WO2020052143A1 - 一种催化裂化汽油改质方法 - Google Patents

一种催化裂化汽油改质方法 Download PDF

Info

Publication number
WO2020052143A1
WO2020052143A1 PCT/CN2018/122101 CN2018122101W WO2020052143A1 WO 2020052143 A1 WO2020052143 A1 WO 2020052143A1 CN 2018122101 W CN2018122101 W CN 2018122101W WO 2020052143 A1 WO2020052143 A1 WO 2020052143A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
alumina
upgrading
catalytically cracked
doped lanthanum
Prior art date
Application number
PCT/CN2018/122101
Other languages
English (en)
French (fr)
Inventor
王廷海
岳源源
鲍晓军
王学丽
刘杰
袁珮
朱海波
白正帅
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2020052143A1 publication Critical patent/WO2020052143A1/zh
Priority to US17/134,262 priority Critical patent/US11685868B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/06Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a selective hydrogenation of the diolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the invention relates to a method for upgrading catalytically cracked gasoline, and more particularly, to a method for producing catalytically cracked gasoline through pre-hydrogenation, hydrodesulfurization, and isomerization to produce low olefins, ultra-low sulfur content, and small octane loss. Clean gasoline method.
  • FCC gasoline is a mixture of C 4 -C 12 hydrocarbons and trace amounts of sulfides, oxides and metal arsenides. According to the differences in crude oil properties and processing routes of various refineries, FCC gasoline is composed of 18 to 55v%. Olefin, 12 to 20v% of the mixture of aromatics and alkanes, the octane characteristics of each component is aromatics> olefin ⁇ isoparaffin> paraffin.
  • Alumina supports are widely used in heterogeneous catalysts, catalyst supports, and other fields.
  • the thermal stability, hydrothermal stability, and anti-coking properties of the supported alumina are not ideal.
  • Additives are usually added for modification to improve the performance of the carrier.
  • CN201310429334.6 discloses a high-performance catalyst support and a preparation method thereof, and a catalyst support material for heterogeneous catalytic reactions.
  • the main component of this high-performance catalyst carrier is a mixture of Al, Zr, Mg, Ti, and Si oxides, which is modified with rare earth elements or chromium.
  • the preparation method includes the preparation of carrier particles and the modification of carrier particles, and the prepared high-temperature carrier.
  • the specific surface area is above 80m2 / g, the pore volume is above 0.3ml / g, and the specific surface area retention rate of high temperature water vapor treatment is above 90%.
  • the catalyst support can be used for the preparation of a high-temperature reaction catalyst, can withstand a high temperature above 600 ° C, and can be used at 400-650 ° C. At high temperature, the active component metal or metal oxide particles are not easy to sinter, the performance is stable, and the catalyst has a longer life.
  • CN200780024779.9 Provides an exhaust gas purification catalyst having a porous silica support composed of silica having a fine pore structure, and a perovskite-type composite supported in the fine pore structure of the porous silica support. Particles of oxide.
  • a peak derived from a gap between primary particles in a pore distribution is in a range of 3 to 100 nm.
  • the most commonly used support for gasoline hydrodesulfurization catalyst is alumina.
  • a composite support is prepared by modifying alumina with silicon, titanium, magnesium, boron, phosphorus, etc.
  • the pore structure and surface of the catalyst can be adjusted Acidity and interaction between active ingredients and carrier.
  • modulating the pore structure of the carrier will also increase the specific surface of the carrier, and its performance is several times better than the performance of similar products currently used.
  • the highly selective desulfurization process represented by Prime-G technology uses pre-hydrogenation-light and heavy gasoline cutting-heavy gasoline selective hydrogenation desulfurization-heavy gasoline supplemental desulfurization process principle.
  • the gasoline modification process and the catalysts used are also quite different.
  • the invention provides a method for upgrading catalytically cracked gasoline, that is, a method for producing clean gasoline with low olefin content, ultra-low sulfur content, and small octane loss through a process of prehydrogenation, hydrodesulfurization, and isomerization of the catalytic cracked gasoline.
  • a method for upgrading catalytically cracked gasoline First, a full-fraction FCC gasoline is subjected to a pre-hydrogenation catalyst to remove diolefins, thiols, and thioethers through a pre-hydrogenation reactor, and then the pre-hydrogenation product is subjected to hydrodesulfurization- Selective hydrodesulfurization is performed under the action of an isomerization catalyst, and at the same time, linear olefins are isomerized into single-branched olefins or single-branched alkanes to obtain clean gasoline with ultra-low sulfur content.
  • the pre-hydrogenation catalyst uses one or more of amorphous silicon aluminum, alumina, Y molecular sieve, ZSM-5, mercerizing, SAPO-11, or beta molecular sieve as the carrier, and impregnates one of cobalt, molybdenum, nickel, and tungsten. One or several active components, then impregnated with acidic substances, acidic slow release, acid gradient distribution, and inhibit cracking.
  • the pre-hydrogenation reaction in the present invention is mainly a small-molecule thiol and a thioether undergo a thioetherification reaction with a diolefin under the action of a pre-hydrogenation catalyst, and at the same time the double bond isomerization (that is, the conversion of a terminal olefin into an internal olefin), And the remaining diene is saturated.
  • the conditions for the pre-hydrogenation reaction are: a reaction temperature of 80-160 ° C, a reaction pressure of 1-5 MPa, a liquid volumetric space velocity of 1-10 h -1 , and a hydrogen oil volume ratio of 3-8: 1.
  • the hydrodesulfurization-isomerization reaction process conditions are: reaction temperature of 190-330 ° C, reaction pressure of 1.2-3.5 MPa, volumetric space velocity of 2.5-5 h -1 , and hydrogen oil volume ratio of 160-460: 1.
  • the catalytic cracking gasoline selective hydrodesulfurization-isomerization catalyst includes a support and an active component.
  • the support includes an alumina composite support having a macroporous structure, and the alumina composite support contains 0.1 to 12% by weight of tungsten-doped lanthanum ferrite.
  • the mesopores of the alumina composite support account for 1 to 85% of the total pores, and the macropores account for 1 to 70% of the total pores.
  • mesopores account for 5 to 70% of the total pores, and preferably macropores account for 5 to 45% of the total pores.
  • Phosphomolybdic acid, phosphotungstic acid or phosphomolybdic tungstic acid is supported on the surface of the support.
  • Phosphomolybdic acid, phosphotungstic acid or phosphomolybdic tungstic acid in the catalyst is recorded as an oxide with a content of 0.1 to 16.5%.
  • the catalyst is further impregnated with an active component on the surface of the catalyst to obtain an improved catalyst.
  • the catalyst includes, by weight percentage, 0.1 to 14.5% of a metal active component selected from the group consisting of cobalt, molybdenum, nickel, and tungsten.
  • cobalt, molybdenum, nickel, and tungsten active components may be one or more of their various salts or their respective oxides, sulfides, nitrides, and phosphides.
  • the catalyst is further improved, and the catalyst further includes one or more selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-35, mercerizing, SAPO-11, MCM-22, Y molecular sieve, or beta molecular sieve .
  • the preparation method of the catalyst includes the following steps: preparing an impregnating solution of phosphomolybdic acid, phosphotungstic acid or phosphomolybdic tungstic acid, impregnating an alumina carrier, drying at 120-180 ° C for 4-8 hours, and 450-800 ° C Calcination for 3-9 hours to obtain a hydrodesulfurization-isomerization catalyst.
  • the alumina composite support contains 0.1-12% by weight of tungsten-doped lanthanum ferrite, the support mesopores occupy 1-85% of the total pores, and the macropores occupy 1-70% of the total pores.
  • mesopores account for 5 to 70% of the total pores, and preferably macropores account for 5 to 45% of the total pores.
  • a method for preparing an alumina composite carrier An aluminum source and a cyanine powder are added to a kneader and mixed uniformly, an inorganic acid solution and an organic polymer are added, and kneaded uniformly, and then tungsten-doped lanthanum ferrite is added. After extrusion, molding, drying, and baking, an alumina composite support is obtained.
  • the above alumina composite carrier powder is mixed with one or more of ZSM-5, ZSM-11, ZSM-12, ZSM-35, mercerizing, SAPO-11, MCM-22, Y molecular sieve or beta molecular sieve powder, and then Add Tianjing deionized water to mix, add inorganic acid, after molding, dry and roast to obtain composite support, and then load phosphomolybdic acid, phosphotungstic acid or phosphomolybdenum tungstic acid, and phosphomolybdic acid, phosphotungstic acid or phosphomolybdenum in catalyst Tungstic acid is recorded as an oxide, and the content is 0.1 to 16.5%.
  • the aluminum source for preparing the alumina composite carrier is one or more of pseudo-boehmite, alumina, and aluminum sulfate.
  • the aluminum source may also be one or more of kaolin, rector, perlite, and montmorillonite.
  • an improved alumina composite carrier contains 0.1 to 12 wt% of silicon oxide, tungsten doped lanthanum ferrite 0.1 to 10 wt%, the mesopores of the carrier occupy 1 to 80% of the total pores, and the macropores It accounts for 1 to 55% of the total pores.
  • mesopores account for 1 to 65% of the total pores, more preferably 5 to 55%, preferably macropores account for 1 to 40% or 5 to 45% of the total pores, and more preferably 10 to 35%. Pores and macropores are unevenly distributed.
  • the tungsten-doped lanthanum ferrite in the alumina composite support is 0.3 to 9 wt%, more preferably 0.3 to 5 wt%, and tungsten in the tungsten-doped lanthanum ferrite is 0.1 to 8 wt% of the tungsten-doped lanthanum ferrite.
  • the organic polymer is one or more of polyvinyl alcohol, sodium polyacrylate, polyethylene glycol, and polyacrylate, preferably polyacrylic acid or sodium polyacrylate.
  • Tungsten-doped lanthanum ferrite is added to the alumina composite support. Compared with lanthanum ferrite (LaFeO 3 ), tungsten-doped lanthanum ferrite is added to the alumina support. The surface of the support is then impregnated with phosphomolybdic acid, phosphotungstic acid, or molybdenum. Tungstic acid, the catalyst has high hydrodesulfurization activity, and the linear olefins form a single branched olefin or a single branched alkane with good selectivity.
  • the carrier is further improved. It is preferable to add silicon oxide to the alumina composite carrier.
  • a method for preparing alumina composite carrier is to add pseudoboehmite and Tianjing powder to the kneader and mix uniformly, and add an inorganic acid solution and an organic polymer. Knead uniformly, and then add tungsten-doped lanthanum ferrite, mix well to obtain alumina precursor for later use; add silicon source to the acid solution of organic polymer, mix well with alumina precursor, and unit in alumina precursor The content of the organic polymer is more than 1.5 times higher than the content of the organic polymer in the silicon source, and the alumina composite carrier is obtained through extrusion, molding, drying, and baking.
  • the silicon source may be sodium silicate or fine silicon powder.
  • the above-mentioned alumina composite carrier is further improved.
  • the silicon source may be sodium silicate or fine silicon powder, or one or two of diatomite and opal.
  • the aluminum source may also be kaolin, rector, pearl Rock or montmorillonite.
  • the kaolinite, rectorite, perlite, and montmorillonite powders are activated by NaOH-H 2 O.
  • the bauxite powder and the subfused salts are mixed at a mass ratio of 1: 0.2 ⁇ 2.
  • the activation time is 0.5 to 4 hours for diatomite and opal.
  • the diatomite is calcined at a temperature of 500 to 1000 ° C for 1 to 10 hours.
  • the tungsten-doped lanthanum ferrite in the above alumina composite support preferably has micro-mesopores.
  • the tungsten-doped lanthanum ferrite with micro-mesopores is introduced.
  • the prepared catalyst is beneficial to suppress the occurrence of side reactions and improve the selectivity of the target product.
  • a method for preparing tungsten-doped lanthanum ferrite with micro mesopores citric acid is dissolved in deionized water, stirred and dissolved, and then lanthanum nitrate and iron nitrate are added to citric acid, stirred and dissolved, and sodium polyacrylate or polyacrylic acid is added.
  • the amount of sodium polyacrylate or polyacrylic acid is 0.1 to 9 wt%, preferably 0.1 to 6.0 wt%, of tungsten-doped lanthanum ferrite.
  • a tungsten-containing compound is further added, and in terms of oxides, tungsten accounts for 0.1 to 8 wt% of the tungsten-doped lanthanum ferrite, which is stirred. After the reaction, the product is dried, roasted, and ground.
  • Tungsten-containing compounds include ammonium tungstate, ammonium metatungstate, ammonium paratungstate, and the like.
  • the organic polymer content per unit content in the alumina precursor is more than 1.5 times higher than the organic polymer content in the silicon source. It can effectively improve the pore structure of the carrier. On the one hand, the micropores, mesopores and macropores of the carrier are unevenly distributed, side reactions such as olefin polymerization and excessive cracking are reduced, selectivity is improved, and the gasoline yield is high, which is conducive to the long-term operation of the device. ; On the other hand, it is beneficial to generate more active site load centers on the surface of the support, and improve the catalyst activity.
  • the hydrodesulfurization-isomerization catalyst according to the present invention uses a macroporous alumina containing tungsten-doped lanthanum ferrite as a carrier, and supports tungsten phosphomolybdate, phosphotungstic acid or phosphomolybdenum tungstic acid and / or cobalt, molybdenum, nickel,
  • tungsten used for selective hydrogenation and desulfurization of gasoline, not only effectively promote single-chain isomerization, increase octane number, but also help to reduce the re-cracking reaction of low-carbon isomers and reduce Side reactions such as olefin polymerization and excessive cracking occur, which improves the activity selectivity and high gasoline yield.
  • the catalyst is used to catalyze cracked gasoline to produce clean gasoline that meets the national and national standards.
  • the present invention is further described in detail through examples below, but these examples should not be considered as limiting the present invention.
  • the raw material reagents used in the present invention are all commercially available products.
  • the alumina carrier was impregnated with a phosphorus molybdenum tungstic acid impregnating solution, and the obtained catalyst precursor was dried at 140 ° C and then calcined at 600 ° C for 7 hours to obtain Catalyst 1.
  • the main composition of catalyst 1 is: alumina carrier containing micro-mesoporous tungsten-doped lanthanum ferrite is 90.2 wt%, and phosphorus molybdenum tungsten oxide is 9.8 wt%.
  • the alumina carrier was impregnated with the phosphomolybdic acid impregnating solution, and the obtained catalyst precursor was dried at 140 ° C and then calcined at 630 ° C for 5 hours to obtain Catalyst 2.
  • the main composition of catalyst 2 is: alumina support containing tungsten-doped lanthanum ferrite is 85.2 wt%, and phosphorus molybdenum oxide is 14.8 wt%.
  • the carrier was prepared in the same manner as in Example 1, except that the micro-mesoporous tungsten-doped lanthanum ferrite accounted for 6 wt% of the carrier.
  • the catalyst was prepared in the same manner as in Example 1, and activated montmorillonite was used as the aluminum source. The difference is the addition of phosphomolybdic acid, the main composition of catalyst 3: the micro-mesoporous tungsten doped lanthanum ferrite alumina carrier is 88.8 wt%, and the phosphor molybdenum oxide is 11.2 wt%.
  • micro-mesoporous tungsten-doped lanthanum ferrite is added, mixed uniformly, and formed into a clover shape after kneading-extrusion. It was dried at 130 ° C. for 7 hours and baked at 650 ° C. for 5 hours to obtain a micro-mesoporous tungsten-doped lanthanum ferrite and silicon oxide alumina support 4.
  • the preparation of the catalyst is the same as in Example 1, except that the carrier is impregnated with phosphotungstic acid and ammonium molybdate (the weight of molybdenum oxide accounts for 4.1% of the catalyst).
  • the main component of catalyst 4 is an alumina carrier containing micro-mesoporous tungsten-doped lanthanum ferrite. It was 88.9% by weight, and the phosphorus tungsten oxide was 7.0% by weight.
  • the support was prepared in the same manner as in Example 4, except that the tungsten-doped lanthanum ferrite accounted for 3% by weight of the support, and the support was impregnated with phosphorus molybdenum tungstic acid and cobalt nitrate (the weight of cobalt oxide was 3.6% of the catalyst).
  • the activated diatomaceous earth and Kaolin is a silicon source and an aluminum source.
  • the main composition of catalyst 5 is: alumina support containing tungsten doped lanthanum ferrite and silicon oxide is 86.8 wt%, and phosphorus molybdenum tungsten oxide is 9.6 wt%.
  • the preparation of the catalyst was the same as in Example 4, except that mordenite was added to the catalyst.
  • the main composition of catalyst 6 was: alumina carrier 4 containing micro-mesoporous tungsten-doped lanthanum ferrite and silica. The content was 83.3% by weight and the content of mordenite was 7.2wt. %, Phosphorus tungsten oxide 9.5% by weight.
  • Activated diatomite and kaolin were used as the silicon source and aluminum source.
  • the catalyst was prepared in the same manner as in Example 6, except that ZSM-5 molecular sieve was added to the catalyst.
  • the main composition of catalyst 7 was: alumina support 4 containing micro-mesoporous tungsten-doped lanthanum ferrite and silicon oxide. The content is 5.4wt%, and the phosphorus tungsten oxide is 12.5% wt.
  • Activated diatomite and kaolin were used as the silicon source and aluminum source.
  • FCC gasoline is first processed through a pre-hydrogenation reactor to remove diolefins, thiols, and thioethers, while double bond isomerization (that is, the conversion of terminal olefins to internal olefins) is performed, and the remaining diolefins are saturated.
  • the reaction temperature was 105 ° C
  • the reaction pressure was 1.2 MPa
  • the liquid volumetric space velocity was 5 h -1
  • the hydrogen oil volume ratio was 5: 1.
  • the catalyst composition was 8% MoO 3 , NiO 5 %, P 2 O 5 2.6, and ⁇ -Al 2 O 3 84.4%.
  • the pre-hydrogenation product with 100% diene removal undergoes a deep hydrodesulfurization-isomerization catalyst 1-7 to undergo deep desulfurization and isomerization through a selective hydrodesulfurization unit.
  • the reaction process conditions are: reactor temperature 265 ° C, The reaction pressure is 1.6 MPa, the volumetric space velocity is 3.5 h -1 , and the hydrogen oil volume ratio is 325. Samples were taken after 60 hours of reaction. The results are shown in Table 2.
  • Hydrodesulfurization-isomerization catalyst 1-7 Low octane loss, high liquid yield, high desulfurization rate, good activity, the catalyst can effectively suppress the occurrence of side reactions such as olefin polymerization and excessive cracking, and reduce the recarbonization of low-carbon isomers.
  • the cracking reaction more active site load centers are generated on the catalyst support surface, which effectively improves the desulfurization-isomerization activity of the catalyst, and the catalyst has good hydrodesulfurization-isomerization activity and selectivity.
  • the reaction was run for 600 hours.
  • the desulfurization rates of the hydrodesulfurization and isomerization catalysts 4 and 6 were 91.4% and 90.5%.
  • the octane loss was 0.2 units and 0.3 units.
  • the carbon deposition rate was 2.9 and 2.2.
  • the liquid yield was 98.7%. 98.6%.
  • the increase of single branched alkene was 18.1% and 19.2%, and the increase of single branched alkane was 17.6% and 16.1%. Catalyst reaction performance is stable.
  • FCC gasoline is first processed through a pre-hydrogenation reactor to remove diolefins, thiols, and thioethers, while double bond isomerization (that is, the conversion of terminal olefins to internal olefins) is performed, and the remaining diolefins are saturated.
  • the reaction temperature was 100 ° C
  • the reaction pressure was 1.8 MPa
  • the liquid volumetric space velocity was 4 h -1
  • the hydrogen oil volume ratio was 4.5: 1.
  • the composition of the catalyst was 11% of MoO 3 , 33.5% of WO, 71.3% of amorphous silicon aluminum, and 14.2% of mercerizing.
  • the pre-hydrogenation product undergoes deep desulfurization and isomerization under the action of a hydrodesulfurization-isomerization catalyst 5 through a selective hydrodesulfurization unit.
  • the reaction process conditions are: reactor temperature of 245 ° C, reaction pressure of 1.6 MPa, and volumetric space velocity of 4.0. h -1 , the hydrogen oil volume ratio is 350. Samples were taken after 60 hours of reaction. The results are shown in Table 2.
  • FCC gasoline is first processed through a pre-hydrogenation reactor to remove diolefins, thiols, and thioethers, while double bond isomerization (that is, the conversion of terminal olefins to internal olefins) is performed, and the remaining diolefins are saturated.
  • the reaction temperature was 100 ° C
  • the reaction pressure was 1.8 MPa
  • the liquid volumetric space velocity was 4 h -1
  • the hydrogen oil volume ratio was 4.5: 1.
  • the catalyst composition was 9% MoO 3 , 35% WO, and 86% beta molecular sieve.
  • the pre-hydrogenation product undergoes deep desulfurization and isomerization under the action of a hydrodesulfurization-isomerization catalyst 6 through a selective hydrodesulfurization unit.
  • the reaction process conditions are: reactor temperature of 260 ° C, reaction pressure of 1.9 MPa, and volumetric space velocity of 4.5. h -1 with a hydrogen oil volume ratio of 400. Samples were taken after 60 hours of reaction. The results are shown in Table 2.
  • the carrier was prepared as in Example 4 except that lanthanum ferrite was added.
  • the catalyst was prepared as in Example 4 and the reaction conditions were the same as in Example 4. The reaction results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

提供一种催化裂化汽油改质方法。所述方法为:首先,全馏分FCC汽油在预加氢催化剂作用下,经过预加氢反应器脱除二烯烃及硫醇、硫醚,然后预加氢产物在加氢脱硫-异构催化剂作用下进行选择性加氢脱硫,同时直链烯烃异构为单支链烯烃或单支链烷烃,得到低烯烃、超低硫含量,辛烷值高的清洁汽油产品。

Description

一种催化裂化汽油改质方法 技术领域
本发明涉及一种催化裂化汽油改质方法,更具体的,涉及一种催化裂化汽油经预加氢、加氢脱硫、异构化过程生产低烯烃、超低硫含量,辛烷值损失小的清洁汽油方法。
背景技术
FCC汽油是由C 4-C 12的烃类以及微量的硫化物、氧化物和金属砷化物等组成的混合物,根据各炼油企业的原油性质和加工路线的差异,FCC汽油是由18~55v%的烯烃、12~20v%的芳烃和烷烃组成的混合物,各组分的辛烷值特性是芳烃>烯烃≈异构烷烃>烷烃。我国高硫、高烯烃含量和较低辛烷值的FCC汽油约占70%,而低硫含量、低烯烃含量、高辛烷值的烷基化油、异构化油和重整油的比例较低,这使得我国FCC汽油的清洁化需要同时承载着脱硫、降烯烃和保持辛烷值的三重任务目标。
氧化铝载体广泛用于多相催化剂、催化剂载体等领域,载体氧化铝的热稳定性、水热稳定性、抗结焦性能等不理想。通常添加助剂进行改性,提高载体性能。改性氧化铝载体专利技术有很多,CN201310429334.6公开一种高性能催化剂载体及其制备方法,用于多相催化反应的催化剂载体材料。这种高性能催化剂载体的主要成分为Al、Zr、Mg、Ti、Si氧化物的混合物,以稀土元素或铬改性,制备方法包括载体颗粒的制备和载体颗粒的改性,制备的高温载体的比表面积在80m2/g以上,孔容在0.3ml/g以上,高温水蒸汽处理比表面积保留率在90%以上。该催化剂载体可用于高温反应催化剂的制备,能够承受600℃以上的高温,可以在400~650℃下使用。在高温反应时,活性组分金属或金属氧化物颗粒不易烧结,性能稳定,催化剂具有较长的寿命。CN200780024779.9提供一种废气净化催化剂,其具有由具有细孔结构的二氧化硅构成的多孔二氧化硅载体、以及担载于该多孔二氧化硅载体的细孔结构内的钙钛矿型复合氧化物的粒子。这里,在该多孔二氧化硅载体中,在其细孔分布中,源于一次粒子间的间隙的峰处于3~100nm的范围。
汽油加氢脱硫催化剂最常用的载体是氧化铝,为提高催化剂的活性和稳定性,用硅、钛、镁、硼、磷等改性氧化铝制备复合载体,可以调变催化剂的孔结构、 表面酸性以及活性组分与载体之间的相互作用。此外,调变载体的孔结构也会增大载体的比表面,其性能比目前使用的同类产品性能要优越数倍以上。
目前,国内炼油企业普遍选用的汽油质量升级技术中,以Prime-G技术为代表的高选择性脱硫工艺,采用预加氢-轻重汽油切割-重汽油选择性加氢脱硫-重汽油补充脱硫工艺原理。但由于具体汽油原料组成及含量不同,以及汽油产品标准不同,汽油改质工艺及所用催化剂差异也较大。
发明内容
本发明提供一种催化裂化汽油改质方法,即催化裂化汽油经预加氢、加氢脱硫、异构化过程生产低烯烃、超低硫含量,辛烷值损失小的清洁汽油方法。
一种催化裂化汽油改质方法,首先,全馏分FCC汽油在预加氢催化剂作用下,经过预加氢反应器脱除二烯烃及硫醇、硫醚,然后预加氢产物在加氢脱硫-异构催化剂作用下进行选择性加氢脱硫,同时直链烯烃异构为单支链烯烃或单支链烷烃,得到超低硫含量清洁汽油。
预加氢催化剂以无定型硅铝、氧化铝、Y分子筛、ZSM-5、丝光、SAPO-11、或beta分子筛中的一种或几种为载体,浸渍钴、钼、镍、钨中的一种或几种活性组分,再浸渍酸性物质,酸性缓释,酸性梯度分布,抑制裂化。
本发明所述预加氢反应主要是小分子硫醇、硫醚在预加氢催化剂的作用下,与二烯烃发生硫醚化反应,同时双键异构(即端烯烃转化为内烯烃),并将剩余的二烯烃饱和。
预加氢反应的条件为:反应温度80-160℃,反应压力1-5MPa,液体体积空速1-10h -1,氢油体积比3-8:1。
所述加氢脱硫-异构反应工艺条件为:反应温度190-330℃,反应压力1.2-3.5MPa,体积空速2.5-5h -1,氢油体积比160-460:1。
所述催化裂化汽油选择性加氢脱硫-异构催化剂,包括载体和活性组分,载体包含具有大孔结构的氧化铝复合载体,氧化铝复合载体含有0.1~12wt%的钨掺杂铁酸镧,氧化铝复合载体介孔占总孔的1~85%,大孔占总孔的1~70%。优选地,介孔占总孔的5~70%,优选大孔占总孔的5~45%。载体表面负载磷钼酸、磷钨酸或磷钼钨酸,催化剂中磷钼酸、磷钨酸或磷钼钨酸以氧化物记,含量为0.1~16.5%。
进一步改进,上述催化剂表面再浸渍活性组分得到改进催化剂,以重量百分比计,催化剂包括0.1~14.5%的金属活性组分,金属活性组分选自钴,钼,镍,钨中的一种或几种。
上述钴,钼,镍,钨活性组分可以是它们的各种盐类或者它们各自的氧化物,硫化物,氮化物,磷化物中的一种或几种。
对催化剂进一步改进,所述催化剂还包括选自ZSM-5、ZSM-11、ZSM-12、ZSM-35、丝光、SAPO-11、MCM-22、Y分子筛或beta分子筛中的一种或几种。
所述催化剂的制备方法,包括如下步骤:将磷钼酸、磷钨酸或磷钼钨酸配成浸渍液,浸渍氧化铝载体,在120-180℃下干燥4-8小时,450-800℃下焙烧3-9小时,得到加氢脱硫-异构催化剂。
所述氧化铝复合载体中包含0.1~12wt%的钨掺杂铁酸镧,载体介孔占总孔的1~85%,大孔占总孔的1~70%。优选地,介孔占总孔的5~70%,优选大孔占总孔的5~45%。
一种氧化铝复合载体的制备方法,将铝源和田菁粉加入到捏合机中混合均匀,加入无机酸溶液和有机聚合物,捏合均匀,然后再加入钨掺杂铁酸镧,捏合均匀后,经过挤条、成型、干燥、焙烧,得到氧化铝复合载体。
上述氧化铝复合载体粉末与ZSM-5、ZSM-11、ZSM-12、ZSM-35、丝光、SAPO-11、MCM-22、Y分子筛或beta分子筛粉末中的一种或几种混合均匀,再加入田菁去离子水混和,加入无机酸,成型后,干燥,焙烧处理得到复合载体,再负载磷钼酸、磷钨酸或磷钼钨酸,催化剂中磷钼酸、磷钨酸或磷钼钨酸以氧化物记,含量为0.1~16.5%。
上述制备氧化铝复合载体所述铝源为拟薄水铝石、氧化铝、硫酸铝中的一种或几种。铝源也可以是高岭土、累托土、珍珠岩、蒙脱土中的一种或几种。
对载体的进一步改进,一种改进氧化铝复合载体,载体中包含0.1~12wt%的氧化硅,钨掺杂铁酸镧0.1~10wt%,载体介孔占总孔的1~80%,大孔占总孔的1~55%。优选地,介孔占总孔的1~65%,更优选5~55%,优选大孔占总孔的1~40%或5~45%,更优选10~35%,载体微孔、介孔、大孔不均匀分布。
优选地,上述氧化铝复合载体中钨掺杂铁酸镧为0.3~9wt%,更优选0.3~5wt%,钨掺杂铁酸镧中钨占钨掺杂铁酸镧的0.1~8wt%。
所述有机聚合物为聚乙烯醇、聚丙烯酸钠、聚乙二醇、聚丙烯酸酯中的一种或几种,优选聚丙烯酸或聚丙烯酸钠。
氧化铝复合载体中加入钨掺杂铁酸镧,相比加入铁酸镧(LaFeO 3),氧化铝载体中加入钨掺杂铁酸镧,载体表面再浸渍磷钼酸、磷钨酸或磷钼钨酸,催化剂加氢脱硫活性高,线性烯烃异构成单支链烯烃或单支链烷烃选择性好。
对载体进一步改进,氧化铝复合载体中优选加入氧化硅,一种氧化铝复合载体的制备方法,将拟薄水铝石和田菁粉加入到捏合机中混合均匀,加入无机酸溶液和有机聚合物,捏合均匀,然后再加入钨掺杂铁酸镧,混合均匀得到氧化铝前驱体备用;有机聚合物的酸液中加入硅源,混合均匀后,与氧化铝前驱体混合,氧化铝前驱体中单位含量的有机聚合物比硅源中有机聚合物的含量高1.5倍以上,经挤条、成型、干燥、焙烧,得到氧化铝复合载体。所述硅源可以是硅酸钠或硅微粉。
上述氧化铝复合载体的进一步改进,所述硅源可以是硅酸钠或硅微粉,也可以是硅藻土、蛋白石中的一种或两种,铝源也可以是高岭土、累托土、珍珠岩、蒙脱土中的一种或几种。
高岭土、累托土、珍珠岩、蒙脱土粉末活化过程的亚熔盐介质为NaOH-H 2O,将铝土矿粉末与亚熔盐介质按质量比为1:0.2~2混合均匀,在100~400℃温度下,活化时间为0.5~4h硅藻土、蛋白石的活化过程是将硅藻土在500~1000℃温度下,焙烧1~10h。上述氧化铝复合载体中的钨掺杂铁酸镧最好具有微介孔,引入具有微介孔钨掺杂铁酸镧,制备的催化剂有利于抑制副反应发生,提高目的产物选择性。一种具有微介孔的钨掺杂铁酸镧的制备方法,柠檬酸溶于去离子水中搅拌溶解,然后将硝酸镧与硝酸铁加入柠檬酸中,搅拌溶解,加入聚丙烯酸钠或聚丙烯酸,聚丙烯酸钠或聚丙烯酸的加入量为钨掺杂铁酸镧的0.1~9wt%,优选0.1~6.0wt%。再加入含钨化合物,以氧化物记,钨占钨掺杂铁酸镧的0.1~8wt%,搅拌,反应后,经干燥、焙烧、研磨得到成品。含钨化合物包括钨酸铵、偏钨酸铵、仲钨酸铵等。
氧化铝前驱体中单位含量的有机聚合物比硅源中有机聚合物的含量高1.5倍以上。可以有效改善载体的孔结构,一方面使载体微孔、介孔、大孔不均匀分布,减少烯烃聚合、过度裂化等副反应发生、提高选择性,汽油收率高,有利于装置长周期运转;另一方面有利于载体表面产生出更多的活性位负载中心,提高催化剂活性。
本发明所述加氢脱硫-异构催化剂以包含钨掺杂铁酸镧的大孔氧化铝为载体,负载磷钼酸钨、磷钨酸或磷钼钨酸和/或钴,钼,镍,钨中的一种或几种,用于汽油加氢选择性脱硫-异构,不但有效促进单支链异构,提高辛烷值,而且有利于减少低碳异构烃的再裂化反应,减少烯烃聚合、过度裂化等副反应发生,提高活性选择性,汽油收率高。该催化剂用于催化裂化汽油生产满足国五、国六标准的清洁汽油。
具体实施方式
以下通过实施例进一步详细描述本发明,但这些实施例不应认为是对本发明的限制。本发明所用的原料试剂均为市售产品。
实施例1
1、制备具有微介孔的钨掺杂铁酸镧
搅拌条件下,将2.2mol La(NO 3) 3溶于100mL水中,加入柠檬酸搅拌溶解;再加入4.2mol Fe(NO 3) 3,然后再加入160g聚丙烯酸钠,再加入含10g偏钨酸铵的水溶液,继续搅拌30min,经烘干、焙烧、研磨得到微介孔钨掺杂铁酸镧。
2、制备氧化铝载体
2.2g微介孔钨掺杂铁酸镧中加入柠檬酸备用,将300g拟薄水铝石粉子和20.0g田菁粉加入到捏合机中,并混合均匀,再加入硝酸、8g聚丙烯酸钠,捏合均匀,然后加入微介孔钨掺杂铁酸镧,混合均匀,经过捏合-挤条成型为三叶草形状。在120℃干燥8小时,700℃焙烧4小时,得到含微介孔钨掺杂铁酸镧的氧化铝载体1。载体孔结构如表1所示。
3、制备催化剂
将磷钼钨酸浸渍液浸渍上述氧化铝载体,得到的催化剂前躯体在140℃烘干后,在600℃焙烧7h,得到催化剂1。催化剂1主要组成:含微介孔钨掺杂铁酸镧的氧化铝载体为90.2wt%,磷钼钨氧化物9.8wt%。
实施例2
1、制备钨掺杂铁酸镧
搅拌条件下,将2.2mol La(NO 3) 3溶于100mL水中,加入柠檬酸搅拌溶解;再加入4.2mol Fe(NO 3) 3,再加入含10g偏钨酸铵的水溶液,继续搅拌30min,经烘干、焙烧、研磨得到钨掺杂铁酸镧。
2、制备氧化铝载体
2.2g钨掺杂铁酸镧中加入柠檬酸,将300g拟薄水铝石粉子和20.0g田菁粉加入到捏合机中,并混合均匀,再加入硝酸、8g聚丙烯酸钠,捏合均匀,然后加入钨掺杂铁酸镧,混合均匀,经过捏合-挤条成型为三叶草形状。在120℃干燥8小时,700℃焙烧4小时,得到含钨掺杂铁酸镧的氧化铝载体2。载体孔结构如表1。
3、制备催化剂
将磷钼酸浸渍液浸渍氧化铝载体,得到的催化剂前躯体在140℃烘干后,在630℃焙烧5h,得到催化剂2。催化剂2主要组成:含钨掺杂铁酸镧的氧化铝载体为85.2WT%,磷钼氧化物14.8wt%。
实施例3
载体的制备同实施例1,所不同的是微介孔钨掺杂铁酸镧占载体6wt%。催化剂的制备同实施例1,用活化后的蒙脱土为铝源。所不同的是加入磷钼酸,催化剂3主要组成:微介孔钨掺杂铁酸镧的氧化铝载体为88.8wt%,磷钼氧化物11.2wt%。
实施例4
制备改进型氧化铝载体
2g聚丙烯酸钠溶于硝酸中,再加入28g硅微粉,搅拌均匀,得到硅微粉-聚丙烯酸钠混合物,取1/10的量备用,2.0g微介孔钨掺杂铁酸镧中加入柠檬酸备用。将310g拟薄水铝石粉子和22.0g田菁粉加入到捏合机中,加入硝酸,再加入28g聚丙烯酸钠硝酸溶液,并混合均匀,再加入上述硅微粉-聚丙烯酸钠混合物,捏合均匀,然后加入微介孔钨掺杂铁酸镧,混合均匀,经过捏合-挤条成型为三叶草形状。在130℃干燥7小时,650℃焙烧5小时,得到微介孔钨掺杂铁酸镧和氧化硅的氧化铝载体4。
催化剂的制备同实施例1,所不同的是载体浸渍磷钨酸和钼酸铵(氧化钼重量占催化剂4.1%),催化剂4主要组成:含微介孔钨掺杂铁酸镧的氧化铝载体为88.9wt%,磷钨氧化物7.0wt%。
实施例5
搅拌条件下,将2.0mol La(NO 3) 3溶于100mL水中,加入柠檬酸搅拌溶解;再加入4.0mol Fe(NO 3) 3,再加入含12g偏钨酸铵的水溶液,继续搅拌30min,经烘干、焙烧、研磨得到钨掺杂铁酸镧。
载体的制备同实施例4,所不同的是钨掺杂铁酸镧占载体3wt%,载体浸渍磷钼钨酸和硝酸钴(氧化钴重量占催化剂3.6%),用活化后的硅藻土和高岭土为硅源铝源。催化剂5主要组成:含钨掺杂铁酸镧和氧化硅的氧化铝载体为86.8wt%,磷钼钨氧化物9.6wt%。
实施例6
催化剂制备同实施例4,所不同的是催化剂中加入丝光沸石,催化剂6主要组成:含微介孔钨掺杂铁酸镧和氧化硅的氧化铝载体4含量83.3wt%、丝光沸石含量7.2wt%,磷钨氧化物9.5wt%。用活化后的硅藻土和高岭土为硅源铝源。
实施例7
催化剂制备同实施例6,所不同的是催化剂中加入ZSM-5分子筛,催化剂7主要组成:含微介孔钨掺杂铁酸镧和氧化硅的氧化铝载体4含量82.1wt%、ZSM-5含量5.4wt%,磷钨氧化物12.5wt%。用活化后的硅藻土和高岭土为硅源铝源。
表1大孔的氧化铝载体比表面积与孔径分布
Figure PCTCN2018122101-appb-000001
表2催化剂加氢脱硫-异构反应结果
Figure PCTCN2018122101-appb-000002
FCC汽油首先通过预加氢反应器进行处理,脱除二烯烃及硫醇、硫醚,同时双键异构(即端烯烃转化为内烯烃),并将剩余的二烯烃饱和。反应温度为105℃,反应压力为1.2MPa,液体体积空速为5h -1,氢油体积比为5:1。催化剂组成为MoO 38%、NiO5%、P 2O 52.6和γ-Al 2O 3 84.4%。100%脱除二烯烃的预加氢产物经过选择性加氢脱硫单元在加氢脱硫-异构催化剂1-7的作用下进行深度脱硫、异构,反应工艺条件为:反应器温度265℃,反应压力1.6MPa,体积空速3.5h -1,氢油体积比325。反应约60h后取样分析,结果如表2所示。
加氢脱硫-异构催化剂1-7辛烷值损失低,液体收率高,脱硫率高,活性好,催化剂能够有效抑制烯烃聚合、过度裂化等副反应发生,减少低碳异构烃的再裂化反应,催化剂的载体表面产生出更多的活性位负载中心,有效提高催化剂脱硫-异构活性,催化剂具有良好的加氢脱硫-异构活性和选择性。反应运行600h,加氢脱硫-异构催化剂4和6产品脱硫率为91.4%、90.5%,辛烷值损失为0.2个单位、0.3个单位,积碳率2.9、2.2,液体收率98.7%、98.6%。单支链烯烃增量18.1%、19.2%,单支链烷烃增量17.6%、16.1%。催化剂反应性能稳定。
实施例8
FCC汽油首先通过预加氢反应器进行处理,脱除二烯烃及硫醇、硫醚,同时双键异构(即端烯烃转化为内烯烃),并将剩余的二烯烃饱和。反应温度为100℃,反应压力为1.8MPa,液体体积空速为4h -1,氢油体积比为4.5:1。催化剂组成为MoO 311%、WO33.5%、无定型硅铝71.3%、丝光14.2%。预加氢产物经过选择性加氢脱硫单元在加氢脱硫-异构催化剂5的作用下进行深度脱硫、异构,反应工艺条件为:反应器温度245℃,反应压力1.6MPa,体积空速4.0h -1,氢油体积比350。反应约60h后取样分析,结果如表2所示。
实施例9
FCC汽油首先通过预加氢反应器进行处理,脱除二烯烃及硫醇、硫醚,同时双键异构(即端烯烃转化为内烯烃),并将剩余的二烯烃饱和。反应温度为100℃,反应压力为1.8MPa,液体体积空速为4h -1,氢油体积比为4.5:1。催化剂组成为MoO 39%、WO35%、beta分子筛86%。预加氢产物经过选择性加氢脱硫单元在加氢脱硫-异构催化剂6的作用下进行深度脱硫、异构,反应工艺条件为:反应器温度260℃,反应压力1.9MPa,体积空速4.5h -1,氢油体积比400。反应约60h后取样分析,结果如表2所示。
对比例1
载体制备同实施例4,只是加入的是铁酸镧,催化剂的制备同实施例4,反应条件同实施例4,反应结果见表2。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明的保护范围。

Claims (12)

  1. 一种催化裂化汽油改质方法,其特征在于:首先,全馏分FCC汽油在预加氢催化剂作用下,经过预加氢反应器脱除二烯烃及硫醇、硫醚,同时双键异构端烯烃转化为内烯烃;然后预加氢产物在加氢脱硫-异构催化剂作用下进行选择性加氢脱硫,同时直链烯烃异构为单支链烯烃或单支链烷烃,得到超低硫含量清洁汽油;所述加氢脱硫-异构催化剂包括载体和活性组分,载体包含具有大孔结构的氧化铝复合载体,氧化铝复合载体含有0.1~12wt%的钨掺杂铁酸镧,氧化铝复合载体介孔占总孔的1~85%,氧化铝复合载体大孔占总孔的1~70%,载体表面负载磷钼酸、磷钨酸或磷钼钨酸,以重量百分比计,催化剂中磷钼酸、磷钨酸或磷钼钨酸以氧化物记,含量为0.1~16.5%。
  2. 根据权利要求1所述的催化裂化汽油改质方法,其特征在于:所述预加氢催化剂以无定型硅铝、氧化铝、Y分子筛、ZSM-5、丝光、SAPO-11或beta分子筛中的一种或几种为载体,浸渍钴、钼、镍、钨中的一种或几种活性组分。
  3. 根据权利要求1所述的催化裂化汽油改质方法,其特征在于:所述预加氢的反应条件为:反应温度80-160℃,反应压力1-5MPa,液体体积空速1-10h -1,氢油体积比3-8:1。
  4. 根据权利要求1所述的催化裂化汽油改质方法,其特征在于:加氢脱硫-异构反应工艺条件为:反应温度190-330℃,反应压力1.2-3.5MPa,体积空速2.5-5h -1,氢油体积比160-
    460:1。
  5. 根据权利要求1~4任一项所述的催化裂化汽油改质方法,其特征在于:所述加氢脱硫-异构催化剂还包括0.1~14.5%的金属活性组分,金属活性组分选自钴,钼,镍,钨中的一种或几种。
  6. 根据权利要求1~4任一项所述的催化裂化汽油改质方法,其特征在于:所述加氢脱硫-异构催化剂中氧化铝复合载体包含0.1~12wt%的氧化硅,0.1~10wt%的钨掺杂铁酸镧,介孔占总孔的1~80%,大孔占总孔的1~40%,载体中微孔、介孔、大孔不均匀分布。
  7. 根据权利要求1~4任一项所述的催化裂化汽油改质方法,其特征在于:所述载体中钨掺杂铁酸镧为0.3~9wt%,钨掺杂铁酸镧中钨占钨占钨掺杂铁酸镧的0.1~8wt%。
  8. 根据权利要求1~4任一项所述的催化裂化汽油改质方法,其特征在于:所述钨掺杂铁酸镧为具有微介孔的钨掺杂铁酸镧。
  9. 根据权利要求1~4任一项所述的催化裂化汽油改质方法,其特征在于,所述氧化铝复合载体制备方法如下:将铝源和田菁粉加入到捏合机中混合均匀,加入无机酸溶液和有机聚合物,捏合均匀,然后再加入钨掺杂铁酸镧,捏合均匀后,经过挤条、成型、干燥、焙烧,得到氧化铝载体。
  10. 根据权利要求6所述的催化裂化汽油改质方法,其特征在于:所述氧化铝复合载体的制备方法如下:将铝源和田菁粉加入到捏合机中混合均匀,加入无机酸溶液和有机聚合物,捏合均匀,然后再加入钨掺杂铁酸镧,混合均匀得到氧化铝前驱体备用;有机聚合物的酸液中加入硅源,混合均匀后,与氧化铝前驱体混合,氧化铝前驱体中单位含量的有机聚合物比硅源中有机聚合物的含量高1.5倍以上,经挤条、成型、干燥、焙烧,得到氧化铝载体。
  11. 根据权利要求10所述的催化裂化汽油改质方法,其特征在于:所述硅源是硅藻土、蛋白石中的一种或两种,所述铝源是高岭土、累托土、珍珠岩、蒙脱土中的一种或几种。
  12. 根据权利要求1~4任一项所述的催化裂化汽油改质方法,其特征在于:所述加氢脱硫-异构催化剂还包括选自ZSM-5、ZSM-11、ZSM-12、ZSM-35、丝光、MCM-22、Y分子筛或beta分子筛中的一种或几种。
PCT/CN2018/122101 2018-09-11 2018-12-19 一种催化裂化汽油改质方法 WO2020052143A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/134,262 US11685868B2 (en) 2018-09-11 2020-12-26 Catalytic cracking gasoline upgrading method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811058005.4A CN109082297B (zh) 2018-09-11 2018-09-11 一种催化裂化汽油改质方法
CN201811058005.4 2018-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/134,262 Continuation US11685868B2 (en) 2018-09-11 2020-12-26 Catalytic cracking gasoline upgrading method

Publications (1)

Publication Number Publication Date
WO2020052143A1 true WO2020052143A1 (zh) 2020-03-19

Family

ID=64841247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122101 WO2020052143A1 (zh) 2018-09-11 2018-12-19 一种催化裂化汽油改质方法

Country Status (3)

Country Link
US (1) US11685868B2 (zh)
CN (1) CN109082297B (zh)
WO (1) WO2020052143A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745925A (zh) * 2019-10-30 2021-05-04 中国石油化工股份有限公司 一种处理汽油的方法
CN114075453B (zh) * 2020-08-17 2023-05-26 中国石油天然气股份有限公司 一种催化裂化汽油加氢改质方法
CN112908424A (zh) * 2021-01-21 2021-06-04 上海海事大学 降低S-zorb装置催化裂化汽油过程中辛烷值损耗方法
CN113663684A (zh) * 2021-09-22 2021-11-19 山东京博石油化工有限公司 一种液化气脱硫醇催化剂、其制备方法及应用
CN115536487A (zh) * 2022-10-12 2022-12-30 宁波巨化化工科技有限公司 一种高纯低碳烷烃生产工艺及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295110A (zh) * 1999-11-04 2001-05-16 中国石油化工集团公司 一种汽油馏份的加氢改质方法
CN101885985A (zh) * 2010-07-02 2010-11-17 中国石油大学(北京) 一种超低硫且高辛烷值汽油的生产方法
CN106693982A (zh) * 2015-11-18 2017-05-24 中国石油天然气股份有限公司 一种汽油加氢催化剂及其制备方法
CN107177371A (zh) * 2017-06-02 2017-09-19 钦州学院 一种催化裂化汽油的加氢脱硫方法
US20170333881A1 (en) * 2008-02-21 2017-11-23 Saudi Arabian Oil Company Catalyst to Attain Low Sulfur Gasoline
CN108219841A (zh) * 2018-03-26 2018-06-29 福州大学 一种全馏分催化裂化汽油的清洁化方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076377B2 (ja) 2006-07-03 2012-11-21 トヨタ自動車株式会社 排ガス浄化触媒
CN103480432A (zh) 2013-09-22 2014-01-01 大连瑞克科技有限公司 一种高性能催化剂载体及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295110A (zh) * 1999-11-04 2001-05-16 中国石油化工集团公司 一种汽油馏份的加氢改质方法
US20170333881A1 (en) * 2008-02-21 2017-11-23 Saudi Arabian Oil Company Catalyst to Attain Low Sulfur Gasoline
CN101885985A (zh) * 2010-07-02 2010-11-17 中国石油大学(北京) 一种超低硫且高辛烷值汽油的生产方法
CN106693982A (zh) * 2015-11-18 2017-05-24 中国石油天然气股份有限公司 一种汽油加氢催化剂及其制备方法
CN107177371A (zh) * 2017-06-02 2017-09-19 钦州学院 一种催化裂化汽油的加氢脱硫方法
CN108219841A (zh) * 2018-03-26 2018-06-29 福州大学 一种全馏分催化裂化汽油的清洁化方法

Also Published As

Publication number Publication date
CN109082297B (zh) 2019-10-01
US20210115343A1 (en) 2021-04-22
US11685868B2 (en) 2023-06-27
CN109082297A (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
WO2020052143A1 (zh) 一种催化裂化汽油改质方法
CN109201072B (zh) 一种催化裂化汽油预加氢催化剂及制备方法
CN109433220B (zh) 一种镍基饱和加氢催化剂及制备方法
CN101837299B (zh) 一种用于催化裂化汽油加氢改质的催化剂及其制备方法
RU2626397C1 (ru) Способ гидрокрекинга углеводородного сырья
WO2020052145A1 (zh) 一种fcc汽油改质方法
CN1805792A (zh) 含烯烃物流中二烯烃的选择性加氢及从中除去砷的方法及催化剂以及制备该催化剂的方法
CN102500403A (zh) 一种液化气加氢脱烯烃脱硫催化剂及其制备方法
CN113881457A (zh) 一种处理富含芳烃馏分油的方法
CN108863706B (zh) 一种含炔碳四馏分的选择加氢方法
CN109092320B (zh) 一种氧化铝载体及制备方法
US11674091B2 (en) Catalytic cracking gasoline prehydrogenation method
CN108993583B (zh) 一种汽油选择性加氢脱硫-异构催化剂及制备方法
CN108865243B (zh) 一种碳四烷基化原料的预加氢处理方法
CN108863699B (zh) 一种炔烃选择加氢回收丁二烯的方法
CN108863696B (zh) 一种炔烃选择加氢回收丁烯的方法
CN109468140B (zh) 一种用于烃类饱和加氢的催化剂及制备方法
RU2603776C1 (ru) Способ гидрокрекинга углеводородного сырья
JP3342504B2 (ja) 改良された金属担持結晶質アルミノシリケートの製造方法及びそれを用いた炭化水素類の改質方法
CN109364934B (zh) 一种镍系选择性加氢催化剂及制备方法
CN109355093B (zh) 一种裂解汽油全馏分选择性加氢方法
CN108863697B (zh) 一种增产丁二烯的方法
CN109201073B (zh) 一种汽油加氢脱硫催化剂及制备方法
CN108993526B (zh) 一种汽油脱硫处理方法
CN109355094B (zh) 一种裂解汽油一段选择性加氢方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933351

Country of ref document: EP

Kind code of ref document: A1