WO2020054737A1 - Coated arc welding rod and coated arc welding method - Google Patents

Coated arc welding rod and coated arc welding method Download PDF

Info

Publication number
WO2020054737A1
WO2020054737A1 PCT/JP2019/035593 JP2019035593W WO2020054737A1 WO 2020054737 A1 WO2020054737 A1 WO 2020054737A1 JP 2019035593 W JP2019035593 W JP 2019035593W WO 2020054737 A1 WO2020054737 A1 WO 2020054737A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
total
arc welding
coating agent
welding rod
Prior art date
Application number
PCT/JP2019/035593
Other languages
French (fr)
Japanese (ja)
Inventor
真名 ▲高▼和
栗山 良平
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to RU2021105815A priority Critical patent/RU2764624C1/en
Priority to SG11202102388UA priority patent/SG11202102388UA/en
Priority to MYPI2021001167A priority patent/MY195884A/en
Publication of WO2020054737A1 publication Critical patent/WO2020054737A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/365Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/14Arc welding or cutting making use of insulated electrodes

Definitions

  • the present invention relates to a coated arc welding rod and a coated arc welding method, and more particularly, suppresses arc deflection and maintains good arc stability, thereby enabling droplets to be smoothly transferred,
  • the present invention relates to a covered arc welding rod capable of obtaining improved welding workability, and a covered arc welding method for performing arc welding using the same.
  • Covered arc welding is a covered arc welding rod in which a metal rod (core wire) is provided with a flux or a protective material called a coating agent (sometimes simply referred to as a "welding rod” or a “hand rod”). Is used as an electrode, an arc is generated between the base material and the base material, and the welding rod and the base material are melted by arc heat, thereby joining the objects.
  • Covered arc welding is the simplest welding method that does not require a shielding gas, can be welded outdoors where wind is strong, and is widely used in various manufacturing plants, buildings, ships, vehicles, and the like.
  • the coating material constituting the coated arc welding rod contains raw materials having functions such as a gas generating agent, a slag forming agent, a deoxidizing agent, an alloy additive, an arc stabilizer, and a fixing agent.
  • coated arc welding rods are classified according to the type of coating agent, and include illuminite, high titanium oxide, lime titania, iron powder titanium oxide, high cellulose, low hydrogen, and iron powder low hydrogen. There are various systems.
  • Patent Document 1 As a low hydrogen-based coated arc welding rod, as described in Patent Document 1, the oxygen content in the core wire is limited, and the metal carbonate in the coating agent is limited. There has been proposed a coated arc welding rod in which the contents of iron, metal fluoride, and moisture are appropriately adjusted. Patent Literature 1 describes that by appropriately adjusting the components in the core wire and the coating agent in the coated arc welding rod, it is possible to secure good welding workability without impairing the physical properties of the weld metal. Have been.
  • the present invention suppresses one-side melting and arc deflection, enables smooth transfer of droplets, and has good arc stability, thereby providing excellent welding workability.
  • the purpose is to provide a stick.
  • the covered arc welding rod according to the present invention has the following configuration (1).
  • the coating agent contains at least one of a metal carbonate and a metal fluoride,
  • the total of the content of metal carbonate having a particle size of 75 ⁇ m or more (CO 2 converted value) C CO2 and 75 ⁇ m and the content of the metal fluoride having a particle size of 75 ⁇ m or more (F converted value) CF and 75 ⁇ m are the following: 6.0% by mass or more based on the total mass C coat, total of the coating agent (including the case where at least one of the C CO2 , 75 ⁇ m and the CF, 75 ⁇ m is 0% by mass),
  • On the welding rod tip side after use of the coated arc welding rod And the tip portion of the core wire, the leading edge portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction and D 1, And cutting edge portions of the coating
  • a preferred embodiment of the coated arc welding rod according to the present invention has the following configuration (2) or (3).
  • the covered arc welding rod according to the present invention has the following configuration (4).
  • the coating agent contains at least one of a metal carbonate and a metal fluoride,
  • the total of the content of metal carbonate having a particle size of 75 ⁇ m or more (CO 2 converted value) C CO2 and 75 ⁇ m and the content of the metal fluoride having a particle size of 75 ⁇ m or more (F converted value) CF and 75 ⁇ m are the following: 6.0% by mass or more (including the case where at least one of the CCO2 , 75 ⁇ m and the CF, 75 ⁇ m is 0% by mass) with respect to the total mass Ccoat , total of the coating agent.
  • a preferred embodiment of the coated arc welding rod according to the present invention has the following configurations (5) to (10).
  • (5) In a section perpendicular to the longitudinal direction of the welding rod, The cross-sectional area of the entire coating and S 1, When the circle equivalent diameter of at least one of the total area of said metal carbonate and said metal fluoride is 30 ⁇ m or more was S 2, The ratio of S 2 relative to S 1 (S 2 / S 1) is covered electrode as claimed in any one of the preceding satisfy 0.06 to 0.15 (1) to (4).
  • the coating agent contains, as the metal carbonate, at least one selected from CaCO 3 , BaCO 3 , SrCO 3 , MgCO 3 and MnCO 3 ,
  • the total content of metal carbonate (CO 2 converted value) C CO2 total in the coating agent with respect to the total mass C coat, total of the coating agent satisfies 6.0 mass% or more and 26.0 mass% or less.
  • the coated arc welding rod according to any one of the above (1) to (5).
  • the coating agent contains at least one selected from CaF 2 , BaF 2 , SrF 2 and MgF 2 as the metal fluoride,
  • the total content (F conversion value) CF, total of the metal fluoride in the coating agent with respect to the total mass C coat, total of the coating agent is 15.0% by mass or less (including 0% by mass).
  • the coating agent contains both a metal carbonate and a metal fluoride, In the coating agent, the total content of metal fluorides relative to the total of the total content of metal carbonates (CO 2 converted value) C CO2, total and the total content of metal fluorides (F converted value) CF, total (1) to (7) above , wherein the ratio ( CF, total / ( CCO2, total + CF, total )) of the quantity (F-converted value) CF, total satisfies 0.10 or more and 0.30 or less.
  • a coated arc welding rod according to any one of the preceding claims.
  • the coating agent further contains at least one of Si and a Si compound,
  • the total content of Si and the Si compound (in terms of Si) C Si, total is 6.0% by mass to 9.0% by mass with respect to the total mass C coat, total of the coating agent.
  • the coated arc welding method according to the present invention has the following configuration (11).
  • (11) A covered arc welding method using a covered arc welding rod having a core wire and a coating agent for coating the core wire,
  • the coating agent contains at least one of a metal carbonate and a metal fluoride,
  • the total of the content of metal carbonate having a particle size of 75 ⁇ m or more (CO 2 converted value) C CO2 and 75 ⁇ m and the content of the metal fluoride having a particle size of 75 ⁇ m or more (F converted value) CF and 75 ⁇ m are the following: 6.0% by mass or more (including the case where at least one of the CCO2 , 75 ⁇ m and the CF, 75 ⁇ m is 0% by mass) with respect to the total mass Ccoat , total of the coating agent.
  • Characterized covered arc welding method Characterized covered arc welding method.
  • a preferred embodiment of the covered arc welding method according to the present invention has the following configurations (12) to (15). (12) On the welding rod tip side after using the coated arc welding rod, And the tip portion of the core wire, the leading edge portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction and D 1, And cutting edge portions of the coating remaining on the periphery of the core wire, the rearmost end portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction is D 2 When The D 2 ratio (D 2 / D 1) is arc welding so that 0.40 or less (including 0), shielded metal arc welding method according to (11) for said D 1.
  • D 1 is arc welding so as to satisfy the following 2.2 mm, shielded metal arc welding method according to (12).
  • the ratio of the D 1 to diameter d of the core wire in the covered electrode (D 1 / d) is arc welding so as to satisfy 1.3 or less, according to the above (12) or (13) Covered arc welding method.
  • the particle size is controlled so that a predetermined amount of particles of a suitable size is contained.
  • the coating material is uniformly melted, so that the protective cylinder is uniformly formed during welding, the one-side melting is prevented, and the deflection of the arc is suppressed.
  • the arc stability is better.
  • FIG. 1A is a cross-sectional view illustrating a state of a covered arc welding rod when the deflection of an arc is suppressed during welding.
  • FIG. 1B is a cross-sectional view showing a state of the covered arc welding rod when the deflection of the arc is remarkable during welding.
  • the present inventors pay attention to the particle size (particle size) of the metal carbonate or metal fluoride contained in the coating agent, and can realize smooth droplet transfer and good arc stability. Intensive studies were conducted to obtain a coated arc welding rod. As a result, it has been found that it is effective to adjust the particle size of the metal carbonate or metal fluoride particles so that the particles have a large size.
  • the particle size of the metal carbonate or metal fluoride also affects the shape of the protective cylinder formed during arc welding, thereby maintaining the directivity of the arc, that is, the deflection of the arc. It has been found that by suppressing the above, good arc stability can be obtained. In other words, when the metal carbonate or metal fluoride having a large particle size is contained in the coating agent, the specific surface area becomes small and the coating agent becomes difficult to melt, so that the coating agent is uniformly melted during arc welding. During the welding, the protective cylinder is formed uniformly (for details, refer to the contents described later). For this reason, the arc stability is further improved by maintaining the arc directivity.
  • metal carbonates and metal fluorides are components that can be contained as a gas generating agent in the coating agent, and when a coated arc welding rod is used as an electrode to generate an arc between the coating material and a welding base material, a shielding gas is generated. To prevent entry of oxygen and nitrogen in the atmosphere into the weld metal. If the particle size of the metal carbonate and metal fluoride contained in the coating agent is adjusted to be large, at the tip of the coated arc welding rod (the arc generating point on the welding rod side), the one with the large particle size is completely gaseous. Will stay in one place until it is transformed.
  • the gas is intensively generated in one direction (in the direction of the molten core wire), and the volume expansion of the gas affects, thereby promoting the constriction of the droplet.
  • the shearing force for detaching the droplet such as the electromagnetic pinch force and the surface tension works efficiently, and the droplet can be detached in a small particle state. Further, since the droplets are detached while keeping the detachment cycle stable, arc stability is improved and excellent welding workability can be obtained.
  • the coated arc welding rod according to the present embodiment A coated arc welding rod having a core wire and a coating agent for coating the core wire,
  • the coating agent contains at least one of a metal carbonate and a metal fluoride,
  • the total of the content of metal carbonate having a particle size of 75 ⁇ m or more (CO 2 converted value) C CO2 and 75 ⁇ m and the content of the metal fluoride having a particle size of 75 ⁇ m or more (F converted value) CF and 75 ⁇ m are the following: 6.0% by mass or more based on the total mass C coat, total of the coating agent (including the case where at least one of the C CO2 , 75 ⁇ m and the CF, 75 ⁇ m is 0% by mass),
  • the tip portion of the core wire, the leading edge portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction and D 1 And cutting edge portions of the coating remaining on the periphery of the core wire,
  • a metal carbonate having a particle size of 75 ⁇ m or more is contained in the coating material, or a metal fluoride having a particle size of 75 ⁇ m or more is contained in the coating material, a smooth droplet as described above is obtained.
  • the effect of transition and good arc stability can be obtained.
  • the content of a metal carbonate having a particle size of a predetermined value or more and a content of a metal fluoride having a particle size of a predetermined value or more can also affect smooth droplet transfer and arc stability.
  • the content of metal carbonate or metal fluoride having a particle size of a predetermined value or more is also specified.
  • the total of the content of metal carbonate having a particle size of 75 ⁇ m or more (CO 2 converted value) C CO2 and 75 ⁇ m and the content of the metal fluoride having a particle size of 75 ⁇ m or more (F converted value) CF and 75 ⁇ m are obtained.
  • the amount is 6.0% by mass or more with respect to the total mass C coat and total of the coating agent, the droplet can be smoothly transferred, and the arc stability becomes good, thereby improving the welding workability. The effect of causing this to occur can be sufficiently obtained.
  • the sum of the content of metal carbonate having a particle size of 75 ⁇ m or more (CO 2 converted value) C CO2 and 75 ⁇ m and the content of the metal fluoride having a particle size of 75 ⁇ m or more (F converted value) CF and 75 ⁇ m are given by: If it is too large relative to the total mass C coat, total of the coating agent, there is a concern that the coating agent may have an adverse effect on the coating properties during the manufacturing process, and therefore, the content is not more than 15.0% by mass. Preferably, it is 12.0 mass% or less.
  • the content of the metal carbonate having a particle size of 106 ⁇ m or more (CO 2 converted value) C CO2, 106 ⁇ m is defined as: It is preferable that the sum of the content (F conversion value) CF and 106 ⁇ m of the metal fluoride having a particle size of 106 ⁇ m or more is 5.0% by mass or more based on the total mass C coat and total of the coating agent. On the other hand, the above-mentioned value is preferably 9.0% by mass or less, since there is a concern about an increase in the above-mentioned spatter and an influence on the coatability of the coating agent in the manufacturing process.
  • the content of metal carbonate particle size is 150 ⁇ m or more and (CO 2 conversion value) C CO2,150 ⁇ m, particle size
  • the total of the content (F conversion value) CF and 150 ⁇ m of the metal fluoride of 150 ⁇ m or more is preferably 2.5% by mass or more based on the total mass C coat and total of the coating agent, and is preferably 3.0%. It is more preferred that the content be at least mass%.
  • the above value is preferably 5.0% by mass or less, and more preferably 4.0% by mass or less, since there is a concern that the above-mentioned increase in spatter and the influence on the coating property of the coating agent during the manufacturing process are concerned. More preferably, there is.
  • the metal carbonate and the metal fluoride are contained in the coating agent, but both may be contained.
  • the “granularity” described in the present embodiment is measured using a measuring method according to JIS Z 8801-2006. Further, the particle size (particle size) of the metal carbonate and the metal fluoride contained in the coating agent is generally at most about 600 ⁇ m.
  • the particle size of the metal carbonate and the metal fluoride also affects the shape of the protective cylinder after arc welding. That is, by defining the particle size and the content of the metal carbonate and the metal fluoride, the protection cylinder after the arc welding can be formed in a good shape. As a result, the arc directivity is further improved, and the arc stability is improved.
  • FIG. 1A is a cross-sectional view illustrating a state of a covered arc welding rod when the deflection of an arc is suppressed during welding.
  • the covered arc welding rod 1 has a core wire 2 and a coating agent 3 that covers the core wire 2.
  • the coating agent 3 contains at least one compound selected from metal carbonates and metal fluorides. Then, the sum of the content of metal carbonate having a particle size of 75 ⁇ m or more (CO 2 converted value) C CO2 and 75 ⁇ m and the content of the metal fluoride having a particle size of 75 ⁇ m or more (F converted value) CF and 75 ⁇ m are as follows.
  • the total mass C coat, total of the coating agent is 6.0% by mass or more (including the case where at least one of the C CO2,75 ⁇ m and the CF, 75 ⁇ m is 0% by mass). Defines the components of the coating agent 3.
  • a specific compound contained in the coating agent 3 that is, at least one selected from metal carbonates and metal fluorides
  • the specific surface area of the compound is reduced, and as a result, the compound 3 protrudes more than the tip 2 a of the core wire 2.
  • Melting or softening of the protective cylinder 6, which is a part of the coating agent 3, is difficult to progress, and the protective cylinder 6 tends to remain during arc welding. For this reason, one-side melting of the coating agent 3 is suppressed, and the coating agent 3 is uniformly melted over the entire circumferential direction of the coated arc welding rod 1.
  • the space surrounded by the inner peripheral surface of the protection cylinder 6 approaches a uniform conical shape in a sectional view of the covered arc welding rod.
  • the distance D in the longitudinal direction of the welding rod between the distal end 3a of the protective tube 6 and the distal end portion 2a of the core wire 2 is almost equal at any position, and the dispersion is small. Therefore, the fluctuation of the arc 4 during welding is suppressed, the arc directivity is improved, and the arc stability is improved.
  • the total content of the metal carbonate (the CO 2 conversion value) C CO2 contained in the coating material 3 , Total and the total content of metal fluoride (converted to F) C F, total of the total content of metal fluoride (converted to F) CF, total ⁇ CF, total / (C CO2) , Total + C F, total ) ⁇ is appropriately adjusted, the softening point of the coating material 3 can be increased, so that the shape of the protective cylinder 6 can be maintained uniformly to an appropriate length.
  • the protection cylinder 6 serves as a guide to enhance the directivity of the arc. Thereby, the fluctuation (fluctuation) of the droplet is further suppressed, and good arc stability can be maintained, so that welding workability is improved.
  • FIG. 1B is a cross-sectional view showing a state of the covered arc welding rod when arc deflection is remarkably generated during welding.
  • the coating agent 13 protecting cylinder 16
  • the distance from the leading end 2a of the core wire 2 varies between the leading end 13a and the trailing end 13b.
  • the arc 14 is significantly deflected during welding, and the arc stability is reduced.
  • the distal end portion 2 a of the core wire 2 and the periphery of the core wire 2 are formed.
  • the leading edge portion 13a of the residual to that coating 13 welded (in FIG. 1B, the vertical direction) rod longitudinal distance in the D 1
  • state-of-the-art coating 13 remaining on the periphery of the core wire 2 and section 13a the rearmost end portion 13b of the coating 13 remaining on the periphery of the core wire 2
  • the distance in the welding rod longitudinal direction and D 2 the distance in the welding rod longitudinal direction and D 2.
  • the ratio of D 2 for D 1 (D 2 / D 1 ) is preferably 0.30 or less, more preferably 0.25 or less, and most preferred is if 0.
  • the coated arc welding rod after using the covered arc welding rod (that is, after the end of the arc welding) means a state in which the coating agent remains after a continuous arc generation period of 5 seconds or more after the start of the arc welding.
  • the coated arc welding rod may be used repeatedly even after it has been used once as long as the coating agent remains.
  • slag may adhere to the tip of the core wire 2.
  • the tip 2 a of the core wire 2 is defined in a state where the slag is removed, and its shape is determined. Has a substantially planar shape.
  • the “most distal portion” described in the present embodiment refers to the most protruding portion of the tips of the coating materials 3 and 13, and the “rearmost portion” refers to the distal end of the coating materials 3 and 13. Of these, the least protruding part.
  • the coating material 13 remains around the core wire 2 at a certain length or more on the distal end side of the welding rod after use of the coated arc welding rod, and the protective cylinder 16 is formed.
  • the tip portion 2a of the core 2 the welding rod longitudinal distance D 1 of the leading-edge portion 13a of the coating 13 remaining on the periphery of the core wire 2 is more than 2.2 mm
  • the protective tube 16 Becomes excessively long, the distance between the core wire and the base material increases, and the arc length increases. If the arc length is excessively long, the arc length is liable to fluctuate, causing arc breakage and deteriorating arc stability.
  • D 1 is 2.2mm or less, and more preferably to less 1.7 mm. If D 1 is too small, the directivity of the arc cannot be obtained, and the arc stability is deteriorated. Therefore, D 1 is preferably 1.0 mm or more, and preferably 1.3 mm or more. More preferred.
  • D 1 /d ⁇ Ratio of D 1 to the diameter d of the core wire in the covered electrode (D 1 /d):1.3 less>
  • the diameter of the core wire d (see d in FIG. 1B) in the covered electrode the D 1 is proportional.
  • D 1 / d is preferably at most 1.3, more preferably at most 1.0, even more preferably at most 0.8. If D 1 is extremely small with respect to the diameter d, the directivity of the arc cannot be obtained, and the arc stability deteriorates. Therefore, D 1 / d is preferably 0.1 or more, and 0/0. It is more preferably at least 3.
  • the diameter d is not particularly limited, but is preferably 3.0 to 5.0 mm from a generally used diameter d.
  • covered electrode in a cross section perpendicular to the welding rod longitudinally, the cross-sectional area of the entire coating and S 1, at least one equivalent circle diameter of the metal carbonate and metal fluoride is 30 ⁇ m or more one of the total area when the S 2, the ratio of S 2 relative to S 1 (S 2 / S 1 ) , characterized in that satisfy 0.06 to 0.15.
  • the ratio of S 2 relative to S 1 (S 2 / S 1 ) it is, if it is less than 0.06, appears more remarkable effect of promoting droplet detachment can Smoother droplet transfer. Therefore, the ratio S 2 / S 1 is preferably 0.06 or more, and more preferably 0.07 or more. On the other hand, when S 2 / S 1 is 0.15 or less, it becomes easy to obtain a weld metal having desired performance. Therefore, the ratio S 2 / S 1 is set to 0.15 or less, and more preferably 0.10 or less.
  • the above effect can be obtained even if only the metal fluoride having an equivalent circle diameter of 30 ⁇ m or more is contained in the above range, but only the metal carbonate is contained in the above range. Is more preferable. Most preferably, both the metal carbonate and the metal fluoride are contained in the above range.
  • the method of controlling the S 2 / S 1 as described above in addition to the method of adjusting the particle size of the metal carbonate or the metal fluoride used as the raw material of the coating agent, the method of adjusting the content of the metal carbonate or the metal fluoride And a method of adjusting the coating pressure of the coating agent during production of the coated arc welding rod.
  • the above-described manufacturing method is merely an example, and the present invention is not necessarily limited thereto.
  • the “equivalent circle diameter” indicates the diameter of a circle having an area equal to the projected area of a particle, as defined in JIS Z 8827-1, and is obtained by image analysis software using a computer. be able to.
  • the particle size (equivalent circle diameter) of the metal carbonate and the metal fluoride contained in the coating agent is generally about 600 ⁇ m at the maximum.
  • the S 2 / S 1 is for example, can be measured as follows. First, using a WD / ED combine electron probe microanalyzer (EPMA) JXA-8200 manufactured by JEOL Ltd., the welding rod cross section is analyzed at an acceleration voltage of 15 kV and an irradiation current of 5 ⁇ 10 ⁇ 10 A ( Magnification is 400 times). Then, using the image analysis software JTrim, at least one region of a metal carbonate and a metal fluoride having an equivalent circle diameter of 30 ⁇ m or more and the other region are binary-coded with respect to the entire cross section of the welding rod.
  • EPMA WD / ED combine electron probe microanalyzer
  • the total area S 2 (that is, S 2 / S 1 ) of at least one of the metal carbonate and the metal fluoride having the equivalent circle diameter of 30 ⁇ m or more with respect to the cross-sectional area S 1 of the entire coating material is calculated. be able to.
  • Metal carbonates such as CaCO 3 and BaCO 3 contained in the coating agent of the coated arc welding rod generate CO 2 , which is a shielding gas (shielding gas), by thermal decomposition in the vicinity of the arc generation point, and oxygen in the atmosphere It is a component that has the effect of protecting the molten pool from nitrogen, moisture.
  • CaCO 3 decomposes at about 825 ° C., generating CaO and CO 2 gas.
  • the content of metal carbonate in the coating agent is too low, poor shielding may cause entrapment of air, resulting in deterioration of welding workability, welding defects such as blow holes, and lower impact value of weld metal. Cause.
  • the total content of the metal carbonate in the coating agent is excessive, the coating agent becomes difficult to melt during welding. That is, since the distance between the above-mentioned D 1 is longer, the distance between the molten pool and the molten surface of the core wire is too distant, the arc length deviates from the proper conditions. As a result, the occurrence of arc breakage or a decrease in arc stability occurs, and there is a possibility that spatter may increase. Further, as described above, by containing a metal carbonate having a predetermined size or more, the droplet transfer cycle can be stabilized.
  • the content C CO2, total of the metal carbonate is preferably 6.0% by mass or more, more preferably 10.0% by mass or more in terms of CO 2 .
  • the total content (CO 2 converted value) C CO2 total of the metal carbonate in the coating material is 26.0% by mass or less with respect to the total mass C coat, total of the coating material, the arc stability becomes higher. And the amount of spatter generated is reduced.
  • the content C CO2, total of the metal carbonate is preferably 26.0% by mass or less, more preferably 25.0% by mass or less in terms of CO 2 .
  • the total mass C Electrode covered electrodes, for total, the total content of metal carbonate in the covered electrode (CO 2 conversion value) is 4.0 mass% or more, It is preferably 10.0% by mass or less, more preferably 4.5% by mass or more and 9.0% by mass or less, further preferably 4.5% by mass or more and 7.5% by mass or less. preferable.
  • the metal carbonate used as the coating agent of the present embodiment includes calcium carbonate (CaCO 3 ), barium carbonate (BaCO 3 ), strontium carbonate (SrCO 3 ), magnesium carbonate (MgCO 3 ), and manganese carbonate (MnCO 3 ).
  • CaCO 3 calcium carbonate
  • BaCO 3 barium carbonate
  • SrCO 3 strontium carbonate
  • MgCO 3 magnesium carbonate
  • MnCO 3 manganese carbonate
  • at least one selected from them is used. From the viewpoint of manufacturing cost, it is more preferable to use CaCO 3 and BaCO 3 , and it is most preferable to use CaCO 3 .
  • Any of the above various metal carbonates may be used alone or in combination of two or more. When a plurality of metal carbonates are used, the total content in terms of CO 2 is 6.0% by mass. It is preferable that the content be in the range of not less than 26.0% by mass.
  • the content of CaCO 3 in the coating agent is 6.0% by mass or more and 26.0% by mass in terms of CO 2 with respect to the total mass of the coating agent. %, More preferably 10.0% by mass or more and 25.0% by mass or less.
  • the content of CaCO 3 in the covered arc welding rod is preferably 10.0% by mass or more and 20.0% by mass or less, preferably 11.0% by mass or more and 19.0% by mass, based on the total mass of the welding electrode. %, More preferably 11.0% by mass or more and 17.0% by mass or less.
  • the content of BaCO 3 in the coating when containing BaCO 3 as metal carbonate in the coating agent, the content of BaCO 3 in the coating, from the viewpoint of weldability, the total weight coating agent, in terms of CO 2 values, 0 It is preferable to be more than 0.0% by mass and 4.0% by mass or less.
  • Metal fluoride such as CaF 2 contained in the coating agent of the coated arc welding rod is a component having an effect of lowering the melting point of the slag, improving the fluidity of the slag, and improving the bead shape.
  • the metal fluoride is decomposed by the arc heat to generate a large amount of reducing shielding gas (fluoride gas), thereby suppressing an increase in the amount of oxygen and hydrogen in the weld metal and improving the arc stability.
  • the decomposed fluorine reacts with the hydrogen in the molten metal or molten slag, and the hydrogen partial pressure in the molten metal can be reduced.
  • droplet transferability can be improved by including a metal fluoride having a size equal to or larger than a predetermined size in the coating material.
  • the content of the metal fluoride in the coating agent is excessive, the fluidity of the slag becomes excessive, and problems such as entrainment of the slag may occur, and the welding quality may be deteriorated.
  • the lower limit is not particularly set and may be 0.0% by mass. However, in order to sufficiently obtain these effects, it is better to add a metal fluoride, and the content is preferably more than 0.0% by mass, and more preferably 3.0% by mass or more. More preferred.
  • the total content (F conversion value) CF total of the metal fluoride in the coating material is 15.0% by mass or less with respect to the total mass C coat, total of the coating material, better arc stability is obtained. And welding workability is improved. Therefore, the content CF, total of the metal fluoride is preferably 15.0% by mass or less, and more preferably 7.5% by mass or less.
  • the total content (F conversion value) of the metal fluoride in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod is 0.5% by mass or more, 0.7% by mass or less, more preferably 0.7% by mass or more and 2.5% by mass or less, even more preferably 0.9% by mass or more and 2.3% by mass or less.
  • the metal fluoride used as the coating agent of the present embodiment is selected from calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), strontium fluoride (SrF 2 ), and magnesium fluoride (MgF 2 ). Preferably, at least one of them is used. From the viewpoint of manufacturing cost, it is more preferable to use CaF 2 and BaF 2 , and it is most preferable to use CaF 2 . Any of the above various metal fluorides may be used alone or in combination of two or more. When a plurality of metal fluorides are used, the total content in terms of F is 15.0% by mass or less. (Including 0% by mass).
  • the content of CaF 2 in the coating material is more than 0.0% by mass and 15.0% by mass in terms of F with respect to the total mass of the coating material. %, More preferably 3.0% by mass to 7.5% by mass.
  • the content of CaF 2 in the covered arc welding rod is preferably not less than 1.0% by mass and not more than 6.0% by mass, and preferably not less than 1.5% by mass and 5.5% by mass, based on the total mass of the welding rod. It is more preferably at most 1.8 mass%, more preferably at least 1.8 mass% and not more than 5.2 mass%.
  • ⁇ Total content of metal fluoride in the coating agent based on the total content of metal carbonate (CO 2 converted value) C CO2, total and total content of metal fluoride (F converted value) CF, total Amount (F conversion value) Ratio of CF and total ⁇ CF, total / ( CCO2, total + CF, total ) ⁇ : 0.10 or more and 0.30 or less>
  • the softening point of the flux can be increased by appropriately adjusting the mass ratio between the metal fluoride and the metal carbonate.
  • the protection cylinder can be formed stably with a desired length, and the arc directivity can be improved. Thereby, the swing of the droplet becomes smaller, good arc stability is obtained, and welding workability is improved.
  • the softening point of the flux is appropriate and the protective cylinder can be sufficiently provided. It can be left in the length, and the welding workability becomes better. Therefore, the above ratio is preferably 0.10 or more. Further, the ratio is preferably 0.30 or less, and more preferably 0.15 or less.
  • Si and the Si compound are compounds that become SiO 2 in the coating agent and act as a catalyst to promote the decomposition of metal carbonate (CaCO 3 ).
  • CaCO 3 generates CaO.SiO 2 and CO 2 gas in the presence of SiO 2 , but when CaCO 3 having a particle size of 75 ⁇ m or more is contained in a predetermined content or more, the unit is as described above.
  • the increase in the amount of CO 2 gas generated per time and the efficient operation of the pinch force promotes the formation of necking of droplets.
  • CaCO 3 is thermally decomposed, CaO and SiO 2 generated thereby react with each other, and the heat of reaction promotes the thermal decomposition of undecomposed CaCO 3 .
  • Si and the Si compound become SiO 2 in the coating agent and react with the metal fluoride to generate a fluorinated gas.
  • 2CaF 2 and SiO 2 react to generate 2CaO and SiF 4 gas.
  • the volume of the SiF 4 gas generated by this reaction is smaller than that of the CO 2 gas generated by the metal carbonate using SiO 2 as a catalyst, so that the effect of releasing the droplet is relatively small.
  • the total content of the metal fluoride having a particle size of 75 ⁇ m or more in the coating material, or the metal fluoride having an equivalent circle diameter of 30 ⁇ m or more in a cross section perpendicular to the longitudinal direction of the welding rod. which means that a metal fluoride having a large particle size is contained in the coating material.
  • the amount of generated gas is increased, and the formation of constriction of the droplet is promoted.
  • the following effects can be further obtained by including a metal fluoride having a large particle size in the coating material.
  • the metal fluoride having a large particle size has a small specific surface area
  • the reaction between the metal fluoride (for example, CaF 2 ) and SiO 2 can be suppressed as compared with the metal fluoride having a small particle size.
  • the amount of SiF 4 gas generated by the reaction between the metal fluoride and SiO 2 is not so significant as compared with the CO 2 gas generated by the metal carbonate using SiO 2 as a catalyst. Therefore, for example, by suppressing the reaction between CaF 2 and SiO 2 , it is possible to sufficiently secure the amount of SiO 2 acting as a catalyst for the metal carbonate, and to promote smoother droplet detachment. it can.
  • the coating material further contains at least one of Si and a Si compound
  • the total content of Si and the Si compound in the coating material (in terms of Si ) C Si with respect to the total mass C coat, total of the coating material , Total is 6.0% by mass or more
  • the generation of CO 2 gas and fluoride gas can be further promoted. Therefore, the content of C Si, total is preferably 6.0% by mass or more.
  • the C Si, total is 9.0 mass% or less, it becomes easier to secure a predetermined mechanical performance and a stable bead shape in the weld metal. Therefore, the C Si, total is preferably at most 9.0% by mass, more preferably at most 8.0% by mass.
  • the coating material according to the present embodiment can contain an alloy, an oxide, and the like.
  • the amount of each component in the coating agent is defined as the content per total mass of the coating agent. Further, the amount of each component in the entire covered arc welding rod is defined as the content per total mass of the welding rod.
  • Fe in the coating material 0.0% by mass or more (including 0% by mass), 35.0% by mass or less based on the total mass C coat, total of the coating material>
  • Fe is a component added to the coating agent of the coated arc welding rod for the purpose of improving the mechanical properties of the weld metal by deoxidizing action or adding an alloy, and improving welding efficiency by increasing the amount of metal deposited.
  • iron powder in the agent it is contained as Fe—Si, Fe—Mn, or the like.
  • Fe in the coating agent may be arbitrarily added according to the necessity of the above effect, and it is not necessary to particularly define the lower limit, and it is sufficient if it is 0.0% by mass or more.
  • the lower limit of the Fe content in the coating agent relative to the total mass C coat, total of the coating agent is more preferably 0.1% by mass or more.
  • the upper limit of the Fe content in the coating agent with respect to the total mass C coat, total of the coating agent is preferably 35.0% by mass or less, and preferably 32.0% by mass or less, based on the total mass of the coating agent.
  • total of the coated arc welding rod may be 60.0% by mass or more and 85.0% by mass or less.
  • it is 70.0% by mass or more and 85.0% by mass or less, and more preferably 72.0% by mass or more and 85.0% by mass or less.
  • Al in coating material 0.0% by mass or more (including 0% by mass), 1.0% by mass or less based on total mass C coat, total of coating material>
  • Al metal Al
  • Al is a component that has the effect of improving the crack resistance of the weld metal and also improving the corrosion resistance and oxidation resistance, and may be added as needed, and it is particularly necessary to define the lower limit. But not more than 0.0% by mass.
  • Al is added to the coating material, if the Al content in the coating material is 1.0% by mass or less, the weld metal can obtain sufficient ductility in addition to the above-described effects.
  • the Al content in the coating agent with respect to the total mass C coat, total of the coating agent is preferably 1.0% by mass or less, more preferably 0.8% by mass or less, and 0.6% by mass or less. It is more preferable that the content be not more than mass%.
  • the Al content in the coated arc welding rod with respect to the total mass of the coated arc welding rod C electode, total may be 0.50% by mass or less (including 0% by mass). Preferably, it is 0.30% by mass or less, more preferably 0.10% by mass or less.
  • Ni in the coating agent 0.0% by mass or more (including 0% by mass), 4.0% by mass or less based on the total mass C coat, total of the coating agent>
  • Ni is a component having an effect of improving the fatigue strength of the welded portion, and may be added as needed, and there is no particular need to define the lower limit, and it is sufficient if it is 0.0% by mass or more.
  • the Ni content in the coating material is preferably 4.0% by mass or less, and preferably 3.0% by mass or less and 2.5% by mass or less with respect to the total mass C coat and total of the coating material.
  • the Ni content in the coated arc welding rod with respect to the total mass of the covered arc welding rod C electode, total is preferably 1.00% by mass or less, more preferably 0.60% by mass.
  • the content is more preferably not more than 0.30% by mass, more preferably not more than 0.30% by mass.
  • Mn is a component having an effect of improving the strength of the alloy material, and may be added as needed. There is no particular need to define the lower limit, and Mn may be 0.0% by mass or more.
  • Mn content in the coating agent is in the range of 1.5% by mass or more and 6.0% by mass or less, hot cracking can be suppressed while maintaining the strength of the weld metal. Therefore, the Mn content in the coating material with respect to the total mass C coat, total of the coating material is preferably 1.5% by mass or more and 6.0% by mass or less, and is preferably 1.7% by mass or more and 4.0% by mass or less.
  • the content is more preferably 8% by mass or less, and further preferably 1.8% by mass or more and 4.2% by mass or less.
  • the Mn content in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod may be 0.8% by mass or more and 1.8% by mass or less.
  • it is 0.8% by mass or more and 1.6% by mass or less, more preferably 0.8% by mass or more and 1.4% by mass or less.
  • Si metal Si
  • Si is a deoxidizing agent and is a component having an effect of reducing the amount of oxygen in the weld metal and improving the strength, and may be added as necessary. What is necessary is just 0 mass% or more.
  • Si content in the coating agent is in the range of 1.0% by mass or more and 9.0% by mass or less, the droplet size that transfers to the molten pool can be made smaller, and the welding workability is good. become.
  • the Si content in the coating agent with respect to the total mass C coat, total of the coating agent is preferably 1.0% by mass or more and 9.0% by mass or less, preferably 2.4% by mass or more and 7.0% by mass or less.
  • the content is more preferably 0% by mass or less, further preferably 2.8% by mass or more and 6.6% by mass or less.
  • the Si content in the coated arc welding rod with respect to the total mass C electronode, total of the coated arc welding rod may be 0.8% by mass or more and 2.2% by mass or less.
  • it is 1.0% by mass or more and 2.0% by mass or less, more preferably 1.1% by mass or more and 1.9% by mass or less.
  • Mo in the coating material relative to the total weight C coat, total of the coating material 0.0% by mass or more (including 0% by mass), 2.0% by mass or less> Mo is a component having an effect of improving the strength of the weld metal, and may be added as needed, and there is no particular need to define the lower limit, and it is sufficient if it is 0.0% by mass or more.
  • Mo is added to the coating material, if the Mo content in the coating material is 2.0% by mass or less, welding cracks can be further suppressed while maintaining strength. Therefore, the Mo content in the coating agent relative to the total mass C coat, total of the coating agent is preferably 2.0% by mass or less, more preferably 1.2% by mass or less, and 0.8% by mass or less.
  • the content be not more than mass%.
  • total of the coated arc welding rod may be 0.65% by mass or less (including 0% by mass). Preferably, it is 0.45% by mass or less, more preferably 0.30% by mass or less.
  • Al 2 O 3 in the coating agent 0.02% by mass or more and 3.0% by mass or less based on the total mass C coat and total of the coating agent>
  • Al 2 O 3 is a component having an arc stabilizing effect and an effect as a slag forming agent.
  • the content of Al 2 O 3 in the coating material relative to the total weight C coat, total of the coating material is preferably 0.02% by mass or more and 3.0% by mass or less, and more preferably 0.03% by mass or more. , 2.6% by mass or less, more preferably 0.05% by mass or more and 2.0% by mass or less.
  • total of the coated arc welding rod is 0.01% by mass or more and 0.90% by mass or less.
  • it is 0.02% by mass or more and 0.80% by mass or less, and further preferably 0.02% by mass or more and 0.70% by mass or less.
  • SiO 2 in the coating agent 1.5% by mass or more and 15.0% by mass or less based on the total mass C coat
  • total of the coating agent> SiO 2 is a component that acts as a slag-making agent and an adhesive.
  • the content of SiO 2 in the coating agent is 1.5% by mass or more, the above-described effects can be sufficiently obtained.
  • the content of SiO 2 in the coating agent is 15.0% by mass or less, the slag removability is further improved. Therefore, the content of SiO 2 in the coating material with respect to the total weight C coat, total of the coating material is preferably from 1.5% by mass to 15.0% by mass, more preferably from 2.0% by mass to 10% by mass.
  • the content of SiO 2 in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod is 0.40% by mass or more based on the total mass of the welding electrode, and 4.00%.
  • % By mass preferably 0.60% by mass or more and 3.60% by mass or less, more preferably 0.80% by mass or more and 3.20% by mass or less.
  • TiO 2 is a component having a function of generating a slag having good flowability, giving a luster to a bead surface, and giving a beautiful appearance to a weld metal in a coating agent for a coated arc welding rod. It is also a component that suppresses arc deflection (wandering) and contributes to obtaining good welding workability.
  • TiO 2 content in the coating is in the range of 0.2% by mass or more and 10.0% by mass or less based on the total mass of the coating, the above-mentioned effect is further improved.
  • the content of TiO 2 in the coating material with respect to the total weight C coat, total of the coating material is preferably 0.2% by mass or more and 10.0% by mass or less, and 0.5% by mass or more and 8% by mass or less.
  • the content is more preferably 0.0% by mass or less, and even more preferably 1.0% by mass or more and 6.0% by mass or less.
  • the content of TiO 2 in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod is 1.00% by mass or more and 4.00% by mass or less.
  • MgO is a component having an effect of enhancing the slag removability.
  • the content of MgO in the coating material with respect to the total mass C coat, total of the coating material is preferably more than 0.01% by mass and 4.0% by mass or less, more preferably 0.2% by mass or more.
  • the content is more preferably 0% by mass or less, further preferably 0.5% by mass or more and 0.8% by mass or less.
  • total of the coated arc welding rod may be 0.01% by mass or more and 1.00% by mass or less. Preferably, it is 0.01% by mass or more and 0.80% by mass or less, further preferably 0.01% by mass or more and 0.50% by mass or less.
  • K 2 O, Li 2 O and Na 2 O are components that are contained in a large amount in water glass used as an inorganic binder of a coating agent, and are also added as a powder raw material, and provide good arc stability and moderate It is an effective component for improving arc stability by obtaining a suitable arc spraying force.
  • the total content of K 2 O, Li 2 O, and Na 2 O in the coating material with respect to the total weight C coat, total of the coating material is 1.6% by mass or more.
  • the content is preferably 6% by mass or less, more preferably 1.8% by mass or more and 3.2% by mass or less, even more preferably 2.0% by mass or more and 3.0% by mass or less.
  • the total content of K 2 O, Li 2 O and Na 2 O in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod is 0.20% by mass.
  • the content is preferably 1.40% by mass or less, more preferably 0.40% by mass or more and 1.20% by mass or less, and 0.60% by mass or more and 1.00% by mass or less. Is more preferred.
  • Li 2 O also has the effect of improving the moisture absorption resistance of the coated arc welding rod and reducing the diffusible hydrogen in the weld metal.
  • ⁇ C in the coating material 0.0% by mass or more (including 0% by mass), 0.15% by mass or less based on the total mass C coat, total of the coating material>
  • C is a component that contributes to the improvement of the strength of the weld metal, and may be added as needed. There is no particular need to define the lower limit, and it is sufficient if it is 0.0% by mass or more.
  • the content is preferably 0.15% by mass or less in order to reduce the ductility of the weld metal and suppress weld cracking. Therefore, it is preferable that the C content in the coating agent is 0.0% by mass or more and 0.15% by mass or less based on the total mass C coat and total of the coating agent.
  • the content is more preferably 0.01% by mass or more and 0.10% by mass or less, and still more preferably 0.02% by mass or more and 0.08% by mass or less.
  • the C source include organic substances, various minerals, alloying agents, graphite, and the like.
  • the C content in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod may be 0.15% by mass or less (including 0% by mass). Preferably, it is 0.01% by mass or more and 0.10% by mass or less, more preferably 0.02% by mass or more and 0.08% by mass or less.
  • the balance of the coating agent in the present embodiment is inevitable impurities.
  • inevitable impurities include Nb 2 O 5 , V 2 O 5 , ZrO 2 , Fe 2 O 3 .FeO, SnO, P, and S.
  • the total content of inevitable impurities in the coating material relative to the total mass C coat, total of the coating material is preferably 5.0% by mass or less (including 0% by mass).
  • Nb 2 O 5 in the coating agent was 0.3% by mass or less (including 0% by mass)
  • V 2 O 5 was 0.3% by mass or less (0% by mass).
  • the impurities include those that are not intended in the design of the welding rod.
  • the undesired Fe 2 O 3 .FeO in the design of the welding rod may contain 3.50 mass% at the maximum. However, these are impurities.
  • the core wire in the present embodiment is not particularly limited.
  • a core wire having a diameter d of 2.6 mm to 6.0 mm can be used, and a core wire having a diameter d of 4.0 mm can be suitably used.
  • the composition of the core wire of the present embodiment will be described below.
  • ⁇ O 0.0005% by mass or more and 0.0150% by mass or less> If the O content of the core wire is excessive, the O content in the obtained weld metal becomes excessive, and the toughness of the weld metal may be reduced. Further, since oxygen in the core wire reacts with Fe—Si or Fe—Mn, which is a deoxidizing agent added to the coating agent, to generate slag, the amount of slag increases and slag fluidity and welding workability are increased. This may cause deterioration, and may further cause deterioration in mechanical properties due to a decrease in the amount of Si and Mn in the weld metal and an increase in the amount of oxygen.
  • the fluidity of the molten metal is increased, and in welding in a vertical or upward position, dripping of the weld metal is likely to occur, and welding workability may be reduced.
  • the O content of the core wire is too small, the expansion of the molten pool by the arc force becomes insufficient, and a weld metal in which alloy components are uniformly distributed cannot be obtained.
  • the O content of the cord with respect to the total mass of the cord is preferably 0.0005% by mass or more, more preferably 0.0013% by mass or more, and 0.0016% by mass or more. Is more preferable.
  • the O content of the core wire is preferably 0.0150% by mass or less, more preferably 0.0125% by mass or less, and even more preferably 0.0100% by mass or less.
  • an iron-based core wire containing Fe as a main component can be preferably used.
  • SWRY11 specified in JIS G 3503: 2006 is used. It can be used as a cord.
  • the core wire may contain C, Si, Mn, P, S, N, Cu, etc. in addition to the above O and Fe.
  • the C content of the cord relative to the total mass of the cord is 0.09% by mass or less
  • the Si content is 0.03% by mass or less (including 0% by mass)
  • the Mn content is 0.35% by mass or more
  • 0% or less 0.65% by mass or less
  • S content 0.023% by mass or less including 0% by mass
  • the coating rate of the coating agent on the outer periphery of the core wire is not particularly limited, but is preferably, for example, 20% or more, and more preferably 22% or more, from the viewpoint of ensuring the strength of the coating agent. More preferably, it is still more preferably at least 24%.
  • the content is preferably, for example, 40% or less, more preferably 38% or less, and still more preferably 36% or less.
  • the present embodiment also relates to an arc welding method using a coated arc welding rod in which the components in the coating agent are controlled.
  • the reasons for limiting the components (grain size and area ratio, etc.) in the coating material of the welding rod used and the length of the coating material remaining after the use of the arc are as described above. Therefore, the description is omitted.
  • particularly the welding position in the arc welding method according to the present embodiment will be described.
  • the coated arc welding rod is perpendicular to the base metal or has a receding angle of more than 0 ° and 30 ° or less>
  • the covered arc welding rod according to the present embodiment is welded such that the covered arc welding rod is perpendicular to the base material (that is, the covered arc welding rod is disposed perpendicular to the base material) or has a receding angle of more than 0 ° and 30 ° or less. It is preferably used in position-dependent arc welding.
  • the covered arc welding rod according to the present embodiment has the same effect as in the case where the covered arc welding rod is perpendicular to the base material in covered arc welding when the receding angle is set to more than 0 ° and 30 ° or less. Can be.
  • the receding angle is more preferably 5 ° or more and 25 ° or less.
  • the coated arc welding rod according to the present embodiment has high robustness and some disturbance or error. Can be suppressed even if a crack occurs.
  • the coated arc welding rod according to this embodiment includes various systems such as an illuminite system, a high titanium oxide system, a lime titania system, an iron powder titanium oxide system, a high cellulose system, a low hydrogen system, and an iron powder low hydrogen system. It can be applied as a welding rod.
  • the low-hydrogen welding rod contains a large amount of a gas generating agent in the coating agent for the purpose of reducing diffusible hydrogen
  • the coated arc welding rod according to the present embodiment is used for low-hydrogen welding. When applied to a rod, the effect of droplet separation by the gas generating agent becomes significant.
  • the coated arc welding rod according to the present embodiment which can improve the droplet detachment property, be applied as an iron powder low hydrogen-based welding rod.
  • the method for manufacturing the above-described coated arc welding rod is not particularly limited.
  • the coating material is kneaded with water glass, applied to the outer periphery of the core wire, dried and fired, whereby the coated arc welding rod according to the present embodiment can be manufactured.
  • SWRY 11 having a diameter of 3.2 to 5.0 mm was prepared as a core wire, and a coating material having a chemical component composition shown in Table 1 (Coating Agent No. C1 to C15) was prepared as shown in Table 3.
  • Various coated arc welding rods were produced by coating the core wire with a coating rate of 0.9 to 35.6% and drying it (Test Nos. T1 to T19 in Table 3).
  • Table 1 shows the content of each component in the coating agent with respect to the total mass C coat, total of the coating agent. In Table 1, the remainder is unavoidable impurities, and the amounts of each component in the coating agent indicate the content (% by mass) per the total mass C coat of the coating agent and total . Also, Table 4 shows the content of each component in the coated arc welding rod with respect to the total mass Celectrode, total of the coated arc welding rod. In Table 4, the balance is unavoidable impurities, and the amount of each component in the covered arc welding rod indicates the content (% by mass) per the total mass of the welding rod C Electrode, total .
  • Table 2 lists various physical property values related to the content of the metal carbonate or the content of the metal fluoride contained in the coating agent.
  • C [CO2, 75 ⁇ m] is the total content (in terms of CO 2 ) of metal carbonates having a particle size of 75 ⁇ m or more
  • C [F, 75 ⁇ m] is a particle size of 75 ⁇ m or more.
  • C [CO2,106 ⁇ m] is the total content of the metal carbonate particle size is not less than 106 [mu] m (CO 2 conversion value)
  • C [F, 106 [mu] m ] Is the total content (F conversion value) of the metal fluoride having a particle size of 106 ⁇ m or more
  • C [CO2, 150 ⁇ m] is the total content (CO 2 conversion value) of the metal carbonate having a particle size of 150 ⁇ m or more.
  • C [F, 150 ⁇ m] is the total content (F conversion value) of the metal fluoride having a particle size of 150 ⁇ m or more.
  • C [CO2, total] is the total content of the metal carbonate contained in the coating agent (CO 2 conversion value)
  • C [F, total] is a metal fluoride contained in the coating agent It is the total content (F conversion value).
  • C [coat, total] is the total mass of the coating agent
  • C [Si, total] is the total content of Si and the Si compound (in terms of Si).
  • C shown in (1) column in Table 2 [CO2,75 ⁇ m] / C [CO2 , total] is total content of metal carbonate contained in the coating agent (CO 2 conversion value) C CO2, for total, the particle size indicates the content of the metal carbonate is 75 ⁇ m or more (CO 2 conversion value) C CO2,75 ⁇ m. The same applies to other columns.
  • “(5) + (6)” shown in column (7) in Table 2 indicates C [CO2, 75 ⁇ m] / C [coat, total] shown in column (5) and column (6).
  • the total amount of C [F, 75 ⁇ m] / C [coat, total] that is, the content (CO 2 converted value) of the metal carbonate having a particle size of 75 ⁇ m or more with respect to the total mass C coat, total of the coating agent C It shows the total amount of CO2 , 75 ⁇ m, and the content (F conversion value) of the metal fluoride having a particle size of 75 ⁇ m or more (F conversion value) CF, 75 ⁇ m .
  • “(8) + (9)” shown in column (10) in Table 2 represents the content (CO 2) of the metal carbonate having a particle size of 106 ⁇ m or more with respect to the total mass C coat, total of the coating agent. It shows the total amount of (converted value) CCO2 , 106 ⁇ m and the content (F converted value) of the metal fluoride having a particle size of 106 ⁇ m or more (F converted value) , 106 ⁇ m .
  • “(11) + (12)” shown in column (13) of Table 2 indicates the content (CO) of the metal carbonate having a particle size of 150 ⁇ m or more with respect to the total mass C coat, total of the coating agent. 2 converted value) CCO2 , 150 ⁇ m and the total amount of the content (F converted value) CF, 150 ⁇ m of the metal fluoride having a particle size of 150 ⁇ m or more are shown.
  • the coated arc welding rod obtained by the above method was embedded in a resin such that a cross section perpendicular to the longitudinal direction became an observation surface, and observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • BSE backscattered electron
  • the cross section of the coating material is subjected to elemental analysis using energy dispersive X-ray spectroscopy (EDX), and the area ratio of particles having a circle equivalent diameter of 30 ⁇ m or more, that is, the entire coating material is cut off.
  • the area and S 1 when at least one of the total area of the circle equivalent diameter of the metal carbonate and metal fluoride is 30 ⁇ m or more was S 2, the ratio of S 2 relative to S 1 (S 2 / S 1 ) was calculated.
  • EDX analysis by SEM can be performed as follows.
  • the cross section of the coated arc welding rod is analyzed using TM3030 Miniscope (manufactured by Hitachi High-Technologies Corporation) (four rectangular areas of 50 ⁇ , 1.61 mm ⁇ 1.21 mm).
  • the selection of the visual field is desirably such that the coating material cross section is 70% or more in each visual field.
  • image analysis software Image J By binarizing 1024 ⁇ 768 pixels (the number of pixels is 786,432) with respect to one visual field using image analysis software Image J, particles having an area of 706.8 ⁇ m 2 or more (equivalent circle diameter of 30 ⁇ m or more) are obtained.
  • the area ratio can be calculated.
  • the threshold value at the time of binarization is, for example, 60.
  • Table 3 shows the measurement results of the core diameter d and S 2 / S 1 of the coated arc welding rod.
  • Table 5 shows the measurement results of D 2 / D 1 , D 1, and D 1 / d.
  • T1 to T15 are defined as the contents of the metal carbonate having a particle size of 75 ⁇ m or more (CO 2 converted value) C CO2,75 ⁇ m with respect to the requirements of the present invention (ie, the total mass C coat, total of the coating agent) And the content of metal fluoride having a particle size of 75 ⁇ m or more (F-converted value) , and the sum of CF and 75 ⁇ m is 6.0% by mass or more (see column (7) in Table 2). 1 or coating No. 1 in Table 2. This is an example using C1 to C11.
  • T1 to T15 satisfy D 2 / D 1 ⁇ 0.40 (no melting), and are excellent or good in any of the arc deflection suppressing effect and the welding workability. The result was obtained.
  • test Nos. T16 to T19 do not satisfy the requirements of the present invention (see column (7) in Table 2). This is an example using C12 to C15.
  • T16 to T19 did not satisfy D 2 / D 1 ⁇ 0.40 (there was one-side melting), and poor results were obtained in both the arc deflection suppressing effect and the welding workability. Was done.
  • the coated arc welding rod of the present invention by preventing one-side melting and suppressing the deflection of the arc, the droplet can be smoothly transferred, and the arc stability is good. This shows that excellent welding workability can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

The objective of the present invention is to provide a coated arc welding rod with which it is possible to suppress one-sided melting and arc biasing and to cause a molten droplet to migrate smoothly, with which arc stability is satisfactory, and with which excellent welding workability can thus be obtained. This coated arc welding rod includes a core wire and a coating agent coating the core wire, wherein: the coating agent includes at least one of a metal carbonate and a metal fluoride; and the sum of the content (CO2 converted value) CCO2, 75μm of the metal carbonate having a granularity at least equal to 75 μm, and the content (F converted value) CF, 75μm of the metal fluoride having a granularity at least equal to 75 μm is at least equal to 6.0 % by mass relative to the total mass Ccoat, total of the coating agent (including cases in which at least one of CCO2, 75μm and CF, 75μm is 0 % by mass).

Description

被覆アーク溶接棒および被覆アーク溶接方法Covered arc welding rod and covered arc welding method
 本発明は、被覆アーク溶接棒および被覆アーク溶接方法に関し、より詳しくは、アークの偏向を抑制し、良好なアーク安定性を維持することによって、溶滴をスムーズに移行させることを可能とし、優れた溶接作業性を得ることができる被覆アーク溶接棒と、それを用いてアーク溶接する被覆アーク溶接方法に関する。 The present invention relates to a coated arc welding rod and a coated arc welding method, and more particularly, suppresses arc deflection and maintains good arc stability, thereby enabling droplets to be smoothly transferred, The present invention relates to a covered arc welding rod capable of obtaining improved welding workability, and a covered arc welding method for performing arc welding using the same.
 被覆アーク溶接は、金属の棒(心線)に被覆剤と呼ばれるフラックスや保護材などを設けた被覆アーク溶接棒(単に、「溶接棒」や「手棒」などと呼称されることもある)を電極とし、母材との間にアークを発生させ、アーク熱で溶接棒と母材を溶融させることにより、対象物を接合する溶接方法である。被覆アーク溶接は、シールドガスを必要としない最も簡素な溶接方法であり、風が強い屋外などでも溶接することができ、各種製造工場、ビル、船舶、車両などで広く用いられている。 Covered arc welding is a covered arc welding rod in which a metal rod (core wire) is provided with a flux or a protective material called a coating agent (sometimes simply referred to as a "welding rod" or a "hand rod"). Is used as an electrode, an arc is generated between the base material and the base material, and the welding rod and the base material are melted by arc heat, thereby joining the objects. Covered arc welding is the simplest welding method that does not require a shielding gas, can be welded outdoors where wind is strong, and is widely used in various manufacturing plants, buildings, ships, vehicles, and the like.
 被覆アーク溶接棒を構成する被覆剤には、ガス発生剤、スラグ形成剤、脱酸剤、合金添加剤、アーク安定剤、および固着剤等の機能を有する原料が含有されている。また、被覆アーク溶接棒は、被覆剤の種類によって分類されており、イルミナイト系、高酸化チタン系、ライムチタニア系、鉄粉酸化チタン系、高セルロース系、低水素系および鉄粉低水素系等、種々の系統がある。 被覆 The coating material constituting the coated arc welding rod contains raw materials having functions such as a gas generating agent, a slag forming agent, a deoxidizing agent, an alloy additive, an arc stabilizer, and a fixing agent. In addition, coated arc welding rods are classified according to the type of coating agent, and include illuminite, high titanium oxide, lime titania, iron powder titanium oxide, high cellulose, low hydrogen, and iron powder low hydrogen. There are various systems.
 上記した種々の系統の被覆アーク溶接棒のうち、低水素系被覆アーク溶接棒としては、特許文献1に示すように、心線中の酸素含有量を限定すると共に、被覆剤中の金属炭酸塩、金属フッ化物、および水分の含有量を適切に調整した被覆アーク溶接棒が提案されている。上記特許文献1には、被覆アーク溶接棒における心線および被覆剤中の成分を適切に調整することにより、溶接金属の物理的特性を阻害することなく、良好な溶接作業性を確保できることが記載されている。 Among the various types of coated arc welding rods described above, as a low hydrogen-based coated arc welding rod, as described in Patent Document 1, the oxygen content in the core wire is limited, and the metal carbonate in the coating agent is limited. There has been proposed a coated arc welding rod in which the contents of iron, metal fluoride, and moisture are appropriately adjusted. Patent Literature 1 describes that by appropriately adjusting the components in the core wire and the coating agent in the coated arc welding rod, it is possible to secure good welding workability without impairing the physical properties of the weld metal. Have been.
日本国特開昭57-85696号公報Japanese Patent Application Laid-Open No. 57-85669
 しかし、被覆アーク溶接棒を用いた溶接では、前進角や後退角等の様々な溶接姿勢で行われるため、溶接棒を傾けた際に母材に近接している部分の被覆剤は溶けやすく(これを片溶けと呼ぶ)、アークが偏向し溶接作業が劣化する。上述の特許文献1に記載された被覆アーク溶接棒は、片溶けやアークの偏向に関して何ら記載されておらず、また低水素系の被覆アーク溶接棒に特化して適用されるものであるため、他のあらゆる系統の被覆アーク溶接棒について、溶滴移行性やアーク安定性で評価される溶接作業性を高められるものではなかった。 However, in welding using a covered arc welding rod, since the welding is performed in various welding positions such as an advance angle and a receding angle, when the welding rod is tilted, the coating agent in a portion close to the base material is easily melted ( This is called one-side melting), the arc is deflected, and the welding operation deteriorates. The covered arc welding rod described in Patent Document 1 described above does not describe anything about one-side melting and arc deflection, and is applied specifically to a low hydrogen-based coated arc welding rod. For all other types of coated arc welding rods, the welding workability evaluated by droplet transferability and arc stability could not be improved.
 本発明は、片溶けおよびアークの偏向を抑制し、溶滴をスムーズに移行させることができるとともに、アーク安定性が良好であり、これにより、優れた溶接作業性を得ることができる被覆アーク溶接棒を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention suppresses one-side melting and arc deflection, enables smooth transfer of droplets, and has good arc stability, thereby providing excellent welding workability. The purpose is to provide a stick.
 本発明に係る被覆アーク溶接棒は、下記(1)の構成からなる。
(1)心線と、前記心線を被覆する被覆剤と、を有する被覆アーク溶接棒であって、
 前記被覆剤は、金属炭酸塩および金属フッ化物のうち少なくとも1種を含有し、
 粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmと、粒度が75μm以上である金属フッ化物の含有量(F換算値)CF,75μmの合計が、該被覆剤の全質量Ccoat,totalに対し、6.0質量%以上(ただし、前記CCO2,75μmおよび前記CF,75μmのうち少なくとも一方が、0質量%の場合を含む)であり、
 前記被覆アーク溶接棒の使用後における溶接棒先端側において、
 前記心線の先端部と、該心線の周囲に残存している前記被覆剤の最先端部との、溶接棒長手方向における距離をDとし、
 前記心線の周囲に残存している前記被覆剤の最先端部と、該心線の周囲に残存している該被覆剤の最後端部との、溶接棒長手方向における距離をDとしたとき、
 前記Dに対する前記Dの比率(D/D)が、0.40以下(0の場合を含む)を満たすことを特徴とする被覆アーク溶接棒。
The covered arc welding rod according to the present invention has the following configuration (1).
(1) A coated arc welding rod having a core wire and a coating agent for coating the core wire,
The coating agent contains at least one of a metal carbonate and a metal fluoride,
The total of the content of metal carbonate having a particle size of 75 μm or more (CO 2 converted value) C CO2 and 75 μm and the content of the metal fluoride having a particle size of 75 μm or more (F converted value) CF and 75 μm are the following: 6.0% by mass or more based on the total mass C coat, total of the coating agent (including the case where at least one of the C CO2 , 75 μm and the CF, 75 μm is 0% by mass),
On the welding rod tip side after use of the coated arc welding rod,
And the tip portion of the core wire, the leading edge portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction and D 1,
And cutting edge portions of the coating remaining on the periphery of the core wire, the rearmost end portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction is D 2 When
The D 2 ratio (D 2 / D 1) is covered electrode to satisfy the 0.40 or less (including 0) for the D 1.
 また、本発明に係る被覆アーク溶接棒の好ましい実施形態は、下記(2)または(3)の構成からなる。
(2)前記Dが2.2mm以下を満たす、上記(1)に記載の被覆アーク溶接棒。
(3)前記被覆アーク溶接棒における心線の直径dに対する前記Dの比率(D/d)が1.3以下を満たす上記(1)または(2)に記載の被覆アーク溶接棒。
A preferred embodiment of the coated arc welding rod according to the present invention has the following configuration (2) or (3).
(2) wherein D 1 satisfies the following 2.2 mm, covered electrodes according to the above (1).
(3) covered electrode according to the ratio of the D 1 to diameter d of the core wire in the covered electrode (D 1 / d) satisfies the 1.3 above (1) or (2).
 また、本発明に係る被覆アーク溶接棒は、下記(4)の構成からなる。
(4)心線と、前記心線を被覆する被覆剤と、を有する被覆アーク溶接棒であって、
 前記被覆剤は、金属炭酸塩および金属フッ化物のうち少なくとも1種を含有し、
 粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmと、粒度が75μm以上である金属フッ化物の含有量(F換算値)CF,75μmの合計が、該被覆剤の全質量Ccoat,totalに対し、6.0質量%以上(ただし、前記CCO2,75μmおよび前記CF,75μmのうち少なくとも一方が、0質量%の場合を含む)であることを特徴とする被覆アーク溶接棒。
Further, the covered arc welding rod according to the present invention has the following configuration (4).
(4) A coated arc welding rod having a core wire and a coating agent for coating the core wire,
The coating agent contains at least one of a metal carbonate and a metal fluoride,
The total of the content of metal carbonate having a particle size of 75 μm or more (CO 2 converted value) C CO2 and 75 μm and the content of the metal fluoride having a particle size of 75 μm or more (F converted value) CF and 75 μm are the following: 6.0% by mass or more (including the case where at least one of the CCO2 , 75 μm and the CF, 75 μm is 0% by mass) with respect to the total mass Ccoat , total of the coating agent. Characterized coated arc welding rod.
 また、本発明に係る被覆アーク溶接棒の好ましい実施形態は、下記(5)~(10)の構成からなる。
(5)溶接棒長手方向に垂直な断面において、
 前記被覆剤全体の断面積をSとし、
 円相当径が30μm以上である前記金属炭酸塩および前記金属フッ化物のうち少なくとも1種の総面積をSとしたとき、
 Sに対するSの比率(S/S)が、0.06以上0.15以下を満たす上記(1)~(4)のいずれか1つに記載の被覆アーク溶接棒。
(6)前記被覆剤は、前記金属炭酸塩として、CaCO、BaCO、SrCO、MgCOおよびMnCOから選択される少なくとも1種を含有し、
 前記被覆剤の全質量Ccoat,totalに対する、前記被覆剤中の金属炭酸塩の総含有量(CO換算値)CCO2,totalが、6.0質量%以上26.0質量%以下を満たす、上記(1)~(5)のいずれか1つに記載の被覆アーク溶接棒。
(7)前記被覆剤は、前記金属フッ化物として、CaF、BaF、SrFおよびMgFから選択される少なくとも1種を含有し、
 前記被覆剤の全質量Ccoat,totalに対する、前記被覆剤中の金属フッ化物の総含有量(F換算値)CF,totalは、15.0質量%以下(0質量%を含む)である、上記(1)~(6)のいずれか1つに記載の被覆アーク溶接棒。
(8)前記被覆剤は、金属炭酸塩および金属フッ化物の両方を含有し、
 前記被覆剤中の、金属炭酸塩の総含有量(CO換算値)CCO2,totalと金属フッ化物の総含有量(F換算値)CF,totalの合計に対する、金属フッ化物の総含有量(F換算値)CF,totalの比率{CF,total/(CCO2,total+CF,total)}が、0.10以上0.30以下を満たす、上記(1)~(7)のいずれか1つに記載の被覆アーク溶接棒。
(9)前記被覆剤は、更に、SiおよびSi化合物のうち少なくとも1種を含有し、
 前記被覆剤の全質量Ccoat,totalに対する、前記SiおよびSi化合物の総含有量(Si換算値)CSi,totalは、6.0質量%以上9.0質量%以下である、上記(1)~(8)のいずれか1つに記載の被覆アーク溶接棒。
(10)前記被覆アーク溶接棒を、母材に対し垂直または後退角を0°超、30°以下とした溶接姿勢によるアーク溶接において用いられることを特徴とする上記(1)~(9)のいずれか1つに記載の被覆アーク溶接棒。
A preferred embodiment of the coated arc welding rod according to the present invention has the following configurations (5) to (10).
(5) In a section perpendicular to the longitudinal direction of the welding rod,
The cross-sectional area of the entire coating and S 1,
When the circle equivalent diameter of at least one of the total area of said metal carbonate and said metal fluoride is 30μm or more was S 2,
The ratio of S 2 relative to S 1 (S 2 / S 1) is covered electrode as claimed in any one of the preceding satisfy 0.06 to 0.15 (1) to (4).
(6) The coating agent contains, as the metal carbonate, at least one selected from CaCO 3 , BaCO 3 , SrCO 3 , MgCO 3 and MnCO 3 ,
The total content of metal carbonate (CO 2 converted value) C CO2, total in the coating agent with respect to the total mass C coat, total of the coating agent satisfies 6.0 mass% or more and 26.0 mass% or less. The coated arc welding rod according to any one of the above (1) to (5).
(7) The coating agent contains at least one selected from CaF 2 , BaF 2 , SrF 2 and MgF 2 as the metal fluoride,
The total content (F conversion value) CF, total of the metal fluoride in the coating agent with respect to the total mass C coat, total of the coating agent is 15.0% by mass or less (including 0% by mass). The coated arc welding rod according to any one of the above (1) to (6).
(8) The coating agent contains both a metal carbonate and a metal fluoride,
In the coating agent, the total content of metal fluorides relative to the total of the total content of metal carbonates (CO 2 converted value) C CO2, total and the total content of metal fluorides (F converted value) CF, total (1) to (7) above , wherein the ratio ( CF, total / ( CCO2, total + CF, total )) of the quantity (F-converted value) CF, total satisfies 0.10 or more and 0.30 or less. A coated arc welding rod according to any one of the preceding claims.
(9) The coating agent further contains at least one of Si and a Si compound,
In the above (1), the total content of Si and the Si compound (in terms of Si) C Si, total is 6.0% by mass to 9.0% by mass with respect to the total mass C coat, total of the coating agent. The coated arc welding rod according to any one of the above (1) to (8).
(10) The method according to any of (1) to (9), wherein the coated arc welding rod is used in arc welding in a welding posture in which the base metal is perpendicular or has a receding angle of more than 0 ° and 30 ° or less. A coated arc welding rod according to any one of the preceding claims.
 また、本発明に係る被覆アーク溶接方法は、下記(11)の構成からなる。
(11)心線と、前記心線を被覆する被覆剤と、を有する被覆アーク溶接棒を用いた被覆アーク溶接方法であって、
 前記被覆剤は、金属炭酸塩および金属フッ化物のうち少なくとも1種を含有し、
 粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmと、粒度が75μm以上である金属フッ化物の含有量(F換算値)CF,75μmの合計が、該被覆剤の全質量Ccoat,totalに対し、6.0質量%以上(ただし、前記CCO2,75μmおよび前記CF,75μmのうち少なくとも一方が、0質量%の場合を含む)であることを特徴とする被覆アーク溶接方法。
Further, the coated arc welding method according to the present invention has the following configuration (11).
(11) A covered arc welding method using a covered arc welding rod having a core wire and a coating agent for coating the core wire,
The coating agent contains at least one of a metal carbonate and a metal fluoride,
The total of the content of metal carbonate having a particle size of 75 μm or more (CO 2 converted value) C CO2 and 75 μm and the content of the metal fluoride having a particle size of 75 μm or more (F converted value) CF and 75 μm are the following: 6.0% by mass or more (including the case where at least one of the CCO2 , 75 μm and the CF, 75 μm is 0% by mass) with respect to the total mass Ccoat , total of the coating agent. Characterized covered arc welding method.
 また、本発明に係る被覆アーク溶接方法の好ましい実施形態は、下記(12)~(15)の構成からなる。
(12)前記被覆アーク溶接棒の使用後における溶接棒先端側において、
 前記心線の先端部と、該心線の周囲に残存している前記被覆剤の最先端部との、溶接棒長手方向における距離をDとし、
 前記心線の周囲に残存している前記被覆剤の最先端部と、該心線の周囲に残存している該被覆剤の最後端部との、溶接棒長手方向における距離をDとしたとき、
 前記Dに対する前記Dの比率(D/D)が0.40以下(0の場合を含む)となるようにアーク溶接する、上記(11)に記載の被覆アーク溶接方法。
(13)前記Dが2.2mm以下を満たすようにアーク溶接する、上記(12)に記載の被覆アーク溶接方法。
(14)前記被覆アーク溶接棒における心線の直径dに対する前記Dの比率(D/d)が1.3以下を満たすようにアーク溶接する、上記(12)または(13)に記載の被覆アーク溶接方法。
(15)前記被覆アーク溶接棒を、母材に対し垂直または後退角を0°超、30°以下とした溶接姿勢でアーク溶接する、上記(11)~(14)のいずれか1つに記載の被覆アーク溶接方法。
Further, a preferred embodiment of the covered arc welding method according to the present invention has the following configurations (12) to (15).
(12) On the welding rod tip side after using the coated arc welding rod,
And the tip portion of the core wire, the leading edge portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction and D 1,
And cutting edge portions of the coating remaining on the periphery of the core wire, the rearmost end portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction is D 2 When
The D 2 ratio (D 2 / D 1) is arc welding so that 0.40 or less (including 0), shielded metal arc welding method according to (11) for said D 1.
(13) wherein D 1 is arc welding so as to satisfy the following 2.2 mm, shielded metal arc welding method according to (12).
(14) the ratio of the D 1 to diameter d of the core wire in the covered electrode (D 1 / d) is arc welding so as to satisfy 1.3 or less, according to the above (12) or (13) Covered arc welding method.
(15) The arc welding of the coated arc welding rod in a welding posture in which the base metal is perpendicular to or has a receding angle of more than 0 ° and 30 ° or less, according to any one of the above (11) to (14). Covered arc welding method.
 本発明によれば、被覆剤中に含まれる金属炭酸塩および金属フッ化物から選択される少なくとも1種の粒子のうち、粒子サイズの制御によって、好適なサイズの粒子が所定量含まれるように構成しているので、被覆剤が均一に溶融していくことで、溶接中に保護筒が均一に形成され、片溶けを防止し、アークの偏向が抑制される。結果として、アーク安定性がより良好なものとなる。これにより、あらゆる系統の被覆アーク溶接棒であっても、優れた溶接作業性を得ることができる被覆アーク溶接棒および被覆アーク溶接方法を提供することができる。 According to the present invention, among the at least one kind of particles selected from the metal carbonates and metal fluorides contained in the coating agent, the particle size is controlled so that a predetermined amount of particles of a suitable size is contained. As a result, the coating material is uniformly melted, so that the protective cylinder is uniformly formed during welding, the one-side melting is prevented, and the deflection of the arc is suppressed. As a result, the arc stability is better. Thus, it is possible to provide a coated arc welding rod and a coated arc welding method that can obtain excellent welding workability even with any type of coated arc welding rod.
図1Aは、溶接時にアークの偏向が抑制された場合の被覆アーク溶接棒の状態を示す断面図である。FIG. 1A is a cross-sectional view illustrating a state of a covered arc welding rod when the deflection of an arc is suppressed during welding. 図1Bは、溶接時にアークの偏向が顕著に発生した場合の被覆アーク溶接棒の状態を示す断面図である。FIG. 1B is a cross-sectional view showing a state of the covered arc welding rod when the deflection of the arc is remarkable during welding.
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. Note that the present invention is not limited to the embodiments described below, and can be arbitrarily modified and implemented without departing from the gist of the present invention.
 本発明者らは、被覆剤中に含有される金属炭酸塩や金属フッ化物の粒子サイズ(粒子の大きさ)に着目し、スムーズな溶滴移行や良好なアーク安定性を実現することができる被覆アーク溶接棒を得るために鋭意検討を重ねた。その結果、金属炭酸塩や金属フッ化物の粒子のうち、サイズの大きなものが所定量含まれるように調整することが効果的であることを見出した。 The present inventors pay attention to the particle size (particle size) of the metal carbonate or metal fluoride contained in the coating agent, and can realize smooth droplet transfer and good arc stability. Intensive studies were conducted to obtain a coated arc welding rod. As a result, it has been found that it is effective to adjust the particle size of the metal carbonate or metal fluoride particles so that the particles have a large size.
 まず、金属炭酸塩や金属フッ化物の粒子サイズ(すなわち、粒度の粗さ)が、溶滴移行に与える影響(すなわち、作用効果)について、以下で詳細に説明する。 First, the effect of the particle size (ie, particle size roughness) of the metal carbonate or metal fluoride on droplet transfer (ie, the effect) will be described in detail below.
 本発明者らは、金属炭酸塩や金属フッ化物の粒子サイズは、アーク溶接時に形成される保護筒の形状にも影響を与え、これにより、アークの指向性が保たれる、すなわちアークの偏向を抑制することで、良好なアーク安定性を得ることができることを見出した。
 すなわち、粒子サイズの大きな金属炭酸塩または金属フッ化物が被覆剤中に含まれていると、比表面積が小さくなり被覆剤が溶けにくくなるため、アーク溶接時に被覆剤が均一に溶融することで、溶接中において保護筒が均一に形成される(詳細は、後述の内容を参照)。このため、アーク指向性が保たれることで、アーク安定性がより良好なものとなる。
The present inventors have found that the particle size of the metal carbonate or metal fluoride also affects the shape of the protective cylinder formed during arc welding, thereby maintaining the directivity of the arc, that is, the deflection of the arc. It has been found that by suppressing the above, good arc stability can be obtained.
In other words, when the metal carbonate or metal fluoride having a large particle size is contained in the coating agent, the specific surface area becomes small and the coating agent becomes difficult to melt, so that the coating agent is uniformly melted during arc welding. During the welding, the protective cylinder is formed uniformly (for details, refer to the contents described later). For this reason, the arc stability is further improved by maintaining the arc directivity.
 また、金属炭酸塩や金属フッ化物は、被覆剤中にガス発生剤として含有され得る成分であり、被覆アーク溶接棒を電極として、溶接母材との間にアークを発生させたときにシールドガスを発生させて、大気中の酸素および窒素等の溶接金属への侵入を防止する役割を果たす。
 被覆剤中に含有される金属炭酸塩や金属フッ化物の粒子サイズを大きくするように調整すると、被覆アーク溶接棒先端(溶接棒側のアーク発生点)において、粒子サイズの大きいものは完全にガス化するまで一所に滞留するようになる。この一所の滞留によって、ガスが集中的に一方向(溶融した心線の方向)に発生するとともに、ガスの体積膨張が影響し、溶滴のくびれ形成が促進される。このため、電磁ピンチ力や表面張力等の溶滴を離脱させるためのせん断力が効率的に働き、溶滴を小粒の状態で離脱させることができる。また、離脱周期を安定に保ちながら溶滴が離脱するため、アーク安定性が良好となり、優れた溶接作業性を得ることができる。
In addition, metal carbonates and metal fluorides are components that can be contained as a gas generating agent in the coating agent, and when a coated arc welding rod is used as an electrode to generate an arc between the coating material and a welding base material, a shielding gas is generated. To prevent entry of oxygen and nitrogen in the atmosphere into the weld metal.
If the particle size of the metal carbonate and metal fluoride contained in the coating agent is adjusted to be large, at the tip of the coated arc welding rod (the arc generating point on the welding rod side), the one with the large particle size is completely gaseous. Will stay in one place until it is transformed. Due to this stagnation, the gas is intensively generated in one direction (in the direction of the molten core wire), and the volume expansion of the gas affects, thereby promoting the constriction of the droplet. For this reason, the shearing force for detaching the droplet such as the electromagnetic pinch force and the surface tension works efficiently, and the droplet can be detached in a small particle state. Further, since the droplets are detached while keeping the detachment cycle stable, arc stability is improved and excellent welding workability can be obtained.
 一方、金属炭酸塩や金属フッ化物の粒子サイズが小さい場合には、ガス発生量が少ないことから、小さな体積のガスが発生し、かつ、ガスの発生方向が一方向に定まらず、金属炭酸塩や金属フッ化物の粒子サイズが大きい場合と比較して、溶滴の離脱を促進する力も小さいものとなる。 On the other hand, when the particle size of the metal carbonate or metal fluoride is small, a small volume of gas is generated because the amount of generated gas is small, and the generation direction of the gas is not determined in one direction. As compared with the case where the particle size of the metal fluoride or the metal fluoride is large, the force for promoting the detachment of the droplet becomes small.
 以下、本発明の実施形態に係る被覆アーク溶接棒について、被覆剤中に含まれるガス発生剤における、粒子サイズ、溶接棒の長手方向における断面の面積率、その他の成分添加理由および数値限定理由などを、詳細に説明する。 Hereinafter, for the coated arc welding rod according to the embodiment of the present invention, in the gas generating agent contained in the coating agent, the particle size, the area ratio of the cross section in the longitudinal direction of the welding rod, other reasons for addition of components and reasons for numerical limitation, etc. Will be described in detail.
 本実施形態に係る被覆アーク溶接棒は、
 心線と、前記心線を被覆する被覆剤と、を有する被覆アーク溶接棒であって、
 前記被覆剤は、金属炭酸塩および金属フッ化物のうち少なくとも1種を含有し、
 粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmと、粒度が75μm以上である金属フッ化物の含有量(F換算値)CF,75μmの合計が、該被覆剤の全質量Ccoat,totalに対し、6.0質量%以上(ただし、前記CCO2,75μmおよび前記CF,75μmのうち少なくとも一方が、0質量%の場合を含む)であり、
 前記被覆アーク溶接棒の使用後における溶接棒先端側において、
 前記心線の先端部と、該心線の周囲に残存している前記被覆剤の最先端部との、溶接棒長手方向における距離をDとし、
 前記心線の周囲に残存している前記被覆剤の最先端部と、該心線の周囲に残存している該被覆剤の最後端部との、溶接棒長手方向における距離をDとしたとき、
 前記Dに対する前記Dの比率(D/D)が、0.40以下(0の場合を含む)を満たす。
The coated arc welding rod according to the present embodiment,
A coated arc welding rod having a core wire and a coating agent for coating the core wire,
The coating agent contains at least one of a metal carbonate and a metal fluoride,
The total of the content of metal carbonate having a particle size of 75 μm or more (CO 2 converted value) C CO2 and 75 μm and the content of the metal fluoride having a particle size of 75 μm or more (F converted value) CF and 75 μm are the following: 6.0% by mass or more based on the total mass C coat, total of the coating agent (including the case where at least one of the C CO2 , 75 μm and the CF, 75 μm is 0% by mass),
On the welding rod tip side after use of the coated arc welding rod,
And the tip portion of the core wire, the leading edge portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction and D 1,
And cutting edge portions of the coating remaining on the periphery of the core wire, the rearmost end portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction is D 2 When
The ratio of the D 2 for D 1 (D 2 / D 1) satisfies the 0.40 or less (including 0).
〔被覆剤〕
 まず、被覆剤の詳細について、以下に説明する。
(Coating agent)
First, details of the coating agent will be described below.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中の、粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmと、粒度が75μm以上である金属フッ化物の含有量(F換算値)CF,75μmの合計:6.0質量%以上>
 被覆剤中に含まれる、金属炭酸塩または金属フッ化物の粒子サイズを大きくすると、上述の通り、アーク溶接時の溶滴のくびれ形成が促進され、スムーズな溶滴移行を実現することができる。また、アーク溶接時に被覆剤が均一に溶融することで、溶接中において保護筒が均一に形成される。このため、アークの偏向が抑制され、アーク指向性が保たれることで、アーク安定性がより良好なものとなる。
<Content of metal carbonate having a particle size of 75 μm or more (CO 2 converted value) C CO2 , 75 μm, and metal fluoride having a particle size of 75 μm or more, based on the total mass C coat, total of the coating material (F conversion value) CF, total of 75 μm : 6.0% by mass or more>
When the particle size of the metal carbonate or the metal fluoride contained in the coating material is increased, as described above, the formation of the constriction of the droplet at the time of arc welding is promoted, and the smooth droplet transfer can be realized. In addition, since the coating material is uniformly melted at the time of arc welding, the protective cylinder is uniformly formed during welding. For this reason, the deflection of the arc is suppressed, and the arc directivity is maintained, so that the arc stability is further improved.
 なお、粒度が75μm以上である金属炭酸塩が被覆剤中に含有されているか、粒度が75μm以上である金属フッ化物が被覆剤中に含有されていれば、上記したような、スムーズな溶滴移行や良好なアーク安定性の効果を得ることができる。ただし、粒度が所定値以上の金属炭酸塩や、粒度が所定値以上の金属フッ化物の含有量も、スムーズな溶滴移行やアーク安定性に影響し得るため、本実施形態に係る被覆アーク溶接棒においては、粒度が所定値以上である金属炭酸塩や金属フッ化物の含有量も規定する。 If a metal carbonate having a particle size of 75 μm or more is contained in the coating material, or a metal fluoride having a particle size of 75 μm or more is contained in the coating material, a smooth droplet as described above is obtained. The effect of transition and good arc stability can be obtained. However, the content of a metal carbonate having a particle size of a predetermined value or more and a content of a metal fluoride having a particle size of a predetermined value or more can also affect smooth droplet transfer and arc stability. In the rod, the content of metal carbonate or metal fluoride having a particle size of a predetermined value or more is also specified.
 すなわち、粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmと、粒度が75μm以上である金属フッ化物の含有量(F換算値)CF,75μmの合計が、被覆剤の全質量Ccoat,totalに対し、6.0質量%以上であれば、溶滴をスムーズに移行させることができ、また、アーク安定性が良好なものとなり、溶接作業性を向上させる効果を十分に得ることができる。
 ただし、上記のCCO2,75μmおよびCF,75μmのうち少なくとも一方が、0質量%の場合を含む。
That is, the total of the content of metal carbonate having a particle size of 75 μm or more (CO 2 converted value) C CO2 and 75 μm and the content of the metal fluoride having a particle size of 75 μm or more (F converted value) CF and 75 μm are obtained. When the amount is 6.0% by mass or more with respect to the total mass C coat and total of the coating agent, the droplet can be smoothly transferred, and the arc stability becomes good, thereby improving the welding workability. The effect of causing this to occur can be sufficiently obtained.
However, this includes the case where at least one of the above-mentioned CCO2 , 75 μm and CF, 75 μm is 0% by mass.
 なお、粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmと、粒度が75μm以上である金属フッ化物の含有量(F換算値)CF,75μmの合計が、被覆剤の全質量Ccoat,totalに対して大きすぎる場合には、スパッタの増加や、製造過程において、被覆剤の塗装性への影響が懸念されることから、15.0質量%以下であることが好ましく、12.0質量%以下であることがより好ましい。 The sum of the content of metal carbonate having a particle size of 75 μm or more (CO 2 converted value) C CO2 and 75 μm and the content of the metal fluoride having a particle size of 75 μm or more (F converted value) CF and 75 μm are given by: If it is too large relative to the total mass C coat, total of the coating agent, there is a concern that the coating agent may have an adverse effect on the coating properties during the manufacturing process, and therefore, the content is not more than 15.0% by mass. Preferably, it is 12.0 mass% or less.
 また、上記したスムーズな溶滴移行や良好なアーク安定性の効果をより十分に得るためには、粒度が106μm以上である金属炭酸塩の含有量(CO換算値)CCO2,106μmと、粒度が106μm以上である金属フッ化物の含有量(F換算値)CF,106μmの合計が、被覆剤の全質量Ccoat,totalに対し、5.0質量%以上であることが好ましい。一方、上記したスパッタの増加や、製造過程において、被覆剤の塗装性への影響が懸念されることから、上記値は9.0質量%以下であることが好ましい。 Further, in order to more sufficiently obtain the effects of the smooth droplet transfer and the good arc stability described above, the content of the metal carbonate having a particle size of 106 μm or more (CO 2 converted value) C CO2, 106 μm is defined as: It is preferable that the sum of the content (F conversion value) CF and 106 μm of the metal fluoride having a particle size of 106 μm or more is 5.0% by mass or more based on the total mass C coat and total of the coating agent. On the other hand, the above-mentioned value is preferably 9.0% by mass or less, since there is a concern about an increase in the above-mentioned spatter and an influence on the coatability of the coating agent in the manufacturing process.
 上記したスムーズな溶滴移行や良好なアーク安定性の効果を更に十分に得るためには、粒度が150μm以上である金属炭酸塩の含有量(CO換算値)CCO2,150μmと、粒度が150μm以上である金属フッ化物の含有量(F換算値)CF,150μmの合計が、被覆剤の全質量Ccoat,totalに対し、2.5質量%以上であることが好ましく、3.0質量%以上であることがより好ましい。
 また、上記したスパッタの増加や、製造過程において、被覆剤の塗装性への影響が懸念されることから、上記値は5.0質量%以下であることが好ましく、4.0質量%以下であることがより好ましい。
To obtain more fully smooth droplet transfer and good arc stability effect as described above, the content of metal carbonate particle size is 150μm or more and (CO 2 conversion value) C CO2,150μm, particle size The total of the content (F conversion value) CF and 150 μm of the metal fluoride of 150 μm or more is preferably 2.5% by mass or more based on the total mass C coat and total of the coating agent, and is preferably 3.0%. It is more preferred that the content be at least mass%.
In addition, the above value is preferably 5.0% by mass or less, and more preferably 4.0% by mass or less, since there is a concern that the above-mentioned increase in spatter and the influence on the coating property of the coating agent during the manufacturing process are concerned. More preferably, there is.
 なお、上記金属炭酸塩および上記金属フッ化物は、少なくとも1種が被覆剤中に含まれていればよいが、両方含まれるものであってもよい。また、本実施形態で説明する「粒度」は、JIS Z 8801-2006に準じた測定方法を用いて測定したものである。
 また、被覆剤中に含まれる金属炭酸塩および金属フッ化物の粒子サイズ(粒度)は、一般的には最大600μm程度である。
It is sufficient that at least one of the metal carbonate and the metal fluoride is contained in the coating agent, but both may be contained. The “granularity” described in the present embodiment is measured using a measuring method according to JIS Z 8801-2006.
Further, the particle size (particle size) of the metal carbonate and the metal fluoride contained in the coating agent is generally at most about 600 μm.
 <Dに対するDの比率(D/D):0.40以下(0の場合を含む)>
 上述の通り、金属炭酸塩および金属フッ化物の粒子サイズは、アーク溶接後における保護筒の形状にも影響を与える。すなわち、金属炭酸塩および金属フッ化物の粒子サイズおよびその含有量を規定することにより、アーク溶接後における保護筒を良好な形状で形成することができる。これにより、アーク指向性がより一層良好なものとなり、アーク安定性が向上する。
<Ratio of D 2 for D 1 (D 2 / D 1 ): 0.40 or less (including 0)>
As described above, the particle size of the metal carbonate and the metal fluoride also affects the shape of the protective cylinder after arc welding. That is, by defining the particle size and the content of the metal carbonate and the metal fluoride, the protection cylinder after the arc welding can be formed in a good shape. As a result, the arc directivity is further improved, and the arc stability is improved.
 ここで、図を用いて、2種類の被覆アーク溶接棒を使用してアーク溶接を実施した場合における、被覆アーク溶接棒の状態を説明する。なお、図1Aと図1Bにおいて、同一物には同一符号を付して、その詳細な説明は省略する。 Here, the state of the covered arc welding rod when two types of covered arc welding rods are used to perform arc welding will be described with reference to the drawings. 1A and 1B, the same components are denoted by the same reference numerals, and a detailed description thereof will be omitted.
 図1Aは、溶接時にアークの偏向が抑制された場合の被覆アーク溶接棒の状態を示す断面図である。図1Aに示すように、被覆アーク溶接棒1は、心線2と、心線2を被覆する被覆剤3とを有する。被覆剤3は、金属炭酸塩および金属フッ化物から選択される少なくとも1種の化合物を含有する。そして、粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmと、粒度が75μm以上である金属フッ化物の含有量(F換算値)CF,75μmの合計が、被覆剤の全質量Ccoat,totalに対し、6.0質量%以上(ただし、前記CCO2,75μmおよび前記CF,75μmのうち少なくとも一方が、0質量%の場合を含む)となるように、被覆剤3の成分が規定されている。 FIG. 1A is a cross-sectional view illustrating a state of a covered arc welding rod when the deflection of an arc is suppressed during welding. As shown in FIG. 1A, the covered arc welding rod 1 has a core wire 2 and a coating agent 3 that covers the core wire 2. The coating agent 3 contains at least one compound selected from metal carbonates and metal fluorides. Then, the sum of the content of metal carbonate having a particle size of 75 μm or more (CO 2 converted value) C CO2 and 75 μm and the content of the metal fluoride having a particle size of 75 μm or more (F converted value) CF and 75 μm are as follows. The total mass C coat, total of the coating agent is 6.0% by mass or more (including the case where at least one of the C CO2,75 μm and the CF, 75 μm is 0% by mass). Defines the components of the coating agent 3.
 上記被覆アーク溶接棒1を用い、母材5に対してアーク溶接を実施した場合、被覆剤3に含有される特定の化合物(すなわち、金属炭酸塩および金属フッ化物から選択される少なくとも1種)の粒度およびその含有量の合計を、上記の通りに限定しているため、上記化合物の比表面積は小さくなる結果、被覆剤3、厳密にいうと心線2の先端部2aよりも突出している部分である、被覆剤3の一部である保護筒6の溶融または軟化は進みにくくなり、アーク溶接時に保護筒6が残存しやすくなる。
 このため、被覆剤3の片溶けが抑制され、被覆剤3が被覆アーク溶接棒1の周方向全体にわたって均一に溶融していく。その結果、溶接中または溶接後において、保護筒6の内周面で囲まれる空間は、被覆アーク溶接棒の断面視において均一な円錐形に近づく。結果、保護筒6の先端3aと心線2の先端部2aとの溶接棒長手方向の距離Dは、いずれの位置をとってもほぼ同等の長さとなり、ばらつきが少ないものとなる。このため、溶接中においてアーク4の揺らぎが抑制され、アーク指向性が良好なものとなり、アーク安定性が向上する。
When the base material 5 is subjected to arc welding using the coated arc welding rod 1, a specific compound contained in the coating agent 3 (that is, at least one selected from metal carbonates and metal fluorides) Is limited as described above, and as a result, the specific surface area of the compound is reduced, and as a result, the compound 3 protrudes more than the tip 2 a of the core wire 2. Melting or softening of the protective cylinder 6, which is a part of the coating agent 3, is difficult to progress, and the protective cylinder 6 tends to remain during arc welding.
For this reason, one-side melting of the coating agent 3 is suppressed, and the coating agent 3 is uniformly melted over the entire circumferential direction of the coated arc welding rod 1. As a result, during or after welding, the space surrounded by the inner peripheral surface of the protection cylinder 6 approaches a uniform conical shape in a sectional view of the covered arc welding rod. As a result, the distance D in the longitudinal direction of the welding rod between the distal end 3a of the protective tube 6 and the distal end portion 2a of the core wire 2 is almost equal at any position, and the dispersion is small. Therefore, the fluctuation of the arc 4 during welding is suppressed, the arc directivity is improved, and the arc stability is improved.
 また、後述するように、被覆剤3中に金属炭酸塩および金属フッ化物の両方が含まれる場合に、被覆剤3中に含まれる、金属炭酸塩の総含有量(CO換算値)CCO2,totalと金属フッ化物の総含有量(F換算値)CF,totalの合計に対する、金属フッ化物の総含有量(F換算値)CF,totalの比率{CF,total/(CCO2,total+CF,total)}が、適切に調整されていると、被覆剤3の軟化点を高くすることができるので、適切な長さまで保護筒6の形状を均一に保持することができ、保護筒6がガイドとなってアークの指向性を高めることができる。これにより、更に溶滴の揺動(ふらつき)が抑制され、良好なアーク安定性が維持できることで、溶接作業性が向上する。 Further, as described later, when both the metal carbonate and the metal fluoride are contained in the coating material 3, the total content of the metal carbonate (the CO 2 conversion value) C CO2 contained in the coating material 3 , Total and the total content of metal fluoride (converted to F) C F, total of the total content of metal fluoride (converted to F) CF, totalCF, total / (C CO2) , Total + C F, total )} is appropriately adjusted, the softening point of the coating material 3 can be increased, so that the shape of the protective cylinder 6 can be maintained uniformly to an appropriate length. The protection cylinder 6 serves as a guide to enhance the directivity of the arc. Thereby, the fluctuation (fluctuation) of the droplet is further suppressed, and good arc stability can be maintained, so that welding workability is improved.
 一方、図1Bは、溶接時にアークの偏向が顕著に発生した場合の被覆アーク溶接棒の状態を示す断面図である。図1Bに示すように、金属炭酸塩および金属フッ化物の粒度およびその含有量が、上記のように調整されていない被覆剤13を有する被覆アーク溶接棒11を用いてアーク溶接を実施した場合には、溶接後に残存している被覆剤13(保護筒16)の最先端部13aと最後端部13bは、心線2の先端部2aからの距離にばらつきが生じる。その結果、溶接中においてアーク14の偏向が顕著に発生することから、アーク安定性が低下する。 Meanwhile, FIG. 1B is a cross-sectional view showing a state of the covered arc welding rod when arc deflection is remarkably generated during welding. As shown in FIG. 1B, when the particle size and the content of the metal carbonate and the metal fluoride are subjected to arc welding using the coated arc welding rod 11 having the coating agent 13 which is not adjusted as described above. In the coating agent 13 (protective cylinder 16) remaining after welding, the distance from the leading end 2a of the core wire 2 varies between the leading end 13a and the trailing end 13b. As a result, the arc 14 is significantly deflected during welding, and the arc stability is reduced.
 本実施形態においては、被覆アーク溶接棒の使用後における、心線2の周囲に残存している被覆剤3,13の長さ(または、保護筒6,16の長さ)のばらつき等について規定する。よって、ばらつきを数値化する方法について、図1Bを用いて詳細に説明する。 In the present embodiment, variations in the lengths of the coating materials 3 and 13 (or the lengths of the protection cylinders 6 and 16) remaining around the core wire 2 after using the coated arc welding rod are specified. I do. Therefore, a method of digitizing the variation will be described in detail with reference to FIG. 1B.
 図1Bに示すように、被覆アーク溶接棒の使用後における溶接棒先端側(図1B中の被覆アーク溶接棒11の下側)において、心線2の先端部2aと、心線2の周囲に残存している被覆剤13の最先端部13aとの、溶接棒長手方向(図1B中、上下方向)における距離をDとし、心線2の周囲に残存している被覆剤13の最先端部13aと、心線2の周囲に残存している被覆剤13の最後端部13bとの、溶接棒長手方向における距離をDとする。 As shown in FIG. 1B, at the tip end side of the welding rod after use of the covered arc welding rod (under the covered arc welding rod 11 in FIG. 1B), the distal end portion 2 a of the core wire 2 and the periphery of the core wire 2 are formed. the leading edge portion 13a of the residual to that coating 13, welded (in FIG. 1B, the vertical direction) rod longitudinal distance in the D 1, state-of-the-art coating 13 remaining on the periphery of the core wire 2 and section 13a, the rearmost end portion 13b of the coating 13 remaining on the periphery of the core wire 2, the distance in the welding rod longitudinal direction and D 2.
 そして、Dに対するDの比率(D/D)が0.40以下を満たす場合、長さのばらつきが少ない保護筒16が良好な形状で形成されていることを意味する。この要件を満たす場合には、アークの指向性が得られ、アーク安定性が向上する。なお、Dに対するDの比率(D/D)は、好ましくは0.30以下であり、より好ましくは0.25以下であり、最も好ましいのは0の場合である。 When the ratio of D 2 for D 1 (D 2 / D 1 ) satisfies 0.40 or less, it means that the variation in the length is less protecting cylinder 16 is formed in a good shape. When this requirement is satisfied, the directivity of the arc is obtained, and the arc stability is improved. The ratio of D 2 for D 1 (D 2 / D 1 ) is preferably 0.30 or less, more preferably 0.25 or less, and most preferred is if 0.
 ここで、被覆アーク溶接棒の使用後(すなわち、アーク溶接の終了後)とは、アーク溶接開始後、5秒以上の連続アーク発生期間を経た後に、被覆剤が残存している状態をいう。
 一般的に、被覆アーク溶接棒は一度使用した後も、被覆剤が残っている限りは、繰り返し使用する場合がある。
 なお、被覆アーク溶接棒の使用後には、心線2の先端部にスラグが付着し得るが、本実施形態においては、心線2の先端部2aはスラグを取り除いた状態で規定され、その形状は略平面状となっている。
 また、本実施形態で説明する「最先端部」とは、被覆剤3,13の先端のうち、最も突き出ている部分をいい、「最後端部」とは、被覆剤3,13の先端のうち、最も突き出ていない部分をいう。
Here, after using the covered arc welding rod (that is, after the end of the arc welding) means a state in which the coating agent remains after a continuous arc generation period of 5 seconds or more after the start of the arc welding.
Generally, the coated arc welding rod may be used repeatedly even after it has been used once as long as the coating agent remains.
After the use of the covered arc welding rod, slag may adhere to the tip of the core wire 2. In the present embodiment, the tip 2 a of the core wire 2 is defined in a state where the slag is removed, and its shape is determined. Has a substantially planar shape.
In addition, the “most distal portion” described in the present embodiment refers to the most protruding portion of the tips of the coating materials 3 and 13, and the “rearmost portion” refers to the distal end of the coating materials 3 and 13. Of these, the least protruding part.
 <D:2.2mm以下>
 被覆アーク溶接棒の使用後における溶接棒先端側において、心線2の周囲には被覆剤13がある程度以上の長さで残存し、保護筒16が形成されていることが好ましい。しかし、心線2の先端部2aと、心線2の周囲に残存している被覆剤13の最先端部13aとの溶接棒長手方向の距離Dが2.2mmを超えると、保護筒16が過剰に長くなることが影響し、心線と母材間の距離が開き、アーク長が長くなる。このアーク長が過剰に長くなると、アーク長が変動し易く、アーク切れの発生や、アーク安定性が低下する。結果として、ビード外観の劣化やスパッタが増加する等、溶接作業性が悪くなるおそれがある。したがって、上記Dは2.2mm以下とすることが好ましく、1.7mm以下とすることがより好ましい。なお、上記Dが極端に小さすぎると、アークの指向性が得られなくなり、アーク安定性が悪くなるため、Dは1.0mm以上であることが好ましく、1.3mm以上であることがより好ましい。
<D 1 : 2.2 mm or less>
It is preferable that the coating material 13 remains around the core wire 2 at a certain length or more on the distal end side of the welding rod after use of the coated arc welding rod, and the protective cylinder 16 is formed. However, the tip portion 2a of the core 2, the welding rod longitudinal distance D 1 of the leading-edge portion 13a of the coating 13 remaining on the periphery of the core wire 2 is more than 2.2 mm, the protective tube 16 Becomes excessively long, the distance between the core wire and the base material increases, and the arc length increases. If the arc length is excessively long, the arc length is liable to fluctuate, causing arc breakage and deteriorating arc stability. As a result, there is a possibility that welding workability may deteriorate, such as deterioration of bead appearance and increase of spatter. Therefore, it is preferable that the above D 1 is 2.2mm or less, and more preferably to less 1.7 mm. If D 1 is too small, the directivity of the arc cannot be obtained, and the arc stability is deteriorated. Therefore, D 1 is preferably 1.0 mm or more, and preferably 1.3 mm or more. More preferred.
 <被覆アーク溶接棒における心線の直径dに対するDの比率(D/d):1.3以下>
 一般的に、被覆アーク溶接棒における心線の直径d(図1B中のdを参照)と、上記Dは比例関係にある。良好なアーク安定性を維持するために、D/dは1.3以下であることが好ましく、1.0以下であることがより好ましく、0.8以下であることが更に好ましい。また、上記直径dに対し、Dが極端に小さすぎると、アークの指向性が得られなくなり、アーク安定性が悪くなるため、D/dは0.1以上であることが好ましく、0.3以上であることがより好ましい。
 なお、本実施形態において、上記直径dは、特に制限されないが、一般的に使用される直径dの範囲から、3.0~5.0mmとすることが好ましい。
<Ratio of D 1 to the diameter d of the core wire in the covered electrode (D 1 /d):1.3 less>
Generally, the diameter of the core wire d (see d in FIG. 1B) in the covered electrode, the D 1 is proportional. In order to maintain good arc stability, D 1 / d is preferably at most 1.3, more preferably at most 1.0, even more preferably at most 0.8. If D 1 is extremely small with respect to the diameter d, the directivity of the arc cannot be obtained, and the arc stability deteriorates. Therefore, D 1 / d is preferably 0.1 or more, and 0/0. It is more preferably at least 3.
In the present embodiment, the diameter d is not particularly limited, but is preferably 3.0 to 5.0 mm from a generally used diameter d.
 <Sに対するSの比率(S/S):0.06以上0.15以下>
 上述の本実施形態は、被覆剤中に含まれる金属炭酸塩および金属フッ化物から選択される少なくとも1種の粒子のうち、粒子サイズの大きなものが所定量含まれるように規定することで、スムーズな溶滴の移行や、良好なアーク安定性を実現したものである。
 一方、本実施形態においては、これらの性能を実現するための別の規定方法として、以下のものを採用する。具体的には、被覆アーク溶接棒は、溶接棒長手方向に垂直な断面において、被覆剤全体の断面積をSとし、円相当径が30μm以上である金属炭酸塩および金属フッ化物のうち少なくとも1種の総面積をSとしたとき、Sに対するSの比率(S/S)が、0.06以上0.15以下を満たすことを特徴とする。
<Ratio of S 2 relative to S 1 (S 2 / S 1 ): 0.06 to 0.15>
In the above-described embodiment, among the at least one kind of particles selected from the metal carbonates and the metal fluorides contained in the coating agent, the particles having a large particle size are defined so as to be contained in a predetermined amount, so that the particles are smoothly contained. The transfer of the droplets and the good arc stability are realized.
On the other hand, in the present embodiment, the following is adopted as another defining method for realizing these performances. Specifically, covered electrode, in a cross section perpendicular to the welding rod longitudinally, the cross-sectional area of the entire coating and S 1, at least one equivalent circle diameter of the metal carbonate and metal fluoride is 30μm or more one of the total area when the S 2, the ratio of S 2 relative to S 1 (S 2 / S 1 ) , characterized in that satisfy 0.06 to 0.15.
 Sに対するSの比率(S/S)が、0.06以上であると、溶滴の離脱を促進する効果がより顕著に現れ、よりスムーズな溶滴移行を実現できる。したがって、上記S/Sは好ましくは0.06以上とし、より好ましくは0.07以上である。
 一方、上記S/Sが0.15以下であると、所望の性能の溶接金属を得ることが容易になる。したがって、上記S/Sは0.15以下とし、より好ましくは0.10以下である。
The ratio of S 2 relative to S 1 (S 2 / S 1 ) it is, if it is less than 0.06, appears more remarkable effect of promoting droplet detachment can Smoother droplet transfer. Therefore, the ratio S 2 / S 1 is preferably 0.06 or more, and more preferably 0.07 or more.
On the other hand, when S 2 / S 1 is 0.15 or less, it becomes easy to obtain a weld metal having desired performance. Therefore, the ratio S 2 / S 1 is set to 0.15 or less, and more preferably 0.10 or less.
 なお、被覆剤中には、円相当径が30μm以上である金属フッ化物のみが上記範囲で含有されていても上記効果を得ることができるが、金属炭酸塩のみが上記範囲で含有されていることがより好ましい。また、金属炭酸塩と金属フッ化物との両方が、上記範囲で含有されていることが最も好ましい。 In the coating agent, the above effect can be obtained even if only the metal fluoride having an equivalent circle diameter of 30 μm or more is contained in the above range, but only the metal carbonate is contained in the above range. Is more preferable. Most preferably, both the metal carbonate and the metal fluoride are contained in the above range.
 上記S/Sを上記の通り制御する方法としては、被覆剤の原料となる金属炭酸塩または金属フッ化物の粒度を調整する方法の他、金属炭酸塩または金属フッ化物の含有量を調整する方法、被覆アーク溶接棒の製造時において被覆剤の塗装圧を調整する方法などがある。そして、これらを単独で又は組み合わせることにより、上記S/Sを制御することができる。しかし、上記製造方法はあくまで一例であり、必ずしもこれらに限定されない。 As a method of controlling the S 2 / S 1 as described above, in addition to the method of adjusting the particle size of the metal carbonate or the metal fluoride used as the raw material of the coating agent, the method of adjusting the content of the metal carbonate or the metal fluoride And a method of adjusting the coating pressure of the coating agent during production of the coated arc welding rod. By combining or these alone, it is possible to control the S 2 / S 1. However, the above-described manufacturing method is merely an example, and the present invention is not necessarily limited thereto.
 なお、本実施形態において「円相当径」とは、JIS Z 8827-1で定められているように、粒子の投影面積と等しい面積をもつ円の直径を示し、コンピュータによる画像解析ソフトなどで求めることができる。
 また、被覆剤中に含まれる金属炭酸塩および金属フッ化物の粒子サイズ(円相当径)は、一般的には最大600μm程度である。
In the present embodiment, the “equivalent circle diameter” indicates the diameter of a circle having an area equal to the projected area of a particle, as defined in JIS Z 8827-1, and is obtained by image analysis software using a computer. be able to.
In addition, the particle size (equivalent circle diameter) of the metal carbonate and the metal fluoride contained in the coating agent is generally about 600 μm at the maximum.
 ここで、上記S/Sは、例えば、次のようにして測定することができる。まず、日本電子株式会社製 WD/EDコンバイン 電子プローブマイクロアナライザ(Electron Probe Micro Analyzer;EPMA)JXA-8200を使用し、加速電圧15kV、照射電流5×10-10Aで溶接棒断面を分析する(倍率は400倍)。そして、溶接棒の断面全体に対し、画像解析ソフトJTrimを用いて、円相当径が30μm以上である金属炭酸塩および金属フッ化物のうち少なくとも1種の領域と、それ以外の領域とを二値化する。これにより、被覆剤全体の断面積Sに対する、円相当径が30μm以上である金属炭酸塩および金属フッ化物のうち少なくとも1種の総面積S(すなわち、S/S)を算出することができる。 Here, the S 2 / S 1 is for example, can be measured as follows. First, using a WD / ED combine electron probe microanalyzer (EPMA) JXA-8200 manufactured by JEOL Ltd., the welding rod cross section is analyzed at an acceleration voltage of 15 kV and an irradiation current of 5 × 10 −10 A ( Magnification is 400 times). Then, using the image analysis software JTrim, at least one region of a metal carbonate and a metal fluoride having an equivalent circle diameter of 30 μm or more and the other region are binary-coded with respect to the entire cross section of the welding rod. Become Thereby, the total area S 2 (that is, S 2 / S 1 ) of at least one of the metal carbonate and the metal fluoride having the equivalent circle diameter of 30 μm or more with respect to the cross-sectional area S 1 of the entire coating material is calculated. be able to.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中の金属炭酸塩の総含有量(CO換算値)CCO2,total:6.0質量%以上26.0質量%以下>
 被覆アーク溶接棒の被覆剤に含まれるCaCOやBaCO等の金属炭酸塩は、アーク発生点近傍での熱分解により、シールドガス(遮蔽ガス)であるCOを発生させ、大気中の酸素、窒素、水分から溶融池を保護する作用を有する成分である。例えば、CaCOは約825℃で分解し、CaOとCOガスを発生する。被覆剤中の金属炭酸塩の含有量が過少であると、シールド不良によって、大気の巻込みが起こることで、溶接作業性の劣化、ブローホールなどの溶接欠陥や、溶接金属の衝撃値低下の原因となる。
 一方、被覆剤中の金属炭酸塩の総含有量が過剰であると、溶接中に被覆剤が溶融し難くなる。すなわち、前述のDの距離が長くなるため、心線の溶融界面と溶融池との距離が過剰に離れ、アーク長が適正条件から外れる。これにより、アーク切れの発生や、アーク安定性の低下が起こり、スパッタが増加するおそれがある。
 また、上述の通り、所定サイズ以上の金属炭酸塩を含有することにより、溶滴移行周期を安定させることができる。
<Total mass of metal carbonate in the coating agent (CO 2 equivalent value) C CO2, total : 6.0 mass% or more and 26.0 mass% or less based on the total mass C coat and total of the coating material>
Metal carbonates such as CaCO 3 and BaCO 3 contained in the coating agent of the coated arc welding rod generate CO 2 , which is a shielding gas (shielding gas), by thermal decomposition in the vicinity of the arc generation point, and oxygen in the atmosphere It is a component that has the effect of protecting the molten pool from nitrogen, moisture. For example, CaCO 3 decomposes at about 825 ° C., generating CaO and CO 2 gas. If the content of metal carbonate in the coating agent is too low, poor shielding may cause entrapment of air, resulting in deterioration of welding workability, welding defects such as blow holes, and lower impact value of weld metal. Cause.
On the other hand, when the total content of the metal carbonate in the coating agent is excessive, the coating agent becomes difficult to melt during welding. That is, since the distance between the above-mentioned D 1 is longer, the distance between the molten pool and the molten surface of the core wire is too distant, the arc length deviates from the proper conditions. As a result, the occurrence of arc breakage or a decrease in arc stability occurs, and there is a possibility that spatter may increase.
Further, as described above, by containing a metal carbonate having a predetermined size or more, the droplet transfer cycle can be stabilized.
 被覆剤の全質量Ccoat,totalに対する、被覆剤中の金属炭酸塩の総含有量(CO換算値)CCO2,totalが6.0質量%以上の場合、これらの効果を十分に得ることができる。したがって、上記金属炭酸塩の含有量CCO2,totalは、CO換算値で6.0質量%以上であることが好ましく、10.0質量%以上であることがより好ましい。
 一方、被覆剤の全質量Ccoat,totalに対する、被覆剤中の金属炭酸塩の総含有量(CO換算値)CCO2,totalが26.0質量%以下であると、よりアーク安定性が向上し、スパッタ発生量が減少する。したがって、上記金属炭酸塩の含有量CCO2,totalは、CO換算値で26.0質量%以下であることが好ましく、25.0質量%以下であることがより好ましい。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中の金属炭酸塩の総含有量(CO換算値)は、4.0質量%以上、10.0質量%以下であることが好ましく、4.5質量%以上、9.0質量%以下であることがより好ましく、4.5質量%以上、7.5質量%以下であることが更に好ましい。
When the total content of the metal carbonate in the coating agent (CO 2 converted value) C CO2, total is 6.0% by mass or more with respect to the total mass C coat, total of the coating agent, these effects are sufficiently obtained. Can be. Therefore, the content C CO2, total of the metal carbonate is preferably 6.0% by mass or more, more preferably 10.0% by mass or more in terms of CO 2 .
On the other hand, when the total content (CO 2 converted value) C CO2, total of the metal carbonate in the coating material is 26.0% by mass or less with respect to the total mass C coat, total of the coating material, the arc stability becomes higher. And the amount of spatter generated is reduced. Therefore, the content C CO2, total of the metal carbonate is preferably 26.0% by mass or less, more preferably 25.0% by mass or less in terms of CO 2 .
Incidentally, the same reason as described above, the total mass C Electrode covered electrodes, for total, the total content of metal carbonate in the covered electrode (CO 2 conversion value) is 4.0 mass% or more, It is preferably 10.0% by mass or less, more preferably 4.5% by mass or more and 9.0% by mass or less, further preferably 4.5% by mass or more and 7.5% by mass or less. preferable.
 本実施形態の被覆剤として用いられる金属炭酸塩としては、炭酸カルシウム(CaCO)、炭酸バリウム(BaCO)、炭酸ストロンチウム(SrCO)、炭酸マグネシウム(MgCO)および炭酸マンガン(MnCO)から選択される少なくとも1種であることが好ましい。製造コストの観点から、CaCOおよびBaCOを用いることがより好ましく、CaCOを用いることが最も好ましい。上記種々の金属炭酸塩は、いずれか1種でも複数を組み合わせて使用してもよいが、複数の金属炭酸塩を使用する場合は、CO換算値の総含有量で、6.0質量%以上26.0質量%以下の範囲内となるようにすることが好ましい。 The metal carbonate used as the coating agent of the present embodiment includes calcium carbonate (CaCO 3 ), barium carbonate (BaCO 3 ), strontium carbonate (SrCO 3 ), magnesium carbonate (MgCO 3 ), and manganese carbonate (MnCO 3 ). Preferably, at least one selected from them is used. From the viewpoint of manufacturing cost, it is more preferable to use CaCO 3 and BaCO 3 , and it is most preferable to use CaCO 3 . Any of the above various metal carbonates may be used alone or in combination of two or more. When a plurality of metal carbonates are used, the total content in terms of CO 2 is 6.0% by mass. It is preferable that the content be in the range of not less than 26.0% by mass.
 金属炭酸塩としてCaCOを被覆剤中に含有する場合に、被覆剤中のCaCOの含有量は、被覆剤全質量に対し、CO換算値で、6.0質量%以上26.0質量%以下であることが好ましく、10.0質量%以上25.0質量%以下であることがより好ましい。
 なお、被覆アーク溶接棒中のCaCOの含有量は、溶接棒全質量あたり、10.0質量%以上、20.0質量%以下であることが好ましく、11.0質量%以上、19.0質量%以下であることがより好ましく、11.0質量%以上、17.0質量%以下であることが更に好ましい。
When CaCO 3 is contained in the coating agent as a metal carbonate, the content of CaCO 3 in the coating agent is 6.0% by mass or more and 26.0% by mass in terms of CO 2 with respect to the total mass of the coating agent. %, More preferably 10.0% by mass or more and 25.0% by mass or less.
The content of CaCO 3 in the covered arc welding rod is preferably 10.0% by mass or more and 20.0% by mass or less, preferably 11.0% by mass or more and 19.0% by mass, based on the total mass of the welding electrode. %, More preferably 11.0% by mass or more and 17.0% by mass or less.
 また、金属炭酸塩としてBaCOを被覆剤中に含有する場合に、被覆剤中のBaCOの含有量は、溶接作業性の観点から、被覆剤全質量に対し、CO換算値で、0.0質量%超、4.0質量%以下であることが好ましい。 Further, when containing BaCO 3 as metal carbonate in the coating agent, the content of BaCO 3 in the coating, from the viewpoint of weldability, the total weight coating agent, in terms of CO 2 values, 0 It is preferable to be more than 0.0% by mass and 4.0% by mass or less.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中の金属フッ化物の総含有量(F換算値)CF,total:15.0質量%以下(0質量%を含む)>
 被覆アーク溶接棒の被覆剤に含まれるCaF等の金属フッ化物は、スラグの融点を低下させ、スラグの流動性を向上させて、ビード形状を良好にする効果を有する成分である。また、金属フッ化物は、アーク熱により分解して還元性の遮蔽ガス(フッ化ガス)を多く発生させることで、溶接金属中の酸素や水素量の上昇を抑制すると共に、アーク安定性を向上させる作用を有する成分である。
 更に、金属フッ化物を被覆剤に添加すると、分解したフッ素が溶融金属や溶融スラグ中の水素と反応し、溶融金属中の水素分圧を下げることができるため、溶接金属を低水素化することもできる。更にまた、上述の通り、所定以上の大きさの金属フッ化物が被覆剤中に含有されることにより、溶滴移行性を向上させることができる。ただし、被覆剤中の金属フッ化物の含有量が過剰であるとスラグの流動性が過大となり、スラグ巻き込み等の不具合が発生し、溶接品質が劣化するおそれがある。
<Total mass of the metal fluoride in the coating agent (F conversion value) CF, total : 15.0% by mass or less (including 0% by mass) with respect to the total mass C coat, total of the coating agent>
Metal fluoride such as CaF 2 contained in the coating agent of the coated arc welding rod is a component having an effect of lowering the melting point of the slag, improving the fluidity of the slag, and improving the bead shape. In addition, the metal fluoride is decomposed by the arc heat to generate a large amount of reducing shielding gas (fluoride gas), thereby suppressing an increase in the amount of oxygen and hydrogen in the weld metal and improving the arc stability. It is a component that has the effect of causing
Furthermore, when metal fluoride is added to the coating agent, the decomposed fluorine reacts with the hydrogen in the molten metal or molten slag, and the hydrogen partial pressure in the molten metal can be reduced. Can also. Furthermore, as described above, droplet transferability can be improved by including a metal fluoride having a size equal to or larger than a predetermined size in the coating material. However, if the content of the metal fluoride in the coating agent is excessive, the fluidity of the slag becomes excessive, and problems such as entrainment of the slag may occur, and the welding quality may be deteriorated.
 被覆剤中には、必ずしも金属フッ化物が含有される必要はないので、下限は特に設けず0.0質量%でも良い。しかしながら、これらの効果を十分に得るためには、金属フッ化物は添加した方が良く、その含有量は、0.0質量%超であることが好ましく、3.0質量%以上であることがより好ましい。
 一方、被覆剤の全質量Ccoat,totalに対する、被覆剤中の金属フッ化物の総含有量(F換算値)CF,totalを15.0質量%以下とすると、より良好なアークの安定性を得ることができ、溶接作業性が良好となる。したがって、上記金属フッ化物の含有量CF,totalは、15.0質量%以下であることが好ましく、7.5質量%以下であることがより好ましい。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中の金属フッ化物の総含有量(F換算値)は、0.5質量%以上、2.7質量%以下であることが好ましく、0.7質量%以上、2.5質量%以下であることがより好ましく、0.9質量%以上、2.3質量%以下であることが更に好ましい。
Since it is not always necessary for the coating agent to contain metal fluoride, the lower limit is not particularly set and may be 0.0% by mass. However, in order to sufficiently obtain these effects, it is better to add a metal fluoride, and the content is preferably more than 0.0% by mass, and more preferably 3.0% by mass or more. More preferred.
On the other hand, when the total content (F conversion value) CF, total of the metal fluoride in the coating material is 15.0% by mass or less with respect to the total mass C coat, total of the coating material, better arc stability is obtained. And welding workability is improved. Therefore, the content CF, total of the metal fluoride is preferably 15.0% by mass or less, and more preferably 7.5% by mass or less.
For the same reason as described above, the total content (F conversion value) of the metal fluoride in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod is 0.5% by mass or more, 0.7% by mass or less, more preferably 0.7% by mass or more and 2.5% by mass or less, even more preferably 0.9% by mass or more and 2.3% by mass or less. .
 なお、本実施形態の被覆剤として用いられる金属フッ化物としては、フッ化カルシウム(CaF)、フッ化バリウム(BaF)、フッ化ストロンチウム(SrF)およびフッ化マグネシウム(MgF)から選択される少なくとも1種であることが好ましい。製造コストの観点から、CaFおよびBaFを用いることがより好ましく、CaFを用いることが最も好ましい。上記種々の金属フッ化物は、いずれか1種でも複数を組み合わせて使用してもよいが、複数の金属フッ化物を使用する場合は、F換算値の総含有量で、15.0質量%以下(0質量%を含む)の範囲内となるようにすることが好ましい。 The metal fluoride used as the coating agent of the present embodiment is selected from calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), strontium fluoride (SrF 2 ), and magnesium fluoride (MgF 2 ). Preferably, at least one of them is used. From the viewpoint of manufacturing cost, it is more preferable to use CaF 2 and BaF 2 , and it is most preferable to use CaF 2 . Any of the above various metal fluorides may be used alone or in combination of two or more. When a plurality of metal fluorides are used, the total content in terms of F is 15.0% by mass or less. (Including 0% by mass).
 金属フッ化物としてCaFを被覆剤中に含有する場合に、被覆剤中のCaFの含有量は、被覆剤全質量に対し、F換算値で、0.0質量%超、15.0質量%以下であることが好ましく、3.0質量%以上7.5質量%以下であることがより好ましい。
 なお、被覆アーク溶接棒中のCaFの含有量は、溶接棒全質量あたり、1.0質量%以上、6.0質量%以下であることが好ましく、1.5質量%以上、5.5質量%以下であることがより好ましく、1.8質量%以上、5.2質量%以下であることが更に好ましい。
When CaF 2 is contained in the coating material as a metal fluoride, the content of CaF 2 in the coating material is more than 0.0% by mass and 15.0% by mass in terms of F with respect to the total mass of the coating material. %, More preferably 3.0% by mass to 7.5% by mass.
The content of CaF 2 in the covered arc welding rod is preferably not less than 1.0% by mass and not more than 6.0% by mass, and preferably not less than 1.5% by mass and 5.5% by mass, based on the total mass of the welding rod. It is more preferably at most 1.8 mass%, more preferably at least 1.8 mass% and not more than 5.2 mass%.
 <被覆剤中の、金属炭酸塩の総含有量(CO換算値)CCO2,totalと金属フッ化物の総含有量(F換算値)CF,totalの合計に対する、金属フッ化物の総含有量(F換算値)CF,totalの比率{CF,total/(CCO2,total+CF,total)}:0.10以上0.30以下>
 被覆剤が、金属炭酸塩および金属フッ化物の両方を含有する場合に、金属フッ化物と金属炭酸塩との質量比を適切に調整することにより、フラックスの軟化点を上昇させることができる。その結果、保護筒を所望の長さで安定して形成することができ、アーク指向性を高めることができる。これにより、溶滴の揺動がより小さくなり、良好なアーク安定性が得られ、溶接作業性が向上する。
<Total content of metal fluoride in the coating agent, based on the total content of metal carbonate (CO 2 converted value) C CO2, total and total content of metal fluoride (F converted value) CF, total Amount (F conversion value) Ratio of CF and total { CF, total / ( CCO2, total + CF, total )}: 0.10 or more and 0.30 or less>
When the coating agent contains both a metal carbonate and a metal fluoride, the softening point of the flux can be increased by appropriately adjusting the mass ratio between the metal fluoride and the metal carbonate. As a result, the protection cylinder can be formed stably with a desired length, and the arc directivity can be improved. Thereby, the swing of the droplet becomes smaller, good arc stability is obtained, and welding workability is improved.
 上記比率{CF,total/(CCO2,total+CF,total)}が0.10以上であり、0.30以下の範囲であると、フラックスの軟化点が適正であり保護筒を十分な長さで残存させることができ、より溶接作業性が良好になる。したがって、上記比率は、0.10以上であることが好ましい。また、上記比率は、0.30以下であることが好ましく、0.15以下であることがより好ましい。 When the above ratio { CF, total / ( CCO2, total + CF, total )} is not less than 0.10 and not more than 0.30, the softening point of the flux is appropriate and the protective cylinder can be sufficiently provided. It can be left in the length, and the welding workability becomes better. Therefore, the above ratio is preferably 0.10 or more. Further, the ratio is preferably 0.30 or less, and more preferably 0.15 or less.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中のSiおよびSi化合物の総含有量(Si換算値)CSi,total:6.0質量%以上9.0質量%以下>
 SiおよびSi化合物は、被覆剤中においてSiOとなって触媒として作用し、金属炭酸塩(CaCO)の分解を促進する化合物である。例えば、CaCOはSiOの存在下において、CaO・SiOとCOガスを生成するが、粒度が75μm以上のCaCOが所定以上の含有量で含有されていると、上述の通り、単位時間あたりのCOガス発生量が増加し、ピンチ力が効率的に働くことにより、溶滴のくびれ形成が促進される。
 また、CaCOが熱分解すると、これにより生じたCaOとSiOが反応し、この反応熱により、未分解のCaCOの熱分解が促進される。
 更に、SiおよびSi化合物は、被覆剤中においてSiOとなって金属フッ化物と反応し、フッ化ガスを生成する。例えば、2CaFとSiOが反応し、2CaOとSiFガスを生成する。しかし、この反応により発生するSiFガスは、上記金属炭酸塩がSiOを触媒として生成したCOガスと比較して体積が小さいため、溶滴を離脱させる作用は比較的小さい。
<Total mass C Si , total of Si and the Si compound in the coating agent with respect to the total mass C coat, total of the coating agent (Si conversion value) C Si, total : 6.0 mass% or more and 9.0 mass% or less>
Si and the Si compound are compounds that become SiO 2 in the coating agent and act as a catalyst to promote the decomposition of metal carbonate (CaCO 3 ). For example, CaCO 3 generates CaO.SiO 2 and CO 2 gas in the presence of SiO 2 , but when CaCO 3 having a particle size of 75 μm or more is contained in a predetermined content or more, the unit is as described above. The increase in the amount of CO 2 gas generated per time and the efficient operation of the pinch force promotes the formation of necking of droplets.
When CaCO 3 is thermally decomposed, CaO and SiO 2 generated thereby react with each other, and the heat of reaction promotes the thermal decomposition of undecomposed CaCO 3 .
Further, Si and the Si compound become SiO 2 in the coating agent and react with the metal fluoride to generate a fluorinated gas. For example, 2CaF 2 and SiO 2 react to generate 2CaO and SiF 4 gas. However, the volume of the SiF 4 gas generated by this reaction is smaller than that of the CO 2 gas generated by the metal carbonate using SiO 2 as a catalyst, so that the effect of releasing the droplet is relatively small.
 上記の通り、本実施形態では、被覆剤中に粒度が75μm以上である金属フッ化物の総含有量、または、溶接棒長手方向に垂直な断面における、円相当径が30μm以上である金属フッ化物の総面積を規定しており、これは粒度が大きい金属フッ化物を被覆剤中に含有させることを意味している。そして、これにより、ガス発生量を増加させて、溶滴のくびれ形成を促進させている。
 なお、粒度が大きい金属フッ化物を被覆剤中に含有させることにより、更に以下の効果も得ることができる。すなわち、粒度が大きい金属フッ化物は比表面積が小さいため、粒度が小さい金属フッ化物と比較して、金属フッ化物(例えばCaF)とSiOとの反応を抑制することができる。
 上記の通り、金属フッ化物とSiOが反応することにより発生するSiFガスは、上記金属炭酸塩がSiOを触媒として生成したCOガスと比べて発生量が顕著でない。そこで、例えばCaFとSiOとの反応を抑制することにより、金属炭酸塩の触媒として作用させるSiO量を十分に確保することができ、より一層スムーズな溶滴の離脱を促進することができる。
As described above, in the present embodiment, the total content of the metal fluoride having a particle size of 75 μm or more in the coating material, or the metal fluoride having an equivalent circle diameter of 30 μm or more in a cross section perpendicular to the longitudinal direction of the welding rod. , Which means that a metal fluoride having a large particle size is contained in the coating material. Thus, the amount of generated gas is increased, and the formation of constriction of the droplet is promoted.
The following effects can be further obtained by including a metal fluoride having a large particle size in the coating material. That is, since the metal fluoride having a large particle size has a small specific surface area, the reaction between the metal fluoride (for example, CaF 2 ) and SiO 2 can be suppressed as compared with the metal fluoride having a small particle size.
As described above, the amount of SiF 4 gas generated by the reaction between the metal fluoride and SiO 2 is not so significant as compared with the CO 2 gas generated by the metal carbonate using SiO 2 as a catalyst. Therefore, for example, by suppressing the reaction between CaF 2 and SiO 2 , it is possible to sufficiently secure the amount of SiO 2 acting as a catalyst for the metal carbonate, and to promote smoother droplet detachment. it can.
 被覆剤が、更にSiおよびSi化合物のうち少なくとも1種を含有する場合に、被覆剤の全質量Ccoat,totalに対する、被覆剤中のSiおよびSi化合物の総含有量(Si換算値)CSi,totalが6.0質量%以上であると、COガスおよびフッ化ガスの発生をより促進できる。したがって、上記CSi,totalは6.0質量%以上であることが好ましい。
 一方、上記CSi,totalが9.0質量%以下であると、溶接金属において、所定の機械性能や安定したビード形状を確保することがより容易となる。したがって、上記CSi,totalは9.0質量%以下であることが好ましく、8.0質量%以下であることがより好ましい。
When the coating material further contains at least one of Si and a Si compound, the total content of Si and the Si compound in the coating material (in terms of Si ) C Si with respect to the total mass C coat, total of the coating material , Total is 6.0% by mass or more, the generation of CO 2 gas and fluoride gas can be further promoted. Therefore, the content of C Si, total is preferably 6.0% by mass or more.
On the other hand, when the C Si, total is 9.0 mass% or less, it becomes easier to secure a predetermined mechanical performance and a stable bead shape in the weld metal. Therefore, the C Si, total is preferably at most 9.0% by mass, more preferably at most 8.0% by mass.
 続いて、本実施形態に係る被覆剤には、上記金属炭酸塩、金属フッ化物、SiおよびSi化合物の他に、合金および酸化物等を含有させることができる。その他の成分について、以下に説明する。
 なお、以下の説明において、被覆剤中の各成分量は、被覆剤全質量あたりの含有量として規定される。また、被覆アーク溶接棒全体中の各成分量は、溶接棒全質量あたりの含有量として規定される。
Subsequently, in addition to the above-mentioned metal carbonate, metal fluoride, Si and the Si compound, the coating material according to the present embodiment can contain an alloy, an oxide, and the like. Other components will be described below.
In the following description, the amount of each component in the coating agent is defined as the content per total mass of the coating agent. Further, the amount of each component in the entire covered arc welding rod is defined as the content per total mass of the welding rod.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中のFe:0.0質量%以上(0質量%を含む)、35.0質量%以下>
 Feは、被覆アーク溶接棒の被覆剤において、脱酸作用や合金添加による溶接金属の機械的性質の向上、および金属溶着量の増加による溶接効率の向上を目的として添加される成分であり、被覆剤中において鉄粉として含有されるほか、Fe-SiやFe-Mn等として含有される。被覆剤中のFeは上記効果の必要性に応じて任意で添加すればよく、特に下限を規定する必要はなく、0.0質量%以上であれば良い。しかしながら、更なる機械的性能の向上を考慮する場合には、溶接金属中のO含有量の低減を狙うべく、0.1質量%以上添加することが好ましい。また、被覆剤中のFeを35.0質量%以下とすることで、溶融池へ移行する溶滴サイズを小さくすることができ、より溶接作業性が向上する。
 したがって、被覆剤の全質量Ccoat,totalに対する、被覆剤中のFe含有量の下限は、0.1質量%以上であることがより好ましい。また、被覆剤の全質量Ccoat,totalに対する、被覆剤中のFe含有量の上限は、被覆剤全質量あたり、35.0質量%以下であることが好ましく、32.0質量%以下であることがより好ましく、30.0質量%以下であることが更に好ましい。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中のFe含有量は、60.0質量%以上、85.0質量%以下であることが好ましく、70.0質量%以上、85.0質量%以下であることがより好ましく、72.0質量%以上、85.0質量%以下であることが更に好ましい。
<Fe in the coating material: 0.0% by mass or more (including 0% by mass), 35.0% by mass or less based on the total mass C coat, total of the coating material>
Fe is a component added to the coating agent of the coated arc welding rod for the purpose of improving the mechanical properties of the weld metal by deoxidizing action or adding an alloy, and improving welding efficiency by increasing the amount of metal deposited. In addition to being contained as iron powder in the agent, it is contained as Fe—Si, Fe—Mn, or the like. Fe in the coating agent may be arbitrarily added according to the necessity of the above effect, and it is not necessary to particularly define the lower limit, and it is sufficient if it is 0.0% by mass or more. However, in order to further improve the mechanical performance, it is preferable to add 0.1% by mass or more in order to reduce the O content in the weld metal. Further, when Fe in the coating agent is 35.0% by mass or less, the size of droplets transferred to the molten pool can be reduced, and welding workability is further improved.
Therefore, the lower limit of the Fe content in the coating agent relative to the total mass C coat, total of the coating agent is more preferably 0.1% by mass or more. In addition, the upper limit of the Fe content in the coating agent with respect to the total mass C coat, total of the coating agent is preferably 35.0% by mass or less, and preferably 32.0% by mass or less, based on the total mass of the coating agent. More preferably, it is still more preferably 30.0% by mass or less.
In addition, for the same reason as described above, the Fe content in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod may be 60.0% by mass or more and 85.0% by mass or less. Preferably, it is 70.0% by mass or more and 85.0% by mass or less, and more preferably 72.0% by mass or more and 85.0% by mass or less.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中のAl:0.0質量%以上(0質量%を含む)、1.0質量%以下>
 Al(金属Al)は、溶接金属の耐割れ性を向上させるとともに、耐腐食性・耐酸化性も向上させる効果を有する成分であり、必要に応じて添加すればよく、特に下限を規定する必要はなく、0.0質量%以上であれば良い。被覆剤中にAlを添加する場合は、被覆剤中のAl含有量が1.0質量%以下であると、上記効果に加え、溶接金属は十分な延性を得ることができる。
 したがって、被覆剤の全質量Ccoat,totalに対する、被覆剤中のAl含有量は、1.0質量%以下であることが好ましく、0.8質量%以下であることがより好ましく、0.6質量%以下であることが更に好ましい。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中のAl含有量は、0.50質量%以下(0質量%を含む)であることが好ましく、0.30質量%以下であることがより好ましく、0.10質量%以下であることが更に好ましい。
<Al in coating material: 0.0% by mass or more (including 0% by mass), 1.0% by mass or less based on total mass C coat, total of coating material>
Al (metallic Al) is a component that has the effect of improving the crack resistance of the weld metal and also improving the corrosion resistance and oxidation resistance, and may be added as needed, and it is particularly necessary to define the lower limit. But not more than 0.0% by mass. In the case where Al is added to the coating material, if the Al content in the coating material is 1.0% by mass or less, the weld metal can obtain sufficient ductility in addition to the above-described effects.
Therefore, the Al content in the coating agent with respect to the total mass C coat, total of the coating agent is preferably 1.0% by mass or less, more preferably 0.8% by mass or less, and 0.6% by mass or less. It is more preferable that the content be not more than mass%.
In addition, for the same reason as described above, the Al content in the coated arc welding rod with respect to the total mass of the coated arc welding rod C electode, total may be 0.50% by mass or less (including 0% by mass). Preferably, it is 0.30% by mass or less, more preferably 0.10% by mass or less.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中のNi:0.0質量%以上(0質量%を含む)、4.0質量%以下>
 Niは、溶接部の疲労強度を向上させる効果を有する成分であり、必要に応じて添加すればよく、特に下限を規定する必要はなく、0.0質量%以上であれば良い。被覆剤中にNiを添加する場合は、被覆剤中のNi含有量が4.0質量%以下であると、溶接金属の高温割れをより抑制することができる。したがって、被覆剤の全質量Ccoat,totalに対する、被覆剤中のNi含有量は、4.0質量%以下であることが好ましく、3.0質量%以下、2.5質量%以下であることがより好ましい。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中のNi含有量は、1.00質量%以下であることが好ましく、0.60質量%以下であることがより好ましく、0.30質量%以下であることが更に好ましい。
<Ni in the coating agent: 0.0% by mass or more (including 0% by mass), 4.0% by mass or less based on the total mass C coat, total of the coating agent>
Ni is a component having an effect of improving the fatigue strength of the welded portion, and may be added as needed, and there is no particular need to define the lower limit, and it is sufficient if it is 0.0% by mass or more. In the case where Ni is added to the coating material, if the Ni content in the coating material is 4.0% by mass or less, hot cracking of the weld metal can be further suppressed. Therefore, the Ni content in the coating material is preferably 4.0% by mass or less, and preferably 3.0% by mass or less and 2.5% by mass or less with respect to the total mass C coat and total of the coating material. Is more preferred.
For the same reason as described above, the Ni content in the coated arc welding rod with respect to the total mass of the covered arc welding rod C electode, total is preferably 1.00% by mass or less, more preferably 0.60% by mass. The content is more preferably not more than 0.30% by mass, more preferably not more than 0.30% by mass.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中のMn:1.5質量%以上、6.0質量%以下>
 Mnは、合金材の強度を向上させる効果を有する成分であり、必要に応じて添加すればよく、特に下限を規定する必要はなく、0.0質量%以上であれば良い。被覆剤中のMn含有量が1.5質量%以上、6.0質量%以下の範囲であると、溶接金属の強度を維持しつつ、高温割れを抑制することができる。したがって、被覆剤の全質量Ccoat,totalに対する、被覆剤中のMn含有量は、1.5質量%以上、6.0質量%以下であることが好ましく、1.7質量%以上、4.8質量%以下であることがより好ましく、1.8質量%以上、4.2質量%以下であることが更に好ましい。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中のMn含有量は、0.8質量%以上、1.8質量%以下であることが好ましく、0.8質量%以上、1.6質量%以下であることがより好ましく、0.8質量%以上、1.4質量%以下であることが更に好ましい。
<Mn in the coating agent based on the total weight C coat, total of the coating agent: 1.5% by mass or more and 6.0% by mass or less>
Mn is a component having an effect of improving the strength of the alloy material, and may be added as needed. There is no particular need to define the lower limit, and Mn may be 0.0% by mass or more. When the Mn content in the coating agent is in the range of 1.5% by mass or more and 6.0% by mass or less, hot cracking can be suppressed while maintaining the strength of the weld metal. Therefore, the Mn content in the coating material with respect to the total mass C coat, total of the coating material is preferably 1.5% by mass or more and 6.0% by mass or less, and is preferably 1.7% by mass or more and 4.0% by mass or less. The content is more preferably 8% by mass or less, and further preferably 1.8% by mass or more and 4.2% by mass or less.
For the same reason as described above, the Mn content in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod may be 0.8% by mass or more and 1.8% by mass or less. Preferably, it is 0.8% by mass or more and 1.6% by mass or less, more preferably 0.8% by mass or more and 1.4% by mass or less.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中のSi:1.0質量%以上、9.0質量%以下>
 Si(金属Si)は、脱酸剤であり、溶接金属の酸素量低減および強度向上の効果を有する成分であり、必要に応じて添加すればよく、特に下限を規定する必要はなく、0.0質量%以上であれば良い。しかし、被覆剤中のSi含有量が1.0質量%以上、9.0質量%以下の範囲であると、溶融池へ移行する溶滴サイズをより小さくすることができ、溶接作業性が良好になる。したがって、被覆剤の全質量Ccoat,totalに対する、被覆剤中のSi含有量は、1.0質量%以上、9.0質量%以下であることが好ましく、2.4質量%以上、7.0質量%以下であることがより好ましく、2.8質量%以上、6.6質量%以下が更に好ましい。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中のSi含有量は、0.8質量%以上、2.2質量%以下であることが好ましく、1.0質量%以上、2.0質量%以下であることがより好ましく、1.1質量%以上、1.9質量%以下であることが更に好ましい。
<Si in the coating agent based on the total weight C coat, total of the coating agent: 1.0% by mass or more and 9.0% by mass or less>
Si (metallic Si) is a deoxidizing agent and is a component having an effect of reducing the amount of oxygen in the weld metal and improving the strength, and may be added as necessary. What is necessary is just 0 mass% or more. However, when the Si content in the coating agent is in the range of 1.0% by mass or more and 9.0% by mass or less, the droplet size that transfers to the molten pool can be made smaller, and the welding workability is good. become. Therefore, the Si content in the coating agent with respect to the total mass C coat, total of the coating agent is preferably 1.0% by mass or more and 9.0% by mass or less, preferably 2.4% by mass or more and 7.0% by mass or less. The content is more preferably 0% by mass or less, further preferably 2.8% by mass or more and 6.6% by mass or less.
For the same reason as described above, the Si content in the coated arc welding rod with respect to the total mass C electronode, total of the coated arc welding rod may be 0.8% by mass or more and 2.2% by mass or less. Preferably, it is 1.0% by mass or more and 2.0% by mass or less, more preferably 1.1% by mass or more and 1.9% by mass or less.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中のMo:0.0質量%以上(0質量%を含む)、2.0質量%以下>
 Moは、溶接金属の強度を向上させる効果を有する成分であり、必要に応じて添加すればよく、特に下限を規定する必要はなく、0.0質量%以上であれば良い。被覆剤中にMoを添加する場合は、被覆剤中のMo含有量が2.0質量%以下であると、強度を維持しつつ、溶接割れをより抑制することができる。したがって、被覆剤の全質量Ccoat,totalに対する、被覆剤中のMo含有量は、2.0質量%以下であることが好ましく、1.2質量%以下であることがより好ましく、0.8質量%以下であることが更に好ましい。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中のMo含有量は、0.65質量%以下(0質量%を含む)であることが好ましく、0.45質量%以下であることがより好ましく、0.30質量%以下であることが更に好ましい。
<Mo in the coating material relative to the total weight C coat, total of the coating material: 0.0% by mass or more (including 0% by mass), 2.0% by mass or less>
Mo is a component having an effect of improving the strength of the weld metal, and may be added as needed, and there is no particular need to define the lower limit, and it is sufficient if it is 0.0% by mass or more. When Mo is added to the coating material, if the Mo content in the coating material is 2.0% by mass or less, welding cracks can be further suppressed while maintaining strength. Therefore, the Mo content in the coating agent relative to the total mass C coat, total of the coating agent is preferably 2.0% by mass or less, more preferably 1.2% by mass or less, and 0.8% by mass or less. It is more preferable that the content be not more than mass%.
For the same reason as described above, the Mo content in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod may be 0.65% by mass or less (including 0% by mass). Preferably, it is 0.45% by mass or less, more preferably 0.30% by mass or less.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中のAl:0.02質量%以上、3.0質量%以下>
 Alは、アーク安定効果やスラグ形成剤としての効果を有する成分である。被覆剤中のAl含有量が3.0質量%以下であると、より高いアーク安定効果が得られるようになる。したがって、被覆剤の全質量Ccoat,totalに対する、被覆剤中のAl含有量は、0.02質量%以上、3.0質量%以下であることが好ましく、0.03質量%以上、2.6質量%以下であることがより好ましく、0.05質量%以上、2.0質量%以下であることが更に好ましい。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中のAl含有量は、0.01質量%以上、0.90質量%以下であることが好ましく、0.02質量%以上、0.80質量%以下であることがより好ましく、0.02質量%以上、0.70質量%以下であることが更に好ましい。
<Al 2 O 3 in the coating agent: 0.02% by mass or more and 3.0% by mass or less based on the total mass C coat and total of the coating agent>
Al 2 O 3 is a component having an arc stabilizing effect and an effect as a slag forming agent. When the Al 2 O 3 content in the coating agent is 3.0% by mass or less, a higher arc stabilizing effect can be obtained. Therefore, the content of Al 2 O 3 in the coating material relative to the total weight C coat, total of the coating material is preferably 0.02% by mass or more and 3.0% by mass or less, and more preferably 0.03% by mass or more. , 2.6% by mass or less, more preferably 0.05% by mass or more and 2.0% by mass or less.
For the same reason as above, the content of Al 2 O 3 in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod is 0.01% by mass or more and 0.90% by mass or less. Preferably, it is 0.02% by mass or more and 0.80% by mass or less, and further preferably 0.02% by mass or more and 0.70% by mass or less.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中のSiO:1.5質量%以上、15.0質量%以下>
 SiOは、造滓剤や粘着剤として作用する成分である。被覆剤中のSiOが1.5質量%以上の場合、前述した効果を十分に得ることができる。また、被覆剤中のSiOを15.0質量%以下とすると、スラグ剥離性がより向上する。したがって、被覆剤の全質量Ccoat,totalに対する、被覆剤中のSiO含有量は、1.5質量%以上、15.0質量%以下であることが好ましく、2.0質量%以上、10.0質量%以下であることがより好ましく、4.0質量%以上、8.0質量%以下であることが更に好ましい。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中のSiO含有量は、溶接棒全質量あたり、0.40質量%以上、4.00質量%以下であることが好ましく、0.60質量%以上、3.60質量%以下であることがより好ましく、0.80質量%以上、3.20質量%以下であることが更に好ましい。
<SiO 2 in the coating agent: 1.5% by mass or more and 15.0% by mass or less based on the total mass C coat, total of the coating agent>
SiO 2 is a component that acts as a slag-making agent and an adhesive. When the content of SiO 2 in the coating agent is 1.5% by mass or more, the above-described effects can be sufficiently obtained. When the content of SiO 2 in the coating agent is 15.0% by mass or less, the slag removability is further improved. Therefore, the content of SiO 2 in the coating material with respect to the total weight C coat, total of the coating material is preferably from 1.5% by mass to 15.0% by mass, more preferably from 2.0% by mass to 10% by mass. It is more preferably not more than 0.0% by mass, and further preferably not less than 4.0% by mass and not more than 8.0% by mass.
For the same reason as described above, the content of SiO 2 in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod is 0.40% by mass or more based on the total mass of the welding electrode, and 4.00%. % By mass, preferably 0.60% by mass or more and 3.60% by mass or less, more preferably 0.80% by mass or more and 3.20% by mass or less.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中のTiO:0.2質量%以上、10.0質量%以下>
 TiOは、被覆アーク溶接棒の被覆剤において、流動性の良いスラグを生成し、ビード表面に光沢を与え、溶接金属に美しい外観を与える作用を有する成分である。また、アークの偏向(ふらつき)を抑制し、良好な溶接作業性を得ることに寄与する成分でもある。被覆剤中のTiO含有量を、被覆剤全質量あたり、0.2質量%以上、10.0質量%以下の範囲とすると上記の効果がより向上する。したがって、被覆剤の全質量Ccoat,totalに対する、被覆剤中のTiO含有量は、0.2質量%以上、10.0質量%以下であることが好ましく、0.5質量%以上、8.0質量%以下であることがより好ましく、1.0質量%以上、6.0質量%以下が更に好ましい。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中のTiO含有量は、1.00質量%以上、4.00質量%以下であることが好ましく、1.20質量%以上、3.00質量%以下であることがより好ましく、1.40質量%以上、2.60質量%以下であることが更に好ましい。
<Total mass C coat of the coating, for total, TiO in the coating 2: 0.2 wt% or more, 10.0% by mass or less>
TiO 2 is a component having a function of generating a slag having good flowability, giving a luster to a bead surface, and giving a beautiful appearance to a weld metal in a coating agent for a coated arc welding rod. It is also a component that suppresses arc deflection (wandering) and contributes to obtaining good welding workability. When the TiO 2 content in the coating is in the range of 0.2% by mass or more and 10.0% by mass or less based on the total mass of the coating, the above-mentioned effect is further improved. Therefore, the content of TiO 2 in the coating material with respect to the total weight C coat, total of the coating material is preferably 0.2% by mass or more and 10.0% by mass or less, and 0.5% by mass or more and 8% by mass or less. The content is more preferably 0.0% by mass or less, and even more preferably 1.0% by mass or more and 6.0% by mass or less.
For the same reason as described above, the content of TiO 2 in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod is 1.00% by mass or more and 4.00% by mass or less. , Preferably 1.20% by mass or more and 3.00% by mass or less, more preferably 1.40% by mass or more and 2.60% by mass or less.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中のMgO:0.01質量%超、4.0質量%以下>
 MgOは、スラグの剥離性を高める効果を有する成分である。被覆剤中のMgO含有量が0.01質量%超、4.0質量%以下であると、上記の効果がより向上する。したがって、被覆剤の全質量Ccoat,totalに対する、被覆剤中のMgO含有量は、0.01質量%超、4.0質量%以下であることが好ましく、0.2質量%以上、1.0質量%以下であることがより好ましく、0.5質量%以上、0.8質量%以下であることが更に好ましい。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中のMgO含有量は、0.01質量%以上、1.00質量%以下であることが好ましく、0.01質量%以上、0.80質量%以下であることがより好ましく、0.01質量%以上、0.50質量%以下であることが更に好ましい。
<MgO in the coating agent relative to the total mass C coat, total of the coating agent: more than 0.01% by mass, 4.0% by mass or less>
MgO is a component having an effect of enhancing the slag removability. When the MgO content in the coating agent is more than 0.01% by mass and not more than 4.0% by mass, the above-mentioned effect is further improved. Therefore, the content of MgO in the coating material with respect to the total mass C coat, total of the coating material is preferably more than 0.01% by mass and 4.0% by mass or less, more preferably 0.2% by mass or more. The content is more preferably 0% by mass or less, further preferably 0.5% by mass or more and 0.8% by mass or less.
For the same reason as described above, the content of MgO in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod may be 0.01% by mass or more and 1.00% by mass or less. Preferably, it is 0.01% by mass or more and 0.80% by mass or less, further preferably 0.01% by mass or more and 0.50% by mass or less.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中のKO、LiOおよびNaOの総含有量:1.6質量%以上、3.6質量%以下>
 KO、LiOおよびNaOは、被覆剤の無機粘結剤として使用される水ガラスに多く含有される成分であり、粉体原料としても添加され、良質なアーク安定性や適度なアーク吹付力を得ることにより、アーク安定性を向上させるために有効な成分である。上記効果をより高めるためには、被覆剤の全質量Ccoat,totalに対する、被覆剤中のKO、LiOおよびNaOの総含有量は、1.6質量%以上、3.6質量%以下であることが好ましく、1.8質量%以上、3.2質量%以下であることがより好ましく、2.0質量%以上、3.0質量%以下であることが更に好ましい。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中のKO、LiOおよびNaOの総含有量は、0.20質量%以上、1.40質量%以下であることが好ましく、0.40質量%以上、1.20質量%以下であることがより好ましく、0.60質量%以上、1.00質量%以下であることが更に好ましい。
 また、LiOは被覆アーク溶接棒の耐吸湿性を向上させ、溶接金属中の拡散性水素を低減させる効果もある。
<Total mass of K 2 O, Li 2 O, and Na 2 O in the coating agent based on the total mass C coat, total of the coating agent: 1.6% by mass or more and 3.6% by mass or less>
K 2 O, Li 2 O and Na 2 O are components that are contained in a large amount in water glass used as an inorganic binder of a coating agent, and are also added as a powder raw material, and provide good arc stability and moderate It is an effective component for improving arc stability by obtaining a suitable arc spraying force. In order to further enhance the above effects, the total content of K 2 O, Li 2 O, and Na 2 O in the coating material with respect to the total weight C coat, total of the coating material is 1.6% by mass or more. The content is preferably 6% by mass or less, more preferably 1.8% by mass or more and 3.2% by mass or less, even more preferably 2.0% by mass or more and 3.0% by mass or less.
For the same reason as described above, the total content of K 2 O, Li 2 O and Na 2 O in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod is 0.20% by mass. As described above, the content is preferably 1.40% by mass or less, more preferably 0.40% by mass or more and 1.20% by mass or less, and 0.60% by mass or more and 1.00% by mass or less. Is more preferred.
Li 2 O also has the effect of improving the moisture absorption resistance of the coated arc welding rod and reducing the diffusible hydrogen in the weld metal.
 <被覆剤の全質量Ccoat,totalに対する、被覆剤中のC:0.0質量%以上(0質量%を含む)、0.15質量%以下>
 Cは、溶接金属の強度向上に寄与する成分であり、必要に応じて添加すればよく、特に下限を規定する必要はなく、0.0質量%以上であれば良い。被覆剤中にCを添加する場合は、溶接金属の延性低下や、溶接割れの抑制のためには、0.15質量%以下であると良い。したがって、被覆剤の全質量Ccoat,totalに対する、被覆剤中のC含有量は、0.0質量%以上、0.15質量%以下であることが好ましい。また、溶接作業性向上の観点から、0.01質量%以上、0.10質量%以下がより好ましく、0.02質量%以上、0.08質量%以下が更に好ましい。なお、C源としては、有機物、各種鉱物、合金剤、グラファイト等が例に挙げられる。
 なお、上記と同様の理由により、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中のC含有量は、0.15質量%以下(0質量%を含む)であることが好ましく、0.01質量%以上、0.10質量%以下であることがより好ましく、0.02質量%以上、0.08質量%以下であることが更に好ましい。
<C in the coating material: 0.0% by mass or more (including 0% by mass), 0.15% by mass or less based on the total mass C coat, total of the coating material>
C is a component that contributes to the improvement of the strength of the weld metal, and may be added as needed. There is no particular need to define the lower limit, and it is sufficient if it is 0.0% by mass or more. When C is added to the coating agent, the content is preferably 0.15% by mass or less in order to reduce the ductility of the weld metal and suppress weld cracking. Therefore, it is preferable that the C content in the coating agent is 0.0% by mass or more and 0.15% by mass or less based on the total mass C coat and total of the coating agent. In addition, from the viewpoint of improving welding workability, the content is more preferably 0.01% by mass or more and 0.10% by mass or less, and still more preferably 0.02% by mass or more and 0.08% by mass or less. Examples of the C source include organic substances, various minerals, alloying agents, graphite, and the like.
In addition, for the same reason as described above, the C content in the coated arc welding rod with respect to the total mass C electode, total of the coated arc welding rod may be 0.15% by mass or less (including 0% by mass). Preferably, it is 0.01% by mass or more and 0.10% by mass or less, more preferably 0.02% by mass or more and 0.08% by mass or less.
 <残部>
 本実施形態における被覆剤の残部は、不可避的不純物である。不可避的不純物としては、例えば、Nb、V、ZrO、Fe・FeO、SnO、P、S等がある。また、被覆剤の全質量Ccoat,totalに対する、被覆剤中の不可避的不純物の総含有量は、5.0質量%以下(0質量%を含む)とすることが好ましい。また、被覆剤の全質量Ccoat,totalに対する、被覆剤中のNbは0.3質量%以下(0質量%を含む)、Vは0.3質量%以下(0質量%を含む)、ZrOは0.4質量%以下(0質量%を含む)、Fe・FeOは3.50質量%以下(0質量%を含む)に制限されていることがより好ましい。なお、不純物は溶接棒の設計上で意図しない物も含める。例えば、イルミナイト系被覆アーク溶接棒においては、イルミナイト原料を被覆剤中に添加するため、溶接棒の設計上で意図しないFe・FeOが最大で3.50質量%含まれることがあるが、これらは不純物としている。
<Remainder>
The balance of the coating agent in the present embodiment is inevitable impurities. Examples of inevitable impurities include Nb 2 O 5 , V 2 O 5 , ZrO 2 , Fe 2 O 3 .FeO, SnO, P, and S. Further, the total content of inevitable impurities in the coating material relative to the total mass C coat, total of the coating material is preferably 5.0% by mass or less (including 0% by mass). Further, based on the total mass C coat, total of the coating agent, Nb 2 O 5 in the coating agent was 0.3% by mass or less (including 0% by mass), and V 2 O 5 was 0.3% by mass or less (0% by mass). %, ZrO 2 is limited to 0.4% by mass or less (including 0% by mass), and Fe 2 O 3 .FeO is limited to 3.50% by mass or less (including 0% by mass). preferable. The impurities include those that are not intended in the design of the welding rod. For example, in the case of an illuminite-coated arc welding rod, since the illuminite raw material is added to the coating material, the undesired Fe 2 O 3 .FeO in the design of the welding rod may contain 3.50 mass% at the maximum. However, these are impurities.
 次に、心線および被覆率について説明する。 Next, the core wire and the coverage will be described.
〔心線〕
 本実施形態における心線は特に限定されないが、例えば直径dが2.6mm~6.0mmのものを使用することができ、特に直径が4.0mmのものを好適に使用することができる。本実施形態の心線の組成について、以下に説明する。
(Core wire)
The core wire in the present embodiment is not particularly limited. For example, a core wire having a diameter d of 2.6 mm to 6.0 mm can be used, and a core wire having a diameter d of 4.0 mm can be suitably used. The composition of the core wire of the present embodiment will be described below.
 <O:0.0005質量%以上、0.0150質量%以下>
 心線のO含有量が過剰であると、得られる溶接金属中のO量が過剰となり、溶接金属の靱性が低下するおそれがある。また、心線中の酸素が被覆剤に添加された脱酸剤であるFe-SiやFe-Mnと反応してスラグを生成するため、スラグ量が増加してスラグ流動性や溶接作業性の劣化を招き、更には溶接金属のSi、Mn量の低下や酸素量の増加による機械的性質の劣化を招くおそれがある。
 また、溶融金属の流動性が高くなり、立向や上向等の姿勢の溶接で、溶接金属のたれ落ちが発生しやすくなり、溶接作業性が低下するおそれがある。一方、心線のO含有量が過少であると、アーク力による溶融池の拡販が不十分となり、合金成分が均一に分布した溶接金属が得られなくなる。
 以上の観点より、心線の全質量に対する心線のO含有量は、0.0005質量%以上であることが好ましく、0.0013質量%以上であることがより好ましく、0.0016質量%以上であることが更に好ましい。また、心線のO含有量は、0.0150質量%以下であることが好ましく、0.0125質量%以下であることがより好ましく、0.0100質量%以下であることが更に好ましい。
<O: 0.0005% by mass or more and 0.0150% by mass or less>
If the O content of the core wire is excessive, the O content in the obtained weld metal becomes excessive, and the toughness of the weld metal may be reduced. Further, since oxygen in the core wire reacts with Fe—Si or Fe—Mn, which is a deoxidizing agent added to the coating agent, to generate slag, the amount of slag increases and slag fluidity and welding workability are increased. This may cause deterioration, and may further cause deterioration in mechanical properties due to a decrease in the amount of Si and Mn in the weld metal and an increase in the amount of oxygen.
Further, the fluidity of the molten metal is increased, and in welding in a vertical or upward position, dripping of the weld metal is likely to occur, and welding workability may be reduced. On the other hand, if the O content of the core wire is too small, the expansion of the molten pool by the arc force becomes insufficient, and a weld metal in which alloy components are uniformly distributed cannot be obtained.
From the viewpoints described above, the O content of the cord with respect to the total mass of the cord is preferably 0.0005% by mass or more, more preferably 0.0013% by mass or more, and 0.0016% by mass or more. Is more preferable. Further, the O content of the core wire is preferably 0.0150% by mass or less, more preferably 0.0125% by mass or less, and even more preferably 0.0100% by mass or less.
 <その他の成分>
 特に限定されないが、本実施形態における心線としては、例えばFeを主成分とする鉄系心線を好適に使用することができ、具体的にはJIS G 3503:2006に規定されているSWRY11を心線として用いることができる。
 なお、心線中には、上記OやFeの他に、C、Si、Mn、P、S、N、Cu等が含有されることがある。心線の全質量に対する心線のC含有量は0.09質量%以下、Si含有量は0.03質量%以下(0質量%を含む)、Mn含有量は0.35質量%以上、0.65質量%以下、P含有量は0.020質量%以下(0質量%を含む)、S含有量は0.023質量%以下(0質量%を含む)、Cu含有量は0.20質量%以下(0質量%を含む)に制限されることが好ましい。
<Other ingredients>
Although not particularly limited, as the core wire in the present embodiment, for example, an iron-based core wire containing Fe as a main component can be preferably used. Specifically, SWRY11 specified in JIS G 3503: 2006 is used. It can be used as a cord.
The core wire may contain C, Si, Mn, P, S, N, Cu, etc. in addition to the above O and Fe. The C content of the cord relative to the total mass of the cord is 0.09% by mass or less, the Si content is 0.03% by mass or less (including 0% by mass), the Mn content is 0.35% by mass or more, and 0% or less. 0.65% by mass or less, P content 0.020% by mass or less (including 0% by mass), S content 0.023% by mass or less (including 0% by mass), Cu content 0.20% by mass % Or less (including 0% by mass).
〔被覆率〕
 本実施形態において、被覆剤の心線外周への被覆率は、特に制限はされないが、被覆剤の強度確保等の観点から、例えば20%以上とすることが好ましく、22%以上とすることがより好ましく、24%以上とすることが更に好ましい。また、アーク安定性等の観点から、例えば40%以下とすることが好ましく、38%以下とすることがより好ましく、36%以下とすることが更に好ましい。
(Coverage)
In the present embodiment, the coating rate of the coating agent on the outer periphery of the core wire is not particularly limited, but is preferably, for example, 20% or more, and more preferably 22% or more, from the viewpoint of ensuring the strength of the coating agent. More preferably, it is still more preferably at least 24%. In addition, from the viewpoint of arc stability and the like, the content is preferably, for example, 40% or less, more preferably 38% or less, and still more preferably 36% or less.
 また、本実施形態は、上記被覆剤中の成分が制御された被覆アーク溶接棒を用いたアーク溶接方法にも関する。本実施形態に係るアーク溶接方法において、使用する溶接棒の被覆剤中の成分(粒度および面積率等)、並びにアーク使用後に残存する被覆剤の長さ等を限定する理由については上記の通りであるため、記載を省略する。以下、本実施形態に係るアーク溶接方法における、特に溶接姿勢について説明する。 The present embodiment also relates to an arc welding method using a coated arc welding rod in which the components in the coating agent are controlled. In the arc welding method according to the present embodiment, the reasons for limiting the components (grain size and area ratio, etc.) in the coating material of the welding rod used and the length of the coating material remaining after the use of the arc are as described above. Therefore, the description is omitted. Hereinafter, particularly the welding position in the arc welding method according to the present embodiment will be described.
〔溶接姿勢〕
 <被覆アーク溶接棒を、母材に対し垂直または後退角を0°超、30°以下>
 本実施形態に係る被覆アーク溶接棒は、母材に対し垂直(すなわち、母材に対して被覆アーク溶接棒が垂直に配置されること)または後退角を0°超、30°以下とした溶接姿勢によるアーク溶接において用いられることが好ましい。上述の通り、被覆アーク溶接棒を用いた溶接では、前進角や後退角等の様々な溶接姿勢で行われることが多く、これらの溶接姿勢で溶接した場合(すなわち、被覆アーク溶接棒を適度に傾けた場合)、垂直にした場合と比べ、片溶けが顕著となる。本実施形態に係る被覆アーク溶接棒は、後退角を0°超、30°以下とした場合の被覆アーク溶接において、被覆アーク溶接棒が母材に対し垂直の場合と同程度の効果を得ることができる。なお、上記後退角は、5°以上25°以下とすることが更に好ましい。
 なお、溶接姿勢を垂直とした場合においても、溶融池自体が母材に対して水平とならない場合があるものの、本実施形態に係る被覆アーク溶接棒は、ロバスト性が高く、多少の外乱や誤差が生じたとしても片溶けを抑制することができる。
(Welding posture)
<The coated arc welding rod is perpendicular to the base metal or has a receding angle of more than 0 ° and 30 ° or less>
The covered arc welding rod according to the present embodiment is welded such that the covered arc welding rod is perpendicular to the base material (that is, the covered arc welding rod is disposed perpendicular to the base material) or has a receding angle of more than 0 ° and 30 ° or less. It is preferably used in position-dependent arc welding. As described above, welding using a covered arc welding rod is often performed in various welding positions such as advancing angle and receding angle, and when welding is performed in these welding positions (that is, the covered arc welding rod is One-side melting is more remarkable than in the case of vertical. The covered arc welding rod according to the present embodiment has the same effect as in the case where the covered arc welding rod is perpendicular to the base material in covered arc welding when the receding angle is set to more than 0 ° and 30 ° or less. Can be. Note that the receding angle is more preferably 5 ° or more and 25 ° or less.
In addition, even when the welding position is vertical, although the molten pool itself may not be horizontal with respect to the base material, the coated arc welding rod according to the present embodiment has high robustness and some disturbance or error. Can be suppressed even if a crack occurs.
 なお、本実施形態に係る被覆アーク溶接棒は、イルミナイト系、高酸化チタン系、ライムチタニア系、鉄粉酸化チタン系、高セルロース系、低水素系および鉄粉低水素系等の種々の系統の溶接棒として適用可能である。ただし、低水素系の溶接棒は、拡散性水素の低減を目的として、被覆剤中にガス発生剤が多量に添加されているため、本実施形態に係る被覆アーク溶接棒を低水素系の溶接棒に適用すると、ガス発生剤による溶滴離脱の効果が顕著となる。
 更に、鉄粉低水素系の溶接棒は、所望の量の溶着金属を得るために、被覆剤に鉄粉が多量に添加されているものであり、鉄粉が溶滴を大きく成長させるためにスムーズな溶滴移行性が得られず、大きなスパッタが飛散するという問題点を有している。したがって、溶滴離脱性を向上させることができる、本実施形態に係る被覆アーク溶接棒は、鉄粉低水素系の溶接棒として適用することが最も好ましい。
In addition, the coated arc welding rod according to this embodiment includes various systems such as an illuminite system, a high titanium oxide system, a lime titania system, an iron powder titanium oxide system, a high cellulose system, a low hydrogen system, and an iron powder low hydrogen system. It can be applied as a welding rod. However, since the low-hydrogen welding rod contains a large amount of a gas generating agent in the coating agent for the purpose of reducing diffusible hydrogen, the coated arc welding rod according to the present embodiment is used for low-hydrogen welding. When applied to a rod, the effect of droplet separation by the gas generating agent becomes significant.
Further, in the iron powder low-hydrogen welding rod, a large amount of iron powder is added to the coating agent in order to obtain a desired amount of deposited metal. There is a problem that a smooth droplet transfer property cannot be obtained and large spatters are scattered. Therefore, it is most preferable that the coated arc welding rod according to the present embodiment, which can improve the droplet detachment property, be applied as an iron powder low hydrogen-based welding rod.
 上述した被覆アーク溶接棒の製造方法としては、特に限定されるものではない。例えば、被覆剤原料を水ガラスと共に混練し、これを心線外周に塗布し、乾燥および焼成を行うことにより、本実施形態に係る被覆アーク溶接棒を製造することができる。 製造 The method for manufacturing the above-described coated arc welding rod is not particularly limited. For example, the coating material is kneaded with water glass, applied to the outer periphery of the core wire, dried and fired, whereby the coated arc welding rod according to the present embodiment can be manufactured.
 以下、実施例および比較例を挙げて本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
〔被覆アーク溶接棒の作製、アーク溶接および各種パラメータの算出〕
 直径が3.2~5.0mmであるSWRY 11を心線として準備し、表1に示す化学成分組成を有する被覆剤(被覆剤No.C1~C15)を、表3に示すように、26.9~35.6%の被覆率で心線外周に塗布し、乾燥させることにより、種々の被覆アーク溶接棒を製造した(表3における試験No.T1~T19)。
[Production of coated arc welding rod, arc welding and calculation of various parameters]
SWRY 11 having a diameter of 3.2 to 5.0 mm was prepared as a core wire, and a coating material having a chemical component composition shown in Table 1 (Coating Agent No. C1 to C15) was prepared as shown in Table 3. Various coated arc welding rods were produced by coating the core wire with a coating rate of 0.9 to 35.6% and drying it (Test Nos. T1 to T19 in Table 3).
 表1に、被覆剤の全質量Ccoat,totalに対する、被覆剤中の各成分の含有量を示す。なお、表1において、残部は不可避的不純物であり、被覆剤中の各成分量は、被覆剤全質量Ccoat,totalあたりの含有量(質量%)を示している。
 また、表4に、被覆アーク溶接棒の全質量Celectrode,totalに対する、被覆アーク溶接棒中の各成分の含有量を示す。なお、表4において、残部は不可避的不純物であり、被覆アーク溶接棒中の各成分量は、溶接棒全質量Celectrode,totalあたりの含有量(質量%)を示している。
Table 1 shows the content of each component in the coating agent with respect to the total mass C coat, total of the coating agent. In Table 1, the remainder is unavoidable impurities, and the amounts of each component in the coating agent indicate the content (% by mass) per the total mass C coat of the coating agent and total .
Also, Table 4 shows the content of each component in the coated arc welding rod with respect to the total mass Celectrode, total of the coated arc welding rod. In Table 4, the balance is unavoidable impurities, and the amount of each component in the covered arc welding rod indicates the content (% by mass) per the total mass of the welding rod C Electrode, total .
 更に、表2に、被覆剤中に含まれる、金属炭酸塩の含有量または金属フッ化物の含有量に関する種々の物性値を一覧として示す。
 なお、表2において、C[CO2,75μm]は、粒度が75μm以上である金属炭酸塩の総含有量(CO換算値)であり、C[F,75μm]は、粒度が75μm以上である金属フッ化物の総含有量(F換算値)であり、C[CO2,106μm]は、粒度が106μm以上である金属炭酸塩の総含有量(CO換算値)であり、C[F,106μm]は、粒度が106μm以上である金属フッ化物の総含有量(F換算値)であり、C[CO2,150μm]は、粒度が150μm以上である金属炭酸塩の総含有量(CO換算値)であり、C[F,150μm]は、粒度が150μm以上である金属フッ化物の総含有量(F換算値)である。
 また、C[CO2,total]は、被覆剤中に含まれる金属炭酸塩の総含有量(CO換算値)であり、C[F,total]は、被覆剤中に含まれる金属フッ化物の総含有量(F換算値)である。また、C[coat,total]は、被覆剤の全質量であり、C[Si,total]は、SiおよびSi化合物の総含有量(Si換算値)である。
Further, Table 2 lists various physical property values related to the content of the metal carbonate or the content of the metal fluoride contained in the coating agent.
In Table 2, C [CO2, 75 μm] is the total content (in terms of CO 2 ) of metal carbonates having a particle size of 75 μm or more, and C [F, 75 μm] is a particle size of 75 μm or more. a total content of metal fluoride (F-converted value), C [CO2,106μm] is the total content of the metal carbonate particle size is not less than 106 [mu] m (CO 2 conversion value), C [F, 106 [mu] m ] Is the total content (F conversion value) of the metal fluoride having a particle size of 106 μm or more, and C [CO2, 150 μm] is the total content (CO 2 conversion value) of the metal carbonate having a particle size of 150 μm or more. ), And C [F, 150 μm] is the total content (F conversion value) of the metal fluoride having a particle size of 150 μm or more.
Furthermore, C [CO2, total] is the total content of the metal carbonate contained in the coating agent (CO 2 conversion value), C [F, total] is a metal fluoride contained in the coating agent It is the total content (F conversion value). C [coat, total] is the total mass of the coating agent, and C [Si, total] is the total content of Si and the Si compound (in terms of Si).
 ここで、例えば、表2中の(1)欄で示すC[CO2,75μm]/C[CO2,total]は、被覆剤中に含まれる金属炭酸塩の総含有量(CO換算値)CCO2,totalに対する、粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmを示している。また、他の欄においても同様である。 Here, for example, C shown in (1) column in Table 2 [CO2,75μm] / C [CO2 , total] is total content of metal carbonate contained in the coating agent (CO 2 conversion value) C CO2, for total, the particle size indicates the content of the metal carbonate is 75μm or more (CO 2 conversion value) C CO2,75μm. The same applies to other columns.
 また、表2中の(7)欄で示す「(5)+(6)」は、(5)欄で示すC[CO2,75μm]/C[coat,total]と、(6)欄で示すC[F,75μm]/C[coat,total]との合計量、すなわち、被覆剤の全質量Ccoat,totalに対する、粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmと、粒度が75μm以上である金属フッ化物の含有量(F換算値)CF,75μmの合計量を示している。同様に、表2中の(10)欄で示す「(8)+(9)」は、被覆剤の全質量Ccoat,totalに対する、粒度が106μm以上である金属炭酸塩の含有量(CO換算値)CCO2,106μmと、粒度が106μm以上である金属フッ化物の含有量(F換算値)CF,106μmの合計量を示している。また同様に、表2中の(13)欄で示す「(11)+(12)」は、被覆剤の全質量Ccoat,totalに対する、粒度が150μm以上である金属炭酸塩の含有量(CO換算値)CCO2,150μmと、粒度が150μm以上である金属フッ化物の含有量(F換算値)CF,150μmの合計量を示している。 Also, “(5) + (6)” shown in column (7) in Table 2 indicates C [CO2, 75 μm] / C [coat, total] shown in column (5) and column (6). The total amount of C [F, 75 μm] / C [coat, total], that is, the content (CO 2 converted value) of the metal carbonate having a particle size of 75 μm or more with respect to the total mass C coat, total of the coating agent C It shows the total amount of CO2 , 75 μm, and the content (F conversion value) of the metal fluoride having a particle size of 75 μm or more (F conversion value) CF, 75 μm . Similarly, “(8) + (9)” shown in column (10) in Table 2 represents the content (CO 2) of the metal carbonate having a particle size of 106 μm or more with respect to the total mass C coat, total of the coating agent. It shows the total amount of (converted value) CCO2 , 106 μm and the content (F converted value) of the metal fluoride having a particle size of 106 μm or more (F converted value) , 106 μm . Similarly, “(11) + (12)” shown in column (13) of Table 2 indicates the content (CO) of the metal carbonate having a particle size of 150 μm or more with respect to the total mass C coat, total of the coating agent. 2 converted value) CCO2 , 150 μm and the total amount of the content (F converted value) CF, 150 μm of the metal fluoride having a particle size of 150 μm or more are shown.
 続いて、得られた被覆アーク溶接棒を用いて、以下の溶接条件によりアーク溶接を行い、溶接開始より10秒以降で任意に電源を切った。なお、表5に示すように、試験No.T9およびT10においては、後退角を5~25°の範囲で種々に変化させた試験を行った。また、試験No.T9およびT10以外の試験例は、後退角を15°に固定して試験を行った。 ア ー ク Subsequently, using the obtained covered arc welding rod, arc welding was performed under the following welding conditions, and the power was arbitrarily turned off after 10 seconds from the start of welding. In addition, as shown in Table 5, Test No. At T9 and T10, tests were performed in which the sweepback angle was varied in the range of 5 to 25 °. Test No. The test examples other than T9 and T10 were performed with the receding angle fixed at 15 °.
 <溶接条件>
 電源極性:DCEP
 溶接姿勢:下向ビードオンプレート
 溶接の対象物:12mmt×70mmt×450mmlのSM490鋼板
 溶接電流:150A(狙い)±10A
 アーク電圧:21V(狙い)±2V
<Welding conditions>
Power polarity: DCEP
Welding posture: Downward bead-on-plate Welding target: 12 mmt x 70 mmt x 450 mm SM490 steel plate Welding current: 150 A (target) ± 10 A
Arc voltage: 21V (target) ± 2V
 その後、溶接棒先端側において心線の周囲に残存している被覆剤(保護筒)の最先端部からホルダー側(後端側)の溶接棒後端部までの長さを測定すると共に、溶接棒先端側において心線の周囲に残存している被覆剤(保護筒)の最後端部からホルダー側の溶接棒後端部までの長さを測定した。
 更に、保護筒を形成している被覆剤および心線端部に残留しているスラグを除去し、心線の先端部からホルダー側の溶接棒後端部までの長さを測定した。そして、これらの測定値を利用して、心線の先端部と、心線の周囲に残存している被覆剤の最先端部との、溶接棒長手方向における距離D、心線の周囲に残存している被覆剤の最先端部と、心線の周囲に残存している被覆剤の最後端部との、溶接棒長手方向における距離Dを算出した(表5を参照)。
After that, measure the length from the foremost end of the coating agent (protective tube) remaining around the core wire on the tip end side of the welding rod to the rear end of the welding rod on the holder side (rear end side), and perform welding. The length from the rearmost end of the coating agent (protective cylinder) remaining around the core wire on the rod tip side to the rear end of the welding rod on the holder side was measured.
Further, the coating agent forming the protective tube and the slag remaining at the end of the core wire were removed, and the length from the front end of the core wire to the rear end of the welding rod on the holder side was measured. Then, using these measured values, the distance D 1 in the longitudinal direction of the welding rod between the leading end of the core wire and the tip of the coating agent remaining around the core wire, and the distance around the core wire, a distal end portion of the residual to that coating, the rearmost end portion of the coating remaining on the periphery of the core wire, and calculates the distance D 2 in the welding rod longitudinal direction (see Table 5).
 更に、上記の方法により得られた被覆アーク溶接棒を、長手方向に対する垂直断面が観察面となるように樹脂に埋め込み、走査型電子顕微鏡(Scanning Electron Microscope;SEM)で観察した。SEMによる観察は、倍率を50倍、加速電圧を15kVとし、反射電子(BackScattered Electron;BSE)像による観察とした。
 そして、被覆剤断面をエネルギー分散型X線分光法(Energy Dispersive X-ray spectroscopy;EDX)を用いて元素分析をし、円相当径30μm以上となる粒子の面積率、すなわち、被覆剤全体の断面積をSとし、円相当径が30μm以上である金属炭酸塩および金属フッ化物のうち少なくとも1種の総面積をSとしたときの、Sに対するSの比率(S/S)を算出した。
Further, the coated arc welding rod obtained by the above method was embedded in a resin such that a cross section perpendicular to the longitudinal direction became an observation surface, and observed with a scanning electron microscope (SEM). The observation by the SEM was performed with a magnification of 50 times, an acceleration voltage of 15 kV, and a backscattered electron (BSE) image.
Then, the cross section of the coating material is subjected to elemental analysis using energy dispersive X-ray spectroscopy (EDX), and the area ratio of particles having a circle equivalent diameter of 30 μm or more, that is, the entire coating material is cut off. the area and S 1, when at least one of the total area of the circle equivalent diameter of the metal carbonate and metal fluoride is 30μm or more was S 2, the ratio of S 2 relative to S 1 (S 2 / S 1 ) Was calculated.
 SEMによるEDX分析は次のようにして行うことができる。例えば、日立ハイテクノロジーズ製 TM3030 Miniscopeを用い、被覆アーク溶接棒断面を分析する(倍率50倍、1.61mm×1.21mmの矩形の領域を4ヶ所)。視野の選定は、被覆剤断面が各視野内で70%以上となることが望ましい。そして、1つの視野に対し、画像解析ソフト Image J を用いて1024×768ピクセル(ピクセル数786432)を二値化することにより、面積706.8μm以上(円相当径30μm以上)となる粒子の面積率を算出することができる。なお、二値化時のしきい値は例えば60とする。 EDX analysis by SEM can be performed as follows. For example, the cross section of the coated arc welding rod is analyzed using TM3030 Miniscope (manufactured by Hitachi High-Technologies Corporation) (four rectangular areas of 50 ×, 1.61 mm × 1.21 mm). The selection of the visual field is desirably such that the coating material cross section is 70% or more in each visual field. By binarizing 1024 × 768 pixels (the number of pixels is 786,432) with respect to one visual field using image analysis software Image J, particles having an area of 706.8 μm 2 or more (equivalent circle diameter of 30 μm or more) are obtained. The area ratio can be calculated. The threshold value at the time of binarization is, for example, 60.
 被覆アーク溶接棒における心線の直径dおよびS/Sの測定結果を、下記表3に示す。また、D/D、DおよびD/dの測定結果を、下記表5に示す。 Table 3 below shows the measurement results of the core diameter d and S 2 / S 1 of the coated arc welding rod. Table 5 below shows the measurement results of D 2 / D 1 , D 1, and D 1 / d.
 更に、試験No.T1~T15(実施例)および試験No.T16~T19(比較例)の被覆アーク溶接棒について、上記DおよびDの測定時の溶接条件と同様にして溶接し、以下の評価基準により、片溶け評価(片溶けの有無)、アーク偏向の抑制効果、および溶接作業性を評価した。 Further, in Test No. T1 to T15 (Example) and Test No. For covered electrodes of T16 ~ T19 (Comparative Example), and welded in the same manner as the welding conditions at the time of measurement of the D 1 and D 2, according to the following evaluation criteria, migraine melted evaluation (presence of single melt), the arc The effect of suppressing deflection and the workability of welding were evaluated.
[片溶け評価(片溶けの有無)]
 D/D≦0.40を満たす場合:無
 D/D>0.40を満たす場合:有
[Evaluation of one-side melting (presence of one-side melting)]
When D 2 / D 1 ≦ 0.40 is satisfied: No When D 2 / D 1 > 0.40 is satisfied: Yes
[アーク偏向の抑制効果]
 目視で、アークの偏向の有無とビード外観を評価した。アークが偏向せず、ビード外観が良好と判断されるものを◎(優良)、アークがやや偏向しているが、ビード外観が良好と判断されるものを○(良好)、アークが偏向し、ビード外観不良と判断されるものを×(不良)とした。
[Arc deflection suppression effect]
The presence or absence of arc deflection and the bead appearance were visually evaluated. If the arc is not deflected and the bead appearance is judged to be good, ◎ (excellent), the arc is slightly deflected, but if the bead appearance is judged to be good, o (good), the arc is deflected, Those judged to have poor bead appearance were evaluated as x (defective).
[溶接作業性(官能評価)]
 目視で、溶接時に溶滴が周期的に移行しており、細かいスパッタのみが発生していると判断されるものを◎(優良)、溶接時に溶滴が周期的に移行しているが、目立って中粒のスパッタが発生していると判断されるものを○(良好)、溶接時に溶滴が周期的に移行しているもので無く、大粒のスパッタが大量に発生していると判断されるものを×(不良)とした。
[Welding workability (sensory evaluation)]
When the droplets are visually observed to be periodically transferred during welding and only fine spatters are generated, ◎ (excellent), the droplets are transferred periodically during welding. If it is judged that medium-grain spatter has occurred, it is judged as good (good). It is judged that droplets are not periodically transferred during welding, and large-grain spatter has occurred in large quantities. Was evaluated as x (bad).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3~表5における試験No.T1~T15(実施例)は、本発明の要件(すなわち、被覆剤の全質量Ccoat,totalに対する、粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmと、粒度が75μm以上である金属フッ化物の含有量(F換算値)CF,75μmの合計が6.0質量%以上)を満足する(表2中における、(7)欄を参照)、表1または表2の被覆剤No.C1~C11を用いた例である。これら試験No.T1~T15は、表5に示すように、D/D≦0.40を満たしており(片溶け無し)、かつ、アーク偏向の抑制効果および溶接作業性のいずれにおいても優良または良好な結果が得られた。 Test Nos. In Tables 3 to 5 T1 to T15 (Examples) are defined as the contents of the metal carbonate having a particle size of 75 μm or more (CO 2 converted value) C CO2,75 μm with respect to the requirements of the present invention (ie, the total mass C coat, total of the coating agent) And the content of metal fluoride having a particle size of 75 μm or more (F-converted value) , and the sum of CF and 75 μm is 6.0% by mass or more (see column (7) in Table 2). 1 or coating No. 1 in Table 2. This is an example using C1 to C11. These test Nos. As shown in Table 5, T1 to T15 satisfy D 2 / D 1 ≦ 0.40 (no melting), and are excellent or good in any of the arc deflection suppressing effect and the welding workability. The result was obtained.
 これに対し、表3~表5における試験No.T16~T19(比較例)は、本発明の要件を満足しない(表2中における、(7)欄を参照)、表1または表2の被覆剤No.C12~C15を用いた例である。これら試験No.T16~T19は、表5に示すように、D/D≦0.40を満たさず(片溶け有り)、かつ、アーク偏向の抑制効果および溶接作業性のいずれにおいても不良な結果が得られた。 On the other hand, the test Nos. T16 to T19 (Comparative Examples) do not satisfy the requirements of the present invention (see column (7) in Table 2). This is an example using C12 to C15. These test Nos. As shown in Table 5, T16 to T19 did not satisfy D 2 / D 1 ≦ 0.40 (there was one-side melting), and poor results were obtained in both the arc deflection suppressing effect and the welding workability. Was done.
 以上詳述したように、本発明の被覆アーク溶接棒によれば、片溶けを防止し、アークの偏向を抑制することで、溶滴をスムーズに移行させることができるとともに、アーク安定性が良好であり、これにより、優れた溶接作業性を得ることができることが分かる。 As described in detail above, according to the coated arc welding rod of the present invention, by preventing one-side melting and suppressing the deflection of the arc, the droplet can be smoothly transferred, and the arc stability is good. This shows that excellent welding workability can be obtained.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described with reference to the drawings, it is needless to say that the present invention is not limited to such examples. It is clear that those skilled in the art can conceive various changes or modifications within the scope of the claims, and these naturally belong to the technical scope of the present invention. I understand. Further, each component in the above embodiment may be arbitrarily combined without departing from the spirit of the invention.
 なお、本出願は、2018年9月11日出願の日本特許出願(特願2018-170066)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on Japanese Patent Application (No. 2018-17066) filed on Sep. 11, 2018, the contents of which are incorporated herein by reference.
1、11 被覆アーク溶接棒
2    心線
2a   先端部
3、13 被覆剤
3a   先端
4、14 アーク
5    母材
6、16 保護筒
13a  最先端部
13b  最後端部
d 被覆アーク溶接棒における心線の直径
D 保護筒の先端と心線の先端部との溶接棒長手方向の距離
 心線の先端部と、心線の周囲に残存している被覆剤の最先端部との、溶接棒長手方向における距離
 心線の周囲に残存している被覆剤の最先端部と、心線の周囲に残存している被覆剤の最後端部との、溶接棒長手方向における距離
1, 11 covered arc welding rod 2 core wire 2a tip 3, 13 coating agent 3a tip 4, 14 arc 5 base metal 6, 16 protective cylinder 13a tip end 13b last end d diameter of core wire in covered arc welding rod D Distance in the longitudinal direction of the welding rod between the distal end of the protective cylinder and the distal end of the core wire D1 The longitudinal direction of the welding rod between the distal end of the single core wire and the tip of the coating agent remaining around the core wire of the cutting edge portion of the coating remaining on the periphery of the distance D 2 core wire, the rearmost end portion of the coating remaining on the periphery of the core wire in the distance in the welding rod longitudinal direction

Claims (15)

  1.  心線と、前記心線を被覆する被覆剤と、を有する被覆アーク溶接棒であって、
     前記被覆剤は、金属炭酸塩および金属フッ化物のうち少なくとも1種を含有し、
     粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmと、粒度が75μm以上である金属フッ化物の含有量(F換算値)CF,75μmの合計が、該被覆剤の全質量Ccoat,totalに対し、6.0質量%以上(ただし、前記CCO2,75μmおよび前記CF,75μmのうち少なくとも一方が、0質量%の場合を含む)であり、
     前記被覆アーク溶接棒の使用後における溶接棒先端側において、
     前記心線の先端部と、該心線の周囲に残存している前記被覆剤の最先端部との、溶接棒長手方向における距離をDとし、
     前記心線の周囲に残存している前記被覆剤の最先端部と、該心線の周囲に残存している該被覆剤の最後端部との、溶接棒長手方向における距離をDとしたとき、
     前記Dに対する前記Dの比率(D/D)が、0.40以下(0の場合を含む)を満たすことを特徴とする被覆アーク溶接棒。
    A coated arc welding rod having a core wire and a coating agent for coating the core wire,
    The coating agent contains at least one of a metal carbonate and a metal fluoride,
    The total of the content of metal carbonate having a particle size of 75 μm or more (CO 2 converted value) C CO2 and 75 μm and the content of the metal fluoride having a particle size of 75 μm or more (F converted value) CF and 75 μm are the following: 6.0% by mass or more based on the total mass C coat, total of the coating agent (including the case where at least one of the C CO2 , 75 μm and the CF, 75 μm is 0% by mass),
    On the welding rod tip side after use of the coated arc welding rod,
    And the tip portion of the core wire, the leading edge portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction and D 1,
    And cutting edge portions of the coating remaining on the periphery of the core wire, the rearmost end portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction is D 2 When
    The D 2 ratio (D 2 / D 1) is covered electrode to satisfy the 0.40 or less (including 0) for the D 1.
  2.  前記Dが2.2mm以下を満たす、請求項1に記載の被覆アーク溶接棒。 Wherein D 1 satisfies the following 2.2 mm, covered electrode of claim 1.
  3.  前記被覆アーク溶接棒における心線の直径dに対する前記Dの比率(D/d)が1.3以下を満たす請求項1または2に記載の被覆アーク溶接棒。 3. The covered arc welding rod according to claim 1 , wherein a ratio (D 1 / d) of the D 1 to a diameter d of a core wire of the covered arc welding rod satisfies 1.3 or less. 4.
  4.  心線と、前記心線を被覆する被覆剤と、を有する被覆アーク溶接棒であって、
     前記被覆剤は、金属炭酸塩および金属フッ化物のうち少なくとも1種を含有し、
     粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmと、粒度が75μm以上である金属フッ化物の含有量(F換算値)CF,75μmの合計が、該被覆剤の全質量Ccoat,totalに対し、6.0質量%以上(ただし、前記CCO2,75μmおよび前記CF,75μmのうち少なくとも一方が、0質量%の場合を含む)であることを特徴とする被覆アーク溶接棒。
    A coated arc welding rod having a core wire and a coating agent for coating the core wire,
    The coating agent contains at least one of a metal carbonate and a metal fluoride,
    The total of the content of metal carbonate having a particle size of 75 μm or more (CO 2 converted value) C CO2 and 75 μm and the content of the metal fluoride having a particle size of 75 μm or more (F converted value) CF and 75 μm are as follows. 6.0% by mass or more (including the case where at least one of the CCO2 , 75 μm and the CF, 75 μm is 0% by mass) with respect to the total mass Ccoat , total of the coating agent. Characterized covered arc welding rod.
  5.  溶接棒長手方向に垂直な断面において、
     前記被覆剤全体の断面積をSとし、
     円相当径が30μm以上である前記金属炭酸塩および前記金属フッ化物のうち少なくとも1種の総面積をSとしたとき、
     Sに対するSの比率(S/S)が、0.06以上0.15以下を満たす請求項1または4に記載の被覆アーク溶接棒。
    In a cross section perpendicular to the longitudinal direction of the welding rod,
    The cross-sectional area of the entire coating and S 1,
    When the circle equivalent diameter of at least one of the total area of said metal carbonate and said metal fluoride is 30μm or more was S 2,
    The ratio of S 2 relative to S 1 (S 2 / S 1 ) is covered electrode as claimed in claim 1 or 4 satisfy 0.06 to 0.15.
  6.  前記被覆剤は、前記金属炭酸塩として、CaCO、BaCO、SrCO、MgCOおよびMnCOから選択される少なくとも1種を含有し、
     前記被覆剤の全質量Ccoat,totalに対する、前記被覆剤中の金属炭酸塩の総含有量(CO換算値)CCO2,totalが、6.0質量%以上26.0質量%以下を満たす、請求項1または4に記載の被覆アーク溶接棒。
    The coating agent contains, as the metal carbonate, at least one selected from CaCO 3 , BaCO 3 , SrCO 3 , MgCO 3 and MnCO 3 ,
    The total content of metal carbonate (CO 2 converted value) C CO2, total in the coating agent with respect to the total mass C coat, total of the coating agent satisfies 6.0 mass% or more and 26.0 mass% or less. The coated arc welding rod according to claim 1 or 4.
  7.  前記被覆剤は、前記金属フッ化物として、CaF、BaF、SrFおよびMgFから選択される少なくとも1種を含有し、
     前記被覆剤の全質量Ccoat,totalに対する、前記被覆剤中の金属フッ化物の総含有量(F換算値)CF,totalは、15.0質量%以下(0質量%を含む)である、請求項1または4に記載の被覆アーク溶接棒。
    The coating agent contains, as the metal fluoride, at least one selected from CaF 2 , BaF 2 , SrF 2 and MgF 2 ,
    The total content (F conversion value) CF, total of the metal fluoride in the coating agent with respect to the total mass C coat, total of the coating agent is 15.0% by mass or less (including 0% by mass). The coated arc welding rod according to claim 1 or 4.
  8.  前記被覆剤は、金属炭酸塩および金属フッ化物の両方を含有し、
     前記被覆剤中の、金属炭酸塩の総含有量(CO換算値)CCO2,totalと金属フッ化物の総含有量(F換算値)CF,totalの合計に対する、金属フッ化物の総含有量(F換算値)CF,totalの比率{CF,total/(CCO2,total+CF,total)}が、0.10以上0.30以下を満たす、請求項1または4に記載の被覆アーク溶接棒。
    The coating agent contains both a metal carbonate and a metal fluoride,
    In the coating agent, the total content of metal fluorides relative to the total of the total content of metal carbonates (CO 2 converted value) C CO2, total and the total content of metal fluorides (F converted value) CF, total The ratio ( CF, total / ( CCO2, total + CF, total )) of the amount (F conversion value) CF, total satisfies 0.10 or more and 0.30 or less. Covered arc welding rod.
  9.  前記被覆剤は、更に、SiおよびSi化合物のうち少なくとも1種を含有し、
     前記被覆剤の全質量Ccoat,totalに対する、前記SiおよびSi化合物の総含有量(Si換算値)CSi,totalは、6.0質量%以上9.0質量%以下である、請求項1または4に記載の被覆アーク溶接棒。
    The coating agent further contains at least one of Si and a Si compound,
    2. The total content of Si and the Si compound (Si conversion value) C Si, total with respect to the total mass C coat, total of the coating agent is 6.0% by mass or more and 9.0% by mass or less. Or a coated arc welding rod according to item 4.
  10.  前記被覆アーク溶接棒を、母材に対し垂直または後退角を0°超、30°以下とした溶接姿勢によるアーク溶接において用いられることを特徴とする請求項1または4に記載の被覆アーク溶接棒。 The coated arc welding rod according to claim 1 or 4, wherein the coated arc welding rod is used in arc welding in a welding position in which the base metal is perpendicular or has a receding angle of more than 0 ° and 30 ° or less. .
  11.  心線と、前記心線を被覆する被覆剤と、を有する被覆アーク溶接棒を用いた被覆アーク溶接方法であって、
     前記被覆剤は、金属炭酸塩および金属フッ化物のうち少なくとも1種を含有し、
     粒度が75μm以上である金属炭酸塩の含有量(CO換算値)CCO2,75μmと、粒度が75μm以上である金属フッ化物の含有量(F換算値)CF,75μmの合計が、該被覆剤の全質量Ccoat,totalに対し、6.0質量%以上(ただし、前記CCO2,75μmおよび前記CF,75μmのうち少なくとも一方が、0質量%の場合を含む)であることを特徴とする被覆アーク溶接方法。
    Core wire, a coating agent for coating the core wire, and a coated arc welding method using a coated arc welding rod having:
    The coating agent contains at least one of a metal carbonate and a metal fluoride,
    The total of the content of metal carbonate having a particle size of 75 μm or more (CO 2 converted value) C CO2 and 75 μm and the content of the metal fluoride having a particle size of 75 μm or more (F converted value) CF and 75 μm are as follows. 6.0% by mass or more (including the case where at least one of the CCO2 , 75 μm and the CF, 75 μm is 0% by mass) with respect to the total mass Ccoat , total of the coating agent. Characterized covered arc welding method.
  12.  前記被覆アーク溶接棒の使用後における溶接棒先端側において、
     前記心線の先端部と、該心線の周囲に残存している前記被覆剤の最先端部との、溶接棒長手方向における距離をDとし、
     前記心線の周囲に残存している前記被覆剤の最先端部と、該心線の周囲に残存している該被覆剤の最後端部との、溶接棒長手方向における距離をDとしたとき、
     前記Dに対する前記Dの比率(D/D)が0.40以下(0の場合を含む)となるようにアーク溶接する、請求項11に記載の被覆アーク溶接方法。
    On the welding rod tip side after using the coated arc welding rod,
    And the tip portion of the core wire, the leading edge portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction and D 1,
    And cutting edge portions of the coating remaining on the periphery of the core wire, the rearmost end portion of the coating remaining on the periphery of the core wire, the distance in the welding rod longitudinal direction is D 2 When
    The D 2 ratio (D 2 / D 1) is arc welding so that 0.40 or less (including 0) for the D 1, shielded metal arc welding method according to claim 11.
  13.  前記Dが2.2mm以下を満たすようにアーク溶接する、請求項12に記載の被覆アーク溶接方法。 Wherein D 1 is arc welding so as to satisfy the following 2.2 mm, shielded metal arc welding method according to claim 12.
  14.  前記被覆アーク溶接棒における心線の直径dに対する前記Dの比率(D/d)が1.3以下を満たすようにアーク溶接する、請求項12または13に記載の被覆アーク溶接方法。 The ratio of the D 1 to diameter d of the core wire in the covered electrode (D 1 / d) is arc welding so as to satisfy 1.3 or less, shielded metal arc welding method according to claim 12 or 13.
  15.  前記被覆アーク溶接棒を、母材に対し垂直または後退角を0°超、30°以下とした溶接姿勢でアーク溶接する、請求項11または12に記載の被覆アーク溶接方法。 The coated arc welding method according to claim 11 or 12, wherein the coated arc welding rod is arc-welded in a welding posture in which the base metal is perpendicular or has a receding angle of more than 0 ° and 30 ° or less.
PCT/JP2019/035593 2018-09-11 2019-09-10 Coated arc welding rod and coated arc welding method WO2020054737A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2021105815A RU2764624C1 (en) 2018-09-11 2019-09-10 Coated electrode for arc welding and the method for arc welding with a coated electrode
SG11202102388UA SG11202102388UA (en) 2018-09-11 2019-09-10 Coated arc welding rod and coated arc welding method
MYPI2021001167A MY195884A (en) 2018-09-11 2019-09-10 Coated Arc Welding Rod and Coated Arc Welding Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-170066 2018-09-11
JP2018170066A JP7084261B2 (en) 2018-09-11 2018-09-11 Shielded metal arc welding rod and shielded metal arc welding method

Publications (1)

Publication Number Publication Date
WO2020054737A1 true WO2020054737A1 (en) 2020-03-19

Family

ID=69776810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035593 WO2020054737A1 (en) 2018-09-11 2019-09-10 Coated arc welding rod and coated arc welding method

Country Status (6)

Country Link
JP (1) JP7084261B2 (en)
MY (1) MY195884A (en)
RU (1) RU2764624C1 (en)
SA (1) SA521421388B1 (en)
SG (1) SG11202102388UA (en)
WO (1) WO2020054737A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU212504U1 (en) * 2022-02-11 2022-07-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им. Г.И. Носова" Electrode for arc welding and surfacing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS421406B1 (en) * 1963-11-18 1967-01-24
JPS5510364A (en) * 1978-07-10 1980-01-24 Kawasaki Steel Corp Low hydrogen type covered electrode
JPS591155B2 (en) * 1978-01-31 1984-01-10 株式会社神戸製鋼所 coated arc welding rod
JPH03264193A (en) * 1990-03-14 1991-11-25 Nippon Steel Corp Low hydrogen type coated arc welding electrode
JP2014036992A (en) * 2012-08-20 2014-02-27 Kobe Steel Ltd Low hydrogen type coated electrode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916875B2 (en) * 1980-11-18 1984-04-18 株式会社神戸製鋼所 Low hydrogen coated arc welding rod
RU2339495C2 (en) * 2006-09-22 2008-11-27 Закрытое акционерное общество "Электрод" (ЗАО "Электрод") Electrode for manual arc welding of high-alloy and heterogeneous steels
JP2010110817A (en) * 2008-10-11 2010-05-20 Kobe Steel Ltd Low-hydrogen coated electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS421406B1 (en) * 1963-11-18 1967-01-24
JPS591155B2 (en) * 1978-01-31 1984-01-10 株式会社神戸製鋼所 coated arc welding rod
JPS5510364A (en) * 1978-07-10 1980-01-24 Kawasaki Steel Corp Low hydrogen type covered electrode
JPH03264193A (en) * 1990-03-14 1991-11-25 Nippon Steel Corp Low hydrogen type coated arc welding electrode
JP2014036992A (en) * 2012-08-20 2014-02-27 Kobe Steel Ltd Low hydrogen type coated electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU212504U1 (en) * 2022-02-11 2022-07-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им. Г.И. Носова" Electrode for arc welding and surfacing

Also Published As

Publication number Publication date
JP7084261B2 (en) 2022-06-14
SG11202102388UA (en) 2021-04-29
SA521421388B1 (en) 2022-11-29
RU2764624C1 (en) 2022-01-18
JP2020040094A (en) 2020-03-19
MY195884A (en) 2023-02-27

Similar Documents

Publication Publication Date Title
JP4834191B2 (en) Flux-cored wire for gas shielded arc welding that can be welded in all positions
KR100733805B1 (en) Welding flux
US20160121433A1 (en) Flux-cored wire for build-up welding
JP6250475B2 (en) Ni-based alloy flux cored wire
US10427250B2 (en) Systems and methods for welding wires for welding zinc-coated workpieces
JP2006289404A (en) Flux cored wire for gas shielded arc welding
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
JP5014189B2 (en) Two-electrode fillet gas shielded arc welding method
US20220362892A1 (en) Flux-cored wire and welding method
JP6029513B2 (en) Flux-cored wire for gas shielded arc welding
JP2015112625A (en) Stainless steel flux-cored wire for self-shielded arc welding
JP6257489B2 (en) Gas shield arc welding method
WO2020054737A1 (en) Coated arc welding rod and coated arc welding method
JP2015139784A (en) Two-electrode horizontal fillet gas shielded arc welding method
CN110315168B (en) Flux-cored wire for high-speed welding and high-speed arc welding method
JP7346328B2 (en) Low hydrogen coated arc welding rod for horizontal fillet welding
JP7518051B2 (en) One-sided butt welding method and manufacturing method for welded joint
JP2004001048A (en) Low hydrogen type coated electrode
JP6832836B2 (en) Shielded metal arc welding rod
JP2017189817A (en) Lime-titania type coated arc welding electrode
JP2004034078A (en) Flux cored wire for titania arc welding
JP2022045882A (en) Coated arc-welding electrode, production method therefor and coated arc-welding method
JP2023147099A (en) Coated arc welding rod for galvanized steel sheet
JP2019171399A (en) Low-hydrogen type coated electrode
JP2002144084A (en) Flux cored wire for gas-shielded arc welding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859443

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2101001384

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859443

Country of ref document: EP

Kind code of ref document: A1