WO2020052601A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2020052601A1
WO2020052601A1 PCT/CN2019/105437 CN2019105437W WO2020052601A1 WO 2020052601 A1 WO2020052601 A1 WO 2020052601A1 CN 2019105437 W CN2019105437 W CN 2019105437W WO 2020052601 A1 WO2020052601 A1 WO 2020052601A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical signal
signal
amplifier
transimpedance amplifier
Prior art date
Application number
PCT/CN2019/105437
Other languages
English (en)
French (fr)
Inventor
张强
赵其圣
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811054309.3A external-priority patent/CN109257101B/zh
Priority claimed from CN201811058381.3A external-priority patent/CN109067464A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2020052601A1 publication Critical patent/WO2020052601A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection

Definitions

  • the present disclosure relates to the field of optical fiber communication technology, and in particular, to an optical module.
  • the optical module is an important part of the optical fiber communication system. It is used to receive optical signals and convert the optical signals into corresponding electrical signals through signal conversion, signal amplification and other processes. Generally, a transimpedance amplifier for amplifying a signal is included in an optical module.
  • EPON 25G Ethernet passive optical network
  • the present disclosure provides an optical module for receiving a burst optical signal, including: a light source device for emitting a continuous optical signal having the same wavelength as the wavelength of the burst optical signal; and an optical coupling device for receiving the continuous optical signal.
  • the optical signal and the burst optical signal output a combined optical signal obtained by combining the continuous optical signal and the burst optical signal, wherein a difference in optical power of the combined optical signal is smaller than the burst optical signal Optical power difference; a photodetector for receiving the combined optical signal and converting the combined optical signal into a current signal; and a transimpedance amplifier electrically connected to the photodetector for continuous mode Converting the current signal into a voltage signal; and a limiting amplifier, which is electrically connected to the transimpedance amplifier and is used to convert the voltage signal into a limiting amplified voltage signal.
  • Fig. 1 is a partial circuit structure diagram of an optical module according to an exemplary embodiment.
  • Fig. 2 is a partial circuit structure diagram of an optical module according to another exemplary embodiment.
  • Fig. 3 is a partial circuit structure diagram of an optical module according to still another exemplary embodiment.
  • Fig. 4 is a partial circuit structure diagram of an optical module according to still another exemplary embodiment.
  • Light source device 2. Optical coupling device; 21; Beam combiner; 22; Beam splitter;
  • a burst light, continuous light, c1, first light signal, c2, second light signal.
  • the transimpedance amplifier is the core device at the receiving end, and its role is to convert and amplify the weak current signal converted from the photodiode into a voltage signal and output it to subsequent devices for processing. Due to the suddenness of the burst optical signal and the large difference in optical power, in general, a continuous mode transimpedance amplifier will generate excessive data overhead when receiving a burst optical signal, resulting in excessive service flow loss.
  • an embodiment of the present disclosure provides an optical module for receiving a burst optical signal.
  • the optical module includes a light source device 1, a light coupling device 2, a photodetector 3, a transimpedance amplifier 4, and a limiting amplifier 5.
  • the light source device 1 is configured to emit a continuous optical signal b having the same wavelength as that of the burst optical signal a.
  • the optical coupling device 2 is configured to receive the burst optical signal a and the continuous optical signal b, and output a combined optical signal c obtained by combining the burst optical signal a and the continuous optical signal b.
  • the optical power difference of the combined optical signal c is smaller than the optical power difference of the burst optical signal a.
  • the photodetector 3 is configured to receive the combined optical signal c and convert the combined optical signal c into a corresponding current signal.
  • the transimpedance amplifier 4 is electrically connected to the photodetector 3 and is used to convert a current signal into a voltage signal in a continuous mode.
  • the limiting amplifier 5 is electrically connected to the transimpedance amplifier 4 for converting a voltage signal into a limiting amplified voltage signal.
  • the optical module outputs a continuous optical signal b having the same wavelength as the burst optical signal a through the light source device 1 so that the continuous optical signal b and the burst optical signal a can be combined.
  • the optical coupling device 2 combines the continuous optical signal b and the burst optical signal a to obtain a combined optical signal c.
  • the combined optical signal c output by the optical coupling device 2 has a continuous component and has a lower optical power difference than the burst optical signal a.
  • the photodetector 3 can be used as an input signal of the transimpedance amplifier 4 in the continuous mode based on the current signal obtained by combining the optical signals c.
  • the transimpedance amplifier 4 converts the current signal into a voltage signal
  • the limiting amplifier 5 converts the limited amplified voltage signal based on the voltage signal, which can effectively implement the burst receiving function of the optical module.
  • the optical module provided in the embodiment of the present disclosure obtains a combined optical signal c by coupling the burst optical signal a and the continuous optical signal b, so that the combined optical signal c has a continuous component and a difference in optical power lower than the burst optical signal a. .
  • the transimpedance amplifier 4 can effectively receive a burst optical signal in the continuous mode.
  • the wavelength of the continuous optical signal b is the same as the wavelength of the burst optical signal a for coupling.
  • the optical power difference of the combined optical signal c obtained from the coupling is smaller than the optical power difference of the burst optical signal a.
  • the optical power difference (D) of the burst optical signal a is:
  • the maximum optical power C1 dBm and the minimum optical power C2 dBm of the combined optical signal c are:
  • the optical power difference (D ') of the combined optical signal c is:
  • the power of the continuous optical signal b is greater than the maximum optical power of the burst optical signal a.
  • the optical power difference of the combined optical signal c is smaller than the optical power difference of the burst optical signal a, it can be seen that the greater the power of the continuous optical signal b, the smaller the optical power difference of the combined optical signal c, and the combined The optical signal c is more compatible with the continuous mode of the transimpedance amplifier 4.
  • the continuous optical signal b is a direct current optical signal.
  • the burst optical signal a is an AC optical signal.
  • the combined optical signal c is obtained by combining the burst optical signal a and a continuous DC optical signal b, which is helpful for subsequent removal of the corresponding optical signal b in the combined optical signal c.
  • the DC component is biased to obtain a limited amplified voltage signal corresponding to the burst optical signal a, thereby effectively optimizing the signal-to-noise ratio of the limited amplified voltage signal.
  • the optical coupling device 2 combines the received burst optical signal a and continuous optical signal b into an optical signal c, and further splits the optical signal c into a first signal.
  • the optical module may include a light source device 1, a light coupling device 2, a first light detector 31, a second light detector 32, a first transimpedance amplifier 41, a second transimpedance amplifier 42, an inverter 7, and a limiter.
  • Amplifier 5 may include a light source device 1, a light coupling device 2, a first light detector 31, a second light detector 32, a first transimpedance amplifier 41, a second transimpedance amplifier 42, an inverter 7, and a limiter. Amplifier 5.
  • the first photodetector 31 is configured to receive the first optical signal c1 and convert the first optical signal c1 into a first current signal; the first transimpedance amplifier 41 is electrically connected to the first photodetector 31. Connected to convert the first current signal into a first voltage signal; the first transimpedance amplifier 41 is electrically connected to the limiting amplifier 5.
  • the second optical detector 32 is configured to receive the second optical signal c2 and convert the second optical signal c2 into a second current signal; the second transimpedance amplifier 42 and the second optical detector 32 are electrically connected. Connected to convert the second current signal into a second voltage signal; an inverter 7 is also electrically connected between the second transimpedance amplifier 42 and the limiting amplifier 5 to convert the second voltage signal into an inverted signal.
  • the limiting amplifier 5 can convert the received first voltage signal and the inverted signal into a limiting amplified voltage signal.
  • the first optical signal c1 and the second optical signal c2 are derived from the same combined optical signal c, so the first optical signal c1 and the second optical signal c2 have the same phase.
  • the phase of the second voltage signal from the second transimpedance amplifier 42 can be inverted by 180 ° to obtain an inverted signal.
  • the phase of the inverted signal is different from the phase of the first voltage signal output by the first transimpedance amplifier 41 by 180 ° to obtain a differential signal.
  • the amplitude of the signal can be further amplified by using the characteristics of the differential signal, so as to remove the offset component corresponding to the continuous optical signal b in the signal and improve the receiving sensitivity. effect.
  • the received signal may also be between the first transimpedance amplifier 41 and the limiting amplifier 5 and the second transimpedance amplifier 42 and the limiting amplifier.
  • the operational amplifier may be a limiting amplifier or a linear amplifier.
  • the optical coupling device 2 combines the received burst optical signal a and continuous optical signal b into an optical signal c, and further splits the optical signal c into a first signal.
  • the optical module may include a light source device 1, a light coupling device 2, a first light detector 31, a second light detector 32, a first transimpedance amplifier 41, a second transimpedance amplifier 42, a first operational amplifier 61, The second operational amplifier 62 and the limiting amplifier 5.
  • the first photodetector 31 is configured to receive the first optical signal c1 and convert the first optical signal c1 into a first current signal; the first transimpedance amplifier 41 is electrically connected to the first photodetector 31.
  • the first operational amplifier 61 is electrically connected between the limiting amplifier 5 and the first transimpedance amplifier 41, and the input terminal of the first operational amplifier 61 is connected to the first transimpedance.
  • the output terminal of the amplifier 41 is connected, and the output terminal of the first operational amplifier 61 is connected to the first input terminal of the limiting amplifier 5.
  • the first operational amplifier 61 is configured to convert a first voltage signal into a first amplified voltage signal.
  • the second optical detector 32 is configured to receive the second optical signal c2 and convert the second optical signal c2 into a second current signal; the second transimpedance amplifier 42 and the second optical detector 32 An electrical connection for converting the received second current signal into a second voltage signal; a second operational amplifier 62 electrically connected between the limiting amplifier 5 and the second transimpedance amplifier 42; an input of the second operational amplifier 62 The terminal is connected to the output terminal of the second transimpedance amplifier 42, and the output terminal of the second operational amplifier 62 is connected to the second input terminal of the limiting amplifier 5.
  • the second operational amplifier 62 is configured to convert the second voltage signal into a second amplified voltage signal.
  • the limiting amplifier 5 can be used to convert the received first amplified voltage signal and the second amplified voltage signal into a limited amplified voltage signal.
  • first optical signal c1 and the second optical signal c2 are obtained by splitting the combined optical signal c obtained by combining the continuous optical signal b and the burst optical signal a, so the first current signal and the second The current signal can also be used as the input signal of the first transimpedance amplifier 41 and the second transimpedance amplifier 42 in the continuous mode.
  • the optical coupling device 2 includes a beam combiner 21 and a beam splitter 22.
  • the beam combiner 21 is configured to combine the continuous optical signal b and the burst optical signal a;
  • the beam splitter 22 is configured to split the combined optical signal c obtained by combining the continuous optical signal b and the burst optical signal a into a first optical signal c1 And the second light signal c2.
  • the beam combiner 21 and the beam splitter 22 can redistribute the power of the continuous optical signal b and the burst optical signal a.
  • the powers of the first optical signal c1 and the second optical signal c2 are the same. In this way, the amplitudes of the first amplified voltage signal obtained by the first operational amplifier 61 and the second amplified voltage signal obtained by the second operational amplifier 62 are equal to meet the signal input requirements of the limiting amplifier 5.
  • the optical path of the first optical signal c1 from the optical coupling device 2 to the first photodetector 31 and the optical path of the second optical signal c2 from the optical coupling device 2 to the second photodetector 32 Cheng is equal.
  • the optical path of the first optical signal c1 from the optical coupling device 2 to the first photodetector 31 and the optical path of the second optical signal c2 from the optical coupling device 2 to the second photodetector 32 The path difference is less than or equal to the upper limit of the allowable misalignment of the optical signal optical path.
  • the upper limit of the allowable misalignment of the phase of the optical signal may be selected as the distance traveled by the speed of light within 0.1 UI (unit interval) time.
  • the difference between the optical paths of the first optical signal c1 and the second optical signal c2 is within this range, no significant deviation of the optical signal will be caused; when the optical paths of the first optical signal c1 and the second optical signal c2 are the same, no Optical signal deviation will occur.
  • the synchronization of the output current signals of the first photodetector 31 and the second photodetector 32 can be improved, so as to avoid signal distortion during subsequent processing of the first current signal and the second current signal.
  • the non-inverting input interface of the first operational amplifier 61 is connected to the non-inverting output terminal of the first transimpedance amplifier 41, and the inverting input interface of the first operational amplifier 61 is connected to the first transimpedance amplifier. 41's inverting output interface connection.
  • the non-inverting input terminal interface of the second operational amplifier 62 is connected to the inverting output terminal of the second transimpedance amplifier 42, and the inverting input terminal interface of the second operational amplifier 62 is connected to the noninverting output terminal of the second transimpedance amplifier 42.
  • the first transimpedance amplifier 41 and the first operational amplifier 61, and the second transimpedance amplifier 42 and the second operational amplifier 62 are all differentially connected.
  • the input signals of the first operational amplifier 61 and the second operational amplifier 62 are both differential input signals.
  • the differential input and single-ended output of the operational amplifier can effectively remove the offset component corresponding to the continuous optical signal b in the first voltage signal and the second voltage signal, and improve the information of the first amplified voltage signal and the second amplified voltage signal.
  • the noise ratio is such that the limiting amplifier 5 can finally output a limiting amplified voltage signal corresponding to the burst optical signal a.
  • the differential connection of the first operational amplifier 61 and the first transimpedance amplifier 41 outputs a forward operational amplified signal with an amplitude of twice the input signal amplitude;
  • the differential connection of the second operational amplifier 62 and the second transimpedance amplifier 42 The mode outputs the inverted operational amplified signal whose amplitude is twice the amplitude of the input signal.
  • the first operational amplification signal and the second operational amplification signal are a pair of differential signals, which meets the requirements of the differential amplifier 5 differential input.
  • the optical coupling device 2 outputs a first optical signal c1 and a second optical signal c2 obtained by splitting the combined optical signal c.
  • the first optical signal c1 is converted by the first photodetector 31, the first transimpedance amplifier 41, and the first operational amplifier 61; the second photodetector 32, the second transimpedance amplifier 42, and the second operation are converted.
  • the amplifier 62 converts the second optical signal c2.
  • Signal conversion processing is performed on the first optical signal c1 and the second optical signal c2 respectively, and the offset components corresponding to the continuous optical signal b can be removed, which helps to improve the signal-to-noise ratio of the input signal of the limiting amplifier 5 and the limiting
  • the receiving sensitivity of the amplifier 5 is to optimize the quality of the output signal of the limiting amplifier 5 and improve the anti-interference performance of the optical module.
  • the optical coupling device 2 includes a combiner 21 for combining a continuous optical signal b and a burst optical signal. a.
  • the combined optical signal c is output.
  • the non-inverting output terminal interface of the transimpedance amplifier 4 is connected to the first input terminal interface of the limiting amplifier 5, and the inverting output terminal interface of the transimpedance amplifier 4 is connected to the second input terminal interface of the limiting amplifier 5.
  • the transimpedance amplifier 4 outputs a differential signal and is differentially connected to the limiting amplifier 5.
  • the offset component corresponding to the continuous optical signal b is removed from the signal through a differential connection, so that the limiting amplifier 5 outputs a limited amplified voltage signal corresponding to the burst optical signal a.
  • the first input terminal interface of the limiting amplifier 5 is a non-inverting input terminal interface, and the second input terminal interface may be an inverting input terminal interface.
  • the optical signal c obtained by combining the continuous optical signal b and the burst optical signal a by the combiner 21 can also effectively receive the high-speed burst optical signal in the continuous mode by using the transimpedance amplifier 4 and In this way, the overall optical module has a simple structure and is easy to manufacture.
  • the types and types of components in the optical module circuit provided in the embodiments of the present disclosure may be selected as follows: the light source device 1 may be a distributed feedback laser.
  • the output laser of the feedback laser has good monochromaticity to meet the requirements of the same wavelength of the continuous optical signal b and the burst optical signal a.
  • the combiner 21 and the beam splitter 22 may be selected from a PLC coupler or an optical fiber coupler.
  • the first light detector 31 and the second light detector 32 may be PIN-PD detectors or APD detectors. Among them, the PIN-PD detector has better strong light receiving ability, which can avoid signal loss.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Amplifiers (AREA)

Abstract

一种光模块,用于接收突发光信号(a),包括:光源装置(1),用于发出波长与突发光信号(a)的波长相同的连续光信号(b);光耦合装置(2),用于接收连续光信号(b)和突发光信号(a),输出经连续光信号(b)和突发光信号(a)合并得到的合并光信号(c),其中,合并光信号(c)的光功率差值小于突发光信号(a)的光功率差值;光探测器(3),用于接收合并光信号(c),并将合并光信号(c)转换为电流信号;跨阻放大器(4),与光探测器(3)电连接,用于在连续模式下将电流信号转换为电压信号;和限幅放大器(5),与跨阻放大器(4)电连接,用于将电压信号转换为限幅放大电压信号。

Description

光模块
相关申请的交叉引用
本专利申请要求于2018年9月11日提交的、申请号为2018110543093、发明名称为“一种光模块”和2018年9月11日提交的、申请号为2018110583813、发明名称为“光模块”的中国专利申请的优先权,该申请的全文以引用的方式并入本文中。
技术领域
本公开涉及光纤通信技术领域,尤其涉及一种光模块。
背景技术
光模块是光纤通信系统的重要组成部分,用于接收光信号,并通过信号转换、信号放大等过程将光信号转换为对应的电信号。通常,光模块中包括用于放大信号的跨阻放大器。
随着通信技术的发展,25G以太网无源光网络(Ethernet Passive Optical Network,EPON)成为了光纤通信系统的主流趋势。在EPON领域,光模块需能接收高速的突发光信号。
发明内容
本公开提供一种光模块,用于接收突发光信号,包括:光源装置,用于发出波长与所述突发光信号的波长相同的连续光信号;光耦合装置,用于接收所述连续光信号和所述突发光信号,输出经所述连续光信号和所述突发光信号合并得到的合并光信号,其中,所述合并光信号的光功率差值小于所述突发光信号的光功率差值;光探测器,用于接收所述合并光信号,并将所述合并光信号转换为电流信号;和跨阻放大器,与所述光探测器电连接,用于在连续模式下将所述电流信号转换为电压信号;和限幅放大器,与所述跨阻放大器电连接,用于将所述电压信号转换为限幅放大电压信号。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的光模块的局部电路结构图。
图2是根据另一示例性实施例示出的光模块的局部电路结构图。
图3是根据又一示例性实施例示出的光模块的局部电路结构图。
图4是根据再一示例性实施例示出的光模块的局部电路结构图
附图中各个标记意为:
1、光源装置;     2、光耦合装置;       21、合束器;      22、分束器;
31、第一光探测器;                      32、第二光探测器;
41、第一跨阻放大器;                    42、第二跨阻放大器;
5、限幅放大器;
61、第一运算放大器;                    62、第二运算放大器;
7、反相器
a、突发光;       b、连续光;       c1、第一光信号;      c2、第二光信号。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同附图标记表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在光模块中,跨阻放大器是接收端的核心器件,其作用在于将光电二极管转换出的微弱电流信号转换并放大为电压信号,并输出给后续的器件进行处理。由于突发光信号的突发性以及光功率差值较大,因此,一般情况下,连续模式跨阻放大器在接收突发光信号时会产生过多数据开销,导致业务流损耗过多。
有鉴于此,本公开实施例提供了一种光模块,用于接收突发光信号。如图1所示, 该光模块包括光源装置1、光耦合装置2、光探测器3、跨阻放大器4、以及限幅放大器5。
其中,光源装置1用于发出波长与突发光信号a的波长相同的连续光信号b。光耦合装置2用于接收突发光信号a和连续光信号b,输出经突发光信号a和连续光信号b合并得到的合并光信号c。其中,合并光信号c的光功率差值小于突发光信号a的光功率差值,其原理在下文中说明。光探测器3用于接收合并光信号c,并将合并光信号c转换为相应的电流信号。跨阻放大器4与光探测器3电连接,用于在连续模式下将电流信号转换为电压信号。限幅放大器5与跨阻放大器4电连接,用于将电压信号转换为限幅放大电压信号。
本公开实施例提供的光模块,通过光源装置1输出具有与突发光信号a相同波长的连续光信号b,使得该连续光信号b和突发光信号a可进行合并。通过光耦合装置2合并连续光信号b与突发光信号a以得到合并光信号c。这样,光耦合装置2输出的合并光信号c具有连续分量,并具有低于突发光信号a的光功率差值。在这样的情况下,光探测器3基于合并光信号c得到的电流信号,能够作为跨阻放大器4在连续模式下的输入信号。进而通过跨阻放大器4将电流信号转换为电压信号,通过限幅放大器5基于电压信号转换出限幅放大电压信号,可有效实现光模块的突发接收功能。
本公开实施例提供的光模块,通过将突发光信号a与连续光信号b进行耦合得到合并光信号c,使得合并光信号c具有连续分量以及低于突发光信号a的光功率差值。这样,跨阻放大器4在连续模式下能够有效接收突发光信号。
其中,连续光信号b的波长与突发光信号a的波长相同,以便进行耦合。至于为什么耦合所得合并光信号c的光功率差值小于突发光信号a的光功率差值,简单分析相应的原理如下:
假设突发光信号a的光功率最大值为A1dBm,对应的功率为x mW;突发光信号a的光功率最小值为A2dBm,对应的功率为y mW,则以下公式成立,
A1=10×log(x)
A2=10×log(y)
突发光信号a的光功率差值(D)为:
Figure PCTCN2019105437-appb-000001
假设连续光信号b的光强为B dBm,对应的功率为z mW,则合并光信号c的最大光功率C1 dBm和最小光功率C2 dBm分别为:
C1=10×log(x+z)
C2=10×log(y+z)
合并光信号c的光功率差值(D’)为:
Figure PCTCN2019105437-appb-000002
可以理解的是,在x、y、z的取值均为正数的条件下,
Figure PCTCN2019105437-appb-000003
因此D’<D,换言之,合并光信号c的光功率差值小于突发光信号a的光功率差值。
在本申请某些实施例中,连续光信号b的功率大于突发光信号a的最大光功率。结合上述合并光信号c光功率差值小于突发光信号a的光功率差值的原理,可以看出:连续光信号b的功率越大,合并光信号c的光功率差值越小,合并光信号c与跨阻放大器4的连续模式适配性更佳。
在本申请某些实施例中,连续光信号b为直流光信号。通常,突发光信号a为交流光信号,通过将突发光信号a与直流的连续光信号b合并得到合并光信号c,有助于后续去除合并光信号c中与连续光信号b对应的偏置直流分量,以得到与突发光信号a对应的限幅放大电压信号,从而可有效优化限幅放大电压信号的信噪比。
在本申请某些实施例中,如图2所示,光耦合装置2将接收到的突发光信号a和连续光信号b合并为光信号c,并将光信号c进一步分束为第一光信号c1和第二光信号c2。这样,光模块可以包括光源装置1、光耦合装置2、第一光探测器31、第二光探测器32、第一跨阻放大器41、第二跨阻放大器42、反相器7以及限幅放大器5。
针对第一光信号c1,第一光探测器31用于接收第一光信号c1,并将第一光信号c1转换为第一电流信号;第一跨阻放大器41与第一光探测器31电连接以将第一电流信号转换为第一电压信号;第一跨阻放大器41与限幅放大器5电连接。
针对第二光信号c2,第二光探测器32用于接收第二光信号c2,并将第二光信号c2转换为第二电流信号;第二跨阻放大器42与第二光探测器32电连接以将第二电流信号转换为第二电压信号;在第二跨阻放大器42与限幅放大器5之间还电连接有反相器7,用于将第二电压信号转换为反相信号。
这样,限幅放大器5可以将接收到的第一电压信号和反相信号转换为限幅放大的电压信号。
其中,第一光信号c1与第二光信号c2源自同一合并光信号c,所以第一光信号c1与第二光信号c2具有相同的相位。通过在第二跨阻放大器42与限幅放大器5之间接入反相器7,可以将来自第二跨阻放大器42的第二电压信号的相位反转180°得到反相信号。这样,该反相信号的相位与第一跨阻放大器41输出的第一电压信号的相位相差180°以得到差分信号。将该反相信号和第一电压信号接入限幅放大器5中,可以利用差分信号的特点将信号的幅度进一步放大,达到去除信号中与连续光信号b对应的偏置分量、改善接收灵敏度的作用。
为了进一步改善接收信号的灵敏度,去除信号中与连续光信号b对应的偏置分量,还可以在第一跨阻放大器41与限幅放大器5之间、以及第二跨阻放大器42与限幅放大器5之间分别设置一个运算放大器以实现信号的反相和放大。其中,该运算放大器可以是限幅放大器或线性放大器。
在本申请某些实施例中,如图3所示,光耦合装置2将接收到的突发光信号a和连续光信号b合并为光信号c,并将光信号c进一步分束为第一光信号c1和第二光信号c2。这样,该光模块可以包括光源装置1、光耦合装置2、第一光探测器31、第二光探测器32、第一跨阻放大器41、第二跨阻放大器42、第一运算放大器61、第二运算放大器62以及限幅放大器5。
针对第一光信号c1,第一光探测器31用于接收第一光信号c1,并将第一光信号c1转换为第一电流信号;第一跨阻放大器41与第一光探测器31电连接以将第一电流信号转换为第一电压信号;第一运算放大器61,电连接在限幅放大器5与第一跨阻放大器41之间,第一运算放大器61的输入端与第一跨阻放大器41输出端连接,第一运算放大器61的输出端与限幅放大器5的第一输入端连接。其中,第一运算放大器61用于将第一电压信号转换为第一放大电压信号。
针对第二光信号c2,第二光探测器32用于接收第二光信号c2,并将第二光信号c2转换为第二电流信号;第二跨阻放大器42,与第二光探测器32电连接,用于将接收到的第二电流信号转换为第二电压信号;第二运算放大器62,电连接在限幅放大器5与第二跨阻放大器42之间,第二运算放大器62的输入端与第二跨阻放大器42输出端连接,第二运算放大器62的输出端与限幅放大器5的第二输入端连接。其中,第二运算放大器62用于将第二电压信号转换为第二放大电压信号。
这样,限幅放大器5可以用于将接收到的第一放大电压信号和第二放大电压信号转换为限幅放大的电压信号。
需要说明的是,第一光信号c1以及第二光信号c2是对连续光信号b和突发光信号a合并得到的合并光信号c进行分束得到的,因此上述第一电流信号以及第二电流信号同样可作为第一跨阻放大器41以及第二跨阻放大器42在连续模式下的输入信号。
其中,光耦合装置2包括合束器21和分束器22。合束器21用于合并连续光信号b和突发光信号a;分束器22用于将连续光信号b和突发光信号a合并得到的合并光信号c分束为第一光信号c1和第二光信号c2。
通过合束器21和分束器22能够重新分配连续光信号b和突发光信号a的功率。在本申请某些实施例中,第一光信号c1和第二光信号c2的功率相同。如此,第一运算放大器61得到的第一放大电压信号与第二运算放大器62得到的第二放大电压信号的幅值相等,以满足限幅放大器5的信号输入要求。
在本申请某些实施例中,第一光信号c1从光耦合装置2到第一光探测器31的光程,与第二光信号c2从光耦合装置2到第二光探测器32的光程相等。
在本申请某些实施例中,第一光信号c1从光耦合装置2到第一光探测器31的光程,与第二光信号c2从光耦合装置2到第二光探测器32的光程之差小于或者等于光信号光程允许错位的上限。
其中,光信号相位允许错位的上限可选为光速在0.1UI(unit interval)时间内行驶的距离。当第一光信号c1和第二光信号c2的光程之差在该范围内,不会造成光信号明显的偏差;当第一光信号c1和第二光信号c2的光程相同时,不会出现光信号偏差。在这样的情况下,能够提高第一光探测器31和第二光探测器32输出电流信号的同步性,以避免后续对第一电流信号和第二电流信号进行处理时出现信号失真。
在本申请某些实施例中,第一运算放大器61的同相输入端接口与第一跨阻放大器41的同相输出端接口连接,第一运算放大器61的反相输入端接口与第一跨阻放大器41的反相输出端接口连接。第二运算放大器62的同相输入端接口与第二跨阻放大器42的反相输出端接口连接,第二运算放大器62的反相输入端接口与第二跨阻放大器42的同相输出端接口连接。
在这样的情况下,第一跨阻放大器41与第一运算放大器61,以及第二跨阻放大器42与第二运算放大器62均采用差分连接。换言之,第一运算放大器61和第二运算放大 器62的输入信号均为差分输入信号。通过运算放大器差分输入、单端输出的方式,能够有效去除第一电压信号和第二电压信号中与连续光信号b对应的偏置分量,提升第一放大电压信号和第二放大电压信号的信噪比,这样,限幅放大器5最终能够输出与突发光信号a相对应的限幅放大电压信号。
其中,第一运算放大器61与第一跨阻放大器41的差分连接方式输出幅值为两倍输入信号幅值的正向运算放大信号;第二运算放大器62与第二跨阻放大器42的差分连接方式输出幅值为两倍输入信号幅值的反相运算放大信号。并且,当第一光信号c1和第二光信号c2的功率相同时,第一运算放大信号与第二运算放大信号为一对差分信号,满足限幅放大器5差分输入的要求。
在该实施例中,光耦合装置2输出由合并光信号c分束得到的第一光信号c1和第二光信号c2。并通过第一光探测器31、第一跨阻放大器41、及第一运算放大器61对第一光信号c1进行转换;通过第二光探测器32、第二跨阻放大器42、及第二运算放大器62对第二光信号c2进行转换。对第一光信号c1和第二光信号c2分别进行信号转换处理,能够分别去除与连续光信号b对应的偏置分量,有助于提高限幅放大器5输入信号的信噪比,以及限幅放大器5的接收灵敏度,以优化限幅放大器5输出信号的品质,改善光模块的抗干扰性。
本申请某些实施例提供了一种光模块,局部电路示意图如图4所示,在一个实施例中,光耦合装置2包括合束器21,用于合并连续光信号b和突发光信号a,输出合并光信号c。跨阻放大器4的同相输出端接口与限幅放大器5的第一输入端接口连接,跨阻放大器4的反相输出端接口与限幅放大器5的第二输入端接口连接。
在该实施例中,跨阻放大器4输出差分信号,与限幅放大器5差分连接。通过差分连接去除信号中与连续光信号b对应的偏置分量,使得限幅放大器5输出与突发光信号a对应的限幅放大的电压信号。可选地,限幅放大器5的第一输入端接口为同相输入端接口,第二输入端接口可以为反相输入端接口。
在该实施例中,通过合束器21输出连续光信号b和突发光信号a合并得到的光信号c,同样能够利用跨阻放大器4在连续模式下来有效接收高速突发光信号,且在这种方式下,整体光模块结构简单,易于生产制造。
此外,本公开实施例提供的光模块电路中元器件的型号和类别可选如下:光源装置1可选为分布反馈式激光器。反馈式激光器的输出光单色性好,以满足连续光信号b与 突发光信号a波长相同的要求。合束器21和分束器22可选为PLC耦合器,或者光纤耦合器。第一光探测器31与第二光探测器32可选为PIN-PD探测器,或者APD探测器。其中,PIN-PD探测器具有更好的强光接收能力,可避免出现信号缺失。
本领域技术人员在考虑说明书及实践这里发明的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未发明的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。

Claims (16)

  1. 一种光模块,用于接收突发光信号,包括:
    光源装置,用于发出波长与所述突发光信号的波长相同的连续光信号;
    光耦合装置,用于接收所述连续光信号和所述突发光信号,输出经所述连续光信号和所述突发光信号合并得到的合并光信号,其中,所述合并光信号的光功率差值小于所述突发光信号的光功率差值;
    光探测器,用于接收所述合并光信号,并将所述合并光信号转换为电流信号;
    跨阻放大器,与所述光探测器电连接,用于在连续模式下将所述电流信号转换为电压信号;和
    限幅放大器,与所述跨阻放大器电连接,用于将所述电压信号转换为限幅放大的电压信号。
  2. 根据权利要求1所述的光模块,其特征在于,
    所述光耦合装置用于将所述合并光信号分束为第一光信号和第二光信号;
    所述光探测器包括第一光探测器和第二光探测器,其中,
    所述第一光探测器用于接收所述第一光信号并将所述第一光信号转换为第一电流信号,
    所述第二光探测器用于接收所述第二光信号并将所述第二光信号转换为第二电流信号;
    所述跨阻放大器包括第一跨阻放大器和第二跨阻放大器,其中,
    所述第一跨阻放大器与所述第一光探测器电连接以将所述第一电流信号转换为第一电压信号,
    所述第二跨阻放大器与所述第二光探测器电连接以将所述第二电流信号转换为第二电压信号;
    所述光模块还包括:
    第一运算放大器,电连接在所述限幅放大器与所述第一跨阻放大器之间,所述第一运算放大器的输入端与所述第一跨阻放大器输出端连接,所述第一运算放大器的输出端与所述限幅放大器的第一输入端连接;其中所述第一运算放大器用于将所述第一电压信号转换为第一放大电压信号;和
    第二运算放大器,电连接在所述限幅放大器与所述第二跨阻放大器之间,所述第二运算放大器的输入端与所述第二跨阻放大器输出端连接,所述第二运算放大器的输出端与所述限幅放大器的第二输入端连接;其中所述第二运算放大器用于将所述第二电 压信号转换为第二放大电压信号;
    其中,所述限幅放大器用于将接收到的所述第一放大电压信号和所述第二放大电压信号转换为所述限幅放大的电压信号。
  3. 根据权利要求2所述的光模块,其特征在于,
    所述第一运算放大器的同相输入端接口与所述第一跨阻放大器的同相输出端接口连接,所述第一运算放大器的反相输入端接口与所述第一跨阻放大器的反相输出端接口连接;
    所述第二运算放大器的同相输入端接口与所述第二跨阻放大器的反相输出端接口连接,所述第一运算放大器的反相输入端接口与所述第二跨阻放大器的同相输出端接口连接。
  4. 根据权利要求2所述的光模块,其特征在于,所述光耦合装置包括:
    合束器,用于合并所述连续光信号和所述突发光信号,
    分束器,用于将所述连续光信号和所述突发光信号合并得到的所述合并光信号分束为所述第一光信号和所述第二光信号。
  5. 根据权利要求4所述的光模块,其特征在于,
    所述第一光信号从所述光耦合装置到所述第一光探测器的光程,与所述第二光信号从所述光耦合装置到所述第二光探测器的光程相等。
  6. 根据权利要求4所述的光模块,其特征在于,
    所述第一光信号从所述光耦合装置到所述第一光探测器的光程,与所述第二光信号从所述光耦合装置到所述第二光探测器的光程之差小于或者等于光信号光程允许错位的上限。
  7. 根据权利要求2所述的光模块,其特征在于,所述第一光信号和所述第二光信号的功率相同。
  8. 根据权利要求1所述的光模块,其特征在于,
    所述光耦合装置用于将所述合并光信号分束为第一光信号和第二光信号;
    所述光探测器包括第一光探测器和第二光探测器,其中,
    所述第一光探测器用于接收所述第一光信号并将所述第一光信号转换为第一电流信号,
    所述第二光探测器用于接收所述第二光信号并将所述第二光信号转换为第二电流信号;
    所述跨阻放大器包括第一跨阻放大器和第二跨阻放大器,其中,
    所述第一跨阻放大器与所述第一光探测器电连接以将所述第一电流信号转换为第一电压信号,
    所述第二跨阻放大器与所述第二光探测器电连接以将所述第二电流信号转换为第二电压信号;
    所述光模块还包括:
    反相器,电连接在限幅放大器与所述第二跨阻放大器之间,用于将所述第二电压信号转换为反相信号,
    其中,所述限幅放大器用于将接收到的所述第一电压信号和所述反相信号转换为所述限幅放大的电压信号。
  9. 根据权利要求8所述的光模块,其特征在于,所述光耦合装置包括:
    合束器,用于合并所述连续光信号和所述突发光信号,
    分束器,用于将所述连续光信号和所述突发光信号合并得到的所述合并光信号分束为所述第一光信号和所述第二光信号。
  10. 根据权利要求9所述的光模块,其特征在于,
    所述第一光信号从所述光耦合装置到所述第一光探测器的光程,与所述第二光信号从所述光耦合装置到所述第二光探测器的光程相等。
  11. 根据权利要求9所述的光模块,其特征在于,
    所述第一光信号从所述光耦合装置到所述第一光探测器的光程,与所述第二光信号从所述光耦合装置到所述第二光探测器的光程之差小于或者等于光信号光程允许错位的上限。
  12. 根据权利要求8所述的光模块,其特征在于,所述第一光信号和所述第二光信号的功率相同。
  13. 根据权利要求1所述的光模块,其特征在于,
    所述光耦合装置包括合束器,用于合并所述连续光信号和所述突发光信号以输出所述合并光信号。
  14. 根据权利要求1所述的光模块,其特征在于,
    所述第一跨阻放大器的同相输出端接口与所述限幅放大器的第一输入端接口连接,所述第一跨阻放大器的反相输出端接口与所述限幅放大器的第二输入端接口连接。
  15. 根据权利要求1所述的光模块,其特征在于,
    所述连续光信号为直流光信号,所述突发光信号为交流光信号。
  16. 根据权利要求1~15中任一项所述的光模块,其特征在于,所述连续光信号的功 率大于所述突发光信号的最大功率。
PCT/CN2019/105437 2018-09-11 2019-09-11 光模块 WO2020052601A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811058381.3 2018-09-11
CN201811054309.3A CN109257101B (zh) 2018-09-11 2018-09-11 一种光模块
CN201811054309.3 2018-09-11
CN201811058381.3A CN109067464A (zh) 2018-09-11 2018-09-11 光模块

Publications (1)

Publication Number Publication Date
WO2020052601A1 true WO2020052601A1 (zh) 2020-03-19

Family

ID=69776777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105437 WO2020052601A1 (zh) 2018-09-11 2019-09-11 光模块

Country Status (1)

Country Link
WO (1) WO2020052601A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895345A (zh) * 2009-05-22 2010-11-24 华为技术有限公司 突发光信号放大方法、突发光放大器及系统和通信系统
CN102347794A (zh) * 2010-08-04 2012-02-08 成都优博创技术有限公司 一种突发光信号接收装置
US8861584B2 (en) * 2012-04-23 2014-10-14 Micrel, Inc. Noise discriminator for passive optical network burst mode receiver
CN107332626A (zh) * 2017-07-05 2017-11-07 青岛海信宽带多媒体技术有限公司 一种突发光信号接收电路及光模块
CN109067464A (zh) * 2018-09-11 2018-12-21 青岛海信宽带多媒体技术有限公司 光模块
CN109257101A (zh) * 2018-09-11 2019-01-22 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895345A (zh) * 2009-05-22 2010-11-24 华为技术有限公司 突发光信号放大方法、突发光放大器及系统和通信系统
CN102347794A (zh) * 2010-08-04 2012-02-08 成都优博创技术有限公司 一种突发光信号接收装置
US8861584B2 (en) * 2012-04-23 2014-10-14 Micrel, Inc. Noise discriminator for passive optical network burst mode receiver
CN107332626A (zh) * 2017-07-05 2017-11-07 青岛海信宽带多媒体技术有限公司 一种突发光信号接收电路及光模块
CN109067464A (zh) * 2018-09-11 2018-12-21 青岛海信宽带多媒体技术有限公司 光模块
CN109257101A (zh) * 2018-09-11 2019-01-22 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
US8483581B2 (en) Light receiving circuit and signal processing method
US10254162B2 (en) Optical module
CN107517080B (zh) 一种光功率检测方法、装置、设备及光模块
US11054594B2 (en) Optical module
CN109981175B (zh) 光模块及信号处理的方法
JPH1084323A (ja) 光通信路によるデジタル信号伝送システム用の受信器
Winzer et al. Monolithic photonic-electronic QPSK receiver for 28Gbaud
CN109743113B (zh) 光模块与光线路终端
JP2009135746A (ja) Dqpsk光受信装置
WO2016095715A1 (zh) 一种光收发模块及实现方法
Takechi et al. 64 GBaud high-bandwidth micro intradyne coherent receiver using high-efficiency and high-speed InP-based photodetector integrated with 90° hybrid
US10171051B2 (en) Amplification circuit, optical module, and amplification method
JP5908872B2 (ja) コヒーレント通信用光受信器およびその制御方法
Verbrugghe et al. Multichannel 25 Gb/s low-power driver and transimpedance amplifier integrated circuits for 100 Gb/s optical links
JP2004336749A (ja) 改良された電源電圧除去機能を有するフォトアンプ回路
CN109067464A (zh) 光模块
US20140332670A1 (en) Photodetecting circuit, optical receiver, and photocurrent measurement method for photo detector
Andrade et al. Monolithically-integrated 50 Gbps 2pJ/bit photoreceiver with cherry-hooper TIA in 250nm BiCMOS technology
WO2020052601A1 (zh) 光模块
CN109257101B (zh) 一种光模块
TW201421926A (zh) 用於提升光接收器靈敏度之檢光裝置
KR101539196B1 (ko) 코히어런트 광통신 시스템의 수신 장치 및 방법
CN108880693B (zh) 一种使用单个光电二极管实现相干检测的方法
JP2007189294A (ja) 信号検出システム、信号検出回路、信号検出方法およびプログラム
Kress et al. 64 GBd Monolithically Integrated Coherent QPSK Single Polarization Receiver in 0.25 μm SiGe-Photonic Technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859497

Country of ref document: EP

Kind code of ref document: A1