JP2015112625A - Stainless steel flux-cored wire for self-shielded arc welding - Google Patents

Stainless steel flux-cored wire for self-shielded arc welding Download PDF

Info

Publication number
JP2015112625A
JP2015112625A JP2013256394A JP2013256394A JP2015112625A JP 2015112625 A JP2015112625 A JP 2015112625A JP 2013256394 A JP2013256394 A JP 2013256394A JP 2013256394 A JP2013256394 A JP 2013256394A JP 2015112625 A JP2015112625 A JP 2015112625A
Authority
JP
Japan
Prior art keywords
flux
stainless steel
self
arc welding
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013256394A
Other languages
Japanese (ja)
Other versions
JP6017406B2 (en
Inventor
飛史 行方
Takashi Namekata
飛史 行方
真吾 大泉
Shingo Oizumi
真吾 大泉
水本 学
Manabu Mizumoto
学 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2013256394A priority Critical patent/JP6017406B2/en
Publication of JP2015112625A publication Critical patent/JP2015112625A/en
Application granted granted Critical
Publication of JP6017406B2 publication Critical patent/JP6017406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a stainless steel flux-cored wire for self-shielded arc welding which is applied to a self-shielded arc welding requiring no shield gas, provides a weld metal having favorable defect resistance and crack resistance and excellent toughness, and provides favorable welding work efficiency.SOLUTION: The stainless steel flux-cored wire for self-shielded arc welding contains by mass% based on the total mass of a wire, C of 0.04% or less, Si of 0.1-1.0%, Mn of 0.5-3.0%, Ni of 11-14%, Cr of 23.0-25.5% and Ti of 0.01-0.5% all in the total of stainless steel sheath and flux, and TiOof 4.0-7.5%, SiOof 0.2-1.8%, ZrOof 0.0.1-0.10%, AlOof 0.01-0.10%, one or two of Na compound in terms of Na and K compound in terms of K of 0.01-0.20% in total and F compound in terms of K of 0.0.1-0.10% all in the flux, and the balance Fe with inevitable impurities.

Description

本発明は、シールドガスを必要としないステンレス鋼のセルフシールドアーク溶接に適用され、特に耐欠陥性及び耐割れ性が良好で、靭性に優れる溶接金属が得られ、かつ溶接作業性が良好なセルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤに関する。   The present invention is applied to self-shielded arc welding of stainless steel that does not require a shielding gas. In particular, a weld metal having good defect resistance and crack resistance and excellent toughness is obtained, and self work with good welding workability. The present invention relates to a stainless steel flux cored wire for shielded arc welding.

セルフシールドアーク溶接法は、自動溶接法の一つであり、溶接時においてワイヤ中に充填されたフラックスが分解して発生するガスにより、アーク中の溶滴及び溶融池が大気と接触するのを防止しながら溶接を行う方法である。このようなセルフシールドアーク溶接法では、溶接トーチからシールドガスを外部から供給しなくても溶接することができる。このため、セルフシールドアーク溶接法は、耐風性に優れていることから、土木及び建築などの屋外作業分野に適用され、シールドガスや溶接環境を無風状態にする天幕設置などのコストが削減できるというメリットがある。このセルフシールドアーク溶接の普及は進んでいないものの、鋼管杭やコンクリートパイルなどの現地溶接継手の一部にセルフシールドアーク溶接が適用されている。また、ステンレス鋼などの構造物においても、シールドガス削減などのコストメリットの点から、一部でセルフシールドアーク溶接が肉盛溶接などに適用されている。   The self-shielded arc welding method is one of the automatic welding methods. The gas filled in the wire at the time of welding decomposes and the gas generated by the decomposition causes the droplets and molten pool in the arc to come into contact with the atmosphere. It is a method of performing welding while preventing. In such a self-shielding arc welding method, welding can be performed without supplying a shielding gas from the outside to the welding torch. For this reason, since the self-shielding arc welding method is excellent in wind resistance, it can be applied to outdoor work fields such as civil engineering and construction, and it can reduce costs such as installation of awning that makes the shielding gas and welding environment no wind. There are benefits. Although the spread of self-shielding arc welding has not progressed, self-shielding arc welding has been applied to some of the on-site welded joints such as steel pipe piles and concrete piles. Also, in structures such as stainless steel, self-shielded arc welding is partially applied to overlay welding and the like from the viewpoint of cost merit such as reduction of shielding gas.

セルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤは、シールドガスが無い状態でステンレス鋼の溶接に用いられるため、アーク雰囲気や溶融池を大気から保護する目的から、シールド剤として弗化物や金属炭酸塩などを多量に含んでいる。そのため、通常のガスシールドアーク溶接用ステンレス鋼フラックス入りワイヤと比較すると、溶接時のスパッタ発生量が多く、溶接作業性やビード形状が悪い。また、大気中の窒素が溶融金属中に固溶されてフェライト量が低下するため、耐割れ性が悪くなる。さらに、固溶限界を超えた窒素がブローホールを発生させやすくなり、靭性も悪くなるといった問題がある。以上のことから、耐欠陥性及び割れ性が良好で、かつ、靭性に優れる溶接金属が得られ、かつ溶接作業性が良好なセルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤの開発が望まれている。   Stainless steel flux-cored wire for self-shielded arc welding is used for welding stainless steel in the absence of shielding gas. For the purpose of protecting the arc atmosphere and molten pool from the atmosphere, fluoride, metal carbonate, etc. are used as shielding agents. Contains a large amount. Therefore, compared with the stainless steel flux-cored wire for gas shielded arc welding, the amount of spatter generated during welding is large, and welding workability and bead shape are poor. Further, since nitrogen in the atmosphere is dissolved in the molten metal and the amount of ferrite is lowered, crack resistance is deteriorated. Furthermore, there is a problem that nitrogen exceeding the solid solution limit tends to generate blowholes and the toughness is deteriorated. From the above, it is desired to develop a stainless steel flux cored wire for self-shielded arc welding that provides a weld metal with good defect resistance and cracking properties and excellent toughness and good welding workability. .

セルフシールドアーク溶接用フラックス入りワイヤは、例えば、特許文献1に、溶接用ワイヤ中のC、Si、Mn、Cr、Ni、Mo、Al及びTiの各含有量を規定した硬化肉盛用セルフシールドアーク溶接用フラックス入りワイヤが開示されている。このセルフシールドアーク溶接用フラックス入りワイヤを用いてセルフシールドアーク溶接した場合、その溶接金属の成分は高炭素高クロム系の鉄合金となり、ステンレス鋼の溶接金属と比較してオーステナイト相の析出量が低いので、窒素の固溶度が低くなり、ブローホールが発生しやすいといった問題がある。   The flux-cored wire for self-shielded arc welding is, for example, self-shielding for hardfacing in which each content of C, Si, Mn, Cr, Ni, Mo, Al and Ti in the welding wire is defined in Patent Document 1. A flux cored wire for arc welding is disclosed. When self-shielded arc welding is performed using the flux-cored wire for self-shielded arc welding, the composition of the weld metal is a high-carbon, high-chromium iron alloy, and the precipitation amount of austenite phase is higher than that of stainless steel weld metal. Since it is low, there exists a problem that the solid solubility of nitrogen becomes low and blowholes are easily generated.

また、特許文献2には、溶接用ワイヤ中のAl、Mg−Fe系複合酸化物、Mn、Ni及びMgの各含有量を限定したセルフシールドアーク溶接用フラックス入りワイヤが開示されている。このフラックス入りワイヤをセルフシールドアーク溶接に適用した場合、溶接用ワイヤ中のAl及びMgの含有量が多いので、溶滴移行中に脱酸反応が過剰に促進されて円滑な溶滴移行が行われず、溶接時のスパッタ発生量が多くなるといった問題があった。   Patent Document 2 discloses a flux-cored wire for self-shielded arc welding in which each content of Al, Mg—Fe-based composite oxide, Mn, Ni, and Mg in the welding wire is limited. When this flux-cored wire is applied to self-shielded arc welding, since the content of Al and Mg in the welding wire is large, the deoxidation reaction is promoted excessively during the droplet transfer and smooth droplet transfer is performed. However, there is a problem that the amount of spatter generated during welding increases.

特開2000−117489号公報JP 2000-1117489 A 特開2002−321089号公報JP 2002-321089 A

そこで本発明は、上述した問題点に鑑みて案出されたものであり、シールドガスを必要しないステンレス鋼のセルフシールドアーク溶接に適用され、耐欠陥性及び耐割れ性が良好で、靭性に優れる溶接金属が得られ、かつ溶接作業性が良好なセルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤを提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems, and is applied to self-shielded arc welding of stainless steel that does not require a shielding gas, and has good defect resistance and crack resistance and excellent toughness. It is an object of the present invention to provide a stainless steel flux-cored wire for self-shielded arc welding with which weld metal is obtained and welding workability is good.

本発明に係るセルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤは、上述した課題を解決するために、ステンレス鋼外皮の中にフラックスを充填してなるセルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、ステンレス鋼外皮とフラックスとの合計で、C:0.04%以下、Si:0.1〜1.0%、Mn:0.5〜3.0%、Ni:11〜14%、Cr:23.0〜25.5%、Ti:0.01〜0.5%を含有し、フラックス中に、TiO2:4.0〜7.5%、SiO2:0.2〜1.8%、ZrO2:0.01〜0.10%、Al23:0.01〜0.10%、Na化合物のNa換算値及びK化合物のK換算値の1種または2種の合計:0.01〜0.20%、弗素化合物のF換算値:0.1〜1.0%を含有し、残部がFe分および不可避不純物からなることを特徴とする。 In order to solve the above-mentioned problem, a stainless steel flux cored wire for self shield arc welding according to the present invention is a stainless steel flux cored wire for self shield arc welding in which a stainless steel outer shell is filled with a flux. It is the mass% with respect to the total mass, and the total of the stainless steel outer skin and the flux, C: 0.04% or less, Si: 0.1-1.0%, Mn: 0.5-3.0%, Ni: 11 ~14%, Cr: 23.0~25.5%, Ti: contains 0.01-0.5%, in the flux, TiO 2: 4.0~7.5%, SiO 2: 0. 2 to 1.8%, ZrO 2 : 0.01 to 0.10%, Al 2 O 3 : 0.01 to 0.10%, one of Na conversion value of Na compound and K conversion value of K compound or Total of two types: 0.01-0.20%, F converted value of the silicon compound: containing 0.1% to 1.0%, the balance being composed of Fe content and unavoidable impurities.

本発明のセルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤによれば、シールドガスを必要しないステンレス鋼のセルフシールドアーク溶接で、耐欠陥性及び割れ性が良好で、靭性に優れる溶接金属が得られ、かつ、溶接作業性が良好であるなど、低コストで高品質の溶接部を得ることができる。   According to the stainless steel flux-cored wire for self-shielded arc welding of the present invention, a weld metal having excellent defect resistance and cracking property and excellent toughness can be obtained by self-shielded arc welding of stainless steel that does not require a shielding gas. In addition, it is possible to obtain a high-quality welded part at low cost, such as good welding workability.

本発明者らは、上記の課題を解決するために、各種成分組成のフラックス入りワイヤを試作して詳細に検討した。その結果、N固溶度の高いCrを調整することによって、大気中から混入するNをオーステナイト相に固溶し、ブローホールなどの発生を低減させ、耐欠陥性を向上できることを見出した。   In order to solve the above-mentioned problems, the present inventors have made trials of flux-cored wires having various component compositions and examined them in detail. As a result, it has been found that by adjusting Cr having a high N solid solubility, N mixed from the atmosphere can be dissolved in the austenite phase, the generation of blowholes and the like can be reduced, and defect resistance can be improved.

ただし、Nはオーステナイト生成元素のため、溶接金属中のフェライト量が低くなり、耐高温割れ性が低くなるといった問題がある。そこで、オーステナイト生成元素であるNi添加量の適正化を行うことによって、フェライト量を低く抑え、耐割れ性が向上できることを見出した。   However, since N is an austenite-generating element, there is a problem that the amount of ferrite in the weld metal is low and the hot cracking resistance is low. Thus, it has been found that the amount of ferrite can be reduced and crack resistance can be improved by optimizing the amount of Ni added as an austenite-generating element.

また、大気中のNをオーステナイト相に固溶させると、溶接金属とスラグ界面に窒化物を生成し、スラグ剥離性が低下するため、さらなる検討を行った結果、ZrO2を調整することによって、スラグ界面の窒化物を抑制し、スラグ剥離性を向上できることを見出した。 In addition, when N in the atmosphere is dissolved in the austenite phase, a nitride is generated at the interface between the weld metal and the slag, and the slag peelability is reduced. As a result of further investigation, by adjusting ZrO 2 , It has been found that nitride at the slag interface can be suppressed and slag peelability can be improved.

溶接作業性については、Si、Mn、Ti、TiO2、SiO2、Al23及び弗素化合物を調整することで良好にすることができ、また、溶接金属の機械的性能については、C、Ni等を調整することで、優れた靭性が得られることを見出した。 The welding workability can be improved by adjusting Si, Mn, Ti, TiO 2 , SiO 2 , Al 2 O 3 and a fluorine compound, and the mechanical performance of the weld metal is C, It has been found that excellent toughness can be obtained by adjusting Ni or the like.

本発明を適用したセルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤは、ステンレス鋼外皮及び充填フラックスの各成分組成それぞれの単独及び共存による相乗効果によりなし得たものである。以下にそれぞれの各成分組成の添加理由及びその含有量の限定理由を述べる。なお、各成分組成の含有量は、ワイヤ全質量に対する質量%で示し、ステンレス鋼外皮とフラックスの合計で、以下のとおりに限定する。以下、各成分組成における質量%は、単に%と記載する。   The stainless steel flux-cored wire for self-shielded arc welding to which the present invention is applied can be achieved by a synergistic effect by the individual and coexistence of each component composition of the stainless steel outer sheath and the filling flux. The reason for adding each component composition and the reason for limiting the content will be described below. In addition, content of each component composition is shown by the mass% with respect to the wire total mass, and is limited as follows with the sum total of a stainless steel outer_layer | skin and a flux. Hereinafter, the mass% in each component composition is simply described as%.

[C:0.04%以下]
Cは、ステンレス鋼外皮、フェロマンガン及びフェロシリコンマンガン等から添加される。このCが0.04%超の場合、Cr炭化物を生成して靭性を劣化させる。従って、Cは0.04%以下とする。
[C: 0.04% or less]
C is added from stainless steel skin, ferromanganese, ferrosilicon manganese, or the like. When this C exceeds 0.04%, Cr carbide is generated to deteriorate toughness. Therefore, C is set to 0.04% or less.

[Si:0.1〜1.0%]
Siは、ステンレス鋼外皮、金属シリコン、フェロシリコン及びフェロシリコンマンガン等から添加され、ビード形状やスラグ被包性を改善する効果を有する。Siが0.1%未満では、溶融金属の粘性が高くなるので、ビードが凸形状で、ビード形状が不良になる。一方、Siが1.0%を超えると、溶接時の脱酸反応によって形成されるスラグが過多となり、スラグ被包性が不良になる。従って、Siは0.1〜1.0%とする。
[Si: 0.1 to 1.0%]
Si is added from stainless steel skin, metallic silicon, ferrosilicon, ferrosilicon manganese, and the like, and has an effect of improving bead shape and slag encapsulation. If Si is less than 0.1%, the viscosity of the molten metal becomes high, so that the bead has a convex shape and the bead shape becomes poor. On the other hand, when Si exceeds 1.0%, the slag formed by the deoxidation reaction during welding becomes excessive, and the slag encapsulation becomes poor. Therefore, Si is 0.1 to 1.0%.

[Mn:0.5〜3.0%]
Mnは、ステンレス鋼外皮、金属マンガン、フェロマンガン及びフェロシリコンマンガン等から添加され、アークを安定にすると共に、低融点化合物の偏析を低減して耐割れ性を改善する効果を有する。Mnが0.5%未満では、オーステナイト粒界に低融点化合物が偏析して耐割れ性が不良になる。一方、Mnが3.0%を超えると、溶接時に生じる脱酸反応によって溶滴移行が阻害されてアークが不安定になる。従って、Mnは0.5〜3.0%とする。
[Mn: 0.5 to 3.0%]
Mn is added from stainless steel skin, metal manganese, ferromanganese, ferrosilicon manganese, and the like, and has the effect of stabilizing the arc and reducing segregation of low melting point compounds to improve crack resistance. If Mn is less than 0.5%, the low melting point compound segregates at the austenite grain boundaries, resulting in poor crack resistance. On the other hand, if Mn exceeds 3.0%, the droplet transfer is inhibited by the deoxidation reaction that occurs during welding, and the arc becomes unstable. Therefore, Mn is 0.5 to 3.0%.

[Ni:11〜14%]
Niは、ステンレス鋼外皮、金属ニッケル及びフェロニッケル等から添加され、オーステナイト相を安定化させる元素であり、フェライト量の調整及び耐割れ性を改善する効果を有する。Niが11%未満では、オーステナイトの晶出量が減少してフェライト量が高くなって靭性が低くなる。一方、Niが14%を超えると、フェライトの晶出量が少なくなり、低融点化合物の偏析が助長されて耐割れ性が不良になる。従って、Niは11〜14%とする。
[Ni: 11-14%]
Ni is an element that is added from a stainless steel shell, metallic nickel, ferronickel, or the like and stabilizes the austenite phase, and has the effect of adjusting the ferrite content and improving crack resistance. If Ni is less than 11%, the amount of crystallization of austenite decreases, the amount of ferrite increases, and the toughness decreases. On the other hand, if Ni exceeds 14%, the amount of ferrite crystallized decreases, segregation of low melting point compounds is promoted, and crack resistance becomes poor. Therefore, Ni is 11 to 14%.

[Cr:23.0〜25.5%]
Crは、ステンレス鋼外皮、金属クロム及びフェロクロム等から添加され、フェライト相を安定化させると共に、N固溶度を増加させてブローホールなどの耐欠陥性を改善する効果を有する。Crが23.0%未満では、固溶限界を超えた窒素がブローホールなどの欠陥が発生する。一方、Crが25.5%を超えると、Cr窒化物の生成が多くなり、靭性が低くなる。従って、Crは23.0〜25.5%とする。
[Cr: 23.0 to 25.5%]
Cr is added from stainless steel skin, metallic chromium, ferrochromium, and the like, and has the effect of stabilizing the ferrite phase and increasing the N solid solubility to improve the defect resistance such as blowholes. When Cr is less than 23.0%, nitrogen exceeding the solid solution limit causes defects such as blowholes. On the other hand, when Cr exceeds 25.5%, the generation of Cr nitride increases and the toughness decreases. Therefore, Cr is made 23.0 to 25.5%.

[Ti:0.01〜0.5%]
Tiは、ステンレス鋼外皮、金属チタン及びフェロチタン等から添加され、スパッタ発生量を低減し、スラグ剥離性を改善する効果を有する。Tiが0.01%未満では、スラグ剥離性が悪くなる。一方、Tiが0.5%を超えると、溶滴移行時の脱酸反応によって、溶滴の一部がスパッタとなるのでスパッタ発生量が多くなる。従って、Tiは0.01〜0.5%とする。
[Ti: 0.01 to 0.5%]
Ti is added from a stainless steel skin, titanium metal, ferrotitanium, or the like, and has the effect of reducing spatter generation and improving slag peelability. When Ti is less than 0.01%, the slag removability deteriorates. On the other hand, if Ti exceeds 0.5%, a part of the droplet becomes spatter due to the deoxidation reaction at the time of droplet transfer, and the amount of spatter generated increases. Therefore, Ti is set to 0.01 to 0.5%.

またフラックス中に含有する成分組成は、ワイヤ全質量に対する質量%で、を、以下の通りに含有する。   Moreover, the component composition contained in the flux contains, as follows, in mass% with respect to the total mass of the wire.

[TiO2:4.0〜7.5%]
TiO2は、ルチール、酸化チタン、チタン酸ソーダ、チタンスラグ、イルミナイト等から添加され、アークを持続して溶滴移行を安定させる効果がある。TiO2が4.0%未満であると、溶滴の移行が阻害されてアークが不安定になる。一方、TiO2が7.5%を超えると、溶接直後の高温域でスラグが自然剥離してビード表面にテンパーカラーが発生するため、ビード外観が不良になる。従って、TiO2は4.0〜7.5%とする。
[TiO 2 : 4.0 to 7.5%]
TiO 2 is added from rutile, titanium oxide, sodium titanate, titanium slag, illuminite, etc., and has an effect of maintaining the arc and stabilizing the droplet transfer. If TiO 2 is less than 4.0%, the transfer of droplets is inhibited and the arc becomes unstable. On the other hand, if TiO 2 exceeds 7.5%, the slag spontaneously peels off at a high temperature range immediately after welding and a temper color is generated on the bead surface, resulting in poor bead appearance. Therefore, TiO 2 is set to 4.0 to 7.5%.

[SiO2:0.2〜1.8%]
SiO2は、珪砂、ジルコンサンド等より添加され、スラグ形成剤として作用してビード形状及びスラグ被包性を改善する効果がある。SiO2が0.2%未満であると、スラグの粘性が高くなってビードは凸形状となり、ビード形状が不良になる。一方、SiO2が1.8%を超えると、スラグ粘性が低くなり、ビード中央部のスラグ被包性が不良になる。従って、SiO2は0.1〜1.8%とする。
[SiO 2 : 0.2 to 1.8%]
SiO 2 is added from silica sand, zircon sand, etc., and acts as a slag forming agent and has the effect of improving the bead shape and slag encapsulation. When SiO 2 is less than 0.2%, the viscosity of the slag becomes high and the bead has a convex shape, resulting in a poor bead shape. On the other hand, if SiO 2 exceeds 1.8%, the slag viscosity becomes low, and the slag encapsulation at the center of the bead becomes poor. Thus, SiO 2 is set to 0.1 to 1.8%.

[ZrO2:0.01〜0.10%]
ZrO2は、ルチールなどのチタン酸化物、カリ長石、硅砂の不純物として含有され、微量でスラグ剥離性を改善する効果を有する。ZrO2が0.01%を未満であると、上記の効果が不十分で、スラグ被包性が不良となる。一方、ZrO2が0.10%を超えると、大気中から侵入するNとの親和力が高いので、Nと化合物を形成してビード表面にスラグが焼付き、スラグ剥離性が不良になる。従って、ZrO2は0.01〜0.10%とする。
[ZrO 2 : 0.01 to 0.10%]
ZrO 2 is contained as an impurity of titanium oxide such as rutile, potassium feldspar, and cinnabar, and has an effect of improving the slag removability in a small amount. When the ZrO 2 content is less than 0.01%, the above effect is insufficient and the slag encapsulation is poor. On the other hand, if ZrO 2 exceeds 0.10%, the affinity with N entering from the atmosphere is high, so N and a compound are formed, and slag is seized on the bead surface, resulting in poor slag removability. Therefore, ZrO 2 is set to 0.01 to 0.10%.

[Al23:0.01〜0.10%]
Al23はルチールなどのチタン酸化物、カリ長石、硅砂の不純物として含有され、微量でスラグの粘性を改善してスラグ被包性を改善する効果を有する。Al23が0.01%を未満であると、スラグ流動性が悪くなり、スラグ被包性が不良となる。一方、Al23が0.10%を超えると、スラグの粘性が高くなり、スラグ流動性が悪くなってスラグ被包性が不良になる。従って、Al23は0.01〜0.10%とする。
[Al 2 O 3 : 0.01 to 0.10%]
Al 2 O 3 is contained as an impurity of titanium oxide such as rutile, potassium feldspar, and cinnabar, and has the effect of improving the slag encapsulation by improving the viscosity of the slag in a small amount. When Al 2 O 3 is less than 0.01%, the slag fluidity is deteriorated and the slag encapsulation is deteriorated. On the other hand, if Al 2 O 3 exceeds 0.10%, the viscosity of the slag increases, the slag fluidity deteriorates, and the slag encapsulation becomes poor. Accordingly, Al 2 O 3 is set to 0.01 to 0.10 percent.

[Na化合物のNa換算値及びK化合物のK換算値の1種または2種の合計:0.01〜0.20%]
Na化合物及びK化合物は、アーク長を調整してアーク安定性を改善する効果を有する。Na化合物のNa換算値及びK化合物のK換算値の1種または2種の合計が0.01%未満では、アーク長が短く、アークが不安定になる。一方、Na化合物のNa換算値及びK化合物のK換算値の1種または2種の合計が0.20%を超えると、スラグ流動性が低くなり、スラグ被包性が不良になる。従って、Na化合物のNa換算値及びK化合物のK換算値の1種または2種の合計は0.01〜0.20%とする。
[Total of one or two of Na converted value of Na compound and K converted value of K compound: 0.01 to 0.20%]
Na compound and K compound have the effect of adjusting the arc length to improve the arc stability. If the total of one or two of the Na converted value of the Na compound and the K converted value of the K compound is less than 0.01%, the arc length is short and the arc becomes unstable. On the other hand, if the total of one or two of the Na converted value of the Na compound and the K converted value of the K compound exceeds 0.20%, the slag fluidity is lowered, and the slag encapsulation property becomes poor. Accordingly, the total of one or two of the Na converted value of the Na compound and the K converted value of the K compound is 0.01 to 0.20%.

[弗素化合物のF換算値:0.1〜1.0%]
Fは、弗化ソーダ、珪弗化カリ、氷晶石、弗化アルミ、弗化リチウム及び蛍石等から添加され、スパッタ発生量及びヒューム発生量を低減する効果を有する。弗素化合物のF換算値が0.1%未満では、アーク長が安定せずスパッタ発生量が多くなる。一方、弗素化合物のF換算値が1.0%を超えると、融点が低く、かつ、蒸気圧が高くなるので、溶接アーク中で蒸発してヒューム発生量が多くなる。従って、弗素化合物のF換算値は0.1〜1.0%とする。
[F conversion value of fluorine compound: 0.1 to 1.0%]
F is added from sodium fluoride, potassium silicofluoride, cryolite, aluminum fluoride, lithium fluoride, fluorite and the like, and has the effect of reducing the amount of spatter and fume. If the F-converted value of the fluorine compound is less than 0.1%, the arc length is not stable and the amount of spatter generated increases. On the other hand, if the F-converted value of the fluorine compound exceeds 1.0%, the melting point is low and the vapor pressure is high, so that it is evaporated in the welding arc and the amount of fumes generated increases. Therefore, the F converted value of the fluorine compound is set to 0.1 to 1.0%.

残部は、Fe分および不可避不純物からなる。ここで、Fe分とは、ステンレス鋼外皮のFe成分、フラックスの鉄粉、鉄合金(Fe−Si、Fe−Mn、Fe−Si−Mn等のフェロアロイ)粉等からのFe分である。不可避的不純物は、不可避的に混入される不純物である。   The balance consists of Fe and inevitable impurities. Here, the Fe content is the Fe content from the Fe component of the stainless steel skin, the iron powder of the flux, the iron alloy (ferroalloy such as Fe-Si, Fe-Mn, Fe-Si-Mn) powder or the like. Inevitable impurities are impurities that are inevitably mixed.

なお、耐割れ性の観点から、不可避不純物中のPは0.040%以下、Sは0.030%以下であることが好ましい。   From the viewpoint of crack resistance, it is preferable that P in the inevitable impurities is 0.040% or less and S is 0.030% or less.

以上、本発明を適用したセルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤの成分組成の限定理由について説明をしたが、その製造方法は以下の通りである。例えば、ステンレス鋼外皮を帯鋼から管状に成形する場合、配合、撹拌、乾燥した充填フラックスをU形に成形した溝に満たした後、丸形に成形し、所定のワイヤ径まで伸線される。この際、成形した外皮シームを溶接してシームレスタイプのフラックス入りワイヤとすることもできる。また、ステンレス鋼外皮がパイプの場合、パイプを振動させてフラックスを充填し、0.8〜3.6mmのワイヤ径まで伸線することができる。   The reason for limiting the component composition of the stainless steel flux cored wire for self-shielded arc welding to which the present invention is applied has been described above, and the manufacturing method thereof is as follows. For example, when a stainless steel skin is formed into a tubular shape from a steel strip, the filling flux mixed, stirred and dried is filled into a U-shaped groove, then formed into a round shape, and drawn to a predetermined wire diameter. . At this time, the formed outer seam can be welded to form a seamless type flux-cored wire. In the case where the stainless steel skin is a pipe, the pipe can be vibrated to be filled with a flux and drawn to a wire diameter of 0.8 to 3.6 mm.

なお、フラックスは、供給及び充填が円滑に行えるように、水ガラス(珪酸カリ及び珪酸ソーダの水溶液)を添加して造粒して用いることもできる。   The flux can be granulated by adding water glass (an aqueous solution of potassium silicate and sodium silicate) so that the supply and filling can be performed smoothly.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

表1に示す化学成分のオーステナイト系ステンレス鋼外皮を用い、表2に示す各種成分組成のセルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤを試作した。なお、ワイヤ径は1.2mmとした。   Stainless steel flux cored wires for self-shielded arc welding of various component compositions shown in Table 2 were made using the austenitic stainless steel outer skin having chemical components shown in Table 1. The wire diameter was 1.2 mm.

Figure 2015112625
Figure 2015112625

Figure 2015112625
Figure 2015112625

溶接作業性は、表3に示す鋼板成分のSM490A及びSUS304を用い、表4に示す溶接条件を適用し、下向すみ肉溶接姿勢にて調査を行った。溶接作業性の評価は、アーク安定性、スパッタ発生量、ビード形状、ビード外観、ヒューム発生量、スラグ被包性及びスラグ剥離性について調査した。なお、スラグ被包性及びスラグ剥離性については、目視試験にて良否を判断した。   Welding workability was investigated in the downward fillet welding posture using the steel plate components SM490A and SUS304 shown in Table 3 and applying the welding conditions shown in Table 4. Welding workability was evaluated by examining arc stability, spatter generation amount, bead shape, bead appearance, fume generation amount, slag encapsulation, and slag peelability. In addition, about the slag encapsulation property and slag peelability, the quality was judged by the visual test.

ヒューム発生量は、表3に示すSUS304を用い、JIS Z 3930に準拠し、表5に示す溶接条件で30秒間のヒューム発生量の測定を行い、0.40mg以下を良好とした。   The amount of fume generated was measured using the SUS304 shown in Table 3 in accordance with JIS Z 3930, and the amount of fume generated for 30 seconds was measured under the welding conditions shown in Table 5 to be 0.40 mg or less.

溶着金属試験は、表3に示すSM490Aに二層バタリングを行い、JIS Z 3323に準拠し、表5に示す溶接条件で行った。なお、耐欠陥性について、溶接後にJIS Z 3106に準拠してX線透過試験を実施し、ブローホール発生状況の調査を行った。また、機械的性能については、JIS Z 3111に準拠し、衝撃試験を行った。耐欠陥性の評価は、X線透過試験において、キズの像の分類をJIS Z 3104に準拠して行い、第1種のきず点数3点未満を良好とした。また、機械的性能の評価は、試験温度−20℃における吸収エネルギー(vE−20℃)が3本の平均値で20J以上を良好とした。   The weld metal test was performed under the welding conditions shown in Table 5 in accordance with JIS Z 3323 by performing two-layer buttering on SM490A shown in Table 3. In addition, about defect resistance, the X-ray penetration test was implemented after welding based on JISZ3106, and the blowhole generation | occurrence | production condition was investigated. Moreover, about the mechanical performance, the impact test was done based on JISZ3111. In the evaluation of defect resistance, scratch images were classified according to JIS Z 3104 in an X-ray transmission test, and the first type of scratch score of less than 3 was considered good. In addition, the evaluation of mechanical performance was such that the absorbed energy (vE-20 ° C.) at a test temperature of −20 ° C. was an average of three and 20 J or more was good.

耐割れ性は、C型ジグ拘束突合せ溶接割れ試験を行った。C型ジグ拘束突合せ溶接割れ試験は、表3に示す成分のSUS304を用い、JIS Z 3155に準拠し、試験板のルート間隔2mmとし、表5に示す溶接条件のもと、試験ビード長さ約80mmを2本溶接した。評価は、平均割れ率が5%以下のものを良好とした。それらの試験結果を表6にまとめて示す。   For the crack resistance, a C-type jig restraint butt weld cracking test was conducted. The C-type jig restraint butt weld cracking test uses SUS304 having the components shown in Table 3, conforms to JIS Z 3155, has a test plate root interval of 2 mm, and has a test bead length of about 5 mm under the welding conditions shown in Table 5. Two 80 mm pieces were welded. The evaluation was good when the average crack rate was 5% or less. The test results are summarized in Table 6.

Figure 2015112625
Figure 2015112625

Figure 2015112625
Figure 2015112625

Figure 2015112625
Figure 2015112625

Figure 2015112625
Figure 2015112625

表2及び表6中のワイヤNo.1〜11が本発明例、ワイヤNo.12〜21は比較例である。本願発明であるワイヤNo.1〜11は、ステンレス鋼外皮とフラックスとの合計中のC、Si、Mn、Ni、Cr、Tiおよびフラックス中のTiO2、SiO2、ZrO2、Al23の各含有量、Na化合物のNa換算値及びK化合物のK換算値の1種または2種の合計及び弗素化合物のF換算値が本発明において規定した範囲内にあるので、吸収エネルギー、耐割れ性、耐欠陥性及び溶接作業性も良好であり、極めて満足な結果であった。 The wire Nos. 1 to 11 are examples of the present invention, wire No. 12 to 21 are comparative examples. Wire No. which is the present invention. 1 to 11 are the contents of C, Si, Mn, Ni, Cr, Ti in the total of the stainless steel shell and the flux, and the contents of TiO 2 , SiO 2 , ZrO 2 , Al 2 O 3 in the flux, Na compound Since the total of one or two of the K converted value of Na and the K converted value of the K compound and the F converted value of the fluorine compound are within the ranges specified in the present invention, the absorbed energy, crack resistance, defect resistance and welding The workability was also good, and the result was very satisfactory.

比較例中ワイヤNo.12は、ステンレス鋼外皮とフラックスとの合計中のTiが多いのでスパッタ発生量が多かった。また、フラックス中のAl23が少ないのでスラグ被包性が不良になった。 In the comparative example, the wire No. No. 12 had a large amount of spatter due to a large amount of Ti in the total of the stainless steel shell and the flux. Also, slag encapsulated became defective because less Al 2 O 3 in the flux.

ワイヤNo.13は、ステンレス鋼外皮とフラックスとの合計中のCが多いので吸収エネルギーが低かった。また、ステンレス鋼外皮とフラックスとの合計中のTiが少ないのでスラグ剥離性が不良であった。さらに、フラックス中のAl23が多いのでスラグ被包性が不良であった。 Wire No. No. 13 had a low absorbed energy because there was much C in the total of the stainless steel skin and the flux. Moreover, since there was little Ti in the sum total of a stainless steel outer_layer | skin and a flux, slag peelability was unsatisfactory. Furthermore, slag encapsulated was poor because Al 2 O 3 is larger in the flux.

ワイヤNo.14は、ステンレス鋼外皮とフラックスとの合計中のMnが少ないので割れ率が高かった。また、フラックス中のSiO2が少ないのでビード形状が不良であった。さらに、フラックス中のZrO2が少ないのでスラグ剥離性が不良であった。 Wire No. No. 14 had a high cracking rate because Mn in the total of the stainless steel outer shell and the flux was small. Further, since the SiO 2 in the flux was small, the bead shape was poor. Furthermore, the slag removability was poor because little ZrO 2 in the flux.

ワイヤNo.15は、ステンレス鋼外皮とフラックスとの合計中のMnが多いのでアークが不安定であった。また、フラックス中のSiO2が多いのでビード外観が不良であった。さらに、フラックス中のZrO2が多いのでスラグ剥離性が悪かった。 Wire No. In No. 15, the arc was unstable because of the large amount of Mn in the total of the stainless steel shell and the flux. In addition, the bead appearance was poor because SiO 2 is often in flux. Furthermore, the slag removability is poor because many ZrO 2 in the flux.

ワイヤNo.16は、ステンレス鋼外皮とフラックスとの合計中のNiが少ないので吸収エネルギーが低かった。また、フラックス中のTiO2が少ないのでアークが不安定であった。 Wire No. No. 16 had a low absorbed energy because there was less Ni in the total of the stainless steel skin and the flux. Also, the arc was unstable because there was little TiO 2 in the flux.

ワイヤNo.17は、ステンレス鋼外皮とフラックスとの合計中のNiが多いので割れ率が高かった。また、フラックス中のTiO2が多いのでビード外観が不良であった。 Wire No. No. 17 had a high cracking rate because of the large amount of Ni in the total of the stainless steel skin and the flux. In addition, the bead appearance was poor because TiO 2 is often in flux.

ワイヤNo.18は、ステンレス鋼外皮とフラックスとの合計中のSiが少ないのでビード形状が悪かった。また、ステンレス鋼外皮とフラックスとの合計中のCrが少ないのでブローホールが発生した。   Wire No. No. 18 had a poor bead shape because there was less Si in the total of the stainless steel skin and the flux. Moreover, since there was little Cr in the sum total of a stainless steel outer layer and a flux, the blow hole generate | occur | produced.

ワイヤNo.19は、ステンレス鋼外皮とフラックスとの合計中のSiが多いのでスラグ被包性が悪かった。また、ステンレス鋼外皮とフラックスとの合計中のCrが多いので、吸収エネルギーが低かった。   Wire No. No. 19 had poor slag encapsulation because there was a lot of Si in the total of the stainless steel skin and the flux. Moreover, since there was much Cr in the sum total of a stainless steel outer shell and a flux, the absorbed energy was low.

ワイヤNo.20は、フラックス中のNa化合物のNa換算値及びK化合物のK換算値の1種または2種の合計が少ないのでアークが不安定性であった。また、フラックス中の弗素化合物のF換算値が少ないので、スパッタの発生量が多かった。   Wire No. In No. 20, the arc was unstable because the total of one or two of the Na converted value of the Na compound and the K converted value of the K compound in the flux was small. Further, since the F-converted value of the fluorine compound in the flux was small, the amount of spatter generated was large.

ワイヤNo.21は、フラックス中のNa化合物のNa換算値及びK化合物のK換算値の1種または2種の合計が多いのでスラグ被包性が不良であった。また、フラックス中の弗素化合物のF換算値が多いのでヒュームの発生量が多かった。   Wire No. No. 21 had poor slag encapsulation because there were many totals of one or two of the Na converted value of the Na compound and the K converted value of the K compound in the flux. Further, since the F-converted value of the fluorine compound in the flux is large, the amount of fumes generated is large.

Claims (1)

ステンレス鋼外皮の中にフラックスを充填してなるセルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤにおいて、
ワイヤ全質量に対する質量%で、ステンレス鋼外皮とフラックスとの合計で、
C:0.04%以下、
Si:0.1〜1.0%、
Mn:0.5〜3.0%、
Ni:11〜14%、
Cr:23.0〜25.5%、
Ti:0.01〜0.5%を含有し、
フラックス中に、
TiO2:4.0〜7.5%、
SiO2:0.2〜1.8%、
ZrO2:0.01〜0.10%、
Al23:0.01〜0.10%、
Na化合物のNa換算値及びK化合物のK換算値の1種または2種の合計:0.01〜0.20%、
弗素化合物のF換算値:0.1〜1.0%を含有し、残部がFe分および不可避不純物からなることを特徴とするセルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤ。
In self-shielded arc welding stainless steel flux-cored wire with a stainless steel outer shell filled with flux,
It is the mass% with respect to the total mass of the wire.
C: 0.04% or less,
Si: 0.1 to 1.0%,
Mn: 0.5 to 3.0%
Ni: 11-14%,
Cr: 23.0-25.5%,
Ti: 0.01 to 0.5% contained,
During the flux,
TiO 2 : 4.0-7.5%,
SiO 2 : 0.2 to 1.8%,
ZrO 2 : 0.01 to 0.10%,
Al 2 O 3 : 0.01 to 0.10%
Total of one or two of Na converted value of Na compound and K converted value of K compound: 0.01 to 0.20%,
F-converted value of fluorine compound: 0.1 to 1.0%, stainless steel flux-cored wire for self-shielded arc welding, wherein the balance consists of Fe and inevitable impurities.
JP2013256394A 2013-12-11 2013-12-11 Stainless steel flux cored wire for self shielded arc welding Active JP6017406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013256394A JP6017406B2 (en) 2013-12-11 2013-12-11 Stainless steel flux cored wire for self shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256394A JP6017406B2 (en) 2013-12-11 2013-12-11 Stainless steel flux cored wire for self shielded arc welding

Publications (2)

Publication Number Publication Date
JP2015112625A true JP2015112625A (en) 2015-06-22
JP6017406B2 JP6017406B2 (en) 2016-11-02

Family

ID=53526929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256394A Active JP6017406B2 (en) 2013-12-11 2013-12-11 Stainless steel flux cored wire for self shielded arc welding

Country Status (1)

Country Link
JP (1) JP6017406B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105382441A (en) * 2015-12-18 2016-03-09 天津市庆鑫祥科技发展有限公司 Stainless steel welding wire and preparation method thereof
CN109719424A (en) * 2019-03-11 2019-05-07 江苏南通瑞舶莱焊业科技有限公司 A kind of anti-stomata self-protection flux-cored wire
JP2020131234A (en) * 2019-02-19 2020-08-31 日鉄溶接工業株式会社 Stainless steel flux-cored wire for self-shielded arc-welding
CN114055013A (en) * 2021-11-26 2022-02-18 四川大西洋焊接材料股份有限公司 Flux-cored wire, flux-cored wire and preparation method and application thereof
CN114211154A (en) * 2021-11-19 2022-03-22 济南法瑞钠焊接器材股份有限公司 Composite wear-resistant plate flux-cored wire free of cracks after high-titanium welding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117140A (en) * 1975-04-07 1976-10-15 Hitachi Ltd Composite welding wire for automatic welding of carbon steel and austeniteestainless steel
JPS61232097A (en) * 1985-04-05 1986-10-16 Mitsui Eng & Shipbuild Co Ltd Flux cored wire for welding
JPH11129093A (en) * 1997-10-30 1999-05-18 Kobe Steel Ltd Flux cored wire for welding austenitic stainless steel
JP2008221292A (en) * 2007-03-14 2008-09-25 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for welding duplex stainless steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117140A (en) * 1975-04-07 1976-10-15 Hitachi Ltd Composite welding wire for automatic welding of carbon steel and austeniteestainless steel
JPS61232097A (en) * 1985-04-05 1986-10-16 Mitsui Eng & Shipbuild Co Ltd Flux cored wire for welding
JPH11129093A (en) * 1997-10-30 1999-05-18 Kobe Steel Ltd Flux cored wire for welding austenitic stainless steel
JP2008221292A (en) * 2007-03-14 2008-09-25 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for welding duplex stainless steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105382441A (en) * 2015-12-18 2016-03-09 天津市庆鑫祥科技发展有限公司 Stainless steel welding wire and preparation method thereof
JP2020131234A (en) * 2019-02-19 2020-08-31 日鉄溶接工業株式会社 Stainless steel flux-cored wire for self-shielded arc-welding
CN109719424A (en) * 2019-03-11 2019-05-07 江苏南通瑞舶莱焊业科技有限公司 A kind of anti-stomata self-protection flux-cored wire
CN114211154A (en) * 2021-11-19 2022-03-22 济南法瑞钠焊接器材股份有限公司 Composite wear-resistant plate flux-cored wire free of cracks after high-titanium welding
CN114211154B (en) * 2021-11-19 2023-01-17 济南法瑞钠焊接器材股份有限公司 Composite wear-resistant plate flux-cored wire free of cracks after high-titanium welding
CN114055013A (en) * 2021-11-26 2022-02-18 四川大西洋焊接材料股份有限公司 Flux-cored wire, flux-cored wire and preparation method and application thereof

Also Published As

Publication number Publication date
JP6017406B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP5138242B2 (en) Flux-cored wire for duplex stainless steel welding
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP5289999B2 (en) Flux-cored wire for duplex stainless steel welding
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6599781B2 (en) Flux-cored wire for duplex stainless steel welding
JP6188621B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6033755B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP5153421B2 (en) Flux-cored wire for gas shielded arc welding
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6017406B2 (en) Stainless steel flux cored wire for self shielded arc welding
JP2018153853A (en) Flux-cored wire for gas shield arc welding
JP2011025298A (en) Gas shielded arc welding method
JP6786472B2 (en) Flux-cored wire for duplex stainless steel welding
JP4300153B2 (en) Flux-cored wire for gas shielded arc welding
JP6110800B2 (en) Stainless steel flux cored wire
JP6140069B2 (en) Stainless steel flux cored wire
JP2014034051A (en) Wire including flux for stainless steel welding
JP2009190042A (en) Two-electrode fillet gas-shielded metal arc welding method
JP4838100B2 (en) Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5409459B2 (en) Flux-cored wire for welding austenitic stainless steel
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5938375B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP5431373B2 (en) Flux-cored wire for duplex stainless steel welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160928

R150 Certificate of patent or registration of utility model

Ref document number: 6017406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250