WO2020056657A1 - 一种信号处理设备及方法 - Google Patents

一种信号处理设备及方法 Download PDF

Info

Publication number
WO2020056657A1
WO2020056657A1 PCT/CN2018/106638 CN2018106638W WO2020056657A1 WO 2020056657 A1 WO2020056657 A1 WO 2020056657A1 CN 2018106638 W CN2018106638 W CN 2018106638W WO 2020056657 A1 WO2020056657 A1 WO 2020056657A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
echo
network device
cancellation
Prior art date
Application number
PCT/CN2018/106638
Other languages
English (en)
French (fr)
Inventor
司小书
高兴国
欧阳涛
曹毅
任志雄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/106638 priority Critical patent/WO2020056657A1/zh
Publication of WO2020056657A1 publication Critical patent/WO2020056657A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication

Definitions

  • the present application relates to the field of communications, and in particular, to a signal processing device and method.
  • Frequency division duplex means that for the same device, the frequency range occupied by the downlink signal and the frequency range occupied by the uplink signal are separated.
  • a duplexer is used to physically isolate the uplink channel and the downlink channel in a conventional manner. The duplexer is used to filter signals with a higher frequency range in the uplink signal and the downlink signal, and to filter signals with a lower frequency range in the uplink signal and the downlink signal. The higher frequency range and the lower frequency range are not the same. overlapping.
  • a duplexer only corresponds to a configuration with a higher frequency range and a lower frequency range. If the higher frequency range and / or the lower frequency range changes, the duplexer needs to be replaced This causes an extra burden on the use and maintenance of the device containing the duplexer, and the user experience is poor.
  • An embodiment of the present application provides a signal processing device.
  • the device includes a first signal shunt unit and a signal cancellation unit, and the first signal shunt unit and the signal cancellation unit are connected.
  • the first signal shunt unit may be hardware such as a coupler or a splitter, or may be a software unit.
  • the signal cancellation unit can be implemented by software.
  • a first signal shunt unit configured to receive a first signal in a traffic mode and send the first signal to a second network device; and receive a second signal from the second network device in a traffic mode, and send the signal to the signal cancellation unit Send a second signal, wherein the frequency range of the data signal in the first signal and the frequency range of the data signal in the second signal do not overlap.
  • the so-called second network device refers to the device on the other side that communicates with the device where the first signal shunt unit and the signal cancellation unit are located.
  • the second network device may be a terminal device that communicates with the server.
  • the second network device may be a cable modem. If the first network device is a coaxial cable media converter, the second network device may be a cable modem. If the first network device is a cable modem, the second network device may be a coaxial cable media converter.
  • the traffic mode refers to a mode in which the first network device sends a signal to the second network device, and the second network device also sends a signal to the first network device. Specifically, the first network device sends a first signal to the second network device, and the second network device sends a second signal to the first network device.
  • a signal canceling unit configured to receive a mixed signal from a first signal shunt unit, and perform a cancellation process on a first echo signal in the mixed signal to obtain a second signal; the mixed signal is a phase between the second signal and the first echo signal;
  • the first echo signal is a signal output by the first signal shunt unit to the signal cancellation unit during the first signal is sent to the second network device.
  • the embodiment of the present application uses the first signal shunting unit and the signal canceling unit instead of the duplexer to implement the function of the duplexer.
  • the first signal shunt unit receives the first signal and sends it to the second network device, and receives the second signal sent by the second network device, and functions as a duplexer to send and receive signals.
  • the second signal is mixed with the first echo signal generated by the first signal to form a mixed channel that enters the receiving channel of the first network device.
  • the signal cancellation unit performs cancellation processing on the first echo signal in the mixed signal to obtain a second signal sent by the second network device.
  • the signal cancellation unit is equivalent to isolate the first signal from the second signal in the duplexer.
  • the first signal shunt unit only plays a role of signal shunting, and the signal cancellation unit is a software module. Therefore, when the data signal in the first signal and the frequency range of the data signal in the second signal When the configuration changes, it does not cause hardware changes and improves the user experience.
  • the first signal shunting unit is further configured to receive the third signal in the training mode and send the third signal to the second network device.
  • the third signal and the first signal may be signals of different time periods from the same signal source.
  • the training mode refers to a mode in which the first network device sends a signal to the second network device, but the second network device does not send a signal to the first network device, and its purpose is to calculate the equalization coefficient.
  • the signal sent by the first network device to the second network device is a third signal.
  • a signal canceling unit configured to receive a third signal, a second echo signal, and a mixed signal from the first signal shunt unit, and calculate an equalization coefficient according to the third signal and the second echo signal;
  • the first echo signal is subjected to cancellation processing to obtain a second signal.
  • the second echo signal is a signal output by the first signal shunt unit to the signal cancellation unit during the third signal is sent to the second network device.
  • the second signal is obtained by calculating an equalization coefficient according to the third signal and the second echo signal, and performing a cancellation process on the first echo signal in the mixed signal according to the equalization coefficient.
  • the signal processing device further includes: a second signal shunt unit, and the second signal shunt unit is respectively connected to the first signal shunt unit and the signal cancellation unit.
  • a second signal shunting unit configured to receive a third signal, shunt a first portion of the signal in the third signal to the signal cancelling unit, and shunt a second portion of the signal in the third signal to the first signal shunting unit;
  • Receiving the third signal in the training mode and sending the third signal to the second network device includes: receiving the second part of the third signal in the training mode, and sending the second of the third signal to the second network device. Part of the signal.
  • a signal canceling unit configured to calculate an equalization coefficient based on the first partial signal and the second echo signal in the third signal; and perform a first echo signal in the mixed signal according to the equalization coefficient and the first partial signal in the first signal
  • the cancellation process obtains a second signal, and the first echo signal is a second part of the first signal.
  • the first signal shunt unit outputs the signal to the signal cancellation unit.
  • the second signal shunting unit is used to enable the signal canceling unit to obtain the third signal mentioned above, and the first signal shunting unit, the second signal shunting unit, and the signal canceling unit are used to implement the duplexer receiving and sending signals.
  • isolation function if the first signal and the second signal change in the configuration of the frequency range of the data signal, only the equalization coefficient calculated by the signal cancellation unit will be affected, and there is no need to split the first signal and the second signal.
  • the shunt unit and signal cancellation unit are replaced with hardware, so the user experience is improved.
  • the signal processing device further includes: a first signal connected between the first signal shunt unit and the signal cancellation unit. filter.
  • the first filter is a low-pass filter; if the frequency range of the data signal in the first signal is less than the data in the second signal The frequency range of the signal, then the first filter is a high-pass filter.
  • the first filter is configured to filter the mixed signal to obtain a first filtered signal.
  • the signal cancellation unit is configured to perform cancellation processing on a first echo signal in the first filtered signal to obtain a second signal.
  • the device may further include a second filter connected between the second signal shunt unit and the signal cancellation unit;
  • the second filter is a low-pass filter; if the frequency range of the data signal in the first signal is less than the data in the second signal The frequency range of the signal, then the second filter is a high-pass filter.
  • the second filter is configured to filter the first part of the third signal to obtain a second filtered signal.
  • the first filter is further configured to filter the second echo signal to obtain a third filtered signal.
  • Performing cancellation processing on the first echo signal in the first filtered signal to obtain the second signal includes: performing cancellation processing on the first echo signal in the first filtered signal according to the second filtered signal and the third filtered signal to obtain ⁇ ⁇ The second signal.
  • the first echo signal includes: a signal that the first signal is shunted to the signal cancellation unit when passing through the first signal shunt unit; and / or, the first signal is sent from the first signal shunt unit and reflected by the network. signal.
  • the first signal shunt unit and the second signal shunt unit include: a coupler and / or a brancher.
  • the first network device includes a coaxial cable media converter
  • the second network device includes a cable modem
  • the first network device includes a cable modem
  • the second network device includes a coaxial cable media converter
  • An embodiment of the present application further provides a signal processing method, which is applied to a first network device.
  • the method includes:
  • the first signal shunt unit receives the first signal in a traffic mode, and sends the first signal to a second network device;
  • the first signal shunt unit receives the second signal from the second network device in the traffic mode, and sends the second signal to the signal cancellation unit, wherein the frequency range of the data signal in the first signal and the frequency range of the data signal in the second signal The frequency ranges do not overlap;
  • the signal cancellation unit receives the mixed signal from the first signal shunt unit, and performs a cancellation process on the first echo signal in the mixed signal to obtain a second signal.
  • the mixed signal is a signal in which the second signal and the first echo signal are mixed.
  • the first echo signal is a signal output by the first signal shunting unit to the signal canceling unit during the first signal is sent to the second network device.
  • the method further includes: the first signal shunt unit receives the third signal in the training mode, and sends the third signal to the second network device; the signal cancellation unit receives the mixed signal from the first signal shunt unit, and The first echo signal in the signal is subjected to cancellation processing to obtain a second signal.
  • the signal cancellation unit receives a third signal, a second echo signal, and a mixed signal from the first signal shunt unit, and according to the third signal and the second signal.
  • the echo signal calculates an equalization coefficient, and the first echo signal in the mixed signal is cancelled according to the equalization coefficient to obtain a second signal.
  • the second echo signal is a third signal. In the process of being sent to the second network device, The signal output by the first signal shunt unit to the signal cancellation unit.
  • the method further includes: the second signal shunting unit receives the third signal, and shunts the first part of the third signal to the signal cancellation unit, and shunts the second part of the third signal to the first signal shunt.
  • the second signal shunting unit receives the first signal, and shunts the first part of the first signal to the signal cancellation unit, shunts the second part of the first signal to the first signal shunting unit; and receives in the training mode
  • the third signal, and sending the third signal to the second network device includes: receiving the second part of the third signal in the training mode, and sending the second part of the third signal to the second network device; signal cancellation The unit receives the third signal, the second echo signal, and the mixed signal from the first signal shunt unit, and calculates an equalization coefficient based on the third signal and the second echo signal.
  • the first echo signal in the mixed signal is calculated based on the equalization coefficient.
  • Performing the cancellation processing to obtain the second signal includes: the signal cancellation unit calculates an average of the first signal and the second echo signal according to the third signal; And the first echo signal in the mixed signal is processed according to the equalization coefficient and the first partial signal in the first signal to obtain a second signal.
  • the first echo signal is the second partial signal of the first signal. In the process of being sent to the second network device, the signal output by the first signal shunt unit to the signal cancellation unit.
  • the method further includes: the first filter filters the mixed signal to obtain a first filtered signal; wherein if the frequency range of the data signal in the first signal is greater than the frequency range of the data signal in the second signal, the first The filter is a low-pass filter; if the frequency range of the data signal in the first signal is smaller than the frequency range of the data signal in the second signal, the first filter is a high-pass filter; the signal cancellation unit receives the signal from the first signal shunt unit.
  • Mixing the signals and performing a cancellation process on the first echo signal in the mixed signal to obtain a second signal includes: the signal cancellation unit performs a cancellation process on the first echo signal in the first filtered signal to obtain a second signal.
  • the method further includes: a second filter filtering the first part of the third signal to obtain a second filtered signal; wherein, if the frequency range of the data signal in the first signal is greater than that of the data signal in the second signal Frequency range, the second filter is a low-pass filter; if the frequency range of the data signal in the first signal is smaller than the frequency range of the data signal in the second signal, the second filter is a high-pass filter; the first filter pair Filtering the second echo signal to obtain a third filtered signal; and performing cancellation processing on the first echo signal in the first filtered signal to obtain a second signal includes: according to the second filtered signal and the third filtered signal, filtering the first echo signal The first echo signal in the filtered signal is cancelled to obtain a second signal.
  • the first echo signal includes: a signal that the first signal is shunted to the signal cancellation unit when passing through the first signal shunt unit; and / or, the first signal is sent from the first signal shunt unit and reflected by the network. signal.
  • the first signal shunt unit and the second signal shunt unit include: a coupler and / or a brancher.
  • the first network device includes a coaxial cable media converter
  • the second network device includes a cable modem
  • the first network device includes a cable modem
  • the second network device includes a coaxial cable media converter
  • An embodiment of the present application further provides a signal processing device.
  • the device is a first network device, and includes a memory, a processor, and a communication unit.
  • the memory is configured to store instructions; the processor is configured to execute instructions in the memory to perform the foregoing signal processing method; and the communication unit is configured to communicate with the second network device.
  • An embodiment of the present application further provides a computer-readable storage medium including instructions that, when run on a computer, cause the computer to execute the foregoing signal processing method.
  • An embodiment of the present application further provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the foregoing signal processing method.
  • FIG. 1 is a structural block diagram of a signal processing device according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a second signal and a first echo signal according to an embodiment of the present application
  • FIG. 3 is another schematic diagram of a second signal and a first echo signal according to an embodiment of the present application.
  • FIG. 4 is a structural block diagram of another signal processing device according to an embodiment of the present application.
  • FIG. 5 is a structural block diagram of still another signal processing device according to an embodiment of the present application.
  • FIG. 6 is a structural block diagram of still another signal processing device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an HFC network system according to an embodiment of the present application.
  • FIG. 8 is a flowchart of a signal processing method according to an embodiment of the present application.
  • FIG. 9 is a structural block diagram of still another signal processing device according to an embodiment of the present application.
  • a frequency band is reserved between the frequency band occupied by the uplink signal and the frequency band occupied by the downlink signal as a protection band.
  • a duplexer is usually used to physically isolate the uplink signal and the downlink signal to avoid mutual interference between the uplink signal and the downlink signal. But a duplexer can only have a configuration with a higher frequency range and a configuration with a lower frequency range.
  • DOCSIS cable data service interface specification
  • the frequency range of the lower frequency range is 5MHz-42MHz
  • the frequency range of the higher frequency range It is 54MHz-1.218GHz
  • 42MHz-54MHz is the guard band
  • the frequency range of the lower frequency range is 5MHz-85MHz
  • the frequency range of the higher frequency range is 108MHz-1.218GHz
  • 85MHz-108MHz is the guard band
  • the frequency range of the lower frequency range is 5MHz-204MHz
  • the frequency range of the higher frequency range is 258MHz-1.218GHz
  • 204MHz-258MHz is the guard band.
  • an embodiment of the present application provides a signal processing device.
  • the device is a first network device.
  • the device includes a first signal shunt unit and a signal cancellation unit, the first signal shunt unit and the signal. Offset unit connection.
  • the first signal shunt unit is configured to receive a first signal in a traffic mode and send the first signal to a second network device; and receive a first signal from the second network device in a traffic mode. Two signals, and sending the second signal to the signal cancellation unit.
  • the frequency range of the data signal in the first signal and the frequency range of the data signal in the second signal do not overlap.
  • the signal cancellation unit is configured to receive a mixed signal from the first signal shunt unit, and perform a cancellation process on a first echo signal in the mixed signal to obtain the second signal.
  • the mixed signal is A signal in which the second signal is mixed with the first echo signal, and the first echo signal is the first signal that is shunted by the first signal during the process of being sent to the second network device The signal output by the unit to the signal cancellation unit.
  • the embodiment of the present application uses the first signal shunting unit and the signal canceling unit instead of the duplexer to implement the function of the duplexer.
  • the first signal shunt unit receives the first signal and sends it to the second network device, and receives the second signal sent by the second network device, and functions as a duplexer to send and receive signals.
  • the second signal is mixed with the first echo signal generated by the first signal to form a mixed channel that enters the receiving channel of the first network device.
  • the signal cancellation unit performs cancellation processing on the first echo signal in the mixed signal to obtain a second signal sent by the second network device.
  • the signal cancellation unit is equivalent to isolate the first signal from the second signal in the duplexer.
  • the first signal shunting unit only plays the role of signal shunting, and the signal cancellation unit is a software module, so when the frequency range configuration of the data signal in the first signal and the data signal in the second signal occurs When changing, it does not cause hardware changes and improves the user experience.
  • FIG. 1 is a structural block diagram of a signal processing device according to an embodiment of the present application.
  • the first signal shunting unit 101 and the signal canceling unit 102 are connected to the signal canceling unit 102.
  • the first signal shunting unit 101 may be hardware such as a coupler or a tap, or may be a software unit.
  • the signal cancellation unit 102 may be implemented by software.
  • the first signal shunting unit 101 is configured to receive a first signal in a traffic mode and send the first signal to a second network device.
  • the so-called second network device refers to the device on the other side that communicates with the device where the first signal shunting unit 101 and the signal canceling unit 102 are located.
  • the second network device may be a terminal device that communicates with the server.
  • the first network device is a coaxial cable media converter (CMC)
  • the second network device may be a cable modem (CM).
  • the first network device is a cable modem
  • the second network device may be a coaxial cable media converter.
  • the first signal shunting unit 101 is further configured to receive a second signal from the second network device in a traffic mode, and send the second signal to the signal cancellation unit 102.
  • the traffic mode refers to a mode in which the first network device sends a signal to the second network device, and the second network device also sends a signal to the first network device. Specifically, the first network device sends a first signal to the second network device, and the second network device sends a second signal to the first network device.
  • the frequency range of the data signal in the first signal and the frequency range of the data signal in the second signal do not overlap.
  • the frequency range of the data signal in the first signal may be higher or lower than the frequency range of the data signal in the second signal.
  • the data signal refers to a signal containing valid information.
  • the frequency range of the data signal in the overall frequency range of the second signal is 5MHz-204MHz, and other frequency bands, that is, the frequency range of 0-5MHz and the frequency band greater than 204MHz are frequency ranges of non-data signals.
  • the signal cancellation unit 102 is configured to receive a mixed signal from the first signal shunt unit 101, and perform a cancellation process on a first echo signal in the mixed signal to obtain the second signal.
  • the mixed signal is a signal in which the second signal and a first echo signal are mixed, and the first echo signal is a process in which the first signal is sent to the second network device, A signal output from the first signal shunting unit 101 to the signal canceling unit 102.
  • the first signal shunting unit 101 may have three ports. The first port is used to receive the first signal, the second port is used to send the first signal and receive the second signal, and the third port is used for Because it is connected to the signal cancellation unit 102, a portion of the first signal is shunted into the signal cancellation unit 102 when passing through the first signal shunt unit 101, so the first echo signal may include the first signal A signal that is shunted to the signal cancellation unit 102 when passing through the first signal shunting unit 101.
  • the first signal After the first signal is sent out from the second port, it passes through various intermediate devices in the network to reach the second network device. These intermediate devices may also include some signal shunting units, so some of the first signal may be reflected back. . Therefore, the first echo signal may also include a signal transmitted by the first signal from the first signal shunting unit 101 and reflected by the network.
  • the signal cancellation unit 102 is required to perform a cancellation process on the first echo signal to obtain a relatively “pure” second signal.
  • the first signal shunting unit 101 is further configured to receive a third signal in a training mode, and send the third signal to the second network device.
  • the third signal and the first signal may be signals of different time periods from the same signal source. In most scenarios, the signal changes over time, so the first and third signals may differ in phase and amplitude. Of course, the more similar the third signal and the first signal, the better the effect of subsequent cancellation processing on the first echo signal; and vice versa.
  • the signal canceling unit 102 is configured to receive the third signal, the second echo signal, and a mixed signal from the first signal shunt unit, and calculate according to the third signal and the second echo signal.
  • An equalization coefficient according to the equalization coefficient, performing a cancellation process on a first echo signal in the mixed signal to obtain the second signal, where the second echo signal is the third signal and is sent to the In the process of the second network device, a signal output by the first signal shunt unit to the signal cancellation unit.
  • the second echo signal is a signal output by the first signal shunting unit 101 to the signal canceling unit 102 when the third signal is sent to the second network device.
  • the training mode refers to a mode in which the first network device sends a signal to the second network device, but the second network device does not send a signal to the first network device, and its purpose is to calculate the equalization coefficient.
  • the signal sent by the first network device to the second network device is a third signal.
  • the second network device may be controlled in advance to stop sending the second signal, so that the first signal shunt unit 101 only receives the third signal and does not receive the second signal. Signal, so that only the second echo signal is output from the first signal shunt unit 101 to the signal cancellation unit 102. Because there is a certain proportional relationship between the second echo signal and the third signal, and this proportional relationship is relatively stable with time. That is, the proportional relationship between the second echo signal and the third signal is similar to the proportional relationship between the first echo signal and the first signal. Therefore, after the signal cancellation unit 102 receives the mixed signal, the first echo signal in the mixed signal may be canceled according to the relationship between the second echo signal and the third signal.
  • a proportional relationship between the second echo signal and the third signal may be reflected by an equalization coefficient.
  • the so-called equalization coefficient refers to data that can reflect the inverse response of the channel. Therefore, the signal cancellation unit 102 may calculate an equalization coefficient based on the third signal and the second echo signal, and perform a cancellation process on the first echo signal according to the equalization coefficient.
  • the function of sending the first signal and receiving the second signal is implemented by the first signal shunting unit 101 instead of the duplexer.
  • the first signal Will affect the second signal.
  • the signal cancellation unit 102 performs cancellation processing on the echo signal mixed with the second signal, which is equivalent to achieving isolation between the duplexer sending the first signal and receiving the second signal.
  • the frequency range of the data signal in the first signal and the frequency range of the data signal in the second signal do not overlap.
  • the frequency range of the data signal in the first signal is higher or lower than the frequency range of the data signal in the second signal.
  • the first echo signal comes from the first signal, and the non-data signals in the first echo signal will cause interference to the second signal.
  • FIG. 2 is a schematic diagram of a second signal and a first echo signal.
  • the frequency range of the data signal in the second signal is 5MHz-204MHz; the frequency range of the data signal in the first echo signal is 258MHz-1.218GHz. Therefore, it can be said that the second signal is a low-frequency signal, and the first echo signal is a high-frequency signal. Since the frequency range of the unwanted signal of the first echo signal includes 5MHz-204MHz, the frequency range of the data signal in the second signal and the frequency range of the unwanted signal in the first echo signal overlap, so it is necessary to focus on the first echo Unwanted signals, that is, signals in the frequency band of 5MHz-204MHz, are cancelled.
  • the data signal of the first echo signal may be filtered by using a low-pass filter, so that the first echo signal obtained by the signal cancellation unit 102 is an unnecessary signal, and the signal cancellation unit 102 is improved. Offset processing efficiency and effect.
  • FIG. 3 is another schematic diagram of the second signal and the first echo signal.
  • the frequency range of the data signal in the second signal is 258MHz-1.218GHz
  • the frequency range of the data signal in the first echo signal is 5MHz-204MHz, so it can be said that the second signal is a high-frequency signal
  • the first The wave signal is a low-frequency signal.
  • the frequency range of the unwanted signal in the first echo signal includes 258MHz-1.218GHz. It can be seen that the frequency range of the second signal and the frequency range of the unwanted signal in the first echo signal overlap, so it is necessary to focus on the cancellation of the unwanted signal of the first echo signal.
  • the data signal of the first echo signal may be filtered by using a high-pass filter, so that the first echo signal obtained by the signal cancellation unit 102 is an unnecessary signal, and the signal cancellation unit 102 is improved. Offset processing efficiency and effectiveness.
  • the signal processing device further includes: a first filter 103 connected between the first signal shunt unit and the signal cancellation unit.
  • the first filter 103 is configured to filter the mixed signal to obtain a first filtered signal
  • the signal cancellation unit 102 is configured to perform cancellation processing on a first echo signal in the first filtered signal to obtain the second signal.
  • the first filter is a low-pass filter. If the frequency range of the data signal in the first signal is smaller than the frequency range of the data signal in the second signal, the first filter is a high-pass filter.
  • the cancellation processing efficiency and effect of the signal cancellation unit 102 can be improved.
  • this figure is a structural block diagram of still another signal processing device according to an embodiment of the present application.
  • the signal processing device provided in the embodiment of the present application is applied to a first network device, and specifically includes: a first signal shunt unit 201, a second signal shunt unit 202, and a signal cancellation unit 203.
  • the first signal shunting unit 201 and the second signal shunting unit 202 may be hardware such as a coupler or a tap, or may be software units.
  • the signal cancellation unit 203 may be implemented by software.
  • the first signal shunt unit 201, the second signal shunt unit 202, and the signal cancellation unit 203 are connected to each other.
  • the second signal shunting unit 202 is configured to receive the third signal in a training mode, and shunt a first partial signal of the third signal to the signal canceling unit 203 to divide the third signal into the third signal.
  • the second part of the signal is shunted to the first signal shunt unit 201.
  • the second signal shunting unit 202 is further configured to receive a first signal in a traffic mode, and shunt a first part of the first signal to the signal canceling unit 203 to divide the first signal The second part of the signal is shunted to the first signal shunt unit 201.
  • the first signal shunting unit 201 is configured to receive a second partial signal in the third signal, and send the second partial signal in the third signal to the second network device.
  • the first signal shunting unit 201 is further configured to receive a second partial signal in the first signal, and send the second partial signal in the first signal to the second network device.
  • the first signal shunting unit 201 is further configured to receive a second signal from the second network device in a traffic mode, and send the second signal to the signal canceling unit 203.
  • the signal canceling unit 203 is configured to receive a mixed signal from the first signal shunting unit 201, and process the mixed signal according to the first partial signal and the second echo signal in the third signal The first echo signal is canceled.
  • the second echo signal is a second part of the third signal.
  • the signal is cancelled by the first signal shunting unit 201 to the signal.
  • the signal of the unit 203, the first echo signal is a second part of the first signal, and is transmitted to the second network device by the first signal shunting unit 201 and is output to the The signal of the signal cancellation unit 203.
  • the second signal shunting unit 202 is used to cause the signal cancellation unit 203 to obtain the third signal mentioned above.
  • the third signal is divided into two by the second signal shunting unit 202. One is the first part of the third signal and is sent to the signal cancellation unit 203. The other is the second part of the third signal. It is supplied to the first signal shunt unit 201. While the first signal shunting unit 201 sends the second part of the third signal to the second network device, it outputs the second echo signal to the signal canceling unit 203.
  • the second network device does not send the second signal, so the signal cancellation unit 203 can receive a simple second echo Signal instead of a mixture of the second echo signal and the second signal.
  • the signal cancellation unit 203 can calculate an equalization coefficient according to the second echo signal and the first partial signal of the third signal.
  • Calculating the equalization coefficient can be calculated in the time domain or in the frequency domain. If it is calculated in the time domain, since the first part of the third signal and the second echo signal are both time domain signals, the time domain can be directly calculated based on the first part of the third signal and the second echo signal. coefficient. If it is calculated in the frequency domain, the first partial signal and the second echo signal of the third signal need to be converted into a frequency domain signal first, and then an equalization coefficient in the frequency domain is calculated. Whether it is calculated in the time domain or the frequency domain, the specific calculation method should be known to those skilled in the art.
  • the calculation in the time domain can be calculated by using the least mean square (LMS) method, which can specifically include the following steps:
  • LMS least mean square
  • X (n) is the input vector, or training sample.
  • the training sample may be a third signal, and the third signal may have multiple groups. Third signal
  • W (n) is the equalization coefficient, which is a vector
  • Y (n) is the actual output; in the embodiment of the present application, the actual output may be the acquired second echo signal, and each group of the third signal corresponds to a second echo signal.
  • is the learning rate;
  • n is the number of iterations.
  • W (n + 1) W (n) + ⁇ X (n) e (n)
  • the signal cancellation unit 203 may use the equalization coefficient to perform a cancellation process on the first echo signal in the mixed signal to obtain a second signal.
  • the signal cancellation unit 203 can receive the first partial signal of the first signal.
  • the signal cancellation unit 203 may also receive a signal in which the second signal and the first echo signal are mixed, that is, a mixed signal.
  • the first echo signal is a second part of the first signal, and the signal output by the first signal shunt unit 201 to the signal cancellation unit 203 is transmitted to the second network device.
  • the equalization coefficient obtained from the first partial signal and the second echo signal of the third signal is basically the same as the equalization coefficient obtained from the first partial signal and the first echo signal of the third signal, so The first echo signal is estimated from the equalization coefficient obtained from the first partial signal of the third signal and the second echo signal, and the first partial signal of the first signal is estimated.
  • the equalization coefficient can be convolved with the first partial signal of the first signal to obtain an estimated first echo signal in the time domain. If the calculated equalization coefficient is an equalization coefficient in the frequency domain, then the equalization coefficient and the first partial signal of the first signal can be multiplied in the frequency domain to obtain an estimated first echo signal in the frequency domain.
  • the estimated first echo signal may be used to cancel the first echo signal in the mixed signal.
  • This embodiment of the present application does not perform a cancellation process on the first echo signal in the mixed signal by using the estimated first echo signal.
  • the phase of the estimated first echo signal may be inverted, and then the estimated first echo signal and the mixed signal after the phase inversion are superimposed to Cancel the first echo signal in the mixed signal.
  • the above method does not constitute a limitation on the technical solution of the present application, and those skilled in the art can also design a solution for the offset processing according to actual needs.
  • the first signal shunting unit 201, the second signal shunting unit 202, and the signal canceling unit 203 are used to implement the functions of receiving and sending signals and isolating the duplexer. If the first signal and the second signal are in the frequency range of the data signal, Changes in the configuration affect only the equalization coefficient calculated by the signal cancellation unit 203, and no hardware replacement is required for the first signal shunt unit 201, the second signal shunt unit 202, and the signal cancellation unit 203, so the user experience is improved .
  • the frequency range of the data signal in the first signal and the data signal in the third signal should be the same. If the first signal is a high-frequency signal, the third signal should also be a high-frequency signal. If the first signal is a low-frequency signal, the third signal should also be a low-frequency signal.
  • the first signal is a high-frequency signal
  • the second signal is a low-frequency signal
  • the main part of the first signal and the third signal is a high-frequency signal, and contains a small amount of low-frequency signals
  • the first echo signal and the first signal The main part of the two-echo signal is also a high-frequency signal, and it also contains a small amount of low-frequency signals. If the high-frequency parts of the first echo signal and the second echo signal are filtered out, the analysis effect and efficiency of the low-frequency signal by the cancellation processor 203 can be effectively improved, thereby improving the cancellation processing effect and efficiency. Therefore, in order to improve the cancellation processing efficiency and effect of the cancellation processor 203, the low frequency portion of the second echo signal may be used to perform the cancellation processing on the low frequency portion of the first echo signal.
  • the first signal is a low-frequency signal
  • the second signal is a high-frequency signal
  • the main part of the first and third signals is a low-frequency signal, and contains a small amount of high-frequency signals
  • the first echo signal and the first signal The main part of the two-echo signal is also a low-frequency signal, and it also contains a small amount of high-frequency signals. If the low-frequency parts of the first echo signal and the second echo signal are filtered out, the analysis effect and efficiency of the high-frequency signal by the cancellation processor 203 can be effectively improved, thereby improving the cancellation processing effect and efficiency. Therefore, in order to improve the cancellation processing efficiency and effect of the cancellation processor 203, the high-frequency portion of the second echo signal may be used to perform the cancellation processing on the high-frequency portion of the first echo signal.
  • the signal processing device provided by the embodiment of the present application may further include a first filter 204 and a second filter 205.
  • the second filter 205 is configured to filter a first part of the third signal to obtain a second filtered signal.
  • the first filter 204 is configured to filter the second echo signal to obtain a third filtered signal; and filter the mixed signal to obtain a first filtered signal.
  • a signal canceling unit 203 configured to receive a first filtered signal from the first signal shunt unit 201, and perform a first echo on the first filtered signal according to the second filtered signal and a third filtered signal; The signal is cancelled to obtain a second signal.
  • the first filter and the second filter are low-pass filters. If the frequency range of the data signal in the first signal is smaller than the frequency range of the data signal in the second signal, the first filter and the second filter are high-pass filters.
  • the second filter 205 is used to filter the unnecessary part of the first part of the third signal to obtain a second filtered signal
  • the first filter 204 is used to remove the unnecessary part of the second echo signal To obtain a third filtered signal, so that the signal canceling unit 203 can perform a cancellation process on the first filtered signal obtained by the first filter 204 according to the second filtered signal and the third filtered signal, effectively improving the Offset processing efficiency and effectiveness.
  • the first signal passes through the second signal shunt unit 202, it will also be divided into two branches like the third signal, and one branch is the first part of the first signal and output to the signal canceling unit 203;
  • a second signal which is a first signal, is output to the first signal shunt unit 201, and is sent by the first signal shunt unit 201 to the second network device. Therefore, the second filter 205 is further configured to filter the first partial signal of the first signal to obtain a fourth filtered signal.
  • the signal canceling unit 203 can calculate an equalization coefficient according to the second filtered signal and the third filtered signal, and use the equalization coefficient and the fourth filtered signal to cancel the first filtered signal.
  • the frequency range of the first filter 204 and the frequency range of the second filter 205 should be close or even the same, and at least the frequency range of the data signal in the second signal needs to be included.
  • the maximum and minimum values of the frequency range of the filter can be determined according to the multiple frequency range configurations of the data signal in the second signal.
  • the frequency range configuration of the data signal in the second signal includes three types: one is 5MHz-42MHz, one is 5MHz-85MHz, and the other is 5MHz-204MHz. Then the frequency range of the first filter 204 and the second filter 205 can be set to 5MHz-204MHz, to ensure that no matter which configuration of the second signal frequency range is replaced, the first filter 204 and the second filter 205 are not required. Replace on hardware.
  • the frequency range of the filter is greater than the frequency range of the data signal in the second signal, it may be filtered again by digital filtering, so that the obtained filtered signal is the frequency range of the data signal in the second signal, which further improves The cancellation processing efficiency and effect of the cancellation processor 203.
  • the frequency range of the first filter 204 and the second filter 205 is set to 5MHz-204MHz, and the frequency range of the data signal in the second signal is 5MHz-85MHz, then the first filter 204 and the second filter 205 filter After that, digital filtering can be used to filter the signals within 85MHz-204MHz, so that the signals reaching the cancellation processor 203 are 5MHz-85MHz signals. Because digital filtering is implemented at the software level, no hardware changes are required when its frequency range changes.
  • HFC hybrid fiber coaxial network
  • the system includes a coaxial cable media converter 30 and a cable modem 40.
  • the CMC includes a digital board (digital board) and a radio frequency board (Radio Frequency Board, RF board).
  • the digital board includes a signal generating unit 300, a digital to analog converter (DAC) 301, a power amplifier (PA) 302, an analog to digital converter (ADC) 303, and a signal canceling unit 304. , An analog-to-digital converter 305 and a low noise amplifier (LNA) 306.
  • DAC digital to analog converter
  • PA power amplifier
  • ADC analog to digital converter
  • LNA low noise amplifier
  • the radio frequency board includes a power amplifier 307, a brancher 308, a brancher 309, a low-pass filter 310, and a low-pass filter 311.
  • the digital-to-analog converter 301 is connected to the power amplifier 302, the power amplifier 302 is connected to the power amplifier 307, the power amplifier 307 is connected to the brancher 308, and the brancher 308 is connected to the brancher 309 and the low-pass filter 310, respectively.
  • the converter 310 is connected to the analog-to-digital converter 303, the analog-to-digital converter 303 is connected to the signal cancellation unit 304, the brancher 309 is connected to the cable modem 40 and the low-pass filter 311, and the low-pass filter 311 is connected to the low-noise amplifier 306.
  • the noise amplifier 306 is connected to the analog-to-digital converter 305, and the analog-to-digital converter 305 is connected to the signal canceling unit 304.
  • the embodiment of the present application includes three source signals, namely a downlink signal D1, a downlink signal D2, and an uplink signal U1.
  • the downlink signal D1 may be regarded as the third signal in the foregoing
  • the downlink signal D2 may be regarded as the first signal in the foregoing
  • the uplink signal U1 may be regarded as the second signal in the foregoing.
  • the CMC30 may send the downlink signal D1 first, and then send the downlink signal D2, and the CM40 does not send the uplink signal U1 during the downlink signal D1, and may send the uplink signal U1 during the downlink signal D2.
  • the signal generating unit 300 is configured to generate a downlink signal D1, and the downlink signal D1 is a digital signal.
  • the digital-to-analog converter 301 is configured to convert the downlink signal D1 from a digital signal to an analog signal M1.
  • the power amplifier 302 is configured to amplify the analog signal M1 to obtain an amplified signal A1.
  • the power amplifier 303 is configured to amplify the amplified signal A1 to obtain an amplified signal A2.
  • the brancher 308 is configured to shunt the first part of the signal of the amplified signal A2 to the low-pass filter 310 and the second part of the signal to the brancher 309.
  • the low-pass filter 310 is configured to filter the first part signal of the amplified signal A2 to obtain a low-frequency signal L1.
  • the analog-to-digital converter 303 is configured to convert the low-frequency signal L1 from an analog signal to a digital signal S1, and send the digital signal S1 to the signal canceling unit 304.
  • the brancher 309 is configured to shunt a part of the second part of the amplified signal A2 to the low-pass filter 311 and send the other part to the cable modem 40.
  • the low-pass filter 311 is configured to filter the echo signal H1 from the brancher 309 to obtain a low-frequency signal L2.
  • the echo signal H1 from the splitter 309 may not only include the signal of the second part of the amplified signal A2 shunted to the low-pass filter 311, but also include the second part of the signal transmitted to the cable modem 40 through network reflection. Back signal.
  • the low-noise amplifier 306 is configured to amplify the low-frequency signal L2 to obtain an amplified signal A3.
  • the analog-to-digital converter 305 is configured to convert the amplified signal A3 from an analog signal to a digital signal S2, and send the digital signal S2 to the signal canceling unit 304.
  • the signal canceling unit 304 is configured to calculate an equalization coefficient according to the digital signal S1 and the digital signal S2.
  • the digital-to-analog converter 301 is further configured to convert the downlink signal D2 from the signal generating unit 300 from a digital signal to an analog signal M2.
  • the power amplifier 302 is further configured to amplify the analog signal M2 to obtain an amplified signal A4.
  • the power amplifier 303 is configured to amplify the amplified signal A4 to obtain an amplified signal A5.
  • the brancher 308 is configured to shunt the first part of the signal of the amplified signal A5 to the low-pass filter 310 and the second part of the signal to the brancher 309.
  • the low-pass filter 310 is configured to filter a first partial signal of the amplified signal A5 to obtain a low-frequency signal L3.
  • the analog-to-digital converter 303 is configured to convert the low-frequency signal L3 from an analog signal to a digital signal S3, and send the digital signal S3 to the signal canceling unit 304.
  • the brancher 309 is configured to shunt a part of the second part of the amplified signal A5 to the low-pass filter 311 and send another part to the cable modem 40.
  • the brancher 309 is further configured to receive an uplink signal U1 from the cable modem 40.
  • the low-pass filter 311 is further configured to filter the mixed signal to obtain a filtered signal L4.
  • the mixed signal includes an upstream signal U1 and an echo signal H2 from the brancher 309.
  • the echo signal H2 from the splitter 309 may include not only the signal of the second part of the amplified signal A5 shunted to the low-pass filter 311, but also the signal reflected by the network during the second part of the signal sent to the cable modem 40. signal.
  • the low-noise amplifier 306 is also used to amplify the filtered signal L4 to obtain an amplified signal A6.
  • the analog-to-digital converter 305 is further configured to convert the amplified signal A6 from an analog signal to a digital signal S4, and send the digital signal S4 to the signal canceling unit 304.
  • the signal cancellation unit 304 is further configured to perform cancellation processing on the digital signal S4 according to the previously calculated equalization coefficient and the digital signal S3 to eliminate the echo signal H2 included in the digital signal S4 to obtain an uplink signal U1.
  • the power amplifier 302 and the power amplifier 303 may be connected in other ways than the connection mode between the digital-to-analog converter 301 and the brancher 308.
  • the power amplifier 302 is connected between the digital-to-analog converter 301 and the brancher 308, and the power amplifier 303 is connected between the brancher 308 and the brancher 309.
  • the power amplifier 302 and the power amplifier 303 are connected between the brancher 308 and the brancher 309.
  • the downlink signal D1 and the downlink signal D2 are high-frequency signals, and the uplink signal U1 is a low-frequency signal.
  • the downlink signal D1 and the downlink signal D2 are low frequency signals
  • the uplink signal U1 is a high frequency signal
  • the frequency range of the data signal in the downlink signal D1 and the data signal in the downlink signal D2 is smaller than the uplink signal
  • the frequency range of the data signal in U1 for example, each unit in the above CMC30 is deployed in the CM40.
  • all the above-mentioned low-pass filters can be replaced with high-pass filters to achieve the purpose of this application that does not require hardware changes when the frequency range of the data signal in the uplink and downlink signals changes. .
  • an embodiment of the present application further provides a signal processing method.
  • a signal processing method provided by an embodiment of the present application is applied to a first network device, and the method includes:
  • the first signal distribution unit receives the first signal in a traffic mode, and sends the first signal to a second network device.
  • the first signal shunt unit receives the second signal from the second network device in the traffic mode, and sends the second signal to the signal cancellation unit, wherein the frequency range of the data signal in the first signal and the data in the second signal The frequency ranges of the signals do not overlap.
  • the signal cancellation unit receives the mixed signal from the first signal shunt unit, and performs a cancellation process on the first echo signal in the mixed signal to obtain a second signal.
  • the mixed signal is a mixture of the second signal and the first echo signal.
  • the first echo signal is a signal output by the first signal shunt unit to the signal cancellation unit during the first signal is sent to the second network device.
  • the first signal shunting unit may be the first signal shunting unit 101 and the signal cancellation unit may be the signal cancellation unit 102.
  • the signal cancellation unit may be the signal cancellation unit 102.
  • the function of sending the first signal and receiving the second signal is realized by using the first signal shunting unit instead of the duplexer.
  • the first signal will be Affects the second signal.
  • the cancellation of the echo signal mixed with the second signal by the signal canceling unit is equivalent to achieving isolation between the duplexer sending the first signal and receiving the second signal.
  • the duplexer function when the duplexer function is implemented through the first signal shunting unit and the signal canceling unit, when the frequency range configuration of the data signal in the first signal and the data signal in the second signal changes, it is not necessary
  • the first signal shunting unit and the signal canceling unit are replaced with hardware, so the workload of the user is reduced, and the user experience is improved.
  • the method further includes:
  • the first signal shunt unit receives the third signal in the training mode, and sends the third signal to the second network device;
  • the signal cancellation unit receives the mixed signal from the first signal shunt unit, and performs cancellation processing on the first echo signal in the mixed signal to obtain a second signal including:
  • the signal cancellation unit receives the third signal, the second echo signal, and the mixed signal from the first signal shunt unit, and calculates an equalization coefficient according to the third signal and the second echo signal.
  • the wave signal is subjected to cancellation processing to obtain a second signal, and the second echo signal is a signal output by the first signal shunt unit to the signal cancellation unit during the third signal is sent to the second network device.
  • the method further includes:
  • the second signal shunting unit receives the third signal, and shunts the first part of the third signal to the signal cancellation unit, and shunts the second part of the third signal to the first signal shunting unit;
  • the second signal shunting unit receives the first signal, shunts a first part of the first signal to the signal cancelling unit, and shunts the second part of the first signal to the first signal shunting unit;
  • Receiving the third signal in the training mode and sending the third signal to the second network device includes:
  • the signal cancellation unit receives the third signal, the second echo signal, and the mixed signal from the first signal shunt unit, and calculates an equalization coefficient according to the third signal and the second echo signal.
  • the wave signal is subjected to cancellation processing to obtain a second signal including:
  • the signal canceling unit calculates an equalization coefficient according to the first partial signal and the second echo signal in the third signal; and performs a cancellation process on the first echo signal in the mixed signal according to the equalization coefficient and the first partial signal in the first signal, A second signal is obtained, and the first echo signal is a second part of the first signal.
  • the signal output by the first signal shunt unit to the signal cancellation unit is obtained.
  • the method further includes:
  • the first filter filters the mixed signal to obtain a first filtered signal.
  • the first filter is a low-pass filter; If the frequency range of the data signal in the first signal is smaller than the frequency range of the data signal in the second signal, the first filter is a high-pass filter;
  • the signal cancellation unit receives the mixed signal from the first signal shunt unit, and performs cancellation processing on the first echo signal in the mixed signal to obtain a second signal including:
  • the signal cancellation unit performs cancellation processing on a first echo signal in the first filtered signal to obtain a second signal.
  • the method further includes:
  • the second filter filters the first part of the third signal to obtain a second filtered signal; wherein if the frequency range of the data signal in the first signal is greater than the frequency range of the data signal in the second signal, the second filter Is a low-pass filter; if the frequency range of the data signal in the first signal is smaller than the frequency range of the data signal in the second signal, the second filter is a high-pass filter;
  • the first filter filters the second echo signal to obtain a third filtered signal
  • Performing cancellation processing on a first echo signal in the first filtered signal to obtain a second signal includes:
  • the first echo signal in the first filtered signal is cancelled to obtain a second signal.
  • the first echo signal includes:
  • the first signal is shunted to the signal cancellation unit when passing the first signal shunt unit; and / or,
  • the first signal is sent from the first signal shunting unit and is a signal reflected back through the network.
  • the first signal shunt unit and the second signal shunt unit include:
  • Coupler and / or brancher Coupler and / or brancher.
  • the first network device includes a coaxial cable media converter
  • the second network device includes a cable modem
  • the first network device includes a cable modem and the second network device includes a coaxial cable media converter.
  • an embodiment of the present application further provides a signal processing device 800.
  • the device is a first network device.
  • the signal processing device 800 can implement the functions of the first network device in the embodiment shown in the figure or the figure.
  • the first network device includes: a memory 801, a processor 802, and a communication unit 803.
  • a processor 802 configured to execute an instruction in a memory and execute the method of any one of claims 9-16;
  • the communication unit 803 is configured to communicate with a second network device.
  • the memory 801, the processor 802, and the communication unit 803 are mutually connected by a bus 804; the bus 804 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus Wait.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 8, but it does not mean that there is only one bus or one type of bus.
  • the memory 801 may be random-access memory (RAM), flash memory, read-only memory (ROM), erasable programmable read-only memory (EPROM), EPROM ), Electrically erasable programmable read-only memory (electrically programmable, read-only memory (EEPROM), registers, hard disks, mobile hard disks, CD-ROMs, or any other form of storage medium known to those skilled in the art.
  • RAM random-access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • EEPROM Electrically erasable programmable read-only memory
  • registers hard disks, mobile hard disks, CD-ROMs, or any other form of storage medium known to those skilled in the art.
  • the memory 801 may represent only one memory, or may represent multiple memories.
  • the processor 802 may be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and a field programmable Gate array (field programmable array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • a processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the processor 802 may represent only one processor, or may represent multiple processors.
  • the communication unit 803 may be, for example, an I / O interface, a LAN interface, a WAN interface, or the like.
  • An embodiment of the present application further provides a computer-readable storage medium including instructions that, when run on a computer, cause the computer to execute the signal processing method in the embodiment shown in FIG. 7 above.
  • the embodiment of the present application further provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the signal processing method in the embodiment shown in FIG. 7.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processor, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium. , Including a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes .
  • the functions described in the present invention may be implemented by hardware, software, firmware, or any combination thereof.
  • the functions may be stored on a computer-readable medium or transmitted as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本申请实施例公开了一种信号处理设备,作为第一网络设备,包括:第一信号分流单元,用于在流量模式下接收第一信号,并向第二网络设备发送第一信号;以及在流量模式下接收来自于第二网络设备的第二信号,并向信号抵消单元发送第二信号,第一信号中数据信号的频率范围和第二信号中数据信号的频率范围不重叠;信号抵消单元,用于接收来自第一信号分流单元的混合信号,并对混合信号中的第一回波信号进行抵消处理,得到第二信号,混合信号为第二信号和第一回波信号相混合的信号,第一回波信号为第一信号在被发送到第二网络设备的过程中,由第一信号分流单元输出给信号抵消单元的信号。本申请还公开了一种信号处理方法,用于提高用户体验。

Description

一种信号处理设备及方法 技术领域
本申请涉及通信领域,尤其涉及一种信号处理设备及方法。
背景技术
在现有的有线通信系统中,常见的物理层双工方式为频分双工(frequency division duplex,FDD)。频分双工是指对于同一设备而言,其下行信号所占用的频率范围和上行信号所占用的频率范围是分开的。为了保证上行信号和下行信号之间不相互干扰,传统方式采用双工器(diplexer)对上行信道和下行信道进行物理隔离。双工器用于对上行信号和下行信号中频率范围较高的信号进行滤波,以及对上行信号和下行信号中频率范围较低的信号进行滤波,其中较高的频率范围与较低的频率范围不重叠。
然而,一种双工器仅仅对应一种较高的频率范围和一种较低的频率范围的配置,如果较高的频率范围和/或较低的频率范围发生改变,则需要更换双工器,这给包含双工器的设备的使用和维护造成额外的负担,用户体验较差。
发明内容
本申请实施例提供了一种信号处理设备,作为第一网络设备,该设备包括:第一信号分流单元和信号抵消单元,第一信号分流单元和信号抵消单元连接。第一信号分流单元可以是耦合器或分支器等硬件,也可以是软件单元。信号抵消单元可以由软件实现。
第一信号分流单元,用于在流量模式下接收第一信号,并向第二网络设备发送第一信号;以及在流量模式下接收来自于第二网络设备的第二信号,并向信号抵消单元发送第二信号,其中,第一信号中数据信号的频率范围和第二信号中数据信号的频率范围不重叠。所谓的第二网络设备是指与第一信号分流单元和信号抵消单元所在的设备相互通信的另外一侧设备。例如,假设第一信号分流单元和信号抵消单元所在的设备为服务器,那么第二网络设备可以是与该服务器通信的终端设备。如果第一网络设备是同轴电缆媒体转换器,那么第二网络设备可以是电缆调制解调器。如果第一网络设备是电缆调制解调器,那么第二网络设备可以是同轴电缆媒体转换器。流量模式是指第一网络设备向第二网络设备发送信号,且第二网络设备也向第一网络设备发送信号的模式。具体的,第一网络设备向第二网络设备发送的是第一信号,第二网络设备向第一网络设备发送的是第二信号。
信号抵消单元,用于接收来自第一信号分流单元的混合信号,并对混合信号中的第一回波信号进行抵消处理,得到第二信号,混合信号为第二信号和第一回波信号相混合的信号,第一回波信号为第一信号在被发送到第二网络设备的过程中,由第一信号分流单元输出给信号抵消单元的信号。
本申请实施例利用第一信号分流单元和信号抵消单元来代替双工器实现双工器的功能。其中,第一信号分流单元接收第一信号并发送给第二网络设备,以及接收第二网络设备发送的第二信号,起到双工器发送和接收信号的功能。同时,因为第一信号和第二信号 都要经过第一信号分流单元,所以第二信号会和第一信号产生的第一回波信号发生混合,形成混合信号进入第一网络设备的接收通道。为了能够获取到第二信号,通过信号抵消单元来对混合信号中的第一回波信号进行抵消处理,得到第二网络设备发出的第二信号。所以信号抵消单元相当于起到双工器中将第一信号和第二信号隔离的作用。而与双工器不同的是,由于第一信号分流单元仅仅起到信号分流的作用,信号抵消单元是软件模块,所以当第一信号中的数据信号和第二信号中的数据信号的频率范围配置发生改变的时候,并不引起硬件上的改变,提高了用户体验。
可选的,第一信号分流单元,还用于在训练模式下接收第三信号,并向第二网络设备发送第三信号。第三信号和第一信号可以是同一个信号来源的不同时间段的信号。训练模式是指第一网络设备向第二网络设备发送信号,但第二网络设备不向第一网络设备发送信号的模式,其目的在于计算均衡系数。具体的,第一网络设备向第二网络设备发送的信号为第三信号。
信号抵消单元,用于接收第三信号、第二回波信号和来自第一信号分流单元的混合信号,并根据第三信号和第二回波信号计算均衡系数,根据均衡系数对混合信号中的第一回波信号进行抵消处理,得到第二信号,第二回波信号为第三信号在被发送到第二网络设备的过程中,由第一信号分流单元输出给信号抵消单元的信号。
通过根据第三信号和第二回波信号计算均衡系数,根据均衡系数对混合信号中的第一回波信号进行抵消处理,得到第二信号。当第一信号中数据信号和第二信号中数据信号的频率范围配置发生变化,改变的只是均衡系数的值,不需要对第一信号分流单元和信号抵消单元进行硬件上的更换,所以减轻了用户的工作量,提高了用户体验。
可选的,信号处理设备还包括:第二信号分流单元,第二信号分流单元分别与第一信号分流单元和信号抵消单元连接。第二信号分流单元,用于接收第三信号,并将第三信号中的第一部分信号分流给信号抵消单元,将第三信号中的第二部分信号分流给第一信号分流单元;以及接收第一信号,并将第一信号的第一部分信号分流给信号抵消单元,将第一信号中的第二部分信号分流给第一信号分流单元。
在训练模式下接收第三信号,并向第二网络设备发送第三信号包括:在训练模式下接收第三信号中的第二部分信号,并向第二网络设备发送第三信号中的第二部分信号。
信号抵消单元,用于根据第三信号中的第一部分信号和第二回波信号计算均衡系数;以及根据均衡系数和第一信号中的第一部分信号,对混合信号中的第一回波信号进行抵消处理,得到第二信号,第一回波信号为第一信号的第二部分信号在被发送到第二网络设备的过程中,由第一信号分流单元输出给信号抵消单元的信号。
在本申请实施例中,利用第二信号分流单元来使信号抵消单元获取到前文提到的第三信号,利用第一信号分流单元、第二信号分流单元和信号抵消单元实现双工器收发信号和隔离的功能,若第一信号和第二信号在中数据信号频率范围的配置上发生变化,影响到的仅仅是信号抵消单元计算得到的均衡系数,无需对第一信号分流单元、第二信号分流单元和信号抵消单元进行硬件更换,所以提高了用户体验。
可选的,为了提高信号抵消单元的抵消处理效率和效果,把混合信号中非必要处理的 部分滤除,信号处理设备还包括:连接在第一信号分流单元和信号抵消单元之间的第一滤波器。其中,若第一信号中数据信号的频率范围大于第二信号中数据信号的频率范围,则第一滤波器为低通滤波器;若第一信号中数据信号的频率范围小于第二信号中数据信号的频率范围,则第一滤波器为高通滤波器。第一滤波器,用于对混合信号进行滤波,得到第一滤波信号。信号抵消单元,用于对第一滤波信号中的第一回波信号进行抵消处理,得到第二信号。
可选的,若设备包括第二信号分流单元,为了提高信号抵消单元的抵消处理效率和效果,则设备还可以包括:连接在第二信号分流单元和信号抵消单元之间的第二滤波器;其中,若第一信号中数据信号的频率范围大于第二信号中数据信号的频率范围,则第二滤波器为低通滤波器;若第一信号中数据信号的频率范围小于第二信号中数据信号的频率范围,则第二滤波器为高通滤波器。第二滤波器,用于对第三信号中的第一部分信号进行滤波,得到第二滤波信号。第一滤波器,还用于对第二回波信号进行滤波,得到第三滤波信号。对第一滤波信号中的第一回波信号进行抵消处理,得到第二信号包括:根据第二滤波信号和第三滤波信号,对第一滤波信号中的第一回波信号进行抵消处理,得到第二信号。
可选的,第一回波信号包括:第一信号在经过第一信号分流单元时分流到信号抵消单元的信号;和/或,第一信号从第一信号分流单元发送出去经过网络反射回来的信号。
可选的,第一信号分流单元和第二信号分流单元包括:耦合器和/或分支器。
可选的,第一网络设备包括同轴电缆媒体转换器,第二网络设备包括电缆调制解调器;或,第一网络设备包括电缆调制解调器,第二网络设备包括同轴电缆媒体转换器。
本申请实施例还提供了一种信号处理方法,应用于第一网络设备,方法包括:
第一信号分流单元在流量模式下接收第一信号,并向第二网络设备发送第一信号;
第一信号分流单元在流量模式下接收来自于第二网络设备的第二信号,并向信号抵消单元发送第二信号,其中,第一信号中数据信号的频率范围和第二信号中数据信号的频率范围不重叠;
信号抵消单元接收来自第一信号分流单元的混合信号,并对混合信号中的第一回波信号进行抵消处理,得到第二信号,混合信号为第二信号和第一回波信号相混合的信号,第一回波信号为第一信号在被发送到第二网络设备的过程中,由第一信号分流单元输出给信号抵消单元的信号。
可选的,方法还包括:第一信号分流单元在训练模式下接收第三信号,并向第二网络设备发送第三信号;信号抵消单元接收来自第一信号分流单元的混合信号,并对混合信号中的第一回波信号进行抵消处理,得到第二信号包括:信号抵消单元接收第三信号、第二回波信号和来自第一信号分流单元的混合信号,并根据第三信号和第二回波信号计算均衡系数,根据均衡系数对混合信号中的第一回波信号进行抵消处理,得到第二信号,第二回波信号为第三信号在被发送到第二网络设备的过程中,由第一信号分流单元输出给信号抵消单元的信号。
可选的,方法还包括:第二信号分流单元接收第三信号,并将第三信号中的第一部分信号分流给信号抵消单元,将第三信号中的第二部分信号分流给第一信号分流单元;第二 信号分流单元接收第一信号,并将第一信号的第一部分信号分流给信号抵消单元,将第一信号中的第二部分信号分流给第一信号分流单元;在训练模式下接收第三信号,并向第二网络设备发送第三信号包括:在训练模式下接收第三信号中的第二部分信号,并向第二网络设备发送第三信号中的第二部分信号;信号抵消单元接收第三信号、第二回波信号和来自第一信号分流单元的混合信号,并根据第三信号和第二回波信号计算均衡系数,根据均衡系数对混合信号中的第一回波信号进行抵消处理,得到第二信号包括:信号抵消单元根据第三信号中的第一部分信号和第二回波信号计算均衡系数;以及根据均衡系数和第一信号中的第一部分信号,对混合信号中的第一回波信号进行抵消处理,得到第二信号,第一回波信号为第一信号的第二部分信号在被发送到第二网络设备的过程中,由第一信号分流单元输出给信号抵消单元的信号。
可选的,方法还包括:第一滤波器对混合信号进行滤波,得到第一滤波信号;其中,若第一信号中数据信号的频率范围大于第二信号中数据信号的频率范围,则第一滤波器为低通滤波器;若第一信号中数据信号的频率范围小于第二信号中数据信号的频率范围,则第一滤波器为高通滤波器;信号抵消单元接收来自第一信号分流单元的混合信号,并对混合信号中的第一回波信号进行抵消处理,得到第二信号包括:信号抵消单元对第一滤波信号中的第一回波信号进行抵消处理,得到第二信号。
可选的,方法还包括:第二滤波器对第三信号中的第一部分信号进行滤波,得到第二滤波信号;其中,若第一信号中数据信号的频率范围大于第二信号中数据信号的频率范围,则第二滤波器为低通滤波器;若第一信号中数据信号的频率范围小于第二信号中数据信号的频率范围,则第二滤波器为高通滤波器;第一滤波器对第二回波信号进行滤波,得到第三滤波信号;对第一滤波信号中的第一回波信号进行抵消处理,得到第二信号包括:根据第二滤波信号和第三滤波信号,对第一滤波信号中的第一回波信号进行抵消处理,得到第二信号。
可选的,第一回波信号包括:第一信号在经过第一信号分流单元时分流到信号抵消单元的信号;和/或,第一信号从第一信号分流单元发送出去经过网络反射回来的信号。
可选的,第一信号分流单元和第二信号分流单元包括:耦合器和/或分支器。
可选的,第一网络设备包括同轴电缆媒体转换器,第二网络设备包括电缆调制解调器;或,第一网络设备包括电缆调制解调器,第二网络设备包括同轴电缆媒体转换器。
本申请实施例还提供了一种信号处理设备,设备为第一网络设备,包括:存储器、处理器和通信单元。存储器,用于存储指令;处理器,用于执行存储器中的指令,执行上述信号处理方法;通信单元,用于与第二网络设备进行通信。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述信号处理方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述信号处理方法。
附图说明
图1为本申请实施例提供的一种信号处理设备的结构框图;
图2为本申请实施例提供的第二信号和第一回波信号的示意图;
图3为本申请实施例提供的第二信号和第一回波信号的另外一个示意图;
图4为本申请实施例提供的另外一种信号处理设备的结构框图;
图5为本申请实施例提供的再一种信号处理设备的结构框图;
图6为本申请实施例提供的再一种信号处理设备的结构框图;
图7为本申请实施例提供的HFC网络系统示意图;
图8为本申请实施例提供的一种信号处理方法的流程图;
图9为本申请实施例提供的再一种信号处理设备的结构框图。
具体实施方式
在传统技术中,为了保证频分双工的上行信号和下行信号之间不相互干扰,在上行信号所占用的频段和下行信号所占用的频段之间,保留一段频段,作为保护带。除了采用上述措施,通常还采用双工器来对上行信号和下行信号进行物理隔离,避免上行信号和下行信号之间相互干扰。但是一种双工器只能具有一种较高频率范围的配置和一种较低频率范围的配置。
例如,电缆数据服务接口规范(data over cable system interface specification,DOCSIS)系统通常支持三种配置:在第一种配置中,较低频率范围的频率范围为5MHz-42MHz,较高频率范围的频率范围为54MHz-1.218GHz,42MHz-54MHz为保护带。在第二种配置中,较低频率范围的频率范围为5MHz-85MHz,较高频率范围的频率范围为108MHz-1.218GHz,85MHz-108MHz为保护带。在第三种配置中,较低频率范围的频率范围为5MHz-204MHz,较高频率范围的频率范围为258MHz-1.218GHz,204MHz-258MHz为保护带。这三种配置需要三种双工器来实现,如果配置发生更改,则需要对双工器进行更换,给用户造成不便。
为了解决上述问题,本申请实施例提供了一种信号处理设备,该设备为第一网络设备,该设备包括:第一信号分流单元和信号抵消单元,所述第一信号分流单元和所述信号抵消单元连接。其中,所述第一信号分流单元,用于在流量模式下接收第一信号,并向第二网络设备发送所述第一信号;以及在流量模式下接收来自于所述第二网络设备的第二信号,并向所述信号抵消单元发送所述第二信号。第一信号中数据信号的频率范围和第二信号中数据信号的频率范围不重叠。所述信号抵消单元,用于接收来自所述第一信号分流单元的混合信号,并对所述混合信号中的第一回波信号进行抵消处理,得到所述第二信号,所述混合信号为所述第二信号和第一回波信号相混合的信号,所述第一回波信号为所述第一信号在被发送到所述第二网络设备的过程中,由所述第一信号分流单元输出给所述信号抵消单元的信号。
也就是说,本申请实施例利用第一信号分流单元和信号抵消单元来代替双工器实现双工器的功能。其中,第一信号分流单元接收第一信号并发送给第二网络设备,以及接收第二网络设备发送的第二信号,起到双工器发送和接收信号的功能。同时,因为第一信号和 第二信号都要经过第一信号分流单元,所以第二信号会和第一信号产生的第一回波信号发生混合,形成混合信号进入第一网络设备的接收通道。为了能够获取到第二信号,通过信号抵消单元来对混合信号中的第一回波信号进行抵消处理,得到第二网络设备发出的第二信号。所以信号抵消单元相当于起到双工器中将第一信号和第二信号隔离的作用。而与双工器不同的是,由于第一信号分流单元仅仅起到信号分流的作用,信号抵消单元是软件模块,所以当第一信号中数据信号和第二信号中数据信号的频率范围配置发生改变的时候,并不引起硬件上的改变,提高了用户体验。
为了便于理解,下面结合附图对本申请实施例提供的信号处理设备进行详细的介绍。
参见图1,该图为本申请实施例提供的一种信号处理设备的结构框图。
本申请实施例提供的信号处理设备包括:
第一信号分流单元101和信号抵消单元102。所述第一信号分流单元101和所述信号抵消单元102连接。
在本实施例中,第一信号分流单元101可以是耦合器(coupler)或分支器(tap)等硬件,也可以是软件单元。信号抵消单元102可以由软件实现。
所述第一信号分流单元101,用于在流量模式下接收第一信号,并向第二网络设备发送所述第一信号。
其中,所谓的第二网络设备是指与第一信号分流单元101和信号抵消单元102所在的设备相互通信的另外一侧设备。例如,假设第一信号分流单元101和信号抵消单元102所在的设备为服务器,那么第二网络设备可以是与该服务器通信的终端设备。如果第一网络设备是同轴电缆媒体转换器(coax media converter,CMC),那么第二网络设备可以是电缆调制解调器(cable modem,CM)。如果第一网络设备是电缆调制解调器,那么第二网络设备可以是同轴电缆媒体转换器。
所述第一信号分流单元101,还用于在流量模式下接收来自于所述第二网络设备的第二信号,并向所述信号抵消单元102发送所述第二信号。
在本申请实施例中,流量模式是指第一网络设备向第二网络设备发送信号,且第二网络设备也向第一网络设备发送信号的模式。具体的,第一网络设备向第二网络设备发送的是第一信号,第二网络设备向第一网络设备发送的是第二信号。
第一信号中数据信号的频率范围和第二信号中数据信号的频率范围不重叠。第一信号中数据信号的频率范围可以高于或低于第二信号中数据信号的频率范围。需要说明的是,在本申请实施例中,数据信号是指包含有效信息的信号。比如说,参见图2,第二信号的整体频率范围中数据信号的频率范围为5MHz-204MHz,其他的频段,即0-5MHz和大于204MHz的频段为非数据信号的频率范围。同理,第一回波信号中数据信号的频率范围为258MHz-1.218GHz,非数据信号的频率范围为除258MHz-1.218GHz以外的范围。所述信号抵消单元102,用于接收来自所述第一信号分流单元101的混合信号,并对所述混合信号中的第一回波信号进行抵消处理,得到所述第二信号。
其中,所述混合信号为所述第二信号和第一回波信号相混合的信号,所述第一回波信 号为所述第一信号在被发送到所述第二网络设备的过程中,由所述第一信号分流单元101输出给所述信号抵消单元102的信号。
在本申请实施例中,第一信号分流单元101可以有三个端口,第一个端口用于接收第一信号,第二个端口用于发送第一信号和接收第二信号,第三个端口用于和信号抵消单元102连接,所以第一信号在经过第一信号分流单元101时会有一部分信号分流到所述信号抵消单元102中,所以所述第一回波信号可以包括所述第一信号在经过所述第一信号分流单元101时分流到所述信号抵消单元102的信号。
此外,当第一信号从第二端口发送出去之后,经过网络中的各种中间设备到达第二网络设备,这些中间设备可能也会包括一些信号分流单元,所以可能会将一部分第一信号反射回来。所以,第一回波信号也可能包括所述第一信号从所述第一信号分流单元101发送出去经过网络反射回来的信号。
由于第一回波信号和第二信号混合,对第二信号造成“污染”,所以需要所述信号抵消单元102对第一回波信号进行抵消处理,得到较为“纯净”的第二信号。
在实际应用中,对第一回波信号进行抵消处理有很多种方法,本申请实施例以其中一种为例进行介绍。
具体的,所述第一信号分流单元101,还用于在训练模式下接收第三信号,并向所述第二网络设备发送所述第三信号。
第三信号和第一信号可以是同一个信号来源的不同时间段的信号。在多数场景下,信号会随着时间的变化而变化,所以第一信号和第三信号在相位和幅度上可能会有不同。当然,第三信号和第一信号越相似,后续对第一回波信号的抵消处理的效果越好;反之亦然。
所述信号抵消单元102,用于接收所述第三信号、第二回波信号和来自所述第一信号分流单元的混合信号,并根据所述第三信号和所述第二回波信号计算均衡系数,根据所述均衡系数对所述混合信号中的第一回波信号进行抵消处理,得到所述第二信号,所述第二回波信号为所述第三信号在被发送到所述第二网络设备的过程中,由所述第一信号分流单元输出给所述信号抵消单元的信号。
其中,所述第二回波信号为所述第三信号在被发送到所述第二网络设备的过程中,由所述第一信号分流单元101输出给所述信号抵消单元102的信号。
在本申请实施例中,训练模式是指第一网络设备向第二网络设备发送信号,但第二网络设备不向第一网络设备发送信号的模式,其目的在于计算均衡系数。具体的,第一网络设备向第二网络设备发送的信号为第三信号。
也就是说,为了使得信号抵消单元101能够获取到第二回波信号,可以预先控制第二网络设备停止发送第二信号,这样第一信号分流单元101只接收第三信号,而不接收第二信号,从而第一信号分流单元101输出给信号抵消单元102的只有第二回波信号。由于第二回波信号和第三信号之间存在一定的比例关系,而这个比例关系随着时间的变化较为稳定。也就是说,第二回波信号与第三信号之间的比例关系,和第一回波信号与第一信号之间的比例关系是相近似的。所以,在当信号抵消单元102接收到混合信号后,可以根据第二回波信号和第三信号之间的关系,对混合信号中的第一回波信号进行抵消处理。
可选的,第二回波信号和第三信号之间的比例关系可以用均衡系数来体现。所谓均衡系数是指能够反映信道逆响应的数据。因而,信号抵消单元102可以根据第三信号和第二回波信号计算均衡系数,并根据均衡系数对第一回波信号进行抵消处理。
在本申请实施例中,通过第一信号分流单元101代替双工器实现发送第一信号和接收第二信号的功能,同时,由于第一信号和第二信号没有被物理隔离,所以第一信号会对第二信号造成影响。通过信号抵消单元102将与第二信号混合的回波信号进行抵消处理,相当于实现了双工器发送第一信号和接收第二信号之间的隔离。由此可见,本申请实施例在通过第一信号分流单元101和信号抵消单元102实现双工器功能的同时,当第一信号中数据信号和第二信号中数据信号的频率范围配置发生变化,不需要对第一信号分流单元101和信号抵消单元102进行硬件上的更换,所以减轻了用户的工作量,提高了用户体验。
如前文所提,在本申请实施例中,第一信号中数据信号的频率范围和第二信号中数据信号的频率范围不重叠。第一信号中数据信号的频率范围高于或低于第二信号中数据信号的频率范围。第一回波信号出自第一信号,第一回波信号中非数据信号会对第二信号造成干扰。
参见图2,该图为第二信号和第一回波信号的示意图。在该图中,第二信号中数据信号的频率范围为5MHz-204MHz;第一回波信号中数据信号的频率范围为258MHz-1.218GHz。所以可以说第二信号为低频信号,第一回波信号为高频信号。由于第一回波信号无用信号的频率范围包括5MHz-204MHz,所以,第二信号中数据信号的频率范围和第一回波信号的中无用信号的频率范围重叠,所以需要着重对第一回波信号的无用信号,即5MHz-204MHz这个频段的信号,进行抵消处理。可选的,在进行抵消处理之前,可以利用低通滤波器将第一回波信号的数据信号滤除,这样信号抵消单元102获取到的第一回波信号就是无用信号,提高信号抵消单元102的抵消处理效率和效果。
参见图3,该图为第二信号和第一回波信号的另外一个示意图。在该图中,第二信号中数据信号的频率范围为258MHz-1.218GHz;第一回波信号中数据信号的频率范围为5MHz-204MHz,所以可以说第二信号为高频信号,第一回波信号为低频信号。由于第一回波信号中无用信号的频率范围包括258MHz-1.218GHz。由此可见,第二信号的频率范围和第一回波信号中无用信号的频率范围重叠,所以需要着重对第一回波信号的无用信号进行抵消处理。可选的,在进行抵消处理之前,可以利用高通滤波器将第一回波信号的数据信号滤除,这样信号抵消单元102获取到的第一回波信号就是无用信号,提高信号抵消单元102的抵消处理效率和效果。
综上所述,参见图4,在本申请实施例中,所述信号处理设备还包括:连接在所述第一信号分流单元和所述信号抵消单元之间的第一滤波器103。
所述第一滤波器103,用于对所述混合信号进行滤波,得到第一滤波信号;
所述信号抵消单元102,用于对所述第一滤波信号中的第一回波信号进行抵消处理,得到所述第二信号。
其中,若第一信号中数据信号的频率范围大于第二信号中数据信号的频率范围,则第 一滤波器为低通滤波器。若第一信号中数据信号的频率范围小于第二信号中数据信号的频率范围,则第一滤波器为高通滤波器。
通过利用第一滤波器102对混合信号进行滤波,把混合信号中非必要处理的部分滤除,可以提高信号抵消单元102的抵消处理效率和效果。
参见图5,该图为本申请实施例提供的再一种信号处理设备的结构框图。
本申请实施例提供的信号处理设备,应用于第一网络设备,具体包括:第一信号分流单元201、第二信号分流单元202和信号抵消单元203。
在本实施例中,第一信号分流单元201和第二信号分流单元202可以是耦合器(coupler)或分支器(tap)等硬件,也可以是软件单元。信号抵消单元203可以由软件实现。
所述第一信号分流单元201、所述第二信号分流单元202和所述信号抵消单元203之间相互连接。
所述第二信号分流单元202,用于在训练模式下接收所述第三信号,并将所述第三信号中的第一部分信号分流给所述信号抵消单元203,将所述第三信号中的第二部分信号分流给所述第一信号分流单元201。
所述第二信号分流单元202,还用于在流量模式下接收第一信号,并将所述第一信号中的第一部分信号分流给所述信号抵消单元203,将所述第一信号中的第二部分信号分流给所述第一信号分流单元201。
第一信号分流单元201,用于接收所述第三信号中的第二部分信号,并向所述第二网络设备发送所述第三信号中的第二部分信号。
第一信号分流单元201,还用于接收所述第一信号中的第二部分信号,并向所述第二网络设备发送所述第一信号中的第二部分信号。
第一信号分流单元201,还用于在流量模式下接收来自于所述第二网络设备的第二信号,并向所述信号抵消单元203发送所述第二信号。
所述信号抵消单元203,用于接收来自所述第一信号分流单元201的混合信号,并根据所述第三信号中的第一部分信号和所述第二回波信号,对所述混合信号中的第一回波信号进行抵消处理。
其中,所述第二回波信号为所述第三信号中的第二部分信号在被发送到所述第二网络设备的过程中,由所述第一信号分流单元201输出给所述信号抵消单元203的信号,所述第一回波信号为所述第一信号的第二部分信号在被发送到所述第二网络设备的过程中,由所述第一信号分流单元201输出给所述信号抵消单元203的信号。
也就是说,在本申请实施例中,利用第二信号分流单元202来使信号抵消单元203获取到前文提到的第三信号。具体的,第三信号经过第二信号分流单元202分出两支,一支为第三信号的第一部分信号,输送给了信号抵消单元203;另一支为第三信号的第二部分信号,输送给了第一信号分流单元201。而第一信号分流单元201在将第三信号的第二部分信号发送给第二网络设备的过程中,会将第二回波信号输出给信号抵消单元203。如前文所提,第一信号分流单元201和第二信号分流单元202传输第三信号的过程中,第二网 络设备不发送第二信号,所以信号抵消单元203能够接收到单纯的第二回波信号,而不是第二回波信号和第二信号的混合。
所以,信号抵消单元203可以根据第二回波信号和第三信号的第一部分信号计算得到均衡系数。
计算均衡系数可以在时域上计算,也可以在频域上计算。若是在时域上计算,由于第三信号的第一部分信号和第二回波信号均为时域信号,所以可以直接根据第三信号的第一部分信号和第二回波信号计算时域上的均衡系数。若是在频域上计算,则需要将第三信号的第一部分信号和第二回波信号先转换为频域信号,然后计算频域上的均衡系数。不论是在时域上计算还是频域上计算,具体的计算方法本领域技术人员应当知晓。
例如,在时域上计算可以采用最小均方误差(least mean square,LMS)法来计算,具体可以包括如下步骤:
1、设置变量和参量:
X(n)为输入向量,或称为训练样本。在本申请实施例中,训练样本可以是第三信号,第三信号可以有多组。第三信号
W(n)为均衡系数,是一个向量;
e(n)为偏差;
Y(n)为实际输出;在本申请实施例中,实际输出可以是采集得到的第二回波信号,每组第三信号对应一个第二回波信号。η为学习速率;
n为迭代次数。
2、初始化,赋给w(0)各一个较小的随机非零值,令n=0
3、对于一组输入样本x(n)和对应的实际输出Y,计算
e(n)=Y(n)-X(n)W(n)
W(n+1)=W(n)+ηX(n)e(n)
4、判断是否满足条件,若满足算法则结束;否则n增加1,转入第3步继续执行,输入另一组样本x(n)和对应的实际输出Y,计算出新的偏差e(n),训练得到新的均衡系数W(n),直到满足条件。
在得到均衡系数之后,信号抵消单元203可以利用该均衡系数对所述混合信号中的第一回波信号进行抵消处理,得到第二信号。
具体的,当第一信号经过第二信号分流单元202时,也会向第三信号一样分为两支,一支为第一信号的第一部分信号,输出到信号抵消单元203;另外一支为第一信号的第二部分信号,输出到第一信号分流单元201,由第一信号分流单元201发送给第二网络设备。所以,信号抵消单元203能够接收到第一信号的第一部分信号。同时,信号抵消单元203也可以接收到第二信号和第一回波信号相混合的信号,即混合信号。其中,第一回波信号为第一信号的第二部分信号在被发送到所述第二网络设备的过程中,由所述第一信号分流单元201输出给所述信号抵消单元203的信号。
而如前文所提,第三信号的第一部分信号和第二回波信号之间存在一定的比例关系,该比例关系可以用均衡系数体现,同理,第一信号的第一部分信号和第一回波信号之间也 存在一定的比例关系,且该比例关系也可以用均衡系数来体现。在信道稳定的情况下,根据第三信号的第一部分信号和第二回波信号得到的均衡系数,和根据第一信号的第一部分信号和第一回波信号得到的均衡系数基本相同,所以可以根据第三信号的第一部分信号和第二回波信号得到的均衡系数,以及第一信号的第一部分信号估计得到第一回波信号。
具体的,若计算得到的均衡系数为时域上的均衡系数,那么可以将均衡系数与第一信号的第一部分信号进行卷积,就可以在时域上得到估计的第一回波信号。若计算得到的均衡系数为频域上的均衡系数,那么可以将均衡系数与第一信号的第一部分信号在频域上相乘,就可以在频域上得到估计的第一回波信号。
在得到估计的第一回波信号之后,就可以利用估计得到的第一回波信号对混合信号中的第一回波信号进行抵消处理。
本申请实施例不对如何利用估计得到的第一回波信号对混合信号中的第一回波信号进行抵消处理。可选的,在得到估计的第一回波信号之后,可以将估计的第一回波信号的相位取反,然后将经过相位取反的估计的第一回波信号和混合信号进行叠加,以抵消混合信号中的第一回波信号。当然,上述方法并不构成对本申请技术方案的限定,本领域技术人员还可以根据实际需要自行设计抵消处理的方案。
本申请实施例中,利用第一信号分流单元201、第二信号分流单元202和信号抵消单元203实现双工器收发信号和隔离的功能,若第一信号和第二信号在中数据信号频率范围的配置上发生变化,影响到的仅仅是信号抵消单元203计算得到的均衡系数,无需对第一信号分流单元201、第二信号分流单元202和信号抵消单元203进行硬件更换,所以提高了用户体验。
此外,在本申请实施例中,第一信号中数据信号和第三信号中数据信号频率范围应当相同。若第一信号为高频信号,那么第三信号也应当为高频信号。若第一信号为低频信号,那么第三信号也应当为低频信号。
若第一信号为高频信号,由于第二信号是低频信号,而第一信号和第三信号的主要部分是高频信号,同时包含有少量的低频信号,所以,第一回波信号和第二回波信号的主要部分也是高频信号,同时包含有少量的低频信号。如果将第一回波信号和第二回波信号的高频部分滤除,则可以有效提高抵消处理器203对低频信号的解析效果和效率,从而提高抵消处理效果和效率。所以,为了提高抵消处理器203的抵消处理效率和效果,可以利用第二回波信号的低频部分对第一回波信号的低频部分进行抵消处理。
若第一信号为低频信号,由于第二信号是高频信号,而第一信号和第三信号的主要部分是低频信号,同时包含有少量的高频信号,所以,第一回波信号和第二回波信号的主要部分也是低频信号,同时包含有少量的高频信号。如果将第一回波信号和第二回波信号的低频部分滤除,则可以有效提高抵消处理器203对高频信号的解析效果和效率,从而提高抵消处理效果和效率。所以,为了提高抵消处理器203的抵消处理效率和效果,可以利用第二回波信号的高频部分对第一回波信号的高频部分进行抵消处理。
为了实现上述目标,可选的,参见图6,本申请实施例提供的信号处理设备还可以包 括第一滤波器204和第二滤波器205。
其中,第二滤波器205,用于对所述第三信号中的第一部分信号进行滤波,得到第二滤波信号。
第一滤波器204,用于对所述第二回波信号进行滤波,得到第三滤波信号;以及对混合信号进行滤波,得到第一滤波信号。
信号抵消单元203,用于接收来自所述第一信号分流单元201的第一滤波信号,并根据所述第二滤波信号和第三滤波信号,对所述第一滤波信号中的第一回波信号进行抵消处理,得到第二信号。
其中,若所述第一信号中数据信号的频率范围大于所述第二信号中数据信号的频率范围,则所述第一滤波器和第二滤波器为低通滤波器。若所述第一信号中数据信号的频率范围小于所述第二信号中数据信号的频率范围,则所述第一滤波器和第二滤波器为高通滤波器。
利用第二滤波器205对第三信号中的第一部分信号的非必要部分进行滤除,得到第二滤波信号,通过第一滤波器204对所述第二回波信号的非必要部分进行滤除,得到第三滤波信号,这样信号抵消单元203就可以根据第二滤波信号和第三滤波信号,对通过第一滤波器204得到的第一滤波信号进行抵消处理,有效提高了抵消处理器203的抵消处理效率和效果。
另外,如前文所提,第一信号经过第二信号分流单元202时,也会向第三信号一样分为两支,一支为第一信号的第一部分信号,输出到信号抵消单元203;另外一支为第一信号的第二部分信号,输出到第一信号分流单元201,由第一信号分流单元201发送给第二网络设备。所以,第二滤波器205,还用于对第一信号的第一部分信号进行滤波,得到第四滤波信号。而信号抵消单元203可以根据第二滤波信号和第三滤波信号计算均衡系数,并利用均衡系数和第四滤波信号对第一滤波信号进行抵消处理。
在本申请实施例中,第一滤波器204的频率范围和第二滤波器205的频率范围应当是接近的,甚至是相同的,并且需要至少包含第二信号中数据信号的频率范围。
为了保证在第二信号中数据信号的频率范围配置发生变化时不会更换上述滤波器,上述滤波器的频率范围可以根据第二信号中数据信号的多种频率范围配置来确定最大值和最小值,保证覆盖多种频率范围配置。例如,第二信号中数据信号的频率范围配置包括三种:一种为5MHz-42MHz,一种为5MHz-85MHz,另外一种为5MHz-204MHz。那么第一滤波器204和第二滤波器205的频率范围可以设置为5MHz-204MHz,以保证无论更换哪种第二信号频率范围的配置,都无需对第一滤波器204和第二滤波器205在硬件上进行更换。
当然,如果上述滤波器的频率范围大于第二信号中数据信号的频率范围,则可以通过数字滤波的方式进行再次滤波,使得得到的上述滤波信号为第二信号中数据信号的频率范围,进一步提高抵消处理器203的抵消处理效率和效果。
例如第一滤波器204和第二滤波器205的频率范围设置为5MHz-204MHz,而第二信号中数据信号的频率范围为5MHz-85MHz,那么在第一滤波器204和第二滤波器205滤波之后,可以采用数字滤波的方式来对85MHz-204MHz之内的信号进行滤波,以使到达抵消处 理器203的信号为5MHz-85MHz的信号。由于数字滤波是在软件层面上实现的,所以在其频率范围发生变化时不需要在硬件上发生改动。
为了更加了解本申请实施例提供的技术方案,下面以混合光纤同轴网络(hybrid fiber coax,HFC)网络为例对本申请实施例的信号处理设备进行介绍。
参见图7,该图为HFC网络系统示意图,该系统包括同轴电缆媒体转换器30和电缆调制解调器40。
其中,CMC包括数字板(digital board)和射频板(Radio Frequency board,RF board)。
数字板包括信号产生单元300、数模转换器(digital to analog converter,DAC)301、功率放大器(power amplifier,PA)302、模数转换器(analog to digital converter,ADC)303、信号抵消单元304、模数转换器305和低噪放大器(low noise amplifier,LNA)306。
射频板包括功率放大器307、分支器308、分支器309、低通滤波器310和低通滤波器311。
其中,数模转换器301和功率放大器302连接,功率放大器302和功率放大器307连接,功率放大器307和分支器308连接,分支器308分别与分支器309和低通滤波器310连接,低通滤波器310和模数转换器303连接,模数转换器303和信号抵消单元304连接,分支器309分别电缆调制解调器40以及低通滤波器311连接,低通滤波器311和低噪放大器306连接,低噪放大器306和模数转换器305连接,模数转换器305和信号抵消单元304连接。
在本申请实施例中包括三个源信号,即下行信号D1、下行信号D2以及上行信号U1。其中,下行信号D1可以视为前文中的第三信号,下行信号D2可以视为前文中的第一信号,上行信号U1可以视为前文中的第二信号。
其中,先CMC30可以先发送下行信号D1,后发送下行信号D2,且在发送下行信号D1的过程中CM40不发送上行信号U1,而在发送下行信号D2的过程中可以发送上行信号U1。
信号产生单元300,用于生成下行信号D1,下行信号D1为数字信号。
数模转换器301,用于将下行信号D1从数字信号转换为模拟信号M1。
功率放大器302,用于将该模拟信号M1进行放大,得到放大信号A1。
功率放大器303,用于将放大信号A1进行放大,得到放大信号A2。
分支器308,用于将放大信号A2的第一部分信号分流给低通滤波器310,第二部分信号分流给分支器309。
低通滤波器310,用于对放大信号A2第一部分信号进行滤波,得到低频信号L1。
模数转换器303,用于对低频信号L1从模拟信号转换为数字信号S1,并将该数字信号S1发送给信号抵消单元304。
分支器309,用于将放大信号A2的第二部分信号中的一部分分流给低通滤波器311,另外一部分发送给电缆调制解调器40。
低通滤波器311,用于对来自分支器309的回波信号H1进行滤波,得到低频信号L2。 其中,来自分支器309的回波信号H1可以不仅包括放大信号A2的第二部分信号分流给低通滤波器311的信号,还可以包括第二部分信号发送给电缆调制解调器40的过程中通过网络反射回来的信号。
低噪放大器306,用于将低频信号L2进行放大,得到放大信号A3。
模数转换器305,用于将放大信号A3从模拟信号转换为数字信号S2,并将该数字信号S2发送给信号抵消单元304。
信号抵消单元304,用于根据数字信号S1和数字信号S2计算均衡系数。
在得到均衡系数之后,数模转换器301,还用于将来自于信号产生单元300的下行信号D2从数字信号转换为模拟信号M2。
功率放大器302,还用于将该模拟信号M2进行放大,得到放大信号A4。
功率放大器303,用于将放大信号A4进行放大,得到放大信号A5。
分支器308,用于将放大信号A5的第一部分信号分流给低通滤波器310,第二部分信号分流给分支器309。
低通滤波器310,用于对放大信号A5的第一部分信号进行滤波,得到低频信号L3。
模数转换器303,用于对低频信号L3从模拟信号转换为数字信号S3,并将该数字信号S3发送给信号抵消单元304。
分支器309,用于将放大信号A5的第二部分信号中的一部分分流给低通滤波器311,另外一部分发送给电缆调制解调器40。
分支器309,还用于接收来自于电缆调制解调器40的上行信号U1。
低通滤波器311,还用于对混合信号进行滤波,得到滤波信号L4。混合信号包括上行信号U1和来自分支器309回波信号H2。
来自分支器309的回波信号H2可以不仅包括放大信号A5的第二部分信号分流给低通滤波器311的信号,还可以包括第二部分信号发送给电缆调制解调器40的过程中通过网络反射回来的信号。
低噪放大器306,还用于滤波信号L4进行放大,得到放大信号A6。
模数转换器305,还用于将放大信号A6从模拟信号转换为数字信号S4,并将该数字信号S4发送给信号抵消单元304。
信号抵消单元304,还用于根据之前计算得到的均衡系数和数字信号S3对数字信号S4进行抵消处理,消除数字信号S4中夹杂的回波信号H2,得到上行信号U1。
基于上述方案,不仅保证能够得到较为“纯净”的上行信号U1,起到了将上行信号U1和下行信号D2隔离的作用,而且当上行信号U1中数据信号和下行信号D2中数据信号的频率范围配置改变时,改变的仅仅是信号抵消单元304计算出来的均衡系数的值,不需要对硬件进行更换,提高了用户体验。
另外,需要说明的是,在图7中,功率放大器302和功率放大器303除了可以连接在数模转换器301和分支器308之间这种连接方式,还可以有其他连接方式。比如说,功率放大器302连接在数模转换器301和分支器308之间,而功率放大器303连接在分支器308和分支器309之间。或者,功率放大器302和功率放大器303连接在分支器308和分支器 309之间。
需要说明的是,在图7所示的实施例中,下行信号D1和下行信号D2为高频信号,上行信号U1为低频信号。但是在实际应用中,还可能反过来,即下行信号D1和下行信号D2为低频信号,上行信号U1为高频信号,下行信号D1中数据信号和下行信号D2中数据信号的频率范围小于上行信号U1中数据信号的频率范围,比如说,上述CMC30中的各个单元部署在CM40中。在这种场景下,可以通过将上述提到的所有低通滤波器替换为高通滤波器,来实现本申请当上下行信号中数据信号的频率范围发生变化时不需要在硬件上发生改动的目的。
基于上述实施例提供的信号处理设备,本申请实施例还提供一种信号处理方法。
参见图8,本申请实施例提供的信号处理方法应用于第一网络设备,方法包括:
S101:第一信号分流单元在流量模式下接收第一信号,并向第二网络设备发送第一信号。
S102:第一信号分流单元在流量模式下接收来自于第二网络设备的第二信号,并向信号抵消单元发送第二信号,其中,第一信号中数据信号的频率范围和第二信号中数据信号的频率范围不重叠。
S103:信号抵消单元接收来自第一信号分流单元的混合信号,并对混合信号中的第一回波信号进行抵消处理,得到第二信号,混合信号为第二信号和第一回波信号相混合的信号,第一回波信号为第一信号在被发送到第二网络设备的过程中,由第一信号分流单元输出给信号抵消单元的信号。
在图7所示的实施例中,第一信号分流单元可以是第一信号分流单元101,信号抵消单元可以是信号抵消单元102,具体细节请参见上文,此处不再赘述。
在本申请实施例中,通过第一信号分流单元代替双工器实现发送第一信号和接收第二信号的功能,同时,由于第一信号和第二信号没有被物理隔离,所以第一信号会对第二信号造成影响。通过信号抵消单元将与第二信号混合的回波信号进行抵消处理,相当于实现了双工器发送第一信号和接收第二信号之间的隔离。由此可见,本申请实施例在通过第一信号分流单元和信号抵消单元实现双工器功能的同时,当第一信号中数据信号和第二信号中数据信号的频率范围配置发生变化,不需要对第一信号分流单元和信号抵消单元进行硬件上的更换,所以减轻了用户的工作量,提高了用户体验。
可选的,方法还包括:
第一信号分流单元在训练模式下接收第三信号,并向第二网络设备发送第三信号;
信号抵消单元接收来自第一信号分流单元的混合信号,并对混合信号中的第一回波信号进行抵消处理,得到第二信号包括:
信号抵消单元接收第三信号、第二回波信号和来自第一信号分流单元的混合信号,并根据第三信号和第二回波信号计算均衡系数,根据均衡系数对混合信号中的第一回波信号进行抵消处理,得到第二信号,第二回波信号为第三信号在被发送到第二网络设备的过程中,由第一信号分流单元输出给信号抵消单元的信号。
可选的,方法还包括:
第二信号分流单元接收第三信号,并将第三信号中的第一部分信号分流给信号抵消单元,将第三信号中的第二部分信号分流给第一信号分流单元;
第二信号分流单元接收第一信号,并将第一信号的第一部分信号分流给信号抵消单元,将第一信号中的第二部分信号分流给第一信号分流单元;
在训练模式下接收第三信号,并向第二网络设备发送第三信号包括:
在训练模式下接收第三信号中的第二部分信号,并向第二网络设备发送第三信号中的第二部分信号;
信号抵消单元接收第三信号、第二回波信号和来自第一信号分流单元的混合信号,并根据第三信号和第二回波信号计算均衡系数,根据均衡系数对混合信号中的第一回波信号进行抵消处理,得到第二信号包括:
信号抵消单元根据第三信号中的第一部分信号和第二回波信号计算均衡系数;以及根据均衡系数和第一信号中的第一部分信号,对混合信号中的第一回波信号进行抵消处理,得到第二信号,第一回波信号为第一信号的第二部分信号在被发送到第二网络设备的过程中,由第一信号分流单元输出给信号抵消单元的信号。
可选的,方法还包括:
第一滤波器对混合信号进行滤波,得到第一滤波信号;其中,若第一信号中数据信号的频率范围大于第二信号中数据信号的频率范围,则第一滤波器为低通滤波器;若第一信号中数据信号的频率范围小于第二信号中数据信号的频率范围,则第一滤波器为高通滤波器;
信号抵消单元接收来自第一信号分流单元的混合信号,并对混合信号中的第一回波信号进行抵消处理,得到第二信号包括:
信号抵消单元对第一滤波信号中的第一回波信号进行抵消处理,得到第二信号。
可选的,方法还包括:
第二滤波器对第三信号中的第一部分信号进行滤波,得到第二滤波信号;其中,若第一信号中数据信号的频率范围大于第二信号中数据信号的频率范围,则第二滤波器为低通滤波器;若第一信号中数据信号的频率范围小于第二信号中数据信号的频率范围,则第二滤波器为高通滤波器;
第一滤波器对第二回波信号进行滤波,得到第三滤波信号;
对第一滤波信号中的第一回波信号进行抵消处理,得到第二信号包括:
根据第二滤波信号和第三滤波信号,对第一滤波信号中的第一回波信号进行抵消处理,得到第二信号。
可选的,第一回波信号包括:
第一信号在经过第一信号分流单元时分流到信号抵消单元的信号;和/或,
第一信号从第一信号分流单元发送出去经过网络反射回来的信号。
可选的,第一信号分流单元和第二信号分流单元包括:
耦合器和/或分支器。
可选的,第一网络设备包括同轴电缆媒体转换器,第二网络设备包括电缆调制解调器;或,
第一网络设备包括电缆调制解调器,第二网络设备包括同轴电缆媒体转换器。
参见图9,本申请实施例还提供了一种信号处理设备800,该设备为第一网络设备,信号处理设备800可以实现如图或图所示实施例中第一网络设备的功能。第一网络设备包括:存储器801、处理器802和通信单元803,
存储器801,用于存储指令;
处理器802,用于执行存储器中的指令,执行权利要求9-16任意一项的方法;
通信单元803,用于与第二网络设备进行通信。
存储器801、处理器802和通信单元803通过总线804相互连接;总线804可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
上述存储器801可以是随机存取存储器(random-access memory,RAM)、闪存(flash)、只读存储器(read only memory,ROM)、可擦写可编程只读存储器(erasable programmable read only memory,EPROM)、电可擦除可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、寄存器(register)、硬盘、移动硬盘、CD-ROM或者本领域技术人员知晓的任何其他形式的存储介质。存储器801可以仅表示一个存储器,也可以表示多个存储器。
上述处理器802例如可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。处理器802可以仅表示一个处理器,也可以表示多个处理器。
上述通信单元803例如可以是I/O接口、LAN接口和WAN接口等。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行以上如图7所示实施例的信号处理方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行以上如图7所示实施例的信号处理方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (19)

  1. 一种信号处理设备,作为第一网络设备,其特征在于,所述设备包括:
    第一信号分流单元和信号抵消单元,所述第一信号分流单元和所述信号抵消单元连接;
    所述第一信号分流单元,用于在流量模式下接收第一信号,并向第二网络设备发送所述第一信号;以及在所述流量模式下接收来自于所述第二网络设备的第二信号,并向所述信号抵消单元发送所述第二信号,其中,第一信号中数据信号的频率范围和第二信号中数据信号的频率范围不重叠;
    所述信号抵消单元,用于接收来自所述第一信号分流单元的混合信号,并对所述混合信号中的第一回波信号进行抵消处理,得到所述第二信号,所述混合信号为所述第二信号和第一回波信号相混合的信号,所述第一回波信号为所述第一信号在被发送到所述第二网络设备的过程中,由所述第一信号分流单元输出给所述信号抵消单元的信号。
  2. 根据权利要求1所述的设备,其特征在于,
    所述第一信号分流单元,还用于在训练模式下接收第三信号,并向所述第二网络设备发送所述第三信号;
    所述信号抵消单元,用于接收所述第三信号、第二回波信号和来自所述第一信号分流单元的混合信号,并根据所述第三信号和所述第二回波信号计算均衡系数,根据所述均衡系数对所述混合信号中的第一回波信号进行抵消处理,得到所述第二信号,所述第二回波信号为所述第三信号在被发送到所述第二网络设备的过程中,由所述第一信号分流单元输出给所述信号抵消单元的信号。
  3. 根据权利要求2所述的设备,其特征在于,所述设备还包括:
    第二信号分流单元,所述第二信号分流单元分别与所述第一信号分流单元和所述信号抵消单元连接;
    所述第二信号分流单元,用于接收所述第三信号,并将所述第三信号中的第一部分信号分流给所述信号抵消单元,将所述第三信号中的第二部分信号分流给所述第一信号分流单元;以及接收所述第一信号,并将所述第一信号的第一部分信号分流给所述信号抵消单元,将所述第一信号中的第二部分信号分流给所述第一信号分流单元;
    所述在训练模式下接收第三信号,并向所述第二网络设备发送所述第三信号包括:
    在训练模式下接收所述第三信号中的第二部分信号,并向所述第二网络设备发送所述第三信号中的第二部分信号;
    所述信号抵消单元,用于根据所述第三信号中的第一部分信号和所述第二回波信号计算均衡系数;以及根据所述均衡系数和所述第一信号中的第一部分信号,对所述混合信号中的第一回波信号进行抵消处理,得到所述第二信号,所述第一回波信号为所述第一信号的第二部分信号在被发送到所述第二网络设备的过程中,由所述第一信号分流单元输出给所述信号抵消单元的信号。
  4. 根据权利要求1-3任一项所述的设备,其特征在于,所述设备还包括:
    连接在所述第一信号分流单元和所述信号抵消单元之间的第一滤波器;其中,若所述第一信号中数据信号的频率范围大于所述第二信号中数据信号的频率范围,则所述第一滤 波器为低通滤波器;若所述第一信号中数据信号的频率范围小于所述第二信号中数据信号的频率范围,则所述第一滤波器为高通滤波器;
    所述第一滤波器,用于对所述混合信号进行滤波,得到第一滤波信号;
    所述信号抵消单元,用于对所述第一滤波信号中的第一回波信号进行抵消处理,得到所述第二信号。
  5. 根据权利要求4所述的设备,其特征在于,若所述设备包括第二信号分流单元,则所述设备还包括:
    连接在所述第二信号分流单元和所述信号抵消单元之间的第二滤波器;其中,若所述第一信号中数据信号的频率范围大于所述第二信号中数据信号的频率范围,则所述第二滤波器为低通滤波器;若所述第一信号中数据信号的频率范围小于所述第二信号中数据信号的频率范围,则所述第二滤波器为高通滤波器;
    所述第二滤波器,用于对所述第三信号中的第一部分信号进行滤波,得到第二滤波信号;
    所述第一滤波器,还用于对所述第二回波信号进行滤波,得到第三滤波信号;
    所述对所述第一滤波信号中的第一回波信号进行抵消处理,得到第二信号包括:
    根据所述第二滤波信号和第三滤波信号,对所述第一滤波信号中的第一回波信号进行抵消处理,得到所述第二信号。
  6. 根据权利要求1所述的设备,其特征在于,所述第一回波信号包括:
    所述第一信号在经过所述第一信号分流单元时分流到所述信号抵消单元的信号;和/或,
    所述第一信号从所述第一信号分流单元发送出去经过网络反射回来的信号。
  7. 根据权利要求3所述的设备,其特征在于,所述第一信号分流单元和所述第二信号分流单元包括:
    耦合器和/或分支器。
  8. 根据权利要求1-7任一项所述的设备,其特征在于,所述第一网络设备包括同轴电缆媒体转换器,所述第二网络设备包括电缆调制解调器;或,
    所述第一网络设备包括电缆调制解调器,所述第二网络设备包括同轴电缆媒体转换器。
  9. 一种信号处理方法,其特征在于,应用于第一网络设备,所述方法包括:
    第一信号分流单元在流量模式下接收第一信号,并向第二网络设备发送所述第一信号;
    所述第一信号分流单元在流量模式下接收来自于所述第二网络设备的第二信号,并向信号抵消单元发送所述第二信号,其中,第一信号中数据信号的频率范围和第二信号中数据信号的频率范围不重叠;
    所述信号抵消单元接收来自所述第一信号分流单元的混合信号,并对所述混合信号中的第一回波信号进行抵消处理,得到所述第二信号,所述混合信号为所述第二信号和第一回波信号相混合的信号,所述第一回波信号为所述第一信号在被发送到所述第二网络设备的过程中,由所述第一信号分流单元输出给所述信号抵消单元的信号。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一信号分流单元在训练模式下接收第三信号,并向所述第二网络设备发送所述第三信号;
    所述信号抵消单元接收来自所述第一信号分流单元的混合信号,并对所述混合信号中的第一回波信号进行抵消处理,得到所述第二信号包括:
    所述信号抵消单元接收所述第三信号、第二回波信号和来自所述第一信号分流单元的混合信号,并根据所述第三信号和所述第二回波信号计算均衡系数,根据所述均衡系数对所述混合信号中的第一回波信号进行抵消处理,得到所述第二信号,所述第二回波信号为所述第三信号在被发送到所述第二网络设备的过程中,由所述第一信号分流单元输出给所述信号抵消单元的信号。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    第二信号分流单元接收所述第三信号,并将所述第三信号中的第一部分信号分流给所述信号抵消单元,将所述第三信号中的第二部分信号分流给所述第一信号分流单元;
    所述第二信号分流单元接收所述第一信号,并将所述第一信号的第一部分信号分流给所述信号抵消单元,将所述第一信号中的第二部分信号分流给所述第一信号分流单元;
    所述在训练模式下接收第三信号,并向所述第二网络设备发送所述第三信号包括:
    在训练模式下接收所述第三信号中的第二部分信号,并向所述第二网络设备发送所述第三信号中的第二部分信号;
    所述信号抵消单元接收所述第三信号、第二回波信号和来自所述第一信号分流单元的混合信号,并根据所述第三信号和所述第二回波信号计算均衡系数,根据所述均衡系数对所述混合信号中的第一回波信号进行抵消处理,得到所述第二信号包括:
    所述信号抵消单元根据所述第三信号中的第一部分信号和所述第二回波信号计算均衡系数;以及根据所述均衡系数和所述第一信号中的第一部分信号,对所述混合信号中的第一回波信号进行抵消处理,得到所述第二信号,所述第一回波信号为所述第一信号的第二部分信号在被发送到所述第二网络设备的过程中,由所述第一信号分流单元输出给所述信号抵消单元的信号。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述方法还包括:
    第一滤波器对所述混合信号进行滤波,得到第一滤波信号;其中,若所述第一信号中数据信号的频率范围大于所述第二信号中数据信号的频率范围,则所述第一滤波器为低通滤波器;若所述第一信号中数据信号的频率范围小于所述第二信号中数据信号的频率范围,则所述第一滤波器为高通滤波器;
    所述信号抵消单元接收来自所述第一信号分流单元的混合信号,并对所述混合信号中的第一回波信号进行抵消处理,得到所述第二信号包括:
    所述信号抵消单元对所述第一滤波信号中的第一回波信号进行抵消处理,得到所述第二信号。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    第二滤波器对所述第三信号中的第一部分信号进行滤波,得到第二滤波信号;其中,若所述第一信号中数据信号的频率范围大于所述第二信号中数据信号的频率范围,则所述 第二滤波器为低通滤波器;若所述第一信号中数据信号的频率范围小于所述第二信号中数据信号的频率范围,则所述第二滤波器为高通滤波器;
    所述第一滤波器对所述第二回波信号进行滤波,得到第三滤波信号;
    所述对所述第一滤波信号中的第一回波信号进行抵消处理,得到第二信号包括:
    根据所述第二滤波信号和第三滤波信号,对所述第一滤波信号中的第一回波信号进行抵消处理,得到所述第二信号。
  14. 根据权利要求9所述的方法,其特征在于,所述第一回波信号包括:
    所述第一信号在经过所述第一信号分流单元时分流到所述信号抵消单元的信号;和/或,
    所述第一信号从所述第一信号分流单元发送出去经过网络反射回来的信号。
  15. 根据权利要求11所述的方法,其特征在于,所述第一信号分流单元和所述第二信号分流单元包括:
    耦合器和/或分支器。
  16. 根据权利要求9-15任一项所述的方法,其特征在于,所述第一网络设备包括同轴电缆媒体转换器,所述第二网络设备包括电缆调制解调器;或,
    所述第一网络设备包括电缆调制解调器,所述第二网络设备包括同轴电缆媒体转换器。
  17. 一种信号处理设备,其特征在于,所述设备为第一网络设备,包括:存储器、处理器和通信单元,
    所述存储器,用于存储指令;
    所述处理器,用于执行所述存储器中的所述指令,执行权利要求9-16任意一项所述的方法;
    所述通信单元,用于与第二网络设备进行通信。
  18. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行以上权利要求9-16任意一项所述的方法。
  19. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行以上权利要求9-16任意一项所述的方法。
PCT/CN2018/106638 2018-09-20 2018-09-20 一种信号处理设备及方法 WO2020056657A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/106638 WO2020056657A1 (zh) 2018-09-20 2018-09-20 一种信号处理设备及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/106638 WO2020056657A1 (zh) 2018-09-20 2018-09-20 一种信号处理设备及方法

Publications (1)

Publication Number Publication Date
WO2020056657A1 true WO2020056657A1 (zh) 2020-03-26

Family

ID=69888130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106638 WO2020056657A1 (zh) 2018-09-20 2018-09-20 一种信号处理设备及方法

Country Status (1)

Country Link
WO (1) WO2020056657A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040203458A1 (en) * 2002-10-15 2004-10-14 Nigra Louis M. Method and apparatus to reduce interference in a communication device
CN102111177A (zh) * 2010-12-24 2011-06-29 重庆大学 一种双天线全双工软件无线电收发机
CN103873399A (zh) * 2012-12-11 2014-06-18 华为技术有限公司 信号干扰处理方法、装置及中继设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040203458A1 (en) * 2002-10-15 2004-10-14 Nigra Louis M. Method and apparatus to reduce interference in a communication device
CN102111177A (zh) * 2010-12-24 2011-06-29 重庆大学 一种双天线全双工软件无线电收发机
CN103873399A (zh) * 2012-12-11 2014-06-18 华为技术有限公司 信号干扰处理方法、装置及中继设备

Similar Documents

Publication Publication Date Title
JP6377680B2 (ja) 送信機−受信機間の阻止のためのインピーダンス平衡
US10797750B2 (en) System architecture for supporting digital pre-distortion and full duplex in cable network environments
JP5695268B2 (ja) 広帯域オーディオ信号のための計算節減エコーキャンセラ
JP2014179986A (ja) 無線周波数送信器のノイズ消去
JP2015524212A (ja) 複数の減衰遅延を使用した干渉をキャンセルするためのシステムおよび方法
CN108337079B (zh) 用于全双工线缆调制解调器的前端
EP2798759A1 (en) Techniques to simultaneously transmit and receive over the same radio-frequency carrier
CN107819710B (zh) Iq失配补偿方法和装置、补偿设备及通信设备
CN108111186A (zh) 一种零中频全双工收发机的数字自干扰消除方法
WO2013131279A1 (zh) 抵消多载波发射干扰的方法、装置、设备及系统
US20170012802A1 (en) Method for Sending and Receiving Signal, and Corresponding Device and System
WO2014197484A1 (en) Configurable pre-emphasis component for transmission circuitry
US20190296791A1 (en) Echo cancellation leveraging out-of-band frequencies
CN114696868A (zh) 降低nr和wifi干扰的方法、装置、设备和存储介质
US8565707B2 (en) Cancellation of spectral images in communication devices
EP3570446B1 (en) Echo cancellation in a multiport data transceiver
WO2020056657A1 (zh) 一种信号处理设备及方法
TWI488451B (zh) 可適性混成系統、可適性混成電路調整方法、可適性混成電路調諧方法
WO2021031787A1 (zh) 路由器及其干扰消除装置、方法、及存储介质
CN113067150B (zh) 抗干扰天线及用于抗干扰天线的控制方法
US11575400B2 (en) PIM cancellation
GB2553183A (en) System architecture for supporting digital, pre-distortion and full duplex in cable network environments
CN101521643A (zh) 干扰信号的处理方法和系统
US11880320B1 (en) Common-mode signaling and coupler bypass in legacy busses
WO2016192470A1 (zh) 抑制噪声干扰的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934372

Country of ref document: EP

Kind code of ref document: A1