WO2020052598A1 - 化学气相沉积设备 - Google Patents

化学气相沉积设备 Download PDF

Info

Publication number
WO2020052598A1
WO2020052598A1 PCT/CN2019/105422 CN2019105422W WO2020052598A1 WO 2020052598 A1 WO2020052598 A1 WO 2020052598A1 CN 2019105422 W CN2019105422 W CN 2019105422W WO 2020052598 A1 WO2020052598 A1 WO 2020052598A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
chemical vapor
base
deposition apparatus
reaction chamber
Prior art date
Application number
PCT/CN2019/105422
Other languages
English (en)
French (fr)
Inventor
丁欣
Original Assignee
上海引万光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海引万光电科技有限公司 filed Critical 上海引万光电科技有限公司
Priority to US17/431,569 priority Critical patent/US20220136102A1/en
Priority to JP2021560183A priority patent/JP2022527623A/ja
Publication of WO2020052598A1 publication Critical patent/WO2020052598A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Definitions

  • the invention relates to the field of chemical vapor deposition, in particular to a chemical vapor deposition device.
  • Chemical Vapor Deposition is a thin film growth technology that is widely used in the fields of semiconductors and flat panel displays. Vapor deposition technology has relatively low growth rates. At the same time, due to the high reaction temperature, a large number of non-metallic graphite, quartz, ceramics and other materials are used to make metal reaction chamber components. Limited by the processing technology of such materials, the cost of components in such reaction chambers is very high, resulting in higher cost of film formation.
  • one way to solve the high-temperature CVD production cost is to use a multi-chip flat plate structure.
  • On the large disc base a large number of substrates are placed symmetrically in the center.
  • the advantage is that the cost of forming a film is lower than that of a monolithic design in which a piece of substrate is placed, but the uniformity of film formation is also lower than that of a monolithic design in which a piece of substrate is placed.
  • the uniformity of film formation refers to the consistency of the specified parameters such as film thickness and resistance at different physical locations on the substrate. Usually, several points are taken on the substrate for measurement, and the deviation is calculated.
  • the present invention provides a novel chemical vapor deposition reaction device with high yield (substrate), high throughput and high film formation uniformity.
  • a chemical vapor deposition device which includes a reaction chamber.
  • the reaction chamber includes a plurality of pedestals for carrying a substrate, the plurality of pedestals are disc-shaped, and process gas enters through a pipeline.
  • the reaction chamber, each of the plurality of pedestals is arranged side by side with each other, and the circle centers of the respective pedestals are on the same straight line;
  • the upper surfaces of the carrier substrates of the respective pedestals are parallel to each other or on the same plane;
  • the rotation axes of the respective bases are on the same plane, and the respective bases rotate independently of each other;
  • the process gas flows along the upper surface of each pedestal, taking a line perpendicular to the center of each circle of each pedestal as a direction.
  • an inner box is further included between the reaction chamber and the base, and the shape of the inner box includes a rectangular parallelepiped; and the reaction gas is along the upper surface of the base and is relatively parallel to the rectangular short side cut by the upper surface and the cross section of the inner box. Flow in the direction.
  • adjacent bases rotate in opposite directions to each other.
  • the chemical vapor deposition device further includes a mass flow meter, and a common mass flow meter is used for a plurality of bases, and the mass flow meter distributes the process gas to each base; Set the regulating valve.
  • the chemical vapor deposition equipment further includes a transfer cavity and a mechanical transfer arm, the transfer cavity is polygonal, at least one side of the transfer cavity is provided with a substrate transfer station, and the remaining sides are provided with reaction chambers; The substrate is transferred to multiple pedestals of the reaction chamber.
  • the mechanical transmission arm is configured to move along a line connecting direction parallel to each circle center of each base in the reaction chamber.
  • the base extension is filled between the bases.
  • the material of the base extension is the same as the base, and the upper surface of the base extension is on the same plane as the upper surface of the base.
  • the upper surface of the base extension includes one or more of a shield, a protrusion, a depression, a guide fin, and a positioning point.
  • the upper surface of the base extension portion and the upper surface of the base have an elevation difference, and the elevation difference can be adjusted manually or automatically through a mechanical structure.
  • the inner box is made of a non-metallic high temperature and corrosion resistant material.
  • the heating element includes an infrared lamp source, a resistance heater, and the resistance heater includes a metal or graphite resistance heater.
  • the driving method of the metal resistance heater or the graphite resistance heater further includes exciting the metal or graphite through an induction coil radio frequency to heat the metal resistance heater or the graphite resistance heater.
  • the resistance heater has a spiral shape.
  • the resistance heater further includes at least one of the following:
  • Ring heater centered on the center of the circle of the base
  • Arc heater centered on the center of the circle of the base
  • Dot-shaped heaters which are distributed on multiple rings centered on the center of the base of the base, or in a honeycomb pattern centered on the center of the base of the base;
  • Line heaters are distributed vertically or parallel to the circle center of the base, or they are distributed along the radial direction of the base.
  • a heat-insulating material is provided between the heating element and the reaction chamber.
  • the chemical vapor deposition apparatus arranges two up to more disc bases at a low cost, and the disc bases can share a gas flow controller or fewer heaters through a pipeline. This makes it possible to reduce the cost of the reaction chamber and other equipment supporting the reaction chamber while forming films on more disc bases; thereby reducing the manufacturing cost of the entire set of equipment. At the same time, the consumption of reaction gases and heating energy can be reduced, so that the amount of consumables for film formation can be reduced. And while achieving the above low-cost solution, it achieves the same film formation uniformity as the monolithic disc base.
  • FIG. 1 shows a top view of a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 2 shows a schematic connection diagram of a mass flow meter of a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic vertical sectional view showing the shape and arrangement of a heating element of a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 4 shows a schematic plan view of the shape and arrangement of a heating element of a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic plan view showing another shape and arrangement of a heating element of a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic vertical cross-sectional view illustrating another shape and arrangement of a heating element of a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • Fig. 7 is a schematic plan view showing another shape and arrangement of a heating element of a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram of an arc-shaped heating element of a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 9 shows a schematic diagram of a complete disc spiral heater of a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 10 shows a schematic diagram of a partition of a complete disc spiral heater of a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 11 shows a schematic view of setting a thermal insulation container between a heat source and a reaction chamber in a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 12 shows a schematic view of setting a thermal insulation layer between a heat source and a reaction chamber in a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing a pipeline configuration of a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing another pipeline configuration of a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 15 shows a simplified three-dimensional schematic view of a chemical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 16 shows a schematic diagram of a chemical vapor deposition system according to an embodiment of the present invention.
  • the reaction chamber includes a vacuum, low pressure, normal pressure or high pressure vessel of the metal, and also includes the aforementioned container and the nozzle in the container for generating thermochemical meteorological deposition, a graphite base, a quartz or ceramic component, and a heating device. Wait for spare parts.
  • the reaction chamber may also include pipelines, valves, mass flow meters, circuits, etc. for providing reaction gas, and the present invention is not limited thereto.
  • the base is usually made of a high temperature resistant material such as metal, ceramic, quartz, high-purity graphite, or carbide-coated graphite.
  • the base may include a rotatable disk carrying a silicon wafer or other substrate, or a rotatable disk carrying a silicon wafer or other substrate and other non-rotatable parts outside the disk.
  • FIG. 1 shows a top view of a chemical vapor deposition apparatus according to an embodiment.
  • 101 is a substrate to be processed
  • 102 is a disc base
  • 103 is an extension of the base
  • 104 is an inner box
  • 105 is a reaction chamber. .
  • a plurality of disc bases 102 may be arranged in parallel.
  • the substrate 101 contained in the disc base 102 has a diameter of 100 mm, 150 mm, 200 mm, 300 mm, 450 mm, and the like.
  • the substrate 101 may be a square plate (rectangular or square).
  • the material of the substrate 101 may be metal, glass, quartz, silicon, germanium, sapphire, aluminum nitride, gallium nitride, gallium arsenide, silicon carbide, graphene, and the like.
  • the diameter of the disk base 102 is generally 1.1 to 1.5 times the diameter of the substrate 101.
  • Generally smaller substrates 101 can also be placed on larger disc pedestals 102.
  • a 150mm substrate 101 can be placed on a 200mm adaptable base
  • a 200mm substrate 101 can also be placed on a 300mm base
  • a suitable shape can be dug out on the original larger base.
  • the center of the circle of the disk base 102 is on the same straight line, and the upper surfaces of the disk base 102 (or the substrate 101 placed on the surface of the base) are on the same plane; or these disk bases 102
  • the upper (or substrate 101) surfaces are parallel to each other, and the rotation axes of the disc bases 102 are on the same plane.
  • the individual disc bases 102 rotate around their respective centers.
  • the reaction gas or process gas flows along the surface of the disk base 102 (or the substrate 101) in a vertical direction of the center line of the disk base 102.
  • the center of the circle of one of the three or more disk bases 102 is allowed to deviate slightly from the center line of the other disk bases 102. Because a small deviation does not have a large effect on the process performance, that is, the uniformity of film formation.
  • the deposited films include silicon, germanium, sapphire, silicon oxide, silicon nitride, aluminum nitride, gallium nitride, gallium arsenide, silicon carbide, graphene, and the like.
  • adjacent disc bases 102 may be rotated in the same direction, or may be rotated in opposite directions.
  • the rotation speed is in the range of 0-60RPM. It is preferably rotated in the opposite direction, when the adjacent disk base 102 is rotated in the opposite direction, for example, the disk base 102 rotated clockwise is adjacent to the base rotated counterclockwise, and the disk rotated counterclockwise The base 102 is also adjacent to the base rotated clockwise. At this time, the direction of the linear velocity of the adjacent edge portions of the adjacent disc bases 102 is parallel to the same direction, which can minimize the disturbance of the reaction gas and maintain a good laminar flow.
  • the upper surface of the part (s) is on the same plane as the upper surface of the small disc base 102 (substrate 101), or there is at most a slight elevation difference.
  • the uniformity of the film formation and adjusting the elevation difference can control the gas flow rate of the reaction chamber 105, which is a possible process adjustment method, which can be implemented manually or automatically through the mechanical structure Adjustment.
  • the surface of the base extension portion 103 may be provided with shielding, protrusions, depressions, guide fins, positioning points (blocks), etc. that are designed based on process requirements, and can be used to adjust the gas in the reaction chamber 105. , Temperature and other distributions to help improve film uniformity.
  • FIG. 2 shows a schematic connection diagram of the mass flow meter, where 301 is a gas source (gas cylinder, gas cabinet, etc.) for providing a process gas, 302 is a mass flow meter for controlling a gas flow rate, and 303 is a throttle valve.
  • a common mass flow meter 302 may be used for a plurality of disc bases 102 or a plurality of disc bases 102 of a plurality of disc bases 102.
  • the gas flowing out of the same mass flow meter 302 passes through a gas pipe. It is evenly distributed to each disc base 102 and flows through the upper surface to perform the process to ensure the uniformity of film formation.
  • the gas piping flowing into the respective disc base 102 after the mass flow meter 302 may have a slightly different influence on the gas flow rate, etc., it can be set on each pipeline before the mass flow meter 302 enters each disc base 102.
  • Regulating valve for example, throttle valve 303.
  • the throttle valve 303 can be a manual needle valve or an actuated throttle valve.
  • the throttle valve 303 is used to compensate for deviations in the pipeline behind the flow meter to compensate for the final film formation Uniformity.
  • more throttle valves can be additionally designed on the cross section of each disc base 102 to separate the process airflow flowing through a single disc base 102 (substrate 101) into more zones for independent control .
  • the disc base 102 or the like may be provided in a closed container made of metal such as stainless steel or aluminum.
  • the closed container made of this metal is also referred to as a reaction chamber 105.
  • the short side of the inner wall of the reaction chamber 105 is 125 mm-810 mm, the long side is an integer multiple of the length of the short side, and the multiple is the number of the disc base 102.
  • the reaction chamber 105 is isolated from the outside by a flange and a valve at the flange. Cooling water and the like pass through the pipeline, process gas passes through the nozzle, power is connected to the reaction chamber 105 through the electrode and the drive shaft of the disc base 102.
  • a rectangular parallelepiped or similar rectangular parallelepiped is designed in the reaction chamber 105.
  • the basic shape is an inner box 104 that is open on the rectangular parallelepiped, has an opening, a step, and has an arch shape on the upper surface to resist air pressure or connect other shaped parts.
  • the inner box 104 can accommodate a disc base 102 and a base extension 103 inside.
  • the inner box 104 is isolated from the outside by a flange and a valve at the flange. Cooling water and the like pass through the pipeline, process gas passes through the nozzle, power is connected to the inner box 104 through the electrode, and the drive shaft of the disc base 102.
  • the reaction gas flows along the surface of the disc base 102 (substrate 101) in a direction parallel to the rectangular short side cut by the plane and the cross section of the inner box, or along the disc base 102 (substrate 101) ) Surface, flowing perpendicular to the direction of the circle center line of the disc base 102.
  • non-metallic high temperature and corrosion resistant materials such as quartz, glass, ceramic, graphite, coated graphite and the like are usually used to make the inner box 104.
  • a heating element (heat source) is provided between the reaction chamber 105 and the inner box 104 to heat the substrate 101 to a desired reaction / process temperature.
  • the process temperature range of the substrate 101 is 100-2800 degrees Celsius.
  • the heating element can be an infrared light source, a metal or graphite or a coated graphite resistance heater. Graphite or coated graphite or metal resistive heating can be directly connected to the power supply, or the graphite or metal can be excited by using induction coil radio frequency to generate heat.
  • the heating element may directly or indirectly heat the substrate 101. For example, infrared radiation can directly penetrate the inner box 104 made of quartz to directly heat the disc base 102 and the substrate 101.
  • the inner box 104 of ceramic or coated graphite is first heated in an indirect manner. After the inner box 104 absorbs the heat radiated by the resistance heater, it again passes to the disc base 102. The radiant heat heats the disc base 102 and the substrate 101.
  • the top line heat source is combined with the bottom arc heat source and the point (small surface) heat source.
  • the shape and arrangement of the heating element (heat source) are shown in Figures 3 and 4, the heating element 201 is vertical or parallel to the disc.
  • the line heater connected to the center of the base 102 is a long heat source, and 203 is a point heat source or a smaller wire or surface heat source.
  • the heating element 202 is a ring-shaped heater centered on the center of the disk base 102, or an arc-shaped heater (heat source) located on the ring or a complete disk-shaped heater, for example, a spiral heater.
  • the top line heat source is combined with the bottom radial line heat source.
  • the shape and arrangement of the heating element (heat source) is shown in FIG. 5, where the heating element 204 is a radial line of the disc base 102. Heater, short strip heat source.
  • top line heat source and the bottom line heat source are perpendicular to each other.
  • the shape and arrangement of the heating element (heat source) are shown in Figs. 6 and 7, where the heating element 205 is connected perpendicular to the center of the disc base.
  • Wire heater ie, a strip-shaped heat source.
  • the heating element 202 may be any one or more of a ring heater as shown in FIGS. 8 to 10. As shown in FIG. 8, the heating element may be a segment of an arc on a ring centered on the center of the disc base 102.
  • the heating element has a spiral shape, and the spiral line forms a circle or a complete circle, and the circle or the circle center is the same as the circle center of the disc base 102.
  • 201-1 is the outermost annular spiral resistance heater
  • 202-2 is a smaller annular spiral heater located on the inner side
  • 202-3 is a smaller centrally located heater.
  • Disk-shaped spiral heater such that 202-1, 202-2, 202-3 divides a complete disk-shaped heater into two rings and a small disk-shaped heater in the center, where each The heaters are independently controlled to control the temperature of the disc base.
  • the spiral resistance heater has a great effect on the higher temperature process.
  • it is relatively common to use graphite or graphite coating materials to make resistance heaters.
  • graphite heaters are usually cut directly from large graphite materials, and graphite also lacks elasticity, it is difficult to mold a structure similar to a spring to absorb the stress caused by thermal expansion during the temperature rise process.
  • Graphite can be cut by a simple machine to produce a spiral structure.
  • the spiral structure can be simply likened to a circle with a gradually increasing radius from the center. Compared to a true circle, the spiral structure can obtain 10 times or more of the circumference length; meanwhile, it can release the stress evenly when thermal expansion occurs. Each length of the spiral line minimizes the stress on the unit length.
  • the life of the heater is improved, the stability of the equipment is improved, and the cost is reduced.
  • the heating element can also be a point heat source or a smaller line or surface heat source, which is distributed on a plurality of rings centered on the center of the circle of the disc base 102, or the heating element is a point heat source, which is distributed in a honeycomb pattern, and the center is a circle
  • the center of the disc base 102 is circular, and this method does not limit this.
  • the heating element may be connected in series or in parallel as required. After several heaters are connected in series and in parallel, they are controlled separately and independently from other heaters connected in series and in parallel, so that the temperature on the disc base 102 can be controlled in a partitioned manner to achieve better film uniformity.
  • a single wire heater connected in parallel to the center of the disc base 102 can heat two bases at the same time and use the same power source, for example, thyristor or IGBT and other power modules to control, which can reduce the production of the heater. cost.
  • the line heaters perpendicular to the center of the circular disc base 102 and other centrally symmetrical heating elements (heat sources) they can be connected in series or in parallel with the corresponding heating elements of another disc base 102, using the same heating power source to The control can effectively reduce the production cost of the heating power source, while still achieving good film formation uniformity.
  • a line heater parallel to the center line of the disk base 102 is arranged above the disk, and a line heater perpendicular to the center line of the disk base 102 is arranged below the disk. Or on the contrary, a line heater perpendicular to the center line of the disk base 102 is arranged above the disk, and a line heater parallel to the center line of the disk base 102 is arranged below the disk. Place a spot heater (spot-shaped heat source) or a ring heater at other locations as a line heater (that is, a long heat source) to supplement and adjust. Alternatively, a line heater parallel to the circle center of the disc base 102 is arranged above the disc, and a spot heater (point-shaped heat source) or a ring-shaped heat source is arranged below the disc. Or swap.
  • the heat of the heater can pass directly through the inner box 104, such as an inner box made of quartz, to heat the disc base 102 and the substrate 101; it can also indirectly heat the inner box 104, such as an inner box made of coated graphite.
  • the inner box 104 heats the disc base 102 and the substrate 101 indirectly by radiation.
  • the reaction gas flows over the heated substrate surface, the reaction gas can form a film on the substrate surface, that is, chemical vapor deposition occurs.
  • the temperature of the substrate can be detected by a temperature measuring device such as an infrared sensor or a thermocouple, and the power of different heating elements / heat sources can be controlled according to the process requirements, that is, partition control, so that the substrate temperature is uniform.
  • a temperature measuring device such as an infrared sensor or a thermocouple
  • the power of different heating elements / heat sources can be controlled according to the process requirements, that is, partition control, so that the substrate temperature is uniform.
  • a high reflectivity or emissivity material 208 may be provided between the heater and the reaction chamber 105, for example, sintering or other molding.
  • Process oxide, nitride or carbide materials, such as gold-plated plates, etc. These materials can block thermal radiation, reduce energy consumption, and at the same time reduce the temperature of the surface of the metal reaction chamber 105 for protection.
  • FIG. 11 is a completely enclosed sealed reflection box 208.
  • FIG. 12 shows that two plates 208 are provided only on the two surfaces with larger surface areas at the top and bottom.
  • the material with high reflectance can be a single piece of material, such as one sheet covering the reaction chamber 105, or multiple sheets blocking different planes or areas to form a combination; it can also be the same as the inner box 104 or the reaction chamber 105 is a complete closed container, and high-reflectivity (emissivity) materials can also be attached to the inner surface of the reaction chamber 105 (metal container) or the outer surface of the inner box 104 by spraying, depositing, or attaching.
  • FIGS. 13 and 14 show the configuration of the pipeline of the present invention.
  • 401 is a mechanical transfer arm for transferring substrates
  • 402 is a cassette for storing substrates
  • 403 is a guide rail for linear movement of the mechanical transfer arm.
  • a transmission cavity of a polygon may be set, and the polygon is 3, 4, 5, 6, 7, or at most 8 sides. Except for one or two sides of the polygon serving as a transfer station for transferring the substrate 101 outward, the remaining sides of the polygon are provided with the aforementioned reaction chambers 105 of the plurality of disc bases 102.
  • the mechanical transmission arm 401 is located at the center point of the polygon. The mechanical transmission arm 401 can rotate 360 degrees around the center of the polygon, and the mechanical transmission arm 401 can move forward and backward in the radial direction at the same time.
  • the mechanical transfer arm 401 extends in the radial direction to the disc base 102 on each side of the polygon to transfer the substrate 101, and then rotates to a position (edge) on the polygon where the disc base 102 reaction chamber 105 is not arranged to transfer the substrate 101 out
  • the system, or vice versa is transferred from the outside into the disc base 102 in the reaction chamber 105 via a polygonal transmission chamber.
  • the transfer cavity is a quadrangle, the center of which is a mechanical transfer arm 401, the three sides are each a reaction chamber 105 with a double disc base 102, and the fourth side is a wafer box 402 for a transfer substrate 101.
  • the mechanical transfer arm 401 transfers the substrate 101 stored in the cassette 402 into the reaction chamber 105 or transfers the substrate 101 from the reaction chamber 105 to the cassette 402.
  • a mechanical transmission arm 401 is arranged on one side of the disk bases 102.
  • the base of the mechanical transmission arm 401 can move along the line parallel to the centers of the disk bases 102.
  • the arms on the base of the mechanical transmission arm can be parallel to these circles.
  • the center of the disc base 102 is moved to the respective disc bases 102 and the substrate 101 is introduced into the reaction chamber 105 and placed on the disc base 102 or out of the reaction chamber 105.
  • the sheet cassette 402 may also be located on the other side of the mechanical transfer arm 401 opposite to the disc base 102, or may be located at both ends of the mechanical transfer arm 401.
  • FIG. 15 is a three-dimensional model created when designing an embodiment of the present invention.
  • the output from the three-dimensional model to FIG. 15 is simplified, and only the reaction chamber 105, the substrate 101, the disk base 102, the base extension 103, and the rotation mechanism of the disk base are output.
  • FIG 16 shows a schematic connection of a chemical vapor deposition process system.
  • 501 is the control unit of the equipment, including industrial computer, single-chip computer, programmable PLC, Ethernet controller, image man-machine interface, etc. to control the other units such as the reaction chamber;
  • 502 is a gas module, including a gas cabinet, a mass flow meter, each Kinds of gas path valves, gas distributors, etc .;
  • 503 is a mechanical control unit for rotary lifting such as a base;
  • 504 is a substrate transfer system, such as a robot arm, a cassette control system, etc .;
  • 505 is a thyristor or IGBT of a heater power supply or Other power modules, temperature measurement sensors, temperature control algorithm units, etc .;
  • 506 are other auxiliary units, such as safety interlocks, control mechanisms for pumps (under reduced pressure process), heat exhaust fans, etc.
  • the present invention can arrange two up to more disc bases at a low cost, and these disc bases can share a gas flow controller or fewer heaters through a pipeline.
  • This makes it possible to form films on more disc bases while greatly reducing the cost of the reaction chamber, as well as the cost of gas control circuits, heaters, heater power supplies, and substrate transfer systems for the reaction chamber; thereby reducing the cost of the entire system equipment manufacturing cost.
  • the consumption of reaction gases and heating energy can be reduced, so that the amount of consumables for film formation can be reduced.
  • it achieves the same film formation uniformity as the monolithic disc base.
  • modules in the device in the embodiment can be adaptively changed and set in one or more devices different from the embodiment.
  • the modules or units or components in the embodiment may be combined into one module or unit or component, and furthermore, they may be divided into a plurality of sub-modules or sub-units or sub-components. Except for such features and / or processes or units, which are mutually exclusive, all features disclosed in this specification (including the accompanying claims, abstract and drawings) and any methods so disclosed may be employed in any combination or All processes or units of the equipment are combined.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the invention can be implemented by means of hardware comprising several different elements and by means of a suitably programmed first terminal device. In the unit claims that enumerate several terminal devices, several of these terminal devices may be embodied by the same hardware item.
  • the use of the words first, second, and third does not imply any order. These words can be interpreted as names.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Resistance Heating (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

一种化学气相沉积设备,包括反应腔(105),反应腔(105)内包括多个用于承载衬底(101)的基座,多个基座(102)为圆盘形,工艺气体通过管路进入反应腔,多个基座(102)中的每个基座(102)彼此之间并列排布,各个基座(102)的圆心在同一直线上;各个基座(102)承载衬底(101)的上表面彼此相互平行或在同一平面上;各个基座(102)的转动轴线在同一平面上,各个基座(102)相对于彼此独立地旋转;以及工艺气体沿各个基座(102)的上表面,垂直于各个基座(102)的各个圆心的连线方向流动。

Description

化学气相沉积设备 技术领域
本发明涉及化学气相沉积领域,具体涉及一种化学气相沉积设备。
背景技术
化学气相沉积技术(Chemical Vapor Deposition,简称CVD)是在半导体,平板显示领域等广受应用的薄膜生长技术。气相沉积技术生长速率相对低。同时由于反应温度高通常使用了大量非金属的石墨,石英,陶瓷等材料制作金属反应腔的部件。受限于此类材料的加工技术,此类反应腔内部件的成本非常高,导致成膜的成本较高。
现有技术中,解决高温CVD生产成本的一种方式是使用多片式平板结构。在大圆盘基座上,中心对称地放置大量衬底。为了提高成膜的均一性,常见做法是圆盘基座绕中心旋转,使得同一半径上的成膜更加一致。其优点是成膜的成本比放置一片衬底的单片式设计低,但是是成膜的均一性也比放置一片衬底的单片式设计较低。
其中,成膜的均一性指衬底上不同物理位置的成膜厚度,电阻等指定参数的一致性。通常在衬底上取若干个点进行测量,计算其偏差。
其他现有技术对上述多片式结构做出改进,其方法是在大圆盘基座上的每一块衬底下面放置可以独立旋转的行星转盘。使用气浮技术使得大圆盘公转的时候,每个行星转盘可以悬浮于大圆盘基座上进行独立行星式自转。该技术也被称为行星式设计。此方法可以提高成膜的均一性,但是也存在较为显著的缺点,如圆盘基座的气浮管路为石墨材料开孔,制作成本较大,自转速度难以独立控制使得成膜的重复性降低。此外,当衬底尺寸加大后,衬底及小圆盘基座自重提高,圆盘气悬自转实现的难度加大,从而使得大尺寸衬底很难使用该方法。
发明内容
为了解决上述问题,本发明提供了一种新型的高投片(衬底)量,高产能以及高成膜 均一性化学气相沉积反应设备。
根据本发明的一方面,公开了一种化学气相沉积设备,包括反应腔,反应腔内包括多个用于承载衬底的基座,多个基座为圆盘形,工艺气体通过管路进入反应腔,多个基座中的每个基座彼此之间并列排布,各个基座的圆心在同一直线上;
各个基座的承载衬底的上表面彼此相互平行或在同一平面上;
各个基座的转动轴线在同一平面上,各个基座相对于彼此独立地旋转;以及
工艺气体沿各个基座的上表面,以垂直于各个基座的各个圆心的连线为方向流动。
进一步地,反应腔和基座之间还包括内盒,内盒的形状包括长方体;以及反应气体沿基座的上表面,并且以与上表面与内盒的截面截得的长方形短边相对平行的方向流动。
进一步地,相邻的基座以彼此相反的方向旋转。
进一步地,化学气相沉积设备还包括质量流量计,对多个基座使用共同的质量流量计,质量流量计分配工艺气体到各个基座;以及在工艺气体从质量流量计流向基座的管路上设置调节阀。
进一步地,化学气相沉积设备还包括传输腔和机械传输臂,传输腔为多边形,传输腔的至少一边设置有衬底的中转站,其余各边设置有反应腔;以及机械传输臂位于传输腔内,向反应腔的多个基座传输衬底。
进一步地,机械传输臂被配置为沿平行于反应腔中各个基座的各个圆心的连线方向运动。
进一步地,在各个基座之间填充基座延伸部分,基座延伸部分的材质与基座相同,基座延伸部分的上表面与基座的上表面在同一平面。
进一步地,基座延伸部分的上表面包括遮挡、突起、凹陷、导流鳍、定位点中的一种或多种。
进一步地,基座延伸部分的上表面与基座的上表面具有高程差,高程差可以通过机械结构实现手动或者自动调节
进一步地,内盒由非金属耐高温耐腐蚀材料制成。
进一步地,在反应腔和内盒之间设置发热体,发热体包括红外灯源、电阻式加热器,电阻式加热器包括金属或石墨电阻式加热器。
进一步地,金属电阻式加热器或石墨电阻式加热器的驱动方式还包括通过感应线圈射频激励金属或石墨,使金属电阻式加热器或石墨电阻式加热器发热。
进一步地,电阻式加热器为螺旋线形。
进一步地,电阻式加热器还包括以下中的至少一个:
以基座的圆心为中心的环形加热器;
以基座的圆心为中心的弧形加热器;
点状加热器,点状加热器分布于以基座的圆心为中心的多个环上,或者以基座的圆心为中心呈蜂巢式分布;
线加热器,线加热器垂直或者平行于基座的圆心连线分布,或者,线加热器沿基座的径向分布。
进一步地,在发热体和反应腔之间设置隔热材料。
本发明实施方式与现有技术相比,主要区别及其效果在于:
本发明实施例的化学气相沉积设备以低成本布置两个直至更多的圆盘基座,并且这些圆盘基座之间可以通过管线共享气体流量控制器或者较少的加热器。使得可以对较多圆盘基座进行成膜的同时大大降低反应腔,以及为反应腔配套的其他设备的成本;从而降低整套设备的制造成本。同时反应气体,加热的能源等也得以减少消耗,使得成膜的消耗品用量也得以减少。并且在实现以上低成本方案的同时,达成同单片式圆盘基座同样的成膜均一性。
附图说明
图1示出了根据本发明实施例的化学气相沉积设备的俯视图。
图2示出了根据本发明实施例的化学气相沉积设备的质量流量计的连接示意图。
图3示出了根据本发明实施例的化学气相沉积设备的一种发热体形状及布置的垂直截面示意图。
图4示出了根据本发明实施例的化学气相沉积设备的一种发热体形状及布置的俯视示意图。
图5示出了根据本发明实施例的化学气相沉积设备的另一种发热体形状及布置的俯视示意图。
图6示出了根据本发明实施例的化学气相沉积设备的另一种发热体形状及布置的垂直截面示意图。
图7示出了根据本发明实施例的化学气相沉积设备的另一种发热体形状及布置的俯视 示意图。
图8示出了根据本发明实施例的化学气相沉积设备的弧形发热体的配置示意图。
图9示出了根据本发明实施例的化学气相沉积设备的完整的圆盘螺旋线加热器示意图。
图10示出了根据本发明实施例的化学气相沉积设备的完整的圆盘螺旋线加热器的分区示意图。
图11示出了根据本发明实施例的化学气相沉积设备在热源和反应腔之间设置隔热容器示意图。
图12示出了根据本发明实施例的化学气相沉积设备在热源和反应腔之间设置隔热层示意图。
图13示出了根据本发明实施例的化学气相沉积设备的流水线配置的示意图。
图14示出了根据本发明实施例的化学气相沉积设备的另一种流水线配置的示意图。
图15示出了根据本发明实施例的化学气相沉积设备简化三维示意图。
图16示出了根据本发明实施例的化学气相沉积系统的示意图。
具体实施方式
为使本发明实施例的目的和技术方案更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明中,反应腔包括金属的真空,低压,常压或者高压容器,也包括前述容器及容器内用于产生适合进行热化学气象沉积的喷嘴,石墨基座,石英或者陶瓷部件,加热器件等备件。更广义的话,反应腔也可以包括用于提供反应气体的管路,阀门,质量流量计,电路等,本发明在此不作限制。
在本发明中,基座通常由耐高温材料如,金属,陶瓷,石英,高纯石墨,或者碳化物涂层石墨等制作。基座可以包括承载硅片或者其他材料衬底的可以旋转的圆盘,也可以包括承载硅片或者其他衬底的可以旋转的圆盘及圆盘外其他不可旋转的部分。
图1示出了根据实施例的化学气相沉积设备的俯视图,图中,101为待加工的衬底,102为圆盘基座,103为基座延伸部分,104为内盒,105为反应腔。
根据本发明的实施例,多个圆盘基座102可以并列设置。圆盘基座102所容纳衬底101 直径为100mm,150mm,200mm,300mm,450mm等。某些情况下,衬底101也可以是方片(长方形或者正方形)。衬底101材料可以是金属,玻璃,石英,硅,锗,蓝宝石,氮化铝,氮化镓,砷化镓,碳化硅,石墨烯等。
作为一个示例,圆盘基座102直径通常为衬底101直径的1.1至1.5倍。通常较小的衬底101也可以放置在较大的圆盘基座102上。例如150mm衬底101可以放置在原来为200mm适配的基座上,200mm衬底101也可以放置在300mm基座上,在原来较大的基座上挖出形状适合的凹陷即可。
根据本发明的实施例,圆盘基座102的圆心在同一直线上,圆盘基座102(或者基座表面放置的衬底101)的上表面在同一平面上;或者这些圆盘基座102上(或者衬底101的)表面互相平行,这些圆盘基座102的转动轴线在同一平面上。单个圆盘基座102以各自的圆心进行自转。反应气体或者工艺气体沿圆盘基座102圆心连线的垂直方向沿圆盘基座102(或衬底101)的表面流过。
作为另一个示例,当圆盘基座102大于三个的时候,允许这些三个以上的某个圆盘基座102的圆心少许偏离其他圆盘基座102的圆心连线。因为少许偏离不会对工艺性能即成膜的均一性有较大的影响。沉积的膜包括,硅,锗,蓝宝石,氧化硅,氮化硅,氮化铝,氮化镓,砷化镓,碳化硅,石墨烯等。
如图1所示,相邻的圆盘基座102可以以相同方向旋转,也可以以相反方向旋转。旋转速度在0-60RPM范围内。优选地以相反方向旋转,当相邻的圆盘基座102以相反方向旋转时,例如,顺时针旋转的圆盘基座102同逆时针旋转的基座相邻,反之逆时针旋转的圆盘基座102同顺时针旋转的基座相邻亦成立。此时相邻的圆盘基座102相邻的边缘部分的线速度的方向平行指向同一方向,可以使得反应气体的扰动最小,保持良好的层流。
此外,在这些圆盘基座102上表面的延伸平面,设置未被圆盘基座102的覆盖的空隙。为了保持均匀的温度分布,可以使用同圆盘基座102相同或者类似材质形成的平面部件覆盖这些空隙。我们将覆盖这些空隙的部件称为基座延伸部分103。在反应腔105进行工艺加工的时候,这(些)部件的上表面同小圆盘基座102(衬底101)的上表面在同一平面上,或者至多有少许的高程差。因为少许的高程差不会对工艺性能即成膜的均一性有较大的影响,并且调节高程差可以控制反应腔105气体流速,是一个可能的工艺调节手段,可以通过机械结构实现手动或者自动调节。图1中并未示出,但是基座延伸部分103表面可以设置有基于工艺要求的而设计的遮挡,突起,凹陷,导流鳍,定位点(块)等,可以作 为调节反应腔105中气体,温度等分布,以帮助改善成膜均一性。
接下来,图2示出了质量流量计的连接示意图,其中,301为提供工艺气体的气源(气瓶,气柜等),302为控制气体流量的质量流量计,303为节流阀。如图2所示,对于多个圆盘基座102或者多个圆盘基座102中的若干圆盘基座102可以使用共同的质量流量计302,同一质量流量计302流出的气体通过气体配管均匀分配至各个圆盘基座102流过其上表面进行工艺,以保证成膜的均一性。由于在质量流量计302之后流入各自圆盘基座102的气体配管对气体流速流量等的影响可能略有差异,可以在质量流量计302之后进入各个圆盘基座102的之前的各个管路上设置调节阀,例如,节流阀303,节流阀303可以是手动针阀或者致动节流阀,节流阀303用于补偿在流量计之后的管路上产生的偏差,以补偿最后成膜的均一性。可选地,在每个圆盘基座102的横截面上可以另外设计更多个节流阀,将流过单个圆盘基座102(衬底101)的工艺气流分成更多的分区独立控制。
根据本发明的实施例,圆盘基座102等可设置在金属诸如由不锈钢或者铝制作的密闭容器内。在一些情景下,此金属制作的密闭容器内也被称作反应腔105。反应腔105内壁的短边为125mm-810mm,长边为短边长度的整数倍左右,倍数为圆盘基座102的数目。此反应腔105通过法兰,以及法兰处的阀门等同外界隔离,冷却水等通过管路,工艺气体通过喷嘴,电源通过电极以及圆盘基座102的驱动轴等接入此反应腔105,以提供化学气相沉积所需要的工艺环境或条件。在此反应腔105中设计有长方体,或者类似长方体,例如,基本形状为在长方体上开口,开孔,台阶,上表面呈现拱形以对抗气压或者连接其他形状部件的内盒104。该内盒104内部可以容纳圆盘基座102和基座延伸部分103。同样,内盒104通过法兰,以及法兰处的阀门等同外界隔离,冷却水等通过管路,工艺气体通过喷嘴,电源通过电极以及圆盘基座102的驱动轴等接入内盒104。
在内盒104中,反应气体沿圆盘基座102(衬底101)表面同此平面与内盒的截面截得的长方形短边平行的方向流动,或者沿圆盘基座102(衬底101)表面,垂直于圆盘基座102圆心连线方向流动。
由于内盒104暴露于高温及可能的腐蚀性工艺气体环境下,通常选用石英,玻璃,陶瓷,石墨,涂层石墨等非金属耐高温耐腐蚀材料制作内盒104。
在反应腔105与内盒104之间设置发热体(热源)用于加热衬底101至所需的反应/工艺温度,衬底101的工艺温度区间为100-2800摄氏度。发热体可以为红外灯源,金属或石墨或者涂层石墨电阻式加热器。石墨或者涂层石墨或者金属电阻式加热可以直接连接电 源,也可以使用感应线圈射频等激励石墨或者金属后发热。发热体可以直接或者间接加热衬底101。如红外辐射可以直接穿透由石英制作的内盒104直接加热圆盘基座102及衬底101。当内盒104材料呈现强烈吸收红外辐射的特性时候,则以间接方式先加热陶瓷或者涂层石墨的内盒104,内盒104吸收电阻式加热器辐射的热量后,再次向圆盘基座102辐射热量加热圆盘基座102及衬底101。
参考图3至图10,描述本发明实施例中发热体(热源)的形状及布置。
在一个示例中,顶部线热源同底部圆弧热源并结合点(小型面)热源,发热体(热源)的形状及布置如图3和图4所示,发热体201为垂直或者平行于圆盘基座102圆心连线的线加热器,即长条状的热源,203为点热源或者较小的线或者面热源。发热体202为圆盘基座102圆心为中心的环型加热器,或者位于圆环上的一段弧型加热器(热源)或者完整的圆盘形加热器,例如,含螺旋线加热器。
在上述示例的变型中,顶部线热源同底部径向线加热源相结合,发热体(热源)的形状及布置如图5所示,其中,发热体204为圆盘基座102径向的线加热器,即短条状的热源。
在另一示例中,顶部线热源同底部线热源互相垂直,发热体(热源)的形状及布置如图6和图7所示,其中,发热体205为垂直于圆盘基座圆心连线的线加热器(即长条状的热源)。
根据本发明的实施例,发热体202可以是如图8至图10所示的环型加热器中任意一种或多种的组合。如图8所示发热体可以是圆盘基座102圆心为中心的环上的一段弧。
作为另一个示例,如图9所示,发热体为螺旋线形,螺旋线形成一个圆环,或者一个完整的圆,此圆环或者圆的圆心和圆盘基座102的圆心相同。进一步地,如图10所示,201-1是最外侧的环状螺旋线电阻加热器,202-2是位于内侧的较小的环形螺旋线加热器,202-3是位于中心的较小的圆盘形螺旋线加热器,这样202-1,202-2,202-3将完整一个圆盘状加热器分割为两个圆环和一个位于中心的小的圆盘状加热器,其中将每个加热器独立控制,以实现对圆盘基座的温度进行分区控制。
其中螺旋线电阻加热器对于温度较高的工艺有着很大的作用。由于对于高温的工艺,使用石墨或者石墨涂层材料制作电阻加热器是比较常见的做法。由于石墨加热器通常由大块石墨材料直接切割而来,同时石墨也缺乏弹性,很难成型出类似于弹簧这样的结构来吸收在升温过程中热膨胀带来的应力。而石墨可以通过简单的机床切削,加工出螺旋线结构。 螺旋线结构可以简单类比成一个从中心出发半径逐渐扩大的圆周;相比真正的圆,螺旋线结构可以获得10倍甚至更多倍的圆周长度;同时在发生热膨胀的时候可以将应力均匀释放至螺旋线上的每一段长度,从而使得单位长度上的应力最小化。从而改善加热器的寿命,提高设备的稳定性,降低成本。
此外,发热体还可以为点热源或者较小的线或者面热源,分布于圆盘基座102圆心为中心的多个环上,或者发热体为点热源,呈蜂巢式分布,其中心为圆盘基座102圆心,本法对此不作限制。
进一步地,前述发热体可以按照需要,进行串联或者并联。若干个加热器串并联后,同其他串并联的加热器分开独立控制,实现对圆盘基座102上的温度进行分区控制,以实现更好的成膜均一性。
具体地,单个平行于圆盘基座102圆心连线的线加热器,可以同时加热两个基座,使用同一电源,例如,可控硅或者IGBT等功率模块来控制,可以降低加热器的制作成本。对于垂直于圆盘基座102圆心连线的线加热器,以及其他中心对称的发热体(热源),可以同另一圆盘基座102相应部分的发热体串联或者并联,使用同一加热电源来控制,可以有效得降低加热电源的制作成本,同时依然获得良好的成膜均一性。
上述加热器的布置,若干种组合叙述如下:
使用线加热器(即为一长条的热源)。其中在圆盘上方布置平行于圆盘基座102圆心连线的线加热器,在圆盘下方布置垂直于圆盘基座102圆心连线的线加热器。或者相反,在圆盘上方布置垂直于圆盘基座102圆心连线的线加热器,在圆盘下方布置平行于圆盘基座102圆心连线的线加热器。在其他位置布置点加热器(点状热源)或者环形加热器作为线加热器(即为一长条的热源)补充和调节。或者在在圆盘上方布置平行于圆盘基座102圆心连线的线加热器,在圆盘下方布置点加热器(点状热源)或者环形热源。或者互换。
加热器的热量可以直接穿过内盒104,例如如石英材质的内盒,加热圆盘基座102和衬底101;也可以间接加热内盒104,例如涂层石墨材质的内盒,之后由内盒104辐射间接加热圆盘基座102和衬底101。当反应气体流过被加热的衬底表面,此时反应气体即可在衬底表面成膜,即发生化学气相沉积。
可以理解,可以通过红外传感器或者热电偶等测温装置探测衬底各处的温度,并按照工艺要求控制不同发热体/热源的功率,即分区控制,使得衬底的温度均匀。
根据本发明的实施例,如图11和图12所示,在加热器同反应腔105之间可以设置高 反射率(reflectivity)或高发射率(emissivity)的材料208,例如,烧结或其他成型工艺的氧化物、氮化物或碳化物材料,例如镀金板材等,这些材料能够阻挡热辐射,降低能耗,同时降低金属反应腔105表面的温度起到保护的作用。其中图11为完全包裹的密闭的反射盒208。图12为仅在顶部和底部两个表面积较大面设置两块板材208。高反(发)射率的材料可以是单片材料,如一个薄片遮挡在反应腔105之前,也可以是多个薄片遮挡不同的平面或者区域形成组合;也可以是同内盒104或者反应腔105类似的一个完整的闭合容器,也可以通过喷涂,沉积,贴附等方式将高反(发)射率的材料附着在反应腔105(金属容器)内表面或者内盒104的外表面。
根据本发明的实施例,图13和图14示出了本发明流水线的配置。图12和图13中,401为用于传输衬底的机械传送臂,402为存放衬底的片盒,403为供机械传送臂直线运动用的导轨。
作为一个示例,可以设置多边形的传输腔,多边形为3,4,5,6,7或者至多8边型。除多边形的一个或者两个边作为系统向外传送衬底101的中转站之外,多边形其余各边设置前述多个圆盘基座102的反应腔105。机械传输臂401位于多边形的中心点,机械传输臂401可以绕多边形的中心360度旋转,机械传输臂401可以同时沿径向前后移动。机械传输臂401沿径向伸展深入多边形各边的圆盘基座102传输衬底101,然后旋转至未布置圆盘基座102反应腔105的多边形上的位置(边)将衬底101传输出系统,或者反之由外界经多边形的传输腔传输入反应腔105内的圆盘基座102。
如图13所示,传输腔为四边形,其中央为机械传输臂401,三边为各有一个双圆盘基座102的反应腔105,第四边为传输衬底101的片盒402,供机械传输臂401将存放在片盒402的衬底101传入反应腔105,或者从反应腔105传输至片盒402。
如图14所示,如前所述多个圆盘基座102的圆心位于同一直线。在这些圆盘基座102的一侧安排机械传输臂401,该机械传输臂401的底座可以沿平行这些圆盘基座102圆心连线运动,该机械传输臂底座上的手臂可以沿平行这些圆盘基座102圆心连线运动至各个圆盘基座102前将衬底101传入反应腔105放置在圆盘基座102上或者传出反应腔105。片盒402也可以位于机械传输臂401的相对于圆盘基座102的另一侧,也可以位于机械传输臂401的两端。
以下参考图15和图16简要描述化学气相沉积工艺系统,该系统包括根据本发明实施例的化学气相沉积设备。图15为设计本发明实施方式时候建立的三维模型。从三维模型 输出至图15时有所简化,仅仅输出了反应腔105,衬底101,圆盘基座102,基座延伸部分103及圆盘基座的转动机构等部件。
图16示出了化学气相沉积工艺系统连接示意图。501为设备的控制单元包含工控机,单片机,可编程PLC,以太网控制器,图像人机界面等对反应腔等其他各单元进行控制;502为气体模块,包含气柜,质量流量计,各种气路阀门,气体分配器等;503为基座等旋转升降的机械控制单元;504为衬底搬送系统,如机械手臂,片盒控制系统等;505为加热器电源可控硅或者IGBT或者其他功率模块,测温传感器,温控算法单元等;以及,506为其他辅助单元,如安全互锁,泵(减压工艺下)的控制机构,排热风机等。
综上所述,本发明可以以低成本布置两个直至更多的圆盘基座,并且这些圆盘基座之间可以通过管线共享气体流量控制器或者较少的加热器。使得可以对较多圆盘基座进行成膜的同时大大降低反应腔,以及为反应腔配套的气体控制回路、加热器、加热器电源、衬底搬送系统等的成本;从而降低整套系统设备的制造成本。同时反应气体,加热的能源等也得以减少消耗,使得成膜的消耗品用量也得以减少。并且在实现以上低成本方案的同时,达成同单片式圆盘基座同样的成膜均一性。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方 法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的第一终端设备来实现。在列举了若干终端设备的单元权利要求中,这些终端设备中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
尽管本文已公开了各种方面和实施例,但其它方面和实施例对于本领域技术人员而言将是明显的。本文公开的各种方面和实施例是为了说明的目的,而不意在进行限制,真实的范围应当由所附权利要求以及这样的权利要求所被授权的等效物的全部范围指示。还要理解,本文中使用的术语仅是为了描述特定实施例的目的,而不意在进行限制。

Claims (15)

  1. 一种化学气相沉积设备,包括反应腔,所述反应腔内包括多个用于承载衬底的基座,所述多个基座为圆盘形,工艺气体通过管路进入所述反应腔,其特征在于,
    所述多个基座中的每个所述基座彼此之间并列排布,各个所述基座的圆心在同一直线上;
    各个所述基座的承载所述衬底的上表面彼此相互平行或在同一平面上;
    各个所述基座的转动轴线在同一平面上,各个所述基座相对于彼此独立地旋转;以及
    所述工艺气体沿各个所述基座的所述上表面,以垂直于各个所述基座的各个所述圆心的连线为方向流动。
  2. 根据权利要求1所述的化学气相沉积设备,其特征在于,所述反应腔和所述基座之间还包括内盒,所述内盒的形状包括长方体;以及
    所述反应气体沿所述基座的所述上表面,并且以与所述上表面与所述内盒的截面截得的长方形短边相对平行的方向流动。
  3. 根据权利要求1所述的化学气相沉积设备,其特征在于,相邻的所述基座以彼此相反的方向旋转。
  4. 根据权利要求1所述的化学气相沉积设备,其特征在于,所述化学气相沉积设备还包括质量流量计,对所述多个基座使用共同的所述质量流量计,所述质量流量计分配所述工艺气体到各个所述基座;以及
    在所述工艺气体从所述质量流量计流向所述基座的所述管路上设置调节阀。
  5. 根据权利要求1所述的化学气相沉积设备,其特征在于,所述化学气相沉积设备还包括传输腔和机械传输臂,所述传输腔为多边形,所述传输腔的至少一边设置有所述衬底的中转站,其余各边设置有所述反应腔;以及
    所述机械传输臂位于所述传输腔内,向所述反应腔的所述多个基座传输所述衬底。
  6. 根据权利要求5所述的化学气相沉积设备,其特征在于,所述机械传输臂还被配置为沿平行于所述反应腔中各个所述基座的各个所述圆心的连线方向运动。
  7. 根据权利要求1所述的化学气相沉积设备,其特征在于,在各个所述基座之间填充基座延伸部分,所述基座延伸部分的材质与所述基座相同,所述基座延伸部分的上表面与所述基座的上表面在同一平面。
  8. 根据权利要求7所述的化学气相沉积设备,其特征在于,所述基座延伸部分的上表面包括遮挡、突起、凹陷、导流鳍、定位点中的一种或多种。
  9. 根据权利要求7所述的化学气相沉积设备,其特征在于,所述基座延伸部分的上表面与所述基座的上表面具有高程差,所述高程差可以通过机械结构实现手动或者自动调节
  10. 根据权利要求2所述的化学气相沉积设备,其特征在于,所述内盒由非金属耐高温耐腐蚀材料制成。
  11. 根据权利要求2所述的化学气相沉积设备,其特征在于,在所述反应腔和所述内盒之间设置发热体,所述发热体包括红外灯源、电阻式加热器,所述电阻式加热器包括金属或石墨电阻式加热器。
  12. 根据权利要求11所述的化学气相沉积设备,其特征在于,所述金属电阻式加热器或所述石墨电阻式加热器的驱动方式还包括通过感应线圈射频激励金属或石墨,使所述金属电阻式加热器或所述石墨电阻式加热器发热。
  13. 根据权利要求11所述的化学气相沉积设备,其特征在于,所述电阻式加热器为螺旋线形。
  14. 根据权利要求11所述的化学气相沉积设备,其特征在于,所述电阻式加热器还包 括以下中的至少一个:
    以所述基座的所述圆心为中心的环形加热器;
    以所述基座的所述圆心为中心的弧形加热器;
    点状加热器,所述点状加热器分布于以所述基座的所述圆心为中心的多个环上,或者以所述基座的所述圆心为中心呈蜂巢式分布;
    线加热器,所述线加热器垂直或者平行于所述基座的所述圆心连线分布,或者,所述线加热器沿所述基座的径向分布。
  15. 根据权利要求11所述的化学气相沉积设备,其特征在于,在所述发热体和所述反应腔之间设置隔热材料,所述隔热材料为高发射率材料或高反射率材料。
PCT/CN2019/105422 2018-09-11 2019-09-11 化学气相沉积设备 WO2020052598A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/431,569 US20220136102A1 (en) 2018-09-11 2019-09-11 Chemical vapor deposition apparatus
JP2021560183A JP2022527623A (ja) 2018-09-11 2019-09-11 化学蒸着装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811055932.0A CN110885973A (zh) 2018-09-11 2018-09-11 化学气相沉积设备
CN201811055932.0 2018-09-11

Publications (1)

Publication Number Publication Date
WO2020052598A1 true WO2020052598A1 (zh) 2020-03-19

Family

ID=69745453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105422 WO2020052598A1 (zh) 2018-09-11 2019-09-11 化学气相沉积设备

Country Status (4)

Country Link
US (1) US20220136102A1 (zh)
JP (1) JP2022527623A (zh)
CN (1) CN110885973A (zh)
WO (1) WO2020052598A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110885973A (zh) * 2018-09-11 2020-03-17 上海引万光电科技有限公司 化学气相沉积设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813414B (zh) * 2020-12-30 2022-12-09 上海埃延半导体有限公司 一种化学气相沉积系统
CN112831771A (zh) * 2020-12-30 2021-05-25 上海埃原半导体设备有限公司 一种化学气相沉积用的非金属反应腔
CN114150377B (zh) * 2021-12-06 2023-09-12 上海埃延管理咨询合伙企业(有限合伙) 一种厚膜生长设备
CN114686974A (zh) * 2022-03-30 2022-07-01 上海埃延半导体有限公司 一种用于衬底外延的反应器
CN114855271A (zh) * 2022-04-22 2022-08-05 浙江求是半导体设备有限公司 外延生长装置
CN115182040B (zh) * 2022-05-11 2024-05-07 华灿光电(苏州)有限公司 提高生长效率的金属有机气相化学沉积设备及使用方法
CN117793984A (zh) * 2024-01-22 2024-03-29 中山市通威电器有限公司 一种高安全性电磁炉发热盘

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060033678A1 (en) * 2004-01-26 2006-02-16 Applied Materials, Inc. Integrated electroless deposition system
CN101345204A (zh) * 2007-07-13 2009-01-14 北京北方微电子基地设备工艺研究中心有限责任公司 被处理体的保持装置及其温度控制方法
US20130270362A1 (en) * 2010-05-25 2013-10-17 Aventa Technologies, Inc. Showerhead apparatus for a linear batch chemical vapor deposition system
CN103597580A (zh) * 2011-04-22 2014-02-19 应用材料公司 用于将材料沉积在基板上的设备
CN104081514A (zh) * 2012-01-31 2014-10-01 应用材料公司 多腔室基板处理系统
CN209010598U (zh) * 2018-09-11 2019-06-21 上海引万光电科技有限公司 化学气相沉积设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100879A (en) * 1977-02-08 1978-07-18 Grigory Borisovich Goldin Device for epitaxial growing of semiconductor periodic structures from gas phase
US5772771A (en) * 1995-12-13 1998-06-30 Applied Materials, Inc. Deposition chamber for improved deposition thickness uniformity
US6902622B2 (en) * 2001-04-12 2005-06-07 Mattson Technology, Inc. Systems and methods for epitaxially depositing films on a semiconductor substrate
KR100674872B1 (ko) * 2005-06-03 2007-01-30 삼성전기주식회사 다중 기판의 화학 기상 증착 장치
DE602006021108D1 (de) * 2005-09-05 2011-05-19 Japan Pionics Vorrichtung zur chemischen Dampfabscheidung
CN101191202B (zh) * 2006-12-01 2012-06-06 广东昭信半导体装备制造有限公司 金属有机物化学气相沉积设备反应腔的加热系统
CN201943888U (zh) * 2010-06-12 2011-08-24 张晓鹤 一种风帆式发电机
JP2012012643A (ja) * 2010-06-30 2012-01-19 Kyocera Corp 堆積膜形成方法および堆積膜形成装置
CN201817546U (zh) * 2010-10-28 2011-05-04 理想能源设备(上海)有限公司 衬底支撑基座和应用该衬底支撑基座的化学气相沉积设备
JP2013028851A (ja) * 2011-07-29 2013-02-07 Kobe Steel Ltd プラズマcvd装置
KR101496572B1 (ko) * 2012-10-16 2015-02-26 주식회사 엘지실트론 에피택셜 성장용 서셉터 및 에피택셜 성장방법
TWM489163U (en) * 2012-12-18 2014-11-01 Invista Tech Sarl Flow straightener
KR101465640B1 (ko) * 2014-08-08 2014-11-28 주식회사 펨빅스 불화알루미늄 생성방지막이 형성된 cvd 공정챔버 부품
CN106830290A (zh) * 2017-02-24 2017-06-13 武汉理工大学 一种无动力曝气装置及方法
CN107227448B (zh) * 2017-06-30 2023-10-13 北京北方华创微电子装备有限公司 基座以及物理气相沉积装置
CN110885973A (zh) * 2018-09-11 2020-03-17 上海引万光电科技有限公司 化学气相沉积设备
CN113818000A (zh) * 2021-09-26 2021-12-21 上海埃延管理咨询合伙企业(有限合伙) 一种化学气相沉积系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060033678A1 (en) * 2004-01-26 2006-02-16 Applied Materials, Inc. Integrated electroless deposition system
CN101345204A (zh) * 2007-07-13 2009-01-14 北京北方微电子基地设备工艺研究中心有限责任公司 被处理体的保持装置及其温度控制方法
US20130270362A1 (en) * 2010-05-25 2013-10-17 Aventa Technologies, Inc. Showerhead apparatus for a linear batch chemical vapor deposition system
CN103597580A (zh) * 2011-04-22 2014-02-19 应用材料公司 用于将材料沉积在基板上的设备
CN104081514A (zh) * 2012-01-31 2014-10-01 应用材料公司 多腔室基板处理系统
CN209010598U (zh) * 2018-09-11 2019-06-21 上海引万光电科技有限公司 化学气相沉积设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110885973A (zh) * 2018-09-11 2020-03-17 上海引万光电科技有限公司 化学气相沉积设备

Also Published As

Publication number Publication date
US20220136102A1 (en) 2022-05-05
JP2022527623A (ja) 2022-06-02
CN110885973A (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2020052598A1 (zh) 化学气相沉积设备
KR101645262B1 (ko) 가스 분산 장치
JP3252960B2 (ja) 原子層エピタキシー工程のための半導体薄膜蒸着装置
TWI404819B (zh) 成膜裝置及成膜方法
KR910007109B1 (ko) 화학증기증착 반응기용 반사장치
US20110155058A1 (en) Substrate processing apparatus having a radiant cavity
TWI584379B (zh) A substrate processing apparatus, a heating apparatus, a top insulation body, and a semiconductor device manufacturing method
JP7175766B2 (ja) サセプタ支持体
US10508333B2 (en) Heating apparatus and substrate processing apparatus having the same
TWI600787B (zh) 用於遞送製程氣體至基板的方法及設備
CN106463399B (zh) 用于低压热处理的光导管结构窗
US20120171377A1 (en) Wafer carrier with selective control of emissivity
CN105264649B (zh) 用于热腔室应用及处理的光管窗结构
TWI641721B (zh) 發熱體、化學氣相沈積設備及化學氣相沈積設備的溫度控制方法
TW202020240A (zh) 燈頭中的多分區燈控制和單獨燈控制
JP3210051B2 (ja) 気相成長装置
JP6875386B2 (ja) Cvd装置
CN209010598U (zh) 化学气相沉积设备
US11021794B2 (en) Graphite susceptor
TWI540233B (zh) 基座處理方法及基座處理用板
JP2009071210A (ja) サセプタおよびエピタキシャル成長装置
CN105009263B (zh) 反射性衬里
TWI652373B (zh) 成膜處理方法、成膜處理裝置以及記憶媒體
TWI734286B (zh) 成膜方法、成膜裝置、基座單元及用於基座單元的墊片組
JP2017190506A (ja) 気相成長装置および気相成長方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560183

Country of ref document: JP

Kind code of ref document: A