WO2020056600A1 - 触控组件、装置及触控方法 - Google Patents

触控组件、装置及触控方法 Download PDF

Info

Publication number
WO2020056600A1
WO2020056600A1 PCT/CN2018/106294 CN2018106294W WO2020056600A1 WO 2020056600 A1 WO2020056600 A1 WO 2020056600A1 CN 2018106294 W CN2018106294 W CN 2018106294W WO 2020056600 A1 WO2020056600 A1 WO 2020056600A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
electrodes
sliding
touch operation
Prior art date
Application number
PCT/CN2018/106294
Other languages
English (en)
French (fr)
Inventor
刘诗雨
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to KR1020207024836A priority Critical patent/KR102462150B1/ko
Priority to PCT/CN2018/106294 priority patent/WO2020056600A1/zh
Priority to CN201880001537.6A priority patent/CN109416610B/zh
Priority to EP18914925.5A priority patent/EP3647921A4/en
Priority to US16/658,158 priority patent/US11334204B2/en
Publication of WO2020056600A1 publication Critical patent/WO2020056600A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds

Definitions

  • the present application relates to the field of touch technology, and in particular, to a touch component, a touch device using the touch component, and a touch method applied to the touch device.
  • capacitive touch technology has greatly improved the way of human-computer interaction.
  • traditional large-screen electronic devices such as mobile phones, tablets, and notebook computers generally use capacitive touch technology.
  • the market demand for wearable small electronic devices is growing rapidly, and there is still room for improvement in its human-computer interaction technology.
  • the prior art has at least the following problems:
  • the existing touch electrode patterns that implement touch operations with fewer channels can only implement sliding operations in one direction, and cannot meet the requirements of up, down, left, and right.
  • two-layer sensor electrodes or sensor electrodes with a bridge structure are often required.
  • the purpose of some embodiments of the present application is to provide a touch component, a touch device using the touch component, and a touch method applied to the touch device, which can provide a wearable device with a simple structure and a low cost. And a flexible touch solution.
  • An embodiment of the present application provides a touch-sensitive component, which is applied to a wearable device.
  • the touch-sensitive component includes: M self-capacitance touch electrodes disposed on a single-layer pattern wiring layer, and each of the touch electrodes passes through The wires on the pattern routing layer are connected to a touch chip; M is a positive integer less than 10 and greater than 2; M touch electrodes form a touch sensing surface of the touch component, and the touch sensing surface has At least two sliding detection directions, at least two of the sliding detection directions intersect, and the number of touch electrodes in each of the sliding detection directions is greater than one.
  • An embodiment of the present application further provides a touch device, including a touch chip and a touch component as described above; each touch electrode of the touch component is electrically connected to the touch chip, respectively.
  • An embodiment of the present application further provides a touch method applied to a wearable device.
  • the wearable device includes a touch chip and a touch component, and the touch component includes a single-layer pattern routing layer.
  • M self-capacitance touch electrodes each of which is connected to the touch chip through a wire on the pattern routing layer; M is a positive integer less than 10 and greater than 2; and the M touch electrodes are formed
  • the touch sensing surface of the touch component, the touch sensing surface has at least two sliding detection directions, at least two of the sliding detection directions intersect, and the number of touch electrodes in each of the sliding detection directions is greater than 1;
  • the touch method includes: obtaining multi-frame touch data of a touch operation based on the touch component collection; analyzing and obtaining touch position information of the touch operation according to the multi-frame touch data analysis; the touch The position information includes at least one touch position; wherein a touch voltage having a maximum self-capacitance change amount and a self-capacitance change amount greater than a preset
  • the embodiments of the present application may use at least two touch electrodes on a single patterned routing layer to form at least two slide detection directions, where at least two slide detection directions intersect and each of the slide detection directions
  • the number of touch electrodes is greater than one, that is, each slide detection direction can detect slide operations in different directions, which is beneficial to achieve more touch functions. Therefore, the embodiments of the present application can use few touch electrodes to achieve more touch functions, and provide a low-cost, simple structure, and flexible touch solution for wearable electronic devices.
  • M is equal to 5; one of the touch electrodes is an intermediate electrode located at the center of the touch sensing surface, and the remaining four touch electrodes are above, below, left, and right of the middle electrode, respectively.
  • Peripheral electrodes wherein the middle electrode and the surrounding electrodes above and below form the touch electrode in the vertical sliding direction of the touch sensing surface, and the middle electrode and the left and right surrounding electrodes form the touch Touch electrode in the horizontal sliding direction of the sensing surface.
  • the shapes of the four surrounding electrodes are the same.
  • the intermediate electrode is a square, and each of the peripheral electrodes is rectangular, and the long side of the rectangle is equal to the side length of the square; or the intermediate electrode is circular, and each of the peripheral electrodes Each is an isosceles triangle with a vertex angle facing the circle, and the vertex angle of the isosceles triangle facing the circle is truncated by a concentric circle having a diameter larger than the circle; or the intermediate electrode has A quadrilateral with four concave arc-shaped sides, and each of the surrounding electrodes has an arcuate shape with an arc-shaped side facing the middle electrode.
  • M is equal to 4; each of the touch electrodes is arranged in a matrix of two rows and two columns.
  • M is equal to 3; the touch sensing surface has an isosceles triangle sensing area, and each of the touch electrodes is located at each vertex of the isosceles triangle.
  • the touch component further includes a shielding layer under the patterned routing layer.
  • the touch component further includes an insulating cover layer overlying the pattern wiring layer.
  • the arrangement and size of the M touch electrodes satisfy: when the touch chip uses a single coding method, the self-capacitance of each of the touch electrodes is the same; In the coding method, the self-capacitance of each of the touch electrodes is the same.
  • determining the touch type of the touch operation according to the touch position information of the touch operation and a preset rule specifically includes: if the touch position of the touch operation has not changed and its touch time If it is longer than the first preset touch duration, it is determined that the touch type of the touch operation is a long press.
  • the determining a touch type of the touch operation according to the touch position information of the touch operation and a preset rule specifically includes: if a touch time of the touch operation is shorter than a second preset touch The duration is determined to be a touch type of the touch operation.
  • M is equal to 5; one of the touch electrodes is an intermediate electrode located at the center of the touch sensing surface, and the remaining four touch electrodes are: an upper electrode located above the middle electrode; and the middle electrode A lower electrode below; a left electrode positioned to the left of the middle electrode; and a right electrode positioned to the right of the middle electrode; the touch position information and preset rules determining the touch according to the touch operation
  • the type of touch control operation specifically includes: when the touch position of the touch operation meets one of the following preset sliding sequences, determining the touch type of the touch operation to slide up and down: the touch position is sequentially from the upper electrode To one of the left electrode, the middle electrode, and the right electrode, or two adjacent ones, and then to the lower electrode; or touch the position from the lower electrode to the left electrode, the middle electrode, and the right electrode in order.
  • One of the three or two adjacent to the upper electrode; or the touch position in turn from the upper electrode to the middle electrode, and then to the left electrode Or rightward electrode; electrode or a touch position in
  • M is equal to 5; one of the touch electrodes is an intermediate electrode located at the center of the touch sensing surface, and the remaining four touch electrodes are: an upper electrode located above the middle electrode; and the middle electrode A lower electrode below; a left electrode positioned to the left of the middle electrode; and a right electrode positioned to the right of the middle electrode; the touch position information and preset rules determining the touch according to the touch operation
  • the touch type of the control operation specifically includes: when the touch position of the touch operation satisfies one of the following preset sliding sequences, determining that the touch type of the touch operation is left-right sliding: the touch position is sequentially from the left Electrode to one of the upper electrode, the middle electrode, and the lower electrode, or two adjacent ones, and then to the right electrode; or the touch position is sequentially from the right electrode to the upper electrode, the middle electrode, and the lower electrode.
  • M is equal to 5; one of the touch electrodes is an intermediate electrode located at the center of the touch sensing surface, and the remaining four touch electrodes are: an upper electrode located above the middle electrode; and the middle electrode A lower electrode below; a left electrode positioned to the left of the middle electrode; and a right electrode positioned to the right of the middle electrode; the touch position information and preset rules determining the touch according to the touch operation
  • the touch type of the control operation specifically includes: when the touch position of the touch operation satisfies one of the following preset sliding sequences, determining that the touch type of the touch operation is sliding in a circle: the touch position is changed from the One of the electrodes around the intermediate electrode starts and passes through the other electrodes around the intermediate electrode in a clockwise or counterclockwise sequence.
  • M is equal to 4; each of the touch electrodes is arranged in a matrix of two rows and two columns; and the touch type of the touch operation is determined according to the touch position information of the touch operation and a preset rule, specifically
  • the method includes: when the touch position of the touch operation satisfies one of the following preset sliding sequences, determining that the touch type of the touch operation is sliding up and down: the touch position arrives directly from one of the two upper touch electrodes The touch electrode directly below the touch electrode at the starting position, or the touch electrode directly below the touch electrode at the starting position, or the left or right touch electrode passing through the touch electrode at the starting position, and then The touch electrode diagonally below the touch electrode that reaches the starting position; or the touch electrode directly from one of the two lower touch electrodes directly reaching the touch electrode directly above the touch electrode at the starting position, or directly reaching the starting electrode The touch electrode at the obliquely above position, or the touch electrode passing to the left or right of the touch electrode at the starting position, and then Touch electrodes obliquely above position
  • M is equal to 4; each of the touch electrodes is arranged in an array of two rows and two columns; and the touch type of the touch operation is determined according to the touch position information of the touch operation and a preset rule, specifically The method includes: when the touch position of the touch operation satisfies one of the following preset sliding sequences, determining that the touch type of the touch operation is left-right sliding: the touch position is from the left electrode of any row of touch electrodes to its right Square electrode; or touch position from the right electrode to the left electrode of any row of touch electrodes.
  • M is equal to 4; each of the touch electrodes is arranged in an array of two rows and two columns; and the touch type of the touch operation is determined according to the touch position information of the touch operation and a preset rule, specifically The method includes: when the touch position of the touch operation satisfies one of the following preset sliding sequences, determining that the touch type of the touch operation is sliding in a circle: the touch position is clockwise from any of the touch electrodes or Pass the remaining three touch electrodes counterclockwise.
  • FIG. 1 is a schematic structural diagram of a touch component according to a first embodiment of the present application.
  • FIG. 2 is a schematic diagram of an arrangement of touch electrodes of a touch component according to a first embodiment of the present application
  • FIG. 3 is a schematic diagram of an arrangement of touch electrodes of a touch component according to a second embodiment of the present application.
  • FIG. 4 is a schematic diagram of an arrangement of touch electrodes of a touch component according to a third embodiment of the present application.
  • FIG. 5 is a schematic diagram of an arrangement of touch electrodes of a touch component according to a fourth embodiment of the present application.
  • FIG. 6 is a schematic diagram of an arrangement of touch electrodes of a touch component according to a fifth embodiment of the present application.
  • FIG. 7 is a flowchart of a touch method according to a seventh embodiment of the present application.
  • the first embodiment of the present application relates to a touch component, which can be applied to a wearable device, including but not limited to a smart headset.
  • the touch component includes: M self-capacitance touch electrodes (Cs1 to Csm) disposed on a single-layer pattern wiring layer 10, and each touch electrode 101 is connected to a contact through a wire on the pattern wiring layer 10. Control chip.
  • M is a positive integer less than 10 and greater than 2.
  • the number M of touch electrodes in the touch component can be any one of 3 to 9.
  • the M touch electrodes (Cs1 to Csm) form the touch sensing surface of the touch component, and the touch sensing surface has at least two slide detections. Direction, at least two slide detection directions intersect, and the number of touch electrodes in each slide detection direction is greater than one.
  • the two sliding directions that intersect may be a horizontal sliding direction and a vertical sliding direction, that is, the two sliding directions intersect perpendicularly, but it is not limited to this, and the two sliding directions may not be perpendicular.
  • the touch sensing surface can provide the sensing capability of two or more touch positions in each sliding direction, and therefore can be identified based on the touch sensing surface Get two or more sliding directions, such as sliding up and down, sliding left and right, etc.
  • identifying more than two sliding directions richer touch functions can be provided. For example, swiping up and down can be used to cut songs, swiping left and right can be used to adjust the volume, etc., but it is not limited to this.
  • the touch electrodes (Cs1 to Csm) in this embodiment are all self-capacitive touch electrodes, the number of self-capacitive touch electrode channels is small, the number of pins of the touch chip consumed is small, and the touch sensitivity is high. Therefore, this embodiment can provide a touch solution with simple structure, low cost, and flexible functions for wearable devices such as earphones to meet the touch needs of small electronic devices.
  • the touch component may further include an insulating cover layer 11 disposed on the patterned wiring layer 10.
  • the pattern routing layer 10 may be adhered to the lower surface of the insulating cover layer 11 through an adhesive (not shown), and the upper surface of the insulating cover layer 11 provides a finger-touching surface.
  • the touch-sensitive component may further include a shielding layer 12, which is disposed below the patterned wiring layer 10.
  • the shielding layer 12 may be a grounded metal layer to shield electromagnetic interference from the outside. However, it is not limited to this, and a shielding layer may not be provided in some examples.
  • the touch-control component of this embodiment can be implemented by using a printed circuit board technology.
  • the touch-control component can be made into a flexible printed circuit board (FPC), or can also be made into a rigid printed circuit board (Printed Circuit Board). , PCB).
  • FPC flexible printed circuit board
  • PCB rigid printed circuit board
  • a patterned wiring layer, an insulating cover layer, and a shielding layer may constitute each layer of the circuit board.
  • the number of touch electrodes in the touch component of this embodiment is five, which are Cs1 to Cs5, respectively.
  • one touch electrode is the middle electrode Cs2 located at the center of the touch sensing surface, and the remaining four touch electrodes are the surrounding electrodes located above, below, left, and right of the middle electrode Cs2, that is, above the middle electrode Cs2.
  • the middle electrode Cs2 and the surrounding electrodes above and below form a touch electrode in the vertical sliding direction of the touch sensing surface
  • the middle electrode Cs2 and its left and right surrounding electrodes form a touch in the horizontal sliding direction of the touch sensing surface.
  • the electrodes can detect touch operations in at least two intersecting sliding directions.
  • the shapes of the four surrounding electrodes are the same, which makes the structure of the touch control unit simpler.
  • the shapes of the surrounding electrodes of the intermediate electrode Cs2 may also be different.
  • the middle electrode Cs2 is square, and each of the surrounding electrodes is rectangular, and the long side of the rectangle is equal to the length of the side of the square.
  • a certain gap is reserved between the touch electrodes.
  • the electrodes can be connected to the touch chip through the wires on the gap. It should be understood that the size of each of the touch electrodes Cs1 to Cs5 and the distance between each of the touch electrodes Cs1 to Cs5 can be adjusted according to application needs and actual conditions.
  • each touch electrode is connected to the touch chip pin through a wire directly formed on the electrode pattern layer.
  • the self-capacitance of each touch electrode Cs1 to Cs5 can be detected by the touch chip.
  • the touch position can be determined by the position of the touch electrode with the increased self-capacitance.
  • a single coding method can be used to detect touch information, that is, when detecting the self-capacitance of a touch electrode, other touch electrodes can be grounded, or a simultaneous coding method can be used, that is, other touch electrodes are connected to the current touch electrode in the same way. Change the signal, which can eliminate the mutual capacitance between the current touch electrode and other touch electrodes, and increase the self-capacitance increase caused by the finger.
  • the touch component with five touch electrodes can simultaneously implement touch operations such as clicking, long-pressing, sliding up and down, sliding left and right, and sliding in a circle.
  • the specific determination method of the touch type of the touch operation is as follows :
  • the touch threshold is set in advance, that is, the self-capacitance change amount threshold of the touch electrode. If the actual self-capacitance change of the touch electrode exceeds a preset touch threshold, it is determined that there is a finger touch. If the actual self-capacitance is less than or equal to the preset When the touch threshold is set, it is determined that there is no finger touch.
  • the touch electrode with the largest change in self-capacitance among the touch electrodes touched by a finger is determined as an "action electrode".
  • the action electrode may be one touch electrode or multiple touch electrodes.
  • S3. Determine whether the action electrode has changed (that is, whether the touch position has changed). If the action electrode has been judged to be in a "touched" state and the touch position has not changed at several points in time, it is determined that the current touch operation is long. Press operation, in other words, if the touch position of the touch operation has not changed and the touch time is longer than the first preset touch time, it is determined that the touch type of the touch operation is a long press, wherein the touch time of the touch operation may be one Or more.
  • One touch time refers to the time between the first action electrode and the last action electrode. Different action electrodes correspond to different sampling time points.
  • the action electrode only changes between the "touched” or “no touch” state and the position does not change, it is determined as a click operation, and the click, double-click, or triple-click can also be determined according to the number of clicks. If the position of the action electrode changes and there is a time interval during the change, that is, there are several sampling time points in the process of changing the state of "no touch", then it is determined as a click operation, and the double click or Three hits and so on. In other words, if the touch time of the touch operation is shorter than the second preset touch time, it is determined that the touch type of the touch operation is click.
  • One touch operation may include multiple touch times. When there is only one touch time, it may be determined as a click.
  • each touch time is shorter than the second preset touch time, and between each touch time
  • the interval is small, it can be determined as multiple clicks, and based on the number of clicks, it can be determined as double-click or triple-click.
  • the first preset touch duration and the second preset touch duration can be set according to actual needs, and this embodiment does not specifically limit the values thereof.
  • the touch position (that is, the position of the action electrode) From the upper electrode Cs5 to the left electrode Cs1, the middle electrode Cs2, and the right electrode Cs3, or one of the three adjacent ones, to the lower electrode Cs4, or the touch position from the lower electrode Cs4 to One of the left electrode Cs1, the middle electrode Cs2, and the right electrode Cs3 or adjacent two of the three, and then to the upper electrode Cs5, or the touch position from the upper electrode Cs5 to the middle electrode Cs2, and then to The left electrode Cs1 or the right electrode Cs3, or the touch position is sequentially from the lower electrode Cs4 to the middle electrode Cs2, and then to the left electrode Cs1 or the right electrode Cs3.
  • the lower electrode Cs4 as the starting position can be deduced by analogy, and if the position change of the action electrode satisfies one of the sliding sequence of (a), (b), (c), etc. Decided to slide up and down:
  • the touch position is sequentially from the left electrode Cs1 to the upper electrode Cs5, the middle electrode Cs2, and the lower electrode Cs4. One or three of them are adjacent to the right electrode Cs3; or the touch position is sequentially from the right electrode Cs3 to the upper electrode Cs5, the middle electrode Cs2, and the lower electrode Cs4 or Adjacent two of the three go to the left electrode Cs1.
  • the right electrode Cs3 as the starting position can be deduced by analogy, and if the position change of the action electrode satisfies the sliding sequence of (d), (e), etc., it is determined to be left and right sliding:
  • the touch type of the touch operation is circular sliding: the touch position starts from one of the electrodes around the middle electrode Cs2, and moves clockwise Or pass the other electrodes around the intermediate electrode Cs2 counterclockwise in order.
  • the size and interval of the touch electrodes can be adjusted according to the actual situation, the touch threshold value with or without finger touch, the time interval of the action electrode change, and the order of determining the sliding direction can also be adjusted according to application needs and actual conditions.
  • this embodiment can implement various touch functions such as up and down, left and right, and sliding around by using 5 touch electrodes. Since the required number of touch electrodes is small, the touch channel is thus, The touch chip has a small number of pins, small area, and low power consumption, thereby providing a touch solution with great application value for small portable or wearable devices.
  • the second embodiment of the present application relates to a touch component.
  • the number, arrangement, working principle, and connection method of the touch component of the second embodiment and the touch component of the first embodiment and the touch chip The method of recognizing the touch type based on the touch operation is the same as that of the first embodiment, and will not be repeated here.
  • the main difference between the two is the shape of the touch electrodes.
  • the middle electrode Cs2 is circular, and each of the surrounding electrodes is an isosceles triangle with a vertex angle facing the circle, and the isosceles triangle faces the circle.
  • the apex angle is truncated by concentric circles with a diameter larger than a circle.
  • the five touch electrodes in this embodiment can be obtained as follows: firstly, a square electrode pattern is formed, and then a circular ring groove with a center of a circle and a center of the square is formed on the square electrode pattern.
  • a long groove with the same width is opened along the diagonal of the square electrode pattern on the outside of the circular ring groove. In this way, four peripheral electrodes with the same shape and size can be obtained.
  • each touch electrode (Cs1 ⁇ Csm) of the touch component when there is no finger touch is affected by its arrangement, size, and driving method of the touch chip.
  • the touch control component of this embodiment is applicable to a single coding method, that is, the touch chip uses a single coding method.
  • the peripheral electrodes are arranged symmetrically around the intermediate electrode Cs2, the intermediate electrode Cs2 and each
  • the size of the surrounding electrodes for example, makes the size of the middle electrode Cs2 slightly smaller than the size of each surrounding electrode, so that each touch electrode has the same self-capacitance when a single coding method is used, which can further bring the touch chip circuit design. Convenience.
  • the touch control component shown in FIG. 3 may also be designed to be suitable for simultaneous coding, that is, the touch chip is coded simultaneously.
  • the size of the middle electrode Cs2 slightly larger than the size of each surrounding electrode, Therefore, the self-capacitance of each touch electrode is the same.
  • the size of each touch electrode and the distance between the touch electrodes in this embodiment can be adjusted according to application requirements and actual conditions.
  • this embodiment can adjust the size of each touch electrode so that the self-capacitance of each touch electrode is the same when using a single coding method, thereby reducing the difficulty of designing a touch chip.
  • the third embodiment of the present application relates to a touch control component.
  • the number, arrangement, working principle, and connection method of the touch control component of the third embodiment and the touch control component of the first embodiment and the touch chip The method of recognizing the touch type based on the touch operation is the same as that of the first embodiment, and will not be repeated here.
  • the main difference between the two is the shape of the touch electrodes.
  • the middle electrode Cs2 is a quadrangle with four concave curved edges, and each peripheral electrode has an arcuate shape with the curved edge facing the middle electrode Cs2.
  • the middle electrode Cs2 can be obtained by cutting off the periphery of a square from a circle.
  • the size of each touch electrode can be adjusted, for example, the size of the middle electrode Cs2 is slightly larger than the size of each surrounding electrode, so that the touch electrodes have the same self-capacitance when they are coded simultaneously without finger touch. , Which can further bring convenience to the circuit design of the touch chip.
  • the touch chip 4 can also be designed to be suitable for a single coding method, that is, the touch chip adopts a single coding method.
  • the size of the middle electrode Cs2 slightly smaller than the size of each surrounding electrode, Therefore, the self-capacitance of each touch electrode is the same.
  • the size of each touch electrode and the distance between the touch electrodes in this embodiment can be adjusted according to application requirements and actual conditions.
  • this embodiment can adjust the size of each touch electrode so that the self-capacitance of each touch electrode is the same when using the simultaneous coding method, thereby reducing the difficulty of designing the touch chip.
  • the fourth embodiment of the present application relates to a touch-sensitive component.
  • the touch-sensitive component of the fourth embodiment and the touch electrodes of the foregoing embodiments have the same working principle and the connection method with the touch-control chip.
  • the main difference between this embodiment and the foregoing embodiments is that the number of touch electrodes is four and touch functions such as sliding up and down, left and right, and sliding around are implemented based on the four touch electrodes.
  • the four touch electrodes in this embodiment are in a 2 by 2 matrix.
  • the four touch electrodes are Cs1 in the first row and the first column, Cs2 in the first row and the second column, Cs3 in the second row and the first column, and Cs4 in the second row and the second column.
  • each touch electrode is a square, but it is not limited to this, and each touch electrode may also be rectangular, circular, diamond, star, or the like.
  • the touch component of this embodiment can implement operations such as clicking, long-pressing, sliding up and down, sliding left and right, and sliding around.
  • the determination method of the touch type such as click, long press, and the like is similar to the determination method of the five touch electrodes, and details are not described herein again.
  • the method of judging the touch types such as up and down, left and right, and orbiting is as follows:
  • the touch position starts from one of the two upper touch electrodes and directly reaches the touch electrode directly below the touch electrode at the start position, or directly touches the touch electrode diagonally below the touch electrode at the start position, or passes through the touch electrode at the start position.
  • the touch position is from the left electrode of any row of touch electrodes to its right electrode; or the touch position is from the right electrode of any row of touch electrodes to its left electrode.
  • the starting action electrodes as Cs1 and Cs3 as an example, other electrodes can be used as the starting position, and so on. If the position of the action electrode satisfies the following sliding order, it is determined to be left and right sliding: Cs1-Cs2, Cs3-Cs4.
  • the touch position passes clockwise or counterclockwise through the remaining three touch electrodes from any touch electrode .
  • the starting action electrode as Cs1 as an example, other electrodes can be used as the starting position, and so on. If the position of the action electrode meets the following sliding sequence, it is determined to be a circle slide: Cs1-Cs2-Cs4-Cs3, or Cs1-Cs3 -Cs4-Cs2.
  • the action electrode changes in two positions and the initial touch position is the same as the end touch position it is determined as a click operation.
  • the initial action electrode as Cs1 as an example
  • other electrodes can be used as the starting position.
  • the touch control component of this embodiment only needs 4 channels to simultaneously perform touch operations such as click (including single click, double-click, triple-click, etc.), long-press, slide up-down, left-right slide, and circle slide.
  • the touch chip has a small number of pins, small area, low power consumption, and low cost, so it has great application value in wearable devices and is suitable for large-scale promotion.
  • the fifth embodiment of the present application relates to a touch control component.
  • the working principle of the touch control component of the fifth embodiment and the touch electrodes of the foregoing embodiments and the connection method with the touch chip are the same, and will not be repeated here.
  • the main difference between this embodiment and the foregoing embodiments is that the number of touch electrodes is three and touch functions such as clicking, long-pressing, sliding up and down, sliding left and right, and sliding around based on the three touch electrodes are implemented.
  • the touch component of this embodiment includes three touch electrodes Cs1 to Cs3, wherein the touch sensing surface formed by Cs1 to Cs3 has an isosceles triangle sensing area, and each touch electrode is located at each of the isosceles triangles. vertex.
  • Cs1 and Cs2 are touch electrodes in the first sliding detection direction
  • Cs1 and Cs3 are touch electrodes in the second sliding detection direction.
  • the first sliding detection direction and the second sliding detection direction intersect, and may or may not intersect vertically. vertical.
  • the position of the action electrode When the position of the action electrode is changed to Cs1-Cs2, it can be determined as the first sliding direction. When the position of the action electrode is changed to Cs1-Cs3, it can be determined as the second sliding direction. For example, when the position of the action electrode is changed to Cs1- In the case of Cs2-Cs3, it can be judged as slipping in a circle.
  • the determination method of clicking or long-pressing is similar to the determination method of clicking or long-pressing in the foregoing embodiment, and details are not described herein again.
  • the number of touch electrodes of the touch component can also be 6, 7, 8, or 9; when the number of touch electrodes is 9, the 9 touch electrodes can be arranged There are three rows and three columns, but it is not limited to this, as long as it can detect more touch operations in the sliding direction.
  • the sixth embodiment of the present application relates to a touch device, including a touch chip and a touch component according to any one of the above embodiments.
  • Each touch electrode of the touch component is electrically connected to the touch chip.
  • For the specific structure of the touch component please refer to the foregoing embodiment, which will not be repeated here.
  • the touch device of this embodiment can simultaneously achieve clicking (including single-click, double-click, triple-click, etc.), long-pressing, sliding up-down, sliding left-right, sliding around, etc. Operation requires fewer touch chip pins, low power consumption, small area, and low cost. It has great application value in wearable devices and is suitable for large-scale promotion.
  • the seventh embodiment of the present application relates to a touch method, which is applied to a wearable device, such as a headset.
  • the wearable device includes the touch device according to any one of the foregoing embodiments.
  • the specific structure of the touch device is as described above. The embodiment is not repeated here.
  • the touch method in this embodiment includes steps 701 to 703.
  • Step 701 Multi-frame touch data of a touch operation is acquired based on the touch component.
  • Step 702 Obtain touch position information of a touch operation according to multi-frame touch data analysis.
  • the touch position information includes at least one touch position. Among them, the position of the touch electrode in which the self-capacitance change amount of the M touch electrodes corresponding to one frame of touch data is the largest and the self-capacitance change amount is greater than a preset touch threshold value is used as one touch position of the touch operation.
  • Step 703 Determine the touch type of the touch operation according to the touch position information of the touch operation and a preset rule.
  • the touch type can include: click (click, double-click, triple-tap, etc.), long press, left-right slide, up-down slide, and circle slide, etc., among which the touch type includes at least two slide detection directions in the slide operation .
  • the touch mode can be determined by using the recognition method corresponding to the first embodiment, which will not be repeated here.
  • the touch type may be determined in a manner corresponding to the fourth embodiment, and details are not described herein again.
  • touch chip has a small number of pins, low power consumption, small area, and low cost. It has great application value in wearable devices and is suitable for large-scale promotion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • User Interface Of Digital Computer (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

一种触控组件、采用所述触控组件的触控装置以及应用于所述触控装置的触控方法。该触控组件可应用于可穿戴式设备,其包括:设置于单层图案走线层(10)的M个自电容式触摸电极(Cs1~Csm),各触摸电极(Cs1~Csm)分别通过图案走线层(10)上的导线连接触控芯片;M为小于10且大于2的正整数;M个触摸电极(Cs1~Csm)形成触控组件的触摸感测面,触摸感测面具有至少两个滑动检测方向,至少两个所述滑动检测方向相交且每个所述滑动检测方向上的触摸电极的数量均大于1。本方法能够为可穿戴式设备提供结构简单、成本低且功能灵活的触控方案。

Description

触控组件、装置及触控方法 技术领域
本申请涉及触控技术领域,特别涉及一种触控组件、采用所述触控组件的触控装置以及应用于所述触控装置的触控方法。
背景技术
电容触控技术的出现,极大改善了人机交互方式。目前,手机、平板以及笔记本电脑等传统大屏电子设备一般都采用电容触控技术。随着科技的发展,可穿戴式小型电子设备的市场需求增长迅速,而其人机交互技术也存在一定改进空间。
发明人发现现有技术至少存在以下问题:在小型可穿戴式电子设备中,现有以较少通道数实现触控操作的触摸电极图案仅可实现一个方向上的滑动操作,无法满足上下左右两个方向滑动和绕圈滑动的应用场景;而传统的触摸屏用触摸电极图案所需通道过多,所需驱动芯片引脚数多,且芯片面积大、成本高、功耗也高,不适于直接应用于可穿戴设备中。通过直接减少传统触摸屏用触摸电极图案的通道数,虽可改善上述问题,但往往需要两层传感器电极或者搭桥结构的传感器电极,其制作工艺复杂,成本较高,且其操作判定方法也未针对较少通道数的情形做优化,不适于直接应用于可穿戴设备之中。因而,如何以更经济的方式灵活满足可穿戴式设备的触控需求成为本领域技术人员亟待解决的问题。
发明内容
本申请部分实施例的目的在于提供一种触控组件、采用所述触控组件的触控装置以及应用于所述触控装置的触控方法,能够为可穿戴式设备提供结构简单、成本低且功能灵活的触控方案。
本申请实施例提供了一种触控组件,应用于可穿戴式设备,所述触控组件包括:设置于单层图案走线层的M个自电容式触摸电极,各所述触摸电极分别通过所述图案走线层上的导线连接触控芯片;M为小于10且大于2的正整数;M个所述触摸电极形成所述触控组件的触摸感测面,所述触摸感测面具有至少两个滑动检测方向,至少两个所述滑动检测方向相交且每个所述滑动检测方向上的触摸电极的数量均大于1。
本申请实施例还提供了一种触控装置,包括触控芯片以及如前所述的触控组件;所述触控组件的各触摸电极分别电性连接于所述触控芯片。
本申请实施例还提供了一种触控方法,应用于可穿戴式设备,所述可穿戴式设备包括触控芯片以及触控组件,所述触控组件包括设置于单层图案走线层的M个自电容式触摸电极,各所述触摸电极分别通过所述图案走线层上的导线连接于所述触控芯片;M为小于10且大于2的正整数;M个所述触摸电极形成所述触控组件的触摸感测面,所述触摸感测面具有至少两个滑动检测方向,至少两个所述滑动检测方向相交且每个所述滑动检测方向上的触摸电极的数量均大于1;所述触控方法包括:基于所述触控组件采集得到触控操作的多帧触控数据;根据所述多帧触控数据分析得到所述触控操作的触摸位置信息;所述触摸位置信息包括至少一触摸位置;其中,将一帧所述触控数据对应的M个所述触摸电极中的自电容变化量最大且自电容变化量大于预设触摸阈值的触摸电 极的位置作为所述触控操作的一个触摸位置;根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型;其中,所述触控类型至少包括各所述滑动检测方向上的滑动操作。
本申请实施例相对于现有技术而言,可以采用单层图案走线层上的不足10个触摸电极形成至少两个滑动检测方向,至少两个滑动检测方向相交且各所述滑动检测方向上的触摸电极的数量均大于1,即各个滑动检测方向可以检测不同方向的滑动操作,从而有利于实现较多的触控功能。因此本申请实施例可以采用很少的触摸电极实现较多的触控功能,为可穿戴式电子设备提供了成本低、结构简单且功能灵活的触控解决方案。
作为一个实施例,M等于5;其中一个触摸电极为位于所述触摸感测面的中心的中间电极,剩余四个触摸电极分别为位于所述中间电极的上方、下方、左方以及右方的周围电极;其中,所述中间电极及其上方、下方的周围电极形成所述触摸感测面的垂直滑动方向的触摸电极,所述中间电极及其左方、右方的周围电极形成所述触摸感测面的水平滑动方向的触摸电极。
作为一个实施例,四个所述周围电极的形状相同。
作为一个实施例,所述中间电极为正方形,各所述周围电极均为矩形,且所述矩形的长边等于所述正方形的边长;或者所述中间电极为圆形,各所述周围电极均为一个顶角朝向所述圆形的等腰三角形,且所述等腰三角形的朝向所述圆形的顶角被直径大于所述圆形的同心圆截去;或者所述中间电极为具有四条内凹弧形边的四边形,各所述周围电极均为弧形边朝向所述中间电极的弓形。
作为一个实施例,M等于4;各所述触摸电极呈两行两列矩阵排列。
作为一个实施例,M等于3;所述触摸感测面具有等腰三角形感测区域,各所述触摸电极分别位于所述等腰三角形的各个顶点。
作为一个实施例,所述触控组件还包括位于所述图案走线层下方的屏蔽层。
作为一个实施例,所述触控组件还包括覆设于所述图案走线层的绝缘覆盖层。
作为一个实施例,M个所述触摸电极的排列以及尺寸满足:在所述触控芯片采用单一打码方式时,各所述触摸电极的自电容相同;或者在所述触控芯片采用同时打码方式时,各所述触摸电极的自电容相同。
作为一个实施例,所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:若所述触控操作的触摸位置未改变且其触摸时间大于第一预设触摸时长,则判定所述触控操作的触控类型为长按。
作为一个实施例,所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:若所述触控操作的触摸时间小于第二预设触摸时长,则判定所述触控操作的触控类型为点击。
作为一个实施例,M等于5;其中一个触摸电极为位于所述触摸感测面的中心的中间电极,剩余四个触摸电极分别为:位于所述中间电极上方的上方电极;位于所述中间电极下方的下方电极;位于所述中间电极左方的左方电极;以及位于所述中间电极右方的右方电极;所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:在所述触控操作的触摸位置满足以下预设滑动顺序的一者时,确定所述触控操作的触控类型为上下滑动:触摸位置依次从上方电极到左方电极、中间电极以及右方电极三者中 的一者或者三者中相邻的两者,再到下方电极;或者触摸位置依次从下方电极到左方电极、中间电极以及右方电极三者中的一者或者三者中相邻的两者,再到上方电极;或者触摸位置依次从上方电极到中间电极,再到左方电极或者右方电极;或者触摸位置依次从下方电极到中间电极,再到左方电极或者右方电极。
作为一个实施例,M等于5;其中一个触摸电极为位于所述触摸感测面的中心的中间电极,剩余四个触摸电极分别为:位于所述中间电极上方的上方电极;位于所述中间电极下方的下方电极;位于所述中间电极左方的左方电极;以及位于所述中间电极右方的右方电极;所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:在所述触控操作的触摸位置满足以下预设滑动顺序的一者时,确定所述触控操作的触控类型为左右滑动:触摸位置依次从左方电极到上方电极、中间电极以及下方电极三者中的一者或者三者中相邻的两者,再到右方电极;或者触摸位置依次从右方电极到上方电极、中间电极以及下方电极三者中的一者或者三者中相邻的两者,再到左方电极。
作为一个实施例,M等于5;其中一个触摸电极为位于所述触摸感测面的中心的中间电极,剩余四个触摸电极分别为:位于所述中间电极上方的上方电极;位于所述中间电极下方的下方电极;位于所述中间电极左方的左方电极;以及位于所述中间电极右方的右方电极;所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:在所述触控操作的触摸位置满足以下预设滑动顺序的一者时,确定所述触控操作的触控类型为绕圈滑动:触摸位置从所述中间电极周围的电极中的一者起始,并沿顺时针或者 逆时针依次经过所述中间电极周围的其他电极。
作为一个实施例,M等于4;各所述触摸电极呈两行两列矩阵排列;所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:在所述触控操作的触摸位置满足以下预设滑动顺序的一者时,确定所述触控操作的触控类型为上下滑动:触摸位置从两个上方的触摸电极之一起始直接到达起始位置的触摸电极正下方的触摸电极,或者直接到达所述起始位置的触摸电极斜下方的触摸电极,或者经过所述起始位置的触摸电极的左方或者右方的触摸电极,再到达所述起始位置的触摸电极的斜下方的触摸电极;或者触摸位置从两个下方的触摸电极之一起始直接到达起始位置的触摸电极正上方的触摸电极,或者直接到达所述起始位置的触摸电极斜上方的触摸电极,或者经过所述起始位置的触摸电极的左方或者右方的触摸电极,再到达所述起始位置的触摸电极的斜上方的触摸电极。
作为一个实施例,M等于4;各所述触摸电极呈两行两列阵列排列;所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:在所述触控操作的触摸位置满足以下预设滑动顺序的一者时,确定所述触控操作的触控类型为左右滑动:触摸位置从任意一行触摸电极的左方电极到其右方电极;或者触摸位置从任意一行触摸电极的右方电极到其左方电极。
作为一个实施例,M等于4;各所述触摸电极呈两行两列阵列排列;所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:在所述触控操作的触摸位置满足以下预设滑动顺序的一者时,确定所述触控操作的触控类型为绕圈滑动:触摸位置从任一所述触摸电极沿顺 时针或者逆时针顺序经过其余三个触摸电极。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请第一实施例的触控组件的结构示意图;
图2是根据本申请第一实施例的触控组件的各触摸电极的排列示意图;
图3是根据本申请第二实施例的触控组件的各触摸电极的排列示意图;
图4是根据本申请第三实施例的触控组件的各触摸电极的排列示意图;
图5是根据本申请第四实施例的触控组件的各触摸电极的排列示意图;
图6是根据本申请第五实施例的触控组件的各触摸电极的排列示意图;
图7是根据本申请第七实施例的触控方法的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应被理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件被形成在另一个元件“上”或者“下”时,其不仅能够直接形成在另一个元件“上”或者“下”, 也可以通过中间元件间接形成在另一个元件“上”或者“下”。
本申请第一实施例涉及一种触控组件,可应用于可穿戴式设备,包括但不限于智能耳机。请参阅图1,该触控组件包括:设置于单层图案走线层10的M个自电容式触摸电极(Cs1~Csm),各触摸电极101分别通过图案走线层10上的导线连接触控芯片。其中,M为小于10且大于2的正整数。触控组件中触摸电极的数量M可以为3~9个中的任意一种,M个触摸电极(Cs1~Csm)形成触控组件的触摸感测面,触摸感测面具有至少两个滑动检测方向,至少两个滑动检测方向相交且每个滑动检测方向上的触摸电极的数量均大于1。
举例而言,相交的两个滑动方向可以分别是水平滑动方向和垂直滑动方向,即两个滑动方向垂直相交,然不限于此,两个滑动方向也可以不垂直。由于各个滑动方向上的触摸电极的数量均大于1,因而触摸感测面在各个滑动方向上均可提供两个或者两个以上的触摸位置的感测能力,因而可以基于该触摸感测面识别得到两个或者两个以上的滑动方向,例如上下滑动、左右滑动等。通过识别两个以上滑动方向可提供较为丰富的触控功能,例如上下滑动可以用于切歌,左右滑动可以用于调节音量等,然不限于此。本实施例的触摸电极(Cs1~Csm)均采用自电容式的触摸电极,自电容式的触摸电极通道数量少,消耗的触控芯片的引脚数量少,且触控灵敏度高。因此,本实施例可为耳机等的可穿戴式设备提供结构简单、成本低且功能灵活的触控方案,满足小型电子设备的触控需求。
在实际应用中,触控组件还可以包括覆设于图案走线层10的绝缘覆盖层11。图案走线层10可以通过粘合胶(图中未示出)贴合于绝缘覆盖层11下表面,绝缘覆盖层11上表面提供手指触摸表面。在一个例子中,触控组件还可以 包括屏蔽层12,屏蔽层12设置于图案走线层10下方,屏蔽层12可以采用接地金属层,以屏蔽来自外界的电磁干扰。然不限于此,在一些例子中也可以不设置屏蔽层。本实施例的触控组件可以采用印刷电路板技术实现,较佳地,触控组件可以制作成柔性电路板(Flexible Printed Circuit,FPC),或者也可以制作成硬质印刷电路板(Printed Circuit Board,PCB)。其中,图案走线层、绝缘覆盖层以及屏蔽层等可构成电路板的各层。
请参阅图2,本实施例的触控组件中的触摸电极的数量为5个,分别是Cs1~Cs5。其中,一个触摸电极为位于触摸感测面的中心的中间电极Cs2,剩余四个触摸电极分别为位于中间电极Cs2的上方、下方、左方以及右方的周围电极,即位于中间电极Cs2的上方的上方电极Cs5、位于中间电极Cs2的下方的下方电极Cs4、位于中间电极Cs2的左方的左方电极Cs1及位于中间电极Cs2的右方的右方电极Cs3。其中,中间电极Cs2及其上方、下方的周围电极形成触摸感测面的垂直滑动方向的触摸电极,中间电极Cs2及其左方、右方的周围电极形成触摸感测面的水平滑动方向的触摸电极,从而可以检测至少两个相交的滑动方向上的触控操作。
本实施例中,四个周围电极的形状相同,使得触控组件的结构更简单。然而,在实际应用中,中间电极Cs2的各个周围电极的形状也可以不同。具体地,本实施例的5个触摸电极中,中间电极Cs2为正方形,各周围电极均为矩形,且矩形的长边等于正方形的边长,各触摸电极之间预留有一定的间隙,中间电极可以通过间隙上的导线与触控芯片连接。应当理解,各触摸电极Cs1~Cs5的尺寸及各触摸电极Cs1~Cs5间的间距可以根据应用需要和实际情况调整。
在实际应用中,每个触摸电极通过直接形成在电极图案层上的导线与触 控芯片引脚相连,各触摸电极Cs1~Cs5的自电容可以被触控芯片探知,当有手指触摸在绝缘覆盖层2上表面时,对应的触摸电极的自电容将增大,通过自电容增大的触摸电极的位置即可判定触摸位置。具体地,可以采用单一打码方式探测触摸信息,即在探测某个触摸电极的自电容时,其他触摸电极可以接地,或者也可以采用同时打码方式,即其他触摸电极与当前触摸电极接相同变化信号,这样可以消除当前触摸电极与其他触摸电极的互电容,而增大手指引起的自电容增量。
基于本实施例的具有5个触摸电极的触控组件可同时实现点击、长按、上下滑动、左右滑动、绕圈滑动等的触控操作,其中触控操作的触控类型的具体判定方式如下:
S1、预先设定触摸阈值,即触摸电极的自电容改变量阈值,若触摸电极的实际自电容改变量超过预设触摸阈值,则判定为有手指触摸,若实际自电容该变量小于或者等于预设触摸阈值,则判定为无手指触摸。
S2、将有手指触摸的触摸电极中自电容改变量最大的触摸电极判定为“动作电极”,动作电极可以是一个触摸电极,也可能是多个触摸电极。
S3、判断动作电极是否发生变化(即触摸位置是否有变化),若后面的若干个时刻点,动作电极一直被判定为“有触摸”状态且触摸位置未改变,则判定当前触控操作属于长按操作,换言之,若触控操作的触摸位置未改变且其触摸时间大于第一预设触摸时长,则判定触控操作的触控类型为长按,其中,触控操作的触摸时间可以是一个或者多个。一个触摸时间是指第一个动作电极与最后一个动作电极之间的时间,不同的动作电极分别对应不同的采样时刻点。若动作电极只是在“有触摸”或“无触摸”状态之间改变而位置不改变,则判 定为点击操作,根据点击次数还可以判定出单击、双击或者三击等。若动作电极位置发生改变,且发生改变的过程有时间间隔,即发生改变的过程中有若干个采样时间点为“无触摸”状态,则判定为点击操作,根据点击次数同样可以判定出双击或者三击等。换言之,若触控操作的触摸时间小于第二预设触摸时长,则判定触控操作的触控类型为点击。其中一个触控操作可以包括多个触摸时间,当只有一个触摸时间时,可以判定为点击,当有多个触摸时间,且各触摸时间均小于第二预设触摸时长,且各触摸时间之间的间隔较小时,可以判定为多次点击,根据点击的次数,可以判定为双击或者三击等。其中,第一预设触摸时长以及第二预设触摸时长可以根据实际需要设定,本实施例对其数值不做具体限制。
S4、若动作电极位置发生改变,则根据动作电极的位置改变顺序确定滑动方向。
具体地,在动作电极的位置改变(即触控操作的触摸位置)满足以下预设滑动顺序的一者时,确定触控操作的触控类型为上下滑动:触摸位置(即动作电极的位置)依次从上方电极Cs5到左方电极Cs1、中间电极Cs2以及右方电极Cs3三者中的一者或者三者中相邻的两者,再到下方电极Cs4,或者触摸位置依次从下方电极Cs4到左方电极Cs1、中间电极Cs2以及右方电极Cs3三者中的一者或者三者中相邻的两者,再到上方电极Cs5,或者触摸位置依次从上方电极Cs5到中间电极Cs2,再到左方电极Cs1或者右方电极Cs3,或者触摸位置依次从下方电极Cs4到中间电极Cs2,再到左方电极Cs1或者右方电极Cs3。
以起始动作电极为上方电极Cs5为例,下方电极Cs4作为起始位置可以 以此类推,若动作电极的位置变化满足(a)、(b)、(c)等的滑动顺序的一者则判定为上下滑动:
(a)Cs5-Cs2-Cs4,或Cs5-Cs1-Cs4,或Cs5-Cs3-Cs4;
(b)Cs5-Cs1-Cs2-Cs4,或Cs5-Cs2-Cs1-Cs4,或Cs5-Cs2-Cs3-Cs4,或Cs5-Cs3-Cs2-Cs4;
(c)Cs5-Cs2-Cs1,或Cs5-Cs2-Cs3。
在动作电极的位置改变满足以下预设滑动顺序的一者时,确定触控操作的触控类型为左右滑动:触摸位置依次从左方电极Cs1到上方电极Cs5、中间电极Cs2以及下方电极Cs4三者中的一者或者三者中相邻的两者,再到右方电极Cs3;或者触摸位置依次从右方电极Cs3到上方电极Cs5、中间电极Cs2以及下方电极Cs4三者中的一者或者三者中相邻的两者,再到左方电极Cs1。
以起始动作电极为左方电极Cs1为例,右方电极Cs3作为起始位置可以以此类推,若动作电极的位置变化满足(d)、(e)等的滑动顺序则判定为左右滑动:
(d)Cs1-Cs2-Cs3,或Cs1-Cs5-Cs3,或Cs1-Cs4-Cs3;
(e)Cs1-Cs5-Cs2-Cs3,或Cs2-Cs2-Cs5-Cs3,或Cs1-Cs2-Cs4-Cs3,或Cs1-Cs4-Cs2-Cs3。
值得一提的是,在触摸位置的改变为Cs5-Cs1、Cs5-Cs2、Cs5-Cs3或者类似时,由于变化前后两个触摸位置非常接近,可以判定为无滑动,从而减少误触发。
在动作电极的位置改变满足以下预设滑动顺序的一者时,确定触控操作的触控类型为绕圈滑动:触摸位置从中间电极Cs2周围的电极中的一者起始, 并沿顺时针或者逆时针依次经过中间电极Cs2周围的其他电极。
以起始动作电极为上方电极Cs5为例,其他周围电极作为起始位置可以以此类推,若动作电极的位置变化满足(e)等的滑动顺序则判定为绕圈滑动:
(e)Cs5-Cs3-Cs4-Cs1,或者Cs5-Cs1-Cs4-Cs3。
应当理解,触摸电极的尺寸和间隔可以根据实际情况调整,有无手指触摸的触摸阈值大小、动作电极改变时间间隔、判定滑动方向的顺序亦可以根据应用需要和实际情况调整。
本实施例相对于现有技术而言,通过采用5个触摸电极即可实现上下、左右以及绕圈滑动等的多种触控功能,由于所需的触摸电极数量很少,因而触控通道,触控芯片的引脚数很少、面积小、功耗低,从而为小型便携式或者可穿戴式设备提供了极具应用价值的触控方案。
本申请第二实施例涉及一种触控组件,第二实施例的触控组件与第一实施例的触控组件的触摸电极的数量、排列方式、工作原理及其与触控芯片的连接方式,以及基于其的触控操作的触控类型的识别方式均与第一实施例相同,此处不再赘述,两者的主要区别在于触摸电极的形状不同。
请参阅图3,本实施例的触控组件的5个触摸电极中,中间电极Cs2为圆形,各周围电极均为一个顶角朝向圆形的等腰三角形,且等腰三角形的朝向圆形的顶角被直径大于圆形的同心圆截去。换言之,本实施例的5个触摸电极可以这样得到:先形成正方形电极图案,再在正方形电极图案上开设圆心与正方形的中心同心的圆环形槽,圆环形槽内侧的圆形电极图案即为中间电极,再在圆环形槽的外侧沿正方形电极图案的对角线开设宽度相同的长条形槽,这样,即可得到4个形状大小相同的周围电极。
触控组件的各个触摸电极(Cs1~Csm)在无手指触摸时的自电容(亦可称基电容)受其排列方式、尺寸以及触控芯片的驱动方式的影响。
如图3所示,本实施例的触控组件适用于单一打码方式,即触控芯片采用单一打码方式,在各周围电极对称排列于中间电极Cs2四周时,通过调整中间电极Cs2与各周围电极的尺寸,例如使得中间电极Cs2的尺寸略小于各周围电极的尺寸,从而可以使得各触摸电极在采用单一打码方式时具有相同的自电容,进而可以为触控芯片的电路设计带来方便。在一个例子中,图3所示的触控组件也可以设计为适用于同时打码方式,即触控芯片采用同时打码方式,可以通过使得中间电极Cs2的尺寸略大于各周围电极的尺寸,从而使得各触摸电极的自电容相同。然不限于此,本实施例中各触摸电极的尺寸及各触摸电极间的间距均可以根据应用需要和实际情况调整。
与第一实施例相比,本实施例可以通过调整各触摸电极的尺寸使得采用单一打码方式时各触摸电极的自电容相同,从而便于降低触控芯片设计难度。
本申请第三实施例涉及一种触控组件,第三实施例的触控组件与第一实施例的触控组件的触摸电极的数量、排列方式、工作原理及其与触控芯片的连接方式,以及基于其的触控操作的触控类型的识别方式均与第一实施例相同,此处不再赘述,两者的主要区别在于触摸电极的形状不同。
请参阅图4,本实施例的触控组件的5个触摸电极中,中间电极Cs2为具有四条内凹弧形边的四边形,各周围电极均为弧形边朝向中间电极Cs2的弓形。其中,中间电极Cs2可以通过圆形截去正方形的四周得到。本实施例中,可以通过调整各触摸电极的尺寸,例如使得中间电极Cs2的尺寸略大于各周围电极的尺寸,从而使得无手指触摸时的各触摸电极采用同时打码方式时具有相 同的自电容,进而可以为触控芯片的电路设计带来方便。在一个例子中,图4所示的触控组件也可以设计为适用于单一打码方式,即触控芯片采用单一打码方式,可以通过使得中间电极Cs2的尺寸略小于各周围电极的尺寸,从而使得各触摸电极的自电容相同。然不限于此,本实施例中各触摸电极的尺寸以及各触摸电极间的间距均可以根据应用需要和实际情况调整。
与第一实施例相比,本实施例可以通过调整各触摸电极的尺寸使得采用同时打码方式时各触摸电极的自电容相同,从而便于降低触控芯片设计难度。
本申请第四实施例涉及一种触控组件,第四实施例的触控组件与前述各实施例的触摸电极的工作原理及其与触控芯片的连接方式均相同,此处不再赘述,本实施例与前述各实施例的主要区别在于,触摸电极的数量为4个以及基于4个触摸电极实现上下滑动、左右滑动以及绕圈滑动等的触控功能。
请参阅图5,本实施例的4个触摸电极呈一个2乘2的矩阵。4个触摸电极分别为位于第一行第一列的Cs1,第一行第二列的Cs2,第二行第一列的Cs3和第二行第二列的Cs4。
本实施例中,各触摸电极均为正方形,然不限于此,各触摸电极还可以采用矩形、圆形、菱形、星形等。
本实施例的触控组件可以实现点击、长按、上下滑动、左右滑动、绕圈滑动等的操作。其中,点击、长按等的触控类型的判定方式与5个触摸电极的判定方式类似,此处不再赘述。上下滑动、左右滑动以及绕圈滑动等的触控类型的判定方式如下:
在动作电极的位置改变满足以下预设滑动顺序的一者时,确定触控操作的触控类型为上下滑动:
触摸位置从两个上方的触摸电极之一起始直接到达起始位置的触摸电极正下方的触摸电极,或者直接到达起始位置的触摸电极斜下方的触摸电极,或者经过起始位置的触摸电极的左方或者右方的触摸电极,再到达起始位置的触摸电极的斜下方的触摸电极;或者触摸位置从两个下方的触摸电极之一起始直接到达起始位置的触摸电极正上方的触摸电极,或者直接到达起始位置的触摸电极斜上方的触摸电极,或者经过起始位置的触摸电极的左方或者右方的触摸电极,再到达起始位置的触摸电极的斜上方的触摸电极。
以起始动作电极为Cs1和Cs2为例,其他电极作为起始位置可以以此类推,若动作电极的位置变化满足以下滑动顺序则判定为上下滑动:
Cs1-Cs3、Cs2-Cs4、Cs1-Cs4、Cs1-Cs2-Cs4、Cs1-Cs3-Cs4。
在动作电极的位置改变满足以下预设滑动顺序的一者时,确定触控操作的触控类型为左右滑动:
触摸位置从任意一行触摸电极的左方电极到其右方电极;或者触摸位置从任意一行触摸电极的右方电极到其左方电极。
以起始动作电极为Cs1和Cs3为例,其他电极作为起始位置可以以此类推,若动作电极的位置变化满足以下滑动顺序则判定为左右滑动:Cs1-Cs2、Cs3-Cs4。
在动作电极的位置改变满足以下预设滑动顺序的一者时,确定触控操作的触控类型为绕圈滑动:触摸位置从任一触摸电极沿顺时针或者逆时针顺序经过其余三个触摸电极。
以起始动作电极为Cs1为例,其他电极作为起始位置可以以此类推,若动作电极的位置变化满足以下滑动顺序则判定为绕圈滑动:Cs1-Cs2-Cs4-Cs3, 或Cs1-Cs3-Cs4-Cs2。
值得一提的是,若动作电极在两个位置内变化,且起始触摸位置与终止触摸位置相同,判定为点击操作,以起始动作电极为Cs1为例,其他电极作为起始位置可以以此类推,在动作电极的位置变化满足以下顺序时,判定为点击操作:Cs1-Cs2-Cs1,或Cs1-Cs3-Cs1,或Cs1-Cs4-Cs1,从而可以在触摸感测面较小时防止误触发。
本实施例的触控组件,仅需4个通道即可同时实现点击(包括单击、双击、三击等)、长按、上下滑动、左右滑动、绕圈滑动等触控操作,并且所需的触控芯片引脚数少、面积小、功耗低、成本低廉,因而在可穿戴设备中具有巨大的应用价值,适合大面积推广。
本申请第五实施例涉及一种触控组件,第五实施例的触控组件与前述各实施例的触摸电极的工作原理及其与触控芯片的连接方式均相同,此处不再赘述,本实施例与前述各实施例的主要区别在于,触摸电极的数量为3个以及基于3个触摸电极实现点击、长按、上下滑动、左右滑动以及绕圈滑动等的触控功能。
请参阅图6,本实施例的触控组件包括3个触摸电极Cs1~Cs3,其中,Cs1~Cs3形成的触摸感测面具有等腰三角形感测区域,各触摸电极分别位于等腰三角形的各个顶点。本实施例中,Cs1和Cs2为第一滑动检测方向的触摸电极,Cs1和Cs3为第二滑动检测方向的触摸电极,第一滑动检测方向和第二滑动检测方向相交,可以垂直相交也可以不垂直。
在动作电极的位置改变为Cs1-Cs2时,可以判定为第一滑动方向,在动作电极的位置改变为Cs1-Cs3时,可以判定为第二滑动方向,在动作电极的位 置改变例如为Cs1-Cs2-Cs3时,可以判定为绕圈滑动。点击或者长按的判定方式与前述实施例中点击或者长按的判定方式类似,此处不再赘述。
本实施例仅需3个通道即可同时实现点击(包括单击、双击、三击等)、长按、上下滑动、左右滑动、绕圈滑动等触控操作,因而具有极强的应用价值。
值得一提的是,在一些例子中,触控组件的触摸电极的数量还可以为6个、7个、8个或者9个,在触摸电极的数量为9个时,9个触摸电极可以排列成三行三列,然不限于此,只要能够检测较多的滑动方向上的触控操作即可。
本申请第六实施例涉及一种触控装置,包括触控芯片以及如上任一实施例所述的触控组件。触控组件的各触摸电极分别与触控芯片电性连接。其中,触控组件的具体结构请参考前述实施例,此处不再赘述。
本实施例的触控装置,基于很少的通道,例如4或者5个,即可同时实现点击(包括单击、双击、三击等)、长按、上下滑动、左右滑动、绕圈滑动等操作,所需触控芯片引脚数少,功耗低,面积小,成本低廉,在可穿戴设备中具有巨大的应用价值,适合大面积推广。
本申请第七实施例涉及一种触控方法,应用于可穿戴式设备,例如耳机,该可穿戴式设备包括如前述任一实施例所述的触控装置,触控装置的具体结构如前述实施例,此处不再赘述。
请参阅图7,本实施例的触控方法包括步骤701至步骤703。
步骤701:基于触控组件采集得到触控操作的多帧触控数据。
步骤702:根据多帧触控数据分析得到触控操作的触摸位置信息。
触摸位置信息包括至少一触摸位置。其中,将一帧触控数据对应的M个触摸电极中的自电容变化量最大且自电容变化量大于预设触摸阈值的触摸电极 的位置作为触控操作的一个触摸位置。
步骤703:根据触控操作的触摸位置信息以及预设规则确定触控操作的触控类型。
其中,触控类型可以包括:点击(单击、双击、三击等)、长按,左右滑动、上下滑动以及绕圈滑动等,其中,触控类型至少包括两个滑动检测方向上的滑动操作。
举例而言,在触摸电极的数量仅为5个时,可以采用与第一实施例对应的识别方式判定触控类型,此处不再赘述。在触摸电极的数量仅为4个时,可以采用与第四实施例对应的方式判定触控类型,此处不再赘述。
本实施例的触控方法中,基于5个或4个通道即可同时实现点击(包括单击、双击、三击等)、长按、上下滑动、左右滑动、绕圈滑动等操作,所需触控芯片引脚数少,功耗低,面积小,成本低廉,在可穿戴设备中具有巨大的应用价值,适合大面积推广。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (19)

  1. 一种触控组件,其特征在于,应用于可穿戴式设备,所述触控组件包括:设置于单层图案走线层的M个自电容式触摸电极,各所述触摸电极分别通过所述图案走线层上的导线连接触控芯片;M为小于10且大于2的正整数;
    M个所述触摸电极形成所述触控组件的触摸感测面,所述触摸感测面具有至少两个滑动检测方向,至少两个所述滑动检测方向相交且每个所述滑动检测方向上的触摸电极的数量均大于1。
  2. 如权利要求1所述的触控组件,其特征在于,M等于5;
    其中一个触摸电极为位于所述触摸感测面的中心的中间电极,剩余四个触摸电极分别为位于所述中间电极的上方、下方、左方以及右方的周围电极;
    其中,所述中间电极及其上方、下方的周围电极形成所述触摸感测面的垂直滑动方向的触摸电极,所述中间电极及其左方、右方的周围电极形成所述触摸感测面的水平滑动方向的触摸电极。
  3. 如权利要求2所述的触控组件,其特征在于,四个所述周围电极的形状相同。
  4. 如权利要求3所述的触控组件,其特征在于,所述中间电极为正方形,各所述周围电极均为矩形,且所述矩形的长边等于所述正方形的边长;或者
    所述中间电极为圆形,各所述周围电极均为一个顶角朝向所述圆形的等腰三角形,且所述等腰三角形的朝向所述圆形的顶角被直径大于所述圆形的同心圆截去;或者
    所述中间电极为具有四条内凹弧形边的四边形,各所述周围电极均为弧形边朝向所述中间电极的弓形。
  5. 如权利要求1所述的触控组件,其特征在于,M等于4;各所述触摸电极呈两行两列矩阵排列。
  6. 如权利要求1所述的触控组件,其特征在于,M等于3;
    所述触摸感测面具有等腰三角形感测区域,各所述触摸电极分别位于所述等腰三角形的各个顶点。
  7. 如权利要求1所述的触控组件,其特征在于,所述触控组件还包括位于所述图案走线层下方的屏蔽层。
  8. 如权利要求1所述的触控组件,其特征在于,所述触控组件还包括覆设于所述图案走线层的绝缘覆盖层。
  9. 如权利要求1至8中任一项所述的触控组件,其特征在于,M个所述触摸电极的排列以及尺寸满足:
    在所述触控芯片采用单一打码方式时,各所述触摸电极的自电容相同;或者
    在所述触控芯片采用同时打码方式时,各所述触摸电极的自电容相同。
  10. 一种触控装置,其特征在于,包括触控芯片以及如权利要求1至9中任一项所述的触控组件;
    所述触控组件的各触摸电极分别电性连接于所述触控芯片。
  11. 一种触控方法,其特征在于,应用于可穿戴式设备,所述可穿戴式设备包括触控芯片以及触控组件,所述触控组件包括设置于单层图案走线层的M个自电容式触摸电极,各所述触摸电极分别通过所述图案走线层上的导线连接于所述触控芯片;M为小于10且大于2的正整数;
    M个所述触摸电极形成所述触控组件的触摸感测面,所述触摸感测面具有 至少两个滑动检测方向,至少两个所述滑动检测方向相交且每个所述滑动检测方向上的触摸电极的数量均大于1;
    所述触控方法包括:
    基于所述触控组件采集得到触控操作的多帧触控数据;
    根据所述多帧触控数据分析得到所述触控操作的触摸位置信息;所述触摸位置信息包括至少一触摸位置;其中,将一帧所述触控数据对应的M个所述触摸电极中的自电容变化量最大且自电容变化量大于预设触摸阈值的触摸电极的位置作为所述触控操作的一个触摸位置;
    根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型;其中,所述触控类型至少包括各所述滑动检测方向上的滑动操作。
  12. 如权利要求11所述的触控方法,其特征在于,所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:
    若所述触控操作的触摸位置未改变且其触摸时间大于第一预设触摸时长,则判定所述触控操作的触控类型为长按。
  13. 如权利要求11所述的触控方法,其特征在于,所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:
    若所述触控操作的触摸时间小于第二预设触摸时长,则判定所述触控操作的触控类型为点击。
  14. 如权利要求11所述的触控方法,其特征在于,M等于5;其中一个触摸电极为位于所述触摸感测面的中心的中间电极,剩余四个触摸电极分别为:
    位于所述中间电极上方的上方电极;
    位于所述中间电极下方的下方电极;
    位于所述中间电极左方的左方电极;以及
    位于所述中间电极右方的右方电极;
    所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:
    在所述触控操作的触摸位置满足以下预设滑动顺序的一者时,确定所述触控操作的触控类型为上下滑动:
    触摸位置依次从上方电极到左方电极、中间电极以及右方电极三者中的一者或者三者中相邻的两者,再到下方电极;或者
    触摸位置依次从下方电极到左方电极、中间电极以及右方电极三者中的一者或者三者中相邻的两者,再到上方电极;或者
    触摸位置依次从上方电极到中间电极,再到左方电极或者右方电极;或者触摸位置依次从下方电极到中间电极,再到左方电极或者右方电极。
  15. 如权利要求11所述的触控方法,其特征在于,M等于5;其中一个触摸电极为位于所述触摸感测面的中心的中间电极,剩余四个触摸电极分别为:
    位于所述中间电极上方的上方电极;
    位于所述中间电极下方的下方电极;
    位于所述中间电极左方的左方电极;以及
    位于所述中间电极右方的右方电极;
    所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:
    在所述触控操作的触摸位置满足以下预设滑动顺序的一者时,确定所述触控操作的触控类型为左右滑动:
    触摸位置依次从左方电极到上方电极、中间电极以及下方电极三者中的一者或者三者中相邻的两者,再到右方电极;或者
    触摸位置依次从右方电极到上方电极、中间电极以及下方电极三者中的一者或者三者中相邻的两者,再到左方电极。
  16. 如权利要求11所述的触控方法,其特征在于,M等于5;其中一个触摸电极为位于所述触摸感测面的中心的中间电极,剩余四个触摸电极分别为:
    位于所述中间电极上方的上方电极;
    位于所述中间电极下方的下方电极;
    位于所述中间电极左方的左方电极;以及
    位于所述中间电极右方的右方电极;
    所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:
    在所述触控操作的触摸位置满足以下预设滑动顺序的一者时,确定所述触控操作的触控类型为绕圈滑动:
    触摸位置从所述中间电极周围的电极中的一者起始,并沿顺时针或者逆时针依次经过所述中间电极周围的其他电极。
  17. 如权利要求11所述的触控方法,其特征在于,M等于4;各所述触摸电极呈两行两列矩阵排列;
    所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:
    在所述触控操作的触摸位置满足以下预设滑动顺序的一者时,确定所述触控操作的触控类型为上下滑动:
    触摸位置从两个上方的触摸电极之一起始直接到达起始位置的触摸电极正下方的触摸电极,或者直接到达所述起始位置的触摸电极斜下方的触摸电极,或者经过所述起始位置的触摸电极的左方或者右方的触摸电极,再到达所述起始位置的触摸电极的斜下方的触摸电极;或者
    触摸位置从两个下方的触摸电极之一起始直接到达起始位置的触摸电极正上方的触摸电极,或者直接到达所述起始位置的触摸电极斜上方的触摸电极,或者经过所述起始位置的触摸电极的左方或者右方的触摸电极,再到达所述起始位置的触摸电极的斜上方的触摸电极。
  18. 如权利要求11所述的触控方法,其特征在于,M等于4;各所述触摸电极呈两行两列阵列排列;
    所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:
    在所述触控操作的触摸位置满足以下预设滑动顺序的一者时,确定所述触控操作的触控类型为左右滑动:
    触摸位置从任意一行触摸电极的左方电极到其右方电极;或者
    触摸位置从任意一行触摸电极的右方电极到其左方电极。
  19. 如权利要求11所述的触控方法,其特征在于,M等于4;各所述触摸电极呈两行两列阵列排列;
    所述根据所述触控操作的触摸位置信息以及预设规则确定所述触控操作的触控类型,具体包括:
    在所述触控操作的触摸位置满足以下预设滑动顺序的一者时,确定所述触控操作的触控类型为绕圈滑动:
    触摸位置从任一所述触摸电极沿顺时针或者逆时针顺序经过其余三个触摸电极。
PCT/CN2018/106294 2018-09-18 2018-09-18 触控组件、装置及触控方法 WO2020056600A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207024836A KR102462150B1 (ko) 2018-09-18 2018-09-18 터치 어셈블리, 장치 및 터치 방법
PCT/CN2018/106294 WO2020056600A1 (zh) 2018-09-18 2018-09-18 触控组件、装置及触控方法
CN201880001537.6A CN109416610B (zh) 2018-09-18 2018-09-18 触控组件、装置及触控方法
EP18914925.5A EP3647921A4 (en) 2018-09-18 2018-09-18 TOUCH ASSEMBLY, APPARATUS, AND TOUCH METHOD
US16/658,158 US11334204B2 (en) 2018-09-18 2019-10-21 Touch component, touch apparatus, and touch-control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/106294 WO2020056600A1 (zh) 2018-09-18 2018-09-18 触控组件、装置及触控方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/658,158 Continuation US11334204B2 (en) 2018-09-18 2019-10-21 Touch component, touch apparatus, and touch-control method

Publications (1)

Publication Number Publication Date
WO2020056600A1 true WO2020056600A1 (zh) 2020-03-26

Family

ID=65462569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106294 WO2020056600A1 (zh) 2018-09-18 2018-09-18 触控组件、装置及触控方法

Country Status (5)

Country Link
US (1) US11334204B2 (zh)
EP (1) EP3647921A4 (zh)
KR (1) KR102462150B1 (zh)
CN (1) CN109416610B (zh)
WO (1) WO2020056600A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111837324B (zh) * 2020-01-19 2024-02-13 深圳市汇顶科技股份有限公司 电荷泵电路、芯片以及电子设备
CN112882604A (zh) * 2021-03-01 2021-06-01 科世达(上海)机电有限公司 一种触控手势识别装置及触控手势识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204631838U (zh) * 2015-02-10 2015-09-09 敦泰电子有限公司 穿戴式电子设备
CN105242814A (zh) * 2015-09-14 2016-01-13 友达光电(苏州)有限公司 电容式触控结构及其触控显示装置
CN106155430A (zh) * 2015-03-31 2016-11-23 北京亮亮视野科技有限公司 条形自容式触摸板及触控系统
CN206236055U (zh) * 2016-12-07 2017-06-09 北京集创北方科技股份有限公司 触摸感应装置及其触控设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4394057B2 (ja) * 2005-09-21 2010-01-06 アルプス電気株式会社 入力装置
KR101440291B1 (ko) * 2007-11-12 2014-09-18 (주)멜파스 터치스크린 장치, 접촉 감지 장치 및 사용자 입력 장치
US9454256B2 (en) * 2008-03-14 2016-09-27 Apple Inc. Sensor configurations of an input device that are switchable based on mode
US20100058251A1 (en) * 2008-08-27 2010-03-04 Apple Inc. Omnidirectional gesture detection
US8395590B2 (en) * 2008-12-17 2013-03-12 Apple Inc. Integrated contact switch and touch sensor elements
US9354899B2 (en) * 2011-04-18 2016-05-31 Google Inc. Simultaneous display of multiple applications using panels
KR20120126610A (ko) * 2011-05-12 2012-11-21 (주)멜파스 접촉 감지 패널
US20120306802A1 (en) * 2011-06-06 2012-12-06 Mccracken David Harold Differential capacitance touch sensor
US20130339859A1 (en) * 2012-06-15 2013-12-19 Muzik LLC Interactive networked headphones
KR102302814B1 (ko) * 2014-02-05 2021-09-16 엘지이노텍 주식회사 터치 윈도우, 이의 터치 센싱 방법 및 이를 포함하는 디스플레이 장치
KR20150095449A (ko) * 2014-02-13 2015-08-21 삼성전기주식회사 터치센서 및 제조방법
JP2016018432A (ja) * 2014-07-09 2016-02-01 ローム株式会社 ユーザインタフェイス装置
US9946397B2 (en) * 2015-06-15 2018-04-17 Microchip Technology Incorporated Sensor design for enhanced touch and gesture decoding
CN105094497B (zh) * 2015-09-30 2017-12-05 京东方科技集团股份有限公司 一种触控电极结构、触摸屏及显示装置
CN107635173A (zh) * 2017-11-10 2018-01-26 东莞志丰电子有限公司 运动型高清通话触控蓝牙小耳机
CN107967085B (zh) * 2017-11-22 2021-04-30 武汉天马微电子有限公司 显示装置
CN108388375B (zh) * 2018-03-01 2021-10-22 京东方科技集团股份有限公司 一种触控传感器和触控显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204631838U (zh) * 2015-02-10 2015-09-09 敦泰电子有限公司 穿戴式电子设备
CN106155430A (zh) * 2015-03-31 2016-11-23 北京亮亮视野科技有限公司 条形自容式触摸板及触控系统
CN105242814A (zh) * 2015-09-14 2016-01-13 友达光电(苏州)有限公司 电容式触控结构及其触控显示装置
CN206236055U (zh) * 2016-12-07 2017-06-09 北京集创北方科技股份有限公司 触摸感应装置及其触控设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3647921A4 *

Also Published As

Publication number Publication date
CN109416610A (zh) 2019-03-01
US20200089373A1 (en) 2020-03-19
US11334204B2 (en) 2022-05-17
CN109416610B (zh) 2022-04-19
EP3647921A1 (en) 2020-05-06
KR20200133331A (ko) 2020-11-27
EP3647921A4 (en) 2020-05-13
KR102462150B1 (ko) 2022-11-01

Similar Documents

Publication Publication Date Title
JP4929319B2 (ja) 指又はスタイラス用の容量型タッチスクリーン又はタッチパッド
WO2018040713A1 (zh) 触控基板及制作方法、显示装置、指纹识别装置和方法
TWI537804B (zh) 電容式觸控面板
US10248264B2 (en) Apparatus and method for determining a stimulus, including a touch input and a stylus input
JP5439565B2 (ja) タッチパネル及びその製造方法
KR101330779B1 (ko) 터치 패널의 전극 구조, 그 방법 및 터치 패널
WO2016041301A1 (zh) 触摸屏、其触控定位方法及显示装置
EP2538313A1 (en) Touch sensor panel
US9753595B2 (en) Touch screen panel
US11016619B2 (en) Touch panel, method of manufacturing the same and touch display panel
WO2015158083A1 (zh) 触摸屏及显示装置
US9830028B2 (en) In-cell touch panel with self-capacitive electrodes and display device
TWI470526B (zh) 觸控裝置
JP5806684B2 (ja) 座標入力装置
EP3447618B1 (en) Touch display panel and method for driving same
TWI406166B (zh) 觸控面板及其多點觸碰偵測方法以及觸控顯示裝置
TWI537791B (zh) 觸控電極結構及應用其的觸控面板
US20140001024A1 (en) Touch panel and touch display device
WO2020056600A1 (zh) 触控组件、装置及触控方法
US20160132180A1 (en) Capacitive Touch Circuit and Touch Sensor and Capacitive Touch System Using The Same
US10310691B2 (en) Self-capacitance touch structure having touch electrodes with side wing portions and display device thereof
KR101293165B1 (ko) 접촉 감지 패널
US10303299B2 (en) Use of groove analysis in a touch screen device to determine occurrence of an elongated touch by a single finger
US20120062480A1 (en) Capacitive touch sensor and method for manufacturing the same
KR20160114293A (ko) 터치 스크린 패널

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018914925

Country of ref document: EP

Effective date: 20191022

NENP Non-entry into the national phase

Ref country code: DE