位置向内弯折,形成与所述模块11匹配的凹口,所述模块11安装在所述凹口中,从而使得所述模块11能够散热的面积较大。
进一步地,在一个实施例中,如图2所示,所述冷板12上设有安装口122,所述模块11通过所述安装口122嵌设在所述冷板12中,且所述模块11与所述冷板12在所述安装口122处密封。
直接在所述冷板12上设置所述安装口122,然后将所述模块11通过所述安装口122嵌设在所述冷板12中,使得所述模块11能够部分浸泡在冷却液体30中,以实现较大接触面积的散热过程。而且所述模块11与所述冷板12在所述安装口122密封,有效避免了冷却液体30从所述安装口122溢出的情况发生。
进一步地,在一个实施例中,如图2所示,所述模块11与所述冷板12之间设有基板13,所述基板13上与所述安装口122对应的部分向远离所述模块11的方向弯折,延伸到所述冷板12中,且能够浸泡到所述冷板12中的冷却液体30中,所述基板13弯折的部分在靠近所述模块11的一侧形成与所述模块11匹配的凹槽131。
通过在所述模块11与所述冷板12之间设置所述基板13,在保障与冷却液体30之间能够具有较大散热面积的同时,避免模块11与冷却液体30之间接触,对所述模块11起到保护作用。具体地,所述基板13弯折突处在冷板12的腔体121内,当冷板12中盛装有冷却液体30时,安装在凹槽131中的模块11产生的热量通过所述基板13突出在腔体121中的部分扩散到冷却液体30中。模块11无需直接与所述冷却液体30接触,也能够实现较大换热面积的散热过程。
进一步地,在一个实施例中,如图2所示,所述基板13上位于所述安装口122的外围,且与所述凹槽131的开口处的侧壁连接的部分为外延部132,所述外延部132搭接在所述冷板12上,且与所述冷板12之间密封。
所述基板13的外延部132一方面实现了所述模块11在所述冷板12上的支撑,另一方面外延部132与冷板12之间密封,从而避免了冷却液体30溢出,提高了所述模块浸泡式冷却机构10的使用性能。
具体地,所述外延部132可以是围绕所述凹槽131开口一圈的板材,也可以是悬设在所述凹槽131的开口处的多个凸耳。可选地,采用围绕所述凹槽131开口一圈的板材,如此,外延部132与冷板12之间的密封效果更佳。
进一步地,在一个实施例中,所述冷板12上供所述模块11嵌设的部分向内弯折,形成与所述模块11匹配的凹口,所述模块11安装在所述凹口中。通过直接将所述冷板12上与所述模块11对应的位置向内弯折形成与所述模块11匹配的凹口,使用过程中直接将模块11放置在凹口中,模块11中产生的热量通过所述凹口的侧壁和底壁扩散到冷却液体30中。
进一步地,如图3和图4所示,在一个实施例中,所述腔体121内设有翅片14,所述模块11嵌入冷板12中的部分为散热部111,所述翅片14与所述散热部111连接。通过在所述腔体121内设置所述翅片14,使得所述模块11产生的热量能够通过所述翅片14扩散到所述腔体121中的冷却液体30中,进一步增加了散热面积,提高了换热效果。
进一步地,在一个实施例中,所述翅片14为多个,所述翅片14远离散热部111的端面与所述冷板12抵接,且多个翅片14围成迷宫结构,且在所述腔体121内形成导流通路。
多个翅片14远离散热部111的端面与所述冷板12抵接,使得围成迷宫结构的多个翅片14在所述腔体121内形成导流通路,一方面进一步增加了换热面积,另一方面使得冷却液体30在所述导流通道内形成扰流,进一步提升换热效果。
且进一步地,当所述模块11通过所述凹槽131或凹口浸泡到冷却液体30中时,所述翅片14与形成所述凹槽131的基板13或形成所述凹口的冷板12连接。且具体地,所述 翅片14可以位于对应部件的侧面和/或底面。
如图3和图4所示,在一个实施例中,所述基板13上延伸到所述冷板中的部分为导热部133,所述翅片14与所述导热部133连接。所述模块11产生的热量一方面通过所述导热部133直接扩散到冷却液体30中,另一方面通过与所述导热部133连接的翅片14扩散到冷却液体30中。虽然翅片14导致导热介质增加,但是基于翅片14的良好导热性能,其增加导热面积而提升的换热效果更加明显。且当多个翅片14围成迷宫型,形成导流通道时,产生的扰流进一步提高了冷却液体30在换热过程中的吸热效率。
同理,当所述模块11通过凹口浸泡到冷却液体中时,所述翅片14与所述冷板上形成所述凹口的部分连接。
进一步地,在一个实施例中,所述模块11为多个,所述安装口122为多个,多个模块11按照电路设计布置,多个安装口122按照多个模块11的布置形式设置,所述安装口122与所述模块11一一对应设置。
在实际使用过程中,多个模块11之间按照一定的电路设计连接,而多个安装口122按照多个模块11的布置形式设置,使得各个模块11均能够放置到对应的安装口122中,各个模块11的散热过程均以浸泡的方式实现,提高了换热效率。
进一步地,在一个实施例中,所述模块11为多个,所述凹口为多个,多个模块11按照电路设计布置,多个凹口按照多个模块11的布置形式设置,所述凹口与所述模块11一一对应设置。
与上述多个安装口122的设置类似,通过将多个凹口安装多个模块11的布置形式设置,使得按照电路设计布置的多个模块11均能够通过浸泡的方式实现散热过程,提高换热效率。
本文中所述的浸泡并非单指模块11直接浸泡到冷却液体30的散热方式,也指前述方案中所述通过基板13上的凹槽131或者冷板12上的凹口,间接的实现模块11在冷却液体30中浸泡的散热方式,主要体现在所述模块11能够与冷却液体30之间直接或间接换热的面积增大。
上述方案中所述模块11通过嵌设在所述冷板12中,使得模块11能够与冷却液体30实现热交换的面积增大。而具体的,所述冷板12的中空结构中的冷却液体30,可以直接完全封装在所述中空结构中,也可以如图1所示,采用流动的方式,使得冷却液体30不断经过嵌设有所述模块11的位置,带走所述模块11中的热量。本文中所述冷却液体30可以是水,也可以是制冷剂等,在这里不做具体限制。
进一步地,在一个实施例中,如图2所示,所述冷板12上设有均与所述腔体121导 通的冷却液导入口123和冷却液导出口124,所述冷板12包括相对间隔设置的上层板125和下层板126,上层板125和下层板126之间设有侧板127,形成所述腔体121,所述模块11通过所述上层板125嵌设到冷板12中,所述冷却液导入口123和所述冷却液导出口124与所述上层板125之间的距离均小于所述模块11嵌入所述冷板12中的深度。
使用过程中冷却液体30通过所述冷却液导入口123进入腔体121中,经过与所述模块11之间换热后从所述冷却液体导出口124流出,带走所述模块11产生的热量。而且,所述冷却液导入口123和所述冷却液导出口124与所述上层板125之间的距离均小于所述模块11嵌入所述冷板12中的深度,使得进入所述冷板12中的冷却液体30具有足够高的水位,能够将所述模块11浸泡在其中,实现较大面积的散热过程。
具体地,所述冷却液导入口123和冷却液导出口124可以设置在所述上层板125上,如此能够使得冷板12中冷却液体30达到最高水位。
进一步地,在一个实施例中,如图2所示,所述冷却液导入口123和所述冷却液导出口124分别位于所述模块11的两侧。通过将所述冷却液导入口123和冷却液导出口124分别设置在所述模块11的两侧,使得从所述冷却液导入口123流入的冷却液体30能够有效经过所述模块11,带走所述模块11产生的热量,确保散热过程的有效进行。
一种变频器,包括上述的模块浸泡式冷却机构10。
上述方案提供了一种变频器,主要通过采用上述任一实施例中所述模块浸泡式冷却机构10,使得模块11的散热面积增大,从而提稿换热效率,进而延长使用寿命。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种模块浸泡式冷却机构,其特征在于,包括模块和冷板,所述冷板设有用于盛装冷却液体的腔体,所述模块部分嵌设在所述冷板中,且所述模块能够浸泡在所述冷板中的冷却液体中。
  2. 根据权利要求1所述的模块浸泡式冷却机构,其特征在于,所述冷板上设有安装口,所述模块通过所述安装口嵌设在所述冷板中。
  3. 根据权利要求2所述的模块浸泡式冷却机构,其特征在于,所述模块与所述冷板之间设有基板,所述基板上与所述安装口对应的部分向远离所述模块的方向弯折,延伸到所述冷板中,且能够浸泡到所述冷板中的冷却液体中,所述基板弯折的部分在靠近所述模块的一侧形成与所述模块匹配的凹槽。
  4. 根据权利要求3所述的模块浸泡式冷却机构,其特征在于,所述基板上位于所述安装口的外围,且与所述凹槽的开口处的侧壁连接的部分为外延部,所述外延部搭接在所述冷板上,且与所述冷板之间密封。
  5. 根据权利要求1所述的模块浸泡式冷却机构,其特征在于,所述冷板上供所述模块嵌设的部分向内弯折,形成与所述模块匹配的凹口,所述模块安装在所述凹口中。
  6. 根据权利要求1所述的模块浸泡式冷却机构,其特征在于,所述腔体内设有翅片,所述模块嵌入冷板中的部分为散热部,所述翅片与所述散热部连接。
  7. 根据权利要求6所述的模块浸泡式冷却机构,其特征在于,所述翅片为多个,所述翅片远离散热部的端面与所述冷板抵接,且多个翅片围成迷宫结构,且在所述腔体内形成导流通路。
  8. 根据权利要求2至4任一项所述的模块浸泡式冷却机构,其特征在于,所述模块为多个,所述安装口为多个,多个模块按照电路设计布置,多个安装口按照多个模块的布置形式设置,所述安装口与所述模块一一对应设置。
  9. 根据权利要求5所述的模块浸泡式冷却机构,其特征在于,所述模块为多个,所述凹口为多个,多个模块按照电路设计布置,多个凹口按照多个模块的布置形式设置,所述凹口与所述模块一一对应设置。
  10. 根据权利要求1至5任一项所述的模块浸泡式冷却机构,其特征在于,所述冷板上设有均与所述腔体导通的冷却液导入口和冷却液导出口,所述冷板包括相对间隔设置的上层板和下层板,上层板和下层板之间设有侧板,形成所述腔体,所述模块通过所述上层 板嵌设到冷板中,所述冷却液导入口和所述冷却液导出口与所述上层板之间的距离均小于所述模块嵌入所述冷板中的深度。
  11. 根据权利要求10所述的模块浸泡式冷却机构,其特征在于,所述冷却液导入口和所述冷却液导出口分别位于所述模块的两侧。
  12. 一种变频器,其特征在于,包括权利要求1至11任一项所述的模块浸泡式冷却机构。
PCT/CN2018/121913 2018-09-18 2018-12-19 模块浸泡式冷却机构和变频器 WO2020056954A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811091704.9A CN108925124B (zh) 2018-09-18 2018-09-18 模块浸泡式冷却机构和变频器
CN201811091704.9 2018-09-18

Publications (1)

Publication Number Publication Date
WO2020056954A1 true WO2020056954A1 (zh) 2020-03-26

Family

ID=64408248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121913 WO2020056954A1 (zh) 2018-09-18 2018-12-19 模块浸泡式冷却机构和变频器

Country Status (2)

Country Link
CN (1) CN108925124B (zh)
WO (1) WO2020056954A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108925124B (zh) * 2018-09-18 2019-10-11 珠海格力电器股份有限公司 模块浸泡式冷却机构和变频器
CN109588021A (zh) * 2018-12-29 2019-04-05 出门问问信息科技有限公司 电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1177903A (zh) * 1996-08-06 1998-04-01 株式会社爱德万测试 安装有电子器件的印刷电路板
US20100177860A1 (en) * 2009-01-14 2010-07-15 Korea Atomic Energy Research Institute Fully passive decay heat removal system for sodium-cooled fast reactors that utilizes partially immersed decay heat exchanger
CN206619591U (zh) * 2017-03-07 2017-11-07 深圳市迈安热控科技有限公司 功率器件散热装置及功率器件散热模块
CN206685366U (zh) * 2017-03-07 2017-11-28 深圳市迈安热控科技有限公司 功率器件散热装置及功率器件散热模块
CN108925124A (zh) * 2018-09-18 2018-11-30 珠海格力电器股份有限公司 模块浸泡式冷却机构和变频器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1177903A (zh) * 1996-08-06 1998-04-01 株式会社爱德万测试 安装有电子器件的印刷电路板
US20100177860A1 (en) * 2009-01-14 2010-07-15 Korea Atomic Energy Research Institute Fully passive decay heat removal system for sodium-cooled fast reactors that utilizes partially immersed decay heat exchanger
CN206619591U (zh) * 2017-03-07 2017-11-07 深圳市迈安热控科技有限公司 功率器件散热装置及功率器件散热模块
CN206685366U (zh) * 2017-03-07 2017-11-28 深圳市迈安热控科技有限公司 功率器件散热装置及功率器件散热模块
CN108925124A (zh) * 2018-09-18 2018-11-30 珠海格力电器股份有限公司 模块浸泡式冷却机构和变频器

Also Published As

Publication number Publication date
CN108925124B (zh) 2019-10-11
CN108925124A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
US7753108B2 (en) Liquid cooling device
US9807906B2 (en) Liquid-cooling device and system thereof
TWM575554U (zh) Liquid cooling device and display card having the same
US20060090888A1 (en) Heat-exchange type cooler
JP2022091657A (ja) ポンプ付きラジエータ
WO2020056954A1 (zh) 模块浸泡式冷却机构和变频器
WO2021114376A1 (zh) 一种服务器液冷散热器
CN114423135A (zh) 射线源
CN207994912U (zh) 电力电子功率柜
CN214592558U (zh) 整合式冷却模块及具有该整合式冷却模块的电子装置
TWM540463U (zh) 具塑膠框體之輕量化液冷板組及散熱系統
CN107731765B (zh) 一种一体化液冷散热器
CN211125625U (zh) 液冷散热组件、液冷散热装置及电力电子设备
JP3203785U (ja) 流体冷却式ランプ
CN209857420U (zh) 半导体制冷设备
CN114828598A (zh) 液冷散热器、电驱控制器和汽车
JP2007004765A (ja) 液冷式コンピュータ装置
CN210040184U (zh) 一种微通道水冷板
KR102001029B1 (ko) 펠티에 소자를 이용한 태양광 발전 접속반 다이오드 모듈 방열 모듈
CN207704389U (zh) 一种翅片式液冷散热器
CN208191122U (zh) 散热性能好的终端服务机柜
CN202309489U (zh) 新型浸液式散热器
CN205807351U (zh) Uvled固化光源水冷散热系统
CN110454428A (zh) 一种变频电泵
CN210052736U (zh) 一种双面微通道水冷板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934002

Country of ref document: EP

Kind code of ref document: A1