WO2020052380A1 - 一种信息发送、接收方法、设备及装置 - Google Patents

一种信息发送、接收方法、设备及装置 Download PDF

Info

Publication number
WO2020052380A1
WO2020052380A1 PCT/CN2019/099633 CN2019099633W WO2020052380A1 WO 2020052380 A1 WO2020052380 A1 WO 2020052380A1 CN 2019099633 W CN2019099633 W CN 2019099633W WO 2020052380 A1 WO2020052380 A1 WO 2020052380A1
Authority
WO
WIPO (PCT)
Prior art keywords
pssch
terminal device
dmrss
information
symbol
Prior art date
Application number
PCT/CN2019/099633
Other languages
English (en)
French (fr)
Inventor
向铮铮
赵德华
李添泽
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19859463.2A priority Critical patent/EP3852297A4/en
Priority to BR112021004713-1A priority patent/BR112021004713A2/pt
Priority to JP2021514063A priority patent/JP7222076B2/ja
Publication of WO2020052380A1 publication Critical patent/WO2020052380A1/zh
Priority to US17/199,761 priority patent/US20210203462A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method, a device, and a device for sending and receiving information.
  • V2X Vehicle-to-everything as the key technology of future intelligent transportation system (ITS), including vehicle-to-vehicle (V2V), vehicle-to-vehicle Facilities (vehicle-to-infrastructure (V2I)), direct communication between vehicles and pedestrians (vehicle-to-pedestrian (V2P)), and communication interaction between vehicles and vehicles (vehicle-to-network (V2N)).
  • V2X technology can well adapt to different application scenarios, and obtain a series of traffic information such as real-time road conditions, roads, and pedestrians through communication, which greatly improves traffic safety, reduces congestion, and improves traffic efficiency.
  • V2X technology is also used for autonomous driving and intelligent transportation
  • the innovation of the Internet of Vehicles provides a basic platform that is low cost and easy to implement.
  • the physical side link shared channel PSSCH
  • the demodulation reference signal (DMRS) configuration of the PSSCH basically follows the DMRS configuration scheme of the physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • OFDM orthogonal frequency division multiplexing
  • the 5G new radio (new radio, NR) system for PSSCH, it has not provided the DMRS configuration scheme.
  • the embodiments of the present application provide a method, a device, and a device for sending and receiving information, which are used to provide a DMRS configuration scheme in a PSSCH of V2X in an NR system.
  • an information sending method includes: determining, by the first terminal device, at least one piece of information about the number or positions of m DMRSs carried on the PSSCH according to the first information, where m is a positive integer, and The first information includes at least one of a subcarrier interval, a duration of the PSSCH, or a channel coherence time; the first terminal device sends the m DMRSs to a second terminal device.
  • the method may be executed by a first communication device.
  • the first communication device may be a terminal device or a communication device capable of supporting the functions required by the terminal device to implement the method.
  • the first communication device is the first terminal device, and of course, it may be other communication devices.
  • Device such as a chip system.
  • At least one piece of information on the number or position of m DMRSs on the PSSCH may be determined according to at least one factor of the subcarrier interval, the duration of the PSSCH, or the channel coherence time.
  • the reference channel coherence time may be selected when determining the DMRS in the PSSCH. For example, the time interval between two adjacent DMRSs configured may be less than or equal to the channel coherence time, thereby improving the accuracy of channel estimation based on the DMRS.
  • the first information includes the subcarrier interval, the duration of the PSSCH, and the channel coherence time
  • the first terminal device determines m number of bearers on the PSSCH according to the first information.
  • At least one piece of information in the number or position of DMRS includes: the first terminal device determines a duration of a symbol occupied by the PSSCH according to the subcarrier interval; the first terminal device determines a duration of a symbol occupied by the PSSCH; The duration and the channel coherence time determine a time interval between two adjacent DMRSs in the m DMRSs; the first terminal device determines the m according to the duration of the PSSCH and the time interval At least one piece of information in the number or position of each DMRS.
  • the first terminal device or the second terminal device may directly calculate at least one piece of information of the number or positions of m DMRSs according to the first information in a more direct manner.
  • the embodiment of the present application also considers the channel coherence time, which can make the distribution interval of the DMRS in the time domain less than or equal to the channel coherence time, so that a more accurate estimation of the time-varying channel can be made.
  • the first terminal device determines at least one piece of information about the number or location of m DMRSs carried on the PSSCH according to the first information, including: the first terminal device according to the first information Information, and a correspondence relationship between at least one of a pre-configured subcarrier interval, a duration of a PSSCH, or a channel coherence time and a DMRS, to determine at least one piece of information about the number or positions of the m DMRSs.
  • the correspondence relationship between at least one of the subcarrier interval, the duration of the PSSCH, or the channel coherence time and the DMRS is configured in advance, so that the first terminal device or the second terminal device only needs to know the first information, and can then One piece of information and the corresponding relationship directly determine at least one piece of information in the number or position of m DMRSs, which is relatively simple and helps to simplify the implementation of the terminal device.
  • the method further includes: the first terminal device determining that a PSCCH transmitted by the PSSCH and the first terminal device is a TDM mode or an FDM mode.
  • the positions of the m DMRSs may be different, so the first terminal device or the second terminal device can determine the mode between the PSSCH and the PSSCH transmitted by the terminal device.
  • the PSSCH transmitted by the PSSCH and the second terminal device is in a TDM mode, then: the first symbol of the PSSCH is not occupied by the AGC, and the first of the m DMRSs in the time domain DMRS occupy the first symbol of the PSSCH; or, the first symbol of the PSSCH is occupied by the AGC, and the first DMRS in the time domain of the m DMRSs occupy the second symbol of the PSSCH.
  • the first DMRS in the time domain of the m DMRSs can be placed at the front of the PSSCH as much as possible, which helps to speed up the decoding process and reduce transmission delay.
  • the first symbol of the PSSCH can be configured as data or AGC. Therefore, if the first symbol of the PSSCH is occupied by the AGC, the first DMRS in the time domain of the m DMRSs occupies the PSSCH.
  • the second symbol if the first symbol of the PSSCH is not occupied by the AGC, the first DMRS in the time domain of the m DMRS occupies the first symbol of the PSSCH, so as to make the DMRS as advanced as possible, and it is also compatible with existing AGC distribution.
  • a PSCCH transmitted by the PSSCH and the second terminal device is in an FDM mode, and a first DMRS in the time domain among the m DMRSs occupies a symbol of the PSSCH sequence number n,
  • the total duration of the n symbols with sequence numbers of 0 to n-1 of the PSSCH is less than or equal to the channel coherence time, and n is a positive integer.
  • the pre-DMRS configuration scheme may cause a large DMRS overhead
  • the FSCH mode is used between PSSCH and PSCCH
  • the pre-DMRS configuration scheme described in the previous section may continue to be used, and accelerated decoding may no longer be achieved.
  • the embodiment of the present application proposes that if the FSCH mode is between the PSSCH and the PSCCH, the pre-DMRS configuration scheme may not be used, but the position of the DMRS may be rearranged. If the FSCH mode is between PSSCH and PSCCH, the first DMRS in the time domain among m DMRSs occupies the PSSCH sequence number n symbol, and the PSSCH sequence number is 0 to n-1.
  • the duration is less than or equal to the channel coherence time.
  • the first DMRS in the time domain of m DMRSs can cover the symbols of the PSSCH sequence numbers 0 to n-1, that is, the entire PSSCH can be achieved through m DMRSs. cover.
  • the DMRS preamble method is not adopted, which helps to save the DMRS overhead to a certain extent.
  • a time interval between two adjacent DMRSs in the m DMRSs is less than or equal to the channel coherence time.
  • an information receiving method includes: determining, by the second terminal device, at least one of the number or positions of m DMRSs carried on the PSSCH according to the first information, where m is a positive integer, and The first information includes at least one of a subcarrier interval, a duration of the PSSCH, or a channel coherence time; the second terminal device receives the m DMRSs from the first terminal device.
  • the method may be executed by a second communication device.
  • the second communication device may be a terminal device or a communication device capable of supporting the functions required by the terminal device to implement the method.
  • the second communication device is a second terminal device, and of course, it may be other communication devices.
  • Device such as a chip system.
  • the first information includes the subcarrier interval, the duration of the PSSCH, and the channel coherence time
  • the second terminal device determines m number of bearers on the PSSCH according to the first information.
  • At least one piece of information in the number or position of DMRS includes: the second terminal device determines a duration of a symbol occupied by the PSSCH according to the subcarrier interval; and the second terminal device determines a duration of one symbol occupied by the PSSCH;
  • the duration and the channel coherence time determine the time interval between two adjacent DMRSs in the m DMRSs; the second terminal device determines the m according to the duration of the PSSCH and the time interval At least one piece of information in the number or position of each DMRS.
  • the second terminal device determines at least one piece of information about the number or location of m DMRSs carried on the PSSCH according to the first information, including: the second terminal device according to the first information Information, and a correspondence relationship between at least one of a pre-configured subcarrier interval, a duration of a PSSCH, or a channel coherence time and a DMRS, to determine at least one piece of information about the number or positions of the m DMRSs.
  • the method further includes: the second terminal device determining that a PSCCH transmitted by the PSSCH and the second terminal device is a TDM mode or an FDM mode.
  • the PSSCH transmitted by the PSSCH and the second terminal device is in a TDM mode, then: the first symbol of the PSSCH is not occupied by the AGC, and the first of the m DMRSs in the time domain DMRS occupy the first symbol of the PSSCH; or, the first symbol of the PSSCH is occupied by the AGC, and the first DMRS in the time domain of the m DMRSs occupy the second symbol of the PSSCH.
  • a PSCCH transmitted by the PSSCH and the second terminal device is in an FDM mode, and a first DMRS in the time domain among the m DMRSs occupies a symbol of the PSSCH sequence number n,
  • the total duration of the n symbols with sequence numbers of 0 to n-1 of the PSSCH is less than or equal to the channel coherence time, and n is a positive integer.
  • a time interval between two adjacent DMRSs in the m DMRSs is less than or equal to the channel coherence time.
  • a first communication device is provided.
  • the communication device is, for example, the first communication device described in the foregoing, and is, for example, a first terminal device.
  • the communication device has the function of realizing the first terminal device in the method design.
  • the communication device includes, for example, a processor and a transceiver that are coupled to each other.
  • the transceiver is implemented as, for example, a communication interface.
  • the communication interface herein may be understood as a radio frequency transceiver component in a first terminal device.
  • a processor configured to determine at least one of the number or position of m DMRSs carried on the PSSCH according to the first information, where m is a positive integer, and the first information includes a subcarrier interval and a duration of the PSSCH Or at least one of channel coherence times;
  • a transceiver configured to send the m DMRSs to a second terminal device.
  • the first information includes the subcarrier interval, the duration of the PSSCH, and the channel coherence time
  • the processor is configured to determine the bearer on the PSSCH according to the first information in the following manner. at least one piece of information on the number or position of m DMRSs: determining a duration of a symbol occupied by the PSSCH according to the subcarrier interval; determining the duration of the one symbol and the channel coherence time according to the duration of the one symbol a time interval between two adjacent DMRSs in the m DMRSs; and at least one piece of information of the number or position of the m DMRSs is determined according to a duration of the PSSCH and the time interval.
  • the processor is configured to determine at least one piece of information about the number or positions of m DMRSs carried on the PSSCH according to the first information in the following manner: according to the first information, and a pre-configured Correspondence between at least one of a subcarrier interval, a duration of a PSSCH, or a channel coherence time with a DMRS, and at least one piece of information about the number or positions of the m DMRSs is determined.
  • the processor is further configured to: a physical side row control channel PSCCH transmitted by the PSSCH and the terminal device in a time division multiplexed TDM mode or a frequency division multiplexed FDM mode.
  • the PSCCH transmitted by the PSSCH and the terminal device is in a TDM mode, then: the first symbol of the PSSCH is not occupied by an automatic gain control AGC, and the m DMRSs in the time domain The first DMRS occupies the first symbol of the PSSCH; or, the first symbol of the PSSCH is occupied by the AGC, and the first DMRS of the m DMRSs in the time domain occupies the second symbol of the PSSCH.
  • a PSCCH transmitted by the PSSCH and the terminal device is in an FDM mode, and a first DMRS in the time domain of the m DMRSs occupies a symbol of the PSSCH sequence number n.
  • the total duration of the n symbols of the PSSCH with sequence numbers from 0 to n-1 is less than or equal to the channel coherence time, and n is a positive integer.
  • a time interval between two adjacent DMRSs in the m DMRSs is less than or equal to the channel coherence time.
  • a second communication device is provided.
  • the communication device is, for example, the second communication device described in the foregoing, and is, for example, a second terminal device.
  • the communication device has the function of implementing the second terminal device in the method design.
  • the communication device includes, for example, a processor and a transceiver coupled to each other.
  • the transceiver is implemented as, for example, a communication interface.
  • the communication interface herein can be understood as a radio frequency transceiver component in a second terminal device.
  • a processor configured to determine at least one of the number or position of m DMRSs carried on the PSSCH according to the first information, where m is a positive integer, and the first information includes a subcarrier interval and a duration of the PSSCH Or at least one of channel coherence times;
  • a transceiver configured to receive the m DMRSs from the first terminal device.
  • the first information includes the subcarrier interval, the duration of the PSSCH, and the channel coherence time
  • the processor is configured to determine the bearer on the PSSCH according to the first information in the following manner. at least one piece of information on the number or position of m DMRSs: determining a duration of a symbol occupied by the PSSCH according to the subcarrier interval; determining the duration of the one symbol and the channel coherence time according to the duration of the one symbol a time interval between two adjacent DMRSs in the m DMRSs; and at least one piece of information of the number or position of the m DMRSs is determined according to a duration of the PSSCH and the time interval.
  • the processor is configured to determine at least one piece of information about the number or positions of m DMRSs carried on the PSSCH according to the first information in the following manner: according to the first information, and a pre-configured Correspondence between at least one of a subcarrier interval, a duration of a PSSCH, or a channel coherence time with a DMRS, and at least one piece of information about the number or positions of the m DMRSs is determined.
  • the processor is further configured to determine that a physical side row control channel PSCCH transmitted by the PSSCH and the terminal device is a time division multiplexed TDM mode or a frequency division multiplexed FDM mode.
  • the PSSCH transmitted by the PSSCH and the terminal device is in a TDM mode, then: the first symbol of the PSSCH is not occupied by the AGC, and the first DMRS in the time domain among the m DMRSs Occupy the first symbol of the PSSCH; or, the first symbol of the PSSCH is occupied by the AGC, and the first DMRS in the time domain of the m DMRSs occupy the second symbol of the PSSCH.
  • a PSCCH transmitted by the PSSCH and the terminal device is in an FDM mode, and a first DMRS in the time domain of the m DMRSs occupies a symbol of the PSSCH sequence number n.
  • the total duration of the n symbols of the PSSCH with sequence numbers from 0 to n-1 is less than or equal to the channel coherence time, and n is a positive integer.
  • a time interval between two adjacent DMRSs in the m DMRSs is less than or equal to the channel coherence time.
  • a third communication device is provided.
  • the communication device is, for example, the first communication device described in the foregoing, and is, for example, a first terminal device.
  • the communication device has the function of realizing the first terminal device in the method design. These functions can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform corresponding functions in the first aspect or the method provided by any possible implementation manner of the first aspect.
  • a fourth communication device is provided.
  • the communication device is, for example, the second communication device described in the foregoing, such as a terminal device.
  • the communication device has the function of implementing the second terminal device in the method design. These functions can be realized by hardware, or they can be implemented by hardware to execute corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform corresponding functions in the method provided in the second aspect or any one of the possible implementation manners of the second aspect.
  • a fifth communication device is provided.
  • the communication device may be the first communication device in the above method design, such as a first terminal device, or a chip provided in the first terminal device.
  • the communication device includes: a memory for storing computer executable program code; and a processor, the processor being coupled to the memory.
  • the program code stored in the memory includes instructions.
  • the processor executes the instructions, the fifth communication device is caused to execute the foregoing first aspect or the method in any one of the possible implementation manners of the first aspect.
  • the fifth communication device may further include a communication interface.
  • the communication interface may be a transceiver in the first terminal device, for example, a radio frequency transceiver component in the first terminal device.
  • the fifth communication device is a chip provided in the first terminal device, the communication interface may be an input / output interface of the chip, such as an input / output pin.
  • a sixth communication device may be a second communication device in the above method design, such as a terminal device, or a chip provided in the second terminal device.
  • the communication device includes: a memory for storing computer executable program code; and a processor, the processor being coupled to the memory.
  • the program code stored in the memory includes instructions. When the processor executes the instructions, the sixth communication device is caused to execute the method in the second aspect or any one of the possible implementation manners of the second aspect.
  • the sixth communication device may further include a communication interface. If the sixth communication device is a second terminal device, the communication interface may be a transceiver in the second terminal device, for example, a radio frequency transceiver component in the second terminal device. Or, if the sixth communication device is a chip provided in the second terminal device, the communication interface may be an input / output interface of the chip, such as an input / output pin.
  • a first communication system may include the first communication device according to the third aspect, the third communication device according to the fifth aspect, or the fifth communication device according to the seventh aspect.
  • a second communication device according to the fourth aspect, a fourth communication device according to the sixth aspect, or a sixth communication device according to the eighth aspect may include the first communication device according to the third aspect, the third communication device according to the fifth aspect, or the fifth communication device according to the seventh aspect.
  • a second communication device according to the fourth aspect, a fourth communication device according to the sixth aspect, or a sixth communication device according to the eighth aspect.
  • a computer storage medium has instructions stored therein, which when run on a computer, cause the computer to execute the first aspect or any one of the possible designs of the first aspect. The method described.
  • a computer storage medium has instructions stored thereon, which when run on a computer, causes the computer to execute the second aspect or any possible design of the second aspect. As described in the method.
  • a computer program product containing instructions.
  • the computer program product stores instructions, and when the computer program product runs on the computer, causes the computer to execute the foregoing first aspect or any one of the first aspect. The method described in the design.
  • a computer program product containing instructions.
  • the computer program product stores instructions, and when the computer program product runs on the computer, causes the computer to execute the second aspect or any one of the second aspect. The method described in the design.
  • This embodiment of the present application provides a solution for configuring a DMRS in a PSSCH of V2X in an NR system. And when determining the DMRS in the PSSCH, a reference channel coherence time can be selected, thereby improving the accuracy of channel estimation based on the DMRS.
  • 1 is a schematic diagram of a DMRS configuration scheme for PUSCH and PSSCH in an LTE system
  • FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 3 is a flowchart of an information sending and receiving method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a configuration scheme of a pre-DMRS provided by an embodiment of the present application.
  • FIG. 5 is another schematic diagram of a configuration scheme of a pre-DMRS provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a comparison between a pre-DMRS configuration scheme and a non-pre-DMRS configuration scheme according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of a solution for flexibly configuring DMRS according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a communication device capable of implementing functions of a network device according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of a communication device capable of implementing functions of a terminal device according to an embodiment of the present application.
  • 10A-10B are two schematic diagrams of a communication device according to an embodiment of the present application.
  • Terminal devices including devices that provide voice and / or data connectivity to users, may include, for example, a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) and exchange voice and / or data with the RAN.
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, remote Station (remote station), access point (access point (AP)), remote terminal device (remote terminal), access terminal device (access terminal), user terminal device (user terminal), user agent (user agent), or user Equipment (user device) and so on.
  • a mobile phone or a "cellular" phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer-built or vehicle-mounted mobile device, a smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with lower power consumption, devices with limited storage capabilities, or devices with limited computing capabilities.
  • it includes bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanner, and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanner and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. They are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction.
  • Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart helmets, smart jewelry, etc. for physical signs monitoring.
  • Network equipment for example, including access network (AN) equipment, such as base stations (for example, access points), may refer to equipment in the access network that communicates with wireless terminal equipment through one or more cells over the air interface.
  • the network device can be used to convert the received air frame and the Internet Protocol (IP) packet to each other, and serve as a router between the terminal device and the rest of the access network, where the rest of the access network can include an IP network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network device may include an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It can also include the next generation node B (gNB) in the fifth generation (5G) new radio (NR) system, or it can also include the cloud access network (cloud radio access A centralized unit (CU) and a distributed unit (DU) in a network (CloudRAN) system are not limited in the embodiments of the present application.
  • NodeB or eNB or e-NodeB, evolutional NodeB in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It can also include the next generation node B (gNB) in the fifth generation (5G) new radio (NR) system, or it can also include the cloud access network (cloud radio access A centralized unit (CU) and a distributed unit (DU) in a network (Cloud
  • V2X is the key technology of future ITS, which includes direct communication of V2V, V2I, V2P, and communication interaction of V2N.
  • V2X technology can be well adapted to different application scenarios, and obtain a series of traffic information such as real-time road conditions, roads, and pedestrians through communication, which greatly improves traffic safety, reduces congestion, and improves traffic efficiency.
  • V2X technology is also used for autonomous driving and intelligent transportation.
  • the innovation of the Internet of Vehicles provides a basic platform that is low cost and easy to implement.
  • V2X is a communication technology designed for high-speed mobile applications. According to the latest regulations, V2X direct communication needs to support a maximum speed of 500km / h in the 6GHz frequency band.
  • the channel coherence time which can be expressed by T C , refers to the statistical average of the time interval during which the channel impulse response remains unchanged, which is inversely proportional to the Doppler expansion, and describes the time-varying characteristics of the frequency dispersion of the channel in the time domain.
  • T C the channel coherence time
  • f d is the maximum Doppler frequency
  • v is the maximum relative speed between the transmitting end and the receiving end
  • f c is the carrier frequency
  • c is the speed of light.
  • the distribution interval of the DMRS in the time domain may be less than or equal to the channel coherence time.
  • Sub-carrier spacing is the interval value between the center position or the peak position of two adjacent sub-carriers in the frequency domain in an OFDM system. For example, it may be 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz, and the like. For example, different subcarrier intervals may be integer multiples of two. Understandably, other values can be designed.
  • the subcarrier interval in the LTE system is 15KHz
  • the subcarrier interval in the NR system can be 15kHz, or 30kHz, or 60kHz, or 120kHz.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15 [kHz] 0 15 1 30 2 60 3 120 4 240
  • is used to indicate the subcarrier interval.
  • the subcarrier interval is 15kHz
  • the length of a time slot corresponding to different subcarrier intervals is different, the length of a time slot corresponding to a subcarrier interval of 15kHz is 0.5ms, the length of a time slot corresponding to a subcarrier interval of 60kHz is 0.125ms, and so on . Then correspondingly, the length of a symbol corresponding to different subcarrier intervals is different.
  • “Multiple” means two or more. In view of this, in the embodiments of the present application, “multiple” can also be understood as “at least two". "At least one” can be understood as one or more, such as one, two or more. For example, including at least one means including one, two, or more, and without limiting which ones are included, for example, including at least one of A, B, and C, then including A, B, C, A and B, A and C, B and C, or A and B and C. "And / or” describes the association relationship of the associated objects, and indicates that there can be three kinds of relationships. For example, A and / or B can mean that there are three cases in which A exists alone, A and B exist, and B exists alone. In addition, the character "/”, unless otherwise specified, generally indicates that the related objects are an "or" relationship.
  • ordinal numbers such as “first” and “second” are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • first terminal device and the second terminal device are only used to distinguish different terminal devices, but not to limit the functions, priorities, or degrees of importance of the two terminal devices.
  • PSSCH can be used for communication between terminal equipment and terminal equipment.
  • the side-link (SL) used for V2X communication uses the time-frequency resources of the uplink (up-link, UL)
  • the DMRS configuration of the PSSCH basically follows the DMRS configuration of the PUSCH
  • the PSSCH increases the number of OFDM symbols occupied by the DMRS in a slot from 2 to 4 in the PUSCH.
  • FIG. 1 for a comparison of the positions of the PUSCH and the DMRS in the PSSCH in a slot under the LTE standard.
  • the diagonally drawn boxes in FIG. 1 represent the symbols where the DMRS is located.
  • At least one piece of information on the number or position of m DMRSs on the PSSCH may be determined according to at least one factor of the subcarrier interval, the duration of the PSSCH, or the channel coherence time.
  • the technical solutions provided in the embodiments of the present application may be applied to a 5G NR system, or an LTE system, or may be applied to a next-generation mobile communication system or other similar communication systems, which are not specifically limited.
  • Figure 2 includes a network device and two terminal devices. These two terminal devices are referred to as a first terminal device and a second terminal device, both of which are vehicles.
  • the two terminal devices are connected to a network device, and The two terminal devices can also communicate with each other, for example, the two terminal devices can communicate through the PSSCH.
  • the number of terminal devices in FIG. 2 is only an example. In actual applications, network devices can provide services for multiple terminal devices, and multiple terminal devices can also communicate with each other.
  • the network device in FIG. 2 is, for example, an access network device, such as a base station.
  • the access network device corresponding to the different devices in different systems for example, in the fourth generation mobile communication technology (the 4 th generation, 4G) system, the eNB may correspond, a corresponding access network device in the system 5G 5G system , Such as gNB.
  • FIG. 3 is a flowchart of the method.
  • the method is applied to the network architecture shown in FIG. 2 as an example.
  • the method may be executed by two communication devices, such as a first communication device and a second communication device, where the first communication device may be a network device or capable of supporting the functions required by the network device to implement the method.
  • the communication device, or the first communication device may be a terminal device or a communication device (such as a chip system) capable of supporting the terminal device to implement the functions required by the method.
  • the second communication device is a communication device.
  • the second communication device may be a network device or a communication device capable of supporting functions required by the network device to implement the method, or the second communication device may be a terminal device or capable of supporting the terminal device to implement the method.
  • Communication device (such as a chip system) with required functions.
  • the first communication device and the second communication device are both terminal devices, or the first communication device is a terminal device, and the second communication device is capable of supporting
  • a terminal device is a communication device that implements the functions required by the method, and so on.
  • the method is performed by the terminal device and the terminal device as an example, that is, the first communication device is a terminal device and the second communication device is also a terminal device.
  • these two terminal devices are referred to as a first terminal device and a second terminal device, respectively.
  • the first terminal device described below may be the first terminal device in the network architecture shown in FIG. 2.
  • the second terminal device may be a second terminal device in the network architecture shown in FIG. 2.
  • the first terminal device determines at least one piece of information about the number or positions of m DMRSs carried on the PSSCH according to the first information, where m is a positive integer, and the first information includes a subcarrier interval and a duration of the PSSCH. At least one of duration or channel coherence time.
  • the first terminal device determines at least one piece of information about the number or location of m DMRSs carried on the PSSCH according to the first information. For example, the first terminal device determines the m DMRSs carried on the PSSCH according to the first information. The number or location of the DMRS, or the first terminal device determines the number and location of the m DMRSs carried on the PSSCH according to the first information.
  • the first information may include the subcarrier interval.
  • the first information may also include the duration of the PSSCH.
  • the duration of the PSSCH can also be called the length of the PSSCH, or the length of the PSSCH in the time domain, or the symbol occupied by the PSSCH (for example, OFDM symbols. For simplicity, the OFDM symbols and other time domains will be described later).
  • the symbol is abbreviated as a symbol) number, or the number of symbols called the PSSCH continuous, and the like, which are not specifically limited.
  • the distribution interval of the DMRS in the time domain should be less than or equal to the channel coherence time, so the first information may also include the channel coherence time.
  • the content specifically included in the first information is not limited.
  • the first information includes at least one of a subcarrier interval, a duration of the PSSCH, or a channel coherence time, which can be understood as, for example, the first information includes a subcarrier interval, a duration of the PSSCH, and a channel coherence time, or the first information
  • the information includes the subcarrier interval and the channel coherence time, or the first information includes the subcarrier interval and the PSSCH duration, or the first information includes the PSSCH duration and the channel coherence time, or the first information includes the subcarrier interval and the PSSCH duration Duration or channel coherence time.
  • the first information may include at least one of subcarrier interval, PSSCH duration, or channel coherence time, as long as it is information that can be used to determine the number and / or location of DMRS.
  • subcarrier interval PSSCH duration
  • channel coherence time as long as it is information that can be used to determine the number and / or location of DMRS.
  • the first terminal device determines at least one piece of information of the number or location of m DMRSs carried on the PSSCH according to the first information, and may adopt different methods.
  • the first terminal device may determine a duration of one symbol according to a subcarrier interval.
  • the distribution interval of the DMRS in the time domain may be made smaller than or equal to the channel coherence time. Therefore, the first terminal device may determine a time interval between two adjacent DMRSs in m DMRSs according to a duration of a time domain symbol and a channel coherence time, where two adjacent DMRSs in m DMRSs The time interval between them is less than or equal to the channel coherence time.
  • the first terminal device also determines at least one piece of information on the number or location of the m DMRSs according to the duration of the PSSCH and the time interval between two adjacent DMRSs in the m DMRSs. For example, the first terminal device can determine the value of m and the position of the m DMRSs in the PSSCH according to the duration of the PSSCH and the time interval between two adjacent DMRSs in the m DMRSs.
  • the first terminal device directly calculates at least one piece of information about the number or positions of the m DMRSs according to the first information. Then, in order to simplify the implementation of the first terminal device, an embodiment of the present application further provides a method, that is, the first terminal device determines at least one piece of information of the number or positions of m DMRSs carried on the PSSCH according to the first information.
  • the second method In the second method, the first terminal device may determine the correspondence relationship between the first information and the DMRS according to at least one of a pre-configured subcarrier interval, a PSSCH duration, or a channel coherence time. Information on at least one of the number or location of m DMRSs.
  • the correspondence relationship between at least one of the subcarrier interval, the duration of the PSSCH, or the channel coherence time and the DMRS is pre-configured, so that the first terminal device only needs to know the first information, and then according to the first information and the correspondence, The relationship directly determines at least one piece of information in the number or position of the m DMRSs.
  • the correspondence between at least one of the subcarrier interval, the duration of the PSSCH, or the channel coherence time and the DMRS can be understood as the relationship between at least one of the subcarrier interval, the duration of the PSSCH, or the channel coherence time and the DMRS. Correspondence between at least one piece of information in the number or position.
  • the pre-configuration is the correspondence between the subcarrier interval, the duration of the PSSCH and the channel coherence time, and the number and position of the DMRS. Then, the first terminal device may determine the subcarrier interval, the duration of the PSSCH, and the channel coherence time, and The corresponding relationship determines the number and positions of m DMRSs, or the first terminal device may determine the number and positions of m DMRSs according to the subcarrier interval and the duration of the PSSCH and the corresponding relationship; or, the pre-configured is The correspondence between the subcarrier interval and the duration of the PSSCH and the number and location of DMRSs, the first terminal device may determine the number and locations of the m DMRSs according to the subcarrier interval and the duration of the PSSCH and the correspondence, and many more.
  • the operation process of the first terminal device can be effectively simplified, and the efficiency of determining at least one piece of information in the number or positions of the m DMRSs can be improved.
  • the corresponding relationship is defined by a protocol, or is pre-configured by the network device to the terminal device, or is configured by the terminal device and notified to other terminal devices, then the terminal device configured with the corresponding relationship may be the first A terminal device may also be another terminal device. Please refer to Table 2 for an example of a correspondence relationship:
  • Table 2 can be understood as the correspondence between the subcarrier interval and the duration of the PSSCH, and the number and location of DMRS. However, when setting the correspondence, the location of the DMRS is also determined, so it also involves the use of channel coherence time. Therefore, Table 2 can also be understood as the correspondence between the subcarrier interval, the duration of the PSSCH, and the channel coherence time and the number and position of DMRS.
  • Table 2 in the column of DMRS position, 0 to 5 in the abscissa of the first line can be considered as a pointer, not the position or quantity of DMRS.
  • the numbers in the lower line such as 3, 6, 9, etc. It can be considered to indicate the position of the symbol occupied by the DMRS.
  • the sequence number of the symbols here is based on the sequence number of the symbols occupied by the PSSCH, starting from 0 in the time domain order.
  • FIG. 4 illustrates several situations in the corresponding relationship shown in Table 2.
  • a box drawn with a diagonal line indicates a symbol occupied by the DMRS
  • a box drawn with a horizontal line indicates a symbol not occupied by the PSSCH
  • a symbol indicated by a blank box and a symbol occupied by the DMRS are symbols occupied by the PSSCH.
  • the duration of a symbol is 71.4us (in the case of using a standard cyclic prefix (CP)). If the channel coherence time is 0.152ms, then m DMRSs are adjacent.
  • CP standard cyclic prefix
  • the DMRS should not be greater than 2 symbols to ensure that the channel coherence time is less than 0.152ms in the time domain, and the issue of minimizing the number of DMRS must be considered. Therefore, in Figure 4, when the subcarrier interval is 15kHz , The time interval between two adjacent DMRSs is 2 symbols, not more than 2 symbols, less than the channel coherence time, and the time interval between two adjacent DMRSs is not set to 1 symbol, Try to make the DMRS not be too densely distributed and improve the transmission efficiency of PSSCH. As the continuous length of the time slot where the PSSCH is located increases, the number of DMRS needs to be increased accordingly. For example, the subcarrier interval is 15 kHz.
  • the duration of the PSSCH is 9 symbols, the number of DMRS is 3, which respectively occupy the symbol of sequence number 0, the symbol of sequence number 3, and the symbol of sequence number 6. It is the first symbol in the PSSCH, the fourth symbol in the PSSCH, and the seventh symbol in the PSSCH.
  • the subcarrier interval is 60 kHz.
  • the duration of the PSSCH is 8 symbols, the number of DMRS is 1 and the symbol occupying a sequence number of 0 is the first symbol of the PSSCH.
  • the duration of the PSSCH is 14 Number of DMRS, the number of DMRS is 2, occupying the symbol of sequence number 0 and the symbol of sequence number 8, respectively, that is, the first symbol of PSSCH and the ninth symbol in PSSCH, etc., no more description.
  • the first terminal device determines at least one of the number or positions of m DMRSs carried on the PSSCH according to the first information, the second method is not adopted, but the first method described above is adopted, Then the determined results may also be the same as those in Table 2 or Figure 4.
  • a pre-DMRS configuration scheme may be used. That is, the first DMRS in the time domain of the m DMRSs can be placed at the front of the PSSCH as much as possible, which helps to speed up the decoding process and reduce transmission delay.
  • the first symbol of the PSSCH can be configured as data or automatic gain control (AGC).
  • AGC automatic gain control
  • the first symbol of the PSSCH is occupied by data.
  • the first symbol of the PSSCH is occupied by data. It can also be understood that the first symbol of the PSSCH is not occupied by the AGC. In this case, because the embodiment of the present application uses a pre-configured DMRS configuration, the first DMRS in the time domain among m DMRSs can occupy the first symbol of the PSSCH, as shown in Table 2 and Figure 4. Take this as an example.
  • the first symbol of PSSCH is occupied by AGC.
  • the DMRS obviously can no longer occupy the first symbol of the PSSCH, so the DMRS can be moved forward accordingly.
  • the first DMRS in the time domain of m DMRSs can occupy the second PSSCH. symbol.
  • the second symbol of the PSSCH is also occupied by signals other than the DMRS, the DMRS can continue to move backward.
  • the first DMRS in the time domain of the m DMRSs occupies the second PSSCH. Symbol as an example.
  • the first terminal device uses the first manner as described above to determine at least one piece of information of the number or position of m DMRSs carried on the PSSCH according to the first information
  • the first terminal device according to the first symbol of the PSSCH Whether it is occupied by the AGC can determine the position of the first DMRS in the time domain among the m DMRSs. According to the first information, the number of m DMRSs or at least one of the positions can also be directly determined.
  • the first terminal device uses the second manner as described above to determine at least one piece of information about the number or positions of m DMRSs carried on the PSSCH according to the first information, then if the m DMRSs are in the time domain
  • the first DMRS occupies the second symbol of the PSSCH.
  • Table 3 For an example of a correspondence relationship, refer to Table 3:
  • Table 3 can be understood as the correspondence between the subcarrier interval and the duration of the PSSCH and the number and location of DMRS. However, when setting the correspondence, the location of the DMRS is also determined, so it also involves the use of channel coherence time. Therefore, Table 3 can also be understood as the correspondence between the subcarrier interval, the duration of the PSSCH, and the channel coherence time and the number and position of DMRS.
  • the DMRS position column, 0 to 5 in the abscissa of the first line can be considered as a pointer, not the position or quantity of the DMRS.
  • the numbers in the lower line such as 3, 6, 9, etc. It can be considered to indicate the position of the symbol occupied by the DMRS.
  • the subcarrier interval is 15 kHz. If the length of the PSSCH is 4 symbols, the DMRS position only includes one DMRS occupying the symbol with the sequence number 1.
  • the subcarrier interval is 15 kHz. If the length of the PSSCH is 7, it is not enough to include only one DMRS occupying the symbol with the sequence number 1 in the DMRS position, because the symbol between the DMRS and the last symbol of the PSSCH is not sufficient.
  • the sequence number of the symbols here is based on the sequence number of the symbols occupied by the PSSCH, starting from 0 in the time domain order.
  • FIG. 5 illustrates several situations in the correspondence relationship shown in Table 3.
  • the box marked with "/” indicates the symbol occupied by DMRS
  • the box marked with " ⁇ ” indicates the symbol occupied by AGC
  • the box marked with horizontal line indicates the symbol not occupied by PSSCH
  • the blank box indicates
  • the symbol occupied by DMRS and the symbol occupied by DMRS are the symbols occupied by PSSCH.
  • CP standard cyclic prefix
  • the DMRS should not be greater than 2 symbols to ensure that the channel coherence time is less than 0.152ms in the time domain, and the issue of minimizing the number of DMRS must be considered. Therefore, in Figure 5, when the subcarrier interval is 15kHz , The time interval between two adjacent DMRSs is 2 symbols, not more than 2 symbols, less than the channel coherence time, and the time interval between two adjacent DMRSs is not set to 1 symbol, Try to make the DMRS not be too densely distributed and improve the transmission efficiency of PSSCH. As the continuous length of the time slot where the PSSCH is located increases, the number of DMRS needs to be increased accordingly. For example, the subcarrier interval is 15kHz.
  • the duration of the PSSCH is 10 symbols
  • the number of DMRS is 3, which respectively occupy the symbol of sequence number 1, the symbol of sequence number 4, and the symbol of sequence number 7, and It is the second symbol of the PSSCH, the fifth symbol in the PSSCH, and the eighth symbol in the PSSCH.
  • the subcarrier interval is 60 kHz.
  • the duration of the PSSCH is 9 symbols
  • the number of DMRS is 1 and the symbol occupying the sequence number 1 is the second symbol of the PSSCH.
  • the duration of the PSSCH is 14 symbols
  • the number of DMRS is 2, occupying the symbol of sequence number 1 and the symbol of sequence number 9, respectively, that is, the second symbol of PSSCH and the tenth symbol in PSSCH, etc., no longer Excessive description.
  • the first terminal device determines at least one of the number or positions of m DMRSs carried on the PSSCH according to the first information, the second method is not adopted, but the first method described above is adopted, Then the determined result may be the same as the result in Table 3 or Figure 5.
  • the physical sidelink control channel (PSCCH) transmitted by the PSSCH and the first terminal device may be in a time division multiplexing (TDM or TDMed) mode, or may be Frequency division multiplexing (FDM or FDMed).
  • TSCH mode time division multiplexing
  • FDM or FDMed Frequency division multiplexing
  • the pre-configured DMRS configuration scheme described above can help speed up the decoding process and reduce transmission delay.
  • the FDM mode is used between PSSCH and PSCCH, then the pre-DMRS configuration scheme described in the previous section may not be used to accelerate the decoding process.
  • the front-end DMRS configuration scheme may require more DMRS, thereby increasing the DMRS overhead.
  • the embodiment of the present application provides another DMRS configuration scheme, which can be referred to as a non-front-end DMRS configuration scheme or a flexible DMRS configuration scheme.
  • a non-front-end DMRS configuration scheme or a flexible DMRS configuration scheme.
  • the first One DMRS is not carried in the first symbol of the PSSCH.
  • FIG. 6 The first line in FIG. 6 represents a pre-DMRS configuration scheme
  • the second line in FIG. 6 represents a non-pre-DMRS configuration scheme provided by the embodiment of the present application. It can be seen that in the same Under the condition of channel coherence time, from the perspective of DMRS overhead, the number of DMRS required by the pre-configured DMRS configuration scheme will be greater.
  • the embodiment of the present application proposes that if the FSCH mode is used between the PSSCH and the PSCCH, the pre-DMRS configuration scheme may not be used, but the scheme for flexibly configuring the DMRS provided by the embodiment of the present application may be used.
  • the pre-DMRS configuration scheme described above can be used in the case where the PSSCH and PSCCH are in the TDM mode, and the following will introduce the flexibility that can be used in the case where the PSSCH and the PSCCH are in the FDM mode.
  • the first terminal device before determining at least one of the number or positions of the m DMRSs, it may first determine whether the PSCCH transmitted by the PSSCH and the first terminal device is a TDM mode or an FDM mode.
  • the first terminal device may determine to use the preceding DMRS configuration scheme described in the foregoing, that is, if the first symbol of the PSSCH is occupied by the AGC, the first terminal device determines the first DMRS in the time domain among the m DMRSs. The second symbol of the PSSCH is occupied.
  • the first terminal device determines that the first DMRS in the time domain of the m DMRSs occupies the first symbol of the PSSCH; or, if the PSSCH and the first symbol The PSCCH transmitted by a terminal device is in the FDM mode, then the first terminal device may determine to use the flexible configuration DMRS scheme described below to determine the position of the first DMRS in the time domain among the m DMRSs. Alternatively, the first terminal device may not perform the operation of determining whether the PSCCH transmitted by the PSSCH and the first terminal device is the TDM mode or the FDM mode.
  • the PSCCH transmitted by the PSSCH and the first terminal device is the TDM mode or the FDM mode is predetermined.
  • the first terminal device is known, so there is no need to determine it anymore, it is only necessary to adopt a front-end DMRS configuration scheme or a flexible configuration DMRS scheme.
  • the manner in which the first terminal device determines at least one of the number or positions of m DMRSs according to the first information is the same as the foregoing, and may be based on the first manner or The second way to determine, it can be understood that, in this scheme, different from the previous DMRS configuration scheme described above, the position of the symbol occupied by the first DMRS in the time domain among m DMRSs different.
  • the first DMRS in the time domain among m DMRSs occupies the PSSCH sequence number n symbol, and the total duration of the n symbols of the PSSCH sequence number 0 to n-1 is less than or equal to the channel Coherence time, n is a positive integer.
  • the sequence number of the symbols occupied by the PSSCH starts from 0 in the time domain order, then the symbol with the sequence number n should be the n + 1th symbol in the PSSCH.
  • n 3 if the symbol occupied by the PSSCH is a sequence number written from 0, the symbol with the sequence number 3 in the PSSCH should be the fourth symbol in the PSSCH.
  • the value of n is, for example, specified by a protocol, or configured by a network device to a terminal device, or configured by a terminal device, and notified to other terminal devices. If configured by a terminal device, configure n
  • the valued terminal device may be a first terminal device, or may be another terminal device.
  • the first terminal device may determine the value of n That is, the position of the first DMRS in the time domain among the m DMRSs is determined. According to the first information, at least one of the number or positions of the m DMRSs can also be directly determined. If the first terminal device uses the second manner as described above to determine at least one piece of information about the number or positions of m DMRSs carried on the PSSCH according to the first information, then if the m DMRSs are in the time domain The first DMRS occupies the symbol of the PSSCH sequence number n. For an example of a correspondence relationship, refer to Table 4:
  • N in Table 4 indicates the duration of the PSSCH in the second column of Table 4.
  • Each calculation formula in the DMRS position column calculates the value of n. among them, Represents rounding up X.
  • Table 4 can be understood as the correspondence between the subcarrier interval and the duration of the PSSCH, and the number and location of DMRS. However, when setting this correspondence, the location of the DMRS must be determined, so it also involves the use of channel coherence time. Therefore, Table 4 can also be understood as the correspondence between the subcarrier interval, the duration of the PSSCH, and the channel coherence time and the number and position of DMRS. For the related introduction of Table 4, you can refer to the introduction of Table 2 or Table 3 in the previous article, and I will not go into details.
  • FIG. 7 illustrates several situations in the corresponding relationship shown in Table 5.
  • a box drawn with a diagonal line indicates a symbol occupied by the DMRS
  • a box drawn with a horizontal line indicates a symbol not occupied by the PSSCH
  • a symbol indicated by a blank box and a symbol occupied by the DMRS are symbols occupied by the PSSCH.
  • the duration of a symbol is 71.4us (in the case of using a standard cyclic prefix (CP)). If the channel coherence time is 0.152ms, then m DMRSs are adjacent.
  • CP standard cyclic prefix
  • DMRS should not be greater than 2 symbols to ensure channel coherence time whose time domain interval is less than 0.152ms, and the issue of minimizing the number of DMRS must also be considered. Therefore, in Figure 7, it can be seen that when the subcarrier interval is 15kHz , The time interval between two adjacent DMRSs is 2 symbols, not more than 2 symbols, less than the channel coherence time, and the time interval between two adjacent DMRSs is not set to 1 symbol, Try to make the DMRS not be too densely distributed and improve the transmission efficiency of PSSCH. In addition, Figure 7 uses a flexible configuration of DMRS. Therefore, the first DMRS in the time domain among m DMRSs does not occupy the first time domain symbol in the PSSCH.
  • the channel coherence time must also be considered, so that The first DMRS in the time domain can cover the first time domain symbol in the PSSCH.
  • the total duration of the n symbols of the PSSCH sequence number 0 to n-1 can be less than or equal to the channel coherence time.
  • the first DMRS in m DMRSs occupies a symbol with a sequence number of 2 in the PSSCH, which is the third symbol in the PSSCH, and the first in the PSSCH.
  • the total duration of each symbol and the second symbol (also the symbol with the sequence number 0 and the symbol with the sequence number 1) is two symbols, which is less than or equal to the channel coherence time.
  • the number of DMRS needs to be increased accordingly.
  • the subcarrier interval is 15kHz. If the duration of the PSSCH is 11 symbols, the number of DMRS is 3, which respectively occupy the symbol of sequence number 2, the symbol of sequence number 5, and the symbol of sequence number 8. That is the third symbol of the PSSCH, the sixth symbol in the PSSCH, and the ninth symbol in the PSSCH.
  • the subcarrier interval is 60 kHz. If the duration of the PSSCH is less than or equal to 14 symbols, the number of DMRS is 1 and the symbol occupying the sequence number 6 is the seventh symbol of the PSSCH.
  • the first terminal device determines at least one of the number or positions of m DMRSs carried on the PSSCH according to the first information, the second method is not adopted, but the first method described above is adopted, Then the determined results may be the same as those in Table 4 or Figure 7.
  • FIG. 7 can be compared with FIG. 4 or FIG. 5, since a scheme for flexibly configuring DMRS is used, taking a subcarrier interval of 15 kHz as an example, when the continuous length of the PSSCH is ⁇ 4,5,7,8,10 , 11,13,14 ⁇ , compared with the pre-DMRS scheme, it can save the overhead of a DMRS and help improve the transmission efficiency of PSSCH.
  • the second terminal device determines at least one piece of information about the number or positions of m DMRSs carried on the PSSCH according to the first information, where m is a positive integer, and the first information includes a subcarrier interval and a duration of the PSSCH. At least one of duration or channel coherence time.
  • the second terminal device may also first determine at least one piece of information about the number or positions of m DMRSs carried on the PSSCH according to the first information.
  • the second terminal device before determining the number or location of at least one of the m DMRSs, it may first determine whether the PSCCH transmitted by the PSSCH and the second terminal device is the TDM mode or the FDM mode. If it is the TDM mode, then The second terminal device may determine to use the preceding DMRS configuration scheme described in the foregoing, that is, if the first symbol of the PSSCH is occupied by the AGC, the second terminal device determines the first DMRS in the time domain among the m DMRSs. Occupy the second symbol of the PSSCH. Take the sequence number of the symbol occupied by the PSSCH starting from 0 in the time domain order as an example. The second symbol of the PSSCH is the symbol of sequence number 1.
  • the second terminal device determines that the first DMRS in the time domain among the m DMRSs occupies the first symbol of the PSSCH; or if the PSCCH transmitted by the PSSCH and the second terminal device is in the FDM mode, the second terminal device may It is determined to use a flexible configuration DMRS scheme described below to determine the position of the first DMRS in the time domain among the m DMRSs.
  • the second terminal device may not perform the operation of determining whether the PSCCH transmitted by the PSSCH and the second terminal device is the TDM mode or the FDM mode. For example, whether the PSCCH transmitted by the PSSCH and the second terminal device is the TDM mode or the FDM mode is predetermined.
  • the second terminal device is known, so there is no need to determine it anymore, it is only necessary to adopt a pre-DMRS configuration scheme or a flexible DMRS configuration scheme accordingly.
  • the PSSCH transmitted by the first terminal device and the PSSCH transmitted by the second terminal device may refer to the same PSSCH in the embodiments of the present application.
  • the second terminal device may determine at least one of the number or location of m DMRSs carried on the PSSCH according to the first information in the same manner as the first terminal device. For details, refer to the description in S31. Not much more.
  • S32 can be executed simultaneously with S31, or S31 is executed before S32, or S31 is executed after S32, and there is no specific limitation.
  • the first terminal device sends the m DMRSs to the second terminal device, and the second terminal device receives the m DMRSs from the first terminal device.
  • the first terminal device After the first terminal device determines at least one of the number or location of m DMRSs on the PSSCH, it can send m DMRSs to the second terminal device, and then the second terminal device can receive m DMRSs and pass m DMRS, the second terminal device can perform operations such as channel estimation.
  • At least one piece of information on the number or position of m DMRSs on the PSSCH may be determined according to at least one factor of the subcarrier interval, the duration of the PSSCH, or the channel coherence time.
  • the reference channel coherence time may be selected when determining the DMRS in the PSSCH.
  • the time interval between two adjacent DMRSs configured may be less than or equal to the channel coherence time, thereby improving the accuracy of channel estimation based on the DMRS.
  • the embodiments of the present application respectively provide a DMRS configuration solution for the TDM mode and the FDM mode, so that the overhead of the DMRS can be minimized in the FDM mode, and the link transmission efficiency of the PSSCH is improved.
  • FIG. 8 is a schematic structural diagram of a communication device 800.
  • the communication device 800 can implement the functions of the first terminal device involved in the foregoing.
  • the communication device 800 may be the first terminal device described above, or may be a chip provided in the first terminal device described above.
  • the communication device 800 may include a processor 801 and a transceiver 802.
  • the processor 801 may be configured to execute S31 in the embodiment shown in FIG. 3 and / or other processes for supporting the technology described herein, for example, may be executed by the first terminal device described in the foregoing. All other processes or some other processes except the sending and receiving processes.
  • the transceiver 802 may be used to perform S33 in the embodiment shown in FIG. 3, and / or other processes for supporting the technology described herein, for example, may perform all of the operations performed by the first terminal device described above. Sending and receiving process or part of sending and receiving process.
  • the processor 801 is configured to determine at least one piece of information about the number or positions of m DMRSs carried on the PSSCH according to the first information, where m is a positive integer, and the first information includes a subcarrier interval, the PSSCH At least one of duration or channel coherence time;
  • the transceiver 802 is configured to send the m DMRSs to a second terminal device.
  • FIG. 9 shows a schematic structural diagram of a communication device 900.
  • the communication device 900 may implement the functions of the second terminal device involved in the foregoing.
  • the communication device 900 may be the second terminal device described above, or may be a chip provided in the second terminal device described above.
  • the communication device 900 may include a processor 901 and a transceiver 902.
  • the processor 901 may be configured to execute S32 in the embodiment shown in FIG. 3, and / or other processes for supporting the technology described herein, for example, may be executed by the second terminal device described in the foregoing. All other processes or some other processes except the sending and receiving processes.
  • the transceiver 902 may be used to perform S33 in the embodiment shown in FIG. 3, and / or other processes for supporting the technology described herein, for example, may perform all of the operations performed by the second terminal device described above. Sending and receiving process or part of sending and receiving process.
  • the processor 901 is configured to determine at least one piece of information about the number or positions of m DMRSs carried on the PSSCH according to the first information, where m is a positive integer, and the first information includes a subcarrier interval, the PSSCH At least one of duration or channel coherence time;
  • the transceiver 902 is configured to receive the m DMRSs from the first terminal device.
  • the communication device 800 or the communication device 900 may also be implemented by the structure of the communication device 1000 as shown in FIG. 10A.
  • the communication device 1000 can implement the functions of the terminal equipment or the network equipment mentioned above.
  • the communication device 1000 may include a processor 1001.
  • the processor 1001 may be used to execute S31 in the embodiment shown in FIG. 3, and / or used to support the functions described herein.
  • Other technical processes may execute all other processes or part of other processes except the sending and receiving processes performed by the first terminal device described above; or the communication device 1000 is configured to implement the above-mentioned
  • the processor 1001 may be used to execute S32 in the embodiment shown in FIG. 3, and / or other processes for supporting the technology described herein, for example, the first All other processes or part of other processes performed by the two terminal devices except the sending and receiving processes.
  • the communication device 1000 can pass through a field-programmable gate array (FPGA), an application-specific integrated circuit (ASIC), a system chip (SoC), and a central processor (central processor). unit (CPU), network processor (NP), digital signal processor (DSP), microcontroller (microcontroller unit, MCU), or programmable controller (programmable logic device, PLD) or other integrated chips, the communication device 1000 may be set in the first terminal device or the second terminal device in the embodiment of the present application, so that the first terminal device or the second terminal device implements the provided in the embodiment of the present application. method.
  • FPGA field-programmable gate array
  • ASIC application-specific integrated circuit
  • SoC system chip
  • central processor central processor
  • unit CPU
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller unit
  • PLD programmable controller
  • the communication apparatus 1000 may include a transceiving component for communicating with other devices.
  • the transceiver component may be used to execute S33 in the embodiment shown in FIG. 3, and / or used to support Other processes for the techniques described herein.
  • a transceiver component is a communication interface. If the communication device 1000 is a first terminal device or a second terminal device, the communication interface may be a transceiver in the first terminal device or the second terminal device, such as the transceiver 802 or the transceiver.
  • the transceiver 902 is, for example, a radio frequency transceiver component in the first terminal device or the second terminal device, or, if the communication device 1000 is a chip set in the first terminal device or the second terminal device, the communication interface may be Input / output interface of the chip, such as input / output pins.
  • the communication device 1000 may further include a memory 1002, refer to FIG. 10B, where the memory 1002 is used to store computer programs or instructions, and the processor 1001 is used to decode and execute these computer programs or instruction. It should be understood that these computer programs or instructions may include the functional programs of the first terminal device or the second terminal device.
  • the first terminal device may be caused to implement the functions of the first terminal device in the method provided by the embodiment shown in FIG. 3 of the embodiment of the present application.
  • the functional program of the second terminal device is decoded and executed by the processor 1001
  • the second terminal device can be caused to implement the functions of the second terminal device in the method provided in the embodiment shown in FIG. 3 in the embodiment of the present application.
  • the function programs of the first terminal device or the second terminal device are stored in a memory external to the communication device 1000.
  • the function program of the first terminal device is decoded and executed by the processor 1001
  • a part or all of the content of the function program of the first terminal device is temporarily stored in the memory 1002.
  • the function program of the second terminal device is decoded and executed by the processor 1001
  • a part or all of the content of the function program of the second terminal device is temporarily stored in the memory 1002.
  • the function programs of the first terminal device or the second terminal device are set in a memory 1002 stored in the communication device 1000.
  • the communication device 1000 may be set in the first terminal device in the embodiment of the present application.
  • the function program of the second terminal device is stored in the memory 1002 inside the communication device 1000, the communication device 1000 may be set in the second terminal device in the embodiment of the present application.
  • part of the content of the function program of the first terminal device is stored in a memory external to the communication device 1000, and content of the other part of the function program of the first terminal device is stored inside the communication device 1000.
  • part of the content of the function program of these second terminal devices is stored in a memory external to the communication device 1000, and other content of the function program of these second terminal devices is stored in a memory 802 inside the communication device 1000.
  • the communication device 800, the communication device 900, and the communication device 1000 are presented in the form of dividing each functional module into corresponding functions, or may be presented in the form of dividing the functional modules in an integrated manner.
  • the "module” herein may refer to an ASIC, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices capable of providing the above functions.
  • the communication device 800 provided in the embodiment shown in FIG. 8 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 801, and the transceiver module may be implemented by the transceiver 802.
  • the processing module may be configured to execute S31 in the embodiment shown in FIG. 3, and / or other processes for supporting the technology described herein.
  • the transceiver module may be used to execute S33 in the embodiment shown in FIG. 3, and / or other processes for supporting the technology described herein.
  • a processing module is configured to determine at least one piece of information about the number or positions of m DMRSs carried on the PSSCH according to the first information, where m is a positive integer, and the first information includes a subcarrier interval, the PSSCH, At least one of duration or channel coherence time;
  • the transceiver module is configured to send the m DMRSs to the second terminal device.
  • the communication device 900 provided in the embodiment shown in FIG. 9 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 901, and the transceiver module may be implemented by the transceiver 902.
  • the processing module may be configured to execute S32 in the embodiment shown in FIG. 3, and / or other processes for supporting the technology described herein.
  • the transceiver module may be used to execute S33 in the embodiment shown in FIG. 3, and / or other processes for supporting the technology described herein.
  • a processing module is configured to determine at least one piece of information about the number or positions of m DMRSs carried on the PSSCH according to the first information, where m is a positive integer, and the first information includes a subcarrier interval, the PSSCH, At least one of duration or channel coherence time;
  • the transceiver module is configured to receive the m DMRSs from the first terminal device.
  • the communication device 800, the communication device 900, and the communication device 1000 provided in the embodiments of the present application can be used to execute the method provided in the embodiment shown in FIG. 3, the technical effects that can be obtained can refer to the foregoing method embodiments. No longer.
  • Embodiments of the present application are described with reference to flowcharts and / or block diagrams of methods, devices (systems), and computer program products according to the embodiments of the present application. It should be understood that each process and / or block in the flowcharts and / or block diagrams, and combinations of processes and / or blocks in the flowcharts and / or block diagrams can be implemented by computer program instructions.
  • These computer program instructions may be provided to a processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing device to produce a machine, so that the instructions generated by the processor of the computer or other programmable data processing device are used to generate instructions Means for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another readable storage medium. For example, the computer instructions may be transmitted from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD) ))Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息发送、接收方法、设备及装置,其中的信息发送方法包括:第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种,第一终端设备向第二终端设备发送所述m个DMRS。提供了在NR系统中配置V2X的PSSCH中的DMRS的方案。而且在确定PSSCH中的DMRS时可以选择参考信道相干时间,例如可以使得配置的两个相邻的DMRS之间的时间间隔小于或等于信道相干时间,从而可以提高根据DMRS进行信道估计的准确性。

Description

一种信息发送、接收方法、设备及装置
本申请要求在2018年9月14日提交国家知识产权局、申请号为201811075068.0、申请名称为“一种信息发送、接收方法、设备及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信息发送、接收方法、设备及装置。
背景技术
车与外界(vehicle-to-everything,V2X)作为未来智能交通运输系统(intelligent transport system,ITS)的关键技术,其包括了车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互。V2X技术可以很好的适应不同的应用场景,通过通信获得实时路况、道路、行人等一系列交通信息,大幅提升交通安全性、减少拥堵、提高交通效率,同时V2X技术也为自动驾驶、智能交通和车联网创新提供了低成本、易实施的基础平台。
在V2X中,物理侧行共享信道(physical sidelink shared channel,PSSCH)可用于终端设备与终端设备之间的通信。在长期演进(long term evolution,LTE)标准中,PSSCH的解调参考信号(demodulation reference signal,DMRS)配置基本沿用了物理上行共享信道(physical uplink shared channel,PUSCH)的DMRS配置方案,区别仅在于,为应对高移动性场景,PSSCH将一个时隙(slot)内DMRS占用的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号数由PUSCH中的2个增加至4个。可参考图1,给出了LTE标准下,一个时隙中的PUSCH与PSSCH中的DMRS的位置对比,图1中画斜线的方框代表DMRS所在的位置。
而在第五代移动通信技术(the 5 th generation,5G)新无线(new radio,NR)系统中,对于PSSCH来说,尚未提供DMRS的配置方案。
发明内容
本申请实施例提供一种信息发送、接收方法、设备及装置,用于提供一种NR系统中的V2X的PSSCH中的DMRS配置方案。
第一方面,提供一种信息发送方法,该方法包括:第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种;所述第一终端设备向第二终端设备发送所述m个DMRS。
该方法可由第一通信装置执行,第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,例如第一通信装置为第一终端设备,当然还可以是其他通信装置,例如芯片系统。
在本申请实施例中,可以根据子载波间隔、PSSCH的持续时长或信道相干时间中的至 少一种因素来确定PSSCH上的m个DMRS的个数或位置中的至少一个信息,从而提供了在NR系统中配置V2X的PSSCH中的DMRS的方案。且在确定PSSCH中的DMRS时可以选择参考信道相干时间,例如可以使得配置的两个相邻的DMRS之间的时间间隔小于或等于信道相干时间,从而可以提高根据DMRS进行信道估计的准确性。
在一个可能的设计中,所述第一信息包括所述子载波间隔、所述PSSCH的持续时长以及所述信道相干时间,所述第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,包括:所述第一终端设备根据所述子载波间隔确定所述PSSCH占用的一个符号的持续时长;所述第一终端设备根据所述一个符号的持续时长以及所述信道相干时间,确定所述m个DMRS中两个相邻的DMRS之间的时间间隔;所述第一终端设备根据所述PSSCH的持续时长和所述时间间隔确定所述m个DMRS的个数或位置中的至少一个信息。
第一终端设备或第二终端设备可以直接根据第一信息来计算m个DMRS的个数或位置中的至少一个信息,方式较为直接。而且本申请实施例还考虑了信道相干时间,可以令DMRS在时域的分布间隔小于或等于信道相干时间,从而可以对时变信道作出较准确的估计。
在一个可能的设计中,所述第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,包括:所述第一终端设备根据所述第一信息,以及预先配置的子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种与DMRS的对应关系,确定所述m个DMRS的个数或位置中的至少一个信息。
也就是,预先配置了子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种与DMRS的对应关系,从而第一终端设备或第二终端设备只需知道第一信息,就可以根据第一信息以及该对应关系直接确定m个DMRS的个数或位置中的至少一个信息,较为简单,有助于简化终端设备的实现。
在一个可能的设计中,所述方法还包括:所述第一终端设备确定所述PSSCH与所述第一终端设备传输的PSCCH为TDM模式或FDM模式。
如果PSSCH与终端设备传输的PSSCH之间的模式不同,则m个DMRS的位置可能会有所不同,因此第一终端设备或第二终端设备可以确定PSSCH与终端设备传输的PSSCH之间的模式。
在一个可能的设计中,所述PSSCH与所述第二终端设备传输的PSCCH为TDM模式,那么:所述PSSCH的首个符号未被AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的首个符号;或,所述PSSCH的首个符号被AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的第二个符号。
如果PSSCH与终端设备传输的PSCCH为TDM模式,为了加速解码过程,降低时延,可以使用前置的DMRS配置方案。也就是,可以将m个DMRS中在时域上的首个DMRS尽量放置在PSSCH的最前面,这样有助于加速解码过程,也降低传输时延。然而根据需求,在NR系统中,PSSCH的首个符号可以配置为数据或是AGC,因此,如果PSSCH的首个符号被AGC占用,则m个DMRS中在时域上的首个DMRS占用PSSCH的第二个符号,如果PSSCH的首个符号未被AGC占用,则m个DMRS中在时域上的首个DMRS占用PSSCH的首个符号,从而尽量使得DMRS前置,而且也兼容了现有的AGC的分布方式。
在一个可能的设计中,所述PSSCH与所述第二终端设备传输的PSCCH为FDM模式,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的序列号为n的符号,所述PSSCH的序列号为0~n-1的n个符号的总持续时长小于或等于所述信道相干时间,n为正整数。
考虑到前置的DMRS配置方案可能会使得DMRS的开销较大,而且如果PSSCH与PSCCH之间是FDM模式,则继续使用前文中所述的前置的DMRS配置方案,也可能无法再达到加速解码过程的效果,本申请实施例提出,如果PSSCH与PSCCH之间是FDM模式,则可以不使用前置的DMRS配置方案,而是重新安排DMRS的位置。如果PSSCH与PSCCH之间是FDM模式,则m个DMRS中在时域上的首个DMRS占用PSSCH的序列号为n的符号,PSSCH的序列号为0~n-1的n个符号的总持续时长小于或等于信道相干时间,这样可以使得m个DMRS中在时域上的首个DMRS能够覆盖PSSCH的序列号为0~n-1的符号,也就是通过m个DMRS能够实现对整个PSSCH的覆盖。而且未采用DMRS前置的方式,有助于在一定程度上节省DMRS的开销。
在一个可能的设计中,在所述PSSCH上,所述m个DMRS中的两个相邻的DMRS之间的时间间隔小于或等于所述信道相干时间。
使得m个DMRS中的两个相邻的DMRS之间的时间间隔小于或等于信道相干时间,可以提高根据DMRS进行信道估计的准确性。
第二方面,提供一种信息接收方法,该方法包括:第二终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种;所述第二终端设备接收来自第一终端设备的所述m个DMRS。
该方法可由第二通信装置执行,第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,例如第二通信装置为第二终端设备,当然还可以是其他通信装置,例如芯片系统。
在一个可能的设计中,所述第一信息包括所述子载波间隔、所述PSSCH的持续时长以及所述信道相干时间,所述第二终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,包括:所述第二终端设备根据所述子载波间隔确定所述PSSCH占用的一个符号的持续时长;所述第二终端设备根据所述一个符号的持续时长以及所述信道相干时间,确定所述m个DMRS中两个相邻的DMRS之间的时间间隔;所述第二终端设备根据所述PSSCH的持续时长和所述时间间隔确定所述m个DMRS的个数或位置中的至少一个信息。
在一个可能的设计中,所述第二终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,包括:所述第二终端设备根据所述第一信息,以及预先配置的子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种与DMRS的对应关系,确定所述m个DMRS的个数或位置中的至少一个信息。
在一个可能的设计中,所述方法还包括:所述第二终端设备确定所述PSSCH与所述第二终端设备传输的PSCCH为TDM模式或FDM模式。
在一个可能的设计中,所述PSSCH与所述第二终端设备传输的PSCCH为TDM模式,那么:所述PSSCH的首个符号未被AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的首个符号;或,所述PSSCH的首个符号被AGC占用,所述m个DMRS 中在时域上的首个DMRS占用所述PSSCH的第二个符号。
在一个可能的设计中,所述PSSCH与所述第二终端设备传输的PSCCH为FDM模式,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的序列号为n的符号,所述PSSCH的序列号为0~n-1的n个符号的总持续时长小于或等于所述信道相干时间,n为正整数。
在一个可能的设计中,在所述PSSCH上,所述m个DMRS中的两个相邻的DMRS之间的时间间隔小于或等于所述信道相干时间。
关于第二方面或第二方面的各种可能的设计所带来的技术效果,可参考对于第一方面或第一方面的各种设计的相关描述,不多赘述。
第三方面,提供第一种通信装置,该通信装置例如为前文中所述的第一通信装置,例如为第一终端设备。该通信装置具有实现上述方法设计中的第一终端设备的功能。该通信装置例如包括相互耦合的处理器和收发器,收发器例如实现为通信接口,这里的通信接口可以理解为是第一终端设备中的射频收发组件,具体的,
处理器,用于根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种;
收发器,用于向第二终端设备发送所述m个DMRS。
在一个可能的设计中,所述第一信息包括所述子载波间隔、所述PSSCH的持续时长以及所述信道相干时间,所述处理器用于通过如下方式根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息:根据所述子载波间隔确定所述PSSCH占用的一个符号的持续时长;根据所述一个符号的持续时长以及所述信道相干时间,确定所述m个DMRS中两个相邻的DMRS之间的时间间隔;根据所述PSSCH的持续时长和所述时间间隔确定所述m个DMRS的个数或位置中的至少一个信息。
在一个可能的设计中,所述处理器用于通过如下方式根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息:根据所述第一信息,以及预先配置的子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种与DMRS的对应关系,确定所述m个DMRS的个数或位置中的至少一个信息。
在一个可能的设计中,所述处理器还用于:所述PSSCH与所述终端设备传输的物理侧行控制信道PSCCH为时分复用TDM模式或频分复用FDM模式。
在一个可能的设计中,所述PSSCH与所述终端设备传输的PSCCH为TDM模式,那么:所述PSSCH的首个符号未被自动增益控制AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的首个符号;或,所述PSSCH的首个符号被AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的第二个符号。
在一个可能的设计中,所述PSSCH与所述终端设备传输的PSCCH为FDM模式,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的序列号为n的符号,所述PSSCH的序列号为0~n-1的n个符号的总持续时长小于或等于所述信道相干时间,n为正整数。
在一个可能的设计中,在所述PSSCH上,所述m个DMRS中的两个相邻的DMRS之间的时间间隔小于或等于所述信道相干时间。
关于第三方面或第三方面的各种可能的设计所带来的技术效果,可参考对于第一方面或第一方面的各种设计的相关描述,不多赘述。
第四方面,提供第二种通信装置,该通信装置例如为前文中所述的第二通信装置,例如为第二终端设备。该通信装置具有实现上述方法设计中的第二终端设备的功能。该通信装置例如包括相互耦合的处理器和收发器,收发器例如实现为通信接口,这里的通信接口可以理解为是第二终端设备中的射频收发组件,具体的,
处理器,用于根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种;
收发器,用于接收来自第一终端设备的所述m个DMRS。
在一个可能的设计中,所述第一信息包括所述子载波间隔、所述PSSCH的持续时长以及所述信道相干时间,所述处理器用于通过如下方式根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息:根据所述子载波间隔确定所述PSSCH占用的一个符号的持续时长;根据所述一个符号的持续时长以及所述信道相干时间,确定所述m个DMRS中两个相邻的DMRS之间的时间间隔;根据所述PSSCH的持续时长和所述时间间隔确定所述m个DMRS的个数或位置中的至少一个信息。
在一个可能的设计中,所述处理器用于通过如下方式根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息:根据所述第一信息,以及预先配置的子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种与DMRS的对应关系,确定所述m个DMRS的个数或位置中的至少一个信息。
在一个可能的设计中,所述处理器还用于:确定所述PSSCH与所述终端设备传输的物理侧行控制信道PSCCH为时分复用TDM模式或频分复用FDM模式。
在一个可能的设计中,所述PSSCH与所述终端设备传输的PSCCH为TDM模式,则:所述PSSCH的首个符号未被AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的首个符号;或,所述PSSCH的首个符号被AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的第二个符号。
在一个可能的设计中,所述PSSCH与所述终端设备传输的PSCCH为FDM模式,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的序列号为n的符号,所述PSSCH的序列号为0~n-1的n个符号的总持续时长小于或等于所述信道相干时间,n为正整数。
在一个可能的设计中,在所述PSSCH上,所述m个DMRS中的两个相邻的DMRS之间的时间间隔小于或等于所述信道相干时间。
关于第四方面或第四方面的各种可能的设计所带来的技术效果,可参考对于第二方面或第二方面的各种设计的相关描述,不多赘述。
第五方面,提供第三种通信装置,该通信装置例如为前文中所述的第一通信装置,例如为第一终端设备。该通信装置具有实现上述方法设计中的第一终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信装置的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第一方面或第一方面的任意一种可能的实施方式所提供的方法中的相应功能。
第六方面,提供第四种通信装置,该通信装置例如为前文中所述的第二通信装置,例如终端设备。该通信装置具有实现上述方法设计中的第二终端设备的功能。这些功能可以 通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信装置的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第二方面或第二方面的任意一种可能的实施方式所提供的方法中的相应功能。
第七方面,提供第五种通信装置。该通信装置可以为上述方法设计中的第一通信装置,例如第一终端设备,或者为设置在第一终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第五种通信装置执行上述第一方面或第一方面的任意一种可能的实施方式中的方法。
其中,第五种通信装置还可以包括通信接口,如果第五种通信装置为第一终端设备,则通信接口可以是第一终端设备中的收发器,例如为第一终端设备中的射频收发组件,或者,如果第五种通信装置为设置在第一终端设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第八方面,提供第六种通信装置。该通信装置可以为上述方法设计中的第二通信装置,例如终端设备,或者为设置在第二终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第六种通信装置执行上述第二方面或第二方面的任意一种可能的实施方式中的方法。
其中,第六种通信装置还可以包括通信接口,如果第六种通信装置为第二终端设备,则通信接口可以是第二终端设备中的收发器,例如为第二终端设备中的射频收发组件,或者,如果第六种通信装置为设置在第二终端设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第九方面,提供第一种通信系统,该通信系统可以包括第三方面所述的第一种通信装置、第五方面所述的第三种通信装置或第七方面所述的第五种通信装置,以及包括第四方面所述的第二种通信装置、第六方面所述的第四种通信装置或第八方面所述的第六种通信装置。
第十方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
本申请实施例提供了在NR系统中配置V2X的PSSCH中的DMRS的方案。且在确定 PSSCH中的DMRS时可以选择参考信道相干时间,从而可以提高根据DMRS进行信道估计的准确性。
附图说明
图1为在LTE系统中的PUSCH和PSSCH的DMRS的配置方案示意图;
图2为本申请实施例的一种应用场景示意图;
图3为本申请实施例提供的一种信息发送、接收方法的流程图;
图4为本申请实施例提供的前置DMRS的配置方案的一种示意图;
图5为本申请实施例提供的前置DMRS的配置方案的另一种示意图;
图6为本申请实施例提供的前置DMRS的配置方案和非前置的DMRS配置方案的一种对比示意图;
图7为本申请实施例提供的灵活配置DMRS的方案的一种示意图;
图8为本申请实施例提供的能够实现网络设备的功能的通信装置的一种示意图;
图9为本申请实施例提供的能够实现终端设备的功能的通信装置的一种示意图;
图10A~图10B为本申请实施例提供的一种通信装置的两种示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上, 或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(fifth generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
3)V2X,是未来ITS的关键技术,其包括了V2V、V2I、V2P的直接通信,以及V2N的通信交互。V2X技术可以很好的适应不同的应用场景,通过通信获得实时路况、道路、行人等一系列交通信息,大幅提升交通安全性、减少拥堵、提高交通效率,同时V2X技术也为自动驾驶、智能交通和车联网创新提供了低成本、易实施的基础平台。V2X是一种专为高速移动应用设计的通信技术。根据最新的规定,V2X直接通信在6GHz频段下,需要支持最大500km/h的相对速度
4)信道相干时间,可用T C表示,是指信道冲击响应维持不变的时间间隔的统计平均值,其与多普勒扩展成反比,在时域描述了信道的频率色散的时变特性。通常,我们使用下式计算信道相干时间T C
Figure PCTCN2019099633-appb-000001
Figure PCTCN2019099633-appb-000002
其中,f d为最大多普勒频率,v为发送端与接收端之间的最大相对速度,f c为载频,c为光速。
根据以上公式1和公式2可以计算得到,在6GHz的载频下,发送端和接收端之间的最大相对速度为280km/h时,对应的信道相干时间为0.272ms,而发送端和接收端之间的最大相对速度升至500km/h时,对应的信道相干时间减小为0.152ms。
5)DMRS,作为用于估计信道特性的主要参考信号,其配置结构及密度直接影响对时变信道的估计能力。为了能够对时变信道作出较准确的估计,在本申请实施例中,DMRS在时域的分布间隔可以小于或等于信道相干时间。
6)子载波间隔(sub-carrier spacing,SCS),是OFDM系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。例如可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz等。例如,不同的子载波间隔可以为2的整数倍。可以理解,也可以设计为其他的值。例如,LTE系统中的子载波间隔为15KHz,NR系统的子载波间隔可以 是15kHz,或30kHz,或60kHz,或120kHz等。
关于子载波间隔,可参考如下的表1:
表1
μ Δf=2 μ·15[kHz]
0 15
1 30
2 60
3 120
4 240
其中,μ用于指示子载波间隔,例如,μ=0时,子载波间隔为15kHz,μ=1时,子载波间隔为30kHz。不同的子载波间隔对应的一个时隙的长度是不同的,15kHz的子载波间隔对应的一个时隙的长度为0.5ms,60kHz的子载波间隔对应的一个时隙的长度为0.125ms,等等。那么相应的,不同的子载波间隔对应的一个符号的长度也就是不同的。
7)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A和B和C。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如第一终端设备和第二终端设备,只是为了区分不同的终端设备,而并不是限制两个终端设备的功能、优先级或重要程度等。
首先,介绍本申请实施例中涉及的技术特征。
在V2X中,PSSCH可用于终端设备与终端设备之间的通信。由于V2X通信所用的侧行链路(side-link,SL)使用的是上行链路(up-link,UL)的时频资源,在LTE系统中,PSSCH的DMRS配置基本沿用了PUSCH的DMRS配置方案,区别仅在于,为应对高移动性场景,PSSCH将一个时隙内DMRS占用的OFDM符号数由PUSCH中的2个增加至4个。可参考图1,给出了LTE标准下,一个时隙中的PUSCH与PSSCH中的DMRS的位置对比,图1中画斜线的方框代表DMRS所在的符号。通过增加DMRS在时域的分布密度,LTE系统下的V2X可以很好地应对高速应用需求。
而在5G NR系统中,对于PSSCH来说,尚未提供DMRS的配置方案。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,可以根据子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种因素来确定PSSCH上的m个DMRS的个数或位置中的至少一个信息,从而提供了在NR系统中配置V2X的PSSCH中的DMRS的方案。
本申请实施例提供的技术方案可以应用于5G NR系统中,或者应用于LTE系统中, 或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。
下面介绍本申请实施例所应用的一种网络架构,请参考图2。
图2中包括网络设备和两个终端设备,将这两个终端设备分别称为第一终端设备和第二终端设备,均以车辆为例,这两个终端设备都与一个网络设备连接,且这两个终端设备还可以互相进行通信,例如这两个终端设备可以通过PSSCH进行通信。当然图2中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务,多个终端设备之间也都可以两两进行通信。
图2中的网络设备例如为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the 4 th generation,4G)系统中可以对应eNB,在5G系统中对应5G系统中的接入网设备,例如gNB。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供一种信息发送、接收方法,请参见图3,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置(例如芯片系统)。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置(例如芯片系统)。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置和第二通信装置都是终端设备,或者第一通信装置是终端设备,第二通信装置是能够支持终端设备实现该方法所需的功能的通信装置,等等。
为了便于介绍,在下文中,以该方法由终端设备和终端设备执行为例,也就是,以第一通信装置是终端设备、第二通信装置也是终端设备为例。为了方便区分,就将这两个终端设备分别称为第一终端设备和第二终端设备。因为下文是以该方法应用于图2所示的网络架构为例,因此,下文中所述的第一终端设备可以是图2所示的网络架构中的第一终端设备,下文中所述的第二终端设备可以是图2所示的网络架构中的第二终端设备。
S31、第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种。
其中,第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,例如包括,第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置,或第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数和位置。
因NR系统支持不同的子载波间隔,不同的子载波间隔对应的OFDM符号的长度是不同的,因此在本申请实施例中,第一信息可以包括子载波间隔。另外,要确定DMRS的个数,一般来说会跟PSSCH的持续时长有关,因此第一信息中也可以包括PSSCH的持续时长。其中,PSSCH的持续时长,也可以称为PSSCH的时间长度,或者称为PSSCH在时域的时长,或者称为PSSCH占用的符号(例如OFDM符号,为了简洁,在后文中将OFDM符号等时域符号简称为符号)数,或者称为PSSCH持续的符号数,等等,具体的不做限制。另外,为了能够对时变信道作出较准确的估计,因此DMRS在时域的分布间隔应当小 于或等于信道相干时间,因此第一信息中还可以包括信道相干时间。但在本申请实施例中,并不限制第一信息具体包括的内容。例如第一信息包括子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种,对此可以理解为,例如第一信息包括子载波间隔、PSSCH的持续时长和信道相干时间,或者第一信息包括子载波间隔和信道相干时间,或者第一信息包括子载波间隔和PSSCH的持续时长,或者第一信息包括PSSCH的持续时长和信道相干时间,或者第一信息包括子载波间隔、PSSCH的持续时长或信道相干时间。另外,第一信息除了包括子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种之外,还可以包括其他信息,只要是能够用于确定DMRS的个数和/或位置的信息即可,对于第一信息包括的具体内容不做限制。
第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,可以采用不同的方式。
作为第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息的第一种方式,第一终端设备根据子载波间隔可以确定一个符号的持续时长。为了能够对时变信道作出较准确的估计,在本申请实施例中,可以令DMRS在时域的分布间隔小于或等于信道相干时间。因此,第一终端设备可以根据一个时域符号的持续时长以及信道相干时间,确定m个DMRS中两个相邻的DMRS之间的时间间隔,其中,m个DMRS中的两个相邻的DMRS之间的时间间隔就小于或等于信道相干时间。第一终端设备还根据PSSCH的持续时长和m个DMRS中两个相邻的DMRS之间的时间间隔,确定m个DMRS的个数或位置中的至少一个信息。例如,第一终端设备根据PSSCH的持续时长和m个DMRS中两个相邻的DMRS之间的时间间隔,就可以确定m的取值,以及确定m个DMRS在PSSCH中的位置。
在第一种方式中,第一终端设备是直接根据第一信息来计算m个DMRS的个数或位置中的至少一个信息。那么为了简化第一终端设备的实现,本申请实施例还提供一种方式,也就是第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息的第二种方式,在第二种方式下,第一终端设备可以根据第一信息,以及预先配置的子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种与DMRS的对应关系,确定m个DMRS的个数或位置中的至少一个信息。也就是,预先配置了子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种与DMRS的对应关系,从而第一终端设备只需知道第一信息,就可以根据第一信息以及该对应关系直接确定m个DMRS的个数或位置中的至少一个信息。其中,子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种与DMRS的对应关系,可以理解为,是子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种与DMRS的个数或位置中的至少一个信息的对应关系。
例如,预先配置的是子载波间隔、PSSCH的持续时长和信道相干时间与DMRS的个数和位置的对应关系,则第一终端设备可以根据子载波间隔、PSSCH的持续时长和信道相干时间,以及该对应关系,确定m个DMRS的个数和位置,或者第一终端设备可以根据子载波间隔和PSSCH的持续时长以及该对应关系,确定m个DMRS的个数和位置;或者,预先配置的是子载波间隔和PSSCH的持续时长与DMRS的个数和位置的对应关系,则第一终端设备可以根据子载波间隔和PSSCH的持续时长,以及该对应关系,确定m个DMRS的个数和位置,等等。通过第二种方式,可以有效简化第一终端设备的操作过程,提高确定m个DMRS的个数或位置中的至少一个信息的效率。其中,该对应关系例如是通过协 议规定的,或者是由网络设备预先配置给终端设备的,或者是由终端设备自行配置后并告知其他终端设备的,那么配置该对应关系的终端设备可以是第一终端设备,也可以是其他终端设备。请参考表2,为一种对应关系的示例:
表2
Figure PCTCN2019099633-appb-000003
表2可以理解为是子载波间隔和PSSCH的持续时长与DMRS的个数和位置的对应关系,但在设置该对应关系时,由于要确定DMRS的位置,因此也会涉及到使用信道相干时间,因此,表2也可以理解为是子载波间隔、PSSCH的持续时长和信道相干时间与DMRS的个数和位置的对应关系。表2中,DMRS位置这一栏中,第一行的横坐标中的0~5可以认为是指针,而不是指DMRS的位置或数量,下面的行中的数字,例如3、6、9等,可以认为是表示DMRS占用的符号的位置,例如3,就表示占用序列号为3的符号。例如,子载波间隔为15kHz,如果PSSCH的长度为3个符号,则DMRS位置中只包括占用序列号为0的符号的一个DMRS即可,该DMRS即可覆盖整个PSSCH,也就是,m个DMRS的个数为1,也就是m=1。或者,子载波间隔为15kHz,如果PSSCH的长度为6,则DMRS位置中只包括占用序列号为0的符号的一个DMRS是不够的,因为该DMRS所在的符号与PSSCH的最后一个符号之间的时间间隔已经大于了信道相干时间,因此还包括占用序列号为3的符号的一个DMRS,也就是,m个DMRS的个数为2,也就是m=2。这里的符号的序列号,是以对PSSCH占用的符号按照时域顺序从0开始编写序列号为例的。
为了更好地理解表2,请参考图4,为对表2所示的对应关系中的几种情况的示意。图4中,画斜线的方框表示DMRS占用的符号,画横线的方框表示未被PSSCH占用的符号,空白的方框所表示的符号以及DMRS占用的符号就是PSSCH占用的符号。以15kHz子载波间隔为例,此时一个符号的持续时间为71.4us(在使用标准循环前缀(cyclic prefix,CP)的情况下),如果信道相干时间为0.152ms,则m个DMRS中相邻的DMRS不应大于2个符号,以保证其时域间隔小于0.152ms的信道相干时间,而还要考虑到尽量减少DMRS的数量的问题,因此可以看到图4中,子载波间隔为15kHz时,相邻的两个DMRS之间的时间间隔是2个符号,并未大于2个符号,小于信道相干时间,且也并未设置相邻的两个DMRS之间的时间间隔是1个符号,尽量使得DMRS不至于分布过密,提高PSSCH的传输效率。而随着PSSCH所在时隙持续长度的增加,需要相应地增加DMRS的个数。例如,子载波间隔为15kHz,如果PSSCH的持续时长为9个符号,则DMRS的个数为3,分别占用序列号为0的符号、序列号为3的符号和序列号为6的符号,也就是PSSCH的首个符号、PSSCH中的第四个符号和PSSCH中的第七个符号。或者,子载波间隔为60kHz, 如果PSSCH的持续时长为8个符号,则DMRS的个数为1,占用序列号为0的符号,也就是PSSCH的首个符号,而如果PSSCH的持续时长为14个符号,则DMRS的个数为2,分别占用序列号为0的符号和序列号为8的符号,也就是PSSCH的首个符号和PSSCH中的第九个符号,等等,不再过多描述。
当然,如果第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息时未采用第二种方式,而是采用如上所述的第一种方式,那么确定的结果可能也与表2或图4中的结果是相同的。
要确定m个DMRS在PSSCH中的位置,还涉及到一个因素,就是确定m个DMRS中在时域上的首个DMRS的位置,在确定了首个DMRS的位置后,就可以陆续确定后续的DMRS的位置。
在本申请实施例中,为了加速解码过程,降低时延,可以使用前置的DMRS配置方案。也就是,可以将m个DMRS中在时域上的首个DMRS尽量放置在PSSCH的最前面,这样有助于加速解码过程,也降低传输时延。然而,根据需求,在NR系统中,PSSCH的首个符号可以配置为数据或是自动增益控制(automatic gain control,AGC),在这两种情况下,前置DMRS配置方案会略有不同,下面分别介绍。
1、PSSCH的首个符号被数据占用。
PSSCH的首个符号被数据占用,也可以理解为,PSSCH的首个符号未被AGC占用。在这种情况下,因为本申请实施例采用的是前置的DMRS配置,因此,可以令m个DMRS中在时域上的首个DMRS占用PSSCH的首个符号,如表2和图4就是以此为例的。
2、PSSCH的首个符号被AGC占用。
因为PSSCH的首个符号被AGC占用,则DMRS显然不能再占用PSSCH的首个符号,因此DMRS可以相应往后挪,例如m个DMRS中在时域上的首个DMRS可以占用PSSCH的第二个符号。当然,如果PSSCH的第二个符号也被除了DMRS之外的其他信号所占用,则DMRS还可以继续往后挪,这里以m个DMRS中在时域上的首个DMRS占用PSSCH的第二个符号为例。
如果第一终端设备采用如上所述的第一种方式来根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,则第一终端设备根据PSSCH的首个符号是否被AGC占用,就可以确定m个DMRS中在时域上的首个DMRS的位置,根据第一信息也可以直接确定m个DMRS的个数或位置中的至少一个信息。如果第一终端设备采用如上所述的第二种方式来根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,那么,如果m个DMRS中在时域上的首个DMRS占用PSSCH的第二个符号,则一种对应关系的示例可参考表3:
表3
Figure PCTCN2019099633-appb-000004
Figure PCTCN2019099633-appb-000005
表3可以理解为是子载波间隔和PSSCH的持续时长与DMRS的个数和位置的对应关系,但在设置该对应关系时,由于要确定DMRS的位置,因此也会涉及到使用信道相干时间,因此,表3也可以理解为是子载波间隔、PSSCH的持续时长和信道相干时间与DMRS的个数和位置的对应关系。表3中,DMRS位置这一栏中,第一行的横坐标中的0~5可以认为是指针,而不是指DMRS的位置或数量,下面的行中的数字,例如3、6、9等,可以认为是表示DMRS占用的符号的位置,例如3,就表示占用序列号为3的符号。例如,子载波间隔为15kHz,如果PSSCH的长度为4个符号,则DMRS位置中只包括占用序列号为1的符号的一个DMRS即可,该DMRS即可覆盖整个PSSCH,也就是,m个DMRS的个数为1,也就是m=1。或者,子载波间隔为15kHz,如果PSSCH的长度为7,则DMRS位置中只包括占用序列号为1的符号的一个DMRS是不够的,因为该DMRS所在的符号与PSSCH的最后一个符号之间的时间间隔已经大于了信道相干时间,因此还包括占用序列号为4的符号的一个DMRS,也就是,m个DMRS的个数为2,也就是m=2。这里的符号的序列号,是以对PSSCH占用的符号按照时域顺序从0开始编写序列号为例的。
为了更好地理解表3,请参考图5,为对表3所示的对应关系中的几种情况的示意。图5中,画“/”的方框表示DMRS占用的符号,画“\”的方框表示AGC占用的符号,画横线的方框表示未被PSSCH占用的符号,空白的方框所表示的符号以及DMRS占用的符号就是PSSCH占用的符号。以15kHz子载波间隔为例,此时一个符号的持续时间为71.4us(在使用标准循环前缀(cyclic prefix,CP)的情况下),如果信道相干时间为0.152ms,则m个DMRS中相邻的DMRS不应大于2个符号,以保证其时域间隔小于0.152ms的信道相干时间,而还要考虑到尽量减少DMRS的数量的问题,因此可以看到图5中,子载波间隔为15kHz时,相邻的两个DMRS之间的时间间隔是2个符号,并未大于2个符号,小于信道相干时间,且也并未设置相邻的两个DMRS之间的时间间隔是1个符号,尽量使得DMRS不至于分布过密,提高PSSCH的传输效率。而随着PSSCH所在时隙持续长度的增加,需要相应地增加DMRS的个数。例如,子载波间隔为15kHz,如果PSSCH的持续时长为10个符号,则DMRS的个数为3,分别占用序列号为1的符号、序列号为4的符号和序列号为7的符号,也就是PSSCH的第二个符号、PSSCH中的第五个符号和PSSCH中的第八个符号。或者,子载波间隔为60kHz,如果PSSCH的持续时长为9个符号,则DMRS的个数为1,占用序列号为1的符号,也就是PSSCH的第二个符号,而如果PSSCH的持续时长为14个符号,则DMRS的个数为2,分别占用序列号为1的符号和序列号为9的符号,也就是PSSCH的第二个符号和PSSCH中的第十个符号,等等,不再过多描述。
当然,如果第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息时未采用第二种方式,而是采用如上所述的第一种方式,那么确定的结果可能也与表3或图5中的结果是相同的。
在本申请实施例中,PSSCH与第一终端设备传输的物理侧行控制信道(physical sidelink control channel,PSCCH)之间,可能是时分复用(time division multiplexing,TDM或TDMed)模式,也可能是频分复用(frequency division multiplexing,FDM或FDMed)。如果PSSCH与PSCCH之间是TDM模式,那么使用前文中所述的前置的DMRS配置方案,可以有助于加速解码过程,降低传输时延。而如果PSSCH与PSCCH之间是FDM模式,那么继续 使用前文中所述的前置的DMRS配置方案,可能无法再达到加速解码过程的效果。此外,为了应对高速场景,前置的DMRS配置方案则可能会需要较多的DMRS,进而增加DMRS的开销。那么,本申请实施例提供另一种DMRS的配置方案,可称为非前置的DMRS配置方案,或称为灵活配置DMRS的方案,可理解为,令PSSCH中承载的在时域上的第一个DMRS不承载在PSSCH的首个符号中。例如可参考图6,图6中的第一行表示前置的DMRS配置方案,图6中的第二行表示本申请实施例提供的非前置的DMRS配置方案,可以看到,在相同的信道相干时间的条件下,从DMRS开销的角度讲,前置的DMRS配置方案需要的DMRS的数量会更多。因此,考虑到前置的DMRS配置方案可能会使得DMRS的开销较大,而且如果PSSCH与PSCCH之间是FDM模式,则继续使用前文中所述的前置的DMRS配置方案,也可能无法再达到加速解码过程的效果,本申请实施例提出,如果PSSCH与PSCCH之间是FDM模式,则可以不使用前置的DMRS配置方案,而是使用本申请实施例提供的灵活配置DMRS的方案。也就是,前文中所述的前置的DMRS配置方案,可以用在PSSCH与PSCCH之间是TDM模式的情况下,而下文将要介绍可以用在PSSCH与PSCCH之间是FDM模式的情况下的灵活配置DMRS的方案。
对于第一终端设备来说,在确定m个DMRS的个数或位置中的至少一个信息之前,可以首先确定PSSCH与第一终端设备传输的PSCCH为TDM模式还是FDM模式,如果是TDM模式,则第一终端设备可以确定使用前文中所述的前置的DMRS配置方案,也就是,如果PSSCH的首个符号被AGC占用,则第一终端设备确定m个DMRS中在时域上的首个DMRS占用PSSCH的第二个符号,如果PSSCH的首个符号未被AGC占用,则第一终端设备确定m个DMRS中在时域上的首个DMRS占用PSSCH的首个符号;或者,如果PSSCH与第一终端设备传输的PSCCH为FDM模式,则第一终端设备可以确定采用下文中介绍的灵活配置DMRS的方案来确定m个DMRS中在时域上的首个DMRS的位置。或者,第一终端设备也可以不进行确定PSSCH与第一终端设备传输的PSCCH为TDM模式还是FDM模式的操作,例如PSSCH与第一终端设备传输的PSCCH是TDM模式还是FDM模式,是事先定好的,第一终端设备是已知的,因此无需再确定,只需相应采用前置的DMRS配置方案或灵活配置DMRS的方案即可。
在灵活配置DMRS的方案下,第一终端设备根据第一信息确定m个DMRS的个数或位置中的至少一个信息的方式与前文还是相同的,可以根据前文中所述的第一种方式或第二种方式来确定,可以理解为,在这种方案下,与前文所述的前置的DMRS配置方案不同的是,m个DMRS中在时域上的首个DMRS所占用的符号的位置不同。在这种方案下,m个DMRS中在时域上的首个DMRS占用PSSCH的序列号为n的符号,PSSCH的序列号为0~n-1的n个符号的总持续时长小于或等于信道相干时间,n为正整数。例如,对PSSCH占用的符号按照时域顺序从0开始编写序列号,那么序列号为n的符号就应该是PSSCH里的第n+1个符号。例如n=3,如果PSSCH占用的符号是从0开始编写序列号,则PSSCH中的序列号为3的符号,应该是PSSCH中的第四个符号。n的取值,例如是通过协议规定的,或者是由网络设备配置给终端设备配置的,或者是由终端设备配置的,并通知给其他终端设备,如果是由终端设备配置的,则配置n的取值的终端设备可以是第一终端设备,也可以是其他的终端设备。
如果第一终端设备采用如上所述的第一种方式来根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,则第一终端设备可以确定n的取值,也 就是确定m个DMRS中在时域上的首个DMRS的位置,根据第一信息也可以直接确定m个DMRS的个数或位置中的至少一个信息。如果第一终端设备采用如上所述的第二种方式来根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,那么,如果m个DMRS中在时域上的首个DMRS占用PSSCH的序列号为n的符号,则一种对应关系的示例可参考表4:
表4
Figure PCTCN2019099633-appb-000006
表4中的N,表示的是表4中第二列的PSSCH的持续时长。在DMRS位置这一栏中的各个计算公式,计算的就是n的取值。其中,
Figure PCTCN2019099633-appb-000007
表示对X进行向上取整。例如PSSCH的持续时长为8个符号,也就是N=8,则DMRS占用的是PSSCH占用的符号中的序列号为3的符号。
表4可以理解为是子载波间隔和PSSCH的持续时长与DMRS的个数和位置的对应关系,但在设置该对应关系时,由于要确定DMRS的位置,因此也会涉及到使用信道相干时间,因此,表4也可以理解为是子载波间隔、PSSCH的持续时长和信道相干时间与DMRS的个数和位置的对应关系。关于表4的相关介绍,可参考前文中对于表2或表3的介绍,不多赘述。
为了更好地理解表4,请参考图7,为对表5所示的对应关系中的几种情况的示意。图7中,画斜线的方框表示DMRS占用的符号,画横线的方框表示未被PSSCH占用的符号,空白的方框所表示的符号以及DMRS占用的符号就是PSSCH占用的符号。以15kHz子载波间隔为例,此时一个符号的持续时间为71.4us(在使用标准循环前缀(cyclic prefix,CP)的情况下),如果信道相干时间为0.152ms,则m个DMRS中相邻的DMRS不应大于2个符号,以保证其时域间隔小于0.152ms的信道相干时间,而还要考虑到尽量减少DMRS的数量的问题,因此可以看到图7中,子载波间隔为15kHz时,相邻的两个DMRS之间的时间间隔是2个符号,并未大于2个符号,小于信道相干时间,且也并未设置相邻的两个DMRS之间的时间间隔是1个符号,尽量使得DMRS不至于分布过密,提高PSSCH的 传输效率。而且图7使用的是灵活配置DMRS的方案,因此m个DMRS中在时域上的首个DMRS没有占用PSSCH中的首个时域符号,那么,同样要考虑信道相干时间,使得m个DMRS中在时域上的首个DMRS可以覆盖PSSCH中的首个时域符号,为此,可以使得PSSCH的序列号为0~n-1的这n个符号的总的持续时长小于或等于信道相干时间,继续以子载波间隔是15kHz为例,在图7中,m个DMRS中的首个DMRS占用的是PSSCH中的序列号为2的符号,也就是PSSCH中的第三个符号,PSSCH的首个符号和第二个符号(也是就序列号为0的符号和序列号为1的符号)的总的持续时长是两个符号,是小于或等于信道相干时间的。而随着PSSCH所在时隙持续长度的增加,也需要相应地增加DMRS的个数。例如,子载波间隔为15kHz,如果PSSCH的持续时长为11个符号,则DMRS的个数为3,分别占用序列号为2的符号、序列号为5的符号和序列号为8的符号,也就是PSSCH的第三个符号、PSSCH中的第六个符号和PSSCH中的第九个符号。或者,子载波间隔为60kHz,如果PSSCH的持续时长小于或等于14个符号,则DMRS的个数为1,占用序列号为6的符号,也就是PSSCH的第七个符号。
当然,如果第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息时未采用第二种方式,而是采用如上所述的第一种方式,那么确定的结果可能也与表4或图7中的结果是相同的。
例如,可将图7与图4或图5进行比对,由于使用了灵活配置DMRS的方案,以子载波间隔是15kHz为例,当PSSCH的持续长度为{4,5,7,8,10,11,13,14}时,相较于前置的DMRS方案来说,都可以节省一个DMRS的开销,有助于提高PSSCH的传输效率。
S32、第二终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种。
第二终端设备要接收PSSCH,也可以先根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息。
对于第二终端设备来说,在确定m个DMRS的个数或位置中的至少一个信息之前,可以首先确定PSSCH与第二终端设备传输的PSCCH为TDM模式还是FDM模式,如果是TDM模式,则第二终端设备可以确定使用前文中所述的前置的DMRS配置方案,也就是,如果PSSCH的首个符号被AGC占用,则第二终端设备确定m个DMRS中在时域上的首个DMRS占用PSSCH的第二个符号,以将PSSCH占用的符号按照时域顺序从0开始编写序列号为例,则PSSCH的第二个符号就是序列号为1的符号,如果PSSCH的首个符号未被AGC占用,则第二终端设备确定m个DMRS中在时域上的首个DMRS占用PSSCH的首个符号;或者,如果PSSCH与第二终端设备传输的PSCCH为FDM模式,则第二终端设备可以确定采用下文中介绍的灵活配置DMRS的方案来确定m个DMRS中在时域上的首个DMRS的位置。或者,第二终端设备也可以不进行确定PSSCH与第二终端设备传输的PSCCH为TDM模式还是FDM模式的操作,例如PSSCH与第二终端设备传输的PSCCH是TDM模式还是FDM模式,是事先定好的,第二终端设备是已知的,因此无需再确定,只需相应采用前置的DMRS配置方案或灵活配置DMRS的方案即可。其中,第一终端设备传输的PSSCH和第二终端设备传输的PSSCH,在本申请实施例中可以是指同一个PSSCH。
其中,第二终端设备可以采用与第一终端设备相同的方式来根据第一信息确定承载在 PSSCH上的m个DMRS的个数或位置中的至少一个信息,具体的可参考S31中的介绍,不多赘述。
其中,S32可以与S31同时执行,或者S31在S32之前执行,或者S31在S32之后执行,具体的不做限制。
S33、第一终端设备向第二终端设备发送所述m个DMRS,则第二终端设备接收来自第一终端设备的所述m个DMRS。
第一终端设备在确定PSSCH上的m个DMRS的个数或位置中的至少一个信息后,可以向第二终端设备发送m个DMRS,则第二终端设备就可以接收m个DMRS,通过m个DMRS,第二终端设备可以进行信道估计等操作。
在本申请实施例中,可以根据子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种因素来确定PSSCH上的m个DMRS的个数或位置中的至少一个信息,从而提供了在NR系统中配置V2X的PSSCH中的DMRS的方案。在确定PSSCH中的DMRS时可以选择参考信道相干时间,例如可以使得配置的两个相邻的DMRS之间的时间间隔小于或等于信道相干时间,从而可以提高根据DMRS进行信道估计的准确性。而且,本申请实施例为TDM模式和FDM模式分别提供了配置DMRS的方案,使得在FDM模式下可以尽量减小DMRS的开销,提高PSSCH的链路传输效率。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图8示出了一种通信装置800的结构示意图。该通信装置800可以实现上文中涉及的第一终端设备的功能。该通信装置800可以是上文中所述的第一终端设备,或者可以是设置在上文中所述的第一终端设备中的芯片。该通信装置800可以包括处理器801和收发器802。其中,处理器801可以用于执行图3所示的实施例中的S31,和/或用于支持本文所描述的技术的其他过程,例如可以执行前文中所述的第一终端设备所执行的除了收发过程之外的全部的其他过程或部分的其他过程。收发器802可以用于执行图3所示的实施例中的S33,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的第一终端设备所执行的全部的收发过程或部分的收发过程。
例如,处理器801,用于根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种;
收发器802,用于向第二终端设备发送所述m个DMRS。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图9示出了一种通信装置900的结构示意图。该通信装置900可以实现上文中涉及的第二终端设备的功能。该通信装置900可以是上文中所述的第二终端设备,或者可以是设置在上文中所述的第二终端设备中的芯片。该通信装置900可以包括处理器901和收发器902。其中,处理器901可以用于执行图3所示的实施例中的S32,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的第二终端设备所执行的除了收发过程之外的全部的其他过程或部分的其他过程。收发器902可以用于执行图3所示的实施例中的S33,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的第二终端设备所执行的全部的收发过程或部分的收发过程。
例如,处理器901,用于根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种;
收发器902,用于接收来自第一终端设备的所述m个DMRS。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将通信装置800或通信装置900通过如图10A所示的通信装置1000的结构实现。该通信装置1000可以实现上文中涉及的终端设备或网络设备的功能。该通信装置1000可以包括处理器1001。
其中,在该通信装置1000用于实现上文中涉及的第一终端设备的功能时,处理器1001可以用于执行图3所示的实施例中的S31,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的第一终端设备所执行的除了收发过程之外的全部的其他过程或部分的其他过程;或者,在该通信装置1000用于实现上文中涉及的第二终端设备的功能时,处理器1001可以用于执行图3所示的实施例中的S32,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的第二终端设备所执行的除了收发过程之外的全部的其他过程或部分的其他过程。
其中,通信装置1000可以通过现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片实现,则通信装置1000可被设置于本申请实施例的第一终端设备或第二终端设备中,以使得第一终端设备或第二终端设备实现本申请实施例提供的方法。
在一种可选的实现方式中,该通信装置1000可以包括收发组件,用于与其他设备进行通信。其中,在该通信装置1000用于实现上文中涉及的第一终端设备或第二终端设备的功能时,收发组件可以用于执行图3所示的实施例中的S33,和/或用于支持本文所描述的技术的其它过程。例如,一种收发组件为通信接口,如果通信装置1000为第一终端设备或第二终端设备,则通信接口可以是第一终端设备或第二终端设备中的收发器,例如收发器802或收发器902,收发器例如为第一终端设备或第二终端设备中的射频收发组件,或者,如果通信装置1000为设置在第一终端设备或第二终端设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
在一种可选的实现方式中,该通信装置1000还可以包括存储器1002,可参考图10B,其中,存储器1002用于存储计算机程序或指令,处理器1001用于译码和执行这些计算机程序或指令。应理解,这些计算机程序或指令可包括上述第一终端设备或第二终端设备的功能程序。当第一终端设备的功能程序被处理器1001译码并执行时,可使得第一终端设备实现本申请实施例图3所示的实施例所提供的方法中第一终端设备的功能。当第二终端设备的功能程序被处理器1001译码并执行时,可使得第二终端设备实现本申请实施例图3所示的实施例所提供的方法中第二终端设备的功能。
在另一种可选的实现方式中,这些第一终端设备或第二终端设备的功能程序存储在通信装置1000外部的存储器中。当第一终端设备的功能程序被处理器1001译码并执行时, 存储器1002中临时存放上述第一终端设备的功能程序的部分或全部内容。当第二终端设备的功能程序被处理器1001译码并执行时,存储器1002中临时存放上述第二终端设备的功能程序的部分或全部内容。
在另一种可选的实现方式中,这些第一终端设备或第二终端设备的功能程序被设置于存储在通信装置1000内部的存储器1002中。当通信装置1000内部的存储器1002中存储有第一终端设备的功能程序时,通信装置1000可被设置在本申请实施例的第一终端设备中。当通信装置1000内部的存储器1002中存储有第二终端设备的功能程序时,通信装置1000可被设置在本申请实施例的第二终端设备中。
在又一种可选的实现方式中,这些第一终端设备的功能程序的部分内容存储在通信装置1000外部的存储器中,这些第一终端设备的功能程序的其他部分内容存储在通信装置1000内部的存储器1002中。或,这些第二终端设备的功能程序的部分内容存储在通信装置1000外部的存储器中,这些第二终端设备的功能程序的其他部分内容存储在通信装置1000内部的存储器802中。
在本申请实施例中,通信装置800、通信装置900及通信装置1000对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
另外,图8所示的实施例提供的通信装置800还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器801实现,收发模块可通过收发器802实现。其中,处理模块可以用于执行图3所示的实施例中的S31,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图3所示的实施例中的S33,和/或用于支持本文所描述的技术的其它过程。
例如,处理模块,用于根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种;
收发模块,用于向第二终端设备发送所述m个DMRS。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图9所示的实施例提供的通信装置900还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器901实现,收发模块可通过收发器902实现。其中,处理模块可以用于执行图3所示的实施例中的S32,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图3所示的实施例中的S33,和/或用于支持本文所描述的技术的其它过程。
例如,处理模块,用于根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种;
收发模块,用于接收来自第一终端设备的所述m个DMRS。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的通信装置800、通信装置900及通信装置1000可用于执行图 3所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种信息发送方法,其特征在于,包括:
    第一终端设备根据第一信息确定承载在物理侧行共享信道PSSCH上的m个解调参考信号DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种;
    所述第一终端设备向第二终端设备发送所述m个DMRS。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括所述子载波间隔、所述PSSCH的持续时长以及所述信道相干时间,所述第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,包括:
    所述第一终端设备根据所述子载波间隔确定所述PSSCH占用的一个符号的持续时长;
    所述第一终端设备根据所述一个符号的持续时长以及所述信道相干时间,确定所述m个DMRS中两个相邻的DMRS之间的时间间隔;
    所述第一终端设备根据所述PSSCH的持续时长和所述时间间隔确定所述m个DMRS的个数或位置中的至少一个信息。
  3. 根据权利要求1所述的方法,其特征在于,所述第一终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,包括:
    所述第一终端设备根据所述第一信息,以及预先配置的子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种与DMRS的对应关系,确定所述m个DMRS的个数或位置中的至少一个信息。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备确定所述PSSCH与所述第一终端设备传输的物理侧行控制信道PSCCH为时分复用TDM模式或频分复用FDM模式。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述PSSCH与所述第一终端设备传输的PSCCH为TDM模式,
    所述PSSCH的首个符号未被自动增益控制AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的首个符号;或,
    所述PSSCH的首个符号被AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的第二个符号。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述PSSCH与所述第一终端设备传输的PSCCH为FDM模式,
    所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的序列号为n的符号,所述PSSCH的序列号为0~n-1的n个符号的总持续时长小于或等于所述信道相干时间,n为正整数。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,在所述PSSCH上,所述m个DMRS中的两个相邻的DMRS之间的时间间隔小于或等于所述信道相干时间。
  8. 一种信息接收方法,其特征在于,包括:
    第二终端设备根据第一信息确定承载在物理侧行共享信道PSSCH上的m个解调参考信号DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种;
    所述第二终端设备接收来自第一终端设备的所述m个DMRS。
  9. 根据权利要求8所述的方法,其特征在于,所述第一信息包括所述子载波间隔、所述PSSCH的持续时长以及所述信道相干时间,所述第二终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,包括:
    所述第二终端设备根据所述子载波间隔确定所述PSSCH占用的一个符号的持续时长;
    所述第二终端设备根据所述一个符号的持续时长以及所述信道相干时间,确定所述m个DMRS中两个相邻的DMRS之间的时间间隔;
    所述第二终端设备根据所述PSSCH的持续时长和所述时间间隔确定所述m个DMRS的个数或位置中的至少一个信息。
  10. 根据权利要求8所述的方法,其特征在于,所述第二终端设备根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息,包括:
    所述第二终端设备根据所述第一信息,以及预先配置的子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种与DMRS的对应关系,确定所述m个DMRS的个数或位置中的至少一个信息。
  11. 根据权利要求8~10任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备确定所述PSSCH与所述第二终端设备传输的物理侧行控制信道PSCCH为时分复用TDM模式或频分复用FDM模式。
  12. 根据权利要求8~11任一项所述的方法,其特征在于,所述PSSCH与所述第二终端设备传输的PSCCH为TDM模式,
    所述PSSCH的首个符号未被自动增益控制AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的首个符号;或,
    所述PSSCH的首个符号被AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的第二个符号。
  13. 根据权利要求8~12任一项所述的方法,其特征在于,所述PSSCH与所述第二终端设备传输的PSCCH为FDM模式,
    所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的序列号为n的符号,所述PSSCH的序列号为0~n-1的n个符号的总持续时长小于或等于所述信道相干时间,n为正整数。
  14. 根据权利要求8~13任一项所述的方法,其特征在于,在所述PSSCH上,所述m个DMRS中的两个相邻的DMRS之间的时间间隔小于或等于所述信道相干时间。
  15. 一种终端设备,其特征在于,包括:
    处理器,用于根据第一信息确定承载在物理侧行共享信道PSSCH上的m个解调参考信号DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种;
    收发器,用于向第二终端设备发送所述m个DMRS。
  16. 根据权利要求15所述的终端设备,其特征在于,所述第一信息包括所述子载波间隔、所述PSSCH的持续时长以及所述信道相干时间,所述处理器用于通过如下方式根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息:
    根据所述子载波间隔确定所述PSSCH占用的一个符号的持续时长;
    根据所述一个符号的持续时长以及所述信道相干时间,确定所述m个DMRS中两个相邻的DMRS之间的时间间隔;
    根据所述PSSCH的持续时长和所述时间间隔确定所述m个DMRS的个数或位置中的至少一个信息。
  17. 根据权利要求15所述的终端设备,其特征在于,所述处理器用于通过如下方式根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息:
    根据所述第一信息,以及预先配置的子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种与DMRS的对应关系,确定所述m个DMRS的个数或位置中的至少一个信息。
  18. 根据权利要求15~17任一项所述的终端设备,其特征在于,所述处理器还用于:
    所述PSSCH与所述终端设备传输的物理侧行控制信道PSCCH为时分复用TDM模式或频分复用FDM模式。
  19. 根据权利要求15~18任一项所述的终端设备,其特征在于,所述PSSCH与所述终端设备传输的PSCCH为TDM模式,
    所述PSSCH的首个符号未被自动增益控制AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的首个符号;或,
    所述PSSCH的首个符号被AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的第二个符号。
  20. 根据权利要求15~19任一项所述的终端设备,其特征在于,所述PSSCH与所述终端设备传输的PSCCH为FDM模式,
    所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的序列号为n的符号,所述PSSCH的序列号为0~n-1的n个符号的总持续时长小于或等于所述信道相干时间,n为正整数。
  21. 根据权利要求15~20任一项所述的终端设备,其特征在于,在所述PSSCH上,所述m个DMRS中的两个相邻的DMRS之间的时间间隔小于或等于所述信道相干时间。
  22. 一种终端设备,其特征在于,包括:
    处理器,用于根据第一信息确定承载在物理侧行共享信道PSSCH上的m个解调参考信号DMRS的个数或位置中的至少一个信息,m为正整数,所述第一信息包括子载波间隔、所述PSSCH的持续时长或信道相干时间中的至少一种;
    收发器,用于接收来自第一终端设备的所述m个DMRS。
  23. 根据权利要求22所述的终端设备,其特征在于,所述第一信息包括所述子载波间隔、所述PSSCH的持续时长以及所述信道相干时间,所述处理器用于通过如下方式根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息:
    根据所述子载波间隔确定所述PSSCH占用的一个符号的持续时长;
    根据所述一个符号的持续时长以及所述信道相干时间,确定所述m个DMRS中两个相邻的DMRS之间的时间间隔;
    根据所述PSSCH的持续时长和所述时间间隔确定所述m个DMRS的个数或位置中的至少一个信息。
  24. 根据权利要求22所述的终端设备,其特征在于,所述处理器用于通过如下方式根据第一信息确定承载在PSSCH上的m个DMRS的个数或位置中的至少一个信息:
    根据所述第一信息,以及预先配置的子载波间隔、PSSCH的持续时长或信道相干时间中的至少一种与DMRS的对应关系,确定所述m个DMRS的个数或位置中的至少一个信 息。
  25. 根据权利要求22~24任一项所述的终端设备,其特征在于,所述处理器还用于:
    确定所述PSSCH与所述终端设备传输的物理侧行控制信道PSCCH为时分复用TDM模式或频分复用FDM模式。
  26. 根据权利要求22~25任一项所述的终端设备,其特征在于,所述PSSCH与所述终端设备传输的PSCCH为TDM模式,
    所述PSSCH的首个符号未被自动增益控制AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的首个符号;或,
    所述PSSCH的首个符号被AGC占用,所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的第二个符号。
  27. 根据权利要求22~26任一项所述的终端设备,其特征在于,所述PSSCH与所述终端设备传输的PSCCH为FDM模式,
    所述m个DMRS中在时域上的首个DMRS占用所述PSSCH的序列号为n的符号,所述PSSCH的序列号为0~n-1的n个符号的总持续时长小于或等于所述信道相干时间,n为正整数。
  28. 根据权利要求22~27任一项所述的终端设备,其特征在于,在所述PSSCH上,所述m个DMRS中的两个相邻的DMRS之间的时间间隔小于或等于所述信道相干时间。
  29. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1~7中任一项所述的方法,或用于执行如权利要求8~14中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令在被计算机执行时,使所述计算机执行如权利要求1~7中任一项所述的方法,或执行如权利要求8~14中任一项所述的方法。
PCT/CN2019/099633 2018-09-14 2019-08-07 一种信息发送、接收方法、设备及装置 WO2020052380A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19859463.2A EP3852297A4 (en) 2018-09-14 2019-08-07 METHOD, DEVICE, AND DEVICE FOR SENDING AND RECEIVING INFORMATION
BR112021004713-1A BR112021004713A2 (pt) 2018-09-14 2019-08-07 método, dispositivo, e aparelho de envio e recepção de informações
JP2021514063A JP7222076B2 (ja) 2018-09-14 2019-08-07 情報送信および受信方法、デバイス、および装置
US17/199,761 US20210203462A1 (en) 2018-09-14 2021-03-12 Information Sending and Receiving Method, Device, and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811075068.0A CN110912659B (zh) 2018-09-14 2018-09-14 一种信息发送、接收方法、设备及装置
CN201811075068.0 2018-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/199,761 Continuation US20210203462A1 (en) 2018-09-14 2021-03-12 Information Sending and Receiving Method, Device, and Apparatus

Publications (1)

Publication Number Publication Date
WO2020052380A1 true WO2020052380A1 (zh) 2020-03-19

Family

ID=69777284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099633 WO2020052380A1 (zh) 2018-09-14 2019-08-07 一种信息发送、接收方法、设备及装置

Country Status (6)

Country Link
US (1) US20210203462A1 (zh)
EP (1) EP3852297A4 (zh)
JP (1) JP7222076B2 (zh)
CN (2) CN110912659B (zh)
BR (1) BR112021004713A2 (zh)
WO (1) WO2020052380A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245632A1 (en) * 2020-06-05 2021-12-09 Lenovo (Singapore) Pte. Ltd. Demodulation reference signal configuration

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110912659B (zh) * 2018-09-14 2021-08-31 华为技术有限公司 一种信息发送、接收方法、设备及装置
CN112333827B (zh) * 2019-01-11 2022-11-29 Oppo广东移动通信有限公司 侧行通信的方法、终端设备和网络设备
CN114175777A (zh) * 2019-09-30 2022-03-11 日本电气株式会社 通信方法、设备及其计算机可读介质
CN113497695B (zh) * 2020-04-07 2023-10-27 维沃移动通信有限公司 一种dmrs的传输方法及终端
CN116261844A (zh) * 2020-08-07 2023-06-13 华为技术有限公司 一种侧行链路通信方法及装置
US20220123896A1 (en) * 2020-10-16 2022-04-21 Qualcomm Incorporated Physical uplink control channel with adaptive demodulation reference signal density
JP7415978B2 (ja) * 2021-02-22 2024-01-17 トヨタ自動車株式会社 情報処理装置、プログラム及び情報処理方法
CN113271197B (zh) * 2021-05-19 2022-12-27 中国联合网络通信集团有限公司 解调参考信号处理方法、装置及电子设备
CN116418640A (zh) * 2021-12-31 2023-07-11 华为技术有限公司 一种信息传输方法及通信装置
US20230262702A1 (en) * 2022-02-16 2023-08-17 Qualcomm Incorporated Slot structure for automatic gain control for high subcarrier spacing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017178993A1 (en) * 2016-04-12 2017-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and an apparatus for reference signal mapping for sidelink communications
US20180048446A1 (en) * 2016-08-12 2018-02-15 Qualcomm Incorporated Demodulation reference signal design for vehicle-to-vehicle communication
CN107979452A (zh) * 2016-10-21 2018-05-01 北京信威通信技术股份有限公司 一种lte v2x 系统中pue 参考信号传输方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957654B (zh) * 2011-08-29 2018-03-02 中兴通讯股份有限公司 一种参考信号的传输方法及装置
KR102011823B1 (ko) * 2015-07-03 2019-08-19 엘지전자 주식회사 단말 간 신호를 전송하는 방법 및 이를 위한 장치
CN106717089B (zh) * 2015-09-01 2020-02-21 华为技术有限公司 一种参考信号的传输设备、方法及系统
KR20170037489A (ko) * 2015-09-25 2017-04-04 주식회사 아이티엘 V2x를 위한 dm-rs 구성 방법 및 그 장치
CN108141340B (zh) * 2015-10-01 2020-11-24 Lg 电子株式会社 在d2d通信中发送参考信号的方法和终端
CN106656441B (zh) * 2015-10-28 2020-03-27 上海诺基亚贝尔股份有限公司 用于提高车辆至车辆通信的可靠性的方法和设备
CN106656446B (zh) * 2015-11-03 2020-06-26 中兴通讯股份有限公司 参考信号的发送方法及装置、接收方法及装置
CN108023698B (zh) * 2016-11-03 2021-01-29 华为技术有限公司 配置参考信号的方法和装置
CN108174445B (zh) * 2016-12-07 2022-02-11 华为技术有限公司 一种上行信息处理的方法及装置
CN108282287B (zh) * 2017-01-05 2020-05-05 维沃移动通信有限公司 一种参考信号的配置方法、网络设备及终端设备
CN108347767B (zh) * 2017-01-24 2021-01-15 中国移动通信有限公司研究院 一种解调参考信号的收发方法及收发装置
WO2019098772A1 (ko) * 2017-11-16 2019-05-23 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 통신 수행 방법 및 장치
CN110166198B (zh) * 2018-02-12 2024-07-02 北京三星通信技术研究有限公司 旁路信号发送方法和设备
KR102647886B1 (ko) * 2018-05-16 2024-03-14 삼성전자주식회사 V2x 시스템에서 dmrs 정보 설정 방법 및 장치
US11671941B2 (en) * 2018-07-26 2023-06-06 Lg Electronics Inc. Method and apparatus for transmitting signal by sidelink terminal in wireless communication system
JP7194757B2 (ja) * 2018-08-07 2022-12-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 通信装置、通信方法、及び集積回路
CN118174829A (zh) * 2018-08-08 2024-06-11 交互数字专利控股公司 用于新无线电(nr)中物理侧链路控制信道(pscch)设计的方法和装置
WO2020030056A1 (en) * 2018-08-09 2020-02-13 FG Innovation Company Limited Method and apparatus for performing sidelink communication in wireless communication systems
WO2020032679A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 Nr v2x에서 유연한 슬롯 포맷을 고려한 통신 방법 및 장치
CN110912659B (zh) * 2018-09-14 2021-08-31 华为技术有限公司 一种信息发送、接收方法、设备及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017178993A1 (en) * 2016-04-12 2017-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and an apparatus for reference signal mapping for sidelink communications
US20180048446A1 (en) * 2016-08-12 2018-02-15 Qualcomm Incorporated Demodulation reference signal design for vehicle-to-vehicle communication
CN107979452A (zh) * 2016-10-21 2018-05-01 北京信威通信技术股份有限公司 一种lte v2x 系统中pue 参考信号传输方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "DMRS Enhancement for V2V", 3GPP TSG RAN WG1 MEETING #82BIS R1-155646, 26 September 2015 (2015-09-26), XP051002491 *
See also references of EP3852297A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245632A1 (en) * 2020-06-05 2021-12-09 Lenovo (Singapore) Pte. Ltd. Demodulation reference signal configuration

Also Published As

Publication number Publication date
CN112615703B (zh) 2022-04-22
CN110912659B (zh) 2021-08-31
EP3852297A1 (en) 2021-07-21
JP2021536713A (ja) 2021-12-27
US20210203462A1 (en) 2021-07-01
EP3852297A4 (en) 2021-11-17
JP7222076B2 (ja) 2023-02-14
BR112021004713A2 (pt) 2021-06-01
CN112615703A (zh) 2021-04-06
CN110912659A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
WO2020052380A1 (zh) 一种信息发送、接收方法、设备及装置
TWI737844B (zh) 傳輸參考信號的方法和通訊設備
WO2020020180A1 (zh) 一种资源配置方法及装置
WO2018054263A1 (zh) 发送或接收物理下行控制信道的方法和设备
WO2021204128A1 (zh) 一种传输块尺寸确定方法及装置
WO2018028565A1 (zh) 通信方法和设备
CN111867095B (zh) 一种通信方法与终端装置
WO2019120179A1 (zh) 一种信号发送、接收方法及设备
KR20210064230A (ko) 사이드링크 채널 자원 유닛들의 구성을 위한 방법 및 장치
CN114071429A (zh) 一种物理下行控制信道增强方法、通信装置及系统
CN110719648B (zh) 一种信息发送、信息接收方法及装置
WO2020063266A1 (zh) 一种harq进程id的确定方法、装置、终端及介质
WO2020147728A1 (zh) 一种通信方法及设备
JP2020523902A (ja) 通信方法、ネットワークデバイス、およびユーザ機器
WO2020029896A1 (zh) 一种参考信号发送、接收方法及装置
WO2020088653A1 (zh) 确定传输资源的方法和装置
TWI746549B (zh) 訊號傳輸的方法、網路設備和終端設備
CN116261844A (zh) 一种侧行链路通信方法及装置
WO2022078472A1 (en) Method of propagation delay compensation and related devices
WO2018059349A1 (zh) 设置符号的方法和装置
WO2018171757A1 (zh) 一种随机接入配置方法及装置
WO2020199897A1 (zh) 一种通信方法及设备
CN114257484B (zh) 一种符号应用方法及通信装置
WO2024174943A1 (zh) 一种资源池确定方法及装置
WO2021159536A1 (zh) 一种资源指示方法、资源确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021004713

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019859463

Country of ref document: EP

Effective date: 20210414

ENP Entry into the national phase

Ref document number: 112021004713

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210312