WO2020054814A1 - 像加熱装置及び画像形成装置 - Google Patents

像加熱装置及び画像形成装置 Download PDF

Info

Publication number
WO2020054814A1
WO2020054814A1 PCT/JP2019/035954 JP2019035954W WO2020054814A1 WO 2020054814 A1 WO2020054814 A1 WO 2020054814A1 JP 2019035954 W JP2019035954 W JP 2019035954W WO 2020054814 A1 WO2020054814 A1 WO 2020054814A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
temperature
image
region
recording material
Prior art date
Application number
PCT/JP2019/035954
Other languages
English (en)
French (fr)
Inventor
弘幸 門脇
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201980060113.1A priority Critical patent/CN112703454B/zh
Priority to EP19860119.7A priority patent/EP3851917B1/en
Priority to KR1020217010737A priority patent/KR102615463B1/ko
Publication of WO2020054814A1 publication Critical patent/WO2020054814A1/ja
Priority to US17/201,217 priority patent/US11493865B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2039Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2039Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
    • G03G15/2042Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature specially for the axial heat partition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2039Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
    • G03G15/2046Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature specially for the influence of heat loss, e.g. due to the contact with the copy material or other roller
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2039Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
    • G03G15/205Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature specially for the mode of operation, e.g. standby, warming-up, error
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2053Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2064Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat combined with pressure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5004Power supply control, e.g. power-saving mode, automatic power turn-off
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2006Plurality of separate fixing areas

Definitions

  • the present invention provides a fixing device mounted on an image forming apparatus such as a copying machine or a printer using an electrophotographic method or an electrostatic recording method, or a method of glossing a toner image by heating a toner image fixed on a recording material again.
  • the present invention relates to an image heating device such as a gloss imparting device for improving the degree. Further, the present invention relates to an image forming apparatus including the image heating device.
  • a heating device such as a fixing device used for an electrophotographic image forming apparatus (hereinafter, referred to as an image forming apparatus) such as a copying machine or a printer, or a gloss applying device
  • An image heating device is widely used (Patent Document 1).
  • An image heating apparatus of a film heating type has a ceramic heater or a halogen lamp as a heating source inside a heat-resistant endless fixing film (fixing member). And a pressure member). Then, the unfixed toner image on the recording material is heated and fixed while nipping and conveying the recording material in the nip portion.
  • a direction perpendicular to a recording material conveyance direction of the nip portion which is a direction corresponding to a longitudinal direction of the heater (hereinafter, a longitudinal direction).
  • a phenomenon occurs in which the temperature of the region through which the recording material does not pass gradually increases. If the temperature of the non-sheet passing portion becomes too high, it may damage each part in the apparatus, or if printing is performed on a large size recording material with the temperature of the non-sheet passing portion rising, The toner may be hot offset to the fixing film in an area corresponding to the non-sheet passing portion.
  • Patent Document 2 As one method of suppressing the non-sheet passing portion temperature rise, there is a device that divides the heat generation range of the heater into a plurality of heat generation blocks in the longitudinal direction and switches the heat generation distribution of the heater according to the size of the recording material. It has been proposed (Patent Document 2).
  • Patent Document 3 a method of selectively heating an image portion formed on a recording material.
  • heat generation of each heat generating block is selectively controlled in accordance with the presence or absence of an image on a recording material, and power supply to the heat generating block is reduced in a portion where no image is present on the recording material (hereinafter, a non-image portion). This saves power.
  • the fixing film having the larger feed amount Due to the difference in the feed amount of the fixing film, the fixing film having the larger feed amount is extruded downstream, and an intersection angle is generated between the generatrix of the pressure roller and the generatrix of the film. As a result, a biasing force is generated to move the fixing film toward the side where the feeding amount of the fixing film is large.
  • the shifting force causes the film to shift, causing the fixing film end on the image portion side to press against a regulating member (hereinafter, fixing flange) on the image portion side, and a load is applied to the fixing film end surface. If the end face of the fixing film is continuously subjected to such a load, the life of the image heating apparatus may be shortened due to breakage of the fixing film such as scraping of the end of the fixing film.
  • the pressure roller temperature is higher at the center where the image is located than at both ends where the image is not located. Therefore, based on the same principle as described above, the feeding amount of the fixing film by the pressure roller is larger at the center portion than at both end portions. Due to the difference in the feeding amount of the fixing film, the central portion of the fixing film is extruded to the downstream side in the transport direction from both ends, and the fixing film is deformed into a bow shape. As a result, a biasing force toward the center from both ends of the fixing film (hereinafter referred to as a central biasing force) is generated, and a load is applied to the fixing film. If the fixing film is continuously subjected to the load due to the force toward the center, wrinkles generated at the center of the fixing film may cause damage to the fixing film, which may shorten the life of the image heating device.
  • a central biasing force a biasing force toward the center from both ends of the fixing film
  • the heater is heated so that the temperature distribution in the longitudinal direction becomes flat, so that the above-described shortening of the life of the image heating device can be suppressed.
  • the heater uniformly heats the recording material regardless of the presence or absence of an image on the recording material, it heats a portion of the recording material where there is no image and consumes extra power.
  • An object of the present invention is to provide a technique capable of achieving both power saving and long life in an image heating apparatus.
  • the image heating apparatus of the present invention A heater having a plurality of heating elements arranged in a direction orthogonal to the recording material conveyance direction; By individually controlling the power supplied to the plurality of heating elements, a control unit capable of individually controlling the temperature of a plurality of heating regions heated by the plurality of heating elements, An acquisition unit for acquiring information on an image formed on a recording material; Has, In an image heating apparatus for heating an image formed on a recording material by the heat of the heater, The control unit includes: Among the plurality of heating regions, a first average temperature that is an average value of the control target temperatures of the heating regions included in the first region on one end side than the central heating region in the direction orthogonal to the transport direction, The plurality of heat generations so that the second average temperature, which is the average value of the control target temperatures of the heating regions included in the second region on the other end side of the central heating region, falls within a predetermined temperature range.
  • the image heating apparatus of the present invention A heater having a plurality of heating elements arranged in a direction orthogonal to the recording material conveyance direction; By individually controlling the power supplied to the plurality of heating elements, a control unit capable of individually controlling the temperature of a plurality of heating regions heated by the plurality of heating elements, An acquisition unit for acquiring information on an image formed on a recording material; Has, In an image heating apparatus for heating an image formed on a recording material by the heat of the heater, The control unit includes: Among the plurality of heating regions, The average value of the control target temperature of the heating region included in the first region on one end side than the central heating region in the direction orthogonal to the transport direction is the first average temperature, The average value of the control target temperature of the heating region included in the second region on the other end side than the central heating region as a second average temperature, At least including the central heating region, the average value of the control target temperature of the heating region included in the third region between the first region and the
  • an image forming apparatus includes: An image forming unit that forms an image on a recording material; A fixing unit for fixing an image formed on the recording material to the recording material, In the image forming apparatus having The fixing unit is the image heating device of the present invention.
  • FIG. 1 is a sectional view of the image forming apparatus.
  • 2A and 2B are cross-sectional views of the image heating device according to the first embodiment.
  • 3A to 3C are heater configuration diagrams of the first embodiment.
  • FIG. 4 is a heater control circuit diagram of the first embodiment.
  • FIG. 5 is a diagram illustrating a heating region according to the first embodiment.
  • 6A and 6B are specific examples regarding the classification of the heating area according to the first embodiment.
  • FIG. 7A and FIG. 7B are diagrams for explaining a mechanism of generating a biasing force according to the first embodiment.
  • 8A to 8C are diagrams showing the experimental results of Example 1.
  • FIG. FIG. 9 is a flowchart for classifying a heating region and determining a control temperature according to the first embodiment.
  • FIG. 10C are diagrams illustrating a provisional control target temperature and a control target temperature of each heating region in the first embodiment.
  • FIG. 11A to FIG. 11C are diagrams illustrating a provisional control target temperature and a control target temperature of each heating region in the first embodiment.
  • FIG. 12 is a flowchart for classifying a heating region and determining a control temperature according to the first embodiment.
  • 13A and 13B are diagrams illustrating a provisional control target temperature and a control target temperature of each heating region according to the first embodiment.
  • FIG. 14 is a flowchart for classifying the heating region and determining the control temperature according to the first embodiment.
  • FIG. 15 is a diagram illustrating a control target temperature in a modification of the first embodiment.
  • 16A to 16E are specific examples regarding the classification of the heating area according to the second embodiment.
  • 17A and 17B are diagrams illustrating a control temperature in an image section and a control temperature in a non-image section according to the second embodiment.
  • 18A and 18B are diagrams illustrating a recording material and an image forming area during continuous printing according to the second embodiment.
  • 19A to 19C are diagrams showing the positions of the heating area, the recording material, and the image forming area in the third embodiment.
  • FIG. 20 is a diagram illustrating a heater temperature according to the third embodiment.
  • FIGS. 21A and 21B are diagrams for explaining the mechanism of the generation of the biasing force according to the fourth embodiment.
  • FIG. 22 is a diagram illustrating experimental results of Example 4.
  • FIG. 23A and FIG. 23B are specific examples regarding the classification of the heating region according to the fourth embodiment.
  • FIG. 24 is a diagram illustrating a control target temperature according to the fourth embodiment.
  • FIG. 1 is a schematic sectional view of an image forming apparatus according to an embodiment of the present invention.
  • the image forming apparatus to which the present invention can be applied include a copying machine and a printer using an electrophotographic method or an electrostatic recording method.
  • a case where the present invention is applied to a laser printer will be described.
  • the image forming apparatus 100 includes the video controller 120 and the control unit 113.
  • the video controller 120 receives and processes image information and a print instruction transmitted from an external device such as a personal computer as an acquisition unit for acquiring information on an image formed on a recording material.
  • the control unit 113 is connected to the video controller 120, and controls each unit configuring the image forming apparatus 100 according to an instruction from the video controller 120.
  • image formation is performed by the following operation.
  • the scanner unit 21 When the print signal is generated, the scanner unit 21 emits a laser beam modulated according to image information, and scans the surface of the photosensitive drum 19 charged to a predetermined polarity by the charging roller 16. As a result, an electrostatic latent image is formed on the photosensitive drum 19. By supplying toner from the developing roller 17 to the electrostatic latent image, the electrostatic latent image on the photosensitive drum 19 is developed as a toner image.
  • the recording material (recording paper) P stacked on the paper feed cassette 11 is fed one by one by a pickup roller 12, and is conveyed by a conveying roller pair 13 toward a registration roller pair 14.
  • the recording material P is conveyed from the registration roller pair 14 to the transfer position at the timing when the toner image on the photosensitive drum 19 reaches the transfer position formed by the photosensitive drum 19 and the transfer roller 20.
  • the recording material P passes through the transfer position, the toner image on the photosensitive drum 19 is transferred to the recording material P.
  • the recording material P is heated by a fixing device (image heating device) 200 as a fixing unit (image heating unit), and the toner image is heated and fixed to the recording material P.
  • the recording material P carrying the fixed toner image is discharged to a tray above the image forming apparatus 100 by the pair of conveying rollers 26 and 27.
  • the image forming apparatus 100 further includes a drum cleaner 18 for cleaning the photosensitive drum 19, and a motor 30 for driving the fixing device 200 and the like.
  • a control circuit 400 as a heater driving unit connected to a commercial AC power supply 401 supplies power to the fixing device 200.
  • the above-described photosensitive drum 19, charging roller 16, scanner unit 21, developing roller 17, and transfer roller 20 constitute an image forming unit that forms an unfixed image on the recording material P.
  • a developing unit including the charging roller 16 and the developing roller 17 and a cleaning unit including the photosensitive drum 19 and the drum cleaner 18 are configured to be detachable from the apparatus main body of the image forming apparatus 100 as the process cartridge 15. Have been.
  • the maximum sheet passing width in a direction orthogonal to the conveying direction of the recording material P is 216 mm, and plain paper having a LETTER size (216 mm ⁇ 279 mm) is conveyed at a conveying speed of 232.5 mm / sec. It is possible to print 35 sheets per minute.
  • FIG. 2A is a schematic sectional view of the fixing device 200.
  • the fixing device 200 includes a fixing film 202, a heater 300 that contacts the inner surface of the fixing film 202, a pressure roller 208 that forms a fixing nip N with the heater 300 via the fixing film 202, and a metal stay 204. Have.
  • the fixing film 202 is a multilayer heat-resistant film formed in a cylindrical shape, and has a base layer made of a heat-resistant resin such as polyimide or a metal such as stainless steel.
  • a heat-resistant resin such as polyimide or a metal such as stainless steel.
  • the surface of the fixing film 202 is made of a heat-resistant material such as tetrafluoroethylene / perfluoroalkylvinyl ether copolymer (PFA) which has excellent releasability.
  • a release layer is formed by coating the resin.
  • a heat-resistant rubber such as silicone rubber may be formed as an elastic layer between the base layer and the release layer.
  • the pressure roller 208 has a metal core 209 made of a material such as iron or aluminum, and an elastic layer 210 made of a material such as silicone rubber.
  • the heater 300 is held by a heater holding member 201 made of a heat-resistant resin, and heats heating areas A 1 to A 7 (details will be described later) provided in the fixing nip portion N, thereby fixing the fixing film 202. Heat.
  • the heater holding member 201 also has a guide function for guiding the rotation of the fixing film 202.
  • the heater 300 is provided with an electrode E on a side (rear side) opposite to a side that contacts the inner surface of the fixing film 202, and supplies power to the electrode E from an electric contact C.
  • the metal stay 204 receives a pressing force (not shown) and urges the heater holding member 201 toward the pressing roller 208.
  • a safety element 212 such as a thermoswitch or a thermal fuse that operates due to abnormal heat generation of the heater 300 and shuts off electric power supplied to the heater 300 is disposed to face the rear side of the heater 300.
  • the pressure roller 208 receives power from the motor 30 and is driven to rotate in the direction of arrow R1.
  • a rotational force acts on the fixing film 202 due to a frictional force with the outer surface of the fixing film 202, and the fixing film 202 follows and rotates in the direction of arrow R2.
  • a fluorine-based lubricating grease (not shown) having high heat resistance is interposed between the heater 300 and the fixing film 202. .
  • FIG. 2B is a diagram of the fixing device 200 viewed from a direction parallel to the recording material conveyance direction.
  • the fixing film 202 may move to the left or right in the longitudinal direction in some cases.
  • Fixing flanges 213 (regulating members) for restricting the shift are provided at both ends of the fixing film 202 at the ends of the fixing film 202.
  • the fixing flange 213 has an inner surface facing portion facing the inner surface of the end of the fixing film 202.
  • a slight clearance is provided between the inner surface of the fixing film 202 and the inner surface facing portion, and the inner surface facing portion also has a function of guiding the inner surface of the fixing film 202 when the fixing film rotates.
  • FIG. 3A is a cross-sectional view of the heater 300
  • FIG. 3B is a plan view of each layer of the heater 300
  • FIG. 3C is a diagram illustrating a method of connecting the electric contact C to the heater 300.
  • FIG. 3B illustrates the transport reference position X of the recording material P in the image forming apparatus 100 according to the present exemplary embodiment.
  • the conveyance reference is the center reference
  • the recording material P is conveyed so that the center line passing through the center in the direction orthogonal to the conveyance direction is along the conveyance reference position X.
  • FIG. 3A is a cross-sectional view of the heater 300 at the transport reference position X.
  • the heater 300 is provided on a substrate 305 made of ceramics, a back layer 1 provided on the substrate 305, a back layer 2 covering the back layer 1, and a surface of the substrate 305 opposite to the back layer 1. It comprises a sliding surface layer 1 and a sliding surface layer 2 covering the sliding surface layer 1.
  • the back layer 1 has the conductors 301 (301a, 301b) provided along the longitudinal direction of the heater 300.
  • the conductor 301 is separated into conductors 301a and 301b, and the conductor 301b is disposed downstream of the conductor 301a in the transport direction of the recording material P.
  • the back surface layer 1 has conductors 303 (303-1 to 303-7) provided in parallel with the conductors 301a and 301b.
  • the conductor 303 is provided along the longitudinal direction of the heater 300 between the conductor 301a and the conductor 301b.
  • the backside layer 1 further includes a heating element 302a (302a-1 to 302a-7) and a heating element 302b (302b-1 to 302b-7), which are heating resistors that generate heat when energized.
  • the heating element 302a is provided between the conductor 301a and the conductor 303, and generates heat by supplying power through the conductor 301a and the conductor 303.
  • the heating element 302b is provided between the conductor 301b and the conductor 303, and generates heat by supplying power through the conductor 301b and the conductor 303.
  • the heat generating portion including the conductor 301, the conductor 303, the heat generating element 302a, and the heat generating element 302b is divided into seven heat generating blocks (HB 1 to HB 7 ) in the longitudinal direction of the heater 300. That is, the heating element 302a is divided into seven areas of the heating elements 302a-1 to 302a-7 in the longitudinal direction of the heater 300. The heating element 302b is divided into seven areas of heating elements 302b-1 to 302b-7 in the longitudinal direction of the heater 300. Further, the conductor 303 is divided into seven regions of the conductors 303-1 to 303-7 according to the division positions of the heating elements 302a and 302b.
  • the seven heating blocks (HB 1 to HB 7 ) individually control the amount of power supplied to the heating elements in each block, so that the respective heating values are individually controlled.
  • Heating range of this embodiment is in the range from left end in the drawing of the heating blocks HB 1 to right end in the drawing of the heating block HB 7, its length is 220 mm.
  • the lengths of the heat generating blocks in the longitudinal direction are all the same, that is, about 31 mm, but the lengths may be different.
  • the back surface layer 1 has electrodes E (E1 to E7, and E8-1, E8-2). Electrodes E1-E7 are provided on each conductor 303-1 ⁇ 303-7 in the area, to power the respective heating blocks HB 1 ⁇ HB 7 through conductors 303-1 ⁇ 303-7 Electrodes. Electrodes E8-1, E8-2 is provided to connect to the conductor 301 in the longitudinal end of the heater 300, the electrode for power supply to the heating blocks HB 1 ⁇ HB 7 via a conductor 301 It is. In this embodiment, the electrodes E8-1 and E8-2 are provided at both ends in the longitudinal direction of the heater 300.
  • the back surface layer 2 is made up of a surface protection layer 307 having an insulating property (glass in this embodiment), and covers the conductor 301, the conductor 303, and the heating elements 302a and 302b.
  • the surface protection layer 307 is formed except for the location of the electrode E, and has a configuration in which the electrical contact C can be connected to the electrode E from the rear layer 2 side of the heater.
  • the sliding surface layer 1 is provided on the surface of the substrate 305 opposite to the surface on which the back surface layer 1 is provided.
  • the sliding surface layer 1, the thermistor TH (TH1-1 ⁇ TH1-4 as a detection means for detecting the temperature of each heating block HB 1 ⁇ HB 7, TH2-5 ⁇ TH2-7, TH3-1, TH3-2, TH4-1 and TH4-2).
  • the thermistor TH is made of a material having PTC characteristics or NTC characteristics (NTC characteristics in this embodiment), and by detecting its resistance value, can detect the temperatures of all the heat generating blocks.
  • the sliding surface layer 1 is provided with conductors ET (ET1-1 to ET1-4, ET2-5 to ET2-7, ET3-1, ET3-2, ET4-1, ET4-2) and conductors EG (EG1, EG2).
  • the conductors ET1-1 to ET1-4 are connected to thermistors TH1-1 to TH1-4, respectively.
  • the conductors ET2-5 to ET2-7 are connected to thermistors TH2-5 to TH2-7, respectively.
  • the conductors ET3-1 and ET3-2 are connected to thermistors TH3-1 and TH3-2, respectively.
  • the conductors ET4-1 and ET4-2 are connected to thermistors TH4-1 and TH4-2, respectively.
  • the conductor EG1 is connected to the six thermistors TH1-1 to TH1-4 and TH3-1 to TH3-2, and forms a common conductive path.
  • the conductor EG2 is connected to the five thermistors TH2-5 to TH2-7 and TH4-1 to TH4-2, and forms a common conductive path.
  • the conductor ET and the conductor EG are each formed to a longitudinal end along the length of the heater 300, and are connected to the control circuit 400 via an electric contact (not shown) at the heater longitudinal end.
  • the sliding surface layer 2 is composed of a surface protective layer 308 having a sliding property and an insulating property (in the present embodiment, glass).
  • the sliding face layer 2 covers the thermistor TH, the conductor ET, and the conductor EG. And slidability.
  • the surface protective layer 308 is formed except for both longitudinal ends of the heater 300 in order to provide an electrical contact with the conductor ET and the conductor EG.
  • FIG. 3C is a plan view of the state where the electric contacts C are connected to the respective electrodes E, as viewed from the heater holding member 201 side.
  • the heater holding member 201 has through holes at positions corresponding to the electrodes E (E1 to E7, and E8-1, E8-2).
  • the electrical contacts C (C1 to C7, and C8-1, C8-2) are biased by a spring against the electrodes E (E1 to E7, and E8-1, E8-2). They are electrically connected by a method such as welding.
  • the electric contact C is connected to a control circuit 400 of the heater 300 described later via a conductive material (not shown) provided between the metal stay 204 and the heater holding member 201.
  • FIG. 4 is a circuit diagram of the control circuit 400 of the heater 300 according to the first embodiment.
  • Reference numeral 401 denotes a commercial AC power supply connected to the image forming apparatus 100.
  • the power control of the heater 300 is performed by turning on / off the triacs 411 to 417.
  • the triacs 411 to 417 operate according to FUSER1 to FUSER7 signals from the CPU 420, respectively.
  • the drive circuits of the triacs 411 to 417 are not shown.
  • the control circuit 400 of the heater 300 has a circuit configuration in which seven heat blocks HB 1 to HB 7 can be independently controlled by seven triacs 411 to 417.
  • the zero-crossing detection unit 421 is a circuit that detects a zero-crossing of the AC power supply 401, and outputs a ZEROX signal to the CPU 420.
  • the ZEROX signal is used for phase control of the triacs 411 to 417, detection of wave number control timing, and the like.
  • a method for detecting the temperature of the heater 300 will be described.
  • the temperature detection of the heater 300 is performed by thermistors TH (TH1-1 to TH1-4, TH2-5 to TH2-7, TH3-1, TH3-2, TH4-1, and TH4-2).
  • the voltage divided between the thermistors TH1-1 to TH1-4, TH3-1 to TH3-2 and the resistors 451 to 456 is converted into Th1-1 to Th1-4 signals and Th3-1 to Th3-2 signals by the CPU 420. Is detected.
  • the CPU 420 converts the Th1-1 to Th1-4 signals and the Th3-1 to Th3-2 signals into temperatures.
  • the voltage division between the thermistors TH2-5 to TH2-7, TH4-1 to TH4-2 and the resistors 465 to 469 becomes the Th2-5 to Th2-7 signal and the Th4-1 to Th4-2 signal. Is detected by the CPU 420.
  • the CPU 420 converts the Th2-5 to Th2-7 signals and the Th4-1 to Th4-2 signals into temperature.
  • the power to be supplied is calculated by, for example, PI control (proportional-integral control) based on the control target temperature TGT i of each heating block and the temperature detected by the thermistor. Further, the supplied power is converted into a phase angle (phase control) corresponding to the power or a control level (duty ratio) of a wave number (wave number control), and the triacs 411 to 417 are controlled according to the control conditions.
  • PI control proportional-integral control
  • the temperature of each heating block is controlled based on the detected temperature of the thermistors TH1-1 to TH1-4.
  • the temperature of each heat generating block is controlled based on the detected temperatures of the thermistors TH2-5 to TH2-7.
  • the thermistors TH3-1 and TH4-1 are for detecting a temperature rise in a non-sheet passing portion when a recording material having a length shorter than the entire length of the heating area 220 mm is passed, and the sheet width of B5 size paper is used. (182 mm).
  • the thermistors TH3-2 and TH4-2 are for detecting a temperature rise in a non-sheet passing portion when a recording material smaller than 157 mm in length from the heat generating blocks HB 2 to HB 6 is passed. Yes, it is provided outside the paper width (105 mm) of A6 size paper.
  • the relays 430 and 440 are used as power cutoff means for the heater 300 when the temperature of the heater 300 rises excessively due to a failure or the like.
  • the circuit operation of the relays 430 and 440 will be described.
  • the transistor 433 When the RLON signal goes high, the transistor 433 is turned on, power is supplied to the secondary coil of the relay 430 from the power supply voltage Vcc, and the primary contact of the relay 430 is turned on.
  • the RLON signal goes low, the transistor 433 is turned off, the current flowing from the power supply voltage Vcc to the secondary coil of the relay 430 is cut off, and the primary contact of the relay 430 is turned off.
  • the transistor 443 turns on, power is supplied to the secondary coil of the relay 440 from the power supply voltage Vcc, and the primary contact of the relay 440 turns on.
  • the transistor 443 is turned off, the current flowing from the power supply voltage Vcc to the secondary coil of the relay 440 is cut off, and the primary contact of the relay 440 is turned off.
  • the resistors 434 and 444 are current limiting resistors.
  • the comparison unit 431 operates the latch unit 432, and the latch unit 432 latches the RLOFF1 signal in a low state. I do.
  • the RLOFF1 signal goes low, the transistor 433 is kept off even when the CPU 420 puts the RLON signal high, so that the relay 430 can be kept off (safe state).
  • the latch unit 432 outputs the RLOFF1 signal in the open state in the non-latched state.
  • the comparison unit 441 operates the latch unit 442, and the latch unit 442 outputs the RLOFF2 signal to Low. Latch in state.
  • the RLOFF2 signal goes low, the transistor 443 is kept off even if the CPU 420 puts the RLON signal high, so that the relay 440 can be kept off (safe state).
  • the latch unit 442 outputs the RLOFF2 signal in the open state in the non-latched state.
  • FIG. 5 is a diagram showing the heating areas A 1 to A 7 in the present embodiment, which are displayed in comparison with the width of LETTER size paper.
  • the length of the heating region A i in the longitudinal direction is L i
  • the recording material P passing through the fixing nip N is sectioned for a predetermined time, and the heating area Ai is classified into an image forming area or a non-image forming area for each section.
  • the section is divided every 0.24 seconds based on the leading end of the recording material P, the first section is the section T 1 , the second section is the section T 2 , and the third section is the section T 3 to segmentation to section T 5 and so on.
  • Classification of the heating area A i, FIG. 6A, with reference to Figure 6B, will be described with reference to specific examples.
  • Interval T 5 Oite from the section T 2 are, the heating area A 3, A 4, A 5 , A 6 is classified into the image forming area AI for image range to pass through the heating region A 1, A 2, A 7 is Since the image range does not pass, it is classified into the non-image forming area AP.
  • Heating value of the heating block HB i is determined by the electric power supplied to the heating blocks HB i. Supplying power to the heating block HB i
  • the supply power is calculated by the PI control (proportional integral control).
  • FIG. 7A is a diagram schematically showing the heat generation distribution in the longitudinal direction of the heater 300.
  • the heat generation distribution in the longitudinal direction of the heater 300 may be such that the heat generation amount on one side is large. It is possible.
  • a biasing force (a force acting on the fixing film 202 in the longitudinal direction) to move the fixing film 202 to a side having a large amount of heat generation. Occurs. The cause of the shift force will be described with reference to FIGS. 7A and 7B.
  • FIG. 7B is a diagram in which the fixing device 200 is viewed from a direction perpendicular to a plane parallel to the recording material conveyance direction, and schematically illustrates a state in which a biasing force acts on the fixing film 202.
  • the left-right difference in the amount of heat generated in the longitudinal direction of the heater 300 as shown in FIG. 7A causes a left-right temperature difference in the longitudinal direction of the pressure roller 208.
  • the difference between the left and right temperatures is the difference in the thermal expansion of the elastic layer of the pressure roller, and the outer diameter of the pressure roller is larger in the high-temperature heating areas A 5 to A 7 than in the heating areas A 1 to A 3 .
  • the feed amount of the fixing film by the pressure roller has a left-right difference as shown by the block arrow in FIG. 7B, and the feed amount of the high-temperature side fixing film is larger than the feed amount of the low-temperature side fixing film. growing. Since there is a clearance between the fixing film 202 and the inner surface of the fixing flange 213 facing each other, the difference in feed amount of the fixing film causes an intersection angle ⁇ between the generatrix of the pressure roller 208 and the generatrix of the fixing film 202.
  • the present inventor has experimentally discovered that the biasing force of the fixing film 202 is correlated with the difference between the left and right average temperatures in the longitudinal direction of the heater 300. In other words, it has been found that the larger the difference between the left and right average temperatures of the heaters, the greater the biasing force of the fixing film 202.
  • the results of an experiment performed to examine the relationship between the biasing force of the fixing film 202 and the temperature distribution in the longitudinal direction of the heater 300 will be described.
  • Table 1 is a table showing the control temperature conditions of each heating region of the heater 300 in this experiment. In this experiment, as shown in Table 1, nineteen temperature distributions in the longitudinal direction of the heater 300 were set, and one set was continuously printed at each temperature distribution. During the continuous printing, the control temperature is set to be constant irrespective of the sheet passing or the sheet interval.
  • a load cell for detecting pressure was attached to the end of the fixing flange 213 in order to measure the biasing force of the fixing film 202.
  • the load cell detects the pressure.
  • the detected pressure is equal to the biasing force acting on the fixing film 202.
  • FIG. 8A is a diagram illustrating control in a temperature distribution pattern under condition 4 which is one condition of the control temperature of the heater 300 in the present experiment. Setting this temperature distribution pattern by controlling the temperature, towards the heating region A 7 side is attached to the left and right difference control temperature so that the temperature becomes higher.
  • FIG. 8B is a diagram showing a change in the biasing force during continuous printing when the control temperature is set as in FIG. 8A.
  • the positive sign of the deviation force is fixing film is moved to the heating area A 1 side, power deviation by the heating region A 1 side of the load cell indicates that the sensed.
  • the negative sign of the deviation force is fixing film is moved to the heating region A 7 side, force deviation by the heating region A 7 side of the load cell indicates that the sensed. From Figure 8B, it can be seen that the deviation force of the fixing film to a temperature higher the heating region A 7 side is worked.
  • the biasing force occurs immediately after the start of printing, and remains almost constant at a value near -7.5 N until the end of printing. This tendency was similarly observed in other temperature distribution settings.
  • FIG. 8C is a diagram illustrating the relationship between the left-right temperature difference in the longitudinal direction of the heater and the biasing force of the fixing film in each continuous print, obtained by a total of 19 continuous prints in this experiment.
  • ⁇ T LR was defined as an index representing the temperature left-right difference.
  • ⁇ T LR is the average value of the control temperatures TGT i in the heating regions A 1 , A 2 , and A 3 as the first regions, T L , and the control in the heating regions A 5 , A 6 , and A 7 as the second regions.
  • the average value of the temperature TGT i is taken as T R, is defined as ⁇ T LR ⁇ T L -T R.
  • ⁇ T LR represents the difference between the average values of the left and right control temperatures.
  • T L and T R are calculated by the following equations.
  • the control temperature TGT i is set so that the difference between the left and right temperatures in the longitudinal direction of the heater 300 falls within a predetermined value range. That is, the predetermined temperature range is set such that ⁇ T a ⁇ ⁇ T LR ⁇ T a .
  • the threshold value T a is determined from the allowable range of deviation force of the fixing film temperature difference between the left and right caused by.
  • the allowable range of the biasing force of the fixing film caused by the difference between the left and right temperatures is -2N to 2N. Within this allowable range, the load on the fixing film caused by the fixing film abutting on the regulating surface of the fixing flange could be suppressed, and the film was not damaged within the life of the fixing device.
  • the allowable range of the biasing force of the fixing film is -2N to 2N, but the allowable range of the biasing force of the fixing film is not limited to this range. It is appropriately set depending on conditions such as the outer diameter and thickness of the fixing film, the material, and the process speed.
  • a method for setting the control temperature TGT i will be described with reference to the flowchart in FIG.
  • a method of setting the control temperature TGT i in the sections T 1 to T 5 when the recording material and the image are present at the positions as shown in FIG. 6A will also be described.
  • Classification of the heating area A i is performed on the basis of the information of the image forming range which is transmitted from an external device such as a host computer (not shown), the heating region A i is determined by either passing the image forming range ( S1003).
  • the heating area A i is classified as an image forming area AI (S1004), if not the image range, classifies the heating area A i and the non-image forming area AP (S1005).
  • T AI is set as an appropriate temperature for fixing the unfixed image to the recording material P.
  • T AI 198 ° C. is set as a preset control target temperature. It is desirable that T AI be variable according to the type of recording material P such as thick paper or thin paper. Further, the TAI may be adjusted in accordance with image information such as image density and pixel density.
  • T AP is by setting a temperature lower than T AI, the heating value of the heating block HB i in the non-image forming region AP lower than the image forming area AI, the aim of power consumption of the image forming apparatus 100 I have.
  • T AP 158 ° C. is set as a preset control target temperature.
  • FIG. 10A is a diagram showing temporary control temperatures TGT i ′ of the heating areas A 1 to A 7 in the specific example.
  • the heating area A i is because they are classified as Figure 6B, on the basis of this classification, control the temperature of the provisionally is set to the thin solid line so in Figure 10A.
  • the control temperature TGT i to be actually used is determined based on this.
  • T L ', T R' are each T L, it is calculated in the same way as T R.
  • T L ′ 171 ° C.
  • T R ′ 185 ° C.
  • T LR ′ T L ′ ⁇ T R ′ between T L ′ and T R ′ is within the range of ⁇ T a to T a (S1011).
  • T LR ' is the case in the range of -T a ⁇ T a, since deviation force of the fixing film temperature difference between the left and right caused by the predictable and within the tolerance, the temporary control temperature TGT i of' intact actual The control temperature is set to TGT i (S1012). Then, the flow shifts to S1021, where the control temperature setting flow ends.
  • Control temperature TGT i of the heating area A i classified in the image forming area AI in S1015 sets the T AI (S1016).
  • the control temperature TGT i of the heating area A i that are classified as non-image forming area AP at S1015 ' is determined by the formula shown below (S1017).
  • TGT i (m ⁇ T L ⁇ n ⁇ T AI ) / (mn) (Equation 3)
  • m is the number of heating regions in the second region
  • m 3.
  • n is the number of heating areas classified into the image forming area AI in S1015.
  • the temporary control temperature TGT i ′ in the heating areas A 5 , A 6 , A 7 of the second area is changed to the control temperature TGT i . It is set (S1018).
  • TGT i (m ⁇ T R ⁇ n ⁇ T AI ) / (m ⁇ n) (Equation 4)
  • m is the number of heating regions in the first region
  • m 3.
  • n is the number of heating areas classified into the image forming area AI in S1019.
  • the control temperature TGT 3 heating zones A 3 classified into the image forming area AI is set to T AI in S1020.
  • FIG. 10B is a diagram illustrating the control temperatures of the heating areas A 1 to A 7 finally determined in the specific example, and the final control temperatures are indicated by thin solid lines.
  • the average value T L of the control temperature in the first and second regions each region, T R is shown a thick solid line, the control temperature is set as T L and T R is equal to You.
  • the deviation of the fixing film can be kept within an allowable range.
  • the average value TL of the control temperature in the first region may be set to be the temperature indicated by the block arrow in the dotted frame in FIG. 10A, that is, the allowable limit value of the left-right temperature difference.
  • the finally determined control temperatures of the heating areas A 1 to A 7 are set to the values indicated by the thin solid lines in FIG. 10C.
  • the control temperature TGT i is set according to the above flow.
  • the biasing force acting on the fixing film 202 and the power consumption of the fixing device were compared between the case where the temperature control of the comparative example was used and the case where the temperature control of the present embodiment was used.
  • the result of the comparison will be described.
  • a comparative example a comparative example 1 in which each of the heat generating blocks is selectively heated according to the presence or absence of an image on a recording material and a comparative example 2 in which a heater is heated so that a temperature distribution in a longitudinal direction becomes flat are used. .
  • the control temperature TGT i is set based on the classification of the heating area A i.
  • Classification of the heating area A i is performed on the basis of the information of the present embodiment similarly to the image forming range, heating region A i is determined by either passing the image forming range.
  • the image forming range classifies heating area A i and the image forming area AI, if not the image range classifies the heating area A i and the non-image forming area AP.
  • the effect of the present embodiment was confirmed by measuring the biasing force of the fixing film 202 during printing when using the temperature control of each of the comparative example and the present embodiment.
  • the measurement of the offset force of the fixing film 202 was performed by attaching a load cell for detecting pressure to the end of the fixing flange 213 as in the above-described experiment.
  • the life of the fixing device was set to 150,000 sheets, and LETTER size paper was continuously printed.
  • the image shown in FIG. 6A was prepared as an image to be printed, and the image was continuously printed in each of the comparative example and the present example.
  • the control temperature in the comparative example is set as shown by a thin solid line in FIG. 10A
  • the control temperature in this embodiment is set as shown by a thin solid line in FIG. 10B.
  • Table 2 is a table showing the results of the effect confirmation, and shows the control temperature, the average value of the biasing force during printing, the service life achievement rate, and the power saving when each image is continuously printed.
  • the life achievement rate is an index indicating how many sheets can be passed without causing damage to the fixing film with respect to the life of the fixing device.
  • the power saving property is represented by adding a minus sign to what percentage the power consumption was reduced when the power consumption of Comparative Example 2 was set to 100%.
  • Comparative Example 1 is the most excellent in power saving, while the life achievement rate of the fixing device is 90%, and the life of the fixing device is shortened. Also, in Comparative Example 2, although the service life attainment rate of the fixing device is 100%, it can be seen that the power saving performance is inferior. On the other hand, in the present embodiment, it is possible to achieve a life-span of the fixing device of 100% while achieving power saving.
  • T L 'and T R' The control temperature is determined as described above, but is not limited thereto.
  • the control temperature may be determined so as to match the smaller value of T L ′ and T R ′.
  • the method of determining the control temperature in this case will also be described using the above specific example.
  • FIG. 11A is a diagram showing a temporary control temperature TGT i ′ of the heating areas A 1 to A 7 in the specific example, and the temporary control temperature is set as shown by a thin solid line in FIG. 11A.
  • T L ′ 171 ° C.
  • T R ′ 185 ° C., which are indicated by thick solid lines in FIG. 11A.
  • T L ' is T R' less than, set to be the same temperature as the temperature T L 'indicated by block arrows in solid lines in FIG. 11A the average value T R of the control temperature of the second region I do.
  • the finally determined control temperatures of the heating areas A 1 to A 7 are set as shown by the thin solid line in FIG. 11B.
  • the average value T L of the control temperature of the first region and the second region shown by a thick solid line, T R is set to be equal to each other.
  • the average value T R of the control temperature of the second region, the temperature indicated by the block arrow in the dotted frame in FIG. 11A, that is, may be set so that the allowable limit value of the temperature difference between right and left. At this time, the finally determined control temperatures of the heating areas A 1 to A 7 are set to the values indicated by the thin solid lines in FIG. 11C.
  • control temperature may be determined according to a flow in which the steps after S1013 in the flowchart of FIG. 9 are replaced with the flowchart of FIG.
  • the average value T R of the control temperature of the mean value T L and the second region of the control temperature of the first region may be determined to match the average value T ALL of the temporary control temperature.
  • the method of determining the control temperature in this case will also be described using the above specific example.
  • FIG. 13A is a diagram showing temporary control temperatures TGT i ′ of the heating areas A 1 to A 7 in the specific example.
  • the temporary control temperatures are set as shown by the thin solid lines in FIG.
  • the average values T L ′ and T R ′ of the provisional control temperatures in the region are indicated by thick solid lines.
  • the average value T ALL of the provisional control temperatures of the entire region including the first region and the second region is indicated by a thick dotted line in FIG. 13A.
  • set to a temperature T ALL indicated by block arrows in solid lines in FIG. 13A the average value T L, T R of the control temperature of the first and second regions.
  • the finally determined control temperatures of the heating areas A 1 to A 7 are set as shown by the thin solid line in FIG. 13B.
  • control temperature may be determined according to a flow in which the steps after S1013 in the flowchart of FIG. 9 are replaced with the steps after S1213 in the flowchart of FIG.
  • Either of the above-described methods can suppress the occurrence of a temperature left-right difference in the longitudinal direction of the heater 300, suppress the occurrence of film breakage due to the temperature left-right difference, and extend the life of the fixing device. It becomes possible to achieve compatibility with power saving.
  • the control temperature TGT i is set to have an asymmetrical temperature distribution as shown in FIG. 10B, but the control temperature TGT i may be set to be symmetrical.
  • the flow after S1013 in the flowchart in FIG. 9 may be described next. That is, a method may be used in which the temporary control temperatures of the symmetrically positioned heating regions are compared with respect to the center in the longitudinal direction of the heater 300, and the larger temporary control temperature is set as the control temperature of both.
  • this method will be described using a specific example.
  • FIG. 15 is a diagram showing the finally determined control temperatures of the heating areas A 1 to A 7. By using the above-described method, the temperature distribution is made symmetrical as shown in FIG. The control temperature is set.
  • Example 2 A second embodiment of the present invention will be described.
  • the basic configuration and operation of the image forming apparatus and the image heating apparatus of the second embodiment are the same as those of the first embodiment. Therefore, components having the same or equivalent functions and configurations as those of the first embodiment are denoted by the same reference numerals, and detailed description is omitted. Items that are not particularly described in the second embodiment are the same as those in the first embodiment.
  • FIG. 16A is a diagram illustrating a specific example in which a recording material is divided into an image section and a non-image section in the transport direction in the present embodiment.
  • the recording material P is LETTER size, the previous sheet and the subsequent sheet section between, and the section T k between so-called paper.
  • the image section refers to a section in which at least one of the heating areas A 1 to A 7 in the sections T 1 to T 5 is the image forming area AI, and is a specific example.
  • the sections T 1 , T 2 , and T 3 are image sections.
  • a section in which all the heating areas A 1 to A 7 are the non-image forming areas AP is referred to as a non-image section.
  • the heat generation distribution is controlled so that the heat generation amount on the left and right sides in the longitudinal direction of the heater 300 is equalized, and the damage to the fixing film is suppressed.
  • the temperature is controlled at the control temperature T AI in the heating area classified as the image forming area AI, and the temperature is controlled at the control temperature T AP in the heating area classified as the non-image forming area AP. Control. Therefore, if the image forming area in a certain image section is asymmetric in the longitudinal direction, the heat generation distribution in the longitudinal direction of the heater 300 in that image section may be asymmetrical in the left-right direction. Therefore, due to the asymmetrical heat generation distribution, the fixing film moves toward the side where the calorific value is large.
  • the heat generation distribution of the heater 300 is controlled such that the fixing film shifts in the direction opposite to the direction of the shift of the fixing film generated in the image section.
  • the shift of the fixing film in the image section and the non-image section is canceled each other in this way, and damage to the fixing film due to the shift is suppressed.
  • control temperature TGT i of the heating area A i in the image section is set.
  • the sections T 1 to T 3 correspond to image sections.
  • the heating area A i are classified as shown in Figure 16B. Therefore, the control temperature in the image section in the specific example is set as shown in FIG. 17A.
  • the section average value of the control temperature TGT i of each heating area A i is calculated.
  • the section average value is a value obtained by averaging the control temperatures TGT i in each section for each heating area A i .
  • Figure 16C is a diagram showing an interval average value of the control temperature of each heating region A i in the image segment, interval average value of the control temperature is shown by thin solid lines. Further, in FIG. 16C, an average value T R of the average value T L and a second region of the control temperature of the first region in the image segment is indicated by heavy solid line. Thus, it can be seen that there is a left-right difference in the temperature distribution in the longitudinal direction of the heater 300 in the image section.
  • T L and T R in all the sections T 1 ⁇ T 5 is equal
  • the average value T R of the control temperature of the second region to determine the control temperature of the non-image period so as to approach the mean value T L of the first region.
  • FIG. 16D is a diagram showing, in a specific example, the section average value of the control temperature for each of the heating areas A i in the sections T 1 to T 4
  • FIG. 16E is for each heating area A i in the sections T 1 to T 5 .
  • It is a figure showing the section average value of control temperature.
  • Figure 16D, in Figures 16E the average value T R of the average value T L and a second region of the control temperature of the first region is indicated by heavy solid line. From these figures, by going through the non-image period T 4, T 5, T R gradually approaches T L, it can be seen that the left-right difference of the temperature distribution in the longitudinal direction of the heater 300 is eliminated. At this time, the control temperature in the non-image section is set as shown in FIG. 17B.
  • the control temperature As described above, it is possible to cancel the left-right temperature difference in the longitudinal direction of the heater 300 in the image section in the non-image section.
  • the fixing film can be shifted in the direction opposite to the shift of the fixing film generated in the image section.
  • the shift of the fixing film in the image section and the non-image section can be canceled each other, and it is possible to suppress the damage of the fixing film due to the shift. Further, it is possible to obtain the same power saving as in the first embodiment.
  • the non-image period to match the average value T R of the control temperature of the second region in the section T 1 ⁇ T 5 to the average value T L of the control temperature of the first region in the image section The control temperature is determined, but is not limited to this.
  • the control temperature may be determined so that T L in the sections T 1 to T 5 is matched with T R in the image section.
  • the average value of the control temperature of the entire area of the combined first and second regions in the image section as a T ALL, the first and the average value of the control temperature of the second region in the section T 1 ⁇ T 5 T L, may set the control temperature of the non-image period so that the T R on T ALL.
  • the heat generation distribution is controlled so that the section average value of the heat generation amount on the left and right in the longitudinal direction of the heater in the image section and the non-image section becomes equal. It is not limited to this.
  • a plurality of sheets during continuous printing may be divided into one set, and the heat generation distribution may be controlled such that the average value of the heat generation amount on the left and right sides of the heater is equal for each set.
  • FIG. 18A shows three continuous sheets extracted when a LETTER size recording material is continuously printed (a plurality of images formed on a plurality of recording materials are continuously heated). This shows a state in which left-right symmetric images are continuously printed alternately.
  • T L the control temperature of the first region and the second region
  • T R the T R.
  • FIG. 18B is a diagram showing the section average value of the control temperature in the image section when the first sheet and the second sheet are set as one set, and the section average value is represented by a thin solid line, a first area, and a second area.
  • the mean value T L shows the T R a thick solid line.
  • the temperature left / right difference in the longitudinal direction of the heater in the image section is canceled only in the non-image section, but the temperature left / right difference in the image section may be canceled in the section including the non-image section and the sheet interval. Good.
  • Example 3 Third Embodiment A third embodiment of the present invention will be described.
  • the basic configuration and operation of the image forming apparatus and the image heating apparatus of the first embodiment are the same as those of the first embodiment. Therefore, elements having the same or equivalent functions and configurations as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. Matters that are not particularly described in the third embodiment are the same as those in the first embodiment.
  • FIG. 19A is a diagram comparing the heating areas A 1 to A 7 in this embodiment with the paper width of the recording material P.
  • the recording material P is A5 size paper (148.5 mm ⁇ 210 mm), and in the heating areas A 2 and A 6 corresponding to the end positions of the recording material, the recording material P and the paper passing portion in one heat generating block. non-sheet passing portion S L, it is S R.
  • the heating areas A 2 and A 6 include, as temperature detecting means, thermistors TH3-1 and TH4-1 for temperature control and thermistor TH3 for detecting non-sheet-passing-section temperature rise, respectively. -2 and TH4-2.
  • the control temperature of each heating area is set to have a symmetrical heat distribution as shown in FIG. 19B.
  • the recording material and the image shown in FIG. 19A for continuous printing, the non-sheet passing portion S L and S R in Hitsushi portion Atsushi Nobori paper does not pass is generated using the image heating apparatus as in this embodiment . Therefore, a temperature difference occurs in one heating region in the longitudinal direction. Although the heating area A 2 and the heating area A 6 is a control target temperature is the same, the toner image is formed in the heating area A 2. Supplied Therefore, by the amount of the toner in heat capacity in order to keep the heater to control the temperature, the amount of power supplied to the heating blocks for heating the heating area A 2, the heating block for heating the heating area A 6 It must be larger than the amount of power.
  • FIG. 20 is a diagram showing the longitudinal temperature distribution of the heater at the time of printing 100 sheets in the continuous printing described above, and is shown by a thin solid line. From FIG. 20, the temperature of the non-sheet passing portion S L it can be seen that increased 30 ° C. than the temperature of the non-paper passing section S R. In the present embodiment, the left-right difference in the non-sheet passing portion temperature rise is detected by the thermistors TH3-2 and TH4-2 for non-sheet passing portion temperature rise detection. Due to the difference between the left and right temperatures, the fixing film shifts to the side where the temperature rise in the non-sheet passing portion is large, the fixing film hits the regulating surface of the fixing flange, and the image heating device has a short life due to scraping of the fixing film end. May be converted.
  • the magnitude of the temperature is opposite to that of the temperature rise in the non-sheet passing portion.
  • the heater temperature in the heating region located outside the end of the recording material is controlled so as to satisfy the following relationship. Then, the average movement of the control temperatures in the first region and the second region is set to be equal to each other, so that the shift of the fixing film is suppressed.
  • T b is as the following equation, the non-sheet passing portion length S L or S R and the heating area A 1 of length temperature difference between right and left by the non-sheet passing portion Atsushi Nobori in the ratio of L 1 [Delta] T S Is multiplied.
  • the length of S L is calculated using the width and length of the heating area A 2 ⁇ A 6 of the recording material P.
  • the control temperature TGT 1 of the heating region A 1 is positioned outside the end position of the recording material by T b, and eliminate the temperature difference between the left and right by the non-sheet passing portion Atsushi Nobori, the first The average values of the control temperatures in the region and the second region can be made equal to each other. Accordingly, it is possible to suppress the shift movement of the fixing film and extend the life of the image heating device.
  • the control temperature of the heating region A 7 it may be set to a value increased by T b as shown the TGT 7 by a bold dotted line in FIG. 20. Even if the control temperature is set in this way, it is possible to make the average values of the control temperatures in the first area and the second area equal to each other.
  • Example 4 A fourth embodiment of the present invention will be described.
  • the basic configuration and operation of the image forming apparatus and the image heating apparatus of the third embodiment are the same as those of the first embodiment. Therefore, elements having the same or equivalent functions and configurations as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. Items not particularly described in the fourth embodiment are the same as those in the first embodiment.
  • FIG. 21A is a diagram schematically showing the heat generation distribution in the longitudinal direction of the heater 300.
  • the heat generation distribution in the longitudinal direction of the heater 300 is such that the heat generation amount at the center becomes large. (Hereinafter referred to as center height).
  • center height As described above, when the heat generation distribution in the longitudinal direction of the heater 300 is set to the height at the center, a force near the center from both ends of the fixing film toward the center is generated.
  • FIG. 21B is a diagram in which the fixing device 200 is viewed from a direction perpendicular to a plane parallel to the recording material conveyance direction, and schematically illustrates a state in which a force closer to the center is acting on the fixing film 202.
  • the heat generation distribution at the center height of the heater 300 as shown in FIG. 21A causes a temperature distribution at the center height in the longitudinal direction of the pressure roller 208.
  • This temperature distribution at the center height causes a difference in thermal expansion of the elastic layer of the pressing roller, and the heating regions A 3 to A 5 at the center where the outer diameter of the pressing roller is high are the heating regions A at the ends. 1, is larger than A 2 and A 6, A 7.
  • the feed amount of the fixing film by the pressure roller has a difference between the center and the end as shown by the block arrow in FIG. Larger than. Due to the difference in the feeding amount of the fixing film, the central portion of the fixing film is extruded to the downstream side in the transport direction from both ends, and the fixing film is deformed into a bow shape. That is, in the region of the fixing film center from the A 1 side half, crossing angle theta L between the bus of the bus and the fixing film 202 of the pressure roller 208 occurs. The fixing film 202 is subjected to a force F L by rotation of the pressure roller 208 in the region of A 1 half.
  • the inventor of the present invention has found that when the temperature difference between the center and the end of the heater 300 in the longitudinal direction exceeds a certain temperature difference, the force toward the center of the fixing film 202 exceeds the breakage limit, and wrinkles occur in the center of the fixing film. And found that the fixing film was damaged.
  • the following describes the relationship between the centering force and the temperature difference between the center and the ends of the heater 300 in the longitudinal direction, and the results of an experiment conducted to examine the threshold value of the centering force when the fixing film is damaged.
  • the heating region is divided into four regions (region LL, region LR, region RL, and region RR) as shown in FIG. 21A.
  • the average temperature of the control temperature of the region LL as the first region is T LL
  • the average temperature of the region RR as the second region is T RR
  • the average temperature of the region LR and the region RL as the third region is T RL.
  • Figure 22 is a graph showing the relationship between the inboard force F C and the central end temperature difference T C when the sheet passing under the conditions shown in Table 3, the conditions under which the fixing film is damaged by inboard force It is the figure which plotted the condition which was not ⁇ and the condition which was not damaged with ⁇ .
  • a method for setting the control temperature TGT i of each heat generating block in the present embodiment will be described.
  • a method of setting the control temperature TGT i in the sections T 1 to T 5 when the recording material and the image exist at the positions as shown in FIG. 23A will be described as an example.
  • FIG. 23B is a graph showing the results of classifying the heating region A i on the basis of the image information
  • FIG. 24 is a diagram showing the control temperatures of the heating areas A 1 to A 7 finally determined in the present embodiment, wherein the control temperature in the image forming area is a thin solid line, and the control temperature in the non-image forming area is a thick solid line.
  • the control temperature of the non-image region is set such that the temperature difference T LR ⁇ T LL between the region LR and the region LL and the temperature difference T RL ⁇ T RR between the region RL and the region RR become 42 ° C.
  • the control temperature of the non-image forming area is set to a value equal to or less than the thick dotted line, the temperature difference TC at the center exceeds the breakage limit temperature, and the fixing film is damaged by the shift toward the center.
  • the control temperature in the non-image forming area As described above, the temperature of the non-image forming area is suppressed while suppressing the shortening of the life of the image heating device due to the fixing film breakage caused by the temperature difference of the center end of the fixing film. It is possible to save power by lowering as much as possible.
  • 100 image forming apparatus, 113: control unit, 120: video controller (acquisition unit), 200: fixing device (image heating device), 202: fixing film, 300: heater, 302a-1 to 302a-7, 302b-1 To 302b-7: heating element, A 1 to A 7 : heating area

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixing For Electrophotography (AREA)

Abstract

像加熱装置は、ヒータの複数の発熱体により加熱される複数の加熱領域のうち、記録材の搬送方向に直交する方向の中央の加熱領域よりも一端側の第一の領域に含まれる加熱領域の制御目標温度の平均値である第一の平均温度と、中央の加熱領域よりも他端側の第二の領域に含まれる加熱領域の制御目標温度の平均値である第二の平均温度と、が所定の温度範囲に収まるように、制御部が複数の発熱体への電力供給を制御する。

Description

像加熱装置及び画像形成装置
 本発明は、電子写真方式や静電記録方式を利用した複写機、プリンタ等の画像形成装置に搭載する定着器、あるいは、記録材に定着されたトナー画像を再度加熱することによりトナー画像の光沢度を向上させる光沢付与装置、等の像加熱装置に関する。また、この像加熱装置を備える画像形成装置に関する。
 複写機やプリンタ等の電子写真画像形成装置(以下、画像形成装置)に用いられる定着器や、光沢付与装置等、の像加熱装置において、オンデマンド性や省電力化に優れたフィルム加熱方式の像加熱装置が広く用いられている(特許文献1)。
 フィルム加熱方式の像加熱装置は、耐熱性の無端状の定着フィルム(定着部材)内部に、加熱源としてのセラミックス製のヒータあるいはハロゲンランプなどを有しており、定着フィルムと加圧ローラ(加圧部材)とで圧接ニップ部を形成している。そして、ニップ部で記録材を挟持搬送しつつ記録材上の未定着トナー像を加熱定着するものである。
 この像加熱装置を搭載する画像形成装置で小サイズの記録材を連続プリントすると、ニップ部の、ヒータの長手方向に対応する方向である記録材の搬送方向に直交する方向(以下、長手方向)において、記録材が通過しない領域の温度が徐々に上昇するという現象(非通紙部昇温)が発生する。非通紙部の温度が高くなり過ぎると、装置内の各パーツへダメージを与えたり、非通紙部昇温が生じている状態で大サイズの記録材にプリントすると、小サイズの記録材の非通紙部に相当する領域でトナーが定着フィルムに高温オフセットしたりすることもある。
 この非通紙部昇温を抑制する手法の一つとして、ヒータの発熱範囲を、長手方向に対し複数個の発熱ブロックに分割し、記録材のサイズに応じてヒータの発熱分布を切換える装置が提案されている(特許文献2)。
 また、このような加熱装置の中には、記録材上に形成された画像部を選択的に加熱する方式も提案されている(特許文献3)。この方法では、記録材上の画像の有無に応じて、各発熱ブロックを選択的に発熱制御し、記録材上に画像が無い部分(以下、非画像部)において発熱ブロックへの通電を減少させることで省電力化を図っている。
特開平4-44075号公報 特開2014-59508号公報 特開平6-95540号公報
 特許文献3のような像加熱装置では、画像が記録材の長手方向の片側に偏って形成される場合、画像部のみを選択的に加熱するため、加圧ローラの温度は非画像部よりも画像部が高くなり、加圧ローラの長手温度分布に左右差が生じる。この温度左右差は加圧ローラの弾性層の熱膨張の差となり、加圧ローラ外径は非画像部に比べて画像部の方が大きくなる。このため、加圧ローラによる定着フィルムの送り量(定着フィルムが加圧ローラに従動する量)に左右差が生じ、画像部の送り量は非画像部の送り量よりも大きくなる。この定着フィルムの送り量差により、送り量が大きい側の定着フィルムが下流側へ押し出され、加圧ローラの母線とフィルムの母線との間に交差角が生じる。この結果、定着フィルムの送り量が大きい側へ定着フィルムが移動しようとする寄り力が発生する。この寄り力により、フィルムの寄り移動が発生し、画像部側の定着フィルム端部がその側の規制部材(以下、定着フランジ)に押し当たり、定着フィルム端面は負荷を受ける。定着フィルム端面がこの様な負荷を継続的に受けると、定着フィルム端部の削れ等の定着フィルム破損により、像加熱装置の寿命を低寿命化させる可能性があった。
 この他に、画像が記録材の長手方向の中央部に偏って形成された場合、加圧ローラ温度は画像がない両端部に比べて画像がある中央部の方が高くなる。したがって、前述したのと同様の原理で、加圧ローラによる定着フィルムの送り量は、両端部に比べて中央部の方が大きくなる。この定着フィルムの送り量の差により、定着フィルムの中央部が両端部よりも搬送方向の下流側へ押し出され、定着フィルムが弓なり形状に変形する。その結果、定着フィルムの両端部から中央へ向かう寄り力(以下、中央寄り力)が発生し、定着フィルムへの負荷が生じる。定着フィルムが中央寄り力による負荷を継続的に受けると、定着フィルムの中央部に発生する皺によって定着フィルム破損が引き起こされ、像加熱装置の寿命を低寿命化させる可能性があった。
 一方、特許文献1のような像加熱装置では、長手方向の温度分布がフラットになるようにヒータを発熱させるため、上述したような像加熱装置の低寿命化を抑制することができる。しかしながら、ヒータは記録材上の画像の有無に関わらず一様に記録材を加熱するため、記録材上の画像のない部分を加熱することになり、余分な電力を消費していた。
 本発明の目的は、像加熱装置において省電力性と高寿命化を両立させることができる技術を提供することである。
 上記目的を達成するため、本発明の像加熱装置は、
 記録材の搬送方向に直交する方向に並ぶ複数の発熱体を有するヒータと、
 前記複数の発熱体へ供給する電力を個々に制御することで、前記複数の発熱体により加熱される複数の加熱領域の温度を個々に制御可能な制御部と、
 記録材に形成される画像の情報を取得する取得部と、
を有し、
 前記ヒータの熱によって記録材に形成された画像を加熱する像加熱装置において、
 前記制御部は、
 前記複数の加熱領域のうち、前記搬送方向に直交する方向の中央の加熱領域よりも一端側の第一の領域に含まれる加熱領域の制御目標温度の平均値である第一の平均温度と、前記中央の加熱領域よりも他端側の第二の領域に含まれる加熱領域の制御目標温度の平均値である第二の平均温度と、が所定の温度範囲に収まるように、前記複数の発熱体への電力供給を制御することを特徴とする。
 上記目的を達成するため、本発明の像加熱装置は、
 記録材の搬送方向に直交する方向に並ぶ複数の発熱体を有するヒータと、
 前記複数の発熱体へ供給する電力を個々に制御することで、前記複数の発熱体により加熱される複数の加熱領域の温度を個々に制御可能な制御部と、
 記録材に形成される画像の情報を取得する取得部と、
を有し、
 前記ヒータの熱によって記録材に形成された画像を加熱する像加熱装置において、
 前記制御部は、
 前記複数の加熱領域のうち、
  前記搬送方向に直交する方向の中央の加熱領域よりも一端側の第一の領域に含まれる加熱領域の制御目標温度の平均値を第一の平均温度とし、
  前記中央の加熱領域よりも他端側の第二の領域に含まれる加熱領域の制御目標温度の平均値を第二の平均温度とし、
  少なくとも前記中央の加熱領域を含む、前記第一の領域と前記第二の領域との間の第三の領域に含まれる加熱領域の制御目標温度の平均値を第三の平均温度とし、
 前記第三の平均温度≧前記第一の平均温度、および前記第三の平均温度≧前記第二の平均温度の関係を満たし、かつ
 前記第一の平均温度と前記第三の平均温度の差分と、前記第二の平均温度と前記第三の平均温度の差分との合計が、所定の閾値を下回るように、前記複数の発熱体への電力供給を制御することを特徴とする。
 上記目的を達成するため、本発明の画像形成装置は、
 記録材に画像を形成する画像形成部と、
 記録材に形成された画像を記録材に定着する定着部と、
を有する画像形成装置において、
 前記定着部が本発明の像加熱装置であることを特徴とする。
 本発明によれば、像加熱装置において省電力性と高寿命化を両立させることができる。
図1は、画像形成装置の断面図である。 図2A、図2Bは、実施例1の像加熱装置の断面図である。 図3A~図3Cは、実施例1のヒータ構成図である。 図4は、実施例1のヒータ制御回路図である。 図5は、実施例1の加熱領域を示す図である。 図6A、図6Bは、実施例1の加熱領域の分類に関する具体例である。 図7A、図7Bは、実施例1の寄り力発生のメカニズムを説明する図である。 図8A~図8Cは、実施例1の実験結果を示す図である。 図9は、実施例1の加熱領域を分類と制御温度を決定するフローチャートである。 図10A~図10Cは、実施例1の各加熱領域の仮の制御目標温度および制御目標温度を示す図である。 図11A~図11Cは、実施例1の各加熱領域の仮の制御目標温度および制御目標温度を示す図である。 図12は、実施例1の加熱領域を分類と制御温度を決定するフローチャートである。 図13A、図13Bは、実施例1の各加熱領域の仮の制御目標温度および制御目標温度を示す図である。 図14は、実施例1の加熱領域を分類と制御温度を決定するフローチャートである。 図15は、実施例1の変形例における制御目標温度を示す図である。 図16A~図16Eは、実施例2の加熱領域の分類に関する具体例である。 図17A、図17Bは、実施例2の画像区間の制御温度および非画像区間の制御温度を示す図である。 図18A、図18Bは、実施例2の連続プリント中の記録材と画像形成領域を示す図である。 図19A~図19Cは、実施例3の加熱領域と記録材、画像形成領域の位置を示した図である。 図20は、実施例3のヒータ温度を示す図である。 図21A、図21Bは、実施例4の寄り力発生のメカニズムを説明する図である。 図22は、実施例4の実験結果を示す図である。 図23A、図23Bは、実施例4の加熱領域の分類に関する具体例である。 図24は、実施例4の制御目標温度を示す図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状それらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものである。すなわち、この発明の範囲を以下の実施の形態に限定する趣旨のものではない。
[実施例1]
 図1は、本発明の実施例に係る画像形成装置の概略断面図である。本発明が適用可能な画像形成装置としては、電子写真方式や静電記録方式を利用した複写機、プリンタなどが挙げられ、ここではレーザプリンタに適用した場合について説明する。
 画像形成装置100は、ビデオコントローラ120と制御部113を備える。ビデオコントローラ120は、記録材に形成される画像の情報を取得する取得部として、パーソナルコンピュータ等の外部装置から送信される画像情報及びプリント指示を受信して処理するものである。制御部113は、ビデオコントローラ120と接続されており、ビデオコントローラ120からの指示に応じて画像形成装置100を構成する各部を制御するものである。ビデオコントローラ120が外部装置からプリント指示を受けると、以下の動作で画像形成が実行される。
 プリント信号が発生すると、画像情報に応じて変調されたレーザ光をスキャナユニット21が出射し、帯電ローラ16によって所定の極性に帯電された感光ドラム19表面を走査する。これにより感光ドラム19には静電潜像が形成される。この静電潜像に対して現像ローラ17からトナーが供給されることで、感光ドラム19上の静電潜像は、トナー画像として現像される。一方、給紙カセット11に積載された記録材(記録紙)Pはピックアップローラ12によって一枚ずつ給紙され、搬送ローラ対13によってレジストローラ対14に向けて搬送される。更に、記録材Pは、感光ドラム19上のトナー画像が感光ドラム19と転写ローラ20で形成される転写位置に到達するタイミングに合わせて、レジストローラ対14から転写位置へ搬送される。記録材Pが転写位置を通過する過程で感光ドラム19上のトナー画像は記録材Pに転写される。その後、記録材Pは定着部(像加熱部)としての定着装置(像加熱装置)200で加熱され、トナー画像が記録材Pに加熱定着される。定着済みのトナー画像を担持する記録材Pは、搬送ローラ対26、27によって画像形成装置100上部のトレイに排出される。
 画像形成装置100は、さらに、感光ドラム19を清掃するドラムクリーナ18、定着装置200等を駆動するモータ30、を備える。商用の交流電源401に接続されたヒータ駆動手段としての制御回路400は、定着装置200への電力供給を行う。上述した、感光ドラム19、帯電ローラ16、スキャナユニット21、現像ローラ17、転写ローラ20が、記録材Pに未定着画像を形成する画像形成部を構成している。また、本実施例では、帯電ローラ16、現像ローラ17を含む現像ユニット、感光ドラム19、ドラムクリーナ18を含むクリーニングユニットが、プロセスカートリッジ15として画像形成装置100の装置本体に対して着脱可能に構成されている。
 本実施例の画像形成装置100は、記録材Pの搬送方向に直交する方向における最大通紙幅が216mmであり、LETTERサイズ(216mm×279mm)の普通紙を232.5mm/secの搬送速度で毎分35枚プリントすることが可能である。
 図2Aは、定着装置200の模式的断面図である。定着装置200は、定着フィルム202と、定着フィルム202の内面に接触するヒータ300と、定着フィルム202を介してヒータ300と共に定着ニップ部Nを形成する加圧ローラ208と、金属ステー204と、を有する。
 定着フィルム202は、筒状に形成された複層耐熱フィルムであり、ポリイミド等の耐熱樹脂、またはステンレス等の金属を基層としている。また、定着フィルム202の表面には、トナーの付着防止や記録材Pとの分離性を確保するため、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)等の離型性にすぐれた耐熱樹脂を被覆して離型層を形成してある。更に、画質向上のため、上記基層と離型層の間にシリコーンゴム等の耐熱ゴムを弾性層として形成してもよい。加圧ローラ208は、鉄やアルミニウム等の材質の芯金209と、シリコーンゴム等の材質の弾性層210を有する。ヒータ300は、耐熱樹脂製のヒータ保持部材201に保持されており、定着ニップ部N内に設けられた加熱領域A~A(詳細は後述する)を加熱することで、定着フィルム202を加熱する。ヒータ保持部材201は定着フィルム202の回転を案内するガイド機能も有している。ヒータ300には、定着フィルム202の内面に接触する側とは反対側(裏面側)に電極Eが設けられており、電気接点Cより電極Eに給電を行っている。金属ステー204は、不図示の加圧力を受けて、ヒータ保持部材201を加圧ローラ208向けて付勢する。また、ヒータ300の異常発熱により作動してヒータ300に供給する電力を遮断するサーモスイッチや温度ヒューズ等の安全素子212が、ヒータ300の裏面側に対向して配置されている。
 加圧ローラ208は、モータ30から動力を受けて矢印R1方向に回転駆動される。加圧ローラ208が回転することによって、定着フィルム202外面との間の摩擦力によって定着フィルム202に回転力が作用し、定着フィルム202が従動して矢印R2方向に回転する。定着ニップ部Nにおいて記録材Pを挟持搬送しつつ定着フィルム202の熱を与えることで、記録材P上の未定着トナー画像は定着処理される。また、定着フィルム202の摺動性を確保し安定した従動回転状態を得るために、ヒータ300と定着フィルム202の間には、耐熱性の高いフッ素系潤滑グリース(不図示)を介在させている。
 図2Bは、定着装置200を記録材の搬送方向と平行な方向から見た図である。定着フィルム202は長手方向の左右何れかへ寄り移動する場合があり、定着フィルム202の端部には寄りを規制する定着フランジ213(規制部材)が定着フィルム202両端部に設けられている。定着フィルム202に寄りが発生した場合、定着フィルム端面は寄り移動して定着フランジ213の端面対向部に突き当たることにより寄りが規制されるようになっている。また、定着フランジ213は、定着フィルム202の端部の内面に対向する内面対向部を有する。定着フィルム202内面と内面対向部の間には若干のクリアランスが設けられており、内面対向部は定着フィルム回転時の定着フィルム202の内面をガイドする機能も有する。
 図3A~図3Cを用いて、本実施例におけるヒータ300の構成を説明する。図3Aはヒータ300の断面図、図3Bはヒータ300の各層の平面図、図3Cはヒータ300への電気接点Cの接続方法を説明する図である。図3Bには、本実施例の画像形成装置100における記録材Pの搬送基準位置Xを示してある。本実施例における搬送基準は中央基準となっており、記録材Pは、その搬送方向に直交する方向における中央を通る中心線が搬送基準位置Xを沿うように搬送される。また、図3Aは、搬送基準位置Xにおけるヒータ300の断面図となっている。
 ヒータ300は、セラミックス製の基板305と、基板305上に設けられた裏面層1と、裏面層1を覆う裏面層2と、基板305上の裏面層1とは反対側の面に設けられた摺動面層1と、摺動面層1を覆う摺動面層2と、より構成される。
 裏面層1は、ヒータ300の長手方向に沿って設けられている導電体301(301a、301b)を有する。導電体301は、導電体301aと301bに分離されており、導電体301bは、導電体301aに対して記録材Pの搬送方向の下流側に配置されている。また、裏面層1は、導電体301a、301bに平行して設けられた導電体303(303-1~303-7)を有する。導電体303は、導電体301aと導電体301bの間にヒータ300の長手方向に沿って設けられている。
 更に、裏面層1は、通電により発熱する発熱抵抗体である、発熱体302a(302a-1~302a-7)と発熱体302b(302b-1~302b-7)を有する。発熱体302aは、導電体301aと導電体303の間に設けられており、導電体301aと導電体303を介して電力を供給することにより発熱する。発熱体302bは、導電体301bと導電体303の間に設けられており、導電体301bと導電体303を介して電力を供給することにより発熱する。
 導電体301と導電体303と発熱体302aと発熱体302bとから構成される発熱部位は、ヒータ300の長手方向に対し7つの発熱ブロック(HB~HB)に分割されている。すなわち、発熱体302aは、ヒータ300の長手方向に対し、発熱体302a-1~302a-7の7つの領域に分割されている。また、発熱体302bは、ヒータ300の長手方向に対し、発熱体302b-1~302b-7の7つの領域に分割されている。更に、導電体303は、発熱体302a、302bの分割位置に合わせて、導電体303-1~303-7の7つの領域に分割されている。7つの発熱ブロック(HB~HB)は、各ブロックにおける発熱体への電力供給量が個別に制御されることで、それぞれの発熱量が個々に制御される。
 本実施例の発熱範囲は、発熱ブロックHBの図中左端から発熱ブロックHBの図中右端までの範囲であり、その全長は220mmである。また、各発熱ブロックの長手方向長さは、すべて同じ約31mmとしているが、長さを異ならせても構わない。
 また、裏面層1は、電極E(E1~E7、およびE8-1、E8-2)を有する。電極E1~E7は、それぞれ導電体303-1~303-7の領域内に設けられており、導電体303-1~303-7を介して発熱ブロックHB~HBそれぞれに電力供給するための電極である。電極E8-1、E8-2は、ヒータ300の長手方向端部に導電体301に接続するよう設けられており、導電体301を介して発熱ブロックHB~HBに電力供給するための電極である。本実施例ではヒータ300の長手方向両端に電極E8-1、E8-2を設けているが、例えば、電極E8-1のみを片側に設ける構成(即ち、電極E8-2を設けない構成)でも構わない。また、導電体301a、301bに対し共通の電極で電力供給を行っているが、導電体301aと導電体301bそれぞれに個別の電極を設け、それぞれ電力供給を行っても構わない。
 裏面層2は、絶縁性を有する表面保護層307より構成(本実施例ではガラス)されており、導電体301、導電体303、発熱体302a、302bを覆っている。また、表面保護層307は、電極Eの箇所を除いて形成されており、電極Eに対して、ヒータの裏面層2側から電気接点Cを接続可能な構成となっている。
 摺動面層1は、基板305において裏面層1が設けられる面とは反対側の面に設けられている。摺動面層1は、各発熱ブロックHB~HBの温度を検知する検知手段としてサーミスタTH(TH1-1~TH1-4、TH2-5~TH2-7、TH3-1、TH3-2、TH4-1、TH4-2)を有している。サーミスタTHは、PTC特性、若しくはNTC特性(本実施例ではNTC特性)を有した材料から成り、その抵抗値を検出することにより、全ての発熱ブロックの温度を検知できる。
 また、摺動面層1は、サーミスタTHに通電しその抵抗値を検出するため、導電体ET(ET1-1~ET1-4、ET2-5~ET2-7、ET3-1、ET3-2、ET4-1、ET4-2)と導電体EG(EG1、EG2)とを有している。導電体ET1-1~ET1-4は、それぞれサーミスタTH1-1~TH1-4に接続されている。導電体ET2-5~ET2-7は、それぞれサーミスタTH2-5~TH2-7に接続されている。導電体ET3-1、ET3-2は、それぞれサーミスタTH3-1、TH3-2に接続されている。導電体ET4-1、ET4-2は、それぞれサーミスタTH4-1、TH4-2に接続されている。導電体EG1は、6つのサーミスタTH1-1~TH1-4、および、TH3-1~TH3-2に接続され、共通の導電経路を形成している。導電体EG2は、5つのサーミスタTH2-5~TH2-7、および、TH4-1~TH4-2に接続され、共通の導電経路を形成している。導電体ETおよび導電体EGは、それぞれヒータ300の長手に沿って長手端部まで形成され、ヒータ長手端部において不図示の電気接点を介して制御回路400と接続されている。
 摺動面層2は、摺動性と絶縁性を有する表面保護層308より構成(本実施例ではガラス)されており、サーミスタTH、導電体ET、導電体EGを覆うとともに、定着フィルム202内面との摺動性を確保している。また、表面保護層308は、導電体ETおよび導電体EGに対して電気接点を設けるために、ヒータ300の長手両端部を除いて形成されている。
 続いて、各電極Eへの電気接点Cの接続方法を説明する。図3Cは、各電極Eへ電気接点Cを接続した様子をヒータ保持部材201側から見た平面図である。ヒータ保持部材201には、電極E(E1~E7、およびE8-1、E8-2)に対応する位置に貫通孔が設けられている。各貫通孔位置において、電気接点C(C1~C7、およびC8-1、C8-2)が、電極E(E1~E7、およびE8-1、E8-2)に対して、バネによる付勢や溶接などの手法によって電気的に接続されている。電気接点Cは、金属ステー204とヒータ保持部材201の間に設けられた不図示の導電材料を介して、後述するヒータ300の制御回路400と接続されている。
 図4は、実施例1のヒータ300の制御回路400の回路図である。401は、画像形成装置100に接続される商用の交流電源である。ヒータ300の電力制御は、トライアック411~トライアック417の通電/遮断により行われる。トライアック411~417は、それぞれ、CPU420からのFUSER1~FUSER7信号に従って動作する。トライアック411~417の駆動回路は省略して示してある。ヒータ300の制御回路400は、7つのトライアック411~417によって、7つの発熱ブロックHB~HBを独立制御可能な回路構成となっている。ゼロクロス検知部421は、交流電源401のゼロクロスを検知する回路であり、CPU420にZEROX信号を出力している。ZEROX信号は、トライアック411~417の位相制御や波数制御のタイミングの検出等に用いている。
 ヒータ300の温度検知方法について説明する。ヒータ300の温度検知は、サーミスタTH(TH1-1~TH1-4、TH2-5~TH2-7、TH3-1、TH3-2、TH4-1、TH4-2)によって行われる。サ-ミスタTH1-1~TH1-4、TH3-1~TH3-2と抵抗451~456との分圧が、Th1-1~Th1-4信号、およびTh3-1~Th3-2信号としてCPU420で検知される。CPU420は、Th1-1~Th1-4信号、およびTh3-1~Th3-2信号を温度に変換する。同様に、サ-ミスタTH2-5~TH2-7、TH4-1~TH4-2と抵抗465~469との分圧が、Th2-5~Th2-7信号、およびTh4-1~Th4-2信号としてCPU420で検知される。CPU420は、Th2-5~Th2-7信号、およびTh4-1~Th4-2信号を温度に変換する。
 CPU420の内部処理では、各発熱ブロックの制御目標温度TGTと、サーミスタの検知温度に基づき、例えばPI制御(比例積分制御)により、供給するべき電力を算出している。更に、供給する電力を、電力に対応した位相角(位相制御)や、波数(波数制御)の制御レベル(デューティー比)に換算し、その制御条件によりトライアック411~417を制御している。
 発熱ブロックHB~HBでは、それぞれサ-ミスタTH1-1~TH1-4の検知温度に基づき各発熱ブロックの温度制御を行う。一方、発熱ブロックHB~HBでは、それぞれサ-ミスタTH2-5~TH2-7の検知温度に基づき各発熱ブロックの温度制御を行う。サ-ミスタTH3-1、TH4-1は、加熱領域全長の長さ220mmよりも狭い記録材を通紙した際の非通紙部昇温を検知するためのものであり、B5サイズ紙の紙幅(182mm)より外側に設けられている。また、サ-ミスタTH3-2、TH4-2は、発熱ブロックHB~HBまでの長さ157mmよりも狭い記録材を通紙した際の非通紙部昇温を検知するためのものであり、A6サイズ紙の紙幅(105mm)より外側に設けられている。
 リレー430、リレー440は、故障などによりヒータ300が過昇温した場合、ヒータ300への電力遮断手段として用いている。リレー430、リレー440の回路動作を説明する。RLON信号がHigh状態になると、トランジスタ433がON状態になり、電源電圧Vccからリレー430の2次側コイルに通電され、リレー430の1次側接点はON状態になる。RLON信号がLow状態になると、トランジスタ433がOFF状態になり、電源電圧Vccからリレー430の2次側コイルに流れる電流は遮断され、リレー430の1次側接点はOFF状態になる。同様に、RLON信号がHigh状態になると、トランジスタ443がON状態になり、電源電圧Vccからリレー440の2次側コイルに通電され、リレー440の1次側接点はON状態になる。RLON信号がLow状態になると、トランジスタ443がOFF状態になり、電源電圧Vccからリレー440の2次側コイルに流れる電流は遮断され、リレー440の1次側接点はOFF状態になる。なお、抵抗434、抵抗444は電流制限抵抗である。
 リレー430、リレー440を用いた安全回路の動作について説明する。サーミスタTH1-1~TH1-4による検知温度の何れか1つが、それぞれ設定された所定値を超えた場合、比較部431はラッチ部432を動作させ、ラッチ部432はRLOFF1信号をLow状態でラッチする。RLOFF1信号がLow状態になると、CPU420がRLON信号をHigh状態にしても、トランジスタ433がOFF状態で保たれるため、リレー430はOFF状態(安全な状態)で保つことができる。尚、ラッチ部432は非ラッチ状態において、RLOFF1信号をオープン状態の出力にしている。同様に、サーミスタTH2-5~TH2-7による検知温度の何れか1つが、それぞれ設定された所定値を超えた場合、比較部441はラッチ部442を動作させ、ラッチ部442はRLOFF2信号をLow状態でラッチする。RLOFF2信号がLow状態になると、CPU420がRLON信号をHigh状態にしても、トランジスタ443がOFF状態で保たれるため、リレー440はOFF状態(安全な状態)で保つことができる。同様に、ラッチ部442は非ラッチ状態において、RLOFF2信号をオープン状態の出力にしている。
 図5は、本実施例における加熱領域A~Aを示す図であり、LETTERサイズ紙の紙幅と対比して表示している。加熱領域A~Aは、定着ニップ部N内の、発熱ブロックHB~HBに対応した位置に設けられており、発熱ブロックHB(i=1~7)の発熱により、加熱領域A(i=1~7)がそれぞれ加熱される。加熱領域Aの長手方向の長さをLとすると、加熱領域A~Aの全長ΣLは220mmであり、各領域はこれを均等に7分割したものである(L=31.4mm)。
 本実施例では、定着ニップ部Nを通過する記録材Pを所定の時間で区間分けし、それぞれの区間毎に、加熱領域Aを画像形成領域か非画像形成領域かに分類する。本実施例では、記録材Pの先端を基準に0.24秒毎に区間分けしており、最初の区間を区間T、2番目の区間を区間T、3番目の区間を区間Tというように区間Tまで区間分けする。加熱領域Aの分類について、図6A、図6Bを用いて、具体例を挙げて説明する。
 図6A、図6Bに示す具体例においては、記録材PはLETTERサイズであり加熱領域AからAを通過する。図6Aに示す位置に記録材及び画像が存在していた場合、加熱領域Aの分類は図6Bのようになる。
 画像形成範囲と重なる場合には、その加熱領域A(i=1~7)を画像形成領域AIと分類し、画像形成範囲と重ならない場合には、その加熱領域Aを非画像形成領域APと分類する。加熱領域Aの分類は、後述するように、発熱ブロックHBの発熱量の制御に利用される。
 また、画像形成範囲の情報から、区間Tにおいて、加熱領域A、A、A3、は画像範囲が通過するため画像形成領域AIに分類され、加熱領域A、A、Aは画像範囲が通過しないため非画像形成領域APに分類される。区間Tから区間Tおいては、加熱領域A、A、A、Aは画像範囲が通過するため画像形成領域AIに分類され、加熱領域A、A、Aは画像範囲が通過しないため非画像形成領域APに分類される。
 本実施例のヒータ制御方法、すなわち発熱ブロックHB(i=1~7)の発熱量制御方法を説明する。
 発熱ブロックHBの発熱量は、発熱ブロックHBへの供給電力によって決まる。発熱ブロックHBへの供給電力を大きくすることで、発熱ブロックHBの発熱量が大きくなり、発熱ブロックHBへの供給電力を小さくすることで、発熱ブロックHBの発熱量が小さくなる。
 発熱ブロックHBへの供給電力は、発熱ブロック毎に設定される制御温度(制御目標温度)TGT(i=1~7)と、サーミスタの検知温度に基づき算出される。本実施例では、各サーミスタの検知温度が各発熱ブロックの制御温度TGTと等しくなるよう、PI制御(比例積分制御)によって供給電力が算出される。
 上記構成においては、発熱ブロック毎に発熱量を変更することができるので、ヒータ300の長手方向の発熱分布を様々な分布にすることが可能である。
 図7Aは、ヒータ300の長手方向の発熱分布を模式的に示した図であるが、図7Aのように、ヒータ300の長手方向の発熱分布を片側の発熱量が大きくなるようにすることも可能である。このように、ヒータ300の長手方向の発熱量に左右差をつけると、発熱量が大きい側へ定着フィルム202を移動させようとする寄り力(定着フィルム202に対して長手方向に作用する力)が生じる。この寄り力が発生する原因について、図7A、図7Bを用いて説明する。
 図7Bは、定着装置200を記録材の搬送方向と平行な面に垂直な方向から見た図であり、定着フィルム202に寄り力が働いている状態を模式的に示している。図7Aのようなヒータ300の長手方向の発熱量の左右差は、加圧ローラ208の長手方向に温度左右差を生じさせる。この温度左右差は加圧ローラの弾性層の熱膨張の差となり、加圧ローラ外径は高温である加熱領域A~Aの方が加熱領域A~Aよりも大きくなる。このため、加圧ローラによる定着フィルムの送り量には、図7Bのブロック矢印に示されるように左右差が生じ、高温側の定着フィルムの送り量は、低温側の定着フィルムの送り量よりも大きくなる。定着フィルム202と定着フランジ213内面対向部にはクリアランスがあるので、この定着フィルムの送り量の差により、加圧ローラ208の母線と定着フィルム202の母線との間に交差角θが生じる。定着フィルム202は加圧ローラ208の回転により力Fを受けているため、交差角θが生じたことにより、力Fは、定着フィルム202の母線方向F=F・sinθと、それに直交する方向F=F・cosθに分解される。そして、この力F(寄り力)によって、定着フィルム202は、定着フィルムの送り量が大きい側、つまり、ヒータ300の発熱量が大きい側へ寄り移動することになる。
 定着フィルム202の寄り移動により、発熱量が大きい側の定着フィルム端面が定着フランジ213の規制面に突き当たり、定着フィルム202と定着フランジ213とが摺擦する。この寄り力は、定着フィルム端部の削れを引き起こす可能性があり、さらに寄り力が大きい場合は折れや座屈、亀裂などの定着フィルム破損が発生する可能性がある。これらの定着フィルム破損は、定着装置の寿命を低寿命化させてしまう可能性がある。
 ここで、本発明者は定着フィルム202の寄り力はヒータ300の長手方向の平均的な温度の左右差に相関があることを実験的に発見した。つまり、ヒータの平均的な温度の左右差が大きいほど、定着フィルム202の寄り力が大きくなることを発見した。
 以下に、定着フィルム202の寄り力とヒータ300の長手方向の温度分布との関係を調べるために実施した実験の結果を記す。
 実験は、以下の手順で行った。
 定着装置の温度が室温と同じであることを確認した後、LETTERサイズ紙100枚を1セットとし連続プリントする。定着装置は発熱ブロック毎に設定される制御温度TGT(i=1~7)を様々に設定することが可能なので、ヒータ300の長手方向の温度分布も様々に設定することが可能である。表1は本実験におけるヒータ300の各加熱領域の制御温度の条件を示した表である。本実験では、表1に示すようにヒータ300の長手方向の温度分布を19通り設定して、各温度分布において1セットずつ連続プリントを行った。尚、連続プリント中は、通紙中、紙間に関わらず制御温度は一定になるように設定する。
(表1)
Figure JPOXMLDOC01-appb-I000001
 また、本実験では、定着フィルム202の寄り力を測定するために、定着フランジ213の端部に圧力を検知するロードセルを装着した。定着フィルム202に寄り力が働き、定着フィルム202が定着フランジ213に突き当たると、ロードセルが圧力を検知する。この検知された圧力は定着フィルム202に働く寄り力に等しい。このロードセルにより、寄り力を測定しながら連続プリントを行なった。
 図8Aは、本実験におけるヒータ300の制御温度の一条件である条件4の温度分布パターンでの制御を示す図である。この温度分布パターンによる制御温度の設定により、加熱領域A側の方が温度が高くなるように制御温度に左右差をつけている。
 図8Bは、図8Aのように制御温度を設定したときの、連続プリント中の寄り力の推移を示した図である。ここで、寄り力の正の符号は、定着フィルムが加熱領域A側へ移動し、加熱領域A側のロードセルによって寄り力が検知されたことを表している。一方、寄り力の負の符号は、定着フィルムが加熱領域A側へ移動し、加熱領域A側のロードセルによって寄り力が検知されたことを表している。図8Bから、温度が高い加熱領域A側へ定着フィルムの寄り力が働いていることがわかる。また、寄り力はプリント開始直後から発生し、プリント終了まで-7.5N近傍の値でほぼ一定で推移することがわかる。このような傾向は、その他の温度分布設定においても同様に見られた。
 図8Cは、本実験における全19通りの連続プリントにより得られた、各連続プリントにおけるヒータの長手方向の温度左右差と定着フィルムの寄り力の関係を示した図である。ここで、温度左右差を表す指標として、ΔTLRを定義した。ΔTLRは、第一の領域としての加熱領域A、A、Aにおける制御温度TGTの平均値をT、第二の領域としての加熱領域A、A、Aにおける制御温度TGTの平均値をTとしたときに、ΔTLR≡T-Tとして定義される。すなわち、ΔTLRは、左右の制御温度の平均値の差を表す。
 尚、TとTは以下の数式により算出される。
 T=Σ(TGT・L)/ΣL (i=1,2,3) …(式1)
 T=Σ(TGT・L)/ΣL (i=5,6,7) …(式2)
 図8Cに示されるように、定着フィルムの寄り力とΔTLRは強い相関関係があることがわかる。この結果により、温度左右差を示す指標として、ヒータの左右の平均温度の差を表すΔTLRによって、定着フィルムの寄り力を予測できることを明らかにした。
 本実施例では上述した定着フィルムの寄り力とΔTLRとの関係を反映した温度制御を導入することで、フィルム破損を抑制し、可能な限り定着装置の寿命を高寿命化する制御としている。
 本実施例における各発熱ブロックの制御温度TGTの設定方法について説明する。
 本実施例において、制御温度TGTはヒータ300の長手方向の温度左右差が所定値範囲内に収まるように設定する。すなわち、所定の温度範囲として、-T≦ΔTLR≦Tとなるように設定する。ここで、閾値Tは温度左右差が原因で発生する定着フィルムの寄り力の許容範囲から決定される。本実施例における温度左右差が原因で発生する定着フィルムの寄り力の許容範囲は-2N~2Nである。この許容範囲内であれば定着フィルムが定着フランジの規制面が突き当たることで発生する定着フィルムへの負荷を抑制でき、定着装置寿命内にフィルム破損が発生することはなかった。
 図8Cから、定着フィルムの寄り力の許容範囲が-2N~2NとなるΔTLRの範囲を読み取ると、-10℃≦ΔTLR≦10℃である。したがって、本実施例では、閾値としてT=10℃に設定した。尚、本実施例では、定着フィルムの寄り力の許容範囲を-2N~2Nとしたが、定着フィルムの寄り力の許容範囲はこの範囲に限定されるものではない。定着フィルムの外径や厚み、材質、あるいはプロセス速度などの条件によって適宜設定されるものである。
 図9のフローチャートを用いて、制御温度TGTの設定方法について説明する。ここでは、具体例として、図6Aのような位置に記録材および画像が存在していた場合の区間T~Tにおける制御温度TGTの設定方法についても合わせて説明する。各加熱領域A(i=1~7)は、図9のフローチャートに示すように、画像加熱領域としての画像形成領域AIと、非画像加熱領域としての非画像形成領域APとに分類される。
 加熱領域Aの分類は、ホストコンピュータ等の外部装置(不図示)から送信される画像形成範囲の情報に基づいて行われ、加熱領域Aが画像形成範囲を通過するかによって判断される(S1003)。画像形成範囲の場合は、加熱領域Aを画像形成領域AIと分類し(S1004)、画像範囲でない場合は、加熱領域Aを非画像形成領域APと分類する(S1005)。
 画像形成範囲の場合は、加熱領域Aは画像形成領域AIと分類され、仮の制御温度TGT´をTGT´=TAIと設定する(S1006)。ここで、TAIは未定着画像を記録材Pに定着させるために適切な温度として設定されている。本実施例の定着装置200において普通紙を通紙する際は、予め設定された制御目標温度として、TAI=198℃としている。TAIは、厚紙・薄紙といった記録材Pの種類に応じて可変とすることが望ましい。また、画像の濃度や画素の密度など、画像の情報に応じてTAIを調整しても良い。
 加熱領域Aが非画像形成領域APと分類された場合は、仮の制御温度TGT´をTGT´=TAPと設定する(S1007)。ここで、TAPはTAIよりも低い温度として設定することで、非画像形成領域APにおける発熱ブロックHBの発熱量を画像形成領域AIより下げ、画像形成装置100の省電力化を図っている。本実施例では、予め設定された制御目標温度として、TAP=158℃としている。
 ここで、図10Aは、具体例における加熱領域A~Aの仮の制御温度TGT´を示す図である。具体例においては、加熱領域Aは図6Bのように分類されるので、この分類に基づき、仮の制御温度は図10Aの細実線ように設定される。
 仮の制御温度TGT´が決定したら、これに基づいて実際に使用する制御温度TGTを決定する。尚、本実施例において、加熱領域Aは全加熱領域の長手方向中央部に位置するので、加熱領域Aにおける制御温度TGTはTGT=TGT´に設定する。
 まず、加熱領域A、A、AにおけるTGT´の平均値をT´、加熱領域A、A、AにおけるTGT´の平均値をT´として、T´とT´を算出する(S1010)。尚、T´、T´はそれぞれT、Tと同様に計算される。ここで、具体例においては、T´=171℃、T´=185℃と算出される。
 次に、T´とT´との差ΔTLR´=T´-T´が、-T~Tの範囲内かどうかを判断する(S1011)。
 ΔTLR´が-T~Tの範囲内の場合は、温度左右差が原因で発生する定着フィルムの寄り力は許容値以内と予測できるので、仮の制御温度TGT´をそのまま実際の制御温度TGTに設定する(S1012)。そして、S1021へ移行して、制御温度の設定フローを終了する。
 一方、ΔTLR´が-T~Tの範囲外である場合は、温度左右差が原因で発生する定着フィルムの寄り力は許容範囲外になると予測できる。したがって、温度左右差が解消されるように制御温度TGTを設定するためのフローに移行し、まず、S1013において、T´とT´のどちらが大きいか判断する。
 ここで、具体例においては、T´とT´との差ΔTLR´=T´-T´=-14℃となるので、ΔTLR´は-T~Tの範囲外であると判断され、S1013へ移行する。
 S1013において、ヒータの長手方向の中央の加熱領域よりも一端側の第一の領域の平均値T´の方が大きいと判断されると、第一の領域である加熱領域A、A、Aにおける仮の制御温度TGT´を制御温度TGTに設定する(S1014)。一方、ヒータの長手方向の中央の加熱領域よりも他端側の第二の領域である加熱領域A、A、Aにおける制御温度TGTは、第二の領域の制御温度の平均値Tと第一の領域の平均値Tが等しくなるように設定する。つまり、T=Tの関係を満たすように設定する。
 S1015では、加熱領域A、A、Aのうち、画像形成領域AIに分類されるものを判別する。S1015で画像形成領域AIに分類された加熱領域Aの制御温度TGTはTAIを設定する(S1016)。一方、S1015で非画像形成領域APに分類された加熱領域Aの制御温度TGT´は、以下に示す式によって決定される(S1017)。
 TGT=(m・T-n・TAI)/(m-n) …(式3)
 ここで、mは第二の領域における加熱領域の数であり、m=3である。また、nはS1015において画像形成領域AIに分類された加熱領域の数である。
 以上の計算により、加熱領域A、A、Aにおける制御温度TGTを、予め設定された温度から変更することで、T=Tの関係を満たすように設定することができる。
 これとは別に、S1013において、T´の方が大きいと判断されると、第二の領域の加熱領域A、A、Aにおける仮の制御温度TGT´を制御温度TGTに設定する(S1018)。一方、第一の領域である加熱領域A、A、Aにおける制御温度TGTは、T=Tの関係を満たすように設定するために、S1019へ移行する。
 S1019においては、第一の領域の加熱領域A、A、Aのうち、画像形成領域AIに分類されるものを判別し、S1020で画像形成領域AIに分類された加熱領域Aの制御温度TGTをTAIに設定する。一方、S1019で非画像形成領域APに分類された加熱領域Aの制御温度TGT´は、S1021において、以下に示す式によって決定される。
 TGT=(m・T-n・TAI)/(m-n) …(式4)
 ここで、mは第一の領域における加熱領域の数であり、m=3である。また、nはS1019において画像形成領域AIに分類された加熱領域の数である。
 具体例においては、T´、T´はそれぞれT´=171℃、T´=185℃であり、図10Aにおいて太実線で示される。したがって、具体例ではT´<T´と判断される(S1013)。そして、第二の領域における加熱領域A、A、Aの制御温度TGTは図10Aの細実線で示される値に設定される(S1018)。
 次のステップ以降で、第一の領域の制御温度の平均値Tを第二の領域の平均値Tと等しくなるように設定する。つまり、第一の領域の制御温度の平均値Tを、図10Aにおいて実線枠のブロック矢印で示した温度になるように設定する。
 そこで、S1019では、第一の領域である加熱領域A、A、Aの中から、画像形成領域AIに分類される加熱領域とそうでない加熱領域を判別する。ここで、画像形成領域AIに分類された加熱領域Aの制御温度TGTは、S1020でTAIに設定される。一方、画像形成領域AIに分類されなかった加熱領域A、Aの制御温度は、式4を利用して算出される。式4に、T=185℃、TAI=198℃、m=3、n=1を代入すると、加熱領域Aの制御温度TGTは、
 TGT=(3・185-1・198)/(3-1)=178
と算出される。TGTについてもTGTと同様にTGT=178℃と算出される。
 図10Bは、具体例において最終的に決定された加熱領域A~Aの制御温度を示す図であり、最終的な制御温度は細実線で示されている。図10Bにおいて、第一の領域と第二の領域それぞれの領域における制御温度の平均値T、Tが太実線示されており、制御温度はTおよびTが等しくなるように設定される。
 尚、本実施例において、第一の領域の制御温度の平均値Tと第二の領域の平均値Tが等しくなるように、つまり、T=Tとなるように制御温度を設定したが、必ずしもT=Tとなるように制御温度を設定しなければいけない訳ではない。第一の領域の制御温度の平均値Tと第二の領域の平均値Tが等しくなくても、温度左右差ΔTLR=T-Tが-Ta~Taの範囲内であれば、定着フィルムの寄り力を許容範囲内に収めることができる。例えば、第一の領域の制御温度の平均値Tを、図10Aにおいて点線枠のブロック矢印で示した温度、つまり、温度左右差の許容限界値になるように設定してもよい。このとき、最終的に決定された加熱領域A~Aの制御温度は、図10Cの細実線で示される値に設定される。
 以上のようなフローにしたがって制御温度TGTが設定される。
 次に、本実施例の効果を確認するために、比較例の温度制御を用いた場合と本実施例の温度制御を用いた場合とで、定着フィルム202に働く寄り力と定着装置の消費電力の比較を行った結果について説明する。比較例としては、記録材上の画像の有無に応じて、各発熱ブロックを選択的に発熱制御する比較例1と長手方向の温度分布がフラットになるようにヒータを発熱させる比較例2を用いる。
 まず、比較例1の制御温度TGTの設定方法について説明する。
 比較例1において、制御温度TGTは、加熱領域Aの分類に基づいて設定される。加熱領域Aの分類は、本実施例と同様に画像形成範囲の情報に基づいて行われ、加熱領域Aが画像形成範囲を通過するかによって判断される。画像形成範囲の場合は加熱領域Aを画像形成領域AIと分類し、画像範囲でない場合は加熱領域Aを非画像形成領域APと分類する。そして、加熱領域Aが画像形成領域AIと分類された場合は、制御温度TGTをTGT=TAIに設定し、加熱領域Aが画像形成領域APと分類された場合は、制御温度TGTをTGT=TAPに設定する。
 比較例2の制御温度TGTの設定は、全加熱領域の制御温度をTGT=TAPとなるように設定し、ヒータの長手方向の温度分布をフラットにさせる。
 本実施例の効果確認は、比較例、本実施例それぞれの温度制御を用いた際のプリント中の定着フィルム202の寄り力を測定することで行った。定着フィルム202の寄り力測定は、前述した実験と同様に、定着フランジ213の端部に圧力を検知するロードセルを装着することで行った。また、プリントする際の条件としては、比較例、本実施例とも、定着装置の寿命を15万枚として、LETTERサイズ紙を連続プリントした。そして、プリントする画像としては、図6Aに示される画像を用意し、比較例および本実施例それぞれにおいて、当該画像を連続プリントした。尚、比較例における制御温度は図10Aの細実線で示されるように設定され、本実施例における制御温度は図10Bの細実線で示されるように設定される。
 表2は効果確認の結果を示した表であり、各画像を連続プリントした時の制御温度、プリント中の寄り力の平均値、寿命到達率、省電力性を示している。ここで、寿命到達率とは定着装置の寿命に対して、定着フィルム破損を発生させることなく何枚通紙できたかを示す指標である。また、省電力性とは比較例2の消費電力を100%としたときに、消費電力を何%削減できたかをマイナスの符号を付けて表したものである。
(表2)
Figure JPOXMLDOC01-appb-I000002
 これらの結果より、比較例1は省電力性が最も優れている一方で定着装置の寿命到達率は90%となり、定着装置を低寿命化させてしまうことがわかる。また、比較例2は定着装置の寿命到達率は100%であるが、省電力性は劣ることがわかる。
 一方、本実施例は、省電力化を達成しつつ、定着装置の寿命到達率100%を達成することが可能となる。
 以上で説明したように、本実施例のヒータの温度制御を導入することで、省電力化を図りつつ、フィルムの寄り移動に起因するフィルム破損の発生を抑制し、定着装置の長寿命化を図ることが可能になる。
 尚、本実施例では、第一の領域の制御温度の平均値Tと第二の領域の制御温度の平均値Tを、T´およびT´のうち大きい方の値に合わせるように制御温度を決定したが、これに限定されない。T´およびT´のうち小さい方の値に合わせるように制御温度を決定してもよい。
 この場合の制御温度の決定方法についても、上述の具体例を用いて説明する。
 図11Aは、具体例における加熱領域A~Aの仮の制御温度TGT´を示す図であり、仮の制御温度は図11Aの細実線のように設定されている。具体例において、T´=171℃、T´=185℃であり、図11Aにおいて太実線で示される。ここで、T´はT´より小さいので、第二の領域の制御温度の平均値Tを図11Aにおいて実線枠のブロック矢印で示した温度T´と同じ温度になるように設定する。そうすると、最終的に決定された加熱領域A~Aの制御温度は、図11Bの細実線のように設定される。図11Bにおいて、太実線で示される第一の領域および第二の領域の制御温度の平均値T、Tは互いに等しくなるように設定される。
 ここでも、第一の領域の制御温度の平均値Tと第二の領域の平均値Tが等しくなるように、つまり、T=Tとなるように制御温度を設定したが、必ずしもT=Tとなるように制御温度を設定しなければいけない訳ではない。第一の領域の制御温度の平均値Tと第二の領域の平均値Tが等しくなくても、温度左右差ΔTLR=T-Tが-Ta~Taの範囲内であれば、定着フィルムの寄り力を許容範囲内に収めることができる。第二の領域の制御温度の平均値Tを、図11Aにおいて点線枠のブロック矢印で示した温度、つまり、温度左右差の許容限界値になるように設定してもよい。このとき、最終的に決定された加熱領域A~Aの制御温度は、図11Cの細実線で示される値に設定される。
 このように制御温度を決定する場合は、図9のフローチャートにおいて、S1013以降のステップを図12のフローチャートに置き換えたフローにしたがって制御温度を決定すればよい。
 上述した制御温度の決定方法の他にも、第一の領域の制御温度の平均値Tと第二の領域の制御温度の平均値Tを、全領域(複数の加熱領域の全体)の仮の制御温度の平均値TALLに合わせるように制御温度を決定してもよい。
 この場合の制御温度の決定方法についても、上述の具体例を用いて説明する。
 図13Aは、具体例における加熱領域A~Aの仮の制御温度TGT´を示す図であり、仮の制御温度は図13Aの細実線のように設定されて、第一および第二領域における仮の制御温度の平均値T´、T´は太実線で示される。また、具体例において、第一の領域および第二の領域を合わせた全領域の仮の制御温度の平均値TALLは、図13Aにおいて太点線で示される。ここで、第一および第二の領域の制御温度の平均値T、Tを図13Aにおいて実線枠のブロック矢印で示した温度TALLになるように設定する。そうすると、最終的に決定された加熱領域A~Aの制御温度は図13Bの細実線のように設定される。
 このように制御温度を決定する場合は、図9のフローチャートにおいて、S1013以降のステップを図14のフローチャートにおけるS1213以降のステップに置き換えたフローにしたがって制御温度を決定すればよい。
 上述のいずれの方法を用いても、ヒータ300の長手方向の温度左右差の発生を抑制でき、この温度左右差に起因するフィルム破損の発生を抑制し、定着装置の長寿命化を図ることが可能になり、省電力性との両立を図ることが可能となる。
(実施例1の変形例)
 本実施例では、制御温度TGTを図10Bのように左右非対称な温度分布になるように設定したが、制御温度TGTは左右対称になるように設定してもよい。
 例えば、図9のフローチャートのS1013以降のフローを次に説明するやり方にしても良い。すなわち、ヒータ300の長手方向の中央を基準にして、対称に位置する加熱領域同士の仮の制御温度を比較し、大きい方の仮の制御温度を両者の制御温度に設定するという方法でもよい。以下に、この方法について具体例を用いて説明する。
 ここでも、具体例として、図6Aのような位置に記録材および画像が存在する場合の制御温度TGTの設定方法について説明する。
 具体例における加熱領域A~Aの仮の制御温度は図10Aの細実線で示されるようになるが、対称に位置する加熱領域同士の仮の制御温度TGT1´とTGT7´、TGT2´とTGT6´、TGT3´とTGT5´、をそれぞれ比較する。TGT1´とTGT7´の比較においては、TGT1´=TGT7´となるので、制御温度はTGT1=TGT7=158℃に設定される。TGT2´とTGT6´の比較においては、TGT2´<TGT6´となるので、制御温度はTGT2=TGT6=198℃に設定される。TGT3´とTGT5´の比較においては、TGT3´=TGT5´となるので、制御温度はTGT3=TGT5=198℃に設定される。
 図15は、最終的に決定された加熱領域A~Aの制御温度を示す図であるが、上記のような方法を用いて、図15のように左右対称な温度分布になるように制御温度が設定される。
 上記のような方法を用いても、ヒータ300の長手方向の温度左右差の発生を抑制でき、この温度左右差に起因するフィルム破損の発生を抑制し、定着装置の長寿命化を図ることが可能になり、省電力性と両立させることができる。
[実施例2]
 本発明の実施例2について説明する。実施例2の画像形成装置および像加熱装置の基本的な構成および動作は、実施例1のものと同じである。従って、実施例1と同一、またはそれに相当する機能、構成を有する要素には同一符号を付して詳しい説明は省略する。実施例2において特に説明しない事項は、実施例1と同様である。
 図16Aは、本実施例において、記録材を搬送方向に画像区間と非画像区間とに区分けした具体例を示した図である。具体例においては、記録材PはLETTERサイズであり、先行紙と後続紙の間の区間、いわゆる紙間を区間Tとしている。ここで、画像区間とは、区間T~区間Tの中で、加熱領域A~Aのうち少なくともどれか1つの加熱領域が画像形成領域AIである区間のことをいい、具体例においては区間T、区間T、区間Tが画像区間である。また、区間T~区間Tの中で、加熱領域A~Aの全ての加熱領域が非画像形成領域APである区間を非画像区間と呼び、具体例においては、区間T、区間Tが非画像区間である。また、区間Tおよび紙間が定着ニップNを通過するのに要する時間をt、tとすると、t=0.24sであり、t=0.52sである。
 実施例1では、画像区間において、ヒータ300の長手方向の左右の発熱量が均等になるように発熱分布を制御し、定着フィルムの破損を抑制した。
 一方、実施例2では、画像区間においては、画像形成領域AIと分類された加熱領域では制御温度TAIで温度制御し、非画像形成領域APと分類された加熱領域では制御温度TAPで温度制御する。したがって、ある画像区間における画像形成領域が長手方向で非対称であれば、その画像区間におけるヒータ300の長手方向の発熱分布が左右非対称になり得る。そのため、この左右非対称な発熱分布により、定着フィルムは発熱量が大きい側へ寄り移動する。そこで、非画像区間では、画像区間で発生した定着フィルムの寄り移動の方向とは逆の方向に定着フィルムが寄り移動するようにヒータ300の発熱分布を制御する。本実施例では、このようにして画像区間と非画像区間における定着フィルムの寄り移動を互いにキャンセルし、寄り移動に起因する定着フィルムの破損を抑制する。
 図16Aに示す位置に記録材および画像が存在する場合を具体例として用いて、本実施例におけるヒータ300の制御温度の設定方法について説明する。本実施例では、まず、画像区間における加熱領域Aの制御温度TGTを設定する。画像区間における制御温度TGTは、加熱領域Aの分類に基づいて設定される。加熱領域Aが画像形成領域AIと分類された場合は、TGT=TAIに設定し、加熱領域Aが画像形成領域APと分類された場合は、TGT=TAPに設定する。
 具体例においては区間T~Tが画像区間に対応する。この画像区間T~Tにおいて、加熱領域Aは図16Bのように分類される。したがって、具体例における画像区間の制御温度は図17Aのように設定される。
 次に、画像区間において、各加熱領域Aの制御温度TGTの区間平均値を算出する。ここで、区間平均値とは、加熱領域A毎に各区間の制御温度TGTを平均した値のことである。図16Cは、画像区間における加熱領域A毎の制御温度の区間平均値を表した図であり、制御温度の区間平均値は細実線で示されている。また、図16Cにおいて、画像区間における第一の領域の制御温度の平均値Tおよび第二の領域の平均値Tは太実線で示されている。これにより、画像区間において、ヒータ300の長手方向の温度分布に左右差が生じていることがわかる。本実施例では、この画像区間における温度分布の左右差を非画像区間でキャンセルするように非画像区間の制御温度を決定し、全区間T~TにおけるTおよびTが等しくなるようにする。尚、本実施例では、第二の領域の制御温度の平均値Tが第一の領域の平均値Tに近づくように非画像区間の制御温度を決定する。
 図16Dは、具体例において、区間T~Tにおける加熱領域A毎の制御温度の区間平均値を表した図であり、図16Eは区間T~Tにおける加熱領域A毎の制御温度の区間平均値を表した図である。図16D、図16Eそれぞれにおいて、第一の領域の制御温度の平均値Tおよび第二の領域の平均値Tは太実線で示されている。これらの図から、非画像区間T、Tを経ることで、Tは徐々にTに近づき、ヒータ300の長手方向の温度分布の左右差が解消されることがわかる。
 このとき、非画像区間の制御温度は図17Bのように設定されている。
 尚、本実施例において、区間T~Tにおける第一の領域の制御温度の平均値Tと第二の領域の平均値Tが等しくなるように、つまり、T=Tとなるように制御温度を設定した。しかしながら、必ずしもT=Tとなるように制御温度を設定しなければいけない訳ではない。例えば、第一の領域の制御温度の平均値Tを、図16Cにおいて太点線で示した温度、つまり、温度左右差の許容限界値になるように非画像区間の制御温度を設定してもよい。
 以上のように制御温度を設定することで、画像区間におけるヒータ300の長手方向の温度左右差を非画像区間でキャンセルすることができる。これにより、非画像区間では、画像区間で発生した定着フィルムの寄り移動とは逆の方向へ定着フィルムを寄り移動させることができる。その結果、画像区間と非画像区間における定着フィルムの寄り移動を互いにキャンセルさせることができ、寄り移動に起因する定着フィルムの破損を抑制することが可能となる。また、実施例1と同等の省電力性を得ることが可能である。
 ところで、本実施例では、区間T~Tにおける第二の領域の制御温度の平均値Tを画像区間における第一の領域の制御温度の平均値Tに合わせるように非画像区間の制御温度を決定したが、これに限定されるものではない。区間T~TにおけるTを画像区間におけるTに合わせるように制御温度を決定してもよい。
 また、画像区間における第一の領域および第二の領域を合わせた全領域の制御温度の平均値をTALLとして、区間T~Tにおける第一および第二の領域の制御温度の平均値T、TをTALLになるように非画像区間の制御温度を設定してもよい。
 また、本実施例では、記録材を1枚プリントする中で、画像区間と非画像区間におけるヒータの長手方向の左右の発熱量の区間平均値が均等になるように発熱分布を制御したが、これに限定されるものではない。例えば、連続プリント中の複数枚を1セットとして区切って、1セット毎にヒータ左右の発熱量の区間平均値が均等になるように発熱分布を制御してもよい。
 図18Aは、LETTERサイズの記録材を連続プリント(複数の記録材にそれぞれ形成された複数の画像を連続的に加熱)した際の連続する3枚を抜き出して記載してあり、1枚毎に左右対称な画像が交互に連続プリントされる様子を示している。この場合、図18Aのように連続する2枚を1セットとして、1セット中の画像区間における第一の領域および第二の領域の制御温度の平均値T、Tを算出する。図18Bは、1枚目および2枚目を1セットとしたときの画像区間における制御温度の区間平均値を示した図であり、区間平均値を細実線、第一の領域および第二の領域の平均値T、Tを太実線で示している。図18Bに示すようにT=Tとなり、1セット中の画像区間における温度左右差はない。したがって、この場合、非画像区間において、画像区間における温度左右差をキャンセルする必要はない。このように複数枚に渡る画像区間の温度左右差を考慮することによって、非画像区間における余分な発熱を抑制することが可能になる。
 また、本実施例では、画像区間におけるヒータの長手方向の温度左右差を非画像区間のみでキャンセルしたが、非画像区間と紙間を合わせた区間で画像区間における温度左右差をキャンセルしてもよい。
 上述のいずれの方法を用いても、画像区間におけるヒータ300の長手方向の温度左右差を非画像区間でキャンセルすることが可能であり、寄り移動に起因する定着フィルムの破損を抑制しつつ、省電力性を得ることが可能となる。
[実施例3]
 本発明の実施例3について説明する。実施例1の画像形成装置および像加熱装置の基本的な構成および動作は、実施例1のものと同じである。従って、実施例1と同一、又はそれに相当する機能、構成を有する要素には同一符号を付して詳しい説明は省略する。実施例3において特に説明しない事項は、実施例1と同様である。
 図19Aは、本実施例における加熱領域A~Aと、記録材Pの紙幅とを対比した図である。図19Aにおいては、記録材PはA5サイズ紙(148.5mm×210mm)であり、記録材の端部位置に該当する加熱領域A、Aでは1つの発熱ブロックの中で通紙部と非通紙部S、Sができる。そして、図19Aに示すように、加熱領域A、Aには、温度検知手段として、それぞれ温度制御用のサーミスタTH3-1、TH4-1と、非通紙部昇温検知用のサーミスタTH3-2、TH4-2が配置されている。また、図19Aに示すように画像は非対称に形成されているが、各加熱領域の制御温度は図19Bに示すように対称な発熱分布になるように設定される。
 本実施例のような像加熱装置を用いて図19Aに示すような記録材および画像を連続プリントすると、紙が通過しない非通紙部SおよびSでは非通紙部昇温が発生する。そのため、1つの加熱領域の中でも長手方向に温度差が生じる。また、加熱領域Aと加熱領域Aとは制御目標温度は同じであるが、加熱領域Aにはトナー画像が形成されている。そのため、ヒータを制御温度に保つためにはトナーの熱容量の分だけ、加熱領域Aを加熱するための発熱ブロックへ供給する電力量を、加熱領域Aを加熱するための発熱ブロックへ供給する電力量よりも大きくする必要がある。したがって、加熱領域Aの非通紙部Sの昇温の方が加熱領域Aの非通紙部Sの昇温よりも大きくなり、非通紙部昇温に左右差が生じる。
 図20は、上述した連続プリントにおける100枚プリント時点のヒータの長手温度分布を示した図であり、細実線で示してある。図20より、非通紙部Sの温度は非通紙部Sの温度よりも30℃大きくなっていることがわかる。尚、本実施例では、非通紙部昇温の左右差は、非通紙部昇温検知用のサーミスタTH3-2、TH4-2によって検知される。この温度左右差により、非通紙部昇温が大きい側へ定着フィルムの寄り移動が発生し、定着フィルムが定着フランジの規制面に突き当たり、定着フィルム端部の削れなどにより像加熱装置を低寿命化させる可能性がある。
 本実施例では、このような非通紙部昇温の左右差に起因する像加熱装置の低寿命化を抑制するために、非通紙部昇温の温度左右差とは温度の大小が逆の関係になるように、記録材の端部位置より外側に位置する加熱領域のヒータ温度を制御する。そして、第一の領域および第二の領域の制御温度の平均値が互いに同等の値になるようにして、定着フィルムの寄り移動を抑制する。
 非通紙部昇温による温度左右差をΔTとすると、100枚プリント時点のΔTの値は図20より、ΔT=30℃である。本実施例では、非通紙部昇温による温度左右差ΔTを解消するために、加熱領域Aの制御温度TGTを、図20の太実線で示されるようにTだけ下げた値に設定する。ここで、Tは以下の式のように、非通紙部の長さSまたはSと加熱領域Aの長さLの比に非通紙部昇温による温度左右差ΔTを掛けて算出される。
 T=ΔT×S/L …(式5)
 本実施例において、ΔT=30℃、S=4.25mm、L=31.4mmなので、T=4℃と算出される。尚、本実施例において、Sの長さは、記録材Pの紙幅と加熱領域A~Aの長さを用いて算出される。
 以上のように、記録材の端部位置より外側に位置する加熱領域Aの制御温度TGTをTだけ下げることで、非通紙部昇温による温度左右差を解消し、第一の領域および第二の領域の制御温度の平均値が互いに同等の値にすることが可能となる。これにより、定着フィルムの寄り移動を抑制し、像加熱装置を高寿命化させることが可能となる。
 尚、本実施例では、加熱領域Aの制御温度TGTをTだけ下げることで、非通紙部昇温による温度左右差を解消したが、その代わりに、加熱領域Aの制御温度TGTを図20の太点線で示されるようにTだけ上げた値に設定してもよい。このように制御温度を設定しても、第一の領域および第二の領域の制御温度の平均値が互いに同等の値にすることが可能である。
[実施例4]
 本発明の実施例4について説明する。実施例3の画像形成装置および像加熱装置の基本的な構成および動作は、実施例1のものと同じである。従って、実施例1と同一、又はそれに相当する機能、構成を有する要素には同一符号を付して詳しい説明は省略する。実施例4において特に説明しない事項は、実施例1と同様である。
 本実施例のような構成においては、発熱ブロック毎に発熱量を変更することができるので、ヒータ300の長手方向の発熱分布を様々な分布にすることが可能である。図21Aは、ヒータ300の長手方向の発熱分布を模式的に示した図であるが、図21Aのように、ヒータ300の長手方向の発熱分布を中央部の発熱量が大きくなるような発熱分布(以下、中央高)にすることも可能である。このように、ヒータ300の長手方向の発熱分布を中央高にすると、定着フィルムの両端部から中央へ向かう中央寄り力が発生する。
 この中央寄り力が発生する原因について、図21A、図21Bを用いて説明する。図21Bは、定着装置200を記録材の搬送方向と平行な面に垂直な方向から見た図であり、定着フィルム202に中央寄り力が働いている状態を模式的に示している。図21Aのようなヒータ300の中央高の発熱分布は、加圧ローラ208の長手方向に中央高の温度分布を生じさせる。この中央高の温度分布は、加圧ローラの弾性層の熱膨張差を生じさせ、加圧ローラ外径は高温である中央部の加熱領域A~Aの方が端部の加熱領域A、AおよびA、Aよりも大きくなる。このため、加圧ローラによる定着フィルムの送り量には、図21Bのブロック矢印に示されるように中央・端部差が生じ、高温部の定着フィルムの送り量は低温部の定着フィルムの送り量よりも大きくなる。この定着フィルムの送り量の差により、定着フィルムの中央部が両端部よりも搬送方向の下流側へ押し出され、定着フィルムが弓なり形状に変形する。すなわち、定着フィルム中央からA側半分の領域においては、加圧ローラ208の母線と定着フィルム202の母線との間に交差角θが生じる。定着フィルム202は、A側半分の領域で加圧ローラ208の回転により力Fを受けている。そのため、交差角θが生じたことにより、力Fは、定着フィルム202の母線方向FL1=F・sinθと、それに直交する方向FL2=F・cosθに分解される。そして、この力FL1は定着フィルム202の中央へ向かう力なので、定着フィルム202には端部から中央へ向かう寄り移動が発生することになる。また、定着フィルム中央からA側半分の領域においても同様に、加圧ローラ208の母線と定着フィルム202の母線との間に交差角θが生じ、加圧ローラ208の回転により力Fを受ける。そのため、この領域においても、定着フィルムにはFR1=F・sinθの中央への寄り力が発生する。これら、定着フィルムの両端部から中央へ向かう力FL1およびFR1を合わせた力F=FL1+FR1が中央寄り力であり、上述のようなメカニズムにより中央寄り力は発生する。
 定着フィルムがこのような中央寄り力による負荷を継続的に受けると、定着フィルムの中央部に皺が発生して定着フィルム破損が引き起こされ、像加熱装置の寿命を低寿命化させる可能性がある。
 ここで、本発明者はヒータ300の長手方向の温度の中央・端部差がある温度差以上になると、定着フィルム202の中央寄り力が破損限界を上回り、定着フィルムの中央部に皺が発生し、定着フィルムが破損することを見出した。以下に、中央寄り力とヒータ300の長手方向の中央・端部温度差との関係、および、定着フィルム破損を引き起こす際の中央寄り力の閾値を調べるために実施した実験の結果を記す。
 実験は、以下の手順で行った。
 定着装置の温度が室温と同じであることを確認した後、LETTERサイズ紙100枚を1セットとし連続プリントする。定着装置は発熱ブロック毎に設定される制御温度TGT(i=1~7)を様々に設定することが可能なので、ヒータ300の長手方向の温度分布も様々に設定することが可能である。表3は本実験におけるヒータ300の各加熱領域の制御温度の条件を示した表である。本実験では、表3に示すようにヒータ300の長手方向の温度分布を7通り設定して、各温度分布において1セットずつ連続プリントを行った。尚、連続プリント中は、通紙中、紙間に関わらず制御温度は一定になるように設定した。
(表3)
Figure JPOXMLDOC01-appb-I000003
 本実験においては、中央寄り力を算出するために、図21Aのように加熱領域を4領域(領域LL、領域LR、領域RL、領域RR)に分けて考える。そして、第一の領域としての領域LLの制御温度の平均温度をTLL、第二の領域としての領域RRの平均温度をTRR、第三の領域としての領域LRおよび領域RLの平均温度をそれぞれTLR、TRLとする。
 図21Aのようにヒータを中央高の発熱分布にした場合、TLR-TLLの温度差で定着フィルムに中央への寄り力FL1が発生し、TRL-TRRの温度差で中央への寄り力FR1が発生する。これらの寄り力の合計が定着フィルムに発生する中央寄り力Fとなる。
 ここで、平均温度の差分としての、温度差TLR-TLLと温度差TRL-TRRの合計温度差を中央端部温度差と呼称し、Tで表すと、中央寄り力FはTを用いて算出することができる。すなわち、図8Cに示される定着フィルムの寄り力とヒータの温度左右差ΔTLRの関係から得られる直線近似式を用いて、ΔTLRをTに置き換えることで中央寄り力Fを算出することができる。
 図22は、表3で示した条件で通紙した際の中央寄り力Fと中央端部温度差Tとの関係を示した図であり、定着フィルムが中央寄り力により破損した条件を×、破損しなかった条件を○でプロットした図である。
 図22に示されるように、本実験では、定着フィルムの中央寄り力が大きくなると定着フィルムが破損し、破損限界は15Nであることを明らかにした。また、中央寄り力が15Nを超える時の中央端部温度差はT=94℃であるため、中央寄り力による定着フィルムの破損を抑制するためには、中央端部温度差Tは94℃より小さい値にする必要があることが明らかになった。
 本実施例では上述したように中央端部温度差Tが、所定の閾値としての破損限界温度94℃を下回るように制御温度を決定することで、省電力性を保ちつつ、中央寄りによる定着フィルム破損を抑制し、可能な限り定着装置の寿命を高寿命化させる。
 本実施例における各発熱ブロックの制御温度TGTの設定方法について説明する。
 ここでは、図23Aのような位置に記録材および画像が存在していた場合の区間T~Tにおける制御温度TGTの設定方法を例に用いて説明する。
 本実施例では、まず、画像形成領域に該当する加熱領域Aの制御温度TGTを設定する。図23Bは画像情報に基づいて加熱領域Aを分類した結果を示した図であるが、本実施例では、画像形成領域AIと分類された加熱領域Aの制御温度TGTはTGT=TAIに設定する。
 一方、非画像形成領域APと分類された加熱領域Aの制御温度TGTは、中央端部温度差を、上述の破損限界温度に対して10℃余裕をもった値としてT=84℃となるように設定する。尚、非画像形成領域の制御温度を決定する際の中央端部温度差はT=84℃に限定されるものではない。定着フィルムの強度によって破損限界温度は異なるので、破損限界温度に応じて、中央端部温度差を適宜設定すべきである。
 図24は、本実施例において最終的に決定された加熱領域A~Aの制御温度を示す図であり、画像形成領域における制御温度を細実線、非画像形成領域の制御温度を太実線で示されている。図24に示すように、領域LRと領域LLの温度差TLR-TLLおよび領域RLと領域RRの温度差TRL-TRRが42℃となるように非画像領域の制御温度は設定される。尚、図24において、非画像形成領域の制御温度を太点線以下の値に設定すると、中央端部温度差TCが破損限界温度を上回り、定着フィルムの中央寄りによる破損が発生する。
 上記のように非画像形成領域における制御温度を設定することで、定着フィルムの中央端部温度差に起因する定着フィルム破損による像加熱装置の低寿命化を抑制しつつ、非画像形成領域の温度を可能な限り下げることで省電力化を図ることが可能になる。
 上記各実施例及び変形例は、それぞれの構成を可能な限り互いに組み合わせることができる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2018年9月13日提出の日本国特許出願特願2018-171692を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
 100…画像形成装置、113…制御部、120…ビデオコントローラ(取得部)、200…定着装置(像加熱装置)、202…定着フィルム、300…ヒータ、302a-1~302a-7、302b-1~302b-7…発熱体、A~A…加熱領域

Claims (12)

  1.  記録材の搬送方向に直交する方向に並ぶ複数の発熱体を有するヒータと、
     前記複数の発熱体へ供給する電力を個々に制御することで、前記複数の発熱体により加熱される複数の加熱領域の温度を個々に制御可能な制御部と、
     記録材に形成される画像の情報を取得する取得部と、
    を有し、
     前記ヒータの熱によって記録材に形成された画像を加熱する像加熱装置において、
     前記制御部は、
     前記複数の加熱領域のうち、前記搬送方向に直交する方向の中央の加熱領域よりも一端側の第一の領域に含まれる加熱領域の制御目標温度の平均値である第一の平均温度と、前記中央の加熱領域よりも他端側の第二の領域に含まれる加熱領域の制御目標温度の平均値である第二の平均温度と、が所定の温度範囲に収まるように、前記複数の発熱体への電力供給を制御することを特徴とする像加熱装置。
  2.  前記制御部は、前記複数の加熱領域のうち前記画像が通過しない非画像加熱領域の制御目標温度を予め設定された温度から変更することで、前記第一の平均温度と前記第二の平均温度とを前記所定の温度範囲に収めることを特徴とする請求項1に記載の像加熱装置。
  3.  前記制御部は、前記第一の領域に含まれる前記非画像加熱領域と前記第二の領域に含まれる前記非画像加熱領域のうちのいずれか一方の制御目標温度を、前記予め設定された温度から変更することを特徴とする請求項2に記載の像加熱装置。
  4.  前記制御部は、前記第一の平均温度と前記第二の平均温度が同じ値となるように、前記複数の発熱体への電力供給を制御することを特徴とする請求項1~3のいずれか1項に記載の像加熱装置。
  5.  前記第一の平均温度及び前記第二の平均温度は、前記複数の加熱領域のうち、前記画像が通過する画像加熱領域の制御目標温度を予め設定された温度とし、前記画像が通過しない非画像加熱領域の制御目標温度を予め設定された温度としたときの、前記複数の加熱領域の全体における制御目標温度の平均値と同じ値であることを特徴とする請求項4に記載の像加熱装置。
  6.  前記制御部は、
     前記記録材を、前記搬送方向に、前記画像が形成される領域である画像区間と、前記画像が形成されない領域である非画像区間と、に区分けし、
     前記複数の加熱領域が前記非画像区間を加熱する際の個々の加熱領域の制御目標温度を、前記画像区間を加熱する際の制御目標温度を含めた前記個々の加熱領域ごとの制御目標温度の平均値による前記第一の平均温度と前記第二の平均温度とが前記所定の温度範囲に収まるように、設定することを特徴とする請求項1~5のいずれか1項に記載の像加熱装置。
  7.  前記制御部は、
     前記記録材を、前記搬送方向に、前記画像が形成される領域である画像区間と、前記画像が形成されない領域である非画像区間と、に区分けし、
     複数の前記記録材にそれぞれ形成された前記画像を、連続的に加熱する場合において、
     複数の前記記録材のうち、先行の記録材の前記画像区間を加熱する際の個々の加熱領域の制御目標温度と、後続の記録材の前記画像区間を加熱する際の個々の加熱領域の制御目標温度と、の間における、前記第一の平均温度と前記第二の平均温度とが前記所定の温度範囲に収まるように、前記複数の発熱体への電力供給を制御することを特徴とする請求項請求項1~5のいずれか1項に記載の像加熱装置。
  8.  前記複数の発熱体ごとの非通紙部の温度を検知する温度検知手段を有し、
     前記制御部は、前記温度検知手段が検知した温度に基づいて、前記複数の発熱体への電力供給を制御することを特徴とする請求項1~7のいずれか1項に記載の像加熱装置。
  9.  内面に前記ヒータが接触する筒状のフィルムと、
     前記フィルムの外面に接触して前記外面との間に記録材を搬送するニップ部を形成する回転駆動される加圧部材と、
    を有し、
     前記所定の温度範囲は、前記複数の加熱領域の前記搬送方向に直交する方向における温度差に起因して発生する、前記フィルムに対して前記搬送方向に直交する方向に作用する力を、所定の許容値に抑えるための温度範囲であることを特徴とする請求項1~8のいずれか1項に記載の像加熱装置。
  10.  記録材の搬送方向に直交する方向に並ぶ複数の発熱体を有するヒータと、
     前記複数の発熱体へ供給する電力を個々に制御することで、前記複数の発熱体により加熱される複数の加熱領域の温度を個々に制御可能な制御部と、
     記録材に形成される画像の情報を取得する取得部と、
    を有し、
     前記ヒータの熱によって記録材に形成された画像を加熱する像加熱装置において、
     前記制御部は、
     前記複数の加熱領域のうち、
      前記搬送方向に直交する方向の中央の加熱領域よりも一端側の第一の領域に含まれる加熱領域の制御目標温度の平均値を第一の平均温度とし、
      前記中央の加熱領域よりも他端側の第二の領域に含まれる加熱領域の制御目標温度の平均値を第二の平均温度とし、
      少なくとも前記中央の加熱領域を含む、前記第一の領域と前記第二の領域との間の第三の領域に含まれる加熱領域の制御目標温度の平均値を第三の平均温度とし、
     前記第三の平均温度≧前記第一の平均温度、および前記第三の平均温度≧前記第二の平均温度の関係を満たし、かつ
     前記第一の平均温度と前記第三の平均温度の差分と、前記第二の平均温度と前記第三の平均温度の差分との合計が、所定の閾値を下回るように、前記複数の発熱体への電力供給を制御することを特徴とする像加熱装置。
  11.  内面に前記ヒータが接触する筒状のフィルムと、
     前記フィルムの外面に接触して前記外面との間に記録材を搬送するニップ部を形成する回転駆動される加圧部材と、
    を有し、
     前記所定の閾値は、前記複数の加熱領域の前記搬送方向に直交する方向における温度差に起因して発生する、前記フィルムに対して前記搬送方向に直交する方向に作用する力を、所定の許容値以内に抑えるための値であることを特徴とする請求項10に記載の像加熱装置。
  12.  記録材に画像を形成する画像形成部と、
     記録材に形成された画像を記録材に定着する定着部と、
    を有する画像形成装置において、
     前記定着部が請求項1~11のいずれか1項に記載の像加熱装置であることを特徴とする画像形成装置。
PCT/JP2019/035954 2018-09-13 2019-09-12 像加熱装置及び画像形成装置 WO2020054814A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980060113.1A CN112703454B (zh) 2018-09-13 2019-09-12 图像加热设备和图像形成装置
EP19860119.7A EP3851917B1 (en) 2018-09-13 2019-09-12 Image heating device and image formation device
KR1020217010737A KR102615463B1 (ko) 2018-09-13 2019-09-12 상 가열 장치 및 화상 형성 장치
US17/201,217 US11493865B2 (en) 2018-09-13 2021-03-15 Image heating device and image forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018171692A JP2020042240A (ja) 2018-09-13 2018-09-13 像加熱装置及び画像形成装置
JP2018-171692 2018-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/201,217 Continuation US11493865B2 (en) 2018-09-13 2021-03-15 Image heating device and image forming apparatus

Publications (1)

Publication Number Publication Date
WO2020054814A1 true WO2020054814A1 (ja) 2020-03-19

Family

ID=69777075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035954 WO2020054814A1 (ja) 2018-09-13 2019-09-12 像加熱装置及び画像形成装置

Country Status (6)

Country Link
US (1) US11493865B2 (ja)
EP (1) EP3851917B1 (ja)
JP (1) JP2020042240A (ja)
KR (1) KR102615463B1 (ja)
CN (1) CN112703454B (ja)
WO (1) WO2020054814A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023100425A (ja) 2022-01-06 2023-07-19 東芝テック株式会社 温度制御装置及び、その温度制御装置を備える画像形成装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444075B2 (ja) 1984-10-03 1992-07-20 Taisei Corp
JPH0695540B2 (ja) 1985-12-16 1994-11-24 住友電気工業株式会社 半導体装置の結線用導体
US20060115305A1 (en) * 2004-11-30 2006-06-01 Xerox Corporation Improved xerography methods and systems
JP2014059508A (ja) 2012-09-19 2014-04-03 Canon Inc ヒータ及びこのヒータを搭載する像加熱装置
JP2018004940A (ja) * 2016-07-01 2018-01-11 キヤノン株式会社 像加熱装置及び画像形成装置
JP2018124476A (ja) * 2017-02-02 2018-08-09 キヤノン株式会社 定着装置および画像形成装置
JP2018171692A (ja) 2017-03-31 2018-11-08 日立造船株式会社 電解加工器具及び電解加工装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2884714B2 (ja) 1990-06-11 1999-04-19 キヤノン株式会社 像加熱装置
JPH0695540A (ja) 1992-09-11 1994-04-08 Canon Inc 加熱装置及び画像形成装置
US7177563B2 (en) * 2004-09-21 2007-02-13 Kabushiki Kaisha Toshiba Apparatus for fixing toner on transferred material
JP6047856B2 (ja) * 2013-02-07 2016-12-21 株式会社リコー 定着装置及び画像形成装置
JP2015036771A (ja) * 2013-08-14 2015-02-23 株式会社リコー 定着装置および画像形成装置
JP6202936B2 (ja) 2013-08-21 2017-09-27 キヤノン株式会社 画像加熱装置
JP6156234B2 (ja) * 2014-04-03 2017-07-05 コニカミノルタ株式会社 定着装置および画像形成装置
JP6635731B2 (ja) * 2015-09-11 2020-01-29 キヤノン株式会社 像加熱装置
JP6914623B2 (ja) * 2016-07-01 2021-08-04 キヤノン株式会社 画像形成装置及び像加熱装置
JP6833529B2 (ja) * 2017-01-26 2021-02-24 キヤノン株式会社 画像形成装置
JP7301585B2 (ja) * 2019-04-16 2023-07-03 キヤノン株式会社 像加熱装置及び画像形成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444075B2 (ja) 1984-10-03 1992-07-20 Taisei Corp
JPH0695540B2 (ja) 1985-12-16 1994-11-24 住友電気工業株式会社 半導体装置の結線用導体
US20060115305A1 (en) * 2004-11-30 2006-06-01 Xerox Corporation Improved xerography methods and systems
JP2014059508A (ja) 2012-09-19 2014-04-03 Canon Inc ヒータ及びこのヒータを搭載する像加熱装置
JP2018004940A (ja) * 2016-07-01 2018-01-11 キヤノン株式会社 像加熱装置及び画像形成装置
JP2018124476A (ja) * 2017-02-02 2018-08-09 キヤノン株式会社 定着装置および画像形成装置
JP2018171692A (ja) 2017-03-31 2018-11-08 日立造船株式会社 電解加工器具及び電解加工装置

Also Published As

Publication number Publication date
EP3851917A4 (en) 2022-06-08
CN112703454A (zh) 2021-04-23
KR20210056418A (ko) 2021-05-18
EP3851917B1 (en) 2024-08-28
EP3851917A1 (en) 2021-07-21
CN112703454B (zh) 2023-11-14
US11493865B2 (en) 2022-11-08
JP2020042240A (ja) 2020-03-19
KR102615463B1 (ko) 2023-12-19
US20210200123A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
CN107664943B (zh) 图像加热装置和图像形成装置
JP6271899B2 (ja) 画像加熱装置および画像形成装置
US10915046B2 (en) Image heating apparatus and image forming apparatus
JP7086691B2 (ja) 像加熱装置及び画像形成装置
JP6827726B2 (ja) 画像形成装置
JP2013037056A (ja) 像加熱装置
JP7301585B2 (ja) 像加熱装置及び画像形成装置
KR102575264B1 (ko) 상 가열 장치 및 화상 형성 장치
JP2015129792A (ja) 画像形成装置
US20190187594A1 (en) Fixing device
JP2009145386A (ja) 画像形成装置
CN110501890B (zh) 图像加热装置
WO2020054814A1 (ja) 像加熱装置及び画像形成装置
JP2019056814A (ja) 画像形成装置および定着装置
CN110083036B (zh) 图像加热装置和图像形成装置
JP7277230B2 (ja) 像加熱装置
JP2020034621A (ja) 像加熱装置及び画像形成装置
JP4585700B2 (ja) 画像形成装置
JP7081006B2 (ja) 像加熱装置及び画像形成装置
US11609519B2 (en) Image heating device and image forming apparatus
JP7471848B2 (ja) 像加熱装置及び画像形成装置
JP2023156013A (ja) 像加熱装置および画像形成装置
US20240053696A1 (en) Image forming apparatus
JP7305400B2 (ja) 像加熱装置及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010737

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019860119

Country of ref document: EP

Effective date: 20210413