WO2020052553A1 - 风机及具有该风机的呼吸机 - Google Patents

风机及具有该风机的呼吸机 Download PDF

Info

Publication number
WO2020052553A1
WO2020052553A1 PCT/CN2019/105152 CN2019105152W WO2020052553A1 WO 2020052553 A1 WO2020052553 A1 WO 2020052553A1 CN 2019105152 W CN2019105152 W CN 2019105152W WO 2020052553 A1 WO2020052553 A1 WO 2020052553A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
lower cover
blade
air
casing
Prior art date
Application number
PCT/CN2019/105152
Other languages
English (en)
French (fr)
Inventor
黄根
廖致刚
Original Assignee
深圳融昕医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳融昕医疗科技有限公司 filed Critical 深圳融昕医疗科技有限公司
Publication of WO2020052553A1 publication Critical patent/WO2020052553A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4233Fan casings with volutes extending mainly in axial or radially inward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps

Definitions

  • the present application relates to the field of medical equipment, and in particular, to a fan and a ventilator having the fan.
  • Positive Airway Pressure has been used as a treatment for the occurrence of obstructive sleep apnea. Connect the patient to positive pressure air provided by a nasal mask or nasal cannula. The pressure of the air supply for the patient to breathe is higher than atmospheric pressure. The study found that the application of positive airway pressure provides a mechanism that can be described as a "pneumatic splint" to support and stabilize the upper airway, thereby eliminating the occurrence of upper airway obstruction. The application of positive airway pressure can effectively eliminate snoring and obstructive sleep apnea.
  • the function of the fan in the positive airway pressure ventilator is to provide a certain pressure and flow of gas to the patient.
  • the motor drives the impeller to rotate at a high speed, generating a certain flow of air in the vortex air path, while maintaining the gas in a certain pressure range in the volute airway, and outputting it to the positive airway ventilator network system through the outlet of the volute.
  • This process will produce large noise.
  • the noise mainly comes from the high-speed rotating impeller (producing rotational noise), the high-speed gas flowing in the volute (producing aerodynamic noise), and the high-speed rotating motor (producing vibration noise).
  • Positive airway ventilator is mainly used during the patient's sleep, so there is a particularly high requirement for noise reduction, especially late at night.
  • the machine cannot affect the normal sleep of others, and on the other hand, it cannot affect the sleep of patients.
  • the present application provides a fan and a ventilator having the fan, which aims to reduce the noise of the fan during operation.
  • a fan includes: a first casing, a second casing, an impeller, and a motor.
  • the first casing and the second casing are fixedly connected to form a vortex air path, and the vortex air path includes a first air inlet, an upper air duct, a lower air duct, and a first air outlet.
  • An air port is provided on the top surface of the first casing, the impeller is located in the upper air duct, and the first air outlet is located in the lower air duct;
  • the impeller includes an upper cover, a blade, and a lower cover.
  • the blade is disposed between the upper cover and the lower cover.
  • the upper cover is provided with a second air inlet.
  • the diameter of the lower cover is larger than the diameter of the lower cover.
  • An outer diameter of the upper cover, the lower cover serving as a dividing structure between the upper air duct and the lower air duct, and a gap is provided between the lower cover and an inner wall of the first casing;
  • the motor is provided with a rotor main shaft, and the second housing and the impeller are coaxially mounted on the rotor main shaft.
  • the diameter of the gap is 2 to 4 mm.
  • the diameter of the gap is 3.5 mm.
  • the thickness of the lower cover is 1 to 2 mm.
  • a boss is provided in the second housing, and an upper end surface of the boss is provided with a blocking structure corresponding to the first air outlet.
  • the cross-sectional shape of the blocking structure is fan-shaped.
  • the lower cover of the impeller is provided with an impeller assembling hole
  • the impeller assembling hole is riveted with a shaft sleeve
  • the impeller is fixed and fixed on the shaft through the rotor main shaft of the motor in cooperation with the shaft sleeve.
  • the impeller assembly hole is a three-stage stepped hole, a first stage is a pre-positioned hole, the pre-positioned hole transitions with the shaft sleeve, and a second stage is a riveting hole, the riveting hole and the shaft sleeve
  • the third stage is a glue overflow hole, and the glue overflow hole is matched with the shaft sleeve.
  • the upper cover of the impeller has a tapered shape.
  • the material of the impeller is engineering plastic
  • the blade and the upper cover are integrated, and an end of the blade away from the second air inlet is provided with a chute, and the lower cover corresponds to A sinker is provided at the position of the chute, and a welding seam is provided on the sinker.
  • the chute of the blade cooperates with the sinker of the lower cover to position and pre-assemble, and then passes The welding seam welds the chute and the sinker to form an entire impeller.
  • a ventilator includes the fan according to any one of the above embodiments.
  • the lower cover of the blade is a partition structure of an upper air duct and a lower air duct.
  • the gas with a certain flow rate output from the blade air duct enters the upper air duct and flows along the inner wall of the first casing into the lower air duct. Since the gap between the lower cover of the blade and the inner wall of the first casing is small, avoid The high-speed air flow in the upper air duct and the lower air duct collided fiercely to reduce the aerodynamic noise.
  • Figure 1 is a top view of a fan according to an embodiment
  • FIG. 2 is a cross-sectional view taken along the AA direction in FIG. 1;
  • FIG. 3 is a cross-sectional view taken along the BB direction in FIG. 1;
  • FIG. 4 is a schematic structural diagram of a disassembled state of the fan in FIG. 1;
  • FIG. 5 is a schematic structural diagram of an impeller according to an embodiment
  • FIG. 6 is a cross-sectional view taken along the CC direction in FIG. 5;
  • FIG. 7 is a schematic structural diagram of an exploded state of an impeller according to an embodiment
  • FIG. 8 is a schematic diagram of an impeller according to an embodiment
  • FIG. 9 is a sectional view taken along the DD direction in FIG. 8;
  • FIG. 11 is an enlarged view of F in FIG. 9;
  • Second housing 2 boss 201, blocking structure 2011, screw mounting hole 202,
  • Impeller 3 upper cover 301, blade 302, lower cover 303, second air inlet 3011, blade air channel 3021, blade air channel inlet 3021a, blade air channel outlet 3021b, chute 3022, impeller assembly hole 3031, pre-positioned hole 3031a, riveting hole 3031b, glue overflow hole 3031c, sinker 3032, welding seam 30321,
  • Vortex air passage 5 first air inlet 501, upper air duct 502, lower air duct 503, first air outlet 504, upper half of first air outlet 5041, lower half of first air outlet 5042,
  • a fan includes: a first casing 1, a second casing 2, an impeller 3, and a motor 4,
  • the first casing 1 and the second casing 2 are fixedly connected to form a vortex air path 5.
  • the vortex air path 5 includes a first air inlet 501, an upper air duct 502, a lower air duct 503, and a first air outlet 504.
  • the air port 501 is provided on the top surface of the first casing 1, the impeller 3 is located in the upper air duct 502, and the first air outlet 504 is located in the lower air duct 503.
  • the impeller 3 includes an upper cover 301, a blade 302 and a lower cover 303, and the blade 302
  • the upper cover 301 is provided between the upper cover 301 and the lower cover 303.
  • the upper cover 301 is provided with a second air inlet 3011.
  • the diameter of the lower cover 303 is larger than the outer diameter of the upper cover 301.
  • the lower cover 303 serves as the upper air duct 502 and the lower air duct.
  • the split structure between 503, the lower cover 303 and the inner wall of the first housing 1 are provided with a gap; the upper end surface of the motor 4 is provided with a rotor main shaft 401, and the second housing 2 and the impeller 3 are coaxially assembled to the motor through the rotor main shaft 401 4 on.
  • the fan includes a first casing 1, a second casing 2, an impeller 3, and a motor 4.
  • the first casing 1 and the second casing 2 are fixedly connected, for example, the first casing 1 and the second casing can be connected. 2 are respectively provided with mounting holes, and the first casing is fixed on the second casing through the cooperation of the mounting holes and the screws.
  • the first casing 1 and the second casing 2 are connected to form a vortex gas path 5, and the vortex gas path 5 includes a first An air inlet 501, an upper air duct 502, a lower air duct 503, and a first air outlet 504.
  • the first air intake 501 is provided on the top surface of the first casing 1, and the impeller 3 is located in the upper air duct 502.
  • the air outlet 504 is located in the lower air duct 503.
  • the first air outlet 504 is formed by assembling the first casing 1 and the second casing 2.
  • the upper half of the first air outlet 5041 is located on the first casing 1.
  • the first air outlet The lower half 5042 is located on the second casing 2.
  • the impeller 3 includes an upper cover 301, a blade 302, and a lower cover 303.
  • the blade 302 is disposed between the upper cover 301 and the lower cover 303.
  • the upper cover 301 is provided with a second air inlet 3011.
  • the diameter of the lower cover 303 is larger than that of the upper cover 301.
  • the lower cover 303 serves as a dividing structure between the upper air duct 502 and the lower air duct 503, and a gap is provided between the lower cover 303 and an inner wall of the first casing 1.
  • the diameter of the gap is 2 to 4 mm, and preferably 3.5 mm.
  • the thickness of the lower cover 303 is 1 to 2 mm, and preferably 1.5 mm.
  • the position of the second air inlet 3011 in the upper cover 301 corresponds to the position of the first air inlet 501 in the first casing 1, and the gas enters from the first air inlet 501 and enters the impeller 3 through the second air inlet 3011.
  • the blades 302 are arc-shaped.
  • the blades 302 are distributed along the circumference of the upper cover 301. Further, the blades 302 are evenly distributed along the circumference of the upper cover 301.
  • the number of the blades 302 can be set as required. In this embodiment, 11 blades are provided. Adjacent two blades 302, upper cover 301, and lower cover 303 form a blade air passage 3021.
  • the blade air passage 3021 is open at both ends, and one end near the second air inlet 3011 is a blade air passage inlet 3021a, away from the second air inlet.
  • One end of the port 3011 is a blade airway outlet 3021b, and the blade airway 3021 is distributed along the circumference of the upper cover 301.
  • the upper end surface of the motor 4 is provided with a rotor main shaft 401, and the second housing 2 and the impeller 3 are coaxially assembled on the motor 4 through the rotor main shaft 401.
  • the upper end surface of the motor 4 is further provided with a screw hole 402, and the second housing 2 is provided with a screw installation hole 202.
  • the screw hole 402 of the motor 4 is connected to the screw installation hole 202 of the second housing 2 by screws, and the screw installation hole 202 is fixed.
  • the countersunk head design is adopted to ensure that the shaft center of the motor rotor main shaft 401 is aligned with the shaft center of the second housing 2 without eccentricity after the installation is completed.
  • the motor 4 drives the impeller 3 to rotate at a high speed.
  • the gas in the vortex air path 5 flows from the first air inlet 501 to the first air outlet 504 to form a certain pressure and flow.
  • the air is output from the first air outlet 504 to the ventilator pipe network. system.
  • the motor rotor main shaft 401 fits the shaft sleeve of the impeller assembly hole 3031. After the second housing 2 and the motor 4 are fixedly connected, the second housing 2 and the motor 4 are fixed, and then pressure is applied to the upper end surface of the impeller to place the motor rotor main shaft. 401 interference fit into the shaft sleeve of the impeller mounting hole 3031.
  • the high-speed rotation of the motor 4 drives the impeller 3 to rotate at a high speed.
  • the gas in the blade airway 3021 flows away from the axis, and a certain vacuum gradient is generated in the blade airway 3021 in the radial direction.
  • the atmosphere quickly flows into the blade from the first air inlet 501
  • the airway inlet 3021a flows from the blade airway inlet 3021a into the blade airway 3021 to supplement the vacuum. This process continues as the impeller rotates, and the gas in the blade airway 3021 continues to move.
  • the blade airway outlet 3021b forms a continuous airflow.
  • the gas replenished into the blade air passage 3021 can only enter through the first air inlet 501, thereby preventing the gas from the blade air passage outlet 3021b from going back into the blade air passage 3021 and forming a short circuit of the air flow. Can not output a certain pressure and flow of gas.
  • the lower cover 303 of the blade is a partition structure of the upper air duct 502 and the lower air duct 503.
  • the gas with a certain flow rate output from the blade air duct 3021 enters the upper air duct 502 and flows along the inner wall of the first casing 1 into the lower air duct 503. Since the lower cover 303 of the blade and the inner wall of the first casing 1 The gap is small, which avoids the high-speed airflow in the upper air duct 502 and the lower air duct 503 from colliding violently, thereby reducing the aerodynamic noise.
  • an air resistance d is formed between the upper air duct 502 and the lower air duct 503.
  • the gas in the upper air duct 502 forms a primary pressure p0, and a stable primary pressure p0 is maintained in the upper air duct 502, which can effectively maintain a stable aerodynamic condition and avoid generating uncertain vortex abnormal noise, thereby Effectively reduce eddy current noise.
  • the air resistance d and the primary pressure p0 between the upper air duct 502 and the lower air duct 503 can be adjusted by adjusting the size of the gap under a certain pressure, thereby adjusting the gas flow from the upper air duct 502 through the blades.
  • the flow rate of the lower cover 303 when entering the lower air duct 503 adjusts the fluid state of the gas, so as to control the aerodynamic noise in the vortex air path.
  • a boss 201 is further provided in the second housing, and a blocking structure 2011 is provided at an upper end surface of the boss 201 corresponding to the first air outlet 504. Further, the cross-sectional shape of the blocking structure 2011 is fan-shaped. The size of the blocking structure 2011 can be set according to the size of the first air outlet 504.
  • the blocking structure 2011 can prevent the gas in the upper air duct 502 from directly entering the first air outlet 504 and being exhausted by the first air outlet 504, thereby maintaining no pressure difference in the upper air duct 502, uniform flow velocity, and further reducing The aerodynamic noise in the vortex air path 5; at the same time, the impeller 3 is maintained in a balanced rotation, and the mechanical vibration and rotational noise generated by the impeller 3 due to unbalanced rotation are reduced.
  • the gas in the upper air duct 502 passes through the lower cover 303 of the impeller and enters the lower air duct 503 at a certain flow rate, generating a partial velocity parallel to the axis of the rotor main shaft 401 of the motor.
  • the plane on which the cover 303 is located is vertical and flows along the inner wall of the second casing 2 toward the motor. Since the cross section of the lower air duct 503 has a "U" shape, as shown in FIG. 3, its characteristics are that the two ends are high and the middle is Lowest point. When part of the airflow passes the lowest point, it flows upward along the "U" -shaped inner wall and returns to a high point.
  • the blocking structure 2011 is located at this high point, blocking the upward flowing airflow of this part from the high speed of the blade airway 3021. The impact of the outflow airflow avoids the aerodynamic noise caused by it.
  • the lower cover 303 of the impeller 3 is further provided with an impeller mounting hole 3031, which is riveted to the shaft sleeve 6, and the impeller 3 passes through the motor.
  • the rotor main shaft 401 is fixed to the motor 4 in cooperation with the shaft sleeve 6.
  • the impeller assembly hole 3031 is a three-stage stepped hole, and the first level is a predetermined positioning hole 3031a.
  • the predetermined positioning hole 3031a is transitionally matched with the shaft sleeve 6 and the second level is a riveting hole 3031b.
  • the riveting hole 3031b is in an interference fit with the shaft sleeve 6.
  • the third stage is an overflow hole 3031c.
  • the overflow hole 3031c is in clearance fit with the shaft sleeve 6.
  • the pre-positioning hole 3031a and the shaft sleeve 6 are mated to ensure that the shaft sleeve 6 and the impeller 3 are coaxially assembled; the riveting hole 3031b and the shaft sleeve 6 are interference fit, and the overflow hole 3031c and the shaft sleeve 6 are clearancely fitted to accommodate the riveting hole
  • the glue overflowed during the interference fit between the 3031b and the shaft sleeve 6 is convenient for cleaning without affecting assembly accuracy, thereby reducing vibration noise.
  • the upper cover 301 of the impeller has a tapered shape, the top end of the upper cover 301 is small, and the bottom end of the upper cover 301 is large.
  • the upper cover 301 of the impeller has a tapered shape, the top end of the upper cover 301 is small, and the bottom end of the upper cover 301 is large.
  • the height of the corresponding blade 302 gradually decreases from the front end to the rear end.
  • the upper cover 301 of the impeller There is a non-equidistant structure with the lower cover 303 of the impeller.
  • the conical generatrix of the upper cover 301 of the impeller is a circular arc.
  • the shape of the blade 302 is an arc shape.
  • the material of the impeller 3 is engineering plastic, and the blade 302 and the upper cover 301 are integrated.
  • An end of the blade 302 away from the second air inlet 3011 is provided with a chute 3022.
  • a cover 3032 is provided on the cover 303 at a position corresponding to the chute 3022, and a welding seam 30321 is provided on the chute 3032.
  • the chute 3022 of the blade cooperates with the sunk 3030 of the lower cover to locate and pre-assemble, and then passes the welding seam.
  • 30321 welds the chute 3022 and the sinker 3032 to form the entire impeller. In this way, noise caused by errors during assembly of the impeller or secondary processing can be avoided.
  • a ventilator includes the fan in any one of the above embodiments.
  • the ventilator with the fan has low noise and increases the applicability of the ventilator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种风机及具有该风机的呼吸机,该风机包括:第一壳体(1)、第二壳体(2)、叶轮(3)和电机(4),所述第一壳体(1)和所述第二壳体(2)固定连接形成涡流气路(5),所述涡流气路(5)包括第一进气口(501)、上层风道(502)、下层风道(503)和第一出气口(504),所述叶轮(3)位于所述上层风道(502)内,所述第一出气口(504)位于所述下层风道(503);所述叶轮(3)包括上盖(301)、叶片(302)和下盖(303),所述下盖(303)的直径大于所述上盖(301)的直径,所述下盖(303)作为所述上层风道(502)和所述下层风道(503)之间的分割结构,所述下盖(303)与所述第一壳体(1)的内壁设置有间隙;从叶轮(3)中输出的高速气流进入到上层风道(502),沿第一壳体(1)的内壁流动进入下层风道(503),由于叶轮(3)的下盖(303)与第一壳体(1)的内壁之间的间隙较小,避免了上层风道(502)和下层风道(503)内的高速气流激烈冲撞交汇,从而降低气动噪音。

Description

风机及具有该风机的呼吸机
本申请要求于2018年9月13日提交中国专利局,申请号为201811069732.0,申请名称为“风机及具有该风机的呼吸机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械领域,尤其涉及一种风机及具有该风机的呼吸机。
背景技术
气道正压呼吸机(Positive Airway Pressure,PAP)已被用作治疗阻塞性睡眠呼吸暂停的发生的手段。将患者连接至由鼻面罩或鼻导管提供的正压空气。供患者呼吸的空气供应源的压力高于大气压。研究发现,气道正压的施加提供了可以形容为“气动夹板”的机构,支撑和稳定上气道,从而消除上气道阻塞的发生。气道正压的施加可以有效地消除打鼾和阻塞性睡眠呼吸暂停。
风机在气道正压呼吸机中的作用为产生一定压力和流量的气体,提供给患者。通过电机带动叶轮高速旋转,在涡流气路内产生一定流量的气流,同时在涡壳气道内维持气体在一定的压力范围,通过涡壳出口导流输出到气道正压呼吸机管网系统。此过程会产生较大的噪声,噪声主要来自高速旋转的叶轮(产生旋转噪声)、涡壳内高速流动的气体(产生空气动力噪声)、高速旋转的电机(产生振动噪声)。
气道正压呼吸机主要使用时间为患者睡眠期间,因此对降低噪声有特别高的要求,特别是深夜,一方面要求机器不能影响其他人正常的睡眠,另一方面不能影响患者的睡眠。
目前市面的可以用于气道正压呼吸机的风机,静音及振动级别远远达不到气道正压呼吸机使用场景的需求。
发明内容
为了解决现有技术中存在的技术问题,本申请提供了一种风机及具有该风机的呼吸机,旨在降低风机在运行过程中的噪声。
一种风机,包括:第一壳体、第二壳体、叶轮和电机,
所述第一壳体和所述第二壳体固定连接形成涡流气路,所述涡流气路包括第一进气口、上层风道、下层风道和第一出气口,所述第一进气口设置于所述第一壳体的顶面,所述叶轮位于所述上层风道内,所述第一出气口位于所述下层风道;
所述叶轮包括上盖、叶片和下盖,所述叶片设置于所述上盖和所述下盖之间,所述上盖设置有第二进气口,所述下盖的直径大于所述上盖的外圆直径,所述下盖作为所述上层风道和所述下层风道之间的分割结构,所述下盖与所述第一壳体的内壁设置有间隙;
所述电机设置有转子主轴,所述第二壳体和所述叶轮同轴装配在所述转子主轴上。
在一个实施例中,所述间隙的直径为2~4mm。
在一个实施例中,所述间隙的直径为3.5mm。
在一个实施例中,所述下盖的厚度为1~2mm。
在一个实施例中,所述第二壳体内设置有凸台,所述凸台的上端面对应所述第一出气口处设置有阻断结构。
在一个实施例中,所述阻断结构的横截面形状为扇形。
在一个实施例中,所述叶轮的所述下盖设置有叶轮装配孔,所述叶轮装配孔铆接轴套,所述叶轮通过所述电机的所述转子主轴与所述轴套配合固定在所述电机上,所述叶轮装配孔为三级阶梯孔,一级为预定位孔,所述预定位孔与所述轴套过渡配合,二级为铆接孔,所述铆接孔与所述轴套过盈配合,三级为溢胶孔,所述溢胶孔与所述轴套间隙配合。
在一个实施例中,所述叶轮的所述上盖为锥形造型。
在一个实施例中,所述叶轮的材质为工程塑料,所述叶片和所述上盖为一体,所述叶片远离所述第二进气口的一端设置有斜槽,所述下盖上对应所述斜槽的位置处设置有沉台,所述沉台上设置有焊接缝,通过所述叶片的所述斜槽与所述下盖的所述沉台配合定位预装配,再通过所述焊接缝焊接所述斜槽和所述沉台形成叶轮整体。
一种呼吸机,包括上述任意一实施例所述的风机。
本申请提供的风机,叶片的下盖为上层风道和下层风道的分隔结构。从叶片气道输出的具有一定流速的气体进入到上层风道,沿第一壳体的内壁流动进入下层风道,由于叶片的下盖与第一壳体的内壁之间的间隙较小,避免了上层风道和下层风道内的高速气流激烈冲撞交汇,从而降低气动噪音。
附图说明
附图是用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请实施例,但并不构成对本申请实施例的限制。在附图中:
图1为一个实施例的风机的俯视图;
图2为图1中沿AA方向剖开的剖视图;
图3为图1中沿BB方向剖开的剖视图;
图4为图1中的风机的分解状态的结构示意图;
图5为一个实施例的叶轮的结构示意图;
图6为图5中沿CC方向剖开的剖面图;
图7为一个实施例的叶轮的分解状态的结构示意图;
图8为一个实施例的叶轮的示意图;
图9为图8中沿DD方向剖开的剖面图;
图10为图9中E的放大图;
图11为图9中F的放大图;
附图标记说明:
第一壳体1,
第二壳体2,凸台201,阻断结构2011,螺钉安装孔202,
叶轮3,上盖301,叶片302,下盖303,第二进气口3011,叶片气道3021,叶片气道入口3021a,叶片气道出口3021b,斜槽3022,叶轮装配孔3031,预定位孔3031a,铆接孔3031b,溢胶孔3031c,沉台3032,焊接缝30321,
电机4,转子主轴401,螺钉孔402,
涡流气路5,第一进气口501,上层风道502,下层风道503,第一出气口504,第一出气口上半部分5041,第一出气口下半部分5042,
轴套6。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1、图2、图3、图4、图5和图6所示,在一实施例中一种风机,包括:第一壳体1、第二壳体2、叶轮3和电机4,第一壳体1和第二壳体2固定连接形成涡流气路5,涡流气路5包括第一进气口501、上层风道502、下层风道503和第一出气口504,第一进气口501设置于第一壳体1的顶面,叶轮3位于上层风道502内,第一出气口504位于下层风道503;叶轮3包括上盖301、叶片302和下盖303,叶片302设置于上盖301和下盖303之间,上盖301设置有第二进气口3011,下盖303的直径大于上盖301的外圆直径,下盖303作为上层风道502和下层风道503之间的分割结构,下盖303与第一壳体1的内壁设置有间隙;电机4的上端面设置有转子主轴401,第二壳体2和叶轮3通过转子主轴401同轴装配在电机4上。
具体地,风机包括第一壳体1、第二壳体2、叶轮3和电机4,第一壳体1和第二壳体2固定连接,比如可以在第一壳体1和第二壳体2上分别设置安装孔,通过安装孔和螺钉配合将第一壳体固定在第二壳体上,第一壳体1和第二壳体2连接形成涡流气路5,涡流气路5包括第一进气口501、上层风道502、下层风道503和第一出气口504,第一进气口501设置于第一壳体1的顶面,叶 轮3位于上层风道502内,第一出气口504位于下层风道503,第一出气口504由第一壳体1和第二壳体2装配后形成,第一出气口上半部分5041位于第一壳体1上,第一出气口下半部分5042位于第二壳体2上。
叶轮3包括上盖301、叶片302和下盖303,叶片302设置于上盖301和下盖303之间,上盖301设置有第二进气口3011,下盖303的直径大于上盖301的外圆直径,下盖303作为上层风道502和下层风道503之间的分割结构,下盖303与第一壳体1的内壁设置有间隙。该间隙的直径为2~4mm,优选为3.5mm。下盖303的厚度为1~2mm,优选为1.5mm。第二进气口3011在上盖301的位置与第一进气口501在第一壳体1的位置对应,气体从第一进气口501进入,通过第二进气口3011进入叶轮3。叶片302为圆弧状,叶片302沿上盖301的圆周分布,进一步地,叶片302沿上盖301的圆周均匀分布,叶片302的数量可以根据需要设置,本实施例中设置了11片叶片。相邻两片叶片302、上盖301、下盖303形成叶片气道3021,该叶片气道3021两端开放,近第二进气口3011的一端为叶片气道入口3021a,远离第二进气口3011的一端为叶片气道出口3021b,叶片气道3021沿上盖301的圆周分布。电机4带动叶轮3旋转时,气体从第二进气口3011进入,在叶片气道入口前端分流进入各个叶片气道入口3021a,在叶片气道3021内加速,从叶片气道出口3021b排出汇合。
电机4的上端面设置有转子主轴401,第二壳体2和叶轮3通过转子主轴401同轴装配在电机4上。电机4上端面上还设置有螺钉孔402,第二壳体2设置有螺钉安装孔202,通过螺钉连接电机4的螺钉孔402与第二壳体2的螺钉安装孔202固定,螺钉安装孔202采用沉头设计,保证安装完成后,电机转子主轴401的轴心与第二壳体2的轴心对齐无偏心。电机4带动叶轮3高速旋转,涡流气路5内的气体由第一进气口501到第一出气口504流动,形成一定压力和流量的气流,由第一出气口504输出到呼吸机管网系统。
电机转子主轴401与叶轮装配孔3031的轴套过盈配合,第二壳体2与电机4固定连接后,固定第二壳体2与电机4,再在叶轮上端面施加压力,将电机转子主轴401过盈装配到叶轮装配孔3031的轴套里。
电机4高速旋转带动叶轮3高速旋转,叶片气道3021内气体往远离轴心方向流动,瞬间在叶片气道3021内沿径向产生一定的真空梯度,大气迅速由第一进气口501流入叶片气道入口3021a,由叶片气道入口3021a流入叶片气道3021补充真空,此过程随着叶轮的旋转,叶片气道3021内气体的持续运动而持续进行,叶片气道出口3021b形成持续的气流。由于叶片的下盖303的隔离,补充到叶片气道3021内的气体只能通过第一进气口501进入,从而避免叶片气道出口3021b的气体绕回进入叶片气道3021而形成气流短路,无法输出一定压力与流量的气体。
叶片的下盖303为上层风道502和下层风道503的分隔结构。从叶片气道3021输出的具有一定流速的气体进入到上层风道502,沿第一壳体1的内壁流动进入下层风道503,由于叶片的下盖303与第一壳体1的内壁之间的间隙较小,避免了上层风道502和下层风道503内的高速气流激烈冲撞交汇,从而降低气动噪音。同时由于叶片的下盖303与第一壳体1的内壁之间的间隙a较小,在上层风道502和下层风道503之间形成一个气阻d,当叶片气道3021输出的气体流量超出一定值时,上层风道502内气体形成一个初级压力p0,上层风道502内维持一个稳定的初级压力p0,能有效的维持一个稳定的气动条件,避免产生不确定的涡流异响,从而有效降低涡流噪声。
本申请的实施例中,在一定压力下,通过调整间隙的大小可以调整上层风道502和下层风道503之间的气阻d和初级压力p0,从而调节气体从上层风道502通过叶片的下盖303进入下层风道503时的流速而调节气体的流体状态,达到控制涡流气路内空气动力噪声的目的。
在一些实施例中,第二壳体内还设置有凸台201,该凸台201的上端面对应第一出气口504处设置有阻断结构2011。进一步地,该阻断结构2011的横截面形状为扇形。该阻断结构2011的尺寸可以根据第一出气口504的尺寸进行设置。该阻断结构2011的设置可以避免上层风道502内的气体直接进入第一出气口504,并由第一出气口504排出,从而保持上层风道502内无压力差,流速均匀,进一步减小涡流气路5中的空气动力噪声;同时,保持叶轮3平衡旋转,减弱叶轮3因失衡旋转产生的机械振动及旋转噪声。
本申请的实施例中,上层风道502内气体以一定的流速,通过叶轮的下盖303,进入下层风道503,产生平行于电机的转子主轴401轴心的分速度,方向与叶轮的下盖303所在平面垂直,沿第二壳体2的内壁往电机方向流动,由于下层风道503的截面为“U”形样式,如图3所示,其特点为两端为高点,中间为最低点,当部分气流流过最低点时沿“U”形内壁往上流动返回高点,阻断结构2011位于此高点处,阻断了此部分向上流动的气流对从叶片气道3021高速流出气流的冲击,避免由此带来的空气动力噪声。
如图7、图8、图9和图10所示,在一些实施例中,叶轮3的下盖303还设置有叶轮装配孔3031,该叶轮装配孔3031铆接轴套6,叶轮3通过电机的转子主轴401与轴套6配合固定在电机4上,叶轮装配孔3031为三级阶梯孔,一级为预定位孔3031a,该预定位孔3031a与轴套6过渡配合,二级为铆接孔3031b,该铆接孔3031b与轴套6过盈配合,三级为溢胶孔3031c,该溢胶孔3031c与轴套6间隙配合。
具体地,预定位孔3031a与轴套6过渡配合,可以保证轴套6与叶轮3同轴装配;铆接孔3031b与轴套6过盈配合,溢胶孔3031c轴套6间隙配合以容纳铆接孔3031b与轴套6过盈配合过程溢 出的胶,以便于清理而不影响装配精度,从而降低振动噪声。
在一些实施例中,叶轮的上盖301为锥形造型,该上盖301的顶端小,该上盖301的底端大。具体地,叶轮的上盖301为锥形造型,该上盖301的顶端小,该上盖301的底端大,对应的叶片302的高度从前端到后端逐渐变小,叶轮的上盖301和与叶轮的下盖303之间为非等距结构。叶轮的上盖301的圆锥母线为一段圆弧。叶片302的形状为圆弧形状。这样的设计可以减小叶轮3中气流的传导噪声,进而降低噪声。
如图9和图11所示,在一些实施例中,叶轮3的材质为工程塑料,叶片302和上盖301为一体,叶片302远离第二进气口3011的一端设置有斜槽3022,下盖303上对应斜槽3022的位置处设置有沉台3032,该沉台3032上设置有焊接缝30321,通过叶片的斜槽3022与下盖的沉台3032配合定位预装配,再通过焊接缝30321焊接斜槽3022和沉台3032形成叶轮整体。这样可以避免叶轮组装或者二次加工过程中因误差造成的噪声。
一种呼吸机,包括上述任一实施例中的风机。具有该风机的呼吸机噪声小,增加了呼吸机的适用性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种风机,其特征在于,包括:第一壳体、第二壳体、叶轮和电机,
    所述第一壳体和所述第二壳体固定连接形成涡流气路,所述涡流气路包括第一进气口、上层风道、下层风道和第一出气口,所述第一进气口设置于所述第一壳体的顶面,所述叶轮位于所述上层风道内,所述第一出气口位于所述下层风道;
    所述叶轮包括上盖、叶片和下盖,所述叶片设置于所述上盖和所述下盖之间,所述上盖设置有第二进气口,所述下盖的直径大于所述上盖的外圆直径,所述下盖作为所述上层风道和所述下层风道之间的分割结构,所述下盖与所述第一壳体的内壁设置有间隙;
    所述电机设置有转子主轴,所述第二壳体和所述叶轮通过所述转子主轴同轴装配在所述电机上。
  2. 根据权利要求1所述的风机,其特征在于,所述间隙的直径为2~4mm。
  3. 根据权利要求2所述的风机,其特征在于,所述间隙的直径为3.5mm。
  4. 根据权利要求2所述的风机,其特征在于,所述下盖的厚度为1~2mm。
  5. 根据权利要求1所述的风机,其特征在于,所述第二壳体内设置有凸台,所述凸台的上端面对应所述第一出气口处设置有阻断结构。
  6. 根据权利要求5所述的风机,其特征在于,所述阻断结构的横截面形状为扇形。
  7. 根据权利要求1所述的风机,其特征在于,所述叶轮的所述下盖设置有叶轮装配孔,所述叶轮装配孔铆接轴套,所述叶轮通过所述电机的所述转子主轴与所述轴套配合固定在所述电机上,所述叶轮装配孔为三级阶梯孔,一级为预定位孔,所述预定位孔与所述轴套过渡配合,二级为铆接孔,所述铆接孔与所述轴套过盈配合,三级为溢胶孔,所述溢胶孔与所述轴套间隙配合。
  8. 根据权利要求1所述的风机,其特征在于,所述叶轮的所述上盖为锥形造型。
  9. 根据权利要求1所述的风机,其特征在于,所述叶轮的材质为工程塑料,所述叶片和所述上盖为一体,所述叶片远离所述第二进气口的一端设置有斜槽,所述下盖上对应所述斜槽的位置处设置有沉台,所述沉台上设置有焊接缝,通过所述叶片的所述斜槽与所述下盖的所述沉台配合定位预装配,再通过所述焊接缝焊接所述斜槽和所述沉台形成叶轮整体。
  10. 一种呼吸机,其特征在于,包括如权利要求1至9任意一项所述的风机。
PCT/CN2019/105152 2018-09-13 2019-09-10 风机及具有该风机的呼吸机 WO2020052553A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811069732.0 2018-09-13
CN201811069732.0A CN108980086B (zh) 2018-09-13 2018-09-13 风机及具有该风机的呼吸机

Publications (1)

Publication Number Publication Date
WO2020052553A1 true WO2020052553A1 (zh) 2020-03-19

Family

ID=64546189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105152 WO2020052553A1 (zh) 2018-09-13 2019-09-10 风机及具有该风机的呼吸机

Country Status (2)

Country Link
CN (1) CN108980086B (zh)
WO (1) WO2020052553A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108980086B (zh) * 2018-09-13 2024-04-30 深圳融昕医疗科技有限公司 风机及具有该风机的呼吸机
CN113018613A (zh) * 2019-12-24 2021-06-25 南京理工大学 一种产生正压气体的叶轮装置和呼吸机
CN111734655B (zh) * 2020-07-31 2020-12-29 宁波丰沃涡轮增压系统有限公司 呼吸机用涡轮风机
CN112108640B (zh) * 2020-09-24 2021-10-08 河北煜剑节能技术有限公司 一种烤包余热收集罩
CN114776610A (zh) * 2022-04-14 2022-07-22 杭州贝丰科技有限公司 一种气源装置及便携式呼吸机
CN115030908A (zh) * 2022-04-22 2022-09-09 杭州贝丰科技股份有限公司 一种低噪声涡轮风机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201021670Y (zh) * 2007-02-13 2008-02-13 雃博股份有限公司 稳压式鼓风机
CN101688539A (zh) * 2007-06-25 2010-03-31 艾尔芬 调节传送气体的装置,特别是呼吸装置
US20110014074A1 (en) * 2003-03-07 2011-01-20 Servo Magnetics Incorporated Low profile d.c. brushless motor for an impeller mechanism or the like
CN106422017A (zh) * 2016-10-14 2017-02-22 广州南北电子科技有限公司 一种呼吸机的鼓风装置
CN207621050U (zh) * 2017-11-30 2018-07-17 深圳市美好创亿医疗科技有限公司 风机及具有该风机的呼吸机
CN108980086A (zh) * 2018-09-13 2018-12-11 深圳融昕医疗科技有限公司 风机及具有该风机的呼吸机
CN208816367U (zh) * 2018-09-13 2019-05-03 深圳融昕医疗科技有限公司 风机及具有该风机的呼吸机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362860A (zh) * 2012-04-02 2013-10-23 珠海格力电器股份有限公司 高速流体动力机械、及其转子的构成方法、装配方法
CN102797702A (zh) * 2012-08-20 2012-11-28 上海通用风机股份有限公司 一种小流量离心风机窄焊接叶轮及离心风机
JP5211302B1 (ja) * 2012-09-03 2013-06-12 株式会社メトラン 送風機
CN105526192A (zh) * 2014-10-22 2016-04-27 江苏振华泵业制造有限公司 离心泵闭式叶轮合壁连接结构
CN204458492U (zh) * 2015-02-02 2015-07-08 重庆乾钰机械有限责任公司 铝合金水泵叶轮
CN206092500U (zh) * 2016-08-31 2017-04-12 漆思静 叶轮、风机和呼吸机
CN206560585U (zh) * 2016-10-14 2017-10-17 广州和普乐健康科技有限公司 一种呼吸机的鼓风装置
DE202017103925U1 (de) * 2017-02-23 2017-07-20 Ebm-Papst Landshut Gmbh Einstückiges Gebläserad
CN207247548U (zh) * 2017-09-29 2018-04-17 宁波宝工电器有限公司 一种低噪音的暖风机
CN209212651U (zh) * 2018-09-13 2019-08-06 深圳融昕医疗科技有限公司 叶轮、具有该叶轮的风机及具有该风机的呼吸机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014074A1 (en) * 2003-03-07 2011-01-20 Servo Magnetics Incorporated Low profile d.c. brushless motor for an impeller mechanism or the like
CN201021670Y (zh) * 2007-02-13 2008-02-13 雃博股份有限公司 稳压式鼓风机
CN101688539A (zh) * 2007-06-25 2010-03-31 艾尔芬 调节传送气体的装置,特别是呼吸装置
CN106422017A (zh) * 2016-10-14 2017-02-22 广州南北电子科技有限公司 一种呼吸机的鼓风装置
CN207621050U (zh) * 2017-11-30 2018-07-17 深圳市美好创亿医疗科技有限公司 风机及具有该风机的呼吸机
CN108980086A (zh) * 2018-09-13 2018-12-11 深圳融昕医疗科技有限公司 风机及具有该风机的呼吸机
CN208816367U (zh) * 2018-09-13 2019-05-03 深圳融昕医疗科技有限公司 风机及具有该风机的呼吸机

Also Published As

Publication number Publication date
CN108980086B (zh) 2024-04-30
CN108980086A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2020052553A1 (zh) 风机及具有该风机的呼吸机
US11353030B2 (en) Compact low noise efficient blower for CPAP devices
CN113007106B (zh) 叶轮和马达组件
AU2002315917B2 (en) Double-Ended Blower and Volutes Therefor
US9427538B2 (en) Multiple stage blowers and volutes therefor
US8225786B2 (en) Double-ended blower and volutes therefor
CN208816367U (zh) 风机及具有该风机的呼吸机
US20210077760A1 (en) Blowing device and fluid control device
JP2023165725A (ja) 呼吸補助システム及び呼吸補助システムのための送風機
CN109973410A (zh) 一种无蜗壳离心通风机
CN209212651U (zh) 叶轮、具有该叶轮的风机及具有该风机的呼吸机
JPH06213198A (ja) 空気調和機用室外機ユニット
JP2021041285A (ja) Cpap装置
US20240229805A9 (en) Compact low noise efficient blower for cpap devices
CN215927830U (zh) 一种降噪风机及呼吸机
WO2019235421A1 (ja) 送風装置、流体制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860209

Country of ref document: EP

Kind code of ref document: A1