WO2020052334A1 - 一种通过照明使出水装置出水产生光影效果的装置和系统 - Google Patents

一种通过照明使出水装置出水产生光影效果的装置和系统 Download PDF

Info

Publication number
WO2020052334A1
WO2020052334A1 PCT/CN2019/094814 CN2019094814W WO2020052334A1 WO 2020052334 A1 WO2020052334 A1 WO 2020052334A1 CN 2019094814 W CN2019094814 W CN 2019094814W WO 2020052334 A1 WO2020052334 A1 WO 2020052334A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
concentric
water
effect range
rainbow
Prior art date
Application number
PCT/CN2019/094814
Other languages
English (en)
French (fr)
Inventor
柯敏兴
Original Assignee
柯敏兴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 柯敏兴 filed Critical 柯敏兴
Publication of WO2020052334A1 publication Critical patent/WO2020052334A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects

Definitions

  • the invention relates to the technical field of lighting water outlet devices, and in particular to a device and system for generating light and shadow effects by using water to emit water from a water outlet device.
  • bathroom products with water outlet devices have extended many functions, such as massage water, bubble water, shower water, suction water, spray water, waterfall water, which have many styles and different shapes, which have exceeded the sanitary products' cleaning and water saving.
  • the purpose of use is more to give users a better experience, so it is necessary to add a new sense of experience to bathroom products to bring more fun to users.
  • the technical problem to be solved by the present invention is to provide a device and a system capable of generating rainbow and sub-irid shadow effects.
  • a device and system for generating a light and shadow effect by illuminating the water out of a water outlet device including a water outlet device and a lighting device, the water outlet device includes a spray device, the spray device sprays atomized water, and the lighting device emits multi-color concentricity beam;
  • the atomized water and the multi-colored concentric beams intersect in space, and the intersection is located in a rainbow effect range or a sub-iris effect range obtained from the concentric position of the concentric beam and a preset viewpoint position.
  • the multi-colored concentric light beam is a divergent light beam, and a light spreading angle of the divergent light beam is greater than 0 degrees.
  • water outlet direction of the spray device is directed toward the preset viewpoint position or below the preset viewpoint position.
  • it further comprises a background that absorbs light.
  • the line of sight of the background at the viewpoint passes through the multi-colored concentric beam, the atomized water, the rainbow effect range, or the sub-iris effect range. The end of the intersection.
  • the shape of the projection of the area where the atomized water sprayed by the spraying device intersects with the rainbow effect range or the secondary rainbow effect range along the line between the concentric position of the concentric light beam and the preset viewpoint position is circular or The center of the circle, circle or circle projection is located on the line between the concentric position of the concentric beam and the preset viewpoint position.
  • the shape of the projection of the area where the atomized water sprayed by the spray device intersects with the rainbow effect range or the sub-iris effect range along the direction of the water discharge is a long shape, and the projection of the long shape and the concentric position of the concentric beam and the The line connecting the viewpoint positions is set vertically in space.
  • the shape of the projection along the ray direction of the area where the multi-colored concentric beam and the rainbow effect range or the sub-iris effect range emitted by the lighting device is elongated, and the projection of the elongated shape and the concentric position of the concentric beam and the The line connecting the viewpoint positions is set vertically in space.
  • the concentric positions of each color in the multi-colored concentric light beam are the same, and the light emission ranges of each color in the multi-colored concentric light beam are the same.
  • the concentric positions of each color of the multi-colored concentric light beams are different, and the light emission ranges of the multi-colored concentric light beams are different.
  • the number of the multi-colored concentric light beams is at least two, and the at least two of the concentric light beams intersect with the atomized water respectively within the rainbow effect range or the sub- rainbow effect range.
  • the invention uses a lighting device that emits multi-color concentric beams and a water outlet device including a spray device.
  • the water outlet device and the lighting device are set according to the rainbow effect range and the secondary rainbow effect range capable of generating light and shadow effects, and the illumination range and the atomized water are effectively used , In the appropriate position of the viewer to produce a strong rainbow and secondary rainbow light and shadow effects.
  • FIG. 1 is a schematic plan view of a rainbow effect range where the concentric beam light spread angle is greater than 0 degrees according to the present invention
  • FIG. 2 is a schematic cross-sectional view of a rainbow effect range in which the concentric light beam spread angle is greater than 0 degrees according to the present invention
  • FIG. 3 is a schematic top view of a rainbow effect range where the concentric beam light spread angle is greater than 0 degrees according to the present invention
  • FIG. 4 is a schematic three-dimensional cross-sectional view of a rainbow effect range of a concentric light beam spreading angle greater than 0 degrees according to the present invention
  • FIG. 5 is a schematic plan view of a secondary rainbow effect range of a concentric light beam spreading angle greater than 0 degrees according to the present invention
  • FIG. 6 is a schematic plan view of the rainbow effect range of the concentric beam rays spreading angle less than 0 degrees according to the present invention
  • FIG. 7 is a schematic three-dimensional cross-sectional view of a rainbow effect range of a concentric light beam spreading angle less than 0 degrees according to the present invention.
  • FIG. 8 is a schematic plan view of a sub-iris effect range of a concentric light beam spreading angle less than 0 degree according to the present invention.
  • FIG. 9 is a schematic plan view of a rainbow effect range of a concentric light beam spreading angle equal to 0 degrees according to the present invention.
  • FIG. 10 is a schematic three-dimensional cross-sectional view of a rainbow effect range of a concentric light beam spreading angle equal to 0 degrees according to the present invention.
  • FIG. 11 is a schematic plan view of a sub-iris effect range of a concentric light beam spreading angle equal to 0 degrees according to the present invention.
  • FIG. 12 is a schematic diagram of a device and a system for generating a light and shadow effect from the water of a water outlet device by lighting according to Embodiment 1 of the present invention
  • FIG. 13 is a schematic view of the water outlet device A in FIG. 12;
  • FIG. 14 is a schematic diagram of a device and a system for generating a light and shadow effect from the water of a water outlet device by lighting according to Embodiment 2 of the present invention.
  • FIG. 15 is a schematic sectional view of the water outlet device B in FIG. 14;
  • FIG. 16 is a schematic diagram of a device and a system for generating a light and shadow effect from the water of a water outlet device by lighting according to Embodiment 3 of the present invention.
  • FIG. 17 is a schematic diagram of a device and a system for generating a light and shadow effect from the water of a water outlet device by lighting according to Embodiment 4 of the present invention.
  • FIG. 18 is a schematic view of the lighting device C in FIG. 17;
  • FIG. 19 is a schematic diagram of a device and a system for generating a light and shadow effect from the water of a water outlet device by lighting according to Embodiment 5 of the present invention.
  • 20 is a schematic structural diagram of a concentric light beam and atomized water intersecting with the rainbow effect range at different positions;
  • FIG. 21 is a special case of no rainbow effect in the second embodiment of the present invention.
  • FIG. 22 is a schematic diagram of a rainbow effect under an optimal state in Embodiment 2 of the present invention.
  • FIG. 23 is a schematic structural diagram of a rainbow formed by light rays passing through water droplets
  • FIG. 24 is a schematic structural diagram of light passing through a water droplet to form a secondary rainbow
  • Rainbows are formed by the dispersion of light, and white light that appears to be formed by two refractions and one reflection of water droplets. Because different colors of light have different wavelengths, their refractive indices are also different, and red, orange, yellow, green, blue, indigo, and purple bands appear from top to bottom.
  • the range of the rainbow effect referred to in the present invention refers to the position where the color band of the rainbow seen by the human eye is assumed to be filled with tiny water droplets in the air.
  • the position of each viewpoint corresponds to a rainbow, so the position of each viewpoint is There is a range of corresponding rainbow effects.
  • the secondary rainbow in the secondary rainbow effect in the present invention is due to the special phenomenon formed by two refractions and two reflections of light in water droplets, which is similar to the rainbow effect. Assuming that the air is full of tiny water droplets, each rainbow will correspond to a secondary rainbow.
  • a is a water drop
  • i is an incident angle
  • r is a refraction angle.
  • the angle between the incident light and the outgoing light rays forming the rainbow is set as the first deflection angle, that is, ⁇ in FIG. 23, with different refraction
  • the light rays having the corresponding rate have their corresponding first deflection angles ⁇ .
  • the wavelength of red light in white light is the longest and the wavelength of purple light is the shortest. Therefore, the first deflection angle of red light is the largest and the first deflection angle of purple light is the smallest. .
  • the person's line of sight of the person and the white light emitted by the light source is between the first deflection angle of the purple light and the first deflected angle of the red light
  • the person's line of sight can correspondingly see light of a certain color corresponding to the included angle.
  • the position of the light source and the position of the viewpoint are fixed, it is assumed that the air is full of small water droplets, and the light is diverted to the surroundings with the light source as the center.
  • the area between the corners is the rainbow effect area presented by the present invention.
  • b is the water droplet
  • i is the angle of incidence
  • r is the angle of refraction.
  • the light entering the water droplet undergoes two refractions and two reflections to form the secondary rainbow.
  • the included angle is set as the second deflection angle, that is, ⁇ in the figure.
  • the rays of different refractive indices have different second deflection angles ⁇ .
  • the longer the wavelength of the light the smaller the refractive index, and the greater the second deflection angle ⁇ .
  • the wavelength of red light is the longest in white light
  • the wavelength of purple light is the shortest, so the second deflection angle of red light is the smallest, and the second deflection angle of purple light is the largest.
  • the person's line of sight of the person and the white light emitted by the light source is between the second deflection angle of the red light and the second angle of deflection of the purple light
  • the person's line of sight can see light of a certain color corresponding to the angle.
  • the position of the light source and the position of the viewpoint are fixed, it is assumed that the air is full of tiny water droplets, and the light is diverted around the light source as the center.
  • the area between the two deflection angles is the secondary rainbow effect area presented by the present invention.
  • the effective use of the illumination range, and the atomized water 15 produce strong rainbow and sub-irid light and shadow effects at appropriate positions of the viewer.
  • a device and system for generating a light and shadow effect by illuminating the water out of a water outlet device includes a water outlet device 13 and a lighting device 11.
  • the water outlet device 13 includes a spray device 14, which is a conventional technology and can Atomized water 15 that ejects a large number of fine water droplets.
  • the lighting device 11 can illuminate a multi-colored concentric light beam 12.
  • the lighting device 11 that generates a concentric light beam 12 is the prior art.
  • the atomized water 15 passes through the rainbow effect range 8 or the sub-iris effect range. 25.
  • Rainbow effect range 8 or secondary rainbow effect range 25 is obtained from the concentric position 1 and the preset viewpoint position 2 of the concentric light beam 12, and the multi-color concentric light beam 12 is irradiated on the atomized water 15 and the rainbow effect range 8 or the secondary rainbow. Area of effect 25 intersects.
  • the concentric light beam 12 refers to the light beams where the light rays or their extension lines intersect at the same point.
  • the concentric light beam 12 can be divided into divergent light beams, convergent light beams and parallel light beams.
  • the divergent light beams are emitted from the concentric position 1.
  • the spread angle of the light is greater than 0 degrees, and the greater the projection distance, the larger the irradiation range; the convergent beam rays are directed to the concentric position 1, and converge at the concentric position 1, the light spread angle is less than 0 degrees, and as the projection The larger the distance, the smaller the irradiation range.
  • the converging beam becomes a divergent beam after converging at the concentric position 1.
  • the concentric position 1 of the parallel beam is at infinity, and the light expansion angle is equal to 0 degrees. As the projection distance is larger, the irradiation range does not change.
  • the concentric beam 12 corresponds to three kinds of ray expansion angle states of three kinds of rainbow effect range 8 and three kinds of secondary rainbow effect range 25 respectively.
  • the concentric beam 12 is connected with its concentric position 1 and the viewpoint position 2 as a chord 3.
  • the chord 3 falls on an infinite number of circles in space.
  • the circumferential angle of the superior arc corresponding to each circle on the circle is the line of sight and light.
  • Angle. Find circle A5 and circle B7 in countless circles, so that the size of the circle angle A4 on the circle A5 is equal to the first deflection angle of the purple light, and the circle angle B6 of the string 3 on the circle B7 is equal to the size of the red light.
  • the range is on the circles A5 and B7, and the size of the circumferential angle corresponding to the chord 3 is between the deflection angle of the purple light and the deflection angle of the red light.
  • the corresponding circumferential angle of chord 3 on the outer wall of the shell is the first deflection angle of purple light
  • chord 3 is on the inner wall of the shell.
  • the corresponding circumferential angle above is the first deflection angle of red light
  • the range between the outer wall and the inner wall of such a spherical shell is the rainbow effect range 8.
  • the red concentric light beam 12 and the purple concentric light beam 12 at the same concentric position 1 illuminate the rainbow effect range 8 in the space, and the line of sight passes through the rainbow effect range 8, and there is only a spherical-like shell in the space
  • the rainbow effect range 8 is observed from the position of the viewpoint, and only purple light is seen.
  • the red concentric light beam 12 and the purple concentric light beam 12 at the same concentric position 1 illuminate the rainbow effect range 8 in space, and the line of sight passes through the rainbow effect range 8, and there is only a spherical-like shell in space
  • the rainbow effect range 8 is observed from the position of the viewpoint, and only red light is seen.
  • the red concentric light beam 12 and the purple concentric light beam 12 at the same concentric position 1 illuminate the rainbow effect range 8 in space
  • the atomized water 15 passes through the entire rainbow effect range 8
  • the concentric beam 12 is irradiated on Where the atomized water 15 intersects the rainbow effect range 8.
  • the concentric beam 12, the atomized water 15, and the rainbow effect range 8 intersect to form a rainbow light and shadow effect.
  • the concentric beam 12 is within the rainbow effect range 8 from circle A5 to circle
  • the sequence of B7 refracts and reflects visible light of different wavelengths from purple to red to the viewpoint position 2, respectively.
  • the light spreading angle is greater than 0 degrees.
  • the side effect range 25 is referred to FIG. 5.
  • the concentric beam 12 is connected to the point of view 1 and the point of view 2 as the chord 3, and the circle C22 and the circle D24 are found in the space, so that the chord 3 is at
  • the magnitude of the corresponding circumferential angle C21 on the superior arc of the circle C22 is equal to the second deflection angle of the red light
  • the magnitude of the corresponding circumferential angle D23 of the chord 3 on the superior arc of the circle D24 is equal to the second deflection angle of the purple light.
  • the range between the outer wall and the inner wall of the shell is the secondary rainbow effect range 25.
  • the concentric beam 12, the atomized water 15, and the secondary rainbow effect range 25 intersect to form the light and shadow effect of the secondary rainbow.
  • the concentric beam 12 within the secondary rainbow effect range 25 is sequentially refracted and reflected from the circle C22 to the circle D24. Visible light of different wavelengths in purple to the viewpoint position 2.
  • the complementary angle of the included angle between the line of sight from the viewpoint position 2 and the ray toward the concentric position 1 is the first deflection angle of the ray, connecting the concentric beam 12 with its concentric position 1 and the viewpoint position 2 Line as string 3, find circle E32 and circle F34, make the complement angle of the circumferential angle E31 corresponding to the superior arc of string 3 on circle E32 equal to the first deflection angle of purple light, and the circle corresponding to the superior arc of string 3 on circle F34
  • the complement of the angle F33 is equal to the first deflection angle of the red light.
  • the range between the outer wall and the inner wall of the shell is the rainbow effect range 8, and the atomized water 15 passes the rainbow effect range 8.
  • the concentric light beam 12 strikes the intersection of the atomized water 15 and the rainbow effect range 8.
  • the concentric beam 12, the atomized water 15, and the rainbow effect range 8 intersect to form the light and shadow effect of the rainbow.
  • the concentric beam 12 refracts and reflects the different wavelengths of purple to red in the order of circles E32 to F34 within the rainbow effect range 8.
  • the light spreading angle is less than 0 degrees.
  • the concentric beam 12 is connected with the concentric position 1 and the viewpoint position 2 as the chord 3, and the circle G42 and the circle H44 are found.
  • the complementary angle of the corresponding circumferential angle G41 is equal to the second deflection angle of the red light
  • the complementary angle of the circumferential angle H43 corresponding to the superior arc of the chord 3 on the circle H44 is equal to the second deflection angle of the purple light.
  • the magnitude of the included angle I51 is equal to the magnitude of the first deflection angle of the purple light
  • the magnitude of the included angle J53 is equal to the magnitude of the first deflection angle of the red light.
  • the range enclosed by the rotation of ray I52 and ray J54 is the rainbow effect range 8.
  • the atomized water 15 passes through the rainbow effect range 8.
  • the concentric beam 12 is illuminated. At the intersection of the atomized water 15 and the rainbow effect range 8.
  • the concentric beam 12, the atomized water 15, and the rainbow effect range 8 intersect to form the light and shadow effect of the rainbow.
  • the order of the concentric beam 12 in the rainbow effect range 8 from ray I52 to ray J54 is different from the reflection and reflection of purple to red. Wavelength of visible light to viewpoint position 2.
  • the spread angle of the light is equal to 0 degrees.
  • the ray K62 is obtained with the viewpoint position 2 as the end point and an angle K61 with the direction of the light, and the sight position 2 as the end point and the angle L63 with the direction of the light. Get the rays L64.
  • the included angle K61 is equal to the second deflection angle of red light
  • the included angle L63 is equal to the second deflection angle of purple light.
  • the range enclosed by the rotation of the rays K62 and L64 is the secondary rainbow effect range 25.
  • the atomized water 15 passes through the secondary rainbow effect range 25.
  • the concentric beam 12 is irradiated at the intersection of the atomized water 15 and the side effect range 25.
  • the concentric beam 12, the atomized water 15, and the secondary rainbow effect range 25 intersect to form the light and shadow effect of the secondary rainbow.
  • the concentric beam 12 within the secondary rainbow effect range 25 is sequentially refracted and reflected from the rays K62 to L64. Visible light of different wavelengths in purple to the viewpoint position 2.
  • the formation of the rainbow effect and the secondary rainbow effect is not limited to red light and purple light.
  • two or more different colors of light form a rainbow and a secondary rainbow, their respective positions within the rainbow or secondary rainbow
  • the relationship is determined by its own wavelength and follows the above rules.
  • the rainbow effect range 8 and the secondary rainbow effect range 25 are not actual objects.
  • the shape of the rainbow effect range 8 and the secondary rainbow effect range 25 depends on the concentric beam 12 light expansion angle state.
  • the rainbow effect range 8 and the secondary rainbow effect range The position and size of 25 depend on the position 1 of the viewpoint 2 and the position 1 of the concentric beam 12.
  • the manner of changing the position 1 of the concentric position 1 includes but is not limited to: setting the parameters of the optical elements inside the lighting device 11, such as changing the curvature and position of the optical lens or reflector; Move the position and direction of the lighting device 11. By changing the intersection position 1, the rainbow effect range 8 and the secondary rainbow effect range 25 meet the requirements.
  • the concentric light beam 12 has three states of light expansion angles. When the light expansion angle of state 1 is greater than 0 degrees, a large illumination range can be projected by a smaller-sized lighting device 11. Therefore, the method of state 1 is preferably implemented.
  • the preset viewpoint position 2 is the preset position of the viewer's eyes.
  • the left and right eye positions are different, and the corresponding rainbow effect range 8 and the secondary rainbow effect range 25 are different. Therefore, the two positions are different.
  • the viewpoint position 2 changes, and the rainbow effect range 8 and the secondary rainbow effect range 25 also change. The seen rainbow and the secondary rainbow also move accordingly.
  • the multi-colored concentric light beam 12 is a divergent light beam, and the spreading angle of the divergent light beam is greater than 0 degrees.
  • water outlet direction of the spray device 14 is toward the preset viewpoint position 2 or below the preset viewpoint position 2.
  • the atomized water 15 is at the viewpoint position 2 or below the viewpoint position 2, so that the atomized water 15 can be used for bathing, and the water outlet device 13 can be used as a bather.
  • the background 16 that absorbs light
  • the background 16 is located at the viewpoint position 2 and the line of sight passes through the multicolored concentric light beam 12, the atomized water 15, the rainbow effect range 8 or the sub-iris effect range 25 at the intersection of the three.
  • the dark color background 16 that absorbs light can make the rainbow and sub-irid shadow effects seen more bright.
  • the projection of the area where the atomized water 15 sprayed by the spray device 14 intersects with the rainbow effect range 8 or the secondary rainbow effect range 25 along the line between the concentric position of the concentric light beam 12 and the preset viewpoint position 2 The shape of the circle is a circle or a circle, and the center of the circle or the circle of the projection is located on the line between the concentric position of the concentric light beam 12 and the preset viewpoint position 2.
  • the shape of the projection of the area where the atomized water 15 sprayed by the spray device 14 intersects with the rainbow effect range 8 or the secondary rainbow effect range 25 in the direction of the water outlet is a long shape, the long shape projection and the concentric light beam 12
  • the line between the center position of the camera and the preset viewpoint position 2 is set vertically in space.
  • a multi-color concentric light beam 12 composed of three monochromatic concentric light beams 12 of red, green, and blue is used, and the three monochromatic concentric light beams 12 are concentrically located at the same position. Therefore, the 3 concentric beams 12 have the same rainbow effect range 8 as the secondary rainbow effect range 25.
  • the multi-color concentric beam has the shortest wavelength of blue light and the longest wavelength of red light, so the rainbow effect range 8 corresponds to the first deflection angle range in blue light.
  • the sub-iris effect range 25 corresponds to the deflection angle range between the second deflection angle of red light and the second deflection angle of blue light.
  • the light spread angle is greater than 0 degrees, and the line of sight passes through
  • the length of the intersecting area of the multi-colored concentric light beam 12, the atomized water 15, and the rainbow effect range 8 is equal to the length of the line of sight falling into the rainbow effect range 8 when the line of sight passes through the rainbow effect range 8. From this circle, the circle A5 There is a uniform atomized water 15 and a multi-colored concentric beam 12 to the circle B7. The viewer sees white light of mixed colors on this line of sight.
  • the atomized water 15 of this line of view refracts and reflects light of 3 colors to the viewpoint.
  • Position 2 when the line of sight crosses Concentric light beam 12, atomized water 15, rainbow effect range 8, when the three areas intersect, the length of the area approaches 0, and the viewer sees three fine lights and shadows that are separated by red, green, and blue.
  • the length of the intersecting area in the line of sight becomes longer, and the 3 lights and shadows gradually widen and merge, forming a mixed color in the fused area, so the multi-colored concentric light beam 12, fog water 15, rainbow effect range 8, or sub-iris
  • the length of the intersecting area of the effect range 25 in the line of sight can reduce or eliminate the mixed color area of the rainbow and the secondary rainbow, and it is easier to distinguish each color, and the color of the light and shadow effect is more vivid.
  • the predetermined connection between the viewpoint position 2 and the concentric position 1 and the sight line determine a plane in the space.
  • the spray devices 14 are arranged in a row, the spray devices 14 in a row are perpendicular to the plane, and the atomized water 15 sprayed by the spray devices 14 It is flat, the shape of the projection of the area where the flat atomized water 14 intersects with the rainbow effect range 8 or the sub-iris effect range 25 in the direction of the water exit is a long shape, and the projection of the long shape and the concentric position of the concentric light beam 12 are The line between the preset viewpoint positions 2 is set vertically in space. This can reduce the length of the atomized water 15 in the sight direction within the rainbow effect range 8 or the secondary rainbow effect range 25, thereby reducing the multi-color concentric beam. 12. Atomized water 15, length of the intersection area of the rainbow effect range 8 or the secondary rainbow effect range 25 in the sight direction.
  • the shape of the projection of the area where the illumination device 11 emits a multi-colored concentric light beam 12 intersects with the rainbow effect range 8 or the sub-iris effect range 25 in the direction of the light is a strip shape, and the projection of the strip shape and the concentric beam 12 The line between the center position of the camera and the preset viewpoint position 2 is set vertically in space.
  • the shape of the projection of the area where the light emitted by the lighting device 11 intersects with the rainbow effect range 8 or the sub-iris effect range 25 in the direction of the light may be long or long.
  • the concentric position 1 of each color in the multi-colored concentric light beam 12 is the same, and the light emission range of each color in the multi-colored concentric light beam 12 is the same.
  • the concentric position 1 of each color of the multi-color concentric light beam 12 can produce a clear outline of the light and shadow.
  • the light output range of each color is the same, the light color seen by the viewer is a single mixed color.
  • the irradiation range is also a single mixed color light.
  • the light and shadow effects of the rainbow and the sub-iris seen are colored, and the viewer does not know the principle, resulting in a fantastic visual effect.
  • the concentric position 1 of each color of the multi-colored concentric light beam 12 is different, and the light emission range of each color of the multi-colored concentric light beam 12 is different.
  • the number of the multi-colored concentric light beams 12 is at least two, and the at least two concentric light beams 12 intersect with the atomized water 13 within the rainbow effect range 8 or the sub-iris effect range 25, respectively.
  • the front of the viewpoint position 2 is the left of the viewpoint position 2 in the figure.
  • FIG. 12 and FIG. 13 show Embodiment 1.
  • the preset viewer's eyes are at the viewpoint position 2, and the line of sight is downward and forward.
  • a water outlet device 13 is provided above the viewpoint position 2, a water outlet device 13 is provided.
  • the water outlet device 13 includes six circular arrangements.
  • the spraying device 14, referring to FIG. 13, sprays atomized water 15 from top to bottom.
  • the range of the atomized water 15 is close to the viewpoint position 2 and covers the viewpoint position 2 and a week below it.
  • the atomized water 15 can shower the viewer.
  • the lighting device 11 is provided with light sources of three colors: red, green and blue. It emits three concentric light beams 12 with red, green and blue light spreading angles greater than 0 degrees.
  • the concentric positions of the three concentric light beams 12 are at the same position. Therefore, the corresponding rainbow effect range 8 is the same.
  • the concentric light beam 12 of the multi-color concentric position 1 is directly above the viewpoint position 2.
  • the rainbow effect range 8 intersects with the atomized water 15 one week before the viewpoint position 2.
  • the multi-color concentric light beam 12 starts from Up and down irradiation at the intersection of the atomized water 15 and the rainbow effect range 8, the irradiation range is circular or circular, so that the concentric light beam 12, the atomized water 15, the rainbow effect range 8, or the sub rainbow Area of effect 25 where the three intersect
  • the shape of the connecting line between the concentric position of the concentric light beam 12 and the preset viewpoint position 2 is circular or circular, because the left and right eye viewpoint positions 2 are different. If the secondary rainbow is not considered, the viewer sees two circles around His round rainbow.
  • a black velvet cloth background 16 is provided at the end point where the line of sight passes through the multi-colored concentric light beam 12, the atomized water 15, and the rainbow effect range 8.
  • the background 16 surrounds the viewer 360 degrees.
  • the rainbow seen by the viewer appears brighter in contrast to the background 16. Even if the illumination range of the multi-colored concentric light beam 12 of the lighting device 11 is expanded to this point, the background 16 can absorb most of the light emitted by it to
  • the line and sight line between the preset viewpoint position 2 and the concentric position 1 determine a plane in space.
  • the viewer's eyes are the viewpoint position 2 and the sight line is downward and forward.
  • a water outlet device 13 is provided in front of the viewpoint position 2.
  • the water outlet device 13 includes four spray devices 14 arranged in a row.
  • the spray devices 14 in a row are perpendicular to the plane.
  • the atomized water 15 sprayed by the spray devices 14 is flat and flat.
  • the shape of the projection of the area where the atomized water 14 intersects with the rainbow effect range 8 or the secondary rainbow effect range 25 in the direction of the water exit is a long bar.
  • the projection of the long bar and the concentric position of the concentric light beam 12 and the preset viewpoint position 2 The connecting line is vertically arranged in the space. Referring to FIG. 15, the atomized water 15 passes forward and downward through the viewpoint position 2, and the atomized water 15 can shower the viewer. There are three red, green and blue light sources inside, emitting three red, green and blue concentric beams 12 with a spread angle greater than 0 degrees. The three concentric beams 12 intersect at the same position 1 to form a multi-colored concentric beam 12 And therefore corresponds to the rainbow The range 8 should be the same. The rainbow effect range 8 determined by the concentric position 1 and the viewpoint position 2 can be in front of the viewpoint position 2.
  • the rainbow effect range 8 intersects the atomized water 15 passing there, and the multi-colored concentric beam 12 is illuminated.
  • the viewpoint position 2 of the left and right eyes is different. If the secondary rainbow is not considered, the viewer sees two rainbows. Because the wavelength of red light is greater than the wavelength of green light, the wavelength of green light is greater than The wavelength of blue light.
  • the rainbow colors are arranged in red, blue and blue.
  • a black velvet background 16 is provided at the end of the line of sight where the line of sight passes through the multi-colored concentric light beam 12, the atomized water 15, and the rainbow effect range 8.
  • the concentric position 1 of each color of the multi-colored concentric light beam 12 in this embodiment may also be at a different position.
  • the blue concentric light beam 12 in the multi-colored concentric light beam 12 in this embodiment is perpendicular to the original position above the original position. Move, or move horizontally in front of the original position, so that the position of the blue light at the lower end of the rainbow you see moves further down.
  • the red concentric light beam 12 in the multi-colored concentric light beam 12 intersects the position 1 vertically below the original position, or Moving horizontally behind the original position can make the red light position at the upper end of the rainbow seen move further upwards, and finally you can see a rainbow with a larger distance between the colors of the rainbow and a larger range from top to bottom.
  • the line of sight emitted from the viewpoint position 2 coincides with the upper edge of the rainbow effect range 8 and the upper edge of the atomized water 15 in the rainbow effect range 8.
  • the lower edge of the rainbow effect range 8 coincides with the lower edge of the atomized water 15 at the rainbow effect range 8.
  • the line of sight passes through the length of the intersection area of the multi-colored concentric beam 12, the atomized water 15, and the rainbow effect range 8. In any direction, it is equal to the length of the line of sight falling into the rainbow effect range 8 when the line of sight passes through the rainbow effect range 8. Even if the concentric beam 12 and the atomized water 15 intersect at the same position of the rainbow effect range 8, the observer from the viewpoint position 2 You can only see white light everywhere, no rainbow effect.
  • the atomized water 15 and the line of sight emitted from the viewpoint position 2 are perpendicular to each other at the rainbow effect range 8 as shown in FIG. 22. At this time, the observer sees from the viewpoint position 2 The rainbow effect is most pronounced.
  • FIG. 16 shows Embodiment 3.
  • the water outlet device 13 is on the upper part of the rainbow effect range 8 and sprays flat atomized water 15 from top to bottom.
  • the illumination device 11 irradiates in the fog area. Where the water 15 intersects with the rainbow effect range 8, the viewer ’s eyes are directed upward and forward.
  • the rainbow light and shadow effects seen in Example 2 are arranged in the order of red, blue, and blue.
  • the rainbow light and shadow effects seen in this example are in blue.
  • the red is arranged in reverse order, and the same can be achieved by vice-hong.
  • FIG. 17 and FIG. 18 show Embodiment 4.
  • the viewer's eyes are at the viewpoint position 2, the line of sight is facing forward, and a water outlet device 13 is provided in front of the viewpoint position 2.
  • the water outlet device 13 includes a spray device 14 and sprays atomized water 15
  • the atomized water 15 passes through the front and bottom of the viewpoint position 2.
  • the atomized water 15 can shower the viewer.
  • the lighting device 11 uses a short light source close to the point light source.
  • An arc-xenon lamp or an ultra-high-pressure mercury lamp as a light source emits a continuous multi-colored concentric beam in the wavelength range of 400 nm to 750 nm, including purple to red light that can be seen by the human eye.
  • the light spread angle is greater than 0 degrees, and different
  • the concentric position 12 of the wavelength of the concentric light beam 12 is the same.
  • the shape of the projection of the area where the light intersects with the rainbow effect range 8 or the sub-iris effect range 25 in the direction of the light is an elongated shape.
  • the line between the preset viewpoint positions 2 is set vertically in space. Referring to FIG.
  • the rainbow effect range 8 and the secondary rainbow effect range 25 determined by the intersection position 1 and the viewpoint position 2 are in front of the viewpoint position 2, the rainbow effect range 8 and the secondary rainbow effect range 25 and the atomized water 15 passing therethrough.
  • two multi-colored concentric beams of light 12 shine on the atomized water 15, where the rainbow effect range 8 and the secondary rainbow effect range 25 intersect, because the left and right eye viewpoint positions 2 are different, so the viewer sees 4 rainbows and 4 vices rainbow.
  • a black velvet cloth background 16 is set at the end point where the line of sight passes through the multi-colored concentric light beam 12, the atomized water 15, the rainbow effect range 8 and the secondary rainbow effect range 25.
  • the concentric light beams 12 emitted by the two lighting devices 11 intersect The position 1 may not be in the same position. In the present embodiment, for simplicity, the concentric position 1 is set to the same state.
  • the shape of the projection of the area where the light intersects with the rainbow effect range 8 or the secondary rainbow effect range 25 along the direction of the light If the shape is a circular ring, you can see the oval rainbow and the secondary rainbow. If it is a transverse wave, you can see Horizontal wavy rainbow and secondary rainbow, or horizontal dot-matrix to see horizontal dot-shaped rainbow and secondary rainbow.
  • FIG. 19 shows Embodiment 5.
  • the viewer's eyes are at the viewpoint position 2, the line of sight is facing forward, and a water outlet device 13 is provided in front of the viewpoint position 2.
  • the water outlet device 13 includes a spray device 14 for spraying atomized water 15 and atomizing.
  • the water 15 passes in front of the viewpoint position 2, and a lighting device 11 is arranged above the viewpoint position 2 to illuminate a multi-colored concentric light beam 12 with a light expansion angle of less than 0 degrees.
  • Each color of the concentric light beam 12 has the same concentric position 1 and the light converges toward the concentric position 1.
  • the intersection position 1 is located in front of the viewpoint position 2, and the rainbow effect range 8 determined by the intersection position 1 and the viewpoint position 2 can be in front of the viewpoint position 2.
  • the rainbow effect range 8 intersects the atomized water 15 passing there.
  • the multi-colored The concentric light beam 12 is irradiated at the intersection of the atomized water 15 and the rainbow effect range 8.
  • the viewpoint positions 2 of the left and right eyes are different. If the secondary rainbow is not considered, the viewer sees two rainbows.
  • the concentric light beam 12 and the atomized water 15 respectively intersect with the rainbow effect range 8 at different positions, and the light and shadow effects in this case are poor.
  • the rainbow and sub-iris shadow effects described in the present invention are not limited to their shapes, color types, color numbers, and arrangement directions, and there are more variations in comparison with rainbows and sub-irises formed in nature.
  • the rainbow effect and the secondary rainbow effect may occur simultaneously.
  • multiple lighting devices to illuminate a multi-colored concentric light beam 12 multiple multi-colored concentric light beams 12, atomized water 15, rainbow effect range 8, and sub-iris effect range 25 should be in the same line of sight.
  • the present invention provides a device and system capable of generating rainbow and sub-irid shadow effects, which can bring great visual impact and physical and mental shock, and can be used in waterscape technology, decorative products, and bathroom products. Give people a new sense of experience.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

一种通过照明使出水装置出水产生光影效果的装置或系统,包括出水装置(13)和照明装置(11),出水装置(13)包括有喷雾装置(14),喷雾装置(14)喷射雾化水(15),照明装置(11)发出多色的同心光束(12);雾化水(15)与多色的同心光束(12)在空间内相交且相交处位于由同心光束(12)的交心位置(1)与预设的视点位置(2)求得的彩虹效应范围(8)内或副虹效应范围(25)内。

Description

一种通过照明使出水装置出水产生光影效果的装置和系统 技术领域
本发明涉及照明出水装置技术领域,特别是一种通过照明使出水装置出水产生光影效果的装置和系统。
背景技术
目前带出水装置的卫浴产品延伸出了很多功能,按摩水,气泡水,花洒水,吸气水,喷雾水,瀑布水,其款式众多,造型各异,已经超出了卫浴产品清洁与节水的使用目的,更多的是带给使用者更佳的体验,因此有必要使卫浴产品增加新的体验感,带给使用者更多的乐趣。
在露天的场合,人们为了观赏彩虹,往往需在背着太阳向空中喷射大量的水雾,为避免淋湿,观看者需离得比较远,不能近距离体验,形成彩虹效应需要浪费大量水资源,上述方法人们需去往相关景区,同时受到时间限制。
技术问题
本发明所要解决的技术问题是:提供一种能够产生彩虹与副虹光影效果的装置和系统。
技术解决方案
一种通过照明使出水装置出水产生光影效果的装置和系统,包括出水装置和照明装置,所述出水装置包括有喷雾装置,所述喷雾装置喷射雾化水,所述照明装置发出多色的同心光束;
所述雾化水与多色的同心光束在空间内相交且相交处位于由同心光束的交心位置与预设的视点位置求得的彩虹效应范围内或副虹效应范围内。
上述喷雾装置和产生同心光束的照明装置均为现有技术。
进一步的,多色的所述同心光束为发散光束,发散光束的光线展开角度大于0度。
进一步的,所述喷雾装置的出水方向朝向预设的所述视点位置或朝向预设的所述视点位置下方。
进一步的,还包括吸收光线的背景,所述背景位于所述视点位置的视线穿过所述多色的同心光束、所述雾化水、所述彩虹效应范围或所述副虹效应范围三者相交处的终点。
进一步的,所述喷雾装置喷出的雾化水与彩虹效应范围或副虹效应范围相交的区域沿同心光束的交心位置与预设的视点位置之间的连线的投影的形状为圆形或圆环形,圆形或圆环形的投影的圆心位于同心光束的交心位置与预设的视点位置之间的连线上。
进一步的,所述喷雾装置喷出的雾化水与彩虹效应范围或副虹效应范围相交的区域沿出水方向的投影的形状为长条形,长条形的投影与同心光束的交心位置与预设的视点位置之间的连线在空间垂直设置。
进一步的,所述照明装置发出多色的同心光束与彩虹效应范围或副虹效应范围相交的区域沿光线方向的投影的形状为长条形,长条形的投影与同心光束的交心位置与预设的视点位置之间的连线在空间垂直设置。
进一步的,多色的所述同心光束中每个颜色的交心位置相同,多色的所述同心光束中每个颜色的出光范围相同。
进一步的,多色的所述同心光束每个颜色的交心位置不同,多色的所述同心光束每个颜色的出光范围不同。
进一步的,多色的所述同心光束的数目为至少两个,至少两个的所述同心光束分别与雾化水相交于所述彩虹效应范围内或副虹效应范围内。
本发明使用发出多色的同心光束的照明装置与包括有喷雾装置的出水装置,根据能够产生光影效果的彩虹效应范围与副虹效应范围设置出水装置与照明装置,有效利用光照范围与雾化水,在观看者合适的位置产生强的彩虹与副虹的光影效果。
有益效果
其有益效果:1、不受时间限制,还可利用沐浴时间,无需考虑身体被淋湿;2、节约水资源;3、节约电资源;4、不受空间限制,能够在小的空间近距离体验;5、增加出水装置的功能或沐浴产品的乐趣;7、照明设备功率小,小型化,8、形成的彩虹与副虹的光影效果灵活多变,克服了该领域技术人员普遍存在的对彩虹与副虹颜色和形状存在形式的技术偏见。
附图说明
图1为本发明同心光束光线展开角度大于0度彩虹效应范围平面示意图;
图2为本发明同心光束光线展开角度大于0度彩虹效应范围剖视示意图;
图3为本发明同心光束光线展开角度大于0度彩虹效应范围俯视示意图;
图4为本发明同心光束光线展开角度大于0度彩虹效应范围立体剖视示意图;
图5为本发明同心光束光线展开角度大于0度副虹效应范围平面示意图;
图6为本发明同心光束光线展开角度小于0度彩虹效应范围平面示意图;
图7为本发明同心光束光线展开角度小于0度彩虹效应范围立体剖视示意图;
图8为本发明同心光束光线展开角度小于0度副虹效应范围平面示意图;
图9为本发明同心光束光线展开角度等于0度彩虹效应范围平面示意图;
图10为本发明同心光束光线展开角度等于0度彩虹效应范围立体剖视示意图;
图11为本发明同心光束光线展开角度等于0度副虹效应范围平面示意图;
图12为本发明实施例1的通过照明使出水装置出水产生光影效果的装置和系统的示意图;
图13为图12中出水装置A向示意图;
图14为本发明实施例2的通过照明使出水装置出水产生光影效果的装置和系统的示意图;
图15为图14中出水装置B向剖视示意图;
图16为本发明实施例3的通过照明使出水装置出水产生光影效果的装置和系统的示意图;
图17为本发明实施例4的通过照明使出水装置出水产生光影效果的装置和系统的示意图;
图18为图17中照明装置C向示意图;
图19为本发明实施例5的通过照明使出水装置出水产生光影效果的装置和系统的示意图;
图20为同心光束与雾化水分别与彩虹效应范围相交于不同位置的结构示意图;
图21为本发明实施例二中无彩虹效应的特例;
图22为本发明实施例二中彩虹效应效果最佳状态下的示意图;
图23为光线穿过水滴形成彩虹的结构示意图;
图24为光线穿过水滴形成副虹的结构示意图;
标号说明:
1、交心位置;2、视点位置;3、弦;4、圆周角A;5、圆A;6、圆周角B;7、圆B;8、彩虹效应范围;11、照明装置;12、同心光束;13、出水装置;
14、喷雾装置;15、雾化水;16、背景;21、圆周角C;22、圆C;23、圆周角D;24、圆D;25、副虹效应范围;31、圆周角E;32、圆E;33、圆周角F;34、圆F;41、圆周角G;42、圆G;43、圆周角H;44、圆H;51、夹角I;52、射线I;53、夹角J;54、射线J;61、夹角K;62、射线K;63、夹角L;64、射线L。
本发明的实施方式
为详细说明本发明的技术内容与所实现目的及效果,以下结合实施方式并配合附图予以说明。
彩虹是由于光的色散形成,看起来是白色的光经水滴两次折射与一次反射形成的。由于不同颜色的光的波长不同,因此折射率也不同,自上而下会出现红、橙、黄、绿、蓝、靛、紫的色带。本发明中指的彩虹效应的范围,指的是假设空气中布满细小的水滴,人眼看到的彩虹的色带所在的位置,每个视点的位置都对应有一个彩虹,故每个视点位置都有对应的彩虹效应的范围。
本发明中副虹效应中的副虹,是由于光在水滴进行两次折射与两次反射所形成的特殊现象与彩虹效应类似,假设空气中布满细小的水滴,每个彩虹都会对应一个副虹。
如图23所示,a为水滴,i为入射角,r为折射角,入射光线与形成彩虹的出射光线之间的夹角设为第一偏向角,也就是图23中的θ,不同折射率的光线有其对应的第一偏向角θ。光的波长越长,折射率越小,第一偏向角θ越大,白光中红光的波长最长,紫光的波长最短,因此红光的第一偏向角最大,紫光的第一偏向角最小。当人的视线与光源发出的白光夹角介于紫光的第一偏向角和红光的第一偏向角之间时,人的视线可以对应看到与该夹角对应的某种颜色的光。当光源位置与视点位置的固定,假设空气中布满细小的水滴,光线以光源为中心向四周发散,视点位置朝四周的视线与光线的夹角在紫光第一偏向角与红光第一偏向角之间的区域就是本发明所呈的彩虹效应区域。
对于副虹效应,如图24所示,b为水滴,i为入射角,r为折射角,光线进入水滴经过两次折射与两次反射形成副虹,入射光线与形成副虹的出射光线之间的夹角设为第二偏向角,也就是图中的φ,不同的折射率的光线具有不同的第二偏向角φ,光的波长越长,折射率越小,第二偏向角φ越小,白光中红光的波长最长,紫光的波长最短,因此红光的第二偏向角最小,紫光的第二偏向角最大。当人的视线与光源发出的白光夹角介于红光的第二偏向角与紫光的第二偏向角之间时,人的视线可以对应看到与该夹角对应的某种颜色的光。当光源位置与视点位置的固定,假设空气中布满细小的水滴,光线以光源为中心向四周发散,视点位置朝四周的视线与光线的夹角在红光的第二偏向角和紫光的第二偏向角之间的区域就是本发明所呈的副虹效应区域。
本发明最关键的构思在于:使用多色的同心光束12的照明装置11与包括有喷雾装置14的出水装置13,根据能够产生光影效果的彩虹效应范围8与副虹效应范围25设置出水装置13与照明装置11,有效利用光照范围,与雾化水15,在观看者合适的位置产生强的彩虹与副虹的光影效果。
请参照图1-19,一种通过照明使出水装置出水产生光影效果的装置和系统,包括出水装置13和照明装置11,出水装置13包括有喷雾装置14,喷雾装置14为现有技术,能够喷出大量细小水滴的雾化水15,照明装置11能够照射多色的同心光束12,产生同心光束12的照明装置11为现有技术,雾化水15通过彩虹效应范围8或副虹效应范围25,彩虹效应范围8或副虹效应范围25由同心光束12的交心位置1与预设的视点位置2求得,多色的同心光束12照射在雾化水15与彩虹效应范围8或副虹效应范围25相交处。
本发明中同心光束12是指各光线本身或其延长线相交于同一点的光束,同心光束12可分为发散光束,会聚光束和平行光束,发散光束光线由交心位置1发出,此时交心可视为点光源,光线展开角度大于0度,随着投射距离更大,其照射范围更大;会聚光束光线射往交心位置1,在交心位置1会聚,光线展开角度小于0度,随着投射距离更大,其照射范围更小,会聚光束在交心位置1会聚后成为发散光束;平行光束交心位置1在无穷远,光线展开角度等于0度,随着投射距离更大,其照射范围不变。同心光束12三种光线展开角度状态分别对应3种彩虹效应范围8与3种副虹效应范围25。
状态1:发散光束,光线展开角度大于0度彩虹效应范围8参照图1至图4,为求得彩虹效应范围8,需要找到视线与光线的夹角在紫光偏向角和红光偏向角的空间范围。
将同心光束12其交心位置1与视点位置2连线作为弦3,弦3在空间内落在无数个圆上,弦3在每个圆上对应的优弧上的圆周角就是视线与光线的夹角。在无数个圆中找到圆A5和圆B7,使得弦3在圆A5上对应圆周角A4的大小等于紫光的第一偏向角,弦3在圆B7上对应的圆周角B6大小等于红光的第一偏向角。这样,无数个包含弦3的圆中,范围在圆A5和圆B7的圆上,弦3对应的圆周角的大小就在紫光偏向角与红光偏向角之间。将圆A5与圆B7以弦3为中心轴旋转,得到两个相交的类球形壳体,弦3在壳体外壁上对应的圆周角为紫光的第一偏向角,弦3在壳体的内壁上对应的圆周角为红光的第一偏向角,由此类球形壳体的外壁与内壁之间的范围就是彩虹效应范围8。
若视点位置2与交心位置1固定,交心位置1相同的红色同心光束12与紫色同心光束12照于空间中的彩虹效应范围8,视线穿过彩虹效应范围8,而空间中只有类球形壳体的外壁有雾化水15,其它位置没有雾化水15,则自视点位置观察彩虹效应范围8,仅看到紫色光。若视点位置2与交心位置1固定,交心位置1相同的红色同心光束12与紫色同心光束12照于空间中的彩虹效应范围8,视线穿过彩虹效应范围8,而空间中只有类球形壳体的内壁有雾化水15,其它位置没有雾化水15,则自视点位置观察彩虹效应范围8,仅看到红色光。
若视点位置2与交心位置1固定,交心位置1相同的红色同心光束12与紫色同心光束12照于空间中的彩虹效应范围8,雾化水15通过整个彩虹效应范围8,同心光束12照射在雾化水15与彩虹效应范围8相交处。同心光束12、雾化水15、彩虹效应范围8三者相交处,形成彩虹的光影效果,当彩虹效应范围8存在雾化水15时,同心光束12在彩虹效应范围8内从圆A5到圆B7的顺序分别折射与反射紫色到红色的不同波长的可见光到视点位置2。
光线展开角度大于0度副虹效应范围25参照图5,同理,将同心光束12其交心位置1与视点位置2连线作为弦3,在空间中找到圆C22与圆D24,使得弦3在圆C22的优弧上对应的圆周角C21的大小等于红光的第二偏向角,弦3在圆D24的优弧上对应的圆周角D23的大小等于紫光的第二偏向角。
将圆C22与圆D24以弦3为中心轴旋转,得到两个相交的类球形壳体,壳体的外壁与内壁之间的范围就是副虹效应范围25。同心光束12、雾化水15、副虹效应范围25三者相交处,形成副虹的光影效果,同心光束12在副虹效应范围25内从圆C22到圆D24的顺序分别折射与反射红色到紫色的不同波长的可见光到视点位置2。
状态2:会聚光束,光线展开角度小于0度彩虹效应范围8参照图6与图7,
与发散光束不同的地方在于,视点位置2发出的视线与朝向交心位置1的光线之间的夹角的补角为光线的第一偏向角,将同心光束12其交心位置1与视点位置2连线作为弦3,找到圆E32与圆F34,使弦3在圆E32上的优弧对应的圆周角E31的补角等于紫光的第一偏向角,弦3在圆F34上的优弧对应的圆周角F33的补角等于红光的第一偏向角。将圆E32与圆F34以弦3为中心轴旋转,得到两个相交的类球形壳体,壳体的外壁与内壁之间的范围就是彩虹效应范围8,雾化水15通过彩虹效应范围8,同心光束12照射在雾化水15与彩虹效应范围8相交处。同心光束12、雾化水15、彩虹效应范围8三者相交处,形成彩虹的光影效果,同心光束12在彩虹效应范围8内圆E32到圆F34的顺序分别折射与反射紫色到红色的不同波长的可见光到视点位置2。
光线展开角度小于0度副虹效应范围25参照图8,将同心光束12其交心位置1与视点位置2连线作为弦3,找到圆G42与圆H44,使弦3在圆G42上的优弧对应的圆周角G41的补角等于红光的第二偏向角,弦3在圆H44上的优弧对应的圆周角H43的补角等于紫光的第二偏向角。
将圆G42与圆H44以弦3为中心轴旋转,得到两个相交的类球形壳体,壳体的外壁与内壁之间的范围就是副虹效应范围25,雾化水15通过副虹效应范围25,同心光束12照射在雾化水15与副虹效应范围25相交处。同心光束12、雾化水15、副虹效应范围25三者相交处,形成副虹的光影效果,同心光束12在副虹效应范围25内从圆G42到圆H44的顺序分别折射与反射红色到紫色的不同波长的可见光到视点位置2。
状态3:平行光束,光线展开角度等于0度彩虹效应范围8参照图9与图10,此时交心位置1无穷远,光线完全平行,以视点位置2为端点,与光线方向成夹角I51求得射线I52,以视点位置2为端点,与光线方向成夹角J53求得射线J54。
其中夹角I51的大小等于紫光的第一偏向角的大小,夹角J53的大小等于红光的第一偏向角的大小。
将射线I52与射线J54以穿过视点位置2的光线为中心轴旋转,射线I52与射线J54旋转所围成的范围为彩虹效应范围8,雾化水15通过彩虹效应范围8,同心光束12照射在雾化水15与彩虹效应范围8相交处。同心光束12、雾化水15、彩虹效应范围8三者相交处,形成彩虹的光影效果,同心光束12在彩虹效应范围8内从射线I52到射线J54的顺序分别折射与反射紫色到红色的不同波长的可见光到视点位置2。
光线展开角度等于0度副虹效应范围25参照图11,以视点位置2为端点,与光线方向成夹角K61求得射线K62,以视线位置2为端点,与光线方向成夹角L63,求得射线L64。
其中夹角K61等于红光的第二偏向角,夹角L63等于紫光的第二偏向角。
将射线K62与射线L64以穿过视点位置2的光线为中心轴旋转,射线K62与射线L64旋转所围成的范围为副虹效应范围25,雾化水15通过副虹效应范围25,同心光束12照射在雾化水15与副虹效应范围25相交处。同心光束12、雾化水15、副虹效应范围25三者相交处,形成副虹的光影效果,同心光束12在副虹效应范围25内从射线K62到射线L64的顺序分别折射与反射红色到紫色的不同波长的可见光到视点位置2。
当然的,上述彩虹效应与副虹效应的形成不仅限于红光和紫光,任意两种或两种以上的不同颜色的光线在形成彩虹与副虹的时候,各自的在彩虹或副虹内的位置关系都由自身的波长决定且遵循上述规律。
由上述描述可知彩虹效应范围8与副虹效应范围25并非实际存在的物体,彩虹效应范围8与副虹效应范围25形状取决于同心光束12光线展开角度状态,彩虹效应范围8与副虹效应范围25位置和大小取决于视点位置2与同心光束12的交心位置1,改变交心位置1的方式包括但不仅限于:设置照明装置11内部光学元件参数,例如改变光学透镜或反射镜的曲率与位置;移动照明装置11的位置和方向。通过交心位置1发生改变,从而使彩虹效应范围8与副虹效应范围25满足要求。同心光束12三种光线展开角度状态,其中状态1光线展开角度大于0度时,可以用较小尺寸的照明装置11投射出大的照射范围,因此优选为使用状态1的方式实施本专利。
本发明中预设的视点位置2即为预设的观看者眼睛所处的位置,左右眼睛位置不同,其对应彩虹效应范围8与副虹效应范围25不同,因此看到两个位置不一样的彩虹,当观看者移动时,视点位置2改变,彩虹效应范围8与副虹效应范围25也产生变化,所看到的彩虹与副虹也相应移动。
进一步的,多色的所述同心光束12为发散光束,发散光束的光线展开角度大于0度。
由上述描述可知,请参照图12、图14、图17,可以用较小尺寸的照明装置11投射出大的照射范围。
进一步的,所述喷雾装置14的出水方向朝向预设的所述视点位置2或朝向预设的所述视点位置2下方。
由上述描述可知,请参照图12、图14、图17,雾化水15在视点位置2或者视点位置2下方,使雾化水15能够用于沐浴,出水装置13可作为沐浴器。
进一步的,包括吸收光线的背景16,背景16位于视点位置2视线穿过多色的同心光束12、雾化水15、彩虹效应范围8或副虹效应范围25三者相交处的终点。
由上述描述可知,请参照图12、图14、图17,吸收光线的深颜色背景16能够使所看到的彩虹与副虹光影效果更加明亮。
进一步的,所述喷雾装置14喷出的雾化水15与彩虹效应范围8或副虹效应范围25相交的区域沿同心光束12的交心位置与预设的视点位置2之间的连线的投影的形状为圆形或圆环形,圆形或圆环形的投影的圆心位于同心光束12的交心位置与预设的视点位置2之间的连线上。
由上述描述可知,当上述投影为圆形或圆环形时,观看者环绕自身一周都可以看见彩虹或副虹,光影效果好。
进一步的,所述喷雾装置14喷出的雾化水15与彩虹效应范围8或副虹效应范围25相交的区域沿出水方向的投影的形状为长条形,长条形的投影与同心光束12的交心位置与预设的视点位置2之间的连线在空间垂直设置。
由上述描述可知,请参照图14、图15,由红绿蓝3个单色的同心光束12组成的多色的同心光束12为例,且3个单色的同心光束12交心位于相同位置,因此3个同心光束12彩虹效应范围8与副虹效应范围25相同,此时多色同心光束波长最短为蓝光,波长最长为红光,因此彩虹效应范围8对应偏向角范围在蓝光的第一偏向角和红光的第一偏向角之间,副虹效应范围25对应偏向角范围在红光的第二偏向角与蓝光的第二偏向角之间,光线展开角度大于0度,视线穿过多色的同心光束12、雾化水15、彩虹效应范围8三者相交区域的长度如果等于该视线穿过彩虹效应范围8时落入彩虹效应范围8内的长度,在此视线上从圆A5到圆B7区间都有均匀的雾化水15与多色的同心光束12,观看者在此视线上看到混合色的白光,此视线的雾化水15折射与反射3种颜色的光到视点位置2,当视线穿过多色的同心光束12、雾化水15、彩虹效应范围8三者相交区域时落入该区域的长度趋近于0时,观看者看到红绿蓝彼此相隔的3个细光影,随着该三者相交区域在视线方向上的长度变长,3条光影逐渐变宽并融合,在融合区域形成混合色,因此减小多色的同心光束12、雾化水15、彩虹效应范围8或副虹效应范围25三者相交区域在视线方向上的长度,可以减小或消除彩虹与副虹的混合色区域,更容易区分各个颜色,光影效果的颜色更鲜艳。预设的视点位置2与交心位置1之间的连线与视线在空间内确定一个平面,喷雾装置14排成一列,一列的喷雾装置14与该平面垂直,喷雾装置14喷射的雾化水15为扁平状,扁平状的雾化水14与彩虹效应范围8或副虹效应范围25相交的区域沿出水方向的投影的形状为长条形,长条形的投影与同心光束12的交心位置与预设的视点位置2之间的连线在空间垂直设置,这样可以减小彩虹效应范围8或副虹效应范围25内雾化水15在视线方向上的长度,从而减小多色的同心光束12、雾化水15、彩虹效应范围8或副虹效应范围25三者相交区域在视线方向上的长度。
进一步的,所述照明装置11发出多色的同心光束12与彩虹效应范围8或副虹效应范围25相交的区域沿光线方向的投影的形状为长条形,长条形的投影与同心光束12的交心位置与预设的视点位置2之间的连线在空间垂直设置。
由上述描述可知,请参照图17、图18,照明装置11发出的光线与彩虹效应范围8或副虹效应范围25相交的区域沿光线方向的投影的形状可以为长条形,也可为长条直线或长条曲线等等,减小了彩虹效应范围8或副虹效应范围25内多色的同心光束12在视线方向上的长度,从而减小多色的同心光束12、雾化水15、彩虹效应范围8或副虹效应范围25三者相交区域在视线方向上的长度,减小或消除彩虹与副虹的混合色区域,更容易区分各个颜色,光影效果的颜色更鲜艳。
进一步的,多色的所述同心光束12中每个颜色的交心位置1相同,多色的所述同心光束12中每个颜色的出光范围相同。
由上述描述可知,多色的同心光束12每个颜色的交心位置1相同,便能产生清晰的光照阴影轮廓,同时如果每个颜色的出光范围相同,观看者看到的灯光颜色为单一混合色,照射范围也为单一混合色光。而看到的彩虹与副虹的光影效果为彩色,观看者不知道原理的情况下,从而产生奇幻的视觉效果。
进一步的,多色的所述同心光束12每个颜色的交心位置1不同,多色的所述同心光束12每个颜色的出光范围不同。进一步的,多色的所述同心光束12的数目为至少两个,至少两个的所述同心光束12分别与雾化水13相交于所述彩虹效应范围8内或副虹效应范围25内。
由上述描述可知,同心光束12的各个参数可以在满足要求的情况下灵活设置。
本发明实施例中视点位置2前方即为图中视点位置2的左方。
图12与图13所示为实施例1,预设的观看者的眼睛为视点位置2,视线朝下前方,在视点位置2上方设有出水装置13,出水装置13包括有6个圆形排列喷雾装置14,参照图13,从上往下喷射雾化水15,雾化水15范围靠近视点位置2并覆盖视点位置2与其下前方一周,雾化水15可以淋浴观看者,在出水装置13内设有照明装置11,照明装置11内设有红绿蓝3个颜色的光源,发射红绿蓝3个光线展开角度大于0度的同心光束12,3个同心光束12交心位置1在相同位置,因此对应彩虹效应范围8相同,多色的同心光束12交心位置1在视点位置2正上方,彩虹效应范围8与雾化水15相交于视点位置2下前方一周,多色的同心光束12从上往下照射在雾化水15与彩虹效应范围8相交处,照射范围为圆形或者圆环形,使得同心光束12、所述雾化水15、所述彩虹效应范围8或所述副虹效应范围25三者相交的区域沿同心光束12的交心位置与预设的视点位置2之间的连线的形状为圆形或圆环形,因为左右眼睛视点位置2不同,若不考虑副虹,观看者看到两圈环绕他的圆形彩虹。在视线穿过多色的同心光束12、雾化水15、彩虹效应范围8三者相交处的终点设有黑丝绒布背景16,背景16为360度环绕观看者。观看者看到的彩虹在背景16对比下显得更明亮,即使照明装置11的多色的同心光束12照射范围扩大到此处,背景16可以吸收其发射的大部分光线从而使彩虹显得明亮。
图14与图15所示为实施例2,预设的视点位置2与交心位置1之间的连线与视线在空间内确定一个平面,观看者的眼睛为视点位置2,视线朝下前方,在视点位置2前方设有出水装置13,出水装置13包括有4个喷雾装置14排成一列,一列的喷雾装置14与该平面垂直,喷雾装置14喷射的雾化水15为扁平状,扁平状的雾化水14与彩虹效应范围8或副虹效应范围25相交的区域沿出水方向的投影的形状为长条形,长条形的投影与同心光束12的交心位置与预设的视点位置2之间的连线在空间垂直设置,参照图15,雾化水15通过视点位置2下前方与下方,雾化水15可以淋浴观看者,视点位置2上前方设有照明装置11,照明装置11内设有红绿蓝3个颜色的光源,发射红绿蓝3个光线展开角度大于0度的同心光束12,3个同心光束12交心位置1在相同位置,组成一束多色的同心光束12,因此对应彩虹效应范围8相同,其交心位置1与视点位置2所确定的彩虹效应范围8能够在视点位置2下前方,彩虹效应范围8与通过此处的雾化水15相交,多色的同心光束12照射在雾化水15与彩虹效应范围8相交处,左右眼睛视点位置2不同,若不考虑副虹,观看者看到两个彩虹,由于红光的波长大于绿光的波长,绿光的波长大于蓝光的波长,彩虹颜色为上红下蓝顺序排列。在视线穿过多色的同心光束12、雾化水15、彩虹效应范围8三者相交处的终点设有黑丝绒布背景16。当然,本实施例多色的同心光束12每个颜色的交心位置1也可以在不同位置,例如使本实施例多色的同心光束12中的蓝色同心光束12交心位置1往原位置上方垂直移动,或者往原位置前方水平移动,可使所看到的彩虹下端的蓝色光位置再往下移动,多色的同心光束12中的红色同心光束12交心位置1往原位置下方垂直移动,或者往原位置后方水平移动,可使所看到的彩虹上端的红色光位置再往上移动,最终可看到彩虹各个颜色间距更大,从上到下范围更大的彩虹。
在本实施例中,存在一种特殊情况,如图21所示,从视点位置2发出的视线在彩虹效应范围8的上边缘与雾化水15在彩虹效应范围8的上边缘重合,视线在彩虹效应范围8的下边缘与雾化水15在彩虹效应范围8的下边缘重合,此时,视线穿过多色的同心光束12、雾化水15、彩虹效应范围8三者相交区域的长度在任何方向上都等于该视线穿过彩虹效应范围8时落入彩虹效应范围8内的长度,即便同心光束12与雾化水15相交于彩虹效应范围8的同一位置,观察者从视点位置2处也只会看到白光,没有彩虹效应。
与此相对的,本实施例中,优选是雾化水15与从视点位置2发出的视线在彩虹效应范围8处相互垂直,如图22所示,此时观察者从视点位置2观看到的彩虹效应最为明显。
图16所示为实施例3,本施例与施例2区别在于出水装置13在彩虹效应范围8上部分,从上往下喷射扁平状的雾化水15,照明装置11照射范围在该雾化水15与彩虹效应范围8相交处,观看者的视线朝上前方,实施例2所看到的彩虹光影效果按照上红下蓝顺序排列,本实施例所看到的彩虹光影效果按照上蓝下红的倒序排列,同理副虹也能实现倒叙排列。
图17与图18所示为实施例4,观看者的眼睛为视点位置2,视线朝下前方,在视点位置2前方设有出水装置13,出水装置13包括喷雾装置14,喷射雾化水15,雾化水15通过视点位置2下前方与下方,雾化水15可以淋浴观看者,在视点位置2上前方设有两个照射范围不同的照明装置11,照明装置11采用接近点光源的短弧氙灯或超高压汞灯作为光源,发射连续的波长范围400纳米到750纳米的多色的同心光束,包含了人眼能看到的紫色到红色的光,光线展开角度大于0度,同时不同波长的同心光束12交心位置1相同,光线与彩虹效应范围8或副虹效应范围25相交的区域沿光线方向的投影的形状为长条形,长条形的投影与同心光束12的交心位置与预设的视点位置2之间的连线在空间垂直设置。参照图18,交心位置1与视点位置2所确定的彩虹效应范围8与副虹效应范围25在视点位置2下前方,彩虹效应范围8与副虹效应范围25与通过此处的雾化水15相交,两个多色的同心光束12照射在雾化水15、彩虹效应范围8与副虹效应范围25相交处,因为左右眼睛视点位置2不同,因此观看者看到4个彩虹与4个副虹。在视线穿过多色的同心光束12、雾化水15、彩虹效应范围8与副虹效应范围25相交处的终点设有黑丝绒布背景16。2个照明装置11发出的同心光束12其交心位置1可以不在相同位置,本实施例为简化表示设置交心位置1为相同状态。本实施例光线与彩虹效应范围8或副虹效应范围25相交的区域沿光线方向的投影的形状如果为圆环形,则可以看到椭圆形彩虹与副虹,如果为横向波浪形可以看到横向波浪形彩虹与副虹,或为横向点阵形以看到横向点阵形彩虹与副虹。
图19所示为实施例5,观看者的眼睛为视点位置2,视线朝前方,在视点位置2上前方设有出水装置13,出水装置13包括有喷雾装置14喷射雾化水15,雾化水15通过视点位置2前方,视点位置2上方设有照明装置11照射光线展开角度小于0度的多色的同心光束12,每个颜色同心光束12交心位置1相同,光线朝交心位置1汇聚,交心位置1位于视点位置2的下前方,交心位置1与视点位置2所确定的彩虹效应范围8能够在视点位置2前方,彩虹效应范围8与通过此处的雾化水15相交,多色的同心光束12照射在雾化水15与彩虹效应范围8相交处,左右眼睛视点位置2不同,若不考虑副虹,观看者看到两个彩虹。
另外,参照图20,此时同心光束12与雾化水15分别与彩虹效应范围8相交于不同位置,这种情况下的光影效果就较差。
由上述实施例得知本发明所述的彩虹与副虹光影效果并不限定其形状,颜色种类,颜色数量与排列方向,与自然界所形成的彩虹与副虹对比有更多的变化形式。上述实施例中彩虹效应与副虹效应可同时出现。特别的,采用多个照明装置照射多色的同心光束12时,应避免多个多色的同心光束12、雾化水15、彩虹效应范围8、副虹效应范围25相交区域在同个视线方向上,避免所看到的多个彩虹和多个副虹重合,相互之间产生影响。
综上所述,本发明提供一种能够产生彩虹与副虹光影效果的装置和系统,能带来极大的视觉冲击和身心上的震撼,可用于水景技术、装饰类产品、与卫浴产品,给人新的体验感。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接应用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种通过照明使出水装置出水产生光影效果的装置和系统,包括出水装置(13)和照明装置(11),其特征在于:所述出水装置(13)包括有喷雾装置(14),所述喷雾装置(14)喷射雾化水(15),所述照明装置(11)发出多色的同心光束(12);
    所述雾化水(15)与多色的同心光束(12)在空间内相交且相交处位于由同心光束(12)的交心位置与预设的视点位置(2)求得的彩虹效应范围(8)内或副虹效应范围(25)内。
  2. 根据权利要求1所述的通过照明使出水装置出水产生光影效果的装置和系统,其特征在于:多色的所述同心光束(12)为发散光束,发散光束的光线展开角度大于0度。
  3. 根据权利要求1所述的通过照明使出水装置出水产生光影效果的装置和系统,其特征在于:所述喷雾装置(14)的出水方向朝向预设的所述视点位置(2)或朝向预设的所述视点位置(2)下方。
  4. 根据权利要求1-3任意一项所述的通过照明使出水装置出水产生光影效果的装置和系统,其特征在于:还包括吸收光线的背景(16),所述背景(16)位于所述视点位置(2)的视线穿过所述多色的同心光束(12)、所述雾化水(15)、所述彩虹效应范围(8)或所述副虹效应范围(25)三者相交处的终点。
  5. 根据权利要求1-3任意一项所述的通过照明使出水装置出水产生光影效果的装置和系统,其特征在于:所述喷雾装置(14)喷出的雾化水(15)与彩虹效应范围(8)或副虹效应范围(25)相交的区域沿同心光束(12)的交心位置与预设的视点位置(2)之间的连线的投影的形状为圆形或圆环形,圆形或圆环形的投影的圆心位于同心光束(12)的交心位置与预设的视点位置(2)之间的连线上。
  6. 根据权利要求1-3任意一项所述的通过照明使出水装置出水产生光影效果的装置和系统,其特征在于:所述喷雾装置(14)喷出的雾化水(15)与彩虹效应范围(8)或副虹效应范围(25)相交的区域沿出水方向的投影的形状为长条形,长条形的投影与同心光束(12)的交心位置与预设的视点位置(2)之间的连线在空间垂直设置。
  7. 根据权利要求1-3任意一项所述的通过照明使出水装置出水产生光影效果的装置和系统,其特征在于:所述照明装置(11)发出多色的同心光束(12)与彩虹效应范围(8)或副虹效应范围(25)相交的区域沿光线方向的投影的形状为长条形,长条形的投影与同心光束(12)的交心位置与预设的视点位置(2)之间的连线在空间垂直设置。
  8. 根据权利要求1所述的通过照明使出水装置出水产生光影效果的装置和系统,其特征在于:多色的所述同心光束(12)中每个颜色的交心位置(1)相同,多色的所述同心光束(12)中每个颜色的出光范围相同。
  9. 根据权利要求1所述的通过照明使出水装置出水产生光影效果的装置和系统,其特征在于:多色的所述同心光束(12)每个颜色的交心位置(1)不同,多色的所述同心光束(12)每个颜色的出光范围不同。
  10. 根据权利要求1所述的通过照明使出水装置出水产生光影效果的装置和系统,其特征在于,多色的所述同心光束(12)的数目为至少两个,至少两个的所述同心光束(12)分别与雾化水(13)相交于所述彩虹效应范围(8)内或副虹效应范围(25)内。
PCT/CN2019/094814 2018-09-10 2019-07-05 一种通过照明使出水装置出水产生光影效果的装置和系统 WO2020052334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811049920.7 2018-09-10
CN201811049920.7A CN109119001B (zh) 2018-09-10 2018-09-10 一种通过照明使出水装置出水产生光影效果的装置和系统

Publications (1)

Publication Number Publication Date
WO2020052334A1 true WO2020052334A1 (zh) 2020-03-19

Family

ID=64859012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094814 WO2020052334A1 (zh) 2018-09-10 2019-07-05 一种通过照明使出水装置出水产生光影效果的装置和系统

Country Status (2)

Country Link
CN (1) CN109119001B (zh)
WO (1) WO2020052334A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119001B (zh) * 2018-09-10 2019-12-31 柯敏兴 一种通过照明使出水装置出水产生光影效果的装置和系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050024892A1 (en) * 2001-11-21 2005-02-03 Miguel Cabrera Installation for artificial rainbow generation and observation of same
JP2006285285A (ja) * 2006-06-28 2006-10-19 Toyo Eng Works Ltd 光線平行化装置及び同光線平行化装置を備える観察用人工虹発生装置
CN102555653A (zh) * 2011-12-30 2012-07-11 浙江工业大学 人工彩虹
CN104470643A (zh) * 2012-07-19 2015-03-25 李三九 夜间彩虹生成装置
CN204242498U (zh) * 2014-12-12 2015-04-01 刘洪霞 一种多光源多角度彩虹演示仪
CN104772252A (zh) * 2015-03-26 2015-07-15 安徽冠东电子科技有限公司 智能人造彩虹机
CN105538992A (zh) * 2014-10-22 2016-05-04 王炳臣 人工彩虹
CN109119001A (zh) * 2018-09-10 2019-01-01 柯敏兴 一种通过照明使出水装置出水产生光影效果的装置和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4515105A (en) * 1982-12-14 1985-05-07 Danta William E Dielectric powder sprayer
CN2498686Y (zh) * 2001-08-13 2002-07-03 张菊良 彩虹形成演示器
CN108212636A (zh) * 2017-12-20 2018-06-29 李万 光影人工喷泉

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050024892A1 (en) * 2001-11-21 2005-02-03 Miguel Cabrera Installation for artificial rainbow generation and observation of same
JP2006285285A (ja) * 2006-06-28 2006-10-19 Toyo Eng Works Ltd 光線平行化装置及び同光線平行化装置を備える観察用人工虹発生装置
CN102555653A (zh) * 2011-12-30 2012-07-11 浙江工业大学 人工彩虹
CN104470643A (zh) * 2012-07-19 2015-03-25 李三九 夜间彩虹生成装置
CN105538992A (zh) * 2014-10-22 2016-05-04 王炳臣 人工彩虹
CN204242498U (zh) * 2014-12-12 2015-04-01 刘洪霞 一种多光源多角度彩虹演示仪
CN104772252A (zh) * 2015-03-26 2015-07-15 安徽冠东电子科技有限公司 智能人造彩虹机
CN109119001A (zh) * 2018-09-10 2019-01-01 柯敏兴 一种通过照明使出水装置出水产生光影效果的装置和系统

Also Published As

Publication number Publication date
CN109119001A (zh) 2019-01-01
CN109119001B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN108506749B (zh) 一种光学系统及应用此光学系统的照明灯具
US4975811A (en) Method and apparatus for illumination of a liquid droplet fountain to produce rainbows
US6629772B2 (en) Method and apparatus for illumination and entertainment by light emitted from a guide via scattering
CN105358904B (zh) 用于产生光效的设备
US3702172A (en) Light fountain
US4012630A (en) Lighting fitting
WO2020052334A1 (zh) 一种通过照明使出水装置出水产生光影效果的装置和系统
ES2268500T3 (es) Alcachofa de ducha con dispositivo de lente optica.
CN105240805B (zh) 一种led配光透镜及led发光装置
TWM474289U (zh) 雷射發光裝置
US20190126001A1 (en) Soothing apparatus for promoting infant sleep
TWI554724B (zh) 全反射透鏡
CN208974914U (zh) 促进婴幼儿睡眠的安抚装置
CN208853043U (zh) 一种通过照明改变出水装置出水颜色的装置
JP6851583B2 (ja) 造形体の背光照明装置
CN114585856A (zh) 用于提供闪光外观的照明设备
CN208058564U (zh) 一种投光灯的二次光学透镜及其投光灯模组
US4133124A (en) Display device
JP6925139B2 (ja) 照明装置
CN110131663A (zh) 具有鳞状发光效果的光学系统及其车灯
JP6176464B2 (ja) 遊技機
CN221163898U (zh) 一种带灯光画结构的包装盒
CN210860974U (zh) 混光透镜
CN211822215U (zh) 珠面防眩光光学透镜
TWI578575B (zh) 發光裝置及其透鏡結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859649

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19859649

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 04/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19859649

Country of ref document: EP

Kind code of ref document: A1