WO2018040713A1 - 触控基板及制作方法、显示装置、指纹识别装置和方法 - Google Patents

触控基板及制作方法、显示装置、指纹识别装置和方法 Download PDF

Info

Publication number
WO2018040713A1
WO2018040713A1 PCT/CN2017/090869 CN2017090869W WO2018040713A1 WO 2018040713 A1 WO2018040713 A1 WO 2018040713A1 CN 2017090869 W CN2017090869 W CN 2017090869W WO 2018040713 A1 WO2018040713 A1 WO 2018040713A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
fingerprint recognition
region
electrodes
Prior art date
Application number
PCT/CN2017/090869
Other languages
English (en)
French (fr)
Inventor
许睿
董学
吕敬
王海生
吴俊纬
刘英明
郭玉珍
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/750,433 priority Critical patent/US10430013B2/en
Publication of WO2018040713A1 publication Critical patent/WO2018040713A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • Embodiments of the present invention relate to a touch substrate, a method of fabricating the same, a display device, and a fingerprint identification device and method.
  • the embodiment of the invention provides a touch substrate, a manufacturing method thereof, a display device, a fingerprint identification device and a method.
  • the embodiment of the invention can reduce the number of signal lines of the touch electrode.
  • At least one embodiment of the present invention provides a touch substrate including: a substrate substrate including at least a first region and a second region that do not overlap each other; and a plurality of touch driving electrodes disposed on the substrate And extending in the first direction; a plurality of touch sensing electrodes disposed on the base substrate and extending in the second direction, the second direction intersecting the first direction; and a plurality of signal lines It is disposed on the base substrate.
  • the plurality of touch driving electrodes include a plurality of first touch driving electrodes disposed in the first region and a plurality of second touch driving electrodes disposed in the second region An electrode, and each of the first touch driving electrodes and the second touch driving electrode are connected to the same signal line; and/or the plurality of touch sensing electrodes comprise a plurality of the first plurality of A touch sensing electrode and a plurality of second touch sensing electrodes disposed in the second area, each of the first touch sensing electrodes and the second touch sensing electrode being connected to the same signal line.
  • the sizes of the first region and the second region along the second direction are greater than or equal to 5 mm; In a case where each of the first touch sensing electrodes is connected to one second touch sensing electrode, the sizes of the first region and the second region along the first direction are greater than or equal to 5 mm.
  • the pitch of the adjacent touch sensing electrodes and the adjacent touch driving electrodes are both 50 to 70 micrometers.
  • the touch substrate further includes a cover layer covering the touch driving electrode and the touch sensing electrode, and the cover layer has a thickness of less than or equal to 300 micrometers.
  • the cover layer includes a cover plate having a thickness of less than or equal to 100 microns.
  • the cover is a flexible cover.
  • the cover layer further includes an optical glue, and the optical adhesive connects the cover plate to the base substrate provided with the touch sensing electrode and the touch driving electrode.
  • the optical adhesive has a dielectric constant of 7 to 15.
  • the cover layer further includes a polarizer disposed on a side of the cover facing the substrate.
  • the base substrate further includes a third region that does not overlap the first region and the second region.
  • the plurality of touch driving electrodes further include a plurality of third touch driving electrodes disposed in the third region, and each of the first touch driving electrodes, the second touch driving electrodes, and a first The three touch driving electrodes are connected to the same signal line; and/or the plurality of touch sensing electrodes further include a plurality of third touch sensing electrodes disposed in the third area, each of the first touch sensing electrodes The electrode, the one second touch sensing electrode and one third touch sensing electrode are connected to the same signal line.
  • At least one embodiment of the present invention further provides a display device comprising the touch substrate of any of the above.
  • At least one embodiment of the present invention provides a fingerprint recognition device comprising the touch substrate of any of the above or the display device described above.
  • the display device has a display area and a non-display area outside the display area, and the plurality of touch driving electrodes and the plurality of touch sensing electrodes included in the touch substrate are located in the In the display area.
  • At least one embodiment of the present invention further provides a method for fabricating a touch substrate, the method comprising: forming a plurality of touch driving electrodes, wherein the touch driving electrodes extend along a first direction; forming a plurality of touch sensing electrodes, The touch sensing electrode extends in a second direction, the second direction intersects the first direction, and forms a plurality of signal lines.
  • the touch driving electrode and the touch The sensing electrode and the signal line are formed on a base substrate including at least a first region and a second region that do not overlap each other.
  • the plurality of touch driving electrodes include a plurality of first touch driving electrodes disposed in the first region and a plurality of second touch driving electrodes disposed in the second region An electrode, and each of the first touch driving electrodes and the second touch driving electrode are connected to the same signal line; and/or the plurality of touch sensing electrodes comprise a plurality of the first plurality of A touch sensing electrode and a plurality of second touch sensing electrodes disposed in the second area, each of the first touch sensing electrodes and the second touch sensing electrode being connected to the same signal line.
  • At least one embodiment of the present invention further provides a method for recognizing a fingerprint by using the touch substrate of any of the above, the method comprising: changing a capacitance between the touch driving electrode and the touch sensing electrode Determining a touch location; and determining a positional relationship of the touch location with the first region and the second region, determining that the touch location overlaps the first region and is outside the second region In the case of fingerprinting.
  • At least one embodiment of the present invention provides a fingerprint identification apparatus including: a substrate substrate including at least a first region and a second region that do not overlap each other; and a plurality of fingerprint recognition drive electrodes disposed on the substrate And extending along the first direction; a plurality of fingerprint recognition sensing electrodes disposed on the base substrate and extending in a second direction, the second direction intersecting the first direction; and a plurality of signal lines It is disposed on the base substrate.
  • the plurality of fingerprint recognition drive electrodes include a plurality of first fingerprint recognition drive electrodes disposed in the first region and a plurality of second fingerprint recognition drive electrodes disposed in the second region, and each first The fingerprint recognition drive electrode and the second fingerprint recognition drive electrode are connected to the same signal line; and/or the plurality of fingerprint recognition induction electrodes comprise a plurality of first fingerprint recognition induction electrodes disposed in the first area and are disposed on The plurality of second fingerprint recognition sensing electrodes in the second area, each first fingerprint recognition sensing electrode and one second fingerprint recognition sensing electrode are connected to the same signal line.
  • each of the first fingerprint recognition drive electrodes is connected to a second fingerprint recognition drive electrode
  • the sizes of the first region and the second region along the second direction are greater than or equal to 5 mm
  • the sizes of the first region and the second region along the first direction are greater than or equal to 5 mm.
  • the pitch of adjacent fingerprint recognition sensing electrodes and adjacent fingerprint recognition drive electrodes are both 50 to 70 microns.
  • the fingerprint identification device further includes a cover layer covering the fingerprint recognition drive electrode and the fingerprint recognition induction electrode, the cover layer having a thickness of less than or equal to 300 micrometers.
  • the cover layer includes a cover plate having a thickness of less than or equal to 100 microns.
  • 1 is an equivalent detection circuit model based on mutual capacitance detection technology in a touch circuit
  • FIG. 2 is a top plan view showing the touch sensing electrodes in the touch substrate being divided into two regions according to an embodiment of the present disclosure
  • FIG. 2 is a top plan view of the touch sensing substrate and the touch driving electrode in the touch substrate according to the embodiment of the present invention
  • FIG. 2 is a top plan view showing the touch driving electrodes in the touch substrate being divided into three regions according to an embodiment of the present disclosure
  • FIG. 3 is a schematic top plan view showing the touch sensing electrodes in the touch substrate being divided into three regions according to an embodiment of the present disclosure
  • FIG. 4 is a top plan view showing the touch sensing electrodes in the touch substrate being divided into two regions and the touch driving electrodes are divided into three regions according to an embodiment of the present disclosure
  • FIG. 5 is a cross-sectional view of a touch substrate according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a display device according to an embodiment of the present invention.
  • FIG. 7A is a schematic top view of a fingerprint identification device according to an embodiment of the present invention.
  • FIG. 7B is a cross-sectional view of a fingerprint identification device according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for fabricating a touch substrate according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a fingerprint identification method according to an embodiment of the present invention.
  • the capacitive sensor includes a plurality of driving lines extending in the X direction and a plurality of detecting lines extending in the Y direction, and the driving lines and the detecting lines are connected to the touch circuit through the respective signal lines.
  • the touch circuit can determine the Y coordinate according to the driving line and determine the X coordinate according to the detecting line by applying a voltage to the driving line side and detecting a signal change on the detecting line side.
  • the X-direction drive line is scanned line by line, and when scanning each line of the drive line, the signals on each detection line are read, and by one round of scanning, the intersection of each line and column can be Both are scanned, so a total of X*Y signals are scanned. Since the detection method can determine the coordinates of the multi-point, the detection of the state of the plurality of valleys and ridges can be realized by the capacitance generated between the valley of the finger and the capacitance sensor (the combination of the driving line and the detecting line). Perform fingerprint recognition.
  • FIG. 1 an equivalent detection circuit model based on mutual capacitance detection technology in a touch circuit is shown in FIG. 1 , wherein 101 is a signal source, 102 is a mutual capacitance between a driving line and a detection line, and 103 is a driving line resistance.
  • 104 is a parasitic capacitance between the driving line, the detecting line and the common electrode layer in the touch circuit, 105 is a detecting line resistance, and 106 is a detecting circuit.
  • the touch of the finger can be equivalent to the mutual capacitance change between the driving line and the detecting line, and the ridge of the finger is closer to the mutual capacitance due to the proximity of the capacitive sensor, and the change of the mutual capacitance of the finger is larger.
  • the change of mutual capacitance is relatively small. According to the detection result of the detection circuit Vout, the change of the weak current I caused can be obtained, thereby distinguishing the valley and the ridge, and fingerprint recognition can be realized.
  • the pitch of the driving line and the detecting line is usually set to 50 to 70 ⁇ m;
  • the pitch of the driving line and the detecting line is usually set to 50 to 70 ⁇ m;
  • the touch substrate includes a base substrate 10 having first and second regions that do not overlap each other, and is disposed on the lining A plurality of touch driving electrodes Tx on the base substrate 10 (see Tx1-Txn in FIG. 2a, Tx1-Tx2 in FIG. 2b, and Tx1-Tx3 in FIG. 2c), and a plurality of touch sensing electrodes Rx (see FIG. Rx1-Rx2 in 2a, Rx1-Rx2 in Fig. 2b, and Rx1-Rxn in Fig. 2c) and a plurality of signal lines 11.
  • the touch driving electrode Tx extends along the first direction; the touch sensing electrode Rx is spaced apart from the touch driving electrode Tx (in the direction perpendicular to the surface of the substrate 10, the touch driving electrode Tx and the touch sensing electrode Rx) Inter-opening at an intersection between the two through an insulating layer) and extending in a second direction, the second direction intersecting the first direction; each signal line 11 is used to connect the touch driving electrode or the touch sensing electrode The signal is drawn.
  • the touch sensing electrode Rx includes a plurality of first touch sensing electrodes Rx1 disposed in the first region and spaced apart from each other, and disposed in the second region and adjacent to each other
  • Each of the first touch sensing electrodes Rx1 and the second touch sensing electrode Rx2 are connected to the same signal line 11, for example, the first touch sensing electrode Rx1 and the corresponding second
  • the upper ends of the touch sensing electrodes Rx2 are connected together (for example, the two form a U-shaped structure), and the lower end of one of them is connected to the signal line 11 and the lower end of the other is not connected to the signal line 11, thereby realizing each first
  • the touch sensing electrode Rx1 and the second touch sensing electrode Rx2 are connected to the same signal line 11.
  • the touch driving electrode includes a plurality of first touch driving electrodes disposed in the first region and spaced apart from each other, and a plurality of second touches disposed in the second region and spaced apart from each other
  • the driving electrodes are controlled, and each of the first touch driving electrodes and one second touch driving electrode are connected to the same signal line.
  • the touch sensing electrode Rx includes a plurality of first touch sensing electrodes Rx1 disposed in the first region and spaced apart from each other, and disposed in the second region.
  • Each of the first touch sensing electrodes Rx1 and the second touch sensing electrode Rx2 are connected to the same signal line 11 to connect the touch circuit through the signal line 11;
  • the touch driving electrode Tx includes a plurality of layers disposed in the first region and spaced apart from each other a first touch driving electrode Tx1 and a plurality of second touch driving electrodes Tx2 disposed in the second region and spaced apart from each other, and each of the first touch driving electrodes Tx1 is connected to a second touch driving electrode Tx2 A signal line 11.
  • the same touch electrode (touch driving electrode or touch sensing electrode) is divided into a plurality of non-overlapping regions according to the electrode position, and the touch electrodes in the same region are spaced apart from each other and pass through.
  • the touch circuits for example, ICs, that is, integrated circuits
  • the embodiment of the present invention can greatly reduce the number of signal lines. Therefore, the embodiment of the present invention can effectively improve the display area.
  • the aperture ratio is advantageous for achieving a narrow bezel design of the display.
  • the base substrate 10 may further include a third region that does not overlap with the first region and the second region;
  • the touch driving electrode Tx further includes a plurality of third touch driving electrodes Tx3 in the three regions and spaced apart from each other, and each of the first touch driving electrodes Tx1, one second touch driving electrode Tx2 and one third touch driving electrode Tx3 are connected to the same signal line 11.
  • all the touch drive electrodes can be divided into three regions, for example, the number of touch drive electrodes in each region is 640, three areas of the touch drive electrodes are connected, so that the signal line of the touch drive electrode can be reduced to 1/3. It can be seen that the embodiment of the present invention can greatly reduce the number of signal lines, and is very advantageous for the narrow bezel design.
  • the touch sensing electrodes Rx are divided into two regions; in the above FIG. 2c, the touch driving electrodes Tx are divided into three regions.
  • embodiments of the invention include, but are not limited to, the embodiment illustrated in Figures 2a-2c.
  • Each of the touch driving electrode and the touch sensing electrode may be divided into at least two regions (for example, two regions, three regions, or more regions) according to actual needs and according to positions, and the following is combined with FIG. 3 and Figure 4 is further illustrated.
  • the touch sensing electrode Rx can also be divided into three regions.
  • the touch sensing electrode Rx further includes a plurality of regions disposed in the third region.
  • a third touch sensing electrode Rx3, each of the first touch sensing electrodes Rx1, a second touch sensing electrode Rx2 and a third touch sensing electrode Rx3 are connected to the same signal line 11 for connection with the touch circuit.
  • the poles Rx are all divided into a plurality of regions.
  • the touch driving electrode Tx is divided into three regions, and the touch sensing electrode Rx is divided into two regions.
  • the touch driving electrode Tx includes the first touch driving electrode Tx1, the second touch driving electrode Tx2, and the third touch driving electrode Tx3 disposed in different regions that do not overlap each other, and each first touch The control driving electrode Tx1, a second touch driving electrode Tx2 and a third touch driving electrode Tx3 are connected to the same signal line 11 to connect the touch circuit through the signal line 11; the touch sensing electrode Rx is disposed not in the mutual The first touch sensing electrode Rx1 and the second touch sensing electrode Rx2 are overlapped in different regions, and each of the first touch sensing electrodes Rx1 and the second touch sensing electrode Rx2 are connected to the same signal line 11 to pass The signal line 11 is connected to the touch circuit.
  • the number of touch driving electrodes or touch sensing electrodes in different regions may be equal.
  • the number of the first touch driving electrodes in the first area and the second touch driving electrodes in the second area may be equal; and so on, other areas may be similarly arranged.
  • the embodiment of the invention provides a solution for realizing full-screen fingerprint recognition.
  • the fingerprint recognition application can be realized by the touch driving electrode and the touch sensing electrode in the area.
  • the touch driving electrode and the touch sensing electrode can be realized by the touch driving electrode and the touch sensing electrode in the area.
  • the touch electrode can be segmented according to the screen size of the product.
  • the size of the area can be set to ensure that the finger does not press when pressed in a certain area. Go to other areas.
  • the size of each area can be set according to the size of the finger. For example, as shown in FIG. 2a, in a case where each of the first touch sensing electrodes Rx1 is connected to one second touch sensing electrode Rx2, the sizes of the first region and the second region in the first direction are greater than or equal to 5 mm. As shown in FIG. 2c, in a case where each of the first touch driving electrodes Tx1 is connected to one second touch driving electrode Tx2, the sizes of the first region and the second region in the second direction are both greater than or equal to 5 mm. Similarly, when the touch electrodes are further divided into the third region or more, the sizes of the regions in the corresponding directions may also be greater than or equal to 5 mm. With such an arrangement, it is advantageous to press a finger into the area while pressing the screen without pressing to other areas.
  • adjacent points can be set according to the distance between the valleys of the fingers.
  • the pitch of the touch electrodes For example, the pitch of the adjacent touch sensing electrodes and the adjacent touch driving electrodes can be set to 50 to 70 micrometers.
  • the capacitive fingerprint recognition technology when the distance between the finger and the fingerprint sensor (ie, the touch driving electrode and the touch sensing electrode) is relatively long (for example, more than 300 ⁇ m), the electric field signal between the finger and the fingerprint sensor is greatly attenuated. This tends to make fingerprints difficult to identify. Therefore, the thickness and material of the touched side of the fingerprint sensor can be set to facilitate fingerprint recognition.
  • the touch substrate provided by at least one embodiment of the present invention further includes a cover touch driving electrode Tx and a touch sensing electrode Rx (the two are separated by the insulating layer 12 and the positions are interchangeable).
  • Cover layer 13 the thickness of cover layer 13 is less than or equal to 300 microns.
  • the side of the cover layer 13 remote from the touch driving electrode Tx and the touch sensing electrode Rx is not provided with another layer structure, so that the touch object (for example, the user's finger) directly contacts the cover layer when touched.
  • the thickness of the cover layer 13 is not more than 300 micrometers, which is advantageous for obtaining a capacitance between a large touch object (such as a finger) and a touch electrode, and the capacitance is easily detected by the touch circuit, thereby facilitating capacitive fingerprint recognition.
  • the cover layer 13 includes a cover plate 133 that can protect the touch substrate, and the cover plate 133 has a thickness of less than or equal to 100 microns.
  • the use of a thin cover plate is advantageous for reducing the overall thickness of the cover layer 13 to obtain a capacitance between the large finger and the touch electrode, thereby facilitating capacitive fingerprint recognition.
  • the cover 133 can be a flexible cover.
  • the use of a flexible cover plate helps to prevent the cover plate from being damaged due to being too thin when the finger is pressed.
  • the use of a flexible cover plate facilitates the application of embodiments of the present invention to a flexible display screen.
  • the cover layer 13 further includes an optical adhesive (OCA) 132.
  • OCA optical adhesive
  • the optical adhesive 132 connects the cover 133 with the base substrate 10 provided with the touch driving electrode Tx and the touch sensing electrode Rx.
  • the optical adhesive 132 has a dielectric constant of 7 to 15.
  • the optical adhesive adopts a material having a large dielectric constant, which is advantageous for increasing the capacitance between the finger and the touch electrode, thereby facilitating the improvement of the detection result of the capacitive fingerprint recognition.
  • the cover layer 13 further includes a polarizer 131 disposed on a side of the cover 133 facing the base substrate 10, for example, on a side of the optical adhesive 132 facing the base substrate 10.
  • the polarizer 131 can prevent the touch driving electrode Tx and the touch sensing electrode Rx underneath from being reflected.
  • the polarizer 131 can also prevent other electrodes below it from reflecting light.
  • the polarizer 131 can be made thinner The polarizer is used to reduce the influence on the thickness of the cover layer 13.
  • the base substrate 10 may employ, for example, a polyimide (PI) or similar flexible plastic substrate, which is advantageous for realizing a flexible display.
  • PI polyimide
  • the structures of the touch driving electrodes Tx and the touch sensing electrodes Rx include, but are not limited to, the embodiment shown in FIG. 5, and other structures commonly used in the art may be used as long as mutual capacitance is formed between the two. .
  • At least one embodiment of the present invention further provides a display device comprising the touch substrate provided by any of the above embodiments.
  • the display device provided by the embodiment of the present invention may be an active light-emitting display device.
  • a display device has a simple structure and is advantageous for implementing a flexible display screen.
  • the active light-emitting display device can realize full-screen fingerprint recognition by integrating a touch electrode (touch driving electrode and touch sensing electrode) for fingerprint recognition in an effective display area of the light-emitting backplane.
  • the display device may be an active light-emitting display device such as an OLED (Organic Light Emitting Diode) display device or an LED (Light Emitting Diode) display device.
  • OLED Organic Light Emitting Diode
  • LED Light Emitting Diode
  • the display device may include a plurality of light emitting units 14 disposed on the base substrate 10 and switching elements respectively connected to the light emitting unit 14 (not shown in FIG. 6). Out).
  • the light emitting unit 14 may be an LED or an OLED.
  • the light emitting unit 14 may be covered by a sealing film (an organic thin film or an inorganic thin film or a laminated structure thereof); for example, the switching element may be an LTPS ( Low temperature polysilicon) thin film transistors or other types of thin film transistors.
  • the display function can be realized by the embodiment of the present invention; the light-emitting unit 14 adopts an LED or an OLED or the like, which is advantageous for applying the embodiment of the present invention to the flexible display screen.
  • the display device may further include other structures, such as an insulating layer 15 covering the light emitting unit 14, a gate driver (such as an array substrate row driver), a source driver, a gate line, and a data line (not shown in FIG. 6). Wait.
  • a gate driver such as an array substrate row driver
  • a source driver such as an array substrate row driver
  • a gate line such as a gate line
  • a data line not shown in FIG. 6
  • FIG. 6 illustrates an example in which the display device is an active light-emitting display device.
  • the display device is an active light-emitting display device.
  • embodiments of the invention include, but are not limited to, active illumination display devices.
  • the display device may also be a liquid crystal display device.
  • the display device has a display area and a non-display area outside the display area, and the touch substrate includes a plurality of touch driving electrodes Tx and a plurality of touch sensing electrodes Rx. They are all located in the display area.
  • the display device can realize full-screen fingerprint recognition (ie, realize fingerprint recognition in the entire display area).
  • the display device may be an in-cell display device or an on-cell display device.
  • At least one embodiment of the present invention further provides a fingerprint recognition device, which includes the touch substrate provided by any of the above embodiments or the display device provided by any of the embodiments.
  • At least one embodiment of the present invention provides another fingerprint identification device, as shown in FIG. 7A, comprising: a substrate substrate 10 including at least a first region and a second region that do not overlap each other; and a plurality of fingerprint recognition drive electrodes T, which is disposed on the base substrate 10 and extends in the first direction; a plurality of fingerprint recognition sensing electrodes R disposed on the base substrate 10 and extending in the second direction, the second direction intersecting the first direction; A plurality of signal lines 11 are disposed on the base substrate 10.
  • the plurality of fingerprint recognition drive electrodes T include a plurality of first fingerprint recognition drive electrodes T disposed in the first region and a plurality of second fingerprint recognition drive electrodes T disposed in the second region, and each of the first fingerprints
  • the identification driving electrode T and the second fingerprint recognition driving electrode T are connected to the same signal line 11; and/or the plurality of fingerprint recognition sensing electrodes R include a plurality of first fingerprint recognition sensing electrodes R disposed in the first region.
  • a plurality of second fingerprint recognition sensing electrodes R disposed in the second area, each of the first fingerprint recognition sensing electrodes R and a second fingerprint recognition sensing electrode R being connected to the same signal line 11.
  • Each of the fingerprint recognition drive electrode T and the fingerprint recognition induction electrode R may be divided into at least two regions, for example, three regions or more. For example, as shown in FIG. 7A, the fingerprint recognition drive electrode T is divided into three regions, and the fingerprint recognition induction electrode R is divided into two regions.
  • the fingerprint recognition drive electrode T includes a first fingerprint recognition drive electrode T1, a second fingerprint recognition drive electrode T2, and a third fingerprint recognition drive electrode T3 disposed in different regions that do not overlap each other, and each first fingerprint
  • the identification driving electrode T1, a second fingerprint recognition driving electrode T2 and a third fingerprint recognition driving electrode T3 are connected to the same signal line 11 to connect the fingerprint identification circuit through the signal line 11;
  • the fingerprint recognition sensing electrode R is disposed not in the mutual The first fingerprint identifying sensing electrode R1 and the second fingerprint identifying sensing electrode R2 in different overlapping regions, and each first fingerprint identifying sensing electrode R1 and a second fingerprint identifying sensing electrode R2 are connected to the same signal line 11 for passing
  • the signal line 11 is connected to a fingerprint recognition circuit.
  • the same fingerprint recognition electrode (fingerprint recognition drive electrode or fingerprint recognition induction electrode) is divided into multiple non-overlapping regions according to the electrode position, in the same region.
  • the fingerprint identification electrodes are spaced apart from each other and connected to the fingerprint identification circuit (for example, an IC, ie, an integrated circuit) through different signal lines, and the corresponding fingerprint recognition electrodes in different regions are connected together and connected through the same signal line to connect the fingerprint identification circuit. .
  • the embodiment of the present invention can greatly reduce the number of signal lines, and the embodiment of the present invention can effectively improve the display area, as compared with a method in which a signal line is connected to each of the fingerprint recognition electrodes and different fingerprint identification electrodes are connected to different signal lines.
  • each of the first fingerprint recognition drive electrodes is connected to a second fingerprint recognition drive electrode
  • the sizes of the first region and the second region along the second direction are greater than or equal to 5 mm
  • the sizes of the first region and the second region along the first direction are greater than or equal to 5 mm.
  • the pitch of adjacent fingerprint recognition electrodes can be set according to the distance between the valleys of the fingers.
  • the pitch of adjacent fingerprint recognition sensing electrodes and adjacent fingerprint recognition drive electrodes are both 50 to 70 microns.
  • the fingerprint identification device further includes a cover layer 13 covering the fingerprint recognition drive electrode T and the fingerprint recognition induction electrode R.
  • the thickness of the cover layer 13 is less than or equal to 300 micrometers. .
  • the side of the cover layer 13 remote from the fingerprint recognition drive electrode T and the fingerprint recognition induction electrode R is not provided with another layer structure, so that the touch object (for example, the user's finger) directly contacts the cover layer upon touch.
  • the thickness of the cover layer 13 does not exceed 300 micrometers, which is advantageous for obtaining a capacitance between a large touch object (for example, a finger) and a fingerprint recognition electrode, which is easily detected by the fingerprint recognition circuit, thereby facilitating capacitive fingerprint recognition.
  • the cover layer 13 includes a cover plate 133 that can protect the structure it covers, and the cover plate 133 has a thickness of less than or equal to 100 microns.
  • the use of a thin cover plate is advantageous for reducing the overall thickness of the cover layer 13 to obtain a capacitance between the larger finger and the fingerprint recognition electrode, thereby facilitating capacitive fingerprint recognition.
  • the cover 133 can be a flexible cover.
  • the use of a flexible cover plate helps to prevent the cover plate from being damaged due to being too thin when the finger is pressed.
  • the use of a flexible cover plate facilitates the application of embodiments of the present invention to a flexible display screen.
  • the cover layer 13 further includes an optical adhesive (OCA) 132 that connects the cover plate 133 to the base substrate 10 provided with the fingerprint recognition drive electrode T and the fingerprint recognition induction electrode R.
  • OCA optical adhesive
  • the optical adhesive 132 has a dielectric constant of 7 to 15.
  • the optical adhesive adopts a material with a large dielectric constant, which is advantageous for increasing the capacitance between the finger and the fingerprint recognition electrode, thereby facilitating the improvement of the detection result of the capacitive fingerprint recognition.
  • the cover layer 13 further includes a polarizer 131 disposed on a side of the cover 133 facing the base substrate 10, for example, on a side of the optical adhesive 132 facing the base substrate 10.
  • the polarizer 131 can prevent the fingerprint recognition drive electrode T and the fingerprint recognition induction electrode Rx underneath from being reflected, and the polarizer 131 can also prevent other electrodes below it from reflecting light.
  • the polarizer 131 may employ a thinner polarizer to reduce the influence on the thickness of the cover layer 13.
  • At least one embodiment of the present invention further provides a method for fabricating a touch substrate.
  • the method includes: forming a plurality of touch driving electrodes, wherein the touch driving electrodes extend in a first direction; a touch sensing electrode, the touch sensing electrode extends in a second direction, the second direction intersects the first direction, and a plurality of signal lines are formed.
  • the touch driving electrode, the touch sensing electrode, and the signal line are formed on the base substrate, and the substrate includes at least a first region and a second region that do not overlap each other.
  • the plurality of touch driving electrodes include a plurality of first touch driving electrodes disposed in the first region and a plurality of second touch driving electrodes disposed in the second region, and each of the first touch driving electrodes and a second touch driving electrode is connected to the same signal line; and/or the plurality of touch sensing electrodes include a plurality of first touch sensing electrodes disposed in the first region and a plurality of the plurality of touch sensing electrodes disposed in the second region The second touch sensing electrode is connected to the same signal line by each of the first touch sensing electrodes and one second touch sensing electrode.
  • the order in which the touch driving electrodes, the touch sensing electrodes, and the signal lines are formed in the above method is not limited.
  • the top view of the touch substrate fabricated by the method provided by the embodiment of the present invention can be as shown in FIG. 2 to FIG. 4 . The repetitions are not repeated here.
  • the manufacturing method provided by at least one embodiment of the present invention further includes forming a cover on the base substrate 10 after forming the touch driving electrode Tx and the touch sensing electrode Rx on the base substrate 10.
  • the layer 13 the cover layer includes an optical adhesive 132 and a cover plate 133, and the optical adhesive 132 connects the cover plate 133 with the base substrate 10.
  • the optical adhesive 132 can be made of a material having a large dielectric constant to increase the capacitance between the finger and the touch electrode, thereby improving the detection result of the capacitive fingerprint recognition.
  • forming the cover layer may further include forming a polarizer 131 covering the touch driving electrode Tx and the touch sensing electrode Rx to prevent reflection of the touch electrode.
  • the manufacturing method of the touch substrate shown in FIG. 5 may include the following steps S51 to S53.
  • Step S51 forming a touch driving electrode Tx and a touch sensing electrode Rx on the base substrate 10 and an insulating layer separating the two.
  • both the touch driving electrode Tx and the touch sensing electrode Rx can be made of a transparent conductive material (for example, a transparent conductive metal oxide such as indium tin oxide), and the positions of the two can be interchanged.
  • Step S52 attaching a polarizer 131 to the touch driving electrode Tx and the touch sensing electrode Rx.
  • Step S53 coating the optical adhesive 132 on the polarizer 131, and then providing a cover 133 on the optical adhesive 132 to provide surface protection for the touch substrate.
  • the touch driving electrode Tx and the touch sensing electrode Rx may be formed on the cover 133, and then the cover plate on which the electrodes are formed passes through the optical adhesive 132. It is connected to the base substrate 10.
  • At least one embodiment of the present invention further provides a method for recognizing a fingerprint by using the touch substrate provided in any one of the above embodiments.
  • the method includes: between the touch driving electrode and the touch sensing electrode.
  • the change in capacitance determines the touch position; and the positional relationship between the touch position and the first area and the second area is determined, and in the case where it is determined that the touch position overlaps the first area and is outside the second area, fingerprint recognition is performed.
  • determining the touch position and determining the positional relationship between the touch position and the first area and the second area may be implemented by a touch circuit on the touch substrate.
  • the method provided by the embodiment of the present invention includes: when it is determined that the touch location overlaps with one region and is located outside the remaining region. , for fingerprint recognition. For example, when it is determined that the touch position overlaps only one of the first area and the second area as shown in FIGS. 2a and 2b, or when it is determined that the touch position is only as shown in FIG. 2c or FIG. When one of the regions, the second region, and the third region overlaps, or when it is determined that the touch position overlaps only one of the regions 1 to 6 as shown in FIG. 4, fingerprint recognition is performed.
  • Embodiments of the touch substrate and the method of fabricating the same, the display device, and the fingerprint recognition device and method may be cross-referenced. Further, the features of the embodiments and the embodiments of the present invention may be combined with each other without conflict.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Image Input (AREA)

Abstract

一种触控基板及制作方法、显示装置、指纹识别装置和方法,该触控基板包括衬底基板(10)以及位于其上的触控驱动电极(Tx)、触控感应电极(Rx)和信号线(11)。衬底基板(10)至少包括互不重叠的第一区域和第二区域。多个触控驱动电极(Tx)包括设置于第一区域内的多个第一触控驱动电极(Tx1)和设置于第二区域内的多个第二触控驱动电极(Tx2),并且每个第一触控驱动电极(Tx1)与一个第二触控驱动电极(Tx2)连接同一条信号线(11);和/或,多个触控感应电极(Rx)包括设置于第一区域内的多个第一触控感应电极(Rx1)和设置于第二区域内的多个第二触控感应电极(Rx2),每个第一触控感应电极(Rx1)与一个第二触控感应电极(Rx2)连接同一条信号线(11)。

Description

触控基板及制作方法、显示装置、指纹识别装置和方法 技术领域
本发明的实施例涉及一种触控基板及其制作方法、显示装置、指纹识别装置和方法。
背景技术
近年来,随着科技的发展,具有生物识别功能的电子产品逐渐进入人们的生活工作中。指纹由于具有唯一性和不变性,可以用于个人身份鉴别,因而指纹识别技术备受人们重视。目前,基于硅基工艺的按压式与滑动式指纹识别技术已经整合入了电子产品中,未来人们关注的是电子产品的显示区域内的指纹识别技术。
发明内容
本发明的实施例提供一种触控基板及其制作方法、显示装置、指纹识别装置和方法,本发明实施例可以减少触控电极的信号线的数量。
本发明的至少一个实施例提供一种触控基板,其包括:衬底基板,其至少包括互不重叠的第一区域和第二区域;多个触控驱动电极,其设置于所述衬底基板上并且沿第一方向延伸;多个触控感应电极,其设置于所述衬底基板上并且沿第二方向延伸,所述第二方向与所述第一方向相交;以及多条信号线,其设置于所述衬底基板上。在该触控基板中,所述多个触控驱动电极包括设置于所述第一区域内的多个第一触控驱动电极和设置于所述第二区域内的多个第二触控驱动电极,并且每个第一触控驱动电极与一个第二触控驱动电极连接同一条信号线;和/或,所述多个触控感应电极包括设置于所述第一区域内的多个第一触控感应电极和设置于所述第二区域内的多个第二触控感应电极,每个第一触控感应电极与一个第二触控感应电极连接同一条信号线。
例如,在每个第一触控驱动电极连接一个第二触控驱动电极的情况下,所述第一区域和所述第二区域的沿所述第二方向的尺寸都大于或等于5mm; 在每个第一触控感应电极连接一个第二触控感应电极的情况下,所述第一区域和所述第二区域的沿所述第一方向的尺寸都大于或等于5mm。
例如,相邻的触控感应电极和相邻的触控驱动电极的节距都为50~70微米。
例如,所述的触控基板还包括覆盖所述触控驱动电极和所述触控感应电极的覆盖层,所述覆盖层的厚度小于或等于300微米。
例如,所述覆盖层包括盖板,所述盖板的厚度小于或等于100微米。
例如,所述盖板为柔性盖板。
例如,所述覆盖层还包括光学胶,所述光学胶将所述盖板与设置有所述触控感应电极和触控驱动电极的所述衬底基板连接在一起。
例如,所述光学胶的介电常数为7~15。
例如,所述覆盖层还包括偏光片,所述偏光片设置于所述盖板的面向所述衬底基板一侧。
例如,所述衬底基板还包括与所述第一区域和所述第二区域不重叠的第三区域。所述多个触控驱动电极还包括设置于所述第三区域内的多个第三触控驱动电极,并且每个第一触控驱动电极、所述一个第二触控驱动电极和一个第三触控驱动电极连接同一条信号线;和/或,所述多个触控感应电极还包括设置于所述第三区域内的多个第三触控感应电极,每个第一触控感应电极、所述一个第二触控感应电极和一个第三触控感应电极连接同一条信号线。
本发明的至少一个实施例还提供一种显示装置,其包括以上任一项所述的触控基板。
本发明的至少一个实施例还提供一种指纹识别装置,其包括以上任一项所述的触控基板或以上所述的显示装置。
例如,所述显示装置具有显示区域和位于所述显示区域之外的非显示区域,所述触控基板包括的所述多个触控驱动电极和所述多个触控感应电极都位于所述显示区域中。
本发明的至少一个实施例还提供一种触控基板的制作方法,该方法包括:形成多个触控驱动电极,所述触控驱动电极沿第一方向延伸;形成多个触控感应电极,所述触控感应电极沿第二方向延伸,所述第二方向与所述第一方向相交;以及形成多条信号线。在该方法中,所述触控驱动电极、所述触控 感应电极和所述信号线形成在衬底基板上,所述衬底基板至少包括互不重叠的第一区域和第二区域。并且,在该方法中,所述多个触控驱动电极包括设置于所述第一区域内的多个第一触控驱动电极和设置于所述第二区域内的多个第二触控驱动电极,并且每个第一触控驱动电极与一个第二触控驱动电极连接同一条信号线;和/或,所述多个触控感应电极包括设置于所述第一区域内的多个第一触控感应电极和设置于所述第二区域内的多个第二触控感应电极,每个第一触控感应电极与一个第二触控感应电极连接同一条信号线。
本发明的至少一个实施例还提供一种利用以上任一项所述的触控基板识别指纹的方法,该方法包括:根据所述触控驱动电极和所述触控感应电极之间的电容变化确定触摸位置;以及判断所述触摸位置与所述第一区域和所述第二区域的位置关系,在确定出所述触摸位置与所述第一区域交叠并且位于所述第二区域之外的情况下,进行指纹识别。
本发明的至少一个实施例提供一种指纹识别装置,其包括:衬底基板,其至少包括互不重叠的第一区域和第二区域;多个指纹识别驱动电极,其设置于所述衬底基板上并且沿第一方向延伸;多个指纹识别感应电极,其设置于所述衬底基板上并且沿第二方向延伸,所述第二方向与所述第一方向相交;以及多条信号线,其设置于所述衬底基板上。所述多个指纹识别驱动电极包括设置于所述第一区域内的多个第一指纹识别驱动电极和设置于所述第二区域内的多个第二指纹识别驱动电极,并且每个第一指纹识别驱动电极与一个第二指纹识别驱动电极连接同一条信号线;和/或所述多个指纹识别感应电极包括设置于所述第一区域内的多个第一指纹识别感应电极和设置于所述第二区域内的多个第二指纹识别感应电极,每个第一指纹识别感应电极与一个第二指纹识别感应电极连接同一条信号线。
例如,在每个第一指纹识别驱动电极连接一个第二指纹识别驱动电极的情况下,所述第一区域和所述第二区域的沿所述第二方向的尺寸都大于或等于5mm;在每个第一指纹识别感应电极连接一个第二指纹识别感应电极的情况下,所述第一区域和所述第二区域的沿所述第一方向的尺寸都大于或等于5mm。
例如,相邻的指纹识别感应电极和相邻的指纹识别驱动电极的节距都为50~70微米。
例如,所述的指纹识别装置还包括覆盖所述指纹识别驱动电极和所述指纹识别感应电极的覆盖层,所述覆盖层的厚度小于或等于300微米。
例如,所述覆盖层包括盖板,所述盖板的厚度小于或等于100微米。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为触控电路中的基于互电容检测技术的等效检测电路模型;
图2a为本发明实施例提供的触控基板中触控感应电极被划分为位于两个区域的俯视示意图;
图2b为本发明实施例提供的触控基板中触控感应电极和触控驱动电极都被划分为位于两个区域的俯视示意图;
图2c为本发明实施例提供的触控基板中触控驱动电极被划分为位于三个区域的俯视示意图;
图3为本发明实施例提供的触控基板中触控感应电极被划分为位于三个区域的俯视示意图;
图4为本发明实施例提供的触控基板中触控感应电极被划分为位于两个区域并且触控驱动电极被划分为位于三个区域的俯视示意图;
图5为本发明实施例提供的触控基板的剖视示意图;
图6为本发明实施例提供的显示装置的剖视示意图;
图7A为本发明实施例提供的指纹识别装置的俯视示意图;
图7B为本发明实施例提供的指纹识别装置的剖视示意图;
图8为本发明实施例提供的触控基板的制作方法的流程图;
图9为本发明实施例提供的指纹识别方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描 述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
互电容检测技术的原理为:电容传感器包括多条沿X向延伸的驱动线和多条沿Y向延伸的探测线,这些驱动线和探测线通过各自的信号线引出后都与触控电路连接,触控电路通过对驱动线侧施加电压并检测探测线侧的信号变化,可以根据驱动线确定Y坐标并且根据探测线确定X坐标。例如,在检测过程中,对X向驱动线进行逐行扫描,在扫描每一行驱动线时,均读取每条探测线上的信号,通过一轮的扫描,就可以把每个行列的交点都扫描到,因此共扫描X*Y个信号。由于这种检测方式可以确定多点的坐标,因此可以通过手指的谷脊与电容传感器(驱动线和探测线的组合)之间产生的电容大小实现同时对多个谷、脊状态的检测,以进行指纹识别。
例如,触控电路中的基于互电容检测技术的等效检测电路模型如图1所示,其中,101为信号源,102为驱动线与探测线之间的互电容,103为驱动线电阻,104为驱动线、探测线与触控电路中的公共电极层间的寄生电容,105为探测线电阻,106为检测电路。当手指触摸时,手指的触摸可等效为驱动线及探测线之间的互电容改变,而手指的脊由于距离电容传感器较近,对互电容的改变较大,手指的谷距离电容传感器较远,对互电容的改变比较小,根据检测电路的检测结果Vout可得出由此导致的微弱电流I的变化,以此来进行谷、脊的区分,可以实现指纹识别。
在研究中,本申请的发明人注意到,为了实现指纹识别,在互容式检测技术中,驱动线以及探测线的节距(pitch)通常设置为50至70μm;在此情 形下,若想实现全屏指纹识别(即在整个显示区域内实现指纹识别),根据显示屏的尺寸需在显示区域外设置上千条信号线,这些信号线既影响显示区域的开口率,又影响显示屏的边框尺寸。
本发明的至少一个实施例提供一种触控基板,如图2a至图2c所示,该触控基板包括具有互不重叠的第一区域和第二区域的衬底基板10,以及设置于衬底基板10上的多个触控驱动电极Tx(参见图2a中的Tx1-Txn、图2b中的Tx1-Tx2、和图2c中的Tx1-Tx3)、多个触控感应电极Rx(参见图2a中的Rx1-Rx2、图2b中的Rx1-Rx2和图2c中的Rx1-Rxn)和多个信号线11。触控驱动电极Tx沿第一方向延伸;触控感应电极Rx与触控驱动电极Tx间隔设置(在垂直于衬底基板10板面的方向上,触控驱动电极Tx与触控感应电极Rx之间在二者交叉位置处通过绝缘层彼此间隔开)并且沿第二方向延伸,第二方向与第一方向相交;每条信号线11用于将与其连接的触控驱动电极或触控感应电极的信号引出。
在本发明的至少一个实施例中,如图2a所示,触控感应电极Rx包括设置于第一区域内且彼此间隔的多个第一触控感应电极Rx1和设置于第二区域内且彼此间隔的多个第二触控感应电极Rx2;每个第一触控感应电极Rx1与一个第二触控感应电极Rx2连接同一信号线11,例如,第一触控感应电极Rx1和对应的第二触控感应电极Rx2的上端连接在一起(例如二者形成U形结构),并且二者中的一个的下端连接信号线11且另一个的下端不连接信号线11,由此实现每个第一触控感应电极Rx1与一个第二触控感应电极Rx2连接同一条信号线11。
在本发明的至少另一个实施例中,触控驱动电极包括设置于第一区域内且彼此间隔的多个第一触控驱动电极和设置于第二区域内且彼此间隔的多个第二触控驱动电极,并且每个第一触控驱动电极与一个第二触控驱动电极连接同一条信号线。
在本发明的至少另一个实施例中,如图2b所示,触控感应电极Rx包括设置于第一区域内且彼此间隔的多个第一触控感应电极Rx1和设置于第二区域内且彼此间隔的多个第二触控感应电极Rx2,每个第一触控感应电极Rx1与一个第二触控感应电极Rx2连接同一信号线11,以通过该信号线11连接触控电路;并且,触控驱动电极Tx包括设置于第一区域内且彼此间隔的多 个第一触控驱动电极Tx1和设置于第二区域内且彼此间隔的多个第二触控驱动电极Tx2,并且每个第一触控驱动电极Tx1与一个第二触控驱动电极Tx2连接同一条信号线11。
在本发明实施例中,同一种触控电极(触控驱动电极或触控感应电极)按照电极位置被划分成位于多个互不重叠的区域,同一区域内的触控电极彼此间隔开并且通过不同信号线引出后连接触控电路(例如IC,即集成电路),不同区域内对应的触控电极连接在一起并通过同一条信号线引出后连接触控电路。与每个触控电极都连接一条信号线并且不同的触控电极连接不同的信号线的方式相比,本发明实施例可以大幅减少信号线的数量,因此本发明实施例可以有效提高显示区域的开口率并有利于实现显示屏的窄边框设计。
例如,在本发明的至少一个实施例中,如图2c所示,衬底基板10还可以包括与第一区域和第二区域不重叠的第三区域;触控驱动电极Tx还包括设置于第三区域内且彼此间隔的多个第三触控驱动电极Tx3,并且每个第一触控驱动电极Tx1、一个第二触控驱动电极Tx2和一个第三触控驱动电极Tx3连接同一条信号线11。例如,对于分辨率为1920*1080的产品来说,可将所有的触控驱动电极(共1920个触控驱动电极)分成位于三个区域,例如每个区域内的触控驱动电极的数量为640个,三个区域的触控驱动电极对应连接,这样就可以使触控驱动电极的信号线减少至原来的1/3。由此可见,本发明实施例可以使信号线的数量大幅减少,对窄边框设计十分有利。
在以上图2a中,触控感应电极Rx被划分成位于2个区域内;在以上图2c中,触控驱动电极Tx被划分成位于3个区域内。当然,本发明实施例包括但不限于图2a至图2c所示实施例。触控驱动电极和触控感应电极中的每一种都可以根据实际需要并按照位置被划分成至少位于两个区域(例如2个区域、3个区域或更多区域),下面结合图3和图4进一步说明。
例如,在本发明的至少一个实施例中,触控感应电极Rx也可以被划分成位于3个区域,例如,如图3所示,触控感应电极Rx还包括设置于第三区域内的多个第三触控感应电极Rx3,每个第一触控感应电极Rx1、一个第二触控感应电极Rx2和一个第三触控感应电极Rx3连接同一条信号线11,以与触控电路连接。
例如,在本发明的至少一个实施例中,触控驱动电极Tx和触控感应电 极Rx都被划分成位于多个区域。例如,如图4所示,触控驱动电极Tx被划分成位于3个区域,触控感应电极Rx被划分成位于2个区域。也就是说,触控驱动电极Tx包括设置于互不重叠的不同区域内的第一触控驱动电极Tx1、第二触控驱动电极Tx2和第三触控驱动电极Tx3,并且每个第一触控驱动电极Tx1、一个第二触控驱动电极Tx2和一个第三触控驱动电极Tx3连接同一条信号线11,以通过该信号线11连接触控电路;触控感应电极Rx包括设置于互不重叠的不同区域内的第一触控感应电极Rx1和第二触控感应电极Rx2,并且每个第一触控感应电极Rx1与一个第二触控感应电极Rx2连接同一条信号线11,以通过该信号线11连接触控电路。
例如,在以上任一实施例中,不同区域内的触控驱动电极或触控感应电极的数量可以相等。例如,第一区域内的第一触控驱动电极与第二区域内的第二触控驱动电极的数量可以相等;以此类推,其它区域也可以类似设置。
本发明实施例提出一种可以实现全屏指纹识别的方案,例如,手指按压到某一区域时,通过该区域内的触控驱动电极与触控感应电极可以实现指纹识别应用。例如,当手指按压到图2a和图2b所示的第一区域和第二区域中的一个时,或者当手指按压到如图2c或图3所示的第一区域、第二区域和第三区域中的一个时,或者当手指按压到如图4所示的区域1至区域6中的一个时,可以通过被按压的区域中的触控电极进行指纹识别。在本发明实施例中,可以根据产品的屏幕尺寸对触控电极进行区域分割,为确保指纹识别的准确性,可以通过对区域的尺寸进行设置,以保证手指在某一区域按压时不会按压到其他区域。
例如,可以根据手指的尺寸来设置各区域的尺寸。例如,如图2a所示,在每个第一触控感应电极Rx1连接一个第二触控感应电极Rx2的情况下,第一区域和第二区域的沿第一方向的尺寸都大于或等于5mm;如图2c所示,在每个第一触控驱动电极Tx1连接一个第二触控驱动电极Tx2的情况下,第一区域和第二区域的沿第二方向的尺寸都大于或等于5mm。类似地,当触控电极还被划分为第三区域或更多区域时,这些区域沿相应方向的尺寸也可以都大于或等于5mm。通过这样的设置,有利于使手指按压屏幕时按压到一个区域内且不会按压到其他区域。
例如,为了实现指纹识别,可以根据手指的谷脊之间的距离来设置相邻 的触控电极的节距。例如,相邻的触控感应电极和相邻的触控驱动电极的节距(pitch)都可以设置为50~70微米。
在电容式指纹识别技术中,当手指与指纹传感器(即上述触控驱动电极和触控感应电极)的距离比较远(比如超过300μm)时,手指与指纹传感器之间的电场信号会大幅衰减,这容易造成指纹难以识别。因此,可以通过对指纹传感器的被触摸侧的部件的厚度和材质等进行设置,以有利于实现指纹识别。
例如,如图5所示,本发明的至少一个实施例提供的触控基板还包括覆盖触控驱动电极Tx和触控感应电极Rx(二者通过绝缘层12间隔开并且位置可以互换)的覆盖层13,覆盖层13的厚度小于或等于300微米。覆盖层13的远离触控驱动电极Tx和触控感应电极Rx的一侧未设置其它的层结构,从而在触摸时触摸物(例如用户的手指)直接接触覆盖层。覆盖层13的厚度不超过300微米,有利于获得较大的触摸物(例如手指)与触控电极之间的电容,该电容容易被触控电路检测到,从而有利于实现电容式指纹识别。
例如,覆盖层13包括盖板133,盖板133可以保护触控基板,盖板133的厚度小于或等于100微米。采用较薄的盖板,有利于减小覆盖层13的整体厚度以获得较大的手指与触控电极之间的电容,从而有利于实现电容式指纹识别。
例如,盖板133可以为柔性盖板。采用柔性盖板,有利于避免手指按压时盖板因太薄而损坏。另一方面,采用柔性盖板有利于使本发明实施例应用于柔性显示屏中。
例如,覆盖层13还包括光学胶(OCA)132,光学胶132将盖板133与设置有触控驱动电极Tx和触控感应电极Rx的衬底基板10连接在一起。例如,光学胶132的介电常数为7~15。光学胶采用介电常数较大的材料,有利于增大手指与触控电极之间的电容,从而有利于提高电容式指纹识别的检测结果。
例如,覆盖层13还包括偏光片131,偏光片131设置于盖板133的面向衬底基板10的一侧,例如设置于光学胶132的面向衬底基板10的一侧。偏光片131可以防止其下方的触控驱动电极Tx和触控感应电极Rx反光,当然,偏光片131也可以防止其下方的其它电极反光。偏光片131可以采用较薄的 偏光片,以减小对覆盖层13的厚度的影响。
例如,衬底基板10可以采用例如聚酰亚胺(PI)或类似的柔性塑料基板,这样有利于实现柔性显示屏。
需要说明的是,触控驱动电极Tx与触控感应电极Rx的结构包括但不限于图5所示实施例,也可以采用本领域中常用的其它结构,只要二者之间形成互电容即可。
本发明的至少一个实施例还提供一种显示装置,其包括以上任一项实施例提供的触控基板。
例如,本发明实施例提供的显示装置可以为主动发光式显示装置,这样的显示装置结构简单,有利于实现柔性显示屏。例如,该主动发光式显示装置可以通过将用于指纹识别的触控电极(触控驱动电极和触控感应电极)集成在发光背板的有效显示区,以实现全屏指纹识别。例如,该显示装置可以为OLED(有机发光二极管)显示装置或LED(发光二极管)显示装置等主动发光式显示装置。
例如,如图6所示,本发明的至少一个实施例提供的显示装置可以包括设置于衬底基板10上的多个发光单元14以及与分别连接发光单元14的开关元件(图6中未示出)。例如发光单元14可以为LED或OLED,为了防止水氧进入发光单元14内部,发光单元14可以被密封薄膜(有机薄膜或无机薄膜或二者的层叠结构)覆盖;例如,开关元件可以为LTPS(低温多晶硅)薄膜晶体管或其它类型的薄膜晶体管。通过设置发光单元14,可以使本发明实施例实现显示功能;发光单元14采用LED或OLED等,有利于使本发明实施例应用于柔性显示屏中。
当然,显示装置还可以包括其它结构,例如还包括覆盖发光单元14的绝缘层15、栅极驱动器(例如阵列基板行驱动器)、源极驱动器、栅线和数据线(图6中未示出)等。
图6以显示装置为主动发光式显示装置为例进行说明。当然,本发明实施例包括但不限于主动发光式显示装置。例如,该显示装置也可以为液晶显示装置。
例如,如图6所示,该显示装置具有显示区域和位于显示区域之外的非显示区域,触控基板包括的多个触控驱动电极Tx和所多个触控感应电极Rx 都位于显示区域中。该显示装置可以实现全屏指纹识别(即在整个显示区域内实现指纹识别)。
例如,该显示装置可以为内嵌式(in cell)显示装置或覆盖表面式(on cell)显示装置。
本发明的至少一个实施例还提供一种指纹识别装置,其包括以上任一项实施例提供的触控基板或任一项实施例提供的显示装置。
本发明的至少一个实施例提供另一种指纹识别装置,如图7A所示,其包括:衬底基板10,其至少包括互不重叠的第一区域和第二区域;多个指纹识别驱动电极T,其设置于衬底基板10上并且沿第一方向延伸;多个指纹识别感应电极R,其设置于衬底基板10上并且沿第二方向延伸,第二方向与第一方向相交;以及多条信号线11,其设置于衬底基板10上。所述多个指纹识别驱动电极T包括设置于第一区域内的多个第一指纹识别驱动电极T和设置于第二区域内的多个第二指纹识别驱动电极T,并且每个第一指纹识别驱动电极T与一个第二指纹识别驱动电极T连接同一条信号线11;和/或,所述多个指纹识别感应电极R包括设置于第一区域内的多个第一指纹识别感应电极R和设置于第二区域内的多个第二指纹识别感应电极R,每个第一指纹识别感应电极R与一个第二指纹识别感应电极R连接同一条信号线11。
指纹识别驱动电极T和指纹识别感应电极R中的每个都可以被划分为至少两个区域,例如三个区域或更多区域。例如,如图7A所示,指纹识别驱动电极T被划分成位于3个区域,指纹识别感应电极R被划分成位于2个区域。也就是说,指纹识别驱动电极T包括设置于互不重叠的不同区域内的第一指纹识别驱动电极T1、第二指纹识别驱动电极T2和第三指纹识别驱动电极T3,并且每个第一指纹识别驱动电极T1、一个第二指纹识别驱动电极T2和一个第三指纹识别驱动电极T3连接同一条信号线11,以通过该信号线11连接指纹识别电路;指纹识别感应电极R包括设置于互不重叠的不同区域内的第一指纹识别感应电极R1和第二指纹识别感应电极R2,并且每个第一指纹识别感应电极R1与一个第二指纹识别感应电极R2连接同一条信号线11,以通过该信号线11连接指纹识别电路。
在本发明实施例中,同一种指纹识别电极(指纹识别驱动电极或指纹识别感应电极)按照电极位置被划分成位于多个互不重叠的区域,同一区域内 的指纹识别电极彼此间隔开并且通过不同信号线引出后连接指纹识别电路(例如IC,即集成电路),不同区域内对应的指纹识别电极连接在一起并通过同一条信号线引出后连接指纹识别电路。与每个指纹识别电极都连接一条信号线并且不同的指纹识别电极连接不同的信号线的方式相比,本发明实施例可以大幅减少信号线的数量,因此本发明实施例可以有效提高显示区域的
例如,在每个第一指纹识别驱动电极连接一个第二指纹识别驱动电极的情况下,所述第一区域和所述第二区域的沿所述第二方向的尺寸都大于或等于5mm;在每个第一指纹识别感应电极连接一个第二指纹识别感应电极的情况下,所述第一区域和所述第二区域的沿所述第一方向的尺寸都大于或等于5mm。通过这样的设置,有利于使手指按压屏幕时按压到一个区域内且不会按压到其他区域。
例如,为了实现指纹识别,可以根据手指的谷脊之间的距离来设置相邻的指纹识别电极的节距。例如,相邻的指纹识别感应电极和相邻的指纹识别驱动电极的节距都为50~70微米。
例如,如图7B所示,本发明的至少一个实施例所述的指纹识别装置还包括覆盖指纹识别驱动电极T和指纹识别感应电极R的覆盖层13,覆盖层13的厚度小于或等于300微米。覆盖层13的远离指纹识别驱动电极T和指纹识别感应电极R的一侧未设置其它的层结构,从而在触摸时触摸物(例如用户的手指)直接接触覆盖层。覆盖层13的厚度不超过300微米,有利于获得较大的触摸物(例如手指)与指纹识别电极之间的电容,该电容容易被指纹识别电路检测到,从而有利于实现电容式指纹识别。
例如,覆盖层13包括盖板133,盖板133可以保护其覆盖的结构,盖板133的厚度小于或等于100微米。采用较薄的盖板,有利于减小覆盖层13的整体厚度以获得较大的手指与指纹识别电极之间的电容,从而有利于实现电容式指纹识别。
例如,盖板133可以为柔性盖板。采用柔性盖板,有利于避免手指按压时盖板因太薄而损坏。另一方面,采用柔性盖板有利于使本发明实施例应用于柔性显示屏中。
例如,覆盖层13还包括光学胶(OCA)132,光学胶132将盖板133与设置有指纹识别驱动电极T和指纹识别感应电极R的衬底基板10连接在一 起。例如,光学胶132的介电常数为7~15。光学胶采用介电常数较大的材料,有利于增大手指与指纹识别电极之间的电容,从而有利于提高电容式指纹识别的检测结果。
例如,覆盖层13还包括偏光片131,偏光片131设置于盖板133的面向衬底基板10的一侧,例如设置于光学胶132的面向衬底基板10的一侧。偏光片131可以防止其下方的指纹识别驱动电极T和指纹识别感应电极Rx反光,偏光片131也可以防止其下方的其它电极反光。偏光片131可以采用较薄的偏光片,以减小对覆盖层13的厚度的影响。
本发明的至少一个实施例还提供一种触控基板的制作方法,如图8所示,该方法包括:形成多个触控驱动电极,该触控驱动电极沿第一方向延伸;形成多个触控感应电极,该触控感应电极沿第二方向延伸,第二方向与第一方向相交;以及形成多条信号线。在该制作方法中,触控驱动电极、触控感应电极和信号线形成在衬底基板上,衬底基板至少包括互不重叠的第一区域和第二区域。上述多个触控驱动电极包括设置于第一区域内的多个第一触控驱动电极和设置于第二区域内的多个第二触控驱动电极,并且每个第一触控驱动电极与一个第二触控驱动电极连接同一条信号线;和/或,上述多个触控感应电极包括设置于第一区域内的多个第一触控感应电极和设置于第二区域内的多个第二触控感应电极,每个第一触控感应电极与一个第二触控感应电极连接同一条信号线。
以上方法中形成触控驱动电极、触控感应电极和信号线的顺序不限。本发明实施例提供的方法制作的触控基板的俯视图可以如图2至图4所示。重复之处不再赘述。
例如,如图5所示,本发明的至少一个实施例提供的制作方法还包括:在衬底基板10上形成触控驱动电极Tx和触控感应电极Rx之后,在衬底基板10上形成覆盖层13,覆盖层包括光学胶132和盖板133,光学胶132将盖板133与衬底基板10连接在一起。例如,该光学胶132可以采用介电常数较大的材料制作,以增大手指与触控电极之间的电容,从而提高电容式指纹识别的检测结果。
例如,形成覆盖层还可以包括形成覆盖触控驱动电极Tx和触控感应电极Rx的偏光片131,以防止触控电极的反光。
例如,如图5所示的触控基板的制作方法可以包括如下步骤S51至步骤S53。
步骤S51:在衬底基板10上形成触控驱动电极Tx和触控感应电极Rx以及将二者隔开的绝缘层。例如,在该步骤中,触控驱动电极Tx和触控感应电极Rx都可以采用透明导电材料(例如氧化铟锡等透明导电金属氧化物)制作,并且二者的位置可以互换。
步骤S52:在触控驱动电极Tx和触控感应电极Rx上贴附偏光片131。
步骤S53:在偏光片131上涂覆光学胶132,之后在光学胶132上设置盖板133,以为触控基板提供表面保护。
例如,在本发明的至少另一个实施例提供的制作方法中,也可以在盖板133上形成触控驱动电极Tx和触控感应电极Rx,之后将形成有这些电极的盖板通过光学胶132与衬底基板10连接在一起。
本发明的至少一个实施例还提供一种利用以上任一项实施例提供的触控基板识别指纹的方法,如图9所示,该方法包括:根据触控驱动电极和触控感应电极之间的电容变化确定触摸位置;以及判断触摸位置与第一区域和第二区域的位置关系,在确定出触摸位置与第一区域交叠并且位于第二区域之外的情况下,进行指纹识别。
例如,确定触摸位置以及确定触摸位置与第一区域和第二区域之间的位置关系,都可以通过触控基板上的触控电路实现。
类似地,当触控驱动电极或触控感应电极被划分为更多的区域时,本发明实施例提供的方法包括:在确定出触摸位置与一个区域交叠并且位于其余区域之外的情况下,进行指纹识别。例如,当确定出触摸位置只与如图2a和图2b所示的第一区域和第二区域中的一个交叠时,或者当确定出触摸位置只与如图2c或图3所示的第一区域、第二区域和第三区域中的一个交叠时,或者当确定出触摸位置只与如图4所示的区域1至区域6中的一个交叠时,则进行指纹识别。
上述触控基板及其制作方法、显示装置和指纹识别装置和方法的实施例可以互相参照。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范 围,本发明的保护范围由所附的权利要求确定。
本申请要求于2016年8月30日递交的中国专利申请第201610772827.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种触控基板,包括:
    衬底基板,其至少包括互不重叠的第一区域和第二区域;
    多个触控驱动电极,其设置于所述衬底基板上并且沿第一方向延伸;
    多个触控感应电极,其设置于所述衬底基板上并且沿第二方向延伸,所述第二方向与所述第一方向相交;以及
    多条信号线,其设置于所述衬底基板上,
    其中,
    所述多个触控驱动电极包括设置于所述第一区域内的多个第一触控驱动电极和设置于所述第二区域内的多个第二触控驱动电极,并且每个第一触控驱动电极与一个第二触控驱动电极连接同一条信号线;和/或
    所述多个触控感应电极包括设置于所述第一区域内的多个第一触控感应电极和设置于所述第二区域内的多个第二触控感应电极,每个第一触控感应电极与一个第二触控感应电极连接同一条信号线。
  2. 根据权利要求1所述的触控基板,其中,
    在每个第一触控驱动电极连接一个第二触控驱动电极的情况下,所述第一区域和所述第二区域的沿所述第二方向的尺寸都大于或等于5mm;
    在每个第一触控感应电极连接一个第二触控感应电极的情况下,所述第一区域和所述第二区域的沿所述第一方向的尺寸都大于或等于5mm。
  3. 根据权利要求1或2所述的触控基板,其中,相邻的触控感应电极和相邻的触控驱动电极的节距都为50~70微米。
  4. 根据权利要求1至3中任一项所述的触控基板,还包括覆盖所述触控驱动电极和所述触控感应电极的覆盖层,其中,所述覆盖层的厚度小于或等于300微米。
  5. 根据权利要求4所述的触控基板,其中,所述覆盖层包括盖板,所述盖板的厚度小于或等于100微米。
  6. 根据权利要求5所述的触控基板,其中,所述盖板为柔性盖板。
  7. 根据权利要求5或6所述的触控基板,其中,所述覆盖层还包括光学胶,所述光学胶将所述盖板与设置有所述触控感应电极和触控驱动电极的所 述衬底基板连接在一起。
  8. 根据权利要求7所述的触控基板,其中,所述光学胶的介电常数为7~15。
  9. 根据权利要求4至8中任一项所述的触控基板,其中,所述覆盖层还包括偏光片,所述偏光片设置于所述盖板的面向所述衬底基板一侧。
  10. 根据权利要求1至9中任一项所述的触控基板,其中,
    所述衬底基板还包括与所述第一区域和所述第二区域不重叠的第三区域;
    所述多个触控驱动电极还包括设置于所述第三区域内的多个第三触控驱动电极,并且所述每个第一触控驱动电极、所述一个第二触控驱动电极和一个第三触控驱动电极连接同一条信号线;和/或
    所述多个触控感应电极还包括设置于所述第三区域内的多个第三触控感应电极,所述每个第一触控感应电极、所述一个第二触控感应电极和一个第三触控感应电极连接同一条信号线。
  11. 一种显示装置,包括权利要求1至10中任一项所述的触控基板。
  12. 根据权利要求11所述的显示装置,其中,所述显示装置具有显示区域和位于所述显示区域之外的非显示区域,所述触控基板包括的所述多个触控驱动电极和所述多个触控感应电极都位于所述显示区域中。
  13. 一种指纹识别装置,包括根据权利要求1至10中任一项所述的触控基板或权利要求11所述的显示装置。
  14. 一种触控基板的制作方法,包括:
    形成多个触控驱动电极,其中,所述触控驱动电极沿第一方向延伸;
    形成多个触控感应电极,其中,所述触控感应电极沿第二方向延伸,所述第二方向与所述第一方向相交;以及
    形成多条信号线,
    其中,所述触控驱动电极、所述触控感应电极和所述信号线形成在衬底基板上,所述衬底基板至少包括互不重叠的第一区域和第二区域;并且
    所述多个触控驱动电极包括设置于所述第一区域内的多个第一触控驱动电极和设置于所述第二区域内的多个第二触控驱动电极,并且每个第一触控驱动电极与一个第二触控驱动电极连接同一条信号线;和/或,所述多个触控 感应电极包括设置于所述第一区域内的多个第一触控感应电极和设置于所述第二区域内的多个第二触控感应电极,每个第一触控感应电极与一个第二触控感应电极连接同一条信号线。
  15. 一种利用权利要求1至10中任一项所述的触控基板识别指纹的方法,包括:
    根据所述触控驱动电极和所述触控感应电极之间的电容变化确定触摸位置;以及
    判断所述触摸位置与所述第一区域和所述第二区域的位置关系,其中,在确定出所述触摸位置与所述第一区域交叠并且位于所述第二区域之外的情况下,进行指纹识别。
  16. 一种指纹识别装置,包括:
    衬底基板,其至少包括互不重叠的第一区域和第二区域;
    多个指纹识别驱动电极,其设置于所述衬底基板上并且沿第一方向延伸;
    多个指纹识别感应电极,其设置于所述衬底基板上并且沿第二方向延伸,所述第二方向与所述第一方向相交;以及
    多条信号线,其设置于所述衬底基板上,
    其中,
    所述多个指纹识别驱动电极包括设置于所述第一区域内的多个第一指纹识别驱动电极和设置于所述第二区域内的多个第二指纹识别驱动电极,并且每个第一指纹识别驱动电极与一个第二指纹识别驱动电极连接同一条信号线;和/或
    所述多个指纹识别感应电极包括设置于所述第一区域内的多个第一指纹识别感应电极和设置于所述第二区域内的多个第二指纹识别感应电极,每个第一指纹识别感应电极与一个第二指纹识别感应电极连接同一条信号线。
  17. 根据权利要求16所述的指纹识别装置,其中,
    在每个第一指纹识别驱动电极连接一个第二指纹识别驱动电极的情况下,所述第一区域和所述第二区域的沿所述第二方向的尺寸都大于或等于5mm;
    在每个第一指纹识别感应电极连接一个第二指纹识别感应电极的情况下,所述第一区域和所述第二区域的沿所述第一方向的尺寸都大于或等于 5mm。
  18. 根据权利要求16或17所述的指纹识别装置,其中,相邻的指纹识别感应电极和相邻的指纹识别驱动电极的节距都为50~70微米。
  19. 根据权利要求16至18中任一项所述的指纹识别装置,还包括覆盖所述指纹识别驱动电极和所述指纹识别感应电极的覆盖层,其中,所述覆盖层的厚度小于或等于300微米。
  20. 根据权利要求19所述的指纹识别装置,其中,所述覆盖层包括盖板,所述盖板的厚度小于或等于100微米。
PCT/CN2017/090869 2016-08-30 2017-06-29 触控基板及制作方法、显示装置、指纹识别装置和方法 WO2018040713A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/750,433 US10430013B2 (en) 2016-08-30 2017-06-29 Touch substrate and manufacturing method thereof, display device, fingerprint determination device and method for determining fingerprint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610772827.3A CN106354351B (zh) 2016-08-30 2016-08-30 触控基板及制作方法、显示装置、指纹识别装置和方法
CN201610772827.3 2016-08-30

Publications (1)

Publication Number Publication Date
WO2018040713A1 true WO2018040713A1 (zh) 2018-03-08

Family

ID=57857789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090869 WO2018040713A1 (zh) 2016-08-30 2017-06-29 触控基板及制作方法、显示装置、指纹识别装置和方法

Country Status (3)

Country Link
US (1) US10430013B2 (zh)
CN (1) CN106354351B (zh)
WO (1) WO2018040713A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2559846A (en) * 2016-12-16 2018-08-22 Lg Display Co Ltd Display device, display panel, fingerprint-sensing method, and circuit for sensing fingerprint

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106354351B (zh) 2016-08-30 2019-04-05 京东方科技集团股份有限公司 触控基板及制作方法、显示装置、指纹识别装置和方法
CN108629249A (zh) * 2017-03-24 2018-10-09 上海箩箕技术有限公司 指纹成像模组和电子设备
CN106950761A (zh) * 2017-05-23 2017-07-14 北京小米移动软件有限公司 液晶光栅、显示装置及其控制方法
CN107122080A (zh) * 2017-05-24 2017-09-01 厦门天马微电子有限公司 一种触控显示装置
CN107390960B (zh) * 2017-06-30 2024-03-01 联想(北京)有限公司 一种触控面板、电子设备及检测方法
CN107480609B (zh) * 2017-07-31 2020-01-14 Oppo广东移动通信有限公司 指纹识别方法及相关产品
CN107946346A (zh) * 2017-11-24 2018-04-20 武汉华星光电半导体显示技术有限公司 一种全屏指纹识别触控显示屏
CN108021283A (zh) * 2017-11-24 2018-05-11 上海摩软通讯技术有限公司 一种传感器及智能触控设备
CN109934049A (zh) * 2017-12-15 2019-06-25 南昌欧菲光科技有限公司 指纹模块、指纹识别和触控感应组件与终端设备
CN108089756A (zh) 2017-12-29 2018-05-29 云谷(固安)科技有限公司 一种触控面板及其驱动控制方法、触控显示装置
CN108345872A (zh) * 2018-03-22 2018-07-31 深圳力合光电传感股份有限公司 指纹识别采集装置及系统
CN109388284B (zh) * 2018-09-17 2024-01-02 深圳市德明利技术股份有限公司 一种触控装置、移动终端及信号处理方法
CN110263750B (zh) * 2019-06-27 2021-07-30 厦门天马微电子有限公司 显示面板和显示装置
CN110750175B (zh) * 2019-10-23 2024-06-14 京东方科技集团股份有限公司 触控显示基板及其制作与检测方法、装置及触控检测方法
CN111007967B (zh) * 2019-12-24 2023-07-04 深圳莱宝高科技股份有限公司 触控面板和电子设备
CN113692566B (zh) * 2020-03-19 2024-06-18 京东方科技集团股份有限公司 触控传感器和显示装置
KR20220004895A (ko) 2020-07-03 2022-01-12 삼성디스플레이 주식회사 터치 센서 및 이를 포함하는 표시 장치
CN111930256B (zh) * 2020-08-07 2024-03-15 京东方科技集团股份有限公司 触控基板及显示装置
KR20220129153A (ko) * 2021-03-15 2022-09-23 삼성디스플레이 주식회사 표시 장치
US11967169B2 (en) * 2021-09-28 2024-04-23 Synaptics Incorporated In-display capacitive fingerprint sensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941936A (zh) * 2013-11-14 2014-07-23 上海天马微电子有限公司 一种触控结构、触摸屏和触摸显示装置
CN104375725A (zh) * 2014-11-07 2015-02-25 敦泰科技有限公司 单层互电容触摸屏、触摸屏装置、及设备
CN104571769A (zh) * 2015-02-02 2015-04-29 京东方科技集团股份有限公司 一种触摸屏和触控位置的确定方法
US20150116243A1 (en) * 2013-10-25 2015-04-30 Japan Display Inc. Display device
CN104932753A (zh) * 2015-07-15 2015-09-23 京东方科技集团股份有限公司 一种触摸屏及其触摸方法和显示装置
CN105183262A (zh) * 2015-10-13 2015-12-23 昆山龙腾光电有限公司 一种电容式触控面板
CN105511705A (zh) * 2016-01-08 2016-04-20 京东方科技集团股份有限公司 触控面板、触控显示装置及其驱动方法
CN105786264A (zh) * 2016-05-20 2016-07-20 京东方科技集团股份有限公司 一种触摸屏及其制作方法、触摸装置
CN106354351A (zh) * 2016-08-30 2017-01-25 京东方科技集团股份有限公司 触控基板及制作方法、显示装置、指纹识别装置和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE517662A (zh) * 1952-02-15
US8952925B2 (en) * 2012-03-22 2015-02-10 Synaptics Incorporated System and method for determining resistance in an input device
CN103970392B (zh) 2014-04-18 2019-10-01 京东方科技集团股份有限公司 一种触摸屏及显示装置
US9558390B2 (en) * 2014-07-25 2017-01-31 Qualcomm Incorporated High-resolution electric field sensor in cover glass
CN104571756B (zh) * 2014-12-04 2017-11-10 上海天马微电子有限公司 一种触摸显示面板及其驱动方法、触摸装置
KR102511952B1 (ko) * 2016-01-18 2023-03-23 삼성디스플레이 주식회사 터치 스크린 패널 및 그의 구동 방법
KR102622021B1 (ko) * 2016-08-03 2024-01-08 삼성전자 주식회사 지문 센서를 갖는 전자 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150116243A1 (en) * 2013-10-25 2015-04-30 Japan Display Inc. Display device
CN103941936A (zh) * 2013-11-14 2014-07-23 上海天马微电子有限公司 一种触控结构、触摸屏和触摸显示装置
CN104375725A (zh) * 2014-11-07 2015-02-25 敦泰科技有限公司 单层互电容触摸屏、触摸屏装置、及设备
CN104571769A (zh) * 2015-02-02 2015-04-29 京东方科技集团股份有限公司 一种触摸屏和触控位置的确定方法
CN104932753A (zh) * 2015-07-15 2015-09-23 京东方科技集团股份有限公司 一种触摸屏及其触摸方法和显示装置
CN105183262A (zh) * 2015-10-13 2015-12-23 昆山龙腾光电有限公司 一种电容式触控面板
CN105511705A (zh) * 2016-01-08 2016-04-20 京东方科技集团股份有限公司 触控面板、触控显示装置及其驱动方法
CN105786264A (zh) * 2016-05-20 2016-07-20 京东方科技集团股份有限公司 一种触摸屏及其制作方法、触摸装置
CN106354351A (zh) * 2016-08-30 2017-01-25 京东方科技集团股份有限公司 触控基板及制作方法、显示装置、指纹识别装置和方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2559846A (en) * 2016-12-16 2018-08-22 Lg Display Co Ltd Display device, display panel, fingerprint-sensing method, and circuit for sensing fingerprint
US10664677B2 (en) 2016-12-16 2020-05-26 Lg Display Co., Ltd. Display device, display panel, fingerprint-sensing method, and circuit for sensing fingerprint
GB2559846B (en) * 2016-12-16 2020-09-09 Lg Display Co Ltd Display device, display panel, fingerprint-sensing method, and circuit for sensing fingerprint
DE102017130321B4 (de) 2016-12-16 2024-06-27 Lg Display Co., Ltd. Anzeigevorrichtung, Anzeigetafel, Fingerabdruckerfassungsverfahren und Schaltung zum Erfassen eines Fingerabdrucks

Also Published As

Publication number Publication date
US10430013B2 (en) 2019-10-01
US20190018523A1 (en) 2019-01-17
CN106354351A (zh) 2017-01-25
CN106354351B (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2018040713A1 (zh) 触控基板及制作方法、显示装置、指纹识别装置和方法
US10048795B2 (en) Display device with fingerprint identification and touch detection
TWI614695B (zh) 具指紋辨識之高屏佔比顯示裝置
TWI522932B (zh) 電容性感測器、裝置及方法
WO2019242301A1 (zh) 触控面板及其制作方法、电子装置
WO2016206207A1 (zh) 基板及显示屏
TWI514210B (zh) 觸控顯示裝置
US9483145B2 (en) Touch panel and a manufacturing method thereof
US20070242054A1 (en) Light transmission touch panel and manufacturing method thereof
WO2020211811A1 (zh) 触控面板及其制备方法和显示装置
US9830028B2 (en) In-cell touch panel with self-capacitive electrodes and display device
TW201610783A (zh) 層疊構造體、觸摸面板、帶觸摸面板的顯示裝置及其製造方法
US20200401260A1 (en) Touch panel and fabricating method thereof
US10977473B1 (en) Touch display panel and touch display device with fingerprint identification function
KR20160043217A (ko) 지문 인식 소자를 포함한 표시 장치 및 그의 구동 방법
WO2018099069A1 (zh) 触摸显示屏、显示装置和触摸面板
US10620735B2 (en) Force touch module, manufacturing method thereof, display screen and display device
KR102270037B1 (ko) 터치 스크린 패널
US20100039407A1 (en) Sensory structure of capacitive touch panel with predetermined sensing areas
TWI606377B (zh) 觸控面板
TWI621056B (zh) 軟性電路板及應用其之自電容式觸控面板
US10345964B2 (en) Display panel and display device
US9323094B2 (en) Touch panel
US20210319200A1 (en) Touch-fingerprint complex sensor and method of fabricating the same
KR101191145B1 (ko) 정전용량식 터치스크린용 터치 필름, 이를 적용한 터치스크린 및 휴대 단말기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 110719)

122 Ep: pct application non-entry in european phase

Ref document number: 17845018

Country of ref document: EP

Kind code of ref document: A1