WO2020054183A1 - フロー反応支援装置及び方法、フロー反応設備及び方法 - Google Patents

フロー反応支援装置及び方法、フロー反応設備及び方法 Download PDF

Info

Publication number
WO2020054183A1
WO2020054183A1 PCT/JP2019/026006 JP2019026006W WO2020054183A1 WO 2020054183 A1 WO2020054183 A1 WO 2020054183A1 JP 2019026006 W JP2019026006 W JP 2019026006W WO 2020054183 A1 WO2020054183 A1 WO 2020054183A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
condition
result
extraction
prediction
Prior art date
Application number
PCT/JP2019/026006
Other languages
English (en)
French (fr)
Inventor
竜也 稲葉
昌孝 長谷川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP19859226.3A priority Critical patent/EP3851461A4/en
Priority to JP2020546711A priority patent/JP7250027B2/ja
Publication of WO2020054183A1 publication Critical patent/WO2020054183A1/ja
Priority to US17/168,447 priority patent/US20210162362A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0033Optimalisation processes, i.e. processes with adaptive control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/10Analysis or design of chemical reactions, syntheses or processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • B01J2219/00166Controlling or regulating processes controlling the flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00182Controlling or regulating processes controlling the level of reactants in the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00243Mathematical modelling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/70Machine learning, data mining or chemometrics

Definitions

  • the present invention relates to a flow reaction support device and method, and a flow reaction facility and method.
  • a method of reacting a raw material containing a reactant there are a so-called batch system in which the raw material is accommodated in a container and a continuous system in which the raw material is reacted while flowing the raw material.
  • the continuous reaction is called a flow reaction because the reaction is performed while the raw materials are flowing.
  • the flow reaction treatment since the reaction is performed continuously, the product is easily obtained with uniform properties.
  • the flow reaction treatment has an advantage that productivity is higher than that of a batch method.
  • Patent Literature 1 data under an abnormal state of each measuring device of a chemical reaction device is calculated by a neural network in which a program learns and stores in advance in a program.
  • an abnormal signal is output to the neurocontroller and an abnormal reaction is controlled by sending a correction control signal to each part of the chemical reaction apparatus.
  • an abnormal state of the chemical reaction device is detected immediately, and quick and accurate control is performed.
  • Patent Literature 2 discloses a technique for calculating a prediction item by applying a created prediction model to an unknown sample as a technique for predicting physical properties of a compound. This technology calculates a similarity between an unknown sample and an individual learning sample based on a plurality of parameter values obtained for the unknown sample and the individual learning sample, and calculates a learning sample having a similarity equal to or greater than a preset threshold. They are taken out to form a subsample set. Then, data analysis of the subsample set is performed to create a prediction model, and the prediction model is applied to an unknown sample to calculate a prediction item.
  • a flow reaction is controlled using a genetic algorithm, thereby producing a target product.
  • JP-A-2002-301359 International Publication No. 2009/025045 JP-T-2015-520675
  • the reaction is performed while the raw materials are flowing, so that it is usually difficult to find out the optimum reaction conditions as compared with the batch reaction treatment. This is because the flow reaction has condition parameters unique to the flow reaction, such as the flow rate or the flow rate.
  • Such a flow reaction having a large number of condition parameters requires a lot of trial and time for setting conditions before starting a new reaction process, and is particularly remarkable in a condition search in a new reaction system. Further, even if, for some reason, one of the plurality of condition parameters has to be changed, it is not easy to determine which of the other condition parameters is to be changed.
  • an object of the present invention is to provide a flow reaction support apparatus and method for supporting flow reaction processing by setting conditions quickly, and a flow reaction facility and method for setting conditions quickly.
  • the flow reaction support device of the present invention is a flow reaction support device that supports a flow reaction process for causing a reaction while flowing a raw material, and includes a calculation section and a determination unit.
  • the operation section is a reaction condition of a condition data set having a plurality of reaction conditions whose reaction results are unknown using actual measurement data composed of a plurality of reaction information in which the reaction results and the reaction results whose reaction results are known are associated. By calculating a prediction result every time, a prediction data set in which the reaction condition and the prediction result are associated with each other is generated.
  • the calculation section specifies a prediction result closest to a preset target result among the obtained plurality of prediction results, and extracts a reaction condition associated with the specified prediction result as an extraction reaction condition.
  • the determination unit determines whether or not the degree of difference between the reaction result when the reaction is performed under the extraction reaction condition and the prediction result associated with the extraction reaction condition is within a preset allowable range. When the degree of difference is not within the allowable range, the determination unit adds reaction information in which the extraction reaction condition and the reaction result when the reaction is performed under the extraction reaction condition are associated with the actually measured data. When the degree of difference is within the allowable range, the determination unit sets the extraction reaction condition as the reaction condition used for the flow reaction process.
  • the reaction conditions are preferably any one of the flow rate of the raw material, the flow rate of the raw material, the concentration of the reactant in the raw material, the temperature of the raw material, the set temperature of the reaction, and the reaction time.
  • the above reaction result is preferably any one of the yield of the product, the yield of the by-product, the molecular weight of the product, the molecular weight dispersity of the product, and the molar concentration of the product.
  • the calculation section preferably calculates a prediction result for each reaction condition of the condition data set by using the actually measured data as learning data.
  • the operation section preferably has a neural network constructed using reaction conditions in the actually measured data as explanatory variables and reaction results in the actually measured data as objective variables.
  • the flow reaction support method of the present invention is a flow reaction support method for supporting a flow reaction process for causing a reaction while flowing raw materials, and includes a calculation step and a determination step.
  • the calculation step is a reaction condition of a condition data set having a plurality of reaction conditions whose reaction results are unknown using actual measurement data composed of a plurality of reaction information in which the reaction results and the reaction results whose reaction results are known are associated. By calculating a prediction result every time, a prediction data set in which the reaction condition and the prediction result are associated with each other is generated.
  • the calculation step specifies a prediction result closest to a preset target result among the obtained plurality of prediction results, and extracts a reaction condition associated with the specified prediction result as an extraction reaction condition.
  • the determining step determines whether or not the degree of difference between the reaction result when the reaction is performed under the extraction reaction condition and the prediction result associated with the extraction reaction condition is within a preset allowable range.
  • the determination step when the degree of difference is not within the allowable range, the reaction information in which the extraction reaction condition and the reaction result when the reaction is performed under the extraction reaction condition is added to the actually measured data.
  • the determination step when the degree of difference is within an allowable range, the extraction reaction condition is set as the reaction condition in the flow reaction process.
  • the flow reaction equipment of the present invention includes a reaction section, an operation section, a determination unit, and a system controller.
  • the reaction section reacts while flowing the raw materials.
  • the operation section is a condition data having a plurality of reaction conditions whose reaction results are unknown using actual measurement data composed of a plurality of reaction information in which the reaction results in the reaction section are known and the reaction results being known.
  • a prediction result for each reaction condition of the set a prediction data set in which the reaction condition and the prediction result are associated is generated.
  • the calculation section specifies a prediction result closest to a preset target result among the obtained plurality of prediction results, and extracts a reaction condition associated with the specified prediction result as an extraction reaction condition.
  • the determination unit determines whether the difference between the reaction result when the reaction is performed under the extraction reaction condition in the reaction section and the prediction result associated with the extraction reaction condition is within a preset allowable range. When the degree of difference is not within the allowable range, the determination unit adds reaction information in which the extraction reaction condition and the reaction result when the reaction is performed under the extraction reaction condition are associated with the actually measured data. When the degree of difference is within the allowable range, the determination unit sets the extraction reaction condition as a reaction condition used for the subsequent flow reaction processing in the reaction section.
  • the system controller controls the reaction section according to the reaction conditions in the reaction data set.
  • the flow reaction method of the present invention has a flow reaction step, a calculation step, and a determination step.
  • the calculation step is a reaction condition of a condition data set having a plurality of reaction conditions whose reaction results are unknown using actual measurement data composed of a plurality of reaction information in which a reaction result whose reaction result is known is associated with the reaction result.
  • a prediction data set in which the reaction condition and the prediction result are associated with each other is generated.
  • the calculation step specifies a prediction result closest to a preset target result among the obtained plurality of prediction results, and extracts a reaction condition associated with the specified prediction result as an extraction reaction condition.
  • the determination step determines whether or not the degree of difference between the reaction result when the reaction is performed under the extraction reaction condition in the flow reaction step and the prediction result associated with the extraction reaction condition is within a preset allowable range.
  • the determination step when the degree of difference is not within the allowable range, the reaction information in which the extraction reaction condition and the reaction result when the reaction is performed under the extraction reaction condition is added to the actually measured data.
  • the determination step when the degree of difference is within an allowable range, the extraction reaction condition is set as a reaction condition in the subsequent flow reaction step.
  • the subsequent flow reaction step is a flow reaction method in which the reaction is performed under extraction reaction conditions.
  • condition setting of a flow reaction process can be performed quickly.
  • FIG. 9 is an explanatory diagram of first measurement data.
  • FIG. 11 is an explanatory diagram of a first condition data set. It is explanatory drawing of the 1st prediction data set. It is explanatory drawing of the 1st comparison data. It is a flowchart which performs a flow reaction process. It is explanatory drawing of the 2nd measurement data. It is explanatory drawing of the comparison data of the 2nd time. It is explanatory drawing of the 7th comparison data. It is the schematic of another flow reactor.
  • FIG. 9 is an explanatory diagram of first measurement data.
  • FIG. 11 is an explanatory diagram of a first condition data set. It is explanatory drawing of the 1st prediction data set. It is explanatory drawing of the 1st comparison data. It is a flowchart which performs a flow reaction process. It is explanatory drawing of the 2nd measurement data. It is explanatory drawing of the comparison data of the 2nd time. It is explanatory drawing of the 7th comparison data. It is the
  • FIG. 9 is an explanatory diagram of first measurement data.
  • FIG. 11 is an explanatory diagram of a first condition data set. It is explanatory drawing of the 1st prediction data set. It is explanatory drawing of the 1st comparison data. It is explanatory drawing of the 2nd measurement data. It is explanatory drawing of the comparison data of the 2nd time. It is explanatory drawing of the 5th comparison data.
  • a flow reaction facility 10 includes a flow reaction device 11, a flow reaction support device (hereinafter, simply referred to as a "support device") 12, a system controller 15, A setting unit 16 and a detection unit 17 are provided.
  • the flow reaction device 11 is a device for performing a flow reaction process and obtaining a product.
  • the flow reaction performed in the flow reactor 11 includes, for example, a synthesis reaction for synthesizing a compound that is a monomer, a polymerization reaction for generating a polymer by reacting monomers, and a start reaction and a termination reaction for example, such as an anion polymerization reaction.
  • the reactant to be subjected to the flow reaction may be, for example, a compound at the growth (growth) stage to be subjected to the termination reaction.
  • the termination reaction for stopping the growth (growth) of polystyryllithium with methanol is performed by a flow reaction.
  • the flow reactor 11 includes a first supply unit 21, a second supply unit 22, a reaction section 23, and a recovery section 26.
  • the first supply unit 21 and the second supply unit 22 are each connected to an upstream end of the reaction section 23 by a pipe, and the recovery section 26 is connected to a downstream end of the reaction section 23 by a pipe.
  • the first supply unit 21 supplies the first raw material of the flow reaction to the reaction section 23.
  • the first raw material in this example is a first liquid in which polystyryllithium is dissolved in a solvent, and polystyryllithium is an example of a reaction product of the flow reaction treatment.
  • the first supply unit 21 supplies a first liquid in which porstyryllithium is dissolved in a solvent to the reaction section 23.
  • Tetrahydrofuran hereinafter referred to as THF
  • the raw material of the flow reaction may be a mixture of the reactant and another substance, or may be composed of only the reactant.
  • the first supply unit 21 includes a pump (not shown), and the flow rate of the first raw material to the reaction section 23 is adjusted by adjusting the rotation speed of the pump.
  • the second supply unit 22 supplies the second raw material of the flow reaction to the reaction section 23.
  • the second raw material in this example is a mixture of methanol and water, that is, an aqueous methanol solution, and uses methanol as a terminator for the termination reaction.
  • the second supply unit 22 also includes a pump (not shown), similarly to the first supply unit 21, and the flow rate of methanol to the reaction section 23 is adjusted by adjusting the rotation speed of the pump.
  • the first supply unit 21 and the second supply unit 22 supply the liquid to the reaction section 23 in this example, the supply is not limited to the liquid, and may be a solid or a gas.
  • the reaction section 23 is for performing a termination reaction as a flow reaction, and includes a merge section 31, a reaction section 32, and a temperature control section 33.
  • the junction 31 is a T-shaped pipe, that is, a T-shaped pipe.
  • the first pipe part 31a of the junction part 31 is connected to the first supply part 21, the second pipe part 31b is connected to the second supply part 22, and the third pipe part 31c is connected to the reaction part 32, respectively.
  • the reaction section 32 is a pipe in which a plurality of tubular members are connected in the length direction. By changing the number of tubular members and / or the length of individual tubular members used, the length L32 of the reaction section 32 is changed. Also, by changing the tubular member to another tubular member having a different inner diameter, the inner diameter D32 of the reaction section 32 is changed.
  • the inside of the reaction section 32 is a flow path for a mixture of a first raw material and a second raw material (hereinafter, referred to as a mixed raw material), and defines a hollow portion in the tube as a reaction site. While the mixed raw material passes through the reaction section 32, the anion polymerization termination reaction proceeds, and polystyrene is generated. Although the reaction proceeds slightly in the third pipe portion 31c of the junction portion 31, the length of the third pipe portion 31c of the junction portion 31 is very short with respect to the length L32 (8 m in this example) of the reaction portion 32. The length of the third tube portion 31c in this example is approximately 0.03 m.
  • the length of the third tube portion 31c is ignored, and the length L32 of the reaction portion 32 is regarded as the length of a field where a flow reaction is performed (hereinafter, referred to as a reaction path length).
  • the symbol L32 is used for the reaction path length.
  • the inside diameter D32 of the reaction section 32 is regarded as the diameter of a field where a flow reaction is performed (hereinafter, referred to as a reaction path diameter), and the symbol D32 is used for the reaction path diameter.
  • the temperature control unit 33 adjusts the temperature of the flow reaction (hereinafter, referred to as reaction temperature).
  • the temperature control section 33 adjusts the temperature (reaction temperature) of the mixed raw material flowing through the junction section 31 and the reaction section 32 through these sections. If the reaction temperature set by the setting unit 16 (hereinafter, referred to as a set temperature) is the same as the temperature of the mixed raw material controlled by the temperature control unit 33, the set temperature may be regarded as the reaction temperature, This is the case in the present example.
  • a temperature detector that detects the temperature in the reaction section 32 may be provided, and the detection result of the temperature detector may be used as the reaction temperature. .
  • the recovery section 26 is for recovering the polystyrene that is a product of the flow reaction.
  • the recovery section 26 includes a deposition section (not shown), a sampling section (not shown), a drying section (not shown), and the like.
  • the precipitation section is for precipitating polystyrene as a product.
  • a container equipped with a stirrer is used as a deposition unit. Methanol is contained in a container, and polystyrene is precipitated by putting a polystyrene solution guided from a reaction section into stirred methanol.
  • the collecting section is for collecting the precipitated polystyrene from a mixed solution of methanol and THF.
  • a filter is used as a sampling unit.
  • the drying section is for drying the collected polystyrene.
  • a thermostat having a decompression function is used as the drying unit.
  • Polystyrene can be obtained by heating the inside of the thermostatic chamber under reduced pressure.
  • the reaction section and the recovery section are not limited to the above examples, and may be appropriately changed according to the type of the flow reaction and / or the type of the product.
  • a container may be provided instead of the recovery section 26, and the polystyrene solution guided from the reaction section 23 may be temporarily stored in the container.
  • the stored polystyrene solution is guided to the collection section 26, and the polystyrene is obtained by precipitation, collection, and drying.
  • the detection unit 17 is connected to the collection section 26 and the support device 12, detects a reaction result that is a processing result of the flow reaction, and outputs the reaction result to the determination unit 56 (see FIG. 3A) of the support device 12.
  • Examples of the parameters resulting in the reaction include product properties such as product purity, molecular weight, or molecular weight dispersity (hereinafter, simply referred to as dispersity), and yield.
  • the concentration such as the molar concentration
  • the detection unit 17 may detect various properties such as the yield or purity of a by-product as a result parameter in addition to the various properties of the product.
  • a plurality of result parameters may be included in the reaction result.
  • the molecular weight and the degree of dispersion of the polystyrene obtained in the recovery section 26 are detected by the detection unit 17. That is, the result parameters in this example are two, that is, the molecular weight and the degree of dispersion.
  • the molecular weight detected is the number average molecular weight (Mn).
  • Mn number average molecular weight
  • the molecular weight and the degree of dispersion are determined by dissolving polystyrene in THF to prepare a polystyrene solution, and using this polystyrene solution by gel permeation chromatography (hereinafter, referred to as GPC, GPC is an abbreviation for Gel Permeation Chromatography).
  • the degree of dispersion is Mw / Mn obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight.
  • the detection of the result parameter is not limited to GPC.
  • infrared spectroscopy IR, infrared spectroscopy
  • nuclear magnetic resonance spectroscopy NMR
  • HPLC high performance liquid chromatography
  • HPLC High Performance Liquid Chromatography
  • GC Gas Chromatography
  • Detection may be performed by various methods.
  • the system controller 15 is for controlling the flow reactor 11 as a whole.
  • the system controller 15 is connected to each of the pumps of the first supply unit 21 and the second supply unit 22 and each of the temperature control units 33.
  • the system controller 15 adjusts the respective flow rates of the first raw material and the second raw material by adjusting the rotation speeds of the pumps of the first supply unit 21 and the second supply unit 22.
  • the flow rate of each of the first raw material and the second raw material toward each other is controlled.
  • the flow rate of the first raw material is X1 (unit: m 3 / sec)
  • the flow rate of the first raw material sent from the first supply section 21 to the reaction section 23 is defined as X1 (unit: m 3 / sec).
  • the sectional area of the pipe is X2 (the unit is m 2 ), it can be obtained by X1 / X2.
  • the flow rate of the second raw material the flow rate of the second raw material sent from the second supply section 22 to the reaction section 23 is set to X1 (unit: m 3 / sec), and the flow rate between the second supply section 22 and the reaction section 23 is set.
  • the cross-sectional area of the pipe is X2 (the unit is m 2 ), and is obtained by X1 / X2.
  • the respective flow rates of the first raw material and the second raw material are obtained from the rotational speed based on catalog data of each commercially available pump.
  • the system controller 15 controls the temperature of the mixed raw material by adjusting the temperature control unit 33. As described above, the system controller 15 controls each part of the flow reaction device 11 to control the flow reaction device 11 as a whole.
  • the setting unit 16 is for setting processing conditions (hereinafter, referred to as reaction conditions) of a flow reaction process in the flow reaction device 11.
  • the reaction condition is a combination of a plurality of condition parameters.
  • the setting unit 16 has an operation unit (not shown), sets reaction conditions by inputting operation signals from the operation unit, and thereby controls the flow reaction apparatus 11 to predetermined reaction conditions via the system controller 15. .
  • a reaction condition is set by clicking or selecting with the mouse of the operation unit and / or inputting characters with the keyboard.
  • the setting unit 16 is connected to the support device 12 and, in addition to or instead of the operation signal from the operation unit described above, receives a later-described determined reaction condition CS read from a later-described third storage unit 51c of the support device 12.
  • the reaction conditions are set, whereby the flow reactor 11 is controlled to predetermined reaction conditions via the system controller 15.
  • the setting unit 16 in this example can also provide an input signal to the support device 12 as described later.
  • the condition parameters set by the setting unit 16 may be determined according to the type of the flow reaction process to be performed, and are not particularly limited.
  • the flow rate and / or flow rate of the raw materials such as the first raw material and the second raw material, the temperature of the raw materials to be sent to the reaction section 23, the reaction temperature, the reaction time, and the like are included.
  • the flow rates of the first raw material and the second raw material, the shape of the junction, the reaction path diameter D32, the reaction path length L32, and the reaction temperature are used.
  • the condition parameter of the flow reaction process may include a condition parameter fixed to a predetermined fixed value (hereinafter, referred to as a fixed parameter).
  • the fixed parameters in this example are the concentration of the reactant in the first raw material and the second raw material, and the reaction path length L32.
  • the concentration of the reactant in the first raw material and the second raw material and the reaction path length L32 are determined in advance in this example, and are controlled via the system controller 15 (for example, the concentration is changed to be higher or the concentration is changed to be lower). Is not performed.
  • the flow reaction may not be controlled by the system controller 15 but may have a condition parameter that is changed in, for example, a raw material preparation step and / or an assembly step of the flow reaction apparatus 11.
  • the support device 12 provides support for quickly determining a plurality of condition parameters serving as reaction conditions for the flow reaction process performed by the flow reaction device 11. Details of the support device 12 will be described later using another drawing.
  • the flow reactor 11 can be replaced with another flow reactor.
  • the flow reactor 41 includes a reaction section 43 in which the junction 31 is replaced with a junction 42. 2, the same members as those in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and description thereof will be omitted.
  • the junction 42 is a tube branched into a cross, that is, a cross tube.
  • the first pipe part 42a of the junction part 42 is in the second supply part 22
  • the second pipe part 42b and the third pipe part 42c crossing the first pipe part 42a are in the first supply part 21, and the remaining fourth pipe part 42d.
  • the first raw material and the second raw material that have been guided are merged and sent to the reaction section 32 in a mixed state.
  • the support device 12 includes an operation section 50, first to third storage units 51a to 51c, a determination unit 56, and the like.
  • the first storage unit 51a to the third storage unit 51c are configured separately from the operation section 50, but may be configured as a part of the operation section 50.
  • the first storage unit 51a receives a plurality of pieces of reaction information already performed in the flow reaction device 11, and stores the plurality of pieces of reaction information as actual measurement data.
  • Each piece of reaction information is a set of reaction data in which reaction conditions and known reaction results are linked (linked) (see FIG. 4). Therefore, one known reaction result is associated with one reaction condition.
  • the first storage unit 51a stores the reaction information in a state where it can be read only by the reaction condition.
  • the first storage unit 51a stores the reaction condition and the known reaction result in different fields from each other, and stores the association information between the reaction condition and the known reaction result.
  • a field for storing both the reaction condition and the known reaction result and a field for storing only the reaction condition may be provided.
  • the measurement data composed of the plurality of pieces of reaction information is used as learning data in the calculation section 50.
  • the number of pieces of reaction information constituting the actual measurement data changes according to the determination result of the determination unit 56 described later.
  • the first input to the first storage unit 51a is 10 pieces of reaction information from the reaction information a to the reaction information j, so that the first storage unit 51a is first configured with 10 pieces of reaction information.
  • the actually measured data is stored.
  • the calculation section 50 has a learning mode and a calculation mode, and performs a target calculation process for each mode.
  • the calculation section 50 includes a first calculation unit 61 to a third calculation unit 63.
  • the first calculation unit 61 performs a calculation process in the learning mode, and in the calculation mode, a pause state in which the calculation is paused as described later and a first state. The state of reading the storage unit 51a is repeated.
  • the second arithmetic unit 62 and the third arithmetic unit 63 are in a sleep state in the learning mode, and perform arithmetic processing in the calculation mode.
  • the first arithmetic unit 61 reads out (takes out) the actually measured data stored in the first storage unit 51a and uses the read out actually measured data as learning data (teacher data) to determine the relationship between the reaction condition and the reaction result. learn. Then, the first calculation unit 61 generates a function that associates the reaction condition and the reaction result by learning, and writes the generated function in the second storage unit 51b.
  • Each of the plurality of condition parameters constituting the reaction condition and the result parameter constituting the reaction result is a variable in the function, and when the condition parameter and the result parameter are already determined, the generation of the function means the coefficient in the function.
  • the first arithmetic unit 61 learns each condition parameter of the reaction condition as an explanatory variable, and learns a result parameter of the reaction result as a target variable, and completes the first learning. ).
  • the explanatory variables correspond to input variables
  • the objective variables correspond to output variables.
  • the following functions (1A) and (1B) are generated by the NN constructed in the first calculation unit 61.
  • y2 w u1y2 / [1 + exp ⁇ -(w x1u1 ⁇ x 1 + w x2u1 ⁇ x 2 + ... + w x5u1 ⁇ x 5 ) ⁇ ] + W u2y2 / [1 + exp ⁇ -(w x1u2 ⁇ x 1 + w x2u2 ⁇ x 2 + ... + w x5u2 ⁇ x 5 ) ⁇ ] + ⁇ ⁇ ⁇ + W u20y2 / [1 + exp ⁇ (w x1u20 ⁇ x 1 + w x2u20 ⁇ x 2 + ... + w x5u20 ⁇ x 5 ) ⁇ ] ... (1B)
  • xi (i is a natural number) is the value of the condition parameter, and the maximum value of i is the number of condition parameters. Therefore, in this example, i is a natural number of 1 or more and 8 or less.
  • ym (m is a natural number) is the value of the result parameter, and the maximum value of m is the number of the result parameter. Therefore, m is 1 and 2 in this example.
  • ul (1 is a natural number) is a unit value of the intermediate layer L2 described later, and the maximum value of 1 is the number of units. In this example, l is a natural number of 1 or more and 20 or less.
  • w xiul and w ulym are weighting factors. Specifically, it is as follows.
  • 1 ml / min can be converted as 1 ⁇ 10 ⁇ 6 ⁇ (1/60) m / sec.
  • y1 molecular weight of polystyrene
  • y2 polystyrene dispersion degree x1 (unit: mol / L); concentration of polystyryllithium in the first raw material, the amount of polystyryllithium (unit: mol (mol)) is represented by A1, the volume of THF (unit: L (liter))
  • B1 is used, it is obtained by the calculation formula of A1 / B1.
  • x2 (unit: ml / min); flow rate of first raw material x3 (unit: mol / L); concentration of methanol in the second raw material, when the amount of methanol (unit: mol (mol)) is A2, and the volume of water (unit: L (liter)) is B2.
  • the NN can be constructed using a commercially available neural network fitting application.
  • the NN is constructed using Matlab Neural Fitting Tool manufactured by MathWorks.
  • the neural network fitting application is not limited to the above, and for example, a keras package manufactured by RStudio, which can be operated in the R language, can be used.
  • FIG. 3B shows a layer structure realized in this example.
  • the input layer L1 is configured with a value xi of a condition parameter that is an explanatory variable.
  • the intermediate layer L2 is configured by a unit value ul, and is one layer in this example.
  • Each of the unit values ul is a sum of values obtained by weighting x1 to x8 with a weight coefficient W xiul corresponding to each of x1 to x8.
  • the output layer L3 is configured with the value ym of the result parameter which is the objective variable.
  • Each of the result parameter values ym is a value obtained by weighting using the unit values u1 to u20 with a weight coefficient w ulym corresponding to each of the unit values u1 to u20.
  • black circles “•” in FIG. 3B indicate weighting factors W xiul and w ulym .
  • the layer structure of the NN is not limited to this example.
  • the calculation section 50 switches the learning mode to the calculation mode when the function is written in the second storage unit 51b by the first calculation unit 61.
  • the second calculation unit 62 reads the reaction condition of the actually measured data from the first storage unit 51a, and generates a condition data set including a plurality of reaction conditions whose reaction results are unknown based on the read reaction condition. Then, the data is written to the second storage unit 51b.
  • the condition data set may include a reaction condition whose read-out reaction result is known, and this is also the case in the present example.
  • the second calculation unit 62 generates a condition data set by assigning a value of at least one condition parameter among a plurality of condition parameters forming a reaction condition and generating a reaction condition whose reaction result is unknown. For example, when the flow rate of the first raw material in the read-out reaction conditions is 1 ml / min, 10 ml / min, 11 ml / min, 20 ml / min, and 100 ml / min among the plurality of condition parameters, Since the reaction result is unknown when the values are, for example, 2 ml / min, 5 ml / min, 6 ml / min, etc., a reaction condition based on these values is generated.
  • the value of the condition parameter generated so that the reaction result becomes an unknown reaction condition is a value between the minimum value and the maximum value in the condition parameter of the reaction condition read from the first storage unit 51a.
  • a value and a maximum value may be included.
  • the minimum value of the flow rate of the first raw material is 1 ml / min and the maximum value is 100 ml / min, so that a plurality of condition parameter values are generated between these two values.
  • the minimum value of 1 ml / min and the maximum value of 100 ml / min are also included.
  • the plurality of values between the maximum value and the minimum value are values obtained by equally spacing the maximum value and the minimum value.
  • the flow rate of the first raw material is The value is set at an interval of 1 ml / min as described later (see FIG. 5).
  • the condition parameter for which a value is assigned is a condition parameter that can be determined to be changeable in the flow reactor 11. Therefore, no value is assigned to the fixed parameter.
  • a plurality of reaction conditions in which values are varied for each of the flow rates of the first raw material and the second raw material, the type of the junction (the junction 31 and the junction 42), the reaction path diameter D32, and the reaction temperature See FIG. 5).
  • the second storage unit 51b stores the function output from the first operation unit 61 and the condition data set output from the second operation unit 62.
  • the second arithmetic unit 62 generates the condition data set, but the condition data set may be generated using another arithmetic device, for example, a personal computer.
  • the third calculation unit 63 reads the function and the condition data set from the second storage unit 51b, generates a prediction data set, and writes the generated prediction data set to the third storage unit 51c.
  • the prediction data set includes a plurality of pieces of prediction information.
  • the prediction information is prediction data that predicts a reaction result for each reaction condition of the condition data set and associates the obtained prediction result with the reaction condition. Therefore, the number of prediction information is equal to the number of reaction conditions in the condition data set.
  • the prediction is an arithmetic process performed using the read function.
  • the third calculation unit 63 specifies and extracts prediction information indicating the best prediction result from the plurality of prediction information. Then, the third calculation unit 63 writes the reaction condition of the extracted prediction information as the extraction reaction condition CP in the third storage unit 51c, and changes the prediction result RP of the extracted prediction information to the state associated with the extraction reaction condition CP. Writing to the third storage unit 51c.
  • a target reaction result (hereinafter, referred to as a target result) RA is input to the third arithmetic unit 63 in advance as an operation signal by, for example, input from an operation unit of the setting unit 16 in this example.
  • the third calculation unit 63 compares the target result RA with the prediction result of each prediction information of the prediction data set, and is closest to the target result RA among the plurality of prediction results (the difference between the target result RA and the target result RA is the smallest). ) Specify the prediction result as the above “best prediction result”. If there is the same prediction result as the target result RA, the prediction result is specified as the “best prediction result”.
  • a2 w x2u1 ⁇ w u1y1 + w x2u2 ⁇ w u2y1 + w x2u3 ⁇ w u3y1 + ... + w x2ul ⁇ w uly1 ...
  • a3 w x3u1 ⁇ w u1y1 + w x3u2 ⁇ w u2y1 + w x3u3 ⁇ w u3y1 + ... + w x3ul ⁇ w uly1 ...
  • a4 w x4u1 ⁇ w u1y1 + w x4u2 ⁇ w u2y1 + w x4u3 ⁇ w u3y1 + ... + w x4ul ⁇ w uly1 ...
  • a5 w x5u1 ⁇ w u1y1 + w x5u2 ⁇ w u2y1 + w x5u3 ⁇ w u3y1 + ... + w x5ul ⁇ w uly1 ...
  • a6 w x6u1 ⁇ w u1y1 + w x6u2 ⁇ w u2y1 + w x6u3 ⁇ w u3y1 + ... + w x6ul ⁇ w uly1 ...
  • a7 w x7u1 ⁇ w u1y1 + w x7u2 ⁇ w u2y1 + w x7u3 ⁇ w u3y1 + ... + w x7ul ⁇ w uly1 ...
  • the reaction result and the reaction condition closest to the target result RA are selected from the actually measured data, the reaction result is set as y1n, and the absolute value of the difference between y1n and the target result RA is calculated by the equation
  • the absolute values of a1 to a8 attention is paid to the absolute values of a1 to a8. For example, when the absolute value of a1 is the largest among the absolute values of a1 to a8, the “best prediction result” is specified in the following four cases ⁇ A> to ⁇ D>.
  • the target result RA is input in a state where the plurality of result parameters are weighted, and the third calculation unit 63 specifies the “best prediction result” based on the weighting.
  • the specification based on the weighting may be, for example, a first method of specifying only the result parameter having the largest weight, or, for example, narrowing down a plurality of candidates from the prediction result closest to the target result RA with the result parameter having the largest weight.
  • a second method may be used in which the prediction result closest to the target result RA is specified as the “best prediction result” in a result parameter having a lower weighting order among the narrowed prediction results. In this example, it is specified by the second method.
  • the target result RA in this example has a molecular weight of 25200 and a degree of dispersion of 1.03 or less.
  • the third storage unit 51c stores the prediction data set output from the third operation unit 63, the extraction reaction condition CP, and the prediction result RP associated with the extraction reaction condition CP. These prediction data sets, extraction reaction conditions CP, and prediction results RP are stored in a state where they can be individually read.
  • the setting unit 16 reads the extraction reaction condition CP from the third storage unit 51c. As described above, the extraction reaction condition CP input from the third operation unit 63 of the operation section 50 via the third storage unit 51c is set as an input signal, and the extraction reaction condition CP is set as the reaction condition in the flow reaction device 11.
  • the detection unit 17 outputs the reaction result (hereinafter, referred to as an actual measurement result) RR of the flow reaction process performed under the extraction reaction condition CP to the determination unit 56 as described above.
  • the determination unit 56 reads the prediction result RP associated with the extraction reaction condition CP from the third storage unit 51c, compares the prediction result RP with the measurement result RR input from the detection unit 17, and compares the prediction result RP with the measurement result RR.
  • the difference DR from the result RR is obtained.
  • the dissimilarity DR is obtained from the calculation formula of
  • the dissimilarity DR is calculated as follows. There is no particular limitation.
  • an allowable range DT of the degree of difference is input in advance as an operation signal, for example, in this example, by an input from the operation unit of the setting unit 16.
  • the determination unit 56 determines whether the degree of difference DR is within the allowable range DT.
  • the allowable range DT is set to 1%, but the allowable range can be appropriately set according to the type of the result parameter.
  • the allowable range DT (unit is%) can be obtained by a calculation formula of (
  • the determining unit 56 determines that the degree of difference DR is within the allowable range DT, the determining unit 56 extracts the extracted reaction condition CP from the reaction condition group of the prediction data set stored in the third storage unit 51c, and Is set as a reaction condition (hereinafter, referred to as a determined reaction condition) CS for the subsequent flow reaction processing, and written into the third storage unit 51.
  • the reaction condition group of the prediction data set stored in the third storage unit 51c including the setting of the extraction reaction condition CP as the determined reaction condition CS, as the reaction data set used for the flow reaction process of the flow reaction device 11 in the third storage.
  • the information may be written in the section 51c, and this is the case in the present example.
  • the determination unit 56 stores the reaction data set in the third storage unit 51c in a state where the reaction data set can be read for each reaction condition.
  • the third storage unit 51c has an area for storing the prediction data set and an area for storing the reaction information data set.
  • the determination unit 56 may rewrite the reaction condition group of the prediction data set to a reaction data set.
  • the third calculation unit 63 stores the prediction data set in the third storage unit 51c in a readable state in advance for each reaction condition.
  • the reaction condition data set is stored in the third storage unit 51c.
  • a fourth storage unit (not shown) may be further provided and stored in the fourth storage unit.
  • the determination unit 56 determines that the degree of difference DR is not within the allowable range DR, the determination unit 56 reads the extraction reaction condition CP from the third storage unit 51c, and generates reaction information in which the extraction reaction condition CP is associated with the measurement result RR. . Then, the generated reaction information is written to the first storage unit 51a as a part of the actually measured data. By this writing, the actually measured data in the first storage unit 51a is rewritten, and the number of pieces of reaction information constituting the actually measured data changes as described above. In this example, ten pieces of reaction information are stored in the first storage unit 51a by the first input as described above, and one piece of reaction information is added by one writing of the determination unit 56, and a total of 11 pieces of reaction information are added. New measurement data composed of the pieces of reaction information is written to the first storage unit 51a.
  • the first calculation unit 61 repeats the pause state and the reading of the first storage unit 51a in the calculation mode. Specifically, the first calculation unit 61 reads the measured data in the first storage unit 51a at a preset time interval, and determines whether the previously read measured data has been rewritten with new measured data. ing.
  • the calculation section 50 determines that the actually measured data in the first storage unit 51a has not been rewritten, the calculation section 50 continues the calculation mode. If it is determined that the data has been rewritten, the calculation section 50 switches the calculation mode to the learning mode, and the first calculation unit 61 performs the next learning using the new measured data as learning data, and sets a new function.
  • the function generated and stored in the second storage unit 51b is rewritten with a new function.
  • the generation of a new function and the rewriting of a new function refer to the generation of a new coefficient in a function and the rewriting of a coefficient in a function.
  • y1 w2 u1y1 / [1 + exp ⁇ -(w2 x1u1 ⁇ x 1 + w2 x2u1 ⁇ x 2 + ... + w2 x5u1 ⁇ x 5 ) ⁇ ] + W2 u2y1 / [1 + exp ⁇ -(w2 x1u2 ⁇ x 1 + w2 x2u2 ⁇ x 2 + ...
  • the second calculation unit 62 similarly newly generates a condition data set when new measured data is generated.
  • FIG. 4 shows the actually measured data stored by the first input, and as described above, in this example, the data is composed of ten pieces of reaction information a to j.
  • a plurality of pieces of reaction information are stored in a table structure in this example.
  • the types of the reaction information are arranged in a vertical column, and the types of the reaction information, the reaction conditions, and the reaction results are arranged in a horizontal column.
  • the vertical column and the horizontal column may be reversed.
  • the storage mode of the actually measured data in the first storage unit 51a is not limited to the table structure, and it is sufficient that the reaction condition and the reaction result are associated. Therefore, for example, fields of the reaction condition and the reaction result may be provided and stored.
  • the condition data set generated by the second operation unit 62 also has a table structure in this example. Therefore, the condition data set having a table structure is stored in the second storage unit 51b. Specifically, different reaction conditions are arranged in a column, and condition parameters are arranged in a column. However, the vertical column and the horizontal column may be reversed. Also, the form of the condition data set is not limited to the table structure as in the form of the actually measured data, and may be generated so as to be individually readable for each reaction condition and stored in the second storage unit 51b.
  • FIG. 5 shows a condition data set generated based on the first actual measurement data.
  • the condition parameters other than the fixed parameters are, in this example, the maximum value, the minimum value, and the value between the maximum value and the minimum value at regular intervals as described above.
  • the flow rate of the first raw material is a value obtained by cutting a minimum value of 1 ml / min to a maximum value of 100 ml / min at intervals of 1 ml / min
  • the flow rate of the second raw material is 0.1. It is a value obtained by chopping from 6 ml / min to the maximum value of 55.0 ml / min at intervals of 0.1 ml / min.
  • the merging portion has two shapes, a merging portion 31 and a merging portion 42.
  • the reaction path diameter D32 is a value obtained by cutting a minimum value of 1 mm to a maximum value of 10 mm at intervals of 1 mm, and the reaction temperature is a minimum value (minimum value) of 1 ° C. to a maximum value (maximum value) of 10 °.
  • the value up to ° C is a value that is chopped at 1 ° C intervals. However, intervals at which the values are cut at regular intervals are not limited to this example.
  • the prediction data set generated by the third operation unit 63 also has a table structure in this example, and therefore, the third storage unit 51c stores a prediction data set having a table structure.
  • the types of the prediction information are arranged in a vertical column, and the condition parameters of the reaction conditions and the result parameters as the prediction results are arranged in a horizontal column.
  • the vertical column and the horizontal column may be reversed.
  • the mode of the prediction data set is not limited to the table structure like the mode of the actual measurement data, and the reaction condition and the prediction result are associated with each other, and at least the extraction reaction condition CP is generated so as to be readable, and the third storage unit 51c Should be stored in the memory.
  • FIG. 6 shows a prediction data set generated based on the condition data set of FIG.
  • the two result parameters are weighted as described above, and the weight of the molecular weight is set larger than the degree of dispersion.
  • a prediction information number hereinafter referred to as prediction information No.
  • the molecular weight with 8000 is 24870, and other prediction information No. Is closest to the target result RA, and has the same value as each other.
  • the third calculation unit 63 sets the prediction information No.
  • the prediction result of the prediction information No. 6050 is specified as the “best prediction result” described above.
  • the reaction condition of 6050 is specified as the extraction reaction condition CP.
  • the third arithmetic unit 63 sets the prediction information No. In the state where the reaction condition 6050 is recorded as the extraction reaction condition CP (in Table 6, “*” is added next to the prediction information No. for convenience of explanation), the extraction reaction condition CP
  • the prediction result associated with the extraction reaction condition is stored in the third storage unit 51c.
  • the determination unit 56 generates comparison data when performing a comparison operation between the prediction result RP and the actual measurement result RR.
  • the determination section 56 has a comparison data storage section (not shown) for storing comparison data.
  • FIG. 7 shows comparison data when the first comparison operation is performed.
  • the comparison data is generated in a table structure in which the result parameters of the prediction result RP and the result parameters of the actual measurement result RR are arranged.
  • the prediction result RP and the actual measurement result RR are arranged in a vertical column, and the two result parameters of the degree of dispersion and the molecular weight are arranged in a horizontal column. May be reversed. If the same result parameters of the actual measurement result RP and the actual measurement result RR are stored in the comparison data storage unit in a readable state, the storage mode may not be a table structure.
  • the determination unit 56 obtains the degree of difference in molecular weight DR and the degree of difference in dispersity DR by the above-described calculation formulas. For example, when the comparison data shown in FIG. 7 is used, the difference DR of the molecular weight is calculated as 9.9891, and the difference DR of the dispersity is calculated as 3.5107.
  • a target result RA is set.
  • create actual measurement data Note that the order of setting the target result RA and producing actual measurement data may be reversed.
  • the measurement data is created by performing a flow reaction process a plurality of times using the flow reaction device 11 and the flow reaction device 41, and associating each reaction result with a reaction condition.
  • the flow reaction process for creating the actual measurement data is performed by inputting a condition parameter using the operation unit of the setting unit 16 and controlling the system controller 15 based on the input signal.
  • the prepared actual measurement data is input by the operation unit of the setting unit 16 (see FIGS. 1 to 3), and the input signal is written to the first storage unit 51a.
  • ten pieces of reaction information a to j are measured data (first measured data) (see FIG. 4).
  • the support device 12 sets the mode to the learning mode, whereby the first arithmetic unit 61 reads the first measured data from the first storage unit 51a.
  • the measurement data may be output from the setting unit 16 to the first calculation unit 61 without providing the first storage unit 51a (without intervening).
  • the first computing unit 61 to which the first measured data is input as described above uses the first measured data as learning data, and learns the association between the reaction condition and the reaction result based on the learning data. I do. Then, the first calculation unit 61 generates a function of the condition parameter and the result parameter, and writes the generated function to the second storage unit 51b.
  • the support device 12 switches the mode from the learning mode to the calculation mode, whereby the second calculation unit 62 reads the measured data from the first storage unit 51a.
  • the second computing unit 62 assigns values of condition parameters other than the fixed parameters based on the reaction conditions of the actually measured data, specifically, based on the values of the respective condition parameters, and sets a condition data set composed of a plurality of different reaction conditions. Is generated (see FIG. 5).
  • the second computing unit 62 regards the condition parameter having the same content in all pieces of reaction information in the actual measurement data as a fixed parameter.
  • the generated condition data set is written to the second storage unit 51b in a readable state for each reaction condition.
  • the condition data set is generated using the maximum value, the minimum value, and the condition parameters obtained by cutting the value between the maximum value and the minimum value at equal intervals.
  • the flow rate of the first raw material is 100
  • the flow rate of the second raw material is 545
  • the shape of the junction is two
  • the reaction path diameter D32 is ten
  • the reaction temperature is eleven.
  • the number of conditions is 100 ⁇ 545 ⁇ 2 ⁇ 10 ⁇ 11, that is, 11,990,000 in total.
  • both the learning in the first calculation unit 61 and the calculation of the condition data set in the second calculation unit 62 are simultaneously performed. May go.
  • the third operation unit 63 reads out the function and the condition data set from the second storage unit 51b.
  • the function is output from the first operation unit 61 to the third operation unit 63 without providing the second storage unit 51b (without intervening), and the condition data set is output from the second operation unit 62 to the third operation unit 63. May be output.
  • the third computing unit 63 to which the function and the condition data set have been input in this way calculates the prediction result using the function for each reaction condition of the read condition data set. Then, a prediction data set including a plurality of pieces of prediction information in which the reaction condition and the prediction result are associated with each other is generated and written in the third storage unit 51c (see FIG. 6).
  • the number of prediction information of the generated prediction data set is 11990000 in the present example, like the number of reaction conditions of the condition data set.
  • the third calculation unit 63 specifies prediction information indicating the “best prediction result” by comparing the previously input target result RA with the prediction result of each prediction information of the prediction data set.
  • the reaction condition of the specified prediction information is extracted as an extraction reaction condition CP (operation step), and the prediction information including the extraction reaction condition CP and the prediction result RP corresponding to the extraction reaction condition is extracted in the prediction data set by the extraction reaction condition CP. Is written in the third storage unit 51c as the prediction result RP associated with the extraction reaction condition.
  • the setting unit 16 After the extraction reaction condition CP is written in the third storage unit 51c, the setting unit 16 reads the extraction reaction condition CP from the third storage unit 51c.
  • the extraction reaction condition CP may be output from the third calculation unit 63 to the setting unit 16 without providing (without interposing) the third storage unit 51c.
  • the setting unit 16 to which the extraction reaction condition CP has been input in this way causes the flow reaction devices 11 and 41 to try the flow reaction process under the extraction reaction condition CP. Then, an actual measurement result RR that is a reaction result of the trial is output to the determination unit 56 by the detection unit 17.
  • the prediction result RP associated with the extraction reaction condition CP written in the third storage unit 51c is read by the determination unit 56.
  • the prediction result RP may be output from the third calculation unit 63 to the determination unit 56 without interposing the third storage unit 51c.
  • the judgment result 56 to which the prediction result RP is input in this way compares the prediction result RP with the actual measurement result RR (first comparison), and obtains the degree of difference DR (see FIG. 7).
  • the determination unit 56 determines whether or not the difference DR is within the allowable range DT based on the allowable range DT (1% in this example) of the degree of difference previously input from the setting unit 16. When it is determined that the degree of difference DR is within the allowable range DT, the determination unit 56 writes the extraction reaction condition CP as the determined reaction condition CS in the third storage unit 51, and the determination unit 56 of the present example further performs The reaction condition group of the prediction data set stored in the third storage unit 51c is written in the third storage unit 51c as a reaction data set used for the flow reaction process of the flow reaction device 11.
  • the setting unit 16 sets the reaction condition in the flow reactor 11 to the determined reaction condition CS, and performs the flow reaction in the flow reactor 11. Since the determined reaction condition CS is a reaction condition that has already been determined to obtain a reaction result very close to the actual measurement result RR, the product is obtained with the target molecular weight and the desired degree of dispersion. Further, the determined reaction condition CS is obtained by calculation from an enormous number of reaction conditions of, for example, 11,990,000 in this example, and the trial and time of the flow reaction processing are greatly reduced as compared with the conventional case.
  • the degree of difference DR obtained from the first comparison data is, as shown in FIG. 7, 9.989142 for the molecular weight and 2.906355 for the degree of dispersion, and is determined to be outside the allowable range DR. .
  • the determination unit 56 reads the extraction reaction condition CP from the third storage unit 51c, and generates reaction information in which the extraction reaction condition CP is associated with the measurement result RR. Then, the generated reaction information is added to the measured data in the first storage unit 51a (determination step), and the measured data in the first storage unit 51a is rewritten as new measured data as the second measured data. By this rewriting, the newly generated second measurement data is stored in the first storage unit 51a in a state composed of all 11 pieces of reaction information a to k (see FIG. 9).
  • the calculation section 50 switches the calculation mode to the learning mode, and the second calculation is performed by the first calculation unit 61.
  • the coefficient of the function stored in the second storage unit 51b is rewritten with a new coefficient, and the new function is written in the first storage unit 51a as a second function.
  • the second calculation unit 62 newly generates a condition data set and writes the newly generated condition data set in the second storage unit 51b.
  • the third calculation unit 63 newly generates a prediction data set based on the second function and the second condition data set stored in the second storage unit 51b, as in the previous case.
  • the extraction reaction condition CP and its prediction result RP are newly extracted.
  • a flow reaction process based on the extraction reaction condition CP is tried in the flow reaction devices 11 and 41, and the new prediction result RP and the new measurement result RR are compared by the determination unit 56 as in the first time. (Comparison for the second time), the degree of difference DR is newly obtained (see FIG. 10).
  • the extraction reaction condition CP is set as the determined reaction condition CS, and the flow reaction process is performed under this determined reaction condition, as in the first time. Since the determined reaction condition CS is a reaction condition for which a reaction result very close to the actual measurement result RR has already been determined, the product is obtained with the target molecular weight and the desired degree of dispersion. In addition, the determined reaction condition CS is obtained from an enormous number of reaction condition candidates by the operation step and the determination step repeated twice, and the trial and time of the flow reaction processing are greatly reduced as compared with the related art.
  • the reaction information newly generated through the same calculation processing as the first time is added to the actually measured data in the first storage unit 51a, and the third time Actual measurement data is generated in the first storage unit 51a.
  • the determination step the calculation step and the determination step are repeated until the degree of difference DR falls within the allowable range DT, and after the difference degree falls within the allowable range DT, the flow reaction processing is performed under the obtained determined reaction condition CS. .
  • the difference DR falls within the allowable range DT (see FIG. 11), and the flow reaction process is performed under the extraction reaction conditions in the seventh time.
  • the number of trials including the flow reaction process for producing the first actually measured data is only 17 times.
  • the time required for each calculation step and each determination step is about one hour in this example.
  • the reaction data set is stored in the third storage unit 51c. Since the reaction data set is already composed of the reaction conditions obtained through the calculation step and the judgment step, the fixed parameters among the condition parameters were changed or added, or the target result RA was changed. Even in this case, the determined reaction condition CS can be found more quickly. For example, when the target result RA of the molecular weight is changed from the value in the above example to another value, the determined reaction condition CS can be found by the following method.
  • the target result RA of the molecular weight is input from the setting unit 16 to the determination unit 56.
  • the reaction data set in the third storage unit 51 c is read by the determination unit 56, and the prediction result closest to the target result RA is specified from the read reaction data set.
  • the reaction condition associated with the prediction result specified in this manner is such that the current target result RA can be used as the determined reaction condition CS when the current target result RA is very close to the previous target result RA.
  • the reaction condition associated with the specified prediction result is regarded as the previous extraction reaction condition CP, and the determination process is performed in the same manner as in the above example. I do.
  • the learning step and the determination step are repeated, but the trial and the time of the flow reaction processing until finding the determined reaction condition CS from the previous time are performed. Is short.
  • the target result RA is changed, for example, the determined reaction condition CS can be quickly found, and the flow reaction processing can be performed earlier.
  • condition setting can be easily performed in a flow reaction having a large number of condition parameters
  • the reaction process can be started more quickly, and even if one of a plurality of condition parameters has to be changed for some reason, the process can be quickly performed.
  • a new reaction process can be performed.
  • a flow reaction apparatus 71 shown in FIG. 12 is an apparatus for performing a flow reaction process using three kinds of raw materials, that is, a first raw material to a third raw material, and can be used in the flow reaction equipment 10 shown in FIG. 12, the same members as those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and the description is omitted.
  • various flow reactions can be performed in the same manner as in the flow reactor 11.
  • a case where polystyrene is generated by an anionic polymerization reaction will be described as an example.
  • This example includes an initiation reaction, a growth (growth) stage, and even a termination reaction of the anionic polymerization reaction.
  • the flow reactor 71 includes a third supply unit 73, a fourth supply unit 74, and a reaction section 75 instead of the first supply unit 21 and the reaction section 23 of the flow reactor 11.
  • the system controller 15 is connected to the second supply unit 22, the third supply unit 73, the fourth supply unit 74, and the temperature control unit 33 of the reaction section 75.
  • the third supply unit 73 and the fourth supply unit 74 are connected to the upstream end of the reaction section 75 by piping.
  • the recovery section 26 is connected to the downstream end of the reaction section 75 by piping.
  • the third supply unit 73 supplies styrene as the third raw material to the reaction section 75.
  • the third raw material is a third liquid in which styrene as a reactant is dissolved in a solvent. THF is used as the solvent.
  • the third supply unit 73 includes a pump (not shown), and the flow rate of the third raw material to the reaction section 75 is adjusted by adjusting the rotation speed of the pump.
  • the fourth supply unit 74 supplies n-butyllithium as a fourth raw material to the reaction section 75.
  • the fourth raw material is a fourth liquid in which n-butyllithium is dissolved in a solvent.
  • n-Butyl lithium is used as an anionic polymerization initiator. THF is used as the solvent.
  • the fourth supply unit 74 includes a pump (not shown), and the flow rate of the fourth raw material to the reaction section 75 is adjusted by adjusting the rotation speed of the pump.
  • Styrene and n-butyllithium are raw materials of polystyryllithium used as reactants of the first raw material in the flow reactors 11 and 41.
  • the reaction section 75 is obtained by connecting two sets of the merging section 31 and the reaction section 32 of the reaction section 23 in series.
  • the upstream first merging section and the first reaction section are denoted by reference numerals 31A and 32A, respectively, and the downstream second merging section and the second reaction section are denoted by reference numerals 31B and 32B, respectively.
  • the length L32A of the first reaction section 31A and the length L32B of the second reaction section 31B are regarded as reaction path lengths.
  • the first merging unit 31A merges the third raw material and the fourth raw material, and the first reaction unit 32A performs a flow reaction process of a mixed raw material that is a mixture of the third raw material and the fourth raw material, to remove polystyryllithium. Generate.
  • the generated polystyryl lithium is guided to the second merging section 31B and merges with the second raw material. Then, in the second reaction section 32B, a flow reaction is performed similarly to the flow reaction in FIG. 1, and polystyrene is obtained as a product.
  • the first merging section 31A and the first reaction section 32A function as the first supply section 21 in the flow reaction device 11 of FIG.
  • the determined reaction condition CS can be quickly found. For example, it is as follows. First, flow reaction processing is performed a plurality of times by changing the reaction conditions by the flow reaction device 71 to generate measured data. In this example, ten kinds of flow reaction processes are performed, and as shown in FIG. 13, actual measurement data (first actual measurement data) is obtained by using ten pieces of reaction information a to j in which respective reaction conditions and reaction results are associated. Is making.
  • the support device 12 sets the mode to the learning mode, whereby the first arithmetic unit 61 reads the first measured data from the first storage unit 51a.
  • the first arithmetic unit 61 generates a function of the condition parameter and the result parameter using the first measurement data as learning data, using a learning process, and writes the generated function into the second storage unit 51b.
  • the support device 12 switches the mode from the learning mode to the calculation mode, whereby the second calculation unit 62 reads the measured data from the first storage unit 51a.
  • the second computing unit 62 assigns values of condition parameters other than the fixed parameters and generates a condition data set including a plurality of different reaction conditions, as in the above-described example.
  • the flow rate of the first raw material is from 4 ml / min to 80 ml / min at intervals of 1 ml / min.
  • the concentration of the second raw material ranges from 0.018 mol / l to 0.250 mol / l at 0.001 mol / l intervals.
  • the flow rate of the second raw material is from 1.9 ml / min to 38.0 ml / min at intervals of 0.1 ml / min.
  • the flow rate of the third raw material is from 1 ml / min to 20 ml / min at intervals of 1 ml / min.
  • the first junction has two shapes, a T-shape shown in FIG. 12 and a cross shown in FIG. As a result, the number of reaction conditions in the condition data set is 260,000,000 in total (obtained in 77 ways ⁇ 233 ways ⁇ 362 ways ⁇ 20 ways ⁇ 2 ways).
  • the third operation unit 63 reads out the function and the condition data set from the second storage unit 51b.
  • the third calculation unit 63 calculates a prediction result using a function for each reaction condition of the read condition data set. Then, a prediction data set (first prediction data set) composed of a plurality of pieces of prediction information in which the reaction condition and the prediction result are associated with each other is generated and written in the third storage unit 51c.
  • the number of pieces of prediction information in the first prediction data set is 26000000 in the present example, similarly to the number of reaction conditions in the condition data set.
  • the target result RA of the result parameter is not particularly limited, but in this example, the target result RA of the molecular weight is set to 25200, and the target result RA of the degree of dispersion is set to 1.024 or less.
  • the third calculation unit 63 specifies prediction information indicating the “best prediction result” by comparing the target result RA with the prediction result of each prediction information of the prediction data set. In this example, as shown in FIG. 280 prediction results are specified as “best prediction results”. Therefore, the prediction information No. 280 reaction conditions are extracted as extraction reaction conditions CP (operation step).
  • the prediction information including the extraction reaction condition CP and the prediction result RP corresponding to the extraction reaction condition is written in the third storage unit 51c as the extraction reaction condition CP and the prediction result RP associated with the extraction reaction condition in the prediction data set.
  • the setting unit 16 After the extraction reaction condition CP is written in the third storage unit 51c, the setting unit 16 reads the extraction reaction condition CP from the third storage unit 51c. The setting unit 16 causes the flow reaction devices 11 and 41 to try the flow reaction process under the extraction reaction condition CP, and the detection unit 17 outputs the measurement result RR to the determination unit 56.
  • the determination unit 56 compares the prediction result RP and the actual measurement result RR (first comparison) as in the above-described example, obtains the difference DR (see FIG. 16), and the difference DR is within the allowable range DT. Is determined. When it is determined that the difference DR is within the allowable range DT, the determination unit 56 sets the extraction reaction condition CP as the determined reaction condition CS, and performs the flow reaction.
  • the determination unit 56 associates the extraction reaction condition CP with the measurement result RR and generates reaction information.
  • the generated reaction information is added to the actually measured data in the first storage unit 51a (determination step), and the actually measured data in the first storage unit 51a is rewritten as new measured data as the second measured data.
  • the newly generated second measurement data is stored in the first storage unit 51a in a state composed of all 11 pieces of reaction information a to k (see FIG. 17).
  • the calculation section 50 switches the calculation mode to the learning mode, and the second calculation is performed by the first calculation unit 61. Thereby, a new coefficient of the function is generated, and the second function is written to the first storage unit 51a as a new function.
  • the new prediction result RP and the new measurement result RR are compared (second comparison) by the determination unit 56 in the same manner as in the first time, and the difference DR is newly calculated. (See FIG. 18).
  • the extraction reaction condition CP is set as the determined reaction condition CS, and the flow reaction process is performed under this determined reaction condition, as in the first time. Since the determined reaction condition CS is a reaction condition for which a reaction result very close to the actual measurement result RR has already been determined, the product is obtained with the target molecular weight and the desired degree of dispersion. In addition, the determined reaction condition CS is obtained from an enormous number of reaction condition candidates by the operation step and the determination step repeated twice, and the trial and time of the flow reaction processing are greatly reduced as compared with the related art.
  • the degree of difference DR is not within the allowable range DR, and the reaction information newly generated through the same calculation processing as the first time is added to the actually measured data in the first storage unit 51a, and the third time is executed. Is generated in the first storage unit 51a.
  • the determination step the calculation step and the determination step are repeated until the degree of difference DR falls within the allowable range DT, and after the difference degree falls within the allowable range DT, the flow reaction processing is performed under the obtained determined reaction condition CS. .
  • the difference DR falls within the allowable range DT in the fifth determination step (see FIG. 11), and the flow reaction processing is performed under the fifth extraction reaction condition.
  • the number of trials including the flow reaction processing for producing the first actually measured data is only 15 times.
  • the time required for each calculation step and each determination step is about one hour in this example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Polymerisation Methods In General (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

条件設定を迅速に行うことでフロー反応処理を支援するフロー反応支援装置及び方法、ならびに条件設定が迅速であるフロー反応設備及び方法を提供する。フロー反応設備は、フロー反応処理を行うフロー反応装置と、演算セクション及び判定部を有する支援装置とを備える。演算セクションは、実測データを用いて反応結果が未知の反応条件毎に予測結果を算出することにより、予測データセットを生成する。演算セクションは、目標結果に最も近い予測結果の反応条件を抽出反応条件として抽出する。判定部は、抽出反応条件での反応結果と予測結果との相違度が許容範囲であるか否かを判定し、許容範囲でない場合には、抽出反応条件とその反応結果とを関連付けた反応情報を実測データに加える。

Description

フロー反応支援装置及び方法、フロー反応設備及び方法

 本発明は、フロー反応支援装置及び方法、並びにフロー反応設備及び方法に関する。

 反応物を含有する原料を反応させる手法には、原料を容器中に収容した状態で反応させるいわゆるバッチ式と、原料を流しながら反応させる連続式とがある。連続式の反応は、原料を流しながら反応させることからフロー反応と呼ばれる。

 フロー反応処理は、反応を連続的に実施することから生成物が均一な性状で得られやすい。また、フロー反応処理は、生産性がバッチ式に比べて高いという利点がある。

 ところで、化学反応処理に、例えばニューラルネットワークを用いた各種演算を利用する技術がある。例えば、特許文献1では、化学反応装置の各計測器の異常状態下におけるデータをプログラム中に予め学習記憶させたニューラルネットワークによって演算させている。そして、この演算値が設定された正常許容帯値と乖離した場合には、異常信号をニューロコントローラに出力し、化学反応装置の各部に是正制御信号を送ることにより異常反応を制御している。これにより、化学反応装置の異常状態を早急に検出して、迅速かつ的確な制御を行っている。

 特許文献2には、化合物の物性予測の手法として、作成した予測モデルを未知サンプルに適用して予測項目を計算する技術が記載されている。この技術は、未知サンプルと個々の学習サンプルとについて取得した複数のパラメータ値に基づいて未知サンプルと個々の学習サンプルとの類似度を算出し、予め設定した閾値以上の類似度である学習サンプルを取り出してサブサンプルセットを構成している。そしてサブサンプルセットのデータ解析を行って予測モデルを作成し、この予測モデルを未知サンプルに適用して予測項目を計算している。また、特許文献3は、遺伝的アルゴリズムを用いてフロー反応を制御しており、これにより目的とする生成物を産生している。

特開2002-301359号公報 国際公開第2009/025045号 特表2015-520674号公報

 フロー反応処理は、原料を流しながら反応させることから、最適な反応条件を見つけ出すことがバッチ式反応処理に比べて通常は難しい。流速あるいは流量など、フロー反応ならではの条件パラメータがフロー反応にはあるからである。

 このように条件パラメータが多いフロー反応は、新たな反応処理を開始するまでに、条件設定に関して多くの試行及び時間を要し、特に新たな反応系での条件探索においては顕著である。また、なんらかの理由で例えば複数の条件パラメータのうちのひとつを変更せざるを得ない場合でも、他の条件パラメータのいずれをどう変更するかを決定することは簡単とはいえない。

 そこで本発明は、条件設定を迅速に行うことでフロー反応処理を支援するフロー反応支援装置及び方法、ならびに条件設定が迅速であるフロー反応設備及び方法を提供することを目的とする。

 本発明のフロー反応支援装置は、原料を流しながら反応させるフロー反応処理を支援するフロー反応支援装置であり、演算セクションと判定部とを備える。演算セクションは、反応結果が既知である反応条件と反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの反応条件毎に予測結果を算出することにより、反応条件と予測結果とを関連付けた予測データセットを生成する。演算セクションは、得られた複数の予測結果のうち、予め設定した目標結果に最も近い予測結果を特定し、特定した予測結果に関連付けられた反応条件を抽出反応条件として抽出する。判定部は、抽出反応条件で反応させた場合の反応結果と、抽出反応条件に関連付けられた予測結果との相違度が予め設定した許容範囲であるか否かを判定する。判定部は、相違度が許容範囲でない場合には、抽出反応条件と抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を実測データに加える。判定部は、相違度が許容範囲である場合には、抽出反応条件をフロー反応処理に用いる反応条件とする。

 上記反応条件は、原料の流量と、原料の流速と、原料における反応物の濃度と、原料の温度と、反応の設定温度と、反応時間とのいずれかであることが好ましい。

 上記反応結果は、生成物の収率と、副生成物の収率と、生成物の分子量と、生成物の分子量分散度と、生成物のモル濃度とのいずれかであることが好ましい。

 演算セクションは、実測データを学習データとして用いることにより条件データセットの反応条件毎に予測結果を算出することが好ましい。

 演算セクションは、実測データ中の反応条件を説明変数とし、かつ、実測データ中の反応結果を目的変数として構築されたニューラルネットワークを有することが好ましい。

 本発明のフロー反応支援方法は、原料を流しながら反応させるフロー反応処理を支援するフロー反応支援方法であり、演算工程と、判定工程とを有する。演算工程は、反応結果が既知である反応条件と反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの反応条件毎に予測結果を算出することにより、反応条件と予測結果とを関連付けた予測データセットを生成する。演算工程は、得られた複数の予測結果のうち、予め設定した目標結果に最も近い予測結果を特定し、特定した予測結果に関連付けられた反応条件を抽出反応条件として抽出する。判定工程は、抽出反応条件で反応させた場合の反応結果と、抽出反応条件に関連付けられた予測結果との相違度が予め設定した許容範囲であるか否かを判定する。判定工程は、相違度が許容範囲でない場合には、抽出反応条件と抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を実測データに加える。判定工程は、相違度が許容範囲である場合には、抽出反応条件をフロー反応処理での反応条件にする。判定工程により実測データに反応情報を加えた場合には、演算工程と判定工程とを新たに繰り返す。

 本発明のフロー反応設備は、反応セクションと、演算セクションと、判定部と、システムコントローラとを備える。反応セクションは、原料を流しながら反応させる。演算セクションは、反応セクションでの反応結果が既知である反応条件と反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの反応条件毎に予測結果を算出することにより、反応条件と予測結果とを関連付けた予測データセットを生成する。演算セクションは、得られた複数の予測結果のうち、予め設定した目標結果に最も近い予測結果を特定し、特定した予測結果に関連付けられた反応条件を抽出反応条件として抽出する。判定部は、反応セクションにて抽出反応条件で反応させた場合の反応結果と、抽出反応条件に関連付けられた予測結果との相違度が予め設定した許容範囲であるか否かを判定する。判定部は、相違度が許容範囲でない場合には、抽出反応条件と抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を実測データに加える。判定部は、相違度が許容範囲である場合には、抽出反応条件を反応セクションにおける以降のフロー反応処理に用いる反応条件とする。システムコントローラは、反応データセット中の反応条件に反応セクションを制御する。

 本発明のフロー反応方法は、フロー反応工程と、演算工程と、判定工程とを有する。フロー反応工程は、原料を流しながら反応させる。演算工程は、反応結果が既知である反応条件と反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの反応条件毎に予測結果を算出することにより、反応条件と予測結果とを関連付けた予測データセットを生成する。演算工程は、得られた複数の予測結果のうち、予め設定した目標結果に最も近い予測結果を特定し、特定した予測結果に関連付けられた反応条件を抽出反応条件として抽出する。判定工程は、フロー反応工程において抽出反応条件で反応させた場合の反応結果と、抽出反応条件に関連付けられた予測結果との相違度が予め設定した許容範囲であるか否かを判定する。判定工程は、相違度が許容範囲でない場合には、抽出反応条件と抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を実測データに加える。判定工程は、相違度が許容範囲である場合には、抽出反応条件を、以降のフロー反応工程での反応条件とする。判定工程により実測データに反応情報を加えた場合には、演算工程と判定工程とを新たに繰り返す。相違度が許容範囲である場合には、以降のフロー反応工程は抽出反応条件で反応を行うフロー反応方法。

 本発明によれば、フロー反応処理の条件設定が迅速に行える。

フロー反応処理設備の概略図である。 別のフロー反応装置の概略図である。 フロー反応支援装置の構成を示すブロック図である。 ニューラルネットワークの層構造の概念図である。 第1回目の実測データの説明図である。 第1回目の条件データセットの説明図である。 第1回目の予測データセットの説明図である。 第1回目の対比データの説明図である。 フロー反応処理を行うフロー図である。 第2回目の実測データの説明図である。 第2回目の対比データの説明図である。 第7回目の対比データの説明図である。 別のフロー反応装置の概略図である。 第1回目の実測データの説明図である。 第1回目の条件データセットの説明図である。 第1回目の予測データセットの説明図である。 第1回目の対比データの説明図である。 第2回目の実測データの説明図である。 第2回目の対比データの説明図である。 第5回目の対比データの説明図である。

 本発明の一実施形態であるフロー反応設備10は、図1に示すように、フロー反応装置11と、フロー反応支援装置(以下、単に「支援装置」と称する)12と、システムコントローラ15と、設定部16と、検出部17等を備える。フロー反応装置11は、フロー反応処理を行い、生成物を得るための装置である。

 フロー反応装置11で行うフロー反応は、例えばモノマーである化合物を合成する合成反応、モノマー同士を反応させることにより重合体を生成させる重合反応の他、例えばアニオン重合反応等の開始反応及び停止反応などの素反応であってもよい。したがって、フロー反応の対象となる反応物は、例えば停止反応の対象となる生長(成長)段階の化合物であってもよい。本例では、ポリスチリルリチウムの生長(成長)をメタノールで停止させる停止反応をフロー反応で行っている。

 フロー反応装置11は、第1供給部21と、第2供給部22と、反応セクション23と、回収セクション26とを備える。第1供給部21及び第2供給部22はそれぞれ反応セクション23の上流側端部に配管で接続しており、回収セクション26は反応セクション23の下流側端部に配管で接続している。

 第1供給部21は、フロー反応の第1原料を、反応セクション23へ供給するためのものである。本例の第1原料はポリスチリルリチウムを溶媒に溶解した第1液であり、ポリスチリルリチウムはフロー反応処理の反応物の一例である。第1供給部21はこの例では、ポルスチリルリチウムを溶媒に溶解した第1液を、反応セクション23へ供給している。溶媒にはテトラヒドロフラン(以下、THFと称する)を用いており、トルエン及びヘキサンが第1溶液には少量混じっている。このようにフロー反応の原料は反応物と他の物質との混合物であってもよいし、あるいは反応物のみで構成されていてもよい。第1供給部21は、ポンプ(図示無し)を備えており、ポンプの回転数を調節することにより、反応セクション23への第1原料の流量が調節される。

 第2供給部22は、フロー反応の第2原料を、反応セクション23へ供給するためのものである。本例の第2原料はメタノールと水との混合物、すなわちメタノール水溶液であり、メタノールを停止反応の停止剤として用いている。第2供給部22も第1供給部21と同様にポンプ(図示無し)を備えており、ポンプの回転数を調節することにより、反応セクション23へのメタノールの流量が調節される。第1供給部21と第2供給部22とは本例では液体を反応セクション23へ供給しているが、供給物は液体に限定されず、固体または気体であってもよい。

 反応セクション23は、フロー反応としての停止反応を行うためのものであり、合流部31と、反応部32と、温調部33とを備える。合流部31はT字に分岐した管、すなわちT字管である。合流部31の第1管部31aは第1供給部21に、第2管部31bは第2供給部22に、第3管部31cは反応部32に、それぞれ接続している。これにより、案内されてきた第1原料と第2原料とが合流し、混合した状態で反応部32へ送られる。

 反応部32は、複数の管状部材を長さ方向に繋げた状態の管である。管状部材の本数及び/または用いる個々の管状部材の長さを変えることにより、反応部32の長さL32は変更される。また、管状部材を内径が異なる他の管状部材に変えることにより、反応部32の内径D32は変更される。

 反応部32は内部が第1原料と第2原料との混合物(以下、混合原料と称する)の流路とされ、管内の中空部を反応の場として画定している。混合原料は、反応部32を通過しながらアニオン重合の停止反応が進められ、ポリスチレンが生成する。合流部31の第3管部31cにおいても反応が若干は進むが、反応部32の長さL32(本例では8m)に対して合流部31の第3管部31cの長さは非常に短く、本例の第3管部31cの長さは概ね0.03mとしている。そのため、第3管部31cの長さは無視し、反応部32の長さL32を、フロー反応を行う場の長さ(以下、反応路長と称する)と見なしている。以下、反応路長に符号L32を用いる。同様に、反応部32の内径D32を、フロー反応を行う場の径(以下、反応路径と称する)と見なし、反応路径に符号D32を用いる。

 温調部33は、フロー反応の温度(以下、反応温度と称する)を調節するためのものである。温調部33は、合流部31及び反応部32を介して、これらの中を流れる混合原料の温度(反応温度)を調節する。設定部16によって設定した反応温度(以下、設定温度と称する)と、温調部33によって温調された混合原料の温度とが同じである場合には、設定温度を反応温度とみなしてよく、本例でもそのようにしている。なお、設定温度と、混合原料の温度との差が大きい場合などには、例えば反応部32内なのに温度を検出する温度検出器を設け、この温度検出器の検出結果を反応温度とすればよい。

 回収セクション26は、フロー反応の生成物であるポリスチレンを回収するためのものである。回収セクション26は、析出部(図示無し)と、採取部(図示無し)と、乾燥部(図示無し)等で構成されている。析出部は、生成物であるポリスチレンを析出させるためのものである。この例では、攪拌機を備えた容器を析出部として用いている。容器にメタノールを収容し、攪拌されているメタノール中に、反応セクションから案内されてきたポリスチレン溶液を入れることにより、ポリスチレンを析出させている。

 採取部は、析出したポリスチレンをメタノールとTHF等との混合液から採取するためのものである。本例ではろ過器を採取部として用いている。

 乾燥部は、採取されたポリスチレンを乾燥するためのものである。本例では、乾燥部として、減圧機能をもつ恒温槽を用いている。恒温槽内部を減圧状態にした状態で加熱することによりポリスチレンが得られる。

 反応セクション及び回収セクションは、上記の例に限られず、フロー反応の種類及び/または生成物の種類等に応じて適宜変更される。例えば、回収セクション26の代わりに、容器を設け、この容器に、反応セクション23から案内されてきたポリスチレン溶液を一旦貯留してもよい。この場合には、例えば、貯留したポリスチレン溶液を、回収セクション26に案内し、析出、採取、及び乾燥させることによりポリスチレンを得る。

 検出部17は回収セクション26及び支援装置12と接続しており、フロー反応の処理結果である反応結果を検出し、支援装置12の判定部56(図3A参照)へ出力する。反応結果となるパラメータ(以下、結果パラメータと称する)としては、生成物の純度、分子量、あるいは分子量分散度(以下、単に分散度と称する)などの生成物の性状の他、収率などが挙げられる。また、回収セクション26において生成物が例えば溶媒に溶けている溶液状態で得られる場合には、溶液における生成物の濃度(モル濃度など)も結果パラメータとして検出してよい。なお、検出部17は、生成物のこれら各種性状に加えて、副生成物の収率あるいは純度などの各種性状を結果パラメータとして検出してもよい。反応結果を構成する結果パラメータは複数であってもよい。

 本例では、回収セクション26で得られたポリスチレンの分子量と分散度とを検出部17により検出している。すなわち、本例での結果パラメータは分子量と分散度との2つである。検出している分子量は数平均分子量(Mn)である。分子量及び分散度は、ポリスチレンをTHFに溶解することによりポリスチレン溶液をつくり、このポリスチレン溶液を用いてゲルパーミエーションクロマトグラフィ(以下、GPCと称する,GPCはGel Permeation Chromatographyの略)により求めている。なお、分散度は、重量平均分子量(Mw)を数平均分子量で除したMw/Mnである。結果パラメータの検出は、GPCに限られない。例えば、赤外分光法(IR,infrared spectroscopy)、核磁気共鳴分光法(NMR,Nuclear Magnetic Resonance spectroscopy)、高速液体クロマトグラフィ(HPLC,High Performance Liquid Chromatography)、またはガスクロマトグラフィ(GC,Gas Chromatography)等、各種の手法で検出してもよい。

 GPCは、下記の条件で測定している。

 装置:HLC-8220GPC(東ソー(株)製)

 検出器:示差屈折計(RI(Refractive Index)検出器)

 プレカラム:TSKGUARDCOLUMN HXL-L 6mm×40mm(東ソー(株)製)

 サンプル側カラム:以下(1)~(3)の3本を順に直結(全て東ソー(株)製)

 (1)TSK-GEL GMHXL 7.8mm×300mm

 (2)TSK-GEL G4000HXL 7.8mm×300mm

 (3)TSK-GEL G2000HXL 7.8mm×300mm

 リファレンス側カラム:TSK-GEL G1000HXL 7.8mm×300mm

 恒温槽温度:40℃

 移動層:THF

 サンプル側移動層流量:1.0mL/分

 リファレンス側移動層流量:1.0mL/分

 試料濃度:0.1質量%

 試料注入量:100μL

 データ採取時間:試料注入後5分~45分

 サンプリングピッチ:300msec

 システムコントローラ15は、フロー反応装置11を統括的に制御するためのものである。システムコントローラ15は、第1供給部21及び第2供給部22の前述の各ポンプと、温調部33とのそれぞれと接続している。システムコントローラ15は、第1供給部21と第2供給部22との各ポンプの回転数を調節することにより第1原料と第2原料とのそれぞれの流量を調節し、これにより、反応セクション23へ向かう第1原料と第2原料との各流速を制御する。なお、第1原料の流速は、第1供給部21から反応セクション23へ送り出す第1原料の流量をX1(単位はm/秒)とし、第1供給部21と反応セクション23との間の配管の断面積をX2(単位はm)とするときに、X1/X2で求められる。第2原料の流速も同様に、第2供給部22から反応セクション23へ送り出す第2原料の流量をX1(単位はm/秒)とし、第2供給部22と反応セクション23との間の配管の断面積をX2(単位はm)とし、X1/X2で求められる。なお、第1原料と第2原料との各流量は本例では市販品である各ポンプのカタログデータに基づいて回転数から求めている。また、システムコントローラ15は、温調部33の調節により、混合原料の温度を制御する。このように、システムコントローラ15はフロー反応装置11の各部を調節することにより、フロー反応装置11を統括的に制御する。

 設定部16は、フロー反応装置11におけるフロー反応処理の処理条件(以下、反応条件と称する)を設定するためのものである。反応条件は、複数の条件パラメータの組み合わせである。設定部16は、操作部(図示無し)を有し、操作部からの操作信号の入力によって反応条件を設定し、これによりシステムコントローラ15を介してフロー反応装置11を所定の反応条件に制御する。例えば、操作部のマウスでのクリックあるいは選択、及び/またはキーボードでの文字の入力などにより反応条件が設定される。設定部16は支援装置12と接続しており、上記の操作部からの操作信号に加えて、または代わりに、支援装置12の後述の第3記憶部51cから読み出した後述の決定反応条件CSに反応条件を設定し、これによりシステムコントローラ15を介してフロー反応装置11を所定の反応条件に制御する。なお、この例の設定部16は、支援装置12に対しても後述のように入力信号を与えることができる。

 設定部16で設定する条件パラメータは、実施するフロー反応処理の種類によって決定すればよく、特に限定されない。例えば、第1原料及び第2原料などの原料の流量及び/または流速と、反応セクション23へ送り込む原料の温度と、反応温度と、反応時間などが挙げられる。本例では、第1原料及び第2原料の各流速と、合流部の形状と、反応路径D32と、反応路長L32と、反応温度としている。

 フロー反応処理の条件パラメータには、予め決定した一定の値に固定する条件パラメータ(以下、固定パラメータと称する)があってもよい。本例の固定パラメータは、第1原料及び第2原料における反応物の濃度と、反応路長L32とである。第1原料及び第2原料における反応物の濃度と、反応路長L32とは、本例では予め決定しており、システムコントローラ15を介した制御(例えば、濃度をより高く変更する、より低く変更するなどの制御)は行っていない。このように、フロー反応には、システムコントローラ15による制御を行わず、例えば原料の調製工程及び/フロー反応装置11の組み立て工程等において変更を行う条件パラメータがあってもよい。

 支援装置12は、フロー反応装置11によって行うフロー反応処理について、反応条件となる複数の条件パラメータを迅速に決定するための支援を行う。支援装置12の詳細は、別の図面を用いて後述する。

 フロー反応設備10において、フロー反応装置11を他のフロー反応装置に置き換えることができる。例えば本例では、図2に示すフロー反応装置41も、フロー反応設備10に用いている。フロー反応装置41は、合流部31を合流部42に置き換えた反応セクション43を備える。なお、図2において、図1と同じ部材については図1と同じ符号を付し、説明を略す。

 合流部42は、十字(cross)に分岐した管、すなわち十字管(cross tube)である。合流部42の第1管部42aは第2供給部22に、第1管部42aと交差する第2管部42b及び第3管部42cは第1供給部21に、残る第4管部42dは反応部32に、それぞれ接続している。これにより、案内されてきた第1原料と第2原料とが合流し、混合した状態で反応部32へ送られる。

 支援装置12は、図3Aに示すように、演算セクション50と、第1記憶部51a~第3記憶部51cと、判定部56等から構成されている。この例では第1記憶部51a~第3記憶部51cは、演算セクション50とは別に構成されているが、演算セクション50の一部として構成されていてもよい。

 第1記憶部51aは、フロー反応装置11において既に実施された複数の反応情報が入力され、これら複数の反応情報が実測データとして記憶されている。個々の反応情報は、反応条件と既知の反応結果とが関連付け(紐付け)られたひとまとまりの反応データである(図4参照)。したがって、ひとつの反応条件にひとつの既知の反応結果が関連付けられてある。ただし、第1記憶部51aは、反応情報のうち反応条件のみで読み込み可能な状態に記憶する。例えば第1記憶部51aは、反応条件と既知の反応結果とを互いに異なるフィールドに記憶し、かつ反応条件と既知の反応結果との関連付け情報とを記憶する。または、反応条件と既知の反応結果とをともに記憶しておくフィールドと反応条件のみを記憶しておくフィールドとを設けてもよい。

 これら複数の反応情報で構成された実測データは、演算セクション50において学習データとされる。実測データを構成する反応情報の数は、後述の判定部56の判定結果により変化する。この例では、第1記憶部51aに対する第1回目の入力は、反応情報a~反応情報jの10個の反応情報としており、それによって第1記憶部51aにはまず10個の反応情報で構成された実測データが記憶される。

 演算セクション50は、学習モードと算出モードとを有し、モード毎に、目的とする演算処理を行う。演算セクション50は、第1演算部61~第3演算部63を備え、第1演算部61は、学習モードで演算処理を行い、算出モードでは後述のように演算を休止した休止状態と第1記憶部51aを読み込む状態とを繰り返している。第2演算部62と第3演算部63とは、学習モードでは休止状態となっており、算出モードでは演算処理を行う。

 第1演算部61は、第1記憶部51aに記憶されている実測データを読みだし(取り出し)、読み出した実測データを学習データ(教師データ)として用いて反応条件と反応結果との関連性を学習する。そして、第1演算部61は、学習により、反応条件と反応結果とを関連づけた関数を生成し、生成した関数を第2記憶部51bに書き込む。反応条件を構成する複数の条件パラメータと反応結果を構成する結果パラメータとのそれぞれは関数における変数であり、条件パラメータ及び結果パラメータを既に決めてある場合には、関数の生成とは、関数における係数の生成を意味する。

 本例では、第1演算部61は、反応条件の各条件パラメータを説明変数とし、反応結果の結果パラメータを目的変数として学習し、1回目の学習を終えた学習済みのニューラルネットワーク(以下、NNと称する)を構築する。なお、説明変数は入力変数に相当し、目的変数は出力変数に相当する。第1演算部61において構築されたNNによって、本例では例えば以下の関数(1A)及び(1B)が生成される。

 y1=wu1y1/[1+exp{-(wx1u1×x1+wx2u1×x2+・・・+wx5u1×x5)}]

  +wu2y1/[1+exp{-(wx1u2×x1+wx2u2×x2+・・・+wx5u2×x5)}]

  +・・・  +wu20y1/[1+exp{-(wx1u20×x1+wx2u20×x2+・・・+wx5u20×x5)}]

                           ・・・(1A)

 y2=wu1y2/[1+exp{-(wx1u1×x1+wx2u1×x2+・・・+wx5u1×x5)}]

  +wu2y2/[1+exp{-(wx1u2×x1+wx2u2×x2+・・・+wx5u2×x5)}]

  +・・・  +wu20y2/[1+exp{-(wx1u20×x1+wx2u20×x2+・・・+wx5u20×x5)}]

                           ・・・(1B)

 上記(1A)及び(1B)において、xi(iは自然数)は条件パラメータの値であり、iの最大値は、条件パラメータの個数である。したがって、本例ではiは1以上8以下の自然数である。ym(mは自然数)は結果パラメータの値であり、mの最大値は、結果パラメータの個数である。したがって、本例ではmは1と2とである。ul(lは自然数)は後述の中間層L2のユニット値であり、lの最大値は、ユニットの個数である。本例ではlは1以上20以下の自然数である。wxiul、wulymは重み係数である。具体的には以下である。なお、下記の流速に関し、1ml/minは、1×10-6×(1/60)m/秒として換算できる。

 y1;ポリスチレンの分子量

 y2;ポリスチレンの分散度

 x1(単位はmol/L);第1原料におけるポリスチリルリチウムの濃度であり、ポリスチリルリチウムの物質量(単位はmol(モル))をA1,THFの体積(単位はL(リットル))をB1とするときに、A1/B1の算出式で求める

 x2(単位はml/min);第1原料の流速

 x3(単位はmol/L);第2原料におけるメタノールの濃度であり、メタノールの物質量(単位はmol(モル))をA2,水の体積(単位はL(リットル))をB2とするときに、A2/B2の算出式で求める

 x4(無次元の値である);合流部の形状がT字の場合を「1」、十字の場合を「2」

と定義

 x5(単位はml/min);第2原料の流速

 x6(単位はmm);反応路径

 x7(単位はm);反応路長

 x8(単位は℃);反応温度

 ul;ユニット値

 wxiul;xiとulとの間の重み係数

 ym;結果パラメータの値

 wulym;ulとymとの間の重み係数

 NNは、市販のニューラルネットワークフィッティングアプリケーションを用いて構築できる。例えば本例では、MathWorks社製のMatlab Neural Fitting toolを用いてNNを構築している。ニューラルネットワークフィッティングアプリケーションは、上記に限定されず、例えばR言語上で動作可能なRStudio社製のkerasパッケージ等を用いることもできる。

 NNは、入力層L1と中間層(隠れ層)L2と出力層L3との層構造を有し、図3Bには本例で実現される層構造を示している。入力層L1は、説明変数である条件パラメータの値xiで構成される。中間層L2は、ユニット値ulで構成され、本例では1層となっている。ユニット値ulのそれぞれは、x1~x8をx1~x8の各々に対応する重み係数Wxiulで重み付けした値の総和である。出力層L3は目的変数である結果パラメータの値ymで構成される。結果パラメータの値ymのそれぞれは、ユニット値u1~u20を用いて、ユニット値u1~u20の各々に対応する重み係数wulymで重み付けし、求めた値である。なお、図3Bにおける黒丸「●」は、重み係数Wxiul,wulymを示している。ただし、NNの層構造は本例に限定されない。

 演算セクション50は、第1演算部61によって第2記憶部51bに関数が書き込まれた場合には、学習モードを算出モードに切り替える。第2演算部62は、算出モードにおいて、第1記憶部51aから実測データの反応条件を読み出し、読み出した反応条件に基づいて、反応結果が未知である複数の反応条件を含む条件データセットを生成し、第2記憶部51bに書き込む。条件データセットは、読み出した反応結果が既知である反応条件を含んでいてもよく、本例でもそのようにしている。

 第2演算部62は、反応条件を成す複数の条件パラメータのうち、少なくともひとつの条件パラメータの値を振り、反応結果が未知の反応条件を生成することにより、条件データセットを生成する。例えば、複数の条件パラメータのうち第1原料の流速について、読み出した反応条件内の第1原料の流速が1ml/min,10ml/min,11ml/min,20ml/min,100ml/minである場合には、例えば2ml/min,5ml/min,6ml/min等の値である場合の反応結果は未知であるから、これらの値にした反応条件を生成する。

 反応結果が未知の反応条件となる状態に生成する条件パラメータの値は、第1記憶部51aから読み出した反応条件の条件パラメータにおける最小値と最大値との間の値とし、これらに加えて最小値及び最大値を含んでいてもよい。例えば上記の例においては第1原料の流速の最小値は1ml/min、最大値は100ml/minであるから、これら両値の間で条件パラメータの値を複数生成し、本例ではこれらに加えて最小値の1ml/minと最大値の100ml/minも含んでいる。さらに、最大値と最小値との間の複数の値は、最大値と最小値との間を等間隔に刻んだ値とすることが好ましく、本例では、上記の第1原料の流速については後述のように1ml/min間隔の値としている(図5参照)。

 反応条件を成す複数の条件パラメータのうち、値を振る条件パラメータは、フロー反応装置11において変更してもよいと判断できる条件パラメータとする。したがって、固定パラメータについては、値を振らない。この例では、第1原料及び第2原料の各流速と、合流部のタイプ(合流部31と合流部42)と、反応路径D32と、反応温度とのそれぞれについて値を振った複数の反応条件を生成している(図5参照)。

 第2記憶部51bは、第1演算部61から出力された関数と、第2演算部62から出力された条件データセットとを記憶する。なお、この例では、第2演算部62が条件データセットを生成しているが、条件データセットは他の演算機器、例えばパーソナルコンピュータ等を用いて生成してもよい。

 第3演算部63は、第2記憶部51bから関数と条件データセットとを読み出し、予測データセットを生成し、生成した予測データセットを第3記憶部51cに書き込む。予測データセットは、複数の予測情報で構成される。予測情報は、条件データセットの反応条件毎に反応結果を予測し、求めた予測結果を反応条件に関連付けた予測データである。したがって、予測情報の数は、条件データセットにおける反応条件の数に等しい。予測は、読み出した関数を用いて行う演算処理である。

 第3演算部63は、複数の予測情報の中から、最もよい予測結果を示す予測情報を特定し、抽出する。そして、第3演算部63は、抽出した予測情報の反応条件を抽出反応条件CPとして第3記憶部51cに書き込み、かつ、抽出した予測情報の予測結果RPを抽出反応条件CPに関連付けた状態に第3記憶部51cに書き込む。

 第3演算部63には、目標とする反応結果(以下、目標結果と称する)RAが、例えば本例では設定部16の操作部での入力により操作信号で予め入力されている。第3演算部63は、目標結果RAと、予測データセットの各予測情報の予測結果とを対比し、複数の予測結果の中から目標結果RAに最も近い(目標結果RAとの差が最も小さい)予測結果を上記の「最もよい予測結果」として特定する。目標結果RAと同じ予測結果がある場合には、その予測結果を「最もよい予測結果」として特定する。

 また、目標結果RAに最も近い予測結果が複数ある場合には、第1記憶部51aから実測データを読み出し、反応結果が最も目標結果RAに近い実測データの反応条件を参照し、以下のプロセスで「最もよい予測結果」を特定する。まず、予測データセットの各予測情報の条件パラメータをx1~x8とし、結果パラメータをy1とし、y1に対する寄与度をa1~a8とし、a1~a8を以下の式(1C)~(1J)で定義する。

a1=wx1u1×wu1y1+wx1u2×wu2y1+wx1u3×wu3y1+・・・+wx1ul×wuly1 ・・・(1C)

a2=wx2u1×wu1y1+wx2u2×wu2y1+wx2u3×wu3y1+・・・+wx2ul×wuly1 ・・・(1D)

a3=wx3u1×wu1y1+wx3u2×wu2y1+wx3u3×wu3y1+・・・+wx3ul×wuly1 ・・・(1E)

a4=wx4u1×wu1y1+wx4u2×wu2y1+wx4u3×wu3y1+・・・+wx4ul×wuly1 ・・・(1F)

a5=wx5u1×wu1y1+wx5u2×wu2y1+wx5u3×wu3y1+・・・+wx5ul×wuly1 ・・・(1G)

a6=wx6u1×wu1y1+wx6u2×wu2y1+wx6u3×wu3y1+・・・+wx6ul×wuly1 ・・・(1H)

a7=wx7u1×wu1y1+wx7u2×wu2y1+wx7u3×wu3y1+・・・+wx7ul×wuly1 ・・・(1I)

a8=wx8u1×wu1y1+wx8u2×wu2y1+wx8u3×wu3y1+・・・+wx8ul×wuly1 ・・・(1J)

 ここでa1~a8をそれぞれ求めた場合の符号が正であれば予測結果に対して正の寄与度をもっており、符号が負であれば予測結果に対して負の寄与度をもっており、絶対値が大きいほど予測結果に対して寄与度が高いことを意味する。

 つづいて、実測データの中から目標結果RAに最も近い反応結果と反応条件とを選択し、その反応結果をy1nとし、y1nと目標結果RAとの差の絶対値を式|RA-y1n|/RAの算出式で求める。次に、a1~a8の絶対値の大きさに着目する。例えばa1~a8の各絶対値の中でa1の絶対値が最も大きかった場合においては、以下の<A>~<D>の4つの場合分けで「最も良い予測結果」が特定される。

 <A>y1nとRAとの差と、y1RA-y1n/y1RAとがともに正であり、かつ、a1が正であった場合

 y1nを正方向に大きくした場合にy1nはRAに近づく。そのため、実測データの最も目標結果RAに近い反応条件のa1の条件パラメータの値よりも正方向に最も大きい値をもつ条件パラメータを有する予測結果を、「最も良い予測結果」として特定する。

 <B>y1nとRAとの差と、y1RA-y1n/y1RAとがともに正であり、かつ、a1が負であった場合

 y1nを正方向に大きくした場合にy1nはRAに近づく。そのため、実測データの最も目標結果RAに近い反応条件のa1の条件パラメータの値よりも負方向に最も大きい値をもつ条件パラメータを有する予測結果を、「最も良い予測結果」として特定する。

 <C>y1nとRAとの差と、y1RA-y1n/y1RAとがともに負であり、かつ、a1が正であった場合

 y1nを負方向に大きくした場合にy1nはRAに近づく。そのため、実測データの最も目標結果RAに近い反応条件のa1の条件パラメータの値よりも負方向に最も大きい値をもつ条件パラメータを有する予測結果を、「最も良い予測結果」として特定する。

 <D>y1nとRAとの差と、y1RA-y1n/y1RAとがともに負であり、かつ、a1が負であった場合

 y1nを負方向に大きくした場合にy1nはRAに近づく。そのため、実測データの最も目標結果RAに近い反応条件のa1の条件パラメータの値よりも正方向に最も大きい値をもつ条件パラメータを有する予測結果を、「最も良い予測結果」として特定する。

 反応結果の結果パラメータが複数ある場合には、複数の結果パラメータに重み付けをした状態で目標結果RAが入力されており、第3演算部63は、重み付けに基づいて「最もよい予測結果」を特定する。重み付けに基づいた特定は、例えば、重み付けが最も大きい結果パラメータのみで特定する第1の手法でもよいし、重み付けが最も大きい結果パラメータで目標結果RAに最も近い予測結果から例えば複数の候補を絞りこみ、絞り込んだ予測結果の中から重み付けの順位が低い結果パラメータにおいて目標結果RAに最も近い予測結果を「最もよい予測結果」として特定する第2の手法でもよい。本例では第2の手法で特定している。なお、本例での目標結果RAは、分子量が25200であり、分散度が1.03以内としている。

 第3記憶部51cは、第3演算部63から出力された予測データセットと、抽出反応条件CPと、抽出反応条件CPに関連付けられた予測結果RPとを記憶する。これらの予測データセットと抽出反応条件CPと予測結果RPとは、個別に読み出し可能な状態に記憶されている。

 設定部16は、第3記憶部51cから抽出反応条件CPを読み出す。このように第3記憶部51cを介して演算セクション50の第3演算部63から入力された抽出反応条件CPを入力信号として、抽出反応条件CPをフロー反応装置11での反応条件として設定する。検出部17は、抽出反応条件CPで行ったフロー反応処理の反応結果(以下、実測結果と称する)RRを前述の通り判定部56へ出力する。

 判定部56は、第3記憶部51cから、抽出反応条件CPに関連付けられた予測結果RPを読み出し、予測結果RPと検出部17から入力された実測結果RRとを対比し、予測結果RPと実測結果RRとの相違度DRを求める。本例では、|RP-RR|/RRの算出式により、相違度DRを求めているが、予測結果RPの確からしさの指標として用いることができる値が求められれば相違度DRの求め方は特に限定されない。

 判定部56には、相違度の許容範囲DTが、例えば本例では設定部16の操作部での入力により操作信号として予め入力されている。判定部56は、相違度DRが許容範囲DTであるか否かを判定する。なお、本例では許容範囲DTを1%と設定しているが、許容範囲は結果パラメータの種類などに応じて適宜設定できる。許容範囲DT(単位は%)は、(|RP-RR|/RR)×100の算出式で求めることができる。

 判定部56は、相違度DRが許容範囲DTであると判定した場合には、第3記憶部51cに記憶されている予測データセットの反応条件群のうち抽出反応条件CPを、フロー反応装置11で行う以降のフロー反応処理の反応条件(以下、決定反応条件と称する)CSにし、第3記憶部51に書き込む。抽出反応条件CPを決定反応条件CSとすることを含め、第3記憶部51cに記憶されている予測データセットの反応条件群をフロー反応装置11のフロー反応処理に用いる反応データセットとして第3記憶部51cに書き込んでもよく、本例でもそのようにしている。

 判定部56は、本例では、第3記憶部51cに、反応データセットを反応条件毎に読み出し可能な状態に記憶させている。第3記憶部51cは、本例では予測データセットを記憶する領域と反応情報データセットを記憶する領域とをもつが、反応データセットにおいて反応条件毎に読み出し可能な状態で記憶させていれば、判定部56は予測データセットの反応条件群を反応データセットに書き換えてもよい。その場合には、第3演算部63は第3記憶部51cに、予測データセットを、予め、反応条件毎に読み出し可能な状態に記憶させる。また、この例では反応条件データセットを第3記憶部51cに記憶させているが、第4記憶部(図示無し)をさらに設け、この第4記憶部に記憶させてもよい。

 判定部56は、相違度DRが許容範囲DRでないと判定した場合には、抽出反応条件CPを第3記憶部51cから読み出し、抽出反応条件CPと実測結果RRとを関連付けた反応情報を生成する。そして、生成した反応情報を、第1記憶部51aに実測データの一部として書き込む。この書き込みにより、第1記憶部51aの実測データは書き換えられ、実測データを構成する反応情報の数は前述の通り変化する。この例では、第1記憶部51aには前述の通り第1回目の入力によって10個の反応情報が記憶されており、判定部56の1回の書き込みによりひとつの反応情報が追加され、全11個の反応情報により構成された新たな実測データが第1記憶部51aに書き込まれる。

 第1演算部61は、この例では前述の通り、算出モードにおいては休止状態と第1記憶部51aの読み込みと繰り返している。具体的には、第1演算部61は予め設定した時間間隔で第1記憶部51aの実測データを読み込んでおり、前回読み込んだ実測データが新たな実測データに書き換えられているか否かを判定している。

 第1演算部61が第1記憶部51aの実測データが書き換えられていないと判定した場合には、演算セクション50は算出モードを継続させる。書き換えられていると判定した場合には、演算セクション50は算出モードを学習モードに切り替え、第1演算部61は、新たな実測データを学習データとして用いて次回の学習を行い、新たな関数を生成し、第2記憶部51bに記憶されている関数を新たな関数に書き換える。なお、新たな関数の生成、及び新たな関数の書き換えとは、関数における新たな係数の生成、及び関数における係数の書き換えを意味する。例えば、前述の(1A)及び(1B)の関数は係数を書き換えられ、重み係数wxiulがw2xiulに書き換えられる。このようにして、下記(2A)及び(2B)の関数が生成する。

  y1=w2u1y1/[1+exp{-(w2x1u1×x1+w2x2u1×x2+・・・+w2x5u1×x5)}]

  +w2u2y1/[1+exp{-(w2x1u2×x1+w2x2u2×x2+・・・+w2x5u2×x5)}]

  +・・・  +w2u20y1/[1+exp{-(w2x1u20×x1+w2x2u20×x2+・・・+w2x5u20×x5)}]

                           ・・・(2A)

  y2=w2u1y2/[1+exp{-(w2x1u1×x1+w2x2u1×x2+・・・+w2x5u1×x5)}]

  +w2u2y2/[1+exp{-(w2x1u2×x1+w2x2u2×x2+・・・+w2x5u2×x5)}]

  +・・・  +w2u20y2/[1+exp{-(w2x1u20×x1+w2x2u20×x2+・・・+w2x5u20×x5)}]

                           ・・・(2B)

 また、第2演算部62は、新たな実測データが生成された場合も同様に、条件データセットを新たに生成する。

 図4には、第1回目の入力により記憶されている実測データを示しており、前述の通り、本例では反応情報a~反応情報jの10個の反応情報で構成している。図4に示すように、第1記憶部51aに記憶される実測データは、本例では複数の反応情報を表構造で記憶している。具体的には、反応情報の種別を縦欄に並んだ状態に配し、反応情報の種別と反応条件と反応結果とを横欄に並んだ状態に配してある。ただし、縦欄と横欄とは逆でもよい。

 第1記憶部51aにおける実測データの記憶態様は表構造に限られず、反応条件と反応結果とが関連づけられていればよい。したがって、例えば反応条件と反応結果とのそれぞれのフィールドを設けて記憶すればよい。

 図5に示すように、第2演算部62が生成する条件データセットも、本例では、表構造としており、したがって、第2記憶部51bには表構造の条件データセットが記憶されている。具体的には、異なる反応条件を縦欄に並んだ状態に配し、条件パラメータを横欄に並んだ状態に配してある。ただし、縦欄と横欄とは逆でもよい。また、条件データセットの態様も実測データの態様と同様に表構造に限られず、反応条件毎に個別に読み出し可能に生成し、第2記憶部51bに記憶させていればよい。

 図5には、第1回目の実測データに基づいて生成した条件データセットを示している。条件データセットは、固定パラメータ以外の条件パラメータが、本例では、前述の通り、最大値、最小値、及び、最大値と最小値との間を等間隔に刻んだ値としている。例えば、第1原料の流速については最小値である1ml/minから最大値である100ml/minまでを1ml/min間隔で刻んだ値であり、第2原料の流速については最小値である0.6ml/minから最大値である55.0ml/minまでを0.1ml/min間隔で刻んだ値である。また、合流部については、合流部31と合流部42との2通りの形状にしている。反応路径D32については最小値である1mmから最大値である10mmまでを1mm間隔で刻んだ値であり、反応温度は最小値(最低値)である1℃から最大値(最高値)である10℃までを1℃間隔で刻んだ値としている。ただし、値を等間隔で刻む場合の間隔は、この例に限られない。

 図6に示すように、第3演算部63が生成する予測データセットも、本例では、表構造としており、したがって、第3記憶部51cには表構造の予測データセットが記憶されている。具体的には、予測情報の種別を縦欄に並んだ状態に配し、反応条件の条件パラメータと予測結果である結果パラメータとを横欄に並んだ状態に配してある。ただし、縦欄と横欄とは逆でもよい。予測データセットの態様も実測データの態様と同様に表構造に限られず、反応条件と予測結果とが関連付けられており、かつ、少なくとも抽出反応条件CPが読み出し可能に生成し、第3記憶部51cに記憶させていればよい。

 図6には、図5の条件データセットに基づき生成した予測データセットを示している。本例では2つの結果パラメータに前述の重み付けをしており、分子量の重み付けを分散度よりも大きくしている。この例では、図6に示すように、重み付けが大きい分子量について、予測情報番号(以下、予測情報No.と記載する)6050と予測情報No.8000との分子量が24870となっており、他の予測情報No.と比べてもっとも目標結果RAに近く、互いに同値となっている。そして、予測情報No.6050と予測情報No.8000とのうち、予測情報No.6050の方が、重み付けが分子量よりも低い分散度について目標結果RAに近い。したがって第3演算部63は、予測情報No.6050の予測結果を前述の「最もよい予測結果」として特定し、予測情報No.6050の反応条件を抽出反応条件CPとして特定する。そして、第3演算部63は、予測情報No.6050の反応条件に、抽出反応条件CPであることの記録をした状態(表6においては説明の便宜上、予測情報No.の横に「*」を付してある)で、抽出反応条件CPとこの抽出反応条件に関連付けた予測結果とを第3記憶部51cに記憶させている。

 判定部56は、予測結果RPと実測結果RRとの対比演算行う場合に、対比データを生成している。そして、判定部56は対比データを記憶する対比データ記憶部(図示無し)を有している。図7には、1回目の対比演算を行う場合の対比データを示している。対比データは、予測結果RPの結果パラメータと実測結果RRとの結果パラメータとを並べた状態の表構造に生成している。この例では、予測結果RPと実測結果RRとを縦欄に並べた状態で、かつ、分散度と分子量との2つの結果パラメータを横欄に並べた状態にしているが、縦欄と横欄とは逆でもよい。また、実測結果RPと実測結果RRとの同じ結果パラメータ同士を読み出し可能な状態で対比データ記憶部に記憶していれば、記憶の態様は表構造でなくてもよい。

 判定部56は、この対比データを用いて、分子量の相違度DRと、分散度の相違度DRとを前述の算出式によりそれぞれ求めている。例えば図7に示す対比データを用いた場合には、分子量の相違度DRは9.9891、分散度の相違度DRは、3.5107として算出される。

 上記構成の作用を説明する。図8に示すように、まず、目標結果RAを設定する。この例の目標結果RAは、前述の通り、分散度≦1.03、分子量=25200としている。次に、実測データをつくる。なお、目標結果RAの設定と実測データの作製との順序は逆であってもよい。

 実測データは、フロー反応装置11とフロー反応装置41とを用いてフロー反応処理を複数回行い、それぞれの反応結果を反応条件に関連付けることによりつくる。実測データをつくるためのフロー反応処理は、設定部16の操作部で条件パラメータを入力し、この入力信号に基づいてシステムコントローラ15が制御することにより、行う。作製された実測データは、本例では設定部16(図1~3参照)の操作部で入力しており、入力信号は第1記憶部51aに書き込まれる。この例では、前述のように第1回目の入力において10個の反応情報a~jを実測データ(1回目の実測データ)としている(図4参照)。

 支援装置12は、学習モードにモード設定し、これにより第1演算部61は第1記憶部51aから1回目の実測データを読み出す。なお、第1記憶部51aを設けず(介在させず)に、設定部16から第1演算部61へ実測データを出力してもよい。このようにして1回目の実測データが入力された第1演算部61は、1回目の実測データを学習データとして用い、この学習データに基づいて反応条件と反応結果との関連性を学習する演算を行う。そして、第1演算部61は条件パラメータと結果パラメータとの関数を生成し、生成した関数を第2記憶部51bに書き込む。

 関数が第2記憶部51bに書き込まれた後に、支援装置12は学習モードから算出モードにモード切り替えをし、これにより、第2演算部62は、第1記憶部51aから実測データを読み出す。第2演算部62は、実測データの反応条件に基づき、具体的には各条件パラメータの値に基づき、固定パラメータ以外の条件パラメータの値を振り、異なる複数の反応条件で構成された条件データセットを生成する(図5参照)。なお、第2演算部62は、実測データでのすべての反応情報で同じ内容となっている条件パラメータを、固定パラメータとみなしている。生成した条件データセットは、反応条件毎に読み出し可能な状態に、第2記憶部51bに書き込まれる。

 この例では前述の通り、最大値、最小値、及び、最大値と最小値との間を等間隔に刻んだ値に刻んだ条件パラメータで条件データセットを生成している。第1原料の流速については100通り、第2原料の流速については545通り、合流部の形状は2通り、反応路径D32については10通り、反応温度は11通りであるから、条件データセットの反応条件の個数は、100×545×2×10×11の全11990000個である。

 なお、支援装置12が、学習と算出とを併行することができる場合には、第1演算部61での学習と、第2演算部62での条件データセットの作製との両方の演算を同時に行ってもよい。

 関数と条件データセットとが第2記憶部51bに書き込まれた後に、第3演算部63は第2記憶部51bからこれら関数と条件データセットを読み出す。なお、第2記憶部51bを設けず(介在させず)に、第1演算部61から第3演算部63へ関数を出力し、第2演算部62から第3演算部63へ条件データセットを出力してもよい。このようにして関数と条件データセットが入力された第3演算部63は、読み出した条件データセットの反応条件毎に、関数を用いて、予測結果を算出する。そして、反応条件と予測結果とを関連付けた複数の予測情報で構成された予測データセットを生成し、第3記憶部51cに書き込む(図6参照)。

 予測結果は、条件データセットの反応条件毎に算出されるから、生成される予測データセットの予測情報の個数は条件データセットの反応条件の個数と同じく、本例では11990000個である。

 第3演算部63は、予め入力されている目標結果RAと、予測データセットの各予測情報の予測結果との対比により「最もよい予測結果」を示す予測情報を特定する。特定された予測情報の反応条件は抽出反応条件CPとして抽出され(演算工程)、抽出反応条件CPと抽出反応条件に対応する予測結果RPとからなる予測情報は、予測データセットにおいて抽出反応条件CPと抽出反応条件に関連付けられた予測結果RPとして第3記憶部51cに書き込まれる。

 抽出反応条件CPが第3記憶部51cに書き込まれた後に、設定部16は、第3記憶部51cから抽出反応条件CPを読み出す。なお、第3記憶部51cを設けず(介在させず)に、第3演算部63から設定部16へ抽出反応条件CPを出力してもよい。このようにして抽出反応条件CPが入力された設定部16は、抽出反応条件CPでのフロー反応処理をフロー反応装置11,41に試行させる。そして、試行の反応結果である実測結果RRが検出部17により判定部56へ出力される。

 第3記憶部51cに書き込まれている抽出反応条件CPに関連付けられた予測結果RPは、判定部56により読み出される。なお、第3記憶部51cを介在させずに、第3演算部63から判定部56へ予測結果RPを出力してもよい。このようにして予測結果RPが入力された判定部56により、予測結果RPと実測結果RRとが対比され(1回目の対比)、相違度DRが求められる(図7参照)。

 判定部56により、設定部16から予め入力されている相違度の許容範囲DT(本例では1%)に基づいて、相違度DRが許容範囲DTであるか否かが判定される。相違度DRが許容範囲DTであると判定された場合には、判定部56は抽出反応条件CPを決定反応条件CSとして、第3記憶部51に書き込み、本例の判定部56はさらに、第3記憶部51cに記憶されている予測データセットの反応条件群をフロー反応装置11のフロー反応処理に用いる反応データセットとして第3記憶部51cに書き込む。

 抽出反応条件CPが決定反応条件CSとして書き込まれた後に、設定部16はフロー反応装置11での反応条件を決定反応条件CSに設定し、フロー反応装置11でフロー反応を行う。決定反応条件CSは、既に実測結果RRに極めて近い反応結果が得られると判定されている反応条件であるため、生成物は目的とする分子量及び分散度で得られる。また、決定反応条件CSは、本例での例えば11990000個という膨大な数の反応条件から演算を用いて求めており、フロー反応処理の試行及び時間が従来に比べて大きく短縮されている。

 本例では、第1回目の対比データから求めた相違度DRが、図7に示すように、分子量では9.989142、分散度では2.906355となっており、許容範囲DRでないと判定される。このような場合には、判定部56は抽出反応条件CPを第3記憶部51cから読み出し、抽出反応条件CPと実測結果RRとを関連付けた反応情報を生成する。そして、生成した反応情報は、第1記憶部51aの実測データに加えられ(判定工程)、第1記憶部51aの実測データは第2回目の実測データとして新たな実測データに書き換えられる。この書き換えにより、第1記憶部51aには、新たに生成された第2回目の実測データが全11個の反応情報a~kにより構成された状態で記憶される(図9参照)。

 第2回目の実測データが第1記憶部51aに記憶された場合には、演算セクション50は算出モードを学習モードに切り替え、第1演算部61によって、第2回目の学習が行われる。この学習により第2記憶部51bに記憶されている関数の係数が新たな係数に書き換えられ、第2回目の関数として新たな関数が第1記憶部51aに書き込まれる。

 また、第2演算部62は、第2回目の実測データが生成された場合も同様に、条件データセットを新たに生成し、第2記憶部51bに書き込む。そして、第3演算部63は、第2記憶部51bに記憶されている第2回目の関数と第2回目の条件データセットとに元すいて、前回と同様に、予測データセットを新たに生成し、また、抽出反応条件CP及びその予測結果RPを新たに抽出する。その後、この抽出反応条件CPに基づいたフロー反応処理がフロー反応装置11,41で試行され、判定部56によって第1回目と同様に、新たな予測結果RPと新たな実測結果RRとが対比され(2回目の対比)、新たに相違度DRが求められる(図10参照)。

 今回の相違度DRが許容範囲DTであると判定された場合には、第1回目と同様に、抽出反応条件CPを決定反応条件CSとし、この決定反応条件でのフロー反応処理が行われる。この決定反応条件CSは、既に実測結果RRに極めて近い反応結果が得られると判定されている反応条件であるため、生成物は目的とする分子量及び分散度で得られる。また、決定反応条件CSは、2回繰り返した演算工程及び判定工程とにより膨大な個数の反応条件の候補から求めており、フロー反応処理の試行及び時間が従来に比べて大きく短縮されている。

 相違度DRが許容範囲DRでないと判定された場合には、第1回目と同様の演算処理を経て新たに生成した反応情報が第1記憶部51aの実測データ中に加えられ、第3回目の実測データが第1記憶部51a中に生成される。このようにして、判定工程において相違度DRが許容範囲DT内になるまで演算工程と判定工程とを繰り返し、許容範囲DT内になった後に、得られた決定反応条件CSでフロー反応処理を行う。

 この例では、第7回目の判定工程で、相違度DRが許容範囲DT内になり(図11参照)、この第7回目での抽出反応条件で、フロー反応処理を行っている。この例では、第1回目の実測データを作製するためのフロー反応処理を含めた試行回数はわずか17回である。また、各回の演算工程と判定工程とに要する時間は、本例では1時間程度である。このように、条件パラメータが多く、その組み合わせが膨大にあるフロー反応処理の反応条件が、極めて迅速に求められている。

 また、上記の例では、反応データセットを第3記憶部51cに記憶させている。反応データセットは、既に演算工程と判定工程とを経ることで得られた反応条件で構成されているから、条件パラメータのうち固定パラメータを変更または追加したり、あるいは目標結果RAを変更したりした場合であっても、決定反応条件CSをより迅速に見出すことができる。例えば、分子量の目標結果RAを、上記の例の値から他の値に変更した場合には、以下の方法で決定反応条件CSを見出すことができる。

 まず、設定部16から判定部56に分子量の目標結果RAを判定部に入力する。また、例えば設定部16からの指示信号により、第3記憶部51cの反応データセットを判定部56に読み込ませ、読み出した反応データセットから目標結果RAに最も近い予測結果を特定する。

 このように特定した予測結果に関連付けてある反応条件は、今回の目標結果RAが、上記の例、すなわち前回の目標結果RAに非常に近い場合には、決定反応条件CSとして用いることができる場合が多い。また、今回の目標結果RAが前回の目標結果RAと離れている場合には、特定した予測結果に関連付けてある反応条件を、前回の抽出反応条件CPと見なし、上記の例と同様に判定工程を行う。判定工程で相違度DRが許容範囲DT内ではないと判定された場合には、学習工程と判定工程とを繰り返し行うが、前回よりも決定反応条件CSを見出すまでのフロー反応処理の試行及び時間は短く済む。このように、例えば目標結果RAを変更する場合でも、決定反応条件CSを迅速に見つけることができ、フロー反応処理をより早期に実施することができる。

 このように条件パラメータが多いフロー反応において条件設定が簡便に行えるから、反応処理をより迅速に開始できたり、なんらかの理由で複数の条件パラメータのうちのひとつを変更せざるを得ない場合でも迅速に新たな反応処理を行うことができる。

 以上は、原料として第1原料と第2原料との2つを用いた例である。しかし原料の数はこれに限定されず、3種以上であってもよい。例えば図12に示すフロー反応装置71は、第1原料~第3原料の3種の原料でフロー反応処理を行う装置であり、図1のフロー反応設備10に用いることができる。なお、図12において、図1と同じ部材については図1と同じ符号を付し、説明を略す。

 フロー反応装置71では、フロー反応装置11で行う場合と同様に、種々のフロー反応を行うことができる。ここでは、アニオン重合反応によってポリスチレンを生成する場合を例にして説明する。この例は、アニオン重合反応の開始反応、生長(成長)段階、及び停止反応までを含む。

 フロー反応装置71は、フロー反応装置11の第1供給部21と反応セクション23との代わりに、第3供給部73と第4供給部74と反応セクション75とを備える。システムコントローラ15は、第2供給部22と、第3供給部73と、第4供給部74と、反応セクション75の温調部33とに接続している。

 第3供給部73及び第4供給部74はそれぞれ反応セクション75の上流側端部に配管で接続している。回収セクション26は反応セクション75の下流側端部に配管で接続している。

 第3供給部73は、第3原料としてのスチレンを、反応セクション75へ供給する。第3原料は、反応物としてのスチレンを溶媒に溶解した第3液である。溶媒にはTHFを用いている。第3供給部73は、ポンプ(図示無し)を備えており、ポンプの回転数を調節することにより、反応セクション75への第3原料の流量が調節される。

 第4供給部74は、第4原料としてのn-ブチルリチウムを、反応セクション75へ供給する。第4原料は、n-ブチルリチウムを溶媒に溶解した第4液である。n-ブチルリチウムはアニオン重合開始剤として用いている。溶媒にはTHFを用いている。第4供給部74は、ポンプ(図示無し)を備えており、ポンプの回転数を調節することにより、反応セクション75への第4原料の流量が調節される。スチレンとn-ブチルリチウムとは、フロー反応装置11,41において第1原料の反応物として用いたポリスチリルリチウムの原料である。

 反応セクション75は、反応セクション23の合流部31及び反応部32を2組直列に接続したものである。上流側の第1合流部と第1反応部とにはそれぞれ符号31Aと符号32Aとを付し、下流側の第2合流部と第2反応部とにはそれぞれ符号31Bと符号32Bとを付す。また、第1反応部31Aの長さL32Aと第2反応部31Bとの長さL32Bとをそれぞれ反応路長とみなす。

 第1合流部31Aは、第3原料と第4原料とを合流し、第1反応部32Aは第3原料と第4原料との混合物である混合原料のフロー反応処理を行い、ポリスチリルリチウムを生成させる。生成したポリスチリルリチウムは、第2合流部31Bに案内され、第2原料と合流する。そして第2反応部32Bにおいて、図1のフロー反応と同様に、フロー反応が行われ、ポリスチレンが生成物として得られる。このように、第1合流部31A及び第1反応部32Aは、図1のフロー反応装置11における第1供給部21として機能している。

 この例においても支援装置12(図3A参照)を同様に用いることにより、決定反応条件CSを迅速に見つけることができる。例えば、以下の通りである。まず、フロー反応装置71により、反応条件を変えてフロー反応処理を複数回行い、実測データをつくる。この例では、10通りのフロー反応処理を行い、図13に示すように、それぞれの反応条件と反応結果とを関連付けた10個の反応情報a~jで実測データ(第1回目の実測データ)をつくっている。

 支援装置12は、学習モードにモード設定し、これにより第1演算部61は第1記憶部51aから1回目の実測データを読み出す。第1演算部61は、1回目の実測データを学習データとして学習処理を用い、条件パラメータと結果パラメータとの関数を生成し、生成した関数を第2記憶部51bに書き込む。

 関数が第2記憶部51bに書き込まれた後に、支援装置12は学習モードから算出モードにモード切り替えをし、これにより、第2演算部62は、第1記憶部51aから実測データを読み出す。第2演算部62は、前述の例と同様に、固定パラメータ以外の条件パラメータの値を振り、異なる複数の反応条件で構成された条件データセットを生成する。

 図14に示すように、第1原料~第3原料の各温度と、第1反応部及び第2反応部のそれぞれの反応路径と反応路長と、第2合流部の形状と、反応温度とは固定パラメータとしている。第1原料の流速は、4ml/minから80ml/minまでを1ml/min間隔で刻んでいる。第2原料の濃度は、0.018mol/lから0.250mol/lまでを0.001mol/l間隔で刻んでいる。第2原料の流速は、1.9ml/minから38.0ml/minまでを0.1ml/min間隔で刻んでいる。第3原料の流速は、1ml/minから20ml/minまでを1ml/min間隔で刻んでいる。第1合流部は図12に示すT字と、図2に示す十字の2通りの形状にしている。これにより、条件データセットの反応条件の個数は、全260000000個(77通り×233通り×362通り×20通り×2通りで求めている)である。

 関数と条件データセットとが第2記憶部51bに書き込まれた後に、第3演算部63は第2記憶部51bからこれら関数と条件データセットを読み出す。第3演算部63は、読み出した条件データセットの反応条件毎に、関数を用いて、予測結果を算出する。そして、反応条件と予測結果とを関連付けた複数の予測情報で構成された予測データセット(第1回目の予測データセット)を生成し、第3記憶部51cに書き込む。

 第1回目の予測データセットの予測情報の個数は条件データセットの反応条件の個数と同じく、本例では260000000個である。結果パラメータの目標結果RAは特に限られないが、本例では、分子量の目標結果RAを25200としており、分散度の目標結果RAを1.024以下と設定している。第3演算部63は、これら目標結果RAと、予測データセットの各予測情報の予測結果との対比により「最もよい予測結果」を示す予測情報を特定する。この例では、図15に示すように、予測情報No.280の予測結果が「最もよい予測結果」として特定されている。したがって、予測情報No.280の反応条件が抽出反応条件CPとして抽出される(演算工程)。抽出反応条件CPと抽出反応条件に対応する予測結果RPとからなる予測情報は、予測データセットにおいて抽出反応条件CPと抽出反応条件に関連付けられた予測結果RPとして第3記憶部51cに書き込まれる。

 抽出反応条件CPが第3記憶部51cに書き込まれた後に、設定部16は、第3記憶部51cから抽出反応条件CPを読み出す。設定部16は抽出反応条件CPでのフロー反応処理をフロー反応装置11,41に試行させ、実測結果RRが検出部17により判定部56へ出力される。

 判定部56により、前述の例と同様に予測結果RPと実測結果RRとが対比され(1回目の対比)、相違度DRが求められ(図16参照)、相違度DRが許容範囲DTであるか否かが判定される。相違度DRが許容範囲DTであると判定された場合には、判定部56は抽出反応条件CPを決定反応条件CSとし、フロー反応が実施される。

 本例では、第1回目の対比データから求めた相違度DRが、図16に示すように、分子量では7.754534、分散度では4.04922となっており、許容範囲DR(=1%以内)でないと判定される。このように許容範囲でないと判定された場合には、判定部56は抽出反応条件CPを実測結果RRと関連付け、反応情報を生成する。生成した反応情報は、第1記憶部51aの実測データに加えられ(判定工程)、第1記憶部51aの実測データは第2回目の実測データとして新たな実測データに書き換えられる。この書き換えにより、第1記憶部51aには、新たに生成された第2回目の実測データが全11個の反応情報a~kにより構成された状態で記憶される(図17参照)。

 第2回目の実測データが第1記憶部51aに記憶された場合には、演算セクション50は算出モードを学習モードに切り替え、第1演算部61によって、第2回目の学習が行われる。これにより関数の新たな係数が生成され、第2回目の関数が新たな関数として第1記憶部51aに書き込まれる。

 前述の例と同様の演算処理を経て、判定部56によって第1回目と同様に、新たな予測結果RPと新たな実測結果RRとが対比され(2回目の対比)、新たに相違度DRが求められる(図18参照)。

 今回の相違度DRが許容範囲DTであると判定された場合には、第1回目と同様に、抽出反応条件CPを決定反応条件CSとし、この決定反応条件でのフロー反応処理が行われる。この決定反応条件CSは、既に実測結果RRに極めて近い反応結果が得られると判定されている反応条件であるため、生成物は目的とする分子量及び分散度で得られる。また、決定反応条件CSは、2回繰り返した演算工程及び判定工程とにより膨大な個数の反応条件の候補から求めており、フロー反応処理の試行及び時間が従来に比べて大きく短縮されている。

 この例では相違度DRが許容範囲DRでないと判定されており、第1回目と同様の演算処理を経て新たに生成した反応情報が第1記憶部51aの実測データ中に加えられ、第3回目の実測データが第1記憶部51a中に生成される。このようにして、判定工程において相違度DRが許容範囲DT内になるまで演算工程と判定工程とを繰り返し、許容範囲DT内になった後に、得られた決定反応条件CSでフロー反応処理を行う。

 この例では、第5回目の判定工程で、相違度DRが許容範囲DT内になり(図11参照)、この第5回目での抽出反応条件で、フロー反応処理を行っている。この例では、第1回目の実測データを作製するためのフロー反応処理を含めた試行回数はわずか15回である。また、各回の演算工程と判定工程とに要する時間は、本例では1時間程度である。このように、条件パラメータが多く、その組み合わせが膨大にあるフロー反応処理の反応条件が、極めて迅速に求められている。

 10  フロー反応設備

 11,41,71 フロー反応装置

 12  支援装置

 15  システムコントローラ

 16  設定部

 17  検出部

 21  第1供給部

 22  第2供給部

 23,43,75  反応セクション

 26  回収セクション

 31,42  合流部

 31A,31B 第1合流部,第2合流部

 31a~31c 第1管部~第3管部

 32 反応部

 32A,32B 第1反応部,第2反応部

 33  温調部

 50  演算セクション

 51a~51c 第1記憶部~第3記憶部

 56  判定部

 61~63 第1演算部~第3演算部

 73  第3供給部

 74  第4供給部

 CP  抽出反応条件

 CS  決定反応条件

 DT  許容範囲

 DR  相違度

 L1  入力層

 L2  中間層

 L3  出力層

 xi,x1~x8 条件パラメータの値

 ul、u1~u20 ユニット値

 ym,y1~y2 結果パラメータの値

 wxiul,wx1u1~wx8u20,wulym,wu1y1~wu20y2 重み係数

 RA  目標結果

 RP  予測結果

 RR  実測結果

Claims (8)


  1.  原料を流しながら反応させるフロー反応処理を支援するフロー反応支援装置であり、

     反応結果が既知である反応条件と前記反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの前記反応条件毎に予測結果を算出することにより、反応条件と前記予測結果とを関連付けた予測データセットを生成し、得られた複数の前記予測結果のうち、予め設定した目標結果に最も近い前記予測結果を特定し、特定した前記予測結果に関連付けられた反応条件を抽出反応条件として抽出する演算セクションと、

     前記抽出反応条件で反応させた場合の反応結果と、前記抽出反応条件に関連付けられた前記予測結果との相違度が予め設定した許容範囲であるか否かを判定し、許容範囲でない場合には、前記抽出反応条件と前記抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を前記実測データに加え、許容範囲である場合には、前記抽出反応条件をフロー反応処理に用いる反応条件とする判定部と、

     を備えるフロー反応支援装置。

  2.  前記反応条件は、前記原料の流量と、前記原料の流速と、前記原料における反応物の濃度と、前記原料の温度と、反応の設定温度と、反応時間とのいずれかである請求項1に記載のフロー反応支援装置。

  3.  前記反応結果は、生成物の収率と、副生成物の収率と、生成物の分子量と、生成物の分子量分散度と、生成物のモル濃度とのいずれかである請求項1または2に記載のフロー反応支援装置。

  4.  前記演算セクションは、前記実測データを学習データとして用いることにより前記条件データセットの反応条件毎に前記予測結果を算出する請求項1ないし3のいずれか1項に記載のフロー反応支援装置。

  5.  前記演算セクションは、前記実測データ中の前記反応条件を説明変数とし、かつ、前記実測データ中の前記反応結果を目的変数として構築されたニューラルネットワークを有する請求項1ないし4のいずれか1項に記載のフロー反応支援装置。

  6.  原料を流しながら反応させるフロー反応処理を支援するフロー反応支援方法であり、

     反応結果が既知である反応条件と前記反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの前記反応条件毎に予測結果を算出することにより、反応条件と前記予測結果とを関連付けた予測データセットを生成し、得られた複数の前記予測結果のうち、予め設定した目標結果に最も近い前記予測結果を特定し、特定した前記予測結果に関連付けられた反応条件を抽出反応条件として抽出する演算工程と、

     前記抽出反応条件で反応させた場合の反応結果と、前記抽出反応条件に関連付けられた前記予測結果との相違度が予め設定した許容範囲であるか否かを判定し、許容範囲でない場合には、前記抽出反応条件と前記抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を前記実測データに加え、許容範囲である場合には、前記抽出反応条件をフロー反応処理での反応条件にする判定工程と、

     を有し、

     前記判定工程により前記実測データに前記反応情報を加えた場合には、前記演算工程と前記判定工程とを新たに繰り返すフロー反応支援方法。

  7.  原料を流しながら反応させる反応セクションと、

     前記反応セクションでの反応結果が既知である反応条件と前記反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの前記反応条件毎に予測結果を算出することにより、反応条件と前記予測結果とを関連付けた予測データセットを生成し、得られた複数の前記予測結果のうち、予め設定した目標結果に最も近い前記予測結果を特定し、特定した前記予測結果に関連付けられた反応条件を抽出反応条件として抽出する演算セクションと、

     前記反応セクションにて前記抽出反応条件で反応させた場合の反応結果と、前記抽出反応条件に関連付けられた前記予測結果との相違度が予め設定した許容範囲であるか否かを判定し、許容範囲でない場合には、前記抽出反応条件と前記抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を前記実測データに加え、許容範囲である場合には、前記抽出反応条件を前記反応セクションにおける以降のフロー反応処理に用いる反応条件とする判定部と、

     前記反応データセット中の前記反応条件に前記反応セクションを制御するシステムコントローラと、

     を備えるフロー反応設備。

  8.  原料を流しながら反応させるフロー反応工程と、

     反応結果が既知である反応条件と前記反応結果とを関連付けた複数の反応情報で構成された実測データを用いて反応結果が未知である複数の反応条件を有する条件データセットの前記反応条件毎に予測結果を算出することにより、反応条件と前記予測結果とを関連付けた予測データセットを生成し、得られた複数の前記予測結果のうち、予め設定した目標結果に最も近い前記予測結果を特定し、特定した前記予測結果に関連付けられた反応条件を抽出反応条件として抽出する演算工程と、

     前記フロー反応工程において前記抽出反応条件で反応させた場合の反応結果と、前記抽出反応条件に関連付けられた前記予測結果との相違度が予め設定した許容範囲であるか否かを判定し、前記相違度が前記許容範囲でない場合には、前記抽出反応条件と前記抽出反応条件で反応させた場合の反応結果とを関連付けた反応情報を前記実測データに加え、前記相違度が前記許容範囲である場合には、前記抽出反応条件を、以降の前記フロー反応工程での反応条件とする判定工程と、

     を有し、

     前記判定工程により前記実測データに前記反応情報を加えた場合には、前記演算工程と前記判定工程とを新たに繰り返し、

     前記相違度が前記許容範囲である場合には、以降の前記フロー反応工程は前記抽出反応条件で反応を行うフロー反応方法。
PCT/JP2019/026006 2018-09-10 2019-07-01 フロー反応支援装置及び方法、フロー反応設備及び方法 WO2020054183A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19859226.3A EP3851461A4 (en) 2018-09-10 2019-07-01 FLOW REACTION AID DEVICE AND METHOD, FLOW REACTION EQUIPMENT AND METHOD
JP2020546711A JP7250027B2 (ja) 2018-09-10 2019-07-01 フロー反応支援装置及び方法、フロー反応設備及び方法
US17/168,447 US20210162362A1 (en) 2018-09-10 2021-02-05 Flow reaction support apparatus, flow reaction support method, flow reaction facility, and flow reaction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018168476 2018-09-10
JP2018-168476 2018-09-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/168,447 Continuation US20210162362A1 (en) 2018-09-10 2021-02-05 Flow reaction support apparatus, flow reaction support method, flow reaction facility, and flow reaction method

Publications (1)

Publication Number Publication Date
WO2020054183A1 true WO2020054183A1 (ja) 2020-03-19

Family

ID=69777106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026006 WO2020054183A1 (ja) 2018-09-10 2019-07-01 フロー反応支援装置及び方法、フロー反応設備及び方法

Country Status (4)

Country Link
US (1) US20210162362A1 (ja)
EP (1) EP3851461A4 (ja)
JP (1) JP7250027B2 (ja)
WO (1) WO2020054183A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004880A1 (ja) * 2020-07-03 2022-01-06 ダイキン工業株式会社 予測装置、演算装置、製造装置及び製造方法
WO2022264885A1 (ja) * 2021-06-17 2022-12-22 ダイキン工業株式会社 予測装置、製造装置及び予測方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024129972A (ja) * 2023-03-14 2024-09-30 横河電機株式会社 合成装置および合成方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249203A (ja) * 1986-02-06 1987-10-30 ウエスチングハウス エレクトリック コ−ポレ−ション プロセス制御方法及び装置
JPH0628009A (ja) * 1992-07-07 1994-02-04 Asahi Chem Ind Co Ltd 重合プロセスの制御方法
JPH0632805A (ja) * 1992-07-17 1994-02-08 Asahi Chem Ind Co Ltd 連続重合プロセスの非定常運転時の制御方法
JP2001106703A (ja) * 1999-10-06 2001-04-17 Mitsubishi Rayon Co Ltd 品質予測反応制御システム
JP2002301359A (ja) 2001-04-04 2002-10-15 Todoroki Industry Co Ltd 化学反応装置における異常反応の制御システム
JP2008501837A (ja) * 2004-06-09 2008-01-24 ストックハウゼン ゲーエムベーハー コンピュータ生成モデルを用いた親水性ポリマー及び親水性ポリマーを含む追加処理製品の製造方法
WO2009025045A1 (ja) 2007-08-22 2009-02-26 Fujitsu Limited 化合物の物性予測装置、物性予測方法およびその方法を実施するためのプログラム
JP2010535894A (ja) * 2007-08-07 2010-11-25 ダウ グローバル テクノロジーズ インコーポレイティド ポリマー特性の予測を改善する方法、および改善されたポリマー特性予測能を有するシステム
JP2015520674A (ja) 2012-05-25 2015-07-23 ザ ユニヴァーシティー コート オブ ザ ユニヴァーシティー オブ グラスゴーThe University Court Of The University Of Glasgow 具現化された化学合成を含む進化的合成の方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3189332B2 (ja) * 1991-11-22 2001-07-16 三菱化学株式会社 ポリオレフィンを製造するための重合反応運転支援装置
JPH06199904A (ja) * 1992-12-28 1994-07-19 Asahi Chem Ind Co Ltd 連続重合プロセスの連続運転条件変更方法
JP2001356803A (ja) * 2000-06-15 2001-12-26 Toyobo Co Ltd プロセスフィードバック制御のパラメータ設定方法、同設定装置および化学製品の製造方法、同製造装置ならびにプロセスフィードバック制御用プログラムを記録した記憶媒体
US20150148514A1 (en) * 2012-06-25 2015-05-28 Lubrizol Advanced Materials, Inc. Method for identifying bioabsorbable polymers
US10622098B2 (en) * 2017-09-12 2020-04-14 Massachusetts Institute Of Technology Systems and methods for predicting chemical reactions

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249203A (ja) * 1986-02-06 1987-10-30 ウエスチングハウス エレクトリック コ−ポレ−ション プロセス制御方法及び装置
JPH0628009A (ja) * 1992-07-07 1994-02-04 Asahi Chem Ind Co Ltd 重合プロセスの制御方法
JPH0632805A (ja) * 1992-07-17 1994-02-08 Asahi Chem Ind Co Ltd 連続重合プロセスの非定常運転時の制御方法
JP2001106703A (ja) * 1999-10-06 2001-04-17 Mitsubishi Rayon Co Ltd 品質予測反応制御システム
JP2002301359A (ja) 2001-04-04 2002-10-15 Todoroki Industry Co Ltd 化学反応装置における異常反応の制御システム
JP2008501837A (ja) * 2004-06-09 2008-01-24 ストックハウゼン ゲーエムベーハー コンピュータ生成モデルを用いた親水性ポリマー及び親水性ポリマーを含む追加処理製品の製造方法
JP2010535894A (ja) * 2007-08-07 2010-11-25 ダウ グローバル テクノロジーズ インコーポレイティド ポリマー特性の予測を改善する方法、および改善されたポリマー特性予測能を有するシステム
WO2009025045A1 (ja) 2007-08-22 2009-02-26 Fujitsu Limited 化合物の物性予測装置、物性予測方法およびその方法を実施するためのプログラム
JP2015520674A (ja) 2012-05-25 2015-07-23 ザ ユニヴァーシティー コート オブ ザ ユニヴァーシティー オブ グラスゴーThe University Court Of The University Of Glasgow 具現化された化学合成を含む進化的合成の方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3851461A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004880A1 (ja) * 2020-07-03 2022-01-06 ダイキン工業株式会社 予測装置、演算装置、製造装置及び製造方法
JP2022013148A (ja) * 2020-07-03 2022-01-18 ダイキン工業株式会社 予測装置、演算装置、製造装置及び製造方法
WO2022264885A1 (ja) * 2021-06-17 2022-12-22 ダイキン工業株式会社 予測装置、製造装置及び予測方法
JP2023000306A (ja) * 2021-06-17 2023-01-04 ダイキン工業株式会社 予測装置、製造装置及び予測方法

Also Published As

Publication number Publication date
US20210162362A1 (en) 2021-06-03
EP3851461A1 (en) 2021-07-21
EP3851461A4 (en) 2021-11-17
JPWO2020054183A1 (ja) 2021-09-30
JP7250027B2 (ja) 2023-03-31

Similar Documents

Publication Publication Date Title
WO2020054183A1 (ja) フロー反応支援装置及び方法、フロー反応設備及び方法
JP7098821B2 (ja) データ生成装置および方法、並びに学習装置および方法
Tahir et al. iDNA6mA (5-step rule): Identification of DNA N6-methyladenine sites in the rice genome by intelligent computational model via Chou's 5-step rule
JP2023171765A (ja) フロー反応設備及び方法
Song et al. Transcriptome-wide annotation of m5C RNA modifications using machine learning
Tayara et al. Identification of prokaryotic promoters and their strength by integrating heterogeneous features
Thijs et al. A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling
Ebeling et al. Multiblock copolymers of styrene and butyl acrylate via polytrithiocarbonate-mediated RAFT polymerization
JP2021196710A (ja) 物性予測装置、物性予測方法及び製造方法
Yang et al. Prediction of aptamer–protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier
Brandl et al. Kinetic Monte Carlo simulation based detailed understanding of the transfer processes in semi-batch iodine transfer emulsion polymerizations of vinylidene fluoride
Kesheri et al. Advances in soft computing approaches for gene prediction: a bioinformatics approach
CN113268925A (zh) 基于差分进化算法时延估计的动态软测量方法
Salas et al. A geometric observer design for a semi-batch free-radical polymerization system
Pandey et al. Computational analysis of plant RNA Pol-II promoters
Kim et al. Molecular weight distribution in low-density polyethylene polymerization; impact of scission mechanisms in the case of a tubular reactor
JP7254950B2 (ja) 探索装置、探索方法、探索装置の作動プログラム、及びフロー反応設備
Curteanu et al. Neural networks and genetic algorithms used for modeling and optimization of the siloxane‐siloxane copolymers synthesis
CN111679651A (zh) 用于故障引起的变结构变参数系统的辨识方法及系统
Wu et al. Cluster analysis of dynamic parameters of gene expression
Maji et al. Hidden markov model for splicing junction sites identification in DNA sequences
JP7506790B1 (ja) 予測方法、情報処理装置、コンピュータプログラム、物質の選別方法及び物質の製造方法
JP3954337B2 (ja) プロセス制御支援方法およびプロセス制御支援装置
WO2024029063A1 (ja) 支援方法、支援装置、及び支援プログラム
Jung Model-based synthesis of functional microgels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546711

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019859226

Country of ref document: EP

Effective date: 20210412